WO2022215151A1 - Terminal device, base station device, and wireless communication method - Google Patents

Terminal device, base station device, and wireless communication method Download PDF

Info

Publication number
WO2022215151A1
WO2022215151A1 PCT/JP2021/014589 JP2021014589W WO2022215151A1 WO 2022215151 A1 WO2022215151 A1 WO 2022215151A1 JP 2021014589 W JP2021014589 W JP 2021014589W WO 2022215151 A1 WO2022215151 A1 WO 2022215151A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
value
compensation value
base station
compensation
Prior art date
Application number
PCT/JP2021/014589
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 木原
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2021/014589 priority Critical patent/WO2022215151A1/en
Publication of WO2022215151A1 publication Critical patent/WO2022215151A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present invention relates to terminal devices, base station devices, and wireless communication methods.
  • NR New Radio
  • 5G Fifth Generation
  • NR is being studied as a technology for realizing a wider variety of services than LTE (Long Term Evolution)-Advanced, which is the fourth generation cellular communication system.
  • LTE Long Term Evolution
  • NR has eMBB (enhanced Mobile Broad Band) that realizes high-speed and large-capacity communication
  • URLLC Ultra-Reliable and Low Latency Communication
  • IoT Internet of Things
  • a terminal device in an idle state uses broadcast parameters transmitted from a base station device, cell selection (cell selection) and cell reselection (cell reselection). Calculate the power level value. Based on the calculated received power level value, the terminal apparatus determines whether to select or reselect the cell of the base station apparatus. (See Non-Patent Documents 1 and 2).
  • HPUE High Power User Equipment
  • PC1.5 power class 1.5
  • the terminal device of the power class lower than the maximum transmission power value calculates the reception power level value using the compensation value based on the maximum transmission power value. compensated and lowered the received power level value. Then, when trying to select a cell based on the received power level value compensated by the compensation value, the terminal device determines that the cell of the base station device that transmitted the maximum transmission power value is out of range. It was possible. As a result, in a terminal device with a low power class, for example, the frequency of handovers may increase and the out-of-service area may expand.
  • the present invention has been made in view of such circumstances, and one of its objects is to provide a terminal device, a base station device, and a wireless communication method that can appropriately select a cell.
  • a terminal device is a terminal device that performs wireless communication with a base station device, and includes information about a maximum transmission power value of the terminal device and a compensation value based on the maximum transmission power value and the power class of the terminal device.
  • a receiving unit that receives compensation value-related information indicating from the base station apparatus, a calculation unit that calculates a reception power level value for selection using a predetermined formula including the compensation value, and a reception power level value for selection based on and a selection control unit for controlling cell selection, and the calculation unit calculates the compensation value based on the compensation value-related information.
  • a base station apparatus is a base station apparatus that performs wireless communication with a terminal apparatus, and relates to a maximum transmission power value of the terminal apparatus and a compensation value based on the maximum transmission power value and the power class of the terminal apparatus. and compensation value-related information indicating information to the terminal device in the idle state.
  • a wireless communication method is a wireless communication method used in a terminal device, and includes information about a maximum transmission power value of the terminal device and a compensation value based on the maximum transmission power value and the power class of the terminal device.
  • Compensation value-related information indicating from the base station apparatus, calculating a reception power level value for selection using a predetermined formula including the compensation value, and based on the reception power level value for selection, and C. controlling cell selection, wherein the calculating step includes calculating a compensation value based on the compensation value related information.
  • cells can be appropriately selected.
  • FIG. 1 is a configuration diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • FIG. 2 is a configuration diagram showing an example of a hardware configuration of a terminal device and a base station device according to one embodiment.
  • FIG. 3 is a configuration diagram showing a wireless communication system in one embodiment.
  • FIG. 4 is a configuration diagram showing an example of a functional block configuration of a terminal device according to one embodiment.
  • FIG. 5 is a configuration diagram showing an example of a functional block configuration of a base station apparatus according to one embodiment.
  • FIG. 6 is a time chart for explaining an example of a processing procedure performed by a wireless communication system according to one embodiment.
  • FIG. 7 is a conceptual diagram showing an example of a cell range when a terminal device selects a cell in one embodiment.
  • FIG. 8 is a flowchart for explaining an example of a processing procedure performed by a terminal device according to one embodiment.
  • FIG. 9 is a flowchart for explaining an example of a processing procedure
  • FIG. 1 is a configuration diagram showing an example of a schematic configuration of a radio communication system 100 according to the first embodiment.
  • the wireless communication system 100 includes terminal devices 10-1 to 10-m, base station devices 50-1 to 50-n, and a core network device 90. Configured.
  • the radio communication system 100 is, for example, a radio communication system for NR.
  • the present invention is applicable to any wireless communication system that includes at least a terminal device and a base station device, and is not limited to NR.
  • the present invention is applicable to LTE and LTE-Advanced. It is also applicable to a radio communication system using NR as part of the radio communication system.
  • LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but they have the same meaning.
  • An area (coverage area) formed by a base station apparatus is called a cell
  • E-UTRA and NR are cellular communication systems constructed by multiple cells. Either TDD (Time Division Duplex) or FDD (Frequency Division Duplex) may be applied to the radio communication system according to the present embodiment, and a different system may be applied for each cell.
  • the terminal devices 10-1 to 10-m are wirelessly connected to one of the base station devices 50-1 to 50-n, respectively. Moreover, each of the terminal devices 10-1 to 10-m may be wirelessly connected to two or more of the base station devices 50-1 to 50-n simultaneously.
  • Each of the base station devices 50-1 to 50-n can use E-UTRA or NR.
  • the base station device 50-1 may use NR and the base station device 50-n may use E-UTRA, or vice versa.
  • a base station device in E-UTRA is called an eNB (evolved NodeB)
  • a base station device in NR is called a gNB (g-NodeB).
  • a terminal device in E-UTRA and NR is called UE (User Equipment).
  • the base station apparatus gNB in NR may connect with the terminal apparatus using a part of the bandwidth of the frequency band it uses (BWP: BandWidth part).
  • BWP BandWidth part.
  • the term "cell" includes BWP.
  • FIG. 1 illustrates terminal devices 10-1 to 10-m as m (m is an integer equal to or greater than 2) terminal devices.
  • terminal devices 10 part of the reference numerals will be omitted and they will simply be referred to as "terminal devices 10".
  • base station devices 50-1 to 50-n are illustrated as n base station devices (n is an integer equal to or greater than 2). In the following description, when these n base station devices are not distinguished, they are simply referred to as "base station device 50" with some reference numerals omitted.
  • the terminal device 10 may be connected to the base station device 50 on a cell-by-cell basis, and may be connected using a plurality of cells, for example, carrier aggregation.
  • the initially connected base station device is a master node (MN: Master Node)
  • the additionally connected base station device is It is called a secondary node (SN: Secondary Node).
  • the base station devices are connected by a base station interface.
  • the base station device 50 and the core network device 90 are connected by a core interface.
  • the base station interface is used, for example, to exchange control signals necessary for handover and cooperative operation between base station apparatuses.
  • the core network device 90 for example, has the base station device 50 under its control, and mainly handles load control between base station devices, calling (paging) of the terminal device 10, and movement control such as location registration.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • E-UTRA defines an MME (Mobility Management Entity) corresponding to AMF.
  • FIG. 1 shows an example in which the core network device 90 is composed of one device, it is not limited to this.
  • the core network device may be composed of multiple devices including servers, gateways, and the like.
  • the terminal device 10 and the base station device 50 transmit and receive RRC messages in the radio resource control (RRC) layer to proceed with session processing (also referred to as a connection sequence).
  • RRC radio resource control
  • the terminal device 10 changes from the idle state (RRC Idle) to the connected state (RRC Connected) to the base station device 50 .
  • the idle state corresponds to the standby state of the terminal device 10 .
  • the terminal device 10 and the base station device 50 transmit and receive a MAC control element (MAC CE: MAC Control Element) in the medium access control (MAC) layer.
  • the RRC message is transmitted as an RRC PDU (Protocol Data Unit), and the mapped logical channels are common control channel (CCCH: Common Control Channel), dedicated control channel (DCCH: Dedicated Control Channel), paging control channel (PCCH: Paging Control Channel), Broadcast Control Channel (BCCH), or Multicast Control Channel (MCCH) is used.
  • MAC CE is transmitted as MAC PDU (or MAC subPDU).
  • a MAC sub PDU is equal to a Service Data Unit (SDU) in the MAC layer plus, for example, an 8-bit header, and a MAC PDU contains one or more MAC sub PDUs.
  • SDU Service Data Unit
  • PBCH Physical Broadcast Channel
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PRACH Physical Random Access Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • PBCH Physical broadcast channel
  • MIB Master Information Block
  • SIB System Information Block
  • SIB1 SIB2, . . . and transmitted.
  • SIB System Information Block
  • the system information contains information necessary for connecting to a cell.
  • the MIB contains a system frame number and information indicating whether camping on a cell is possible or not.
  • SIB1 includes parameters for calculating cell quality (cell selection parameters), channel information common to cells (random access control information, PUCCH control information, PUSCH control information), scheduling information of other system information, and the like.
  • the physical broadcast channel (PBCH) is set with a synchronization signal consisting of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) as a synchronization signal block (SSB: Synchronization Signal Block (or SS/PBSH)). is sent periodically.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • SSB Synchronization Signal Block
  • the terminal device 10 can acquire cell identifier (cell ID) information and reception timing, as well as measure the signal quality of the cell.
  • System information notified by physical broadcast channel (PBCH) etc. is also called “system broadcast information” or “broadcast information”. Also, camping on a cell means that the terminal device has completed cell selection and/or cell reselection, and the terminal device has selected a cell for monitoring system broadcast information and paging information. It means to become The terminal device establishes the above-described RRC connection with the base station device that forms the camped-on cell.
  • PBCH physical broadcast channel
  • the primary synchronization signal is used by the terminal equipment to synchronize with the reception symbol timing and frequency of the downlink signal of the base station equipment.
  • a primary synchronization signal is a signal that a terminal apparatus tries to detect first in a procedure for detecting a cell of a base station apparatus (hereinafter also referred to as a "cell search procedure").
  • the primary synchronization signal PSS
  • three signals "0" to "2" are repeatedly used based on the physical cell ID.
  • the physical cell ID is a physical cell identifier, and 504 IDs are used in E-UTRA, and 1008 IDs are used in NR.
  • SSS secondary synchronization signal
  • SSS secondary synchronization signal
  • the secondary synchronization signal (SSS) is repeatedly used in 168 ways from “0" to "167" in E-UTRA, and in 336 ways from “0" to "335" in NR. .
  • a physical random access channel is used by the terminal device 10 to transmit a random access preamble to the base station device 50 .
  • a physical random access channel (PRACH) is generally used in a state where uplink synchronization has not been established between the terminal device 10 and the base station device 50, and transmission timing adjustment information (timing advance) and uplink radio Used for resource requests.
  • Information indicating radio resources capable of transmitting random access preambles is transmitted to terminals using broadcast information and RRC messages.
  • a physical downlink control channel (PDCCH) is transmitted from the base station apparatus 50 to notify the terminal apparatus 10 of downlink control information (DCI).
  • the downlink control information includes uplink radio resource information (uplink grant (UL grant)) usable by the terminal device 10 or downlink radio resource information (downlink grant (DL grant)).
  • uplink grant is information indicating scheduling of a physical downlink shared data channel (PDSCH).
  • An uplink grant is information indicating scheduling of a physical uplink shared channel (PUSCH).
  • the physical downlink shared data channel (PDSCH) indicated by the physical downlink control channel (PDCCH) is the random access response and the random access preamble index information, transmission timing adjustment information, uplink grant, and the like.
  • FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device 10 and the base station device 50 in one embodiment.
  • the terminal device 10 and the base station device 50 each include a processor 21, a memory 22, a storage device 23, a communication device 24, an input device 25, an output device 26, and an antenna 27, respectively.
  • the processor 21 is configured to control the operation of each unit of the terminal device 10 or the base station device 50.
  • the processor 21 is, for example, a CPU (Central Processing Unit), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), SoC (System-on-a -chip) and other integrated circuits.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • SoC System-on-a -chip
  • the memory 22 and the storage device 23 are configured to store programs, data, etc., respectively.
  • the memory 22 includes, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), and/or RAM (Random Access Memory).
  • the storage device 23 is, for example, a storage such as a HDD (Hard Disk Drive), SSD (Solid State Drive) and/or eMMC (embedded Multi Media Card).
  • the communication device 24 is configured to communicate via wired and/or wireless networks.
  • the communication device 24 includes, for example, a network card, a communication module, and the like. Further, the communication device 24 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device performs D/A (Digital to Analog) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, thereby converting the radio signal to be transmitted from the antenna 27. Generate. Also, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D (Analog to Digital) conversion, etc. on the radio signal received from the antenna 27, and transmits the digital baseband signal to the BB device. The BB device performs processing for converting a digital baseband signal into an IP packet and processing for converting an IP packet into a digital baseband signal.
  • D/A Digital to Analog
  • the input device 25 is configured so that information can be input by a user's operation.
  • the input device 25 includes, for example, a keyboard, touch panel, mouse, and/or microphone.
  • the output device 26 is configured to output information.
  • the output device 26 includes, for example, a display device such as a liquid crystal display, an EL (Electro Luminescence) display, a plasma display, and/or a speaker.
  • a display device such as a liquid crystal display, an EL (Electro Luminescence) display, a plasma display, and/or a speaker.
  • the antenna 27 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in one or more predetermined frequency bands.
  • Antenna 27 may be non-directional, ie omnidirectional.
  • An omnidirectional antenna 27 has approximately the same gain from all 360 degrees in the horizontal plane, the vertical plane, or both in the horizontal and vertical planes.
  • the number of antennas 27 is not limited to one.
  • the base station apparatus 50 may be divided into transmitting antennas and receiving antennas. Further, when the plurality of antennas are divided into a transmitting antenna and a receiving antenna, at least one of them may include a plurality of antennas.
  • the base station apparatus 50 is equipped with a plurality of transmitting/receiving antennas or transmitting antennas, it is possible to use beamforming technology, which will be described later.
  • the terminal device 10 and the base station device 50 include various sensors such as a GPS (Global Positioning System) receiver, direction sensor, gravity sensor, temperature sensor, acceleration sensor, fingerprint, retina, At least one of various biometric authentication functions such as iris, face, and voiceprint, various devices such as cameras, microphones, speakers, and lights, input/output interfaces including connection terminals, and the like may be further provided.
  • GPS Global Positioning System
  • FIG. 3 is a configuration diagram showing a wireless communication system 100A in a specific example of one embodiment. be. 3, illustration of the core network device 90 included in the wireless communication system 100A is omitted.
  • the radio communication system 100A includes one base station device 50-1 and three terminal devices 10-1, 10-2 and 10-3.
  • the base station device 50-1 forms a cell having a coverage area with a radius of several hundred meters to ten and several kilometers, for example.
  • the base station device 50-1 performs wireless communication with the terminal devices 10-1, 10-2, and 10-3 existing (also referred to as “in-range”) within a cell formed by the base station device 50-1. -1, 10-2, 10-3 to provide mobile communication services.
  • the terminal devices 10-1, 10-2, and 10-3 are the same or substantially the same terminal devices, except that they have different power classes.
  • the terminal device 10-1 for example, is of power class 1.5 (hereinafter also referred to as “PC1.5”) and has a maximum transmission power of 29 dBm.
  • the terminal device 10-2, for example, is of power class 2 (hereinafter also referred to as “PC2”) and has a maximum transmission power of 26 dBm.
  • the terminal device 10-3 for example, is of power class 3 (hereinafter also referred to as “PC3”) and has a maximum transmission power of 23 dBm.
  • Each of the terminal devices 10-1, 10-2, and 10-3 selects a cell for wireless communication with the base station device 50-1.
  • selection of a cell and selection of a cell mean at least one of cell selection and cell reselection described above.
  • each terminal device 10-1, 10-2, 10-3 selects a cell for monitoring system broadcast information and paging information, it means that the terminal has camped on the cell. Therefore, each terminal device 10-1, 10-2, 10-3 can establish an RRC connection with the base station device 50-1 that forms the camped-on cell.
  • the RRC connection is completed, a connection state to the base station device 50-1 forming the cell is established, and each terminal device 10-1, 10-2, 10-3 can transmit and receive data, that is, transmit data. Uplink communication and downlink communication are possible.
  • each terminal device 10-1, 10-2, 10-3 selects the cell of the base station device 50-1, the cell must satisfy at least a predetermined selection criterion, that is, Srxlev>0. be.
  • Q rxlevmeas is the received power level value of the cell measured by each terminal device 10-1, 10-2, 10-3.
  • Q rxlevmin is the minimum received power level value required for the cell
  • Q rxlevminoffset is the offset to the minimum received power level value.
  • Q rxlevmin and Q rxlevminoffset are included in broadcast information periodically received from the base station apparatus 50-1, specifically, system information block (SIB).
  • SIB system information block
  • P compensation is a compensation value that compensates for the measured received power level value Q rxlevmeas and the lowest received power level value (Q rxlevmin +Q rxlevminoffset ).
  • Pmax is the designated maximum transmission power value
  • P PowerClass is the maximum transmission power value according to the power class of each terminal device 10-1, 10-2, 10-3.
  • the specified maximum transmission power value Pmax is included in broadcast information periodically received from the base station apparatus 50-1, specifically, in a system information block (SIB).
  • SIB system information block
  • the maximum transmission power value P PowerClass according to the power class is stored in the memory 22 or the like of each terminal device 10-1, 10-2, 10-3.
  • the difference (Pmax ⁇ P PowerClass ) between the specified maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class is compared with zero, and the larger value is the compensation value P compensation is set to
  • HPUE high power terminal equipment
  • the base station device 50-1 operates before establishing a connection, that is, the terminal device 10-1 in an idle state.
  • the specified maximum transmission power value Pmax is transmitted in advance, and it is expected that there will be more opportunities to limit the transmission power of terminal devices of particularly high power classes.
  • the cell range when selecting a cell becomes narrower (smaller) in a terminal device of a power class lower than the specified maximum transmission power value Pmax. was there.
  • the measured received power level value Q rxlevmeas and the lowest received power level value (Q rxlevmin +Q rxlevminoffset ), that is, for selection before compensation by the compensation value P compensation Assuming that the received power level values Srxlev were all Y dBm (Y>0), consider the case where the specified maximum transmit power value Pmax is 26 dBm.
  • the cell range when selecting a cell is the cell range SR1 indicated by the dashed line in FIG.
  • the cell range at this time becomes the cell range SR2 indicated by the dashed line in FIG. 3, which is narrower than the cell range SR1 of the terminal devices 10-1 and 10-2.
  • the terminal device 10-3 when cell selection is performed based on the reception power level value Srxlev for selection compensated with the compensation value P compensation , the terminal device 10-3 is the base station device 50-1 There is a possibility that the cell of the base station apparatus 50-1 is not selected and that the cell of the base station apparatus 50-1 is out of range. As a result, for the terminal device 10-3, for example, the frequency of handovers may increase, or the out-of-service area may expand.
  • FIG. 4 is a configuration diagram showing an example of the functional block configuration of the terminal device 10 according to one embodiment. Note that FIG. 4 is for showing the functional blocks necessary in the present embodiment, and does not exclude the terminal device 10 from having functional blocks other than those shown.
  • the terminal device 10 includes a receiver 11, a calculator 12, and a selection controller 13 as functional blocks.
  • the receiving unit 11 is configured to receive the maximum transmission power value and the compensation value-related information indicating information on the compensation value from the surrounding base station device 50 .
  • the maximum transmission power value is the maximum transmission power value Pmax specified above.
  • the compensation value is a value based on the designated maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class, that is, the above compensation value P compensation .
  • the compensation value-related information is included, for example, in broadcast information periodically received from the base station device 50. Thereby, in the idle state before connection with the base station apparatus 50, the maximum transmission power value Pmax and the compensation value-related information can be received.
  • the compensation value-related information is included in any system information block (SIB) in the broadcast information, that is, in the system broadcast information.
  • SIB system information block
  • the system broadcast information is information read first after cell search using synchronization signals of the primary synchronization signal (PSS) and the secondary synchronization signal (SSS). Therefore, since the compensation value-related information is included in the system broadcast information received from the base station device 50, the maximum transmission power value Pmax and the compensation value-related information and can be received.
  • the compensation value-related information includes applicability information indicating whether the compensation value P compensation is applicable. Whether or not the compensation value P compensation can be applied may be rephrased as whether or not the compensation value P compensation is used. Specifically, the applicability information stores a value, such as "1", indicating that the compensation value P compensation is used, or a value, such as "0", indicating that the compensation value P compensation is not used. Not using the compensation value P compensation includes using zero as the compensation value P compensation .
  • the compensation value-related information instead of the applicability information, or together with the applicability information, is multiplied by the difference (Pmax ⁇ P PowerClass ) between the specified maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class. It may contain coefficient information indicating the coefficient k.
  • the coefficient k indicated by the coefficient information is a real number other than 1.
  • the calculator 12 is configured to calculate the above-described selection reception power level value Srxlev using a predetermined formula including the compensation value P compensation .
  • the predetermined formula is, for example, formula (1) described above, or formula (1) described above and formula (3) described later. Further, the calculator 12 is configured to calculate the compensation value P compensation based on the compensation value related information.
  • the calculator 12 is configured to calculate the compensation value P compensation based on the applicability information included in the compensation value related information, for example. Specifically, the calculator 12 determines whether to apply the compensation value P compensation based on the applicability information. When it is determined to apply the compensation value P compensation , the calculation unit 12 calculates the compensation value P compensation using the above-described formula (2), substitutes it into the above-described formula (1), and obtains the selection reception power level value Srxlev Calculate On the other hand, when determining not to apply the compensation value P compensation , the calculation unit 12 sets the compensation value P compensation to zero without using Equation (2).
  • the calculation unit 12 calculates the compensation value P compensation as zero, and substitutes it into the above-described formula (1) to calculate the selection reception power level value Srxlev. Therefore, even if the power class of the terminal device 10 is smaller than the maximum transmission power value Pmax, the influence of the power class of the terminal device 10 is suppressed at the reception power level value Srxlev for selection. And the cell range in cell selection does not change (narrow).
  • the compensation value-related information includes applicability information indicating applicability of the compensation value P compensation
  • the calculation unit 12 calculates the compensation value P compensation based on the applicability information, thereby obtaining the applicability information , for example, whether or not to use the compensation value P compensation in the predetermined formula can be determined, and the compensation value P compensation can be easily calculated.
  • Equation (3) differs from Equation (2) above in that the difference between the maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class is multiplied by a coefficient k.
  • the value obtained by multiplying the coefficient k by the difference (Pmax ⁇ P PowerClass ) is compared with zero, and the larger value is set as the compensation value P compensation .
  • the compensation value P compensation calculated using the equation (3) is substituted into the aforementioned equation (1) to calculate the reception power level value for selection Srxlev. Therefore, when the power class of the terminal device 10 is smaller than the maximum transmission power value Pmax, the influence of the power class of the terminal device 10 on the reception power level value Srxlev for selection can be changed. Then, it is possible to adjust the extent (degree) of change of the cell range in cell selection.
  • the compensation value-related information includes coefficient information indicating a coefficient k by which the difference (Pmax ⁇ P PowerClass ) between the maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class is multiplied, and the calculation unit 12 calculates the compensation By calculating the compensation value P compensation based on the coefficient information included in the value-related information, it is possible to adjust the degree of compensation by the compensation value P compensation in a predetermined formula.
  • the selection control unit 13 is configured to control selection of a cell formed by the base station device 50 based on the calculated reception power level value for selection Srxlev. More specifically, the selection control unit 13 determines whether or not at least the reception power level value for selection Srxlev>0 is satisfied. Then, when it is determined that at least the reception power level value for selection Srxlev>0 is satisfied, the selection control unit 13 selects the cell. In this case, the terminal device 10 is located in the cell. On the other hand, when it is determined that at least the reception power level value for selection Srxlev>0 is not satisfied, the selection control unit 13 does not select the cell. In this case, the terminal device 10 is out of service area for the cell and searches for other neighboring cells.
  • reception power level value for selection Srxlev>0 is only one of the predetermined selection criteria when selecting a cell.
  • 3GPP defines the selection criteria for cell selection as "Cell Selection Criterion" in 5.2.3.2 of Non-Patent Document 1 and Non-Patent Document 2, for example, and the selection control unit 13 may control cell selection based on conditions defined by 3GPP in addition to the condition that the reception power level value for selection Srxlev>0.
  • 3GPP defines a similar "Cell Selection Criterion" for cell reselection, and the selection control unit 13 is based on the conditions defined by 3GPP, cell reselection may be controlled.
  • the selection control unit 13 determines whether or not at least the reception power level value for selection Srxlev>0 is satisfied for the transition destination cell, that is, the target cell.
  • the compensation value P compensation is calculated based on the compensation value-related information, and cell selection is controlled based on the reception power level value Srxlev for selection calculated using a predetermined formula including the compensation value P compensation .
  • the compensation value P compensation in the predetermined formula can be set to zero. be possible. Therefore, even when the received power level value Q rxlevmeas measured for the cell is small, the terminal device 10 can reduce the possibility of being out of the service area of the cell, compared with the conventional terminal device. can be properly selected.
  • the terminal device 10 calculates the compensation value P compensation based on the compensation value-related information, thereby increasing the degree of freedom of the cell range when selecting a cell. can.
  • the selection control unit 13 may also control processes other than cell selection, such as random access processes including RRC connection establishment.
  • RRC connection When the RRC connection is completed, the terminal device 10 becomes connected to the base station device 50 forming the cell, and the terminal device 10 can transmit and receive data, that is, perform uplink and downlink communication of data.
  • the receiving unit 11 may be realized by the antenna 27 and the communication device 24, for example, or may be realized by the processor 21 executing a program stored in the storage device 23 in addition to the communication device 24.
  • the calculator 12 and the selection controller 13 may be implemented by the processor 21 executing a program stored in the storage device 23 .
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium storing the program may be a non-transitory computer readable medium.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
  • FIG. 5 is a configuration diagram showing an example of the functional block configuration of the base station device 50 in one embodiment. Note that FIG. 5 is intended to show the functional blocks required in this embodiment, and does not exclude that the base station apparatus 50 has functional blocks other than those shown.
  • the base station device 50 includes a transmitting section 51 and a setting section 52 as functional blocks.
  • the transmission unit 51 is configured to transmit the maximum transmission power value of the terminal device 10 and compensation value-related information indicating information related to the compensation value to the terminal device 10 in the idle state.
  • the maximum transmission power value is the maximum transmission power value Pmax specified by the base station apparatus 50 for terminal apparatuses existing in the vicinity.
  • the compensation value is a value based on the maximum transmission power value Pmax specified by the base station device 50 and the maximum transmission power value P PowerClass according to the power class of the terminal device 10, that is, the compensation value P compensation .
  • the compensation value-related information includes the aforementioned applicability information and additionally or together with the above-described coefficient information.
  • the compensation value-related information is included in, for example, periodically transmitted broadcast information, and more preferably included in system information configured by a system information block (SIB).
  • SIB system information block
  • the transmission power of the terminal device 10 is limited.
  • the setting unit 52 is configured to set the maximum transmission power value Pmax and compensation value-related information transmitted by the transmission unit 51 .
  • the maximum transmission power value of the terminal device 10 has a value (upper limit) determined mainly by the legal restrictions of the country where the base station device 50 is installed. This value is pre-stored in the memory 22 or the like, and the setting unit 52 sets the value read from the memory 22 or the like as the maximum transmission power value Pmax.
  • compensation value related information that is, applicability information and coefficient information, is set for each base station apparatus 50 . That is, the setting unit 52 sets the applicability information and the coefficient information based on the number of base station apparatuses 50 installed in the vicinity, the cell size, the density, and the like.
  • the setting unit 52 sets the applicability information to, for example, a value representing application of the compensation value P compensation , such as “1”, or a value representing non-application (non-application) of the compensation value P compensation , such as “0”. set. Further, the setting unit 52 sets the coefficient information to a value to be multiplied by the difference (Pmax ⁇ P PowerClass ) between the maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class of the terminal device 10 in the terminal device 10, specifically sets a real number other than 1. Note that the setting unit 52 may set the applicability information and the coefficient information based on the number of terminal devices 10 existing in the vicinity in addition to the base station devices 50 installed in the vicinity. Thereby, compensation value related information can be flexibly set.
  • the transmission unit 51 may be implemented by the communication device 24, for example, or may be implemented by the processor 21 executing a program stored in the storage device 23 in addition to the communication device 24.
  • the setting unit 52 may be implemented by the processor 21 executing a program stored in the storage device 23 .
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
  • FIG. 6 is a time chart for explaining an example of a processing procedure performed by the wireless communication system 100A in one embodiment.
  • FIG. 7 is a conceptual diagram showing an example of a cell range when the terminal device 10-3 selects a cell in one embodiment. 6, for simplification of explanation, the processing procedure between the base station device 50-1 and the terminal device 10-3 among the processing procedures of the radio communication system 100A shown in FIG. Descriptions of the processing procedure between the station device 50-1 and the terminal device 10-1 and the processing procedure between the base station device 50-1 and the terminal device 10-2 are omitted.
  • the terminal device 10-3 is also denoted as "UE”
  • the base station device 50-1 is also denoted as "gNB”.
  • the base station device 50-1 periodically transmits synchronization signals to peripheral terminal devices.
  • a synchronization signal is received from the base station device 50-1 (S101).
  • the terminal device 10-3 receives the reference signal from the base station device 50-1 synchronized by the synchronization signal (S102). Then, the terminal device 10-3 measures the reception power of the cell formed by the base station device 50-1 based on the received reference signal (S103).
  • the received power measured by the terminal device 10-3 is, for example, RSRP (Reference Signal Received Power) or RSSI (Received Signal Strength Indication).
  • the measured received power is used as the measured received power level value Q rxlevmeas described above.
  • the terminal device 10-3 may measure received power quality based on the received reference signal. In this case, the received power quality to be measured is, for example, RSRQ (Reference Signal Received Quality) or SINR (Signal to Interference Noise Ratio).
  • the transmission unit 51 transmits broadcast information including the maximum transmission power value Pmax and compensation value-related information to the system information block (SIB) (S104).
  • SIB system information block
  • the setting unit 52 sets “0” to the applicability information in the compensation value related information.
  • the receiving section 11 receives notification information including the maximum transmission power value Pmax and compensation value-related information from the base station device 50-1 synchronized by the synchronization signal (S105).
  • the calculation unit 12 calculates the reception power level value for selection Srxlev using the formula (1) described above (S106). At this time, the calculator 12 calculates the compensation value P compensation based on the compensation value related information. In the above-described example, the applicability information is set to "0", so the calculator 12 sets the compensation value P compensation to zero and calculates the reception power level value Srxlev for selection.
  • the cell range when the terminal device selects a cell is the cell range SR' indicated by the dashed line.
  • the terminal device 10-3 calculates the compensation value P compensation based on the compensation value-related information, thereby increasing the degree of freedom of the cell range when selecting a cell. Therefore, the cell range when the terminal device 10-3 selects a cell is the cell range SR indicated by the solid line, which can be wider than the cell range SR'.
  • the selection control unit 13 determines whether or not at least the reception power level value for selection Srxlev>0 is satisfied, and controls cell selection of the base station device 50-1 (S107 ). If the reception power level value for selection Srxlev>0 is satisfied, the selection control unit 13 selects the cell of the base station device 50-1, and the terminal device 10-3 is located in that cell. If the reception power level value for selection Srxlev>0 is not satisfied, the terminal device 10-3 performs the cell search procedure again to search for cells formed by other nearby base station devices 50. FIG.
  • FIG. 8 is a flowchart for explaining an example of a processing procedure performed by the terminal device 10 according to one embodiment.
  • FIG. 9 is a flowchart for explaining an example of a processing procedure performed by the base station device 50 in one embodiment.
  • the received power level value Q rxlevmeas is measured in advance for the cell formed by the base station device 50 .
  • the receiver 11 receives notification information including the maximum transmission power value Pmax and compensation value-related information from the base station device 50 (S201).
  • the calculation unit 12 calculates the reception power level value for selection Srxlev using the formula (1) described above (S202). At this time, the calculator 12 calculates the compensation value P compensation based on the compensation value-related information received in step S201, and uses the calculated compensation value P compensation in equation (1).
  • the selection control unit 13 controls cell selection of the base station apparatus 50 based on the selection reception power level value Srxlev calculated in step S202 (S203).
  • the setting unit 52 sets the maximum transmission power value Pmax and compensation value-related information (S251).
  • the transmission unit 51 transmits notification information including the maximum transmission power value Pmax set in step S251 and compensation value-related information to the terminal device 10 in the idle state (S252).
  • the compensation value P compensation is calculated based on the compensation value related information, and the reception power level for selection calculated using a predetermined formula including the compensation value P compensation Control cell selection based on the value Srxlev.
  • the compensation value P compensation in the predetermined formula can be set to zero according to the compensation value-related information received from the base station device 50. be possible. Therefore, even when the received power level value Q rxlevmeas measured for the cell is small, the terminal device 10 can reduce the possibility of being out of the service area of the cell, compared with the conventional terminal device. can be properly selected.
  • the terminal device 10 calculates the compensation value P compensation based on the compensation value-related information, thereby increasing the degree of freedom of the cell range when selecting a cell. can.
  • the maximum transmission power value Pmax of the terminal device 10 and compensation value-related information indicating information on the compensation value P compensation are transmitted to the terminal device 10 in the idle state. This makes it possible to limit the transmission power of the terminal device 10 and to set a cell range when selecting a cell based on the compensation value-related information, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides a terminal device, base station device, and wireless communication method capable of appropriately selecting a cell. A terminal device (10) performs wireless communication with the base station device and comprises: a reception unit (11) that receives, from the base station device, a maximum transmission power value for the terminal device (10) and compensation value-related information representing information related to a compensation value based on the maximum transmission power value and the power class of the terminal device (10); a calculation unit (12) that uses a prescribed formula, which includes the compensation value, to calculate a reception power level value used for selection; and a selection control unit (13) that controls cell selection on the basis of the reception power level value used for selection, wherein the calculation unit (12) calculates the compensation value on the basis of the information related to a compensation value.

Description

端末装置、基地局装置、及び無線通信方法TERMINAL DEVICE, BASE STATION DEVICE, AND WIRELESS COMMUNICATION METHOD
 本発明は、端末装置、基地局装置、及び無線通信方法に関する。 The present invention relates to terminal devices, base station devices, and wireless communication methods.
 国際標準化団体である3GPP(Third Generation Partnership Project)において、第5世代(5G:Fifth Generation)のセルラー通信システムに向けた新しい無線アクセス技術であるNR(New Radio)の検討が行われている。NRは、第4世代のセルラー通信システムであるLTE(Long Term Evolution)-Advancedよりも、多種多様なサービスを実現可能とするための技術として検討されている。例えば、NRでは高速・大容量通信を実現するeMBB(enhanced Mobile Broad Band)、超高信頼・低遅延通信を実現するURLLC(Ultra-Reliable and Low Latency Communication)、及びIoT(Internet of Things)デバイスの多数同時接続を実現するmMTC(massive Machine Type Communication)といった、用途の異なる利用シナリオが実現要件として定められている。  The 3GPP (Third Generation Partnership Project), an international standardization organization, is studying NR (New Radio), a new radio access technology for the 5th generation (5G: Fifth Generation) cellular communication system. NR is being studied as a technology for realizing a wider variety of services than LTE (Long Term Evolution)-Advanced, which is the fourth generation cellular communication system. For example, NR has eMBB (enhanced Mobile Broad Band) that realizes high-speed and large-capacity communication, URLLC (Ultra-Reliable and Low Latency Communication) that realizes ultra-reliable and low-latency communication, and IoT (Internet of Things) devices. Usage scenarios for different purposes, such as mMTC (massive machine type communication) that realizes multiple simultaneous connections, are defined as implementation requirements.
 従来、LTE及びNRでは、アイドル状態(RRC Idle)の端末装置は、基地局装置から送信される報知パラメータを用い、セル選択(cell selection)及びセル再選択(cell reselection)の判定条件である受信電力レベル値を算出する。そして、端末装置は、算出した受信電力レベル値に基づいて、当該基地局装置のセルを選択又は再選択するか否かを判定している。(非特許文献1及び2を参照)。 Conventionally, in LTE and NR, a terminal device in an idle state (RRC Idle) uses broadcast parameters transmitted from a base station device, cell selection (cell selection) and cell reselection (cell reselection). Calculate the power level value. Based on the calculated received power level value, the terminal apparatus determines whether to select or reselect the cell of the base station apparatus. (See Non-Patent Documents 1 and 2).
 近年、例えばパワークラス1.5(PC1.5)等のハイパワー端末装置(HPUE: High Power User Equipment)が導入されてきおり、特にNRにおいては、3つ以上の異なるパワークラスの端末装置が混在する状態になる。そのため、基地局装置は、端末装置の送信電力を所定値以下に制限する目的で、端末装置に対して最大送信電力値を通知する機会が増えることが予測される。 In recent years, for example, high power user equipment (HPUE: High Power User Equipment) such as power class 1.5 (PC1.5) has been introduced, and especially in NR, there are three or more different power class terminal equipment. become. Therefore, it is expected that there will be more opportunities for the base station apparatus to notify the terminal apparatus of the maximum transmission power value for the purpose of limiting the transmission power of the terminal apparatus to a predetermined value or less.
 しかしながら、最大送信電力値を受信した場合、当該最大送信電力値より低いパワークラスの端末装置は、受信電力レベル値を算出する際に、最大送信電力値に基づく補償値を用いて受信電力レベル値を補償し、受信電力レベル値を低下させしていた。そして、補償値で補償された受信電力レベル値に基づいてセルを選択しようとすると、端末装置は、最大送信電力値を送信した基地局装置のセルに対して、圏外であると判定してしまう可能性があった。その結果、パワークラスの低い端末装置では、例えば、ハンドオーバーの発生頻度が増加したり、圏外エリアが拡がったりすることがあった。 However, when the maximum transmission power value is received, the terminal device of the power class lower than the maximum transmission power value calculates the reception power level value using the compensation value based on the maximum transmission power value. compensated and lowered the received power level value. Then, when trying to select a cell based on the received power level value compensated by the compensation value, the terminal device determines that the cell of the base station device that transmitted the maximum transmission power value is out of range. It was possible. As a result, in a terminal device with a low power class, for example, the frequency of handovers may increase and the out-of-service area may expand.
 本発明はこのような事情に鑑みてなされたものであり、セルを適切に選択することのできる端末装置、基地局装置、及び無線通信方法を提供することを目的の1つとする。 The present invention has been made in view of such circumstances, and one of its objects is to provide a terminal device, a base station device, and a wireless communication method that can appropriately select a cell.
 本発明の一側面に係る端末装置は、基地局装置と無線通信を行う端末装置であって、端末装置の最大送信電力値と、該最大送信電力値及び端末装置のパワークラスに基づく補償値に関する情報を示す補償値関連情報とを、基地局装置から受信する受信部と、補償値を含む所定の式を用いて選択用受信電力レベル値を算出する算出部と、選択用受信電力レベル値に基づいて、セルの選択を制御する選択制御部と、を備え、算出部は、補償値関連情報に基づいて補償値を算出する。 A terminal device according to one aspect of the present invention is a terminal device that performs wireless communication with a base station device, and includes information about a maximum transmission power value of the terminal device and a compensation value based on the maximum transmission power value and the power class of the terminal device. a receiving unit that receives compensation value-related information indicating from the base station apparatus, a calculation unit that calculates a reception power level value for selection using a predetermined formula including the compensation value, and a reception power level value for selection based on and a selection control unit for controlling cell selection, and the calculation unit calculates the compensation value based on the compensation value-related information.
 本発明の一側面に係る基地局装置は、端末装置と無線通信を行う基地局装置であって、端末装置の最大送信電力値と、該最大送信電力値及び端末装置のパワークラスに基づく補償値に関する情報を示す補償値関連情報とを、アイドル状態の端末装置に送信する送信部を備える。 A base station apparatus according to one aspect of the present invention is a base station apparatus that performs wireless communication with a terminal apparatus, and relates to a maximum transmission power value of the terminal apparatus and a compensation value based on the maximum transmission power value and the power class of the terminal apparatus. and compensation value-related information indicating information to the terminal device in the idle state.
 本発明の一側面に係る無線通信方法は、端末装置に使用される無線通信方法であって、端末装置の最大送信電力値と、該最大送信電力値及び端末装置のパワークラスに基づく補償値に関する情報を示す補償値関連情報とを、基地局装置から受信するステップと、補償値を含む所定の式を用いて選択用受信電力レベル値を算出するステップと、選択用受信電力レベル値に基づいて、セルの選択を制御するステップと、を含み、算出するステップは、補償値関連情報に基づいて補償値を算出することを含む。 A wireless communication method according to one aspect of the present invention is a wireless communication method used in a terminal device, and includes information about a maximum transmission power value of the terminal device and a compensation value based on the maximum transmission power value and the power class of the terminal device. Compensation value-related information indicating from the base station apparatus, calculating a reception power level value for selection using a predetermined formula including the compensation value, and based on the reception power level value for selection, and C. controlling cell selection, wherein the calculating step includes calculating a compensation value based on the compensation value related information.
 本発明によれば、セルを適切に選択することができる。 According to the present invention, cells can be appropriately selected.
図1は、一実施形態における無線通信システムの概略構成の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment. 図2は、一実施形態における端末装置及び基地局装置のハードウェア構成の一例を示す構成図である。FIG. 2 is a configuration diagram showing an example of a hardware configuration of a terminal device and a base station device according to one embodiment. 図3は、一実施形態における無線通信システムを示す構成図である。FIG. 3 is a configuration diagram showing a wireless communication system in one embodiment. 図4は、一実施形態における端末装置の機能ブロック構成の一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of a functional block configuration of a terminal device according to one embodiment. 図5は、一実施形態における基地局装置の機能ブロック構成の一例を示す構成図である。FIG. 5 is a configuration diagram showing an example of a functional block configuration of a base station apparatus according to one embodiment. 図6は、一実施形態における無線通信システムが行う処理手順の一例を説明するためのタイムチャートである。FIG. 6 is a time chart for explaining an example of a processing procedure performed by a wireless communication system according to one embodiment. 図7は、一実施形態における端末装置がセルを選択する際のセル範囲の一例を示す概念図である。FIG. 7 is a conceptual diagram showing an example of a cell range when a terminal device selects a cell in one embodiment. 図8は、一実施形態における端末装置が行う処理手順の一例を説明するためのフローチャートである。FIG. 8 is a flowchart for explaining an example of a processing procedure performed by a terminal device according to one embodiment. 図9は、一実施形態における基地局装置が行う処理手順の一例を説明するためのフローチャートである。FIG. 9 is a flowchart for explaining an example of a processing procedure performed by the base station apparatus according to one embodiment.
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号で表している。但し、図面は模式的なものである。従って、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。さらに、本発明の技術的範囲は、当該実施形態に限定して解するべきではない。 The embodiment of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined by referring to the following description. In addition, it goes without saying that there are portions with different dimensional relationships and ratios between the drawings. Furthermore, the technical scope of the present invention should not be construed as being limited to the embodiments.
 まず、図1を参照しつつ、一実施形態に従う無線通信システムの概略構成について説明する。図1は、第1実施形態における無線通信システム100の概略構成の一例を示す構成図である。 First, a schematic configuration of a wireless communication system according to one embodiment will be described with reference to FIG. FIG. 1 is a configuration diagram showing an example of a schematic configuration of a radio communication system 100 according to the first embodiment.
 図1に示すように、無線通信システム100は、端末装置10-1から端末装置10-mと、基地局装置50-1から基地局装置50-nと、コアネットワーク装置90と、を含んで構成される。 As shown in FIG. 1, the wireless communication system 100 includes terminal devices 10-1 to 10-m, base station devices 50-1 to 50-n, and a core network device 90. Configured.
 無線通信システム100は、例えばNRを対象とする無線通信システムである。なお、本発明は、少なくとも端末装置と基地局装置とを備える無線通信システムであれば適用可能であり、NRを対象とするものに限定されない。例えば、本発明はLTEやLTE-Advancedに対しても適用可能である。また、無線通信システムの一部にNRを用いる無線通信システムにおいても適用可能である。以降において、LTEとLTE-AdvancedのことをE-UTRA(Evolved Universal Terrestrial Radio Access)ともいうが、その意味は同じである。基地局装置が形成するエリア(カバーエリア)をセルといい、E-UTRA及びNRは、複数セルにより構築されるセルラー通信システムである。本実施形態に係る無線通信システムは、TDD(Time Division Duplex)とFDD(Frequency Division Duplex)のどちらの方式を適用しても良く、セルごとに異なる方式が適用されてもよい。 The radio communication system 100 is, for example, a radio communication system for NR. Note that the present invention is applicable to any wireless communication system that includes at least a terminal device and a base station device, and is not limited to NR. For example, the present invention is applicable to LTE and LTE-Advanced. It is also applicable to a radio communication system using NR as part of the radio communication system. Hereinafter, LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but they have the same meaning. An area (coverage area) formed by a base station apparatus is called a cell, and E-UTRA and NR are cellular communication systems constructed by multiple cells. Either TDD (Time Division Duplex) or FDD (Frequency Division Duplex) may be applied to the radio communication system according to the present embodiment, and a different system may be applied for each cell.
 端末装置10-1から端末装置10-mは、それぞれ、基地局装置50-1から基地局装置50-nのいずれか1つと無線接続する。また、端末装置10-1から端末装置10-mのそれぞれは、基地局装置50-1から基地局装置50-nのうちの2つ以上と同時に無線接続してもよい。基地局装置50-1から基地局装置50-nは、それぞれ、E-UTRA、あるいはNRを用いることができる。例えば、基地局装置50-1がNRを使用し、基地局装置50-nがE-UTRAを使用してもよいし、その逆でもよい。E-UTRAにおける基地局装置をeNB(evolved NodeB)、NRにおける基地局装置をgNB(g-NodeB)という。以降において、基地局装置と記載した場合はeNBとgNBとの両方を含む意味である。また、E-UTRA及びNRにおける端末装置をUE(User Equipment)という。NRにおける基地局装置gNBは、その使用する周波数帯の帯域幅の一部(BWP: BandWidth part)を用いて端末装置と接続してもよい。以降において、セルと記載した場合はBWPを含むものとする。 The terminal devices 10-1 to 10-m are wirelessly connected to one of the base station devices 50-1 to 50-n, respectively. Moreover, each of the terminal devices 10-1 to 10-m may be wirelessly connected to two or more of the base station devices 50-1 to 50-n simultaneously. Each of the base station devices 50-1 to 50-n can use E-UTRA or NR. For example, the base station device 50-1 may use NR and the base station device 50-n may use E-UTRA, or vice versa. A base station device in E-UTRA is called an eNB (evolved NodeB), and a base station device in NR is called a gNB (g-NodeB). Henceforth, when describing as a base station apparatus, it is a meaning including both eNB and gNB. A terminal device in E-UTRA and NR is called UE (User Equipment). The base station apparatus gNB in NR may connect with the terminal apparatus using a part of the bandwidth of the frequency band it uses (BWP: BandWidth part). In the following description, the term "cell" includes BWP.
 なお、図1には、m台(mは2以上の整数)の端末装置として、端末装置10-1から端末装置10-mを図示している。以下の説明において、これらm台の端末装置を区別することなく説明する場合には、符号の一部を省略して、単に「端末装置10」という。また、図1には、n台(nは2以上の整数)の基地局装置として、基地局装置50-1から基地局装置50-nを図示している。以下の説明において、これらn台の基地局装置を区別することなく説明する場合には、符号の一部を省略して、単に「基地局装置50」という。 Note that FIG. 1 illustrates terminal devices 10-1 to 10-m as m (m is an integer equal to or greater than 2) terminal devices. In the following description, when these m terminal devices are described without distinction, part of the reference numerals will be omitted and they will simply be referred to as "terminal devices 10". Also, in FIG. 1, base station devices 50-1 to 50-n are illustrated as n base station devices (n is an integer equal to or greater than 2). In the following description, when these n base station devices are not distinguished, they are simply referred to as "base station device 50" with some reference numerals omitted.
 端末装置10は、例えば、基地局装置50とセル単位で接続され、複数のセルを用いた接続、例えばキャリアアグリゲーションされてもよい。端末装置10が複数の基地局装置を介して接続される場合、つまり、デュアルコネクティビティの場合、初期接続される基地局装置をマスターノード(MN: Master Node)、追加で接続される基地局装置をセカンダリノード(SN: Secondary Node)という。基地局装置間は、基地局インターフェースにより接続されている。また、基地局装置50とコアネットワーク装置90とは、コアインターフェースにより接続されている。基地局インターフェースは、ハンドオーバーや基地局装置間の連携動作に必要な制御信号をやり取りするためなどに使用される。 For example, the terminal device 10 may be connected to the base station device 50 on a cell-by-cell basis, and may be connected using a plurality of cells, for example, carrier aggregation. When the terminal device 10 is connected via a plurality of base station devices, that is, in the case of dual connectivity, the initially connected base station device is a master node (MN: Master Node), and the additionally connected base station device is It is called a secondary node (SN: Secondary Node). The base station devices are connected by a base station interface. Also, the base station device 50 and the core network device 90 are connected by a core interface. The base station interface is used, for example, to exchange control signals necessary for handover and cooperative operation between base station apparatuses.
 コアネットワーク装置90は、例えば、基地局装置50を配下に持ち、基地局装置間の負荷制御や、端末装置10の呼び出し(ページング)、位置登録などの移動制御を主に取り扱う。NRでは、コアネットワーク装置90において、制御プレーン(C-plane)の機能群として、モビリティを管理するAMF(Access and Mobility Management Function)、セッションを管理するSMF(Session Management Function)とを規定している。E-UTRAでは、AMFに対応するMME(Mobility Management Entity)を規定している。 The core network device 90, for example, has the base station device 50 under its control, and mainly handles load control between base station devices, calling (paging) of the terminal device 10, and movement control such as location registration. In NR, in the core network device 90, as a function group of the control plane (C-plane), AMF (Access and Mobility Management Function) that manages mobility and SMF (Session Management Function) that manages sessions are defined. . E-UTRA defines an MME (Mobility Management Entity) corresponding to AMF.
 なお、図1では、コアネットワーク装置90が1つの装置で構成される例を示したが、これに限定されるものではない。例えば、コアネットワーク装置は、サーバー、ゲートウェイ等を含み、複数の装置で構成されていてもよい。 Although FIG. 1 shows an example in which the core network device 90 is composed of one device, it is not limited to this. For example, the core network device may be composed of multiple devices including servers, gateways, and the like.
 端末装置10と基地局装置50とは、無線リソース制御(RRC: Radio Resource Control)層において、RRCメッセージを送受信し、セッション処理(接続シーケンスともいう)を進める。セッション処理を進めると、端末装置10は、アイドル状態(RRC Idle)から、基地局装置50への接続状態(RRC Connected)に変わる。アイドル状態は、端末装置10の待ち受け状態に相当する。 The terminal device 10 and the base station device 50 transmit and receive RRC messages in the radio resource control (RRC) layer to proceed with session processing (also referred to as a connection sequence). As the session process progresses, the terminal device 10 changes from the idle state (RRC Idle) to the connected state (RRC Connected) to the base station device 50 . The idle state corresponds to the standby state of the terminal device 10 .
 また、端末装置10と基地局装置50は、媒体アクセス制御(MAC: Medium Access Control)層において、MAC制御要素(MAC CE: MAC Control Element)を送受信する。RRCメッセージは、RRC PDU(Protocol Data Unit)として送信され、マッピングされる論理チャネルとして、共通制御チャネル(CCCH: Common Control Channel)、個別制御チャネル(DCCH: Dedicated Control Channel)、ページング制御チャネル(PCCH: Paging Control Channel)、ブロードキャスト制御チャネル(BCCH: Broadcast Control Channel)、又は、マルチキャスト制御チャネル(MCCH: Multicast Control Channel)が用いられる。MAC CEは、MAC PDU(又は、MAC subPDU)として送信される。MAC subPDUは、MAC層におけるサービスデータユニット(SDU: Service Data Unit)に、例えば8ビットのヘッダーを加えたものに等しく、MAC PDUは、一つ以上のMAC subPDUを含む。 In addition, the terminal device 10 and the base station device 50 transmit and receive a MAC control element (MAC CE: MAC Control Element) in the medium access control (MAC) layer. The RRC message is transmitted as an RRC PDU (Protocol Data Unit), and the mapped logical channels are common control channel (CCCH: Common Control Channel), dedicated control channel (DCCH: Dedicated Control Channel), paging control channel (PCCH: Paging Control Channel), Broadcast Control Channel (BCCH), or Multicast Control Channel (MCCH) is used. MAC CE is transmitted as MAC PDU (or MAC subPDU). A MAC sub PDU is equal to a Service Data Unit (SDU) in the MAC layer plus, for example, an 8-bit header, and a MAC PDU contains one or more MAC sub PDUs.
 本実施形態に関わる物理チャネルおよび物理シグナルについて説明する。本発明の実施形態に関わる物理チャネルのうち、物理報知チャネル(PBCH: Physical Broadcast Channel)、プライマリ同期信号(PSS: Primary Synchronization Signal)、セカンダリ同期信号(SSS: Secondary Synchronization Signal)、物理ランダムアクセスチャネル(PRACH: Physical Random Access Channel)、及び物理下りリンク制御チャネル(PDCCH: Physical Downlink Control Channel)について以下に説明する。なお、実施形態に係る無線通信システムにおいて、他に物理上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)、物理下りリンク共有チャネル(PDSCH: Physical Downlink Shared Channel)、物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)、サウンディング参照信号(SRS: Sounding Reference Signal)、復調参照信号(DMRS: Demodulation Reference Signal)が少なくとも存在するが、詳細な説明を省略する。 Physical channels and physical signals related to this embodiment will be explained. Among the physical channels involved in the embodiment of the present invention, a physical broadcast channel (PBCH: Physical Broadcast Channel), a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), a physical random access channel ( Physical Random Access Channel (PRACH) and Physical Downlink Control Channel (PDCCH) are described below. In addition, in the radio communication system according to the embodiment, in addition to the physical uplink control channel (PUCCH: Physical Uplink Control Channel), physical downlink shared channel (PDSCH: Physical Downlink Shared Channel), physical uplink shared channel (PUSCH: Physical Uplink Shared Channel), Sounding Reference Signal (SRS), and Demodulation Reference Signal (DMRS) exist, but detailed explanations are omitted.
 <物理報知チャネル(PBCH)>
 物理報知チャネル(PBCH)は、基地局装置から端末装置に対して送信され、基地局装置の配下のセルにおける共通パラメータ(システムインフォメーション)を通知するために使用される。システムインフォメーションは、更にマスターインフォメーションブロック(MIB: Master Information Block)とシステムインフォメーションブロック(SIB: System Information Block)に分類される。なお、システムインフォメーションブロックは、更にSIB1、SIB2、・・・のように細分化されて送信される。システムインフォメーションはセルに接続するために必要な情報が含まれており、例えばMIBにはシステムフレーム番号やセルへのキャンプオン可否を示す情報等が含まれている。また、SIB1には、セルの品質を計算するためのパラメータ(セル選択パラメータ)、セル共通のチャネル情報(ランダムアクセス制御情報、PUCCH制御情報、PUSCH制御情報)、その他のシステムインフォメーションのスケジューリング情報などが含まれている。また、物理報知チャネル(PBCH)は、同期信号ブロック(SSB: Synchronization Signal Block(あるいはSS/PBSH))として、プライマリ同期信号(PSS)及びセカンダリ同期信号(SSS)から構成される同期信号とセットとなって周期的に送信される。端末装置10は、同期信号ブロック(SSB)を受信することによって、セル識別子(セルID)情報や受信タイミングの取得に加え、当該セルの信号の品質を測定することができる。
<Physical broadcast channel (PBCH)>
A physical broadcast channel (PBCH) is transmitted from a base station apparatus to a terminal apparatus and used to notify common parameters (system information) in cells under the control of the base station apparatus. The system information is further classified into a master information block (MIB: Master Information Block) and a system information block (SIB: System Information Block). The system information block is further subdivided into SIB1, SIB2, . . . and transmitted. The system information contains information necessary for connecting to a cell. For example, the MIB contains a system frame number and information indicating whether camping on a cell is possible or not. In addition, SIB1 includes parameters for calculating cell quality (cell selection parameters), channel information common to cells (random access control information, PUCCH control information, PUSCH control information), scheduling information of other system information, and the like. include. In addition, the physical broadcast channel (PBCH) is set with a synchronization signal consisting of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) as a synchronization signal block (SSB: Synchronization Signal Block (or SS/PBSH)). is sent periodically. By receiving the synchronization signal block (SSB), the terminal device 10 can acquire cell identifier (cell ID) information and reception timing, as well as measure the signal quality of the cell.
 物理報知チャネル(PBCH)等によって通知されるシステムインフォメーションは、「システム報知情報」又は「報知情報」とも呼ばれる。また、セルにキャンプオンするとは、端末装置がセル選択(cell selection)及び/又はセル再選択(cell reselection)を完了し、当該端末装置がシステム報知情報とページング情報をモニタするセルを選択した状態になることをいう。端末装置は、キャンプオンしたセルを形成する基地局装置との間で、前述したRRC接続を確立する。 System information notified by physical broadcast channel (PBCH) etc. is also called "system broadcast information" or "broadcast information". Also, camping on a cell means that the terminal device has completed cell selection and/or cell reselection, and the terminal device has selected a cell for monitoring system broadcast information and paging information. It means to become The terminal device establishes the above-described RRC connection with the base station device that forms the camped-on cell.
 <プライマリ同期信号(PSS)>
 プライマリ同期信号(PSS)は、端末装置が基地局装置の下り信号の受信シンボルタイミング及び周波数に同期するために使用される。プライマリ同期信号(PSS)は、端末装置が基地局装置のセルを検出する手順(以下、「セルサーチ手順」ともいう)において、最初に検出を試みる信号である。プライマリ同期信号(PSS)は、物理セルIDに基づいて、「0」~「2」の3通りの信号が繰り返し利用される。なお、物理セルIDは、物理的なセルの識別子であり、E-UTRAでは504通りのIDが使用され、NRでは1008通りのIDが使用される。
<Primary sync signal (PSS)>
The primary synchronization signal (PSS) is used by the terminal equipment to synchronize with the reception symbol timing and frequency of the downlink signal of the base station equipment. A primary synchronization signal (PSS) is a signal that a terminal apparatus tries to detect first in a procedure for detecting a cell of a base station apparatus (hereinafter also referred to as a "cell search procedure"). As for the primary synchronization signal (PSS), three signals "0" to "2" are repeatedly used based on the physical cell ID. The physical cell ID is a physical cell identifier, and 504 IDs are used in E-UTRA, and 1008 IDs are used in NR.
 <セカンダリ同期信号(SSS)>
 セカンダリ同期信号(SSS)は、端末装置が基地局装置の物理IDを検出するために使用される。具体的には、セカンダリ同期信号(SSS)は、端末装置がセルサーチ手順において、物理セルIDを検出するための信号である。セカンダリ同期信号(SSS)は、物理セルIDに基づいて、E-UTRAでは「0」~「167」の168通り、NRでは「0」から「335」までの336通りの信号が繰り返し利用される。
<Secondary sync signal (SSS)>
A secondary synchronization signal (SSS) is used by the terminal device to detect the physical ID of the base station device. Specifically, the secondary synchronization signal (SSS) is a signal for the terminal device to detect the physical cell ID in the cell search procedure. Based on the physical cell ID, the secondary synchronization signal (SSS) is repeatedly used in 168 ways from "0" to "167" in E-UTRA, and in 336 ways from "0" to "335" in NR. .
 <物理ランダムアクセスチャネル(PRACH)>
 物理ランダムアクセスチャネル(PRACH)は、端末装置10が、ランダムアクセスプリアンブルを基地局装置50に送信するために用いられる。物理ランダムアクセスチャネル(PRACH)は、一般的に端末装置10と基地局装置50との間で上りリンク同期が確立していない状態において使用され、送信タイミング調整情報(タイミングアドバンス)や上りリンクの無線リソース要求に用いられる。ランダムアクセスプリアンブルを送信可能な無線リソースを示す情報は、報知情報やRRCメッセージを用いて端末に送信される。
<Physical random access channel (PRACH)>
A physical random access channel (PRACH) is used by the terminal device 10 to transmit a random access preamble to the base station device 50 . A physical random access channel (PRACH) is generally used in a state where uplink synchronization has not been established between the terminal device 10 and the base station device 50, and transmission timing adjustment information (timing advance) and uplink radio Used for resource requests. Information indicating radio resources capable of transmitting random access preambles is transmitted to terminals using broadcast information and RRC messages.
 <物理下りリンク制御チャネル(PDCCH)>
 物理下りリンク制御チャネル(PDCCH)は、端末装置10に対し、下りリンク制御情報(DCI: Downlink Control Information)を通知するために基地局装置50から送信される。下りリンク制御情報は、端末装置10が使用可能な上りリンクの無線リソース情報(上りリンクグラント(UL grant))、又は、下りリンクの無線リソース情報(下りリンクグラント(DL grant))を含む。下りリンクグラントは、物理下りリンク共有データチャネル(PDSCH)のスケジューリングを示す情報である。上りリンクグラントは、物理上りリンク共有チャネル(PUSCH)のスケジューリングを示す情報である。物理下りリンク制御チャネル(PDCCH)がランダムアクセスプリアンブルの応答として送信される場合、物理下りリンク制御チャネル(PDCCH)によって示される物理下りリンク共有データチャネル(PDSCH)はランダムアクセスレスポンスであり、ランダムアクセスプリアンブルのインデックス情報、送信タイミング調整情報、上りリンクグラントなどが含まれる。
<Physical Downlink Control Channel (PDCCH)>
A physical downlink control channel (PDCCH) is transmitted from the base station apparatus 50 to notify the terminal apparatus 10 of downlink control information (DCI). The downlink control information includes uplink radio resource information (uplink grant (UL grant)) usable by the terminal device 10 or downlink radio resource information (downlink grant (DL grant)). A downlink grant is information indicating scheduling of a physical downlink shared data channel (PDSCH). An uplink grant is information indicating scheduling of a physical uplink shared channel (PUSCH). If the physical downlink control channel (PDCCH) is transmitted as a response to the random access preamble, the physical downlink shared data channel (PDSCH) indicated by the physical downlink control channel (PDCCH) is the random access response and the random access preamble index information, transmission timing adjustment information, uplink grant, and the like.
 <ハードウェア構成>
 次に、図2を参照しつつ、一実施形態に従う端末装置及び基地局装置のハードウェア構成について説明する。図2は、一実施形態における端末装置10及び基地局装置50のハードウェア構成の一例を示す構成図である。
<Hardware configuration>
Next, hardware configurations of the terminal apparatus and the base station apparatus according to one embodiment will be described with reference to FIG. FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device 10 and the base station device 50 in one embodiment.
 図2に示すように、端末装置10及び基地局装置50は、それぞれ、例えば、プロセッサ21、メモリ22、記憶装置23、通信装置24、入力装置25、出力装置26、及びアンテナ27を備える。 As shown in FIG. 2, the terminal device 10 and the base station device 50 each include a processor 21, a memory 22, a storage device 23, a communication device 24, an input device 25, an output device 26, and an antenna 27, respectively.
 プロセッサ21は、端末装置10又は基地局装置50の各部の動作を制御するように構成されている。プロセッサ21は、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System-on-a-chip)等の集積回路を含んで構成される。 The processor 21 is configured to control the operation of each unit of the terminal device 10 or the base station device 50. The processor 21 is, for example, a CPU (Central Processing Unit), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), SoC (System-on-a -chip) and other integrated circuits.
 メモリ22及び記憶装置23は、それぞれ、プログラムやデータ等を記憶するように構成されている。メモリ22は、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及び/又はRAM(Random Access Memory)等から構成される。記憶装置23は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及び/又はeMMC(embedded Multi Media Card)等のストレージから構成される。 The memory 22 and the storage device 23 are configured to store programs, data, etc., respectively. The memory 22 includes, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), and/or RAM (Random Access Memory). The storage device 23 is, for example, a storage such as a HDD (Hard Disk Drive), SSD (Solid State Drive) and/or eMMC (embedded Multi Media Card).
 通信装置24は、有線及び/又は無線ネットワークを介して通信を行うように構成されている。通信装置24は、例えば、ネットワークカード、通信モジュール等を含んで構成される。また、通信装置24には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んで構成されていてもよい。 The communication device 24 is configured to communicate via wired and/or wireless networks. The communication device 24 includes, for example, a network card, a communication module, and the like. Further, the communication device 24 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A(Digital to Analog)変換、変調、周波数変換、電力増幅等を行うことで、アンテナ27から送信する無線信号を生成する。また、RF装置は、アンテナ27から受信した無線信号に対して、周波数変換、復調、A/D(Analog to Digital)変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をIPパケットに変換する処理、及び、IPパケットをデジタルベースバンド信号に変換する処理を行う。 For example, the RF device performs D/A (Digital to Analog) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, thereby converting the radio signal to be transmitted from the antenna 27. Generate. Also, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D (Analog to Digital) conversion, etc. on the radio signal received from the antenna 27, and transmits the digital baseband signal to the BB device. The BB device performs processing for converting a digital baseband signal into an IP packet and processing for converting an IP packet into a digital baseband signal.
 入力装置25は、ユーザの操作により情報を入力できるように構成されている。入力装置25は、例えば、キーボード、タッチパネル、マウス、及び/又はマイク等を含んで構成される。 The input device 25 is configured so that information can be input by a user's operation. The input device 25 includes, for example, a keyboard, touch panel, mouse, and/or microphone.
 出力装置26は、情報を出力するように構成されている。出力装置26は、例えば液晶ディスプレイ、EL(Electro Luminescence)ディスプレイ、プラズマディスプレイ等の表示装置、及び/又はスピーカ等を含んで構成される。 The output device 26 is configured to output information. The output device 26 includes, for example, a display device such as a liquid crystal display, an EL (Electro Luminescence) display, a plasma display, and/or a speaker.
 アンテナ27は、1つ又は複数の所定の周波数帯で、電波(電磁波)を放射(輻射)及び受波できるように構成されている。アンテナ27は、指向性のない、つまり、無指向性を有するものであってもよい。無指向性のアンテナ27は、水平面内、垂直面内、又は水平面ない及び垂直面内の両方において、360度全ての方向からの利得がほぼ同等である。 The antenna 27 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in one or more predetermined frequency bands. Antenna 27 may be non-directional, ie omnidirectional. An omnidirectional antenna 27 has approximately the same gain from all 360 degrees in the horizontal plane, the vertical plane, or both in the horizontal and vertical planes.
 なお、アンテナ27は、1本である場合に限定されるものではない。基地局装置50が複数本のアンテナを備える場合、例えば、送信用アンテナと受信用アンテナとに分けてもよい。また、複数本のアンテナを送信用アンテナと受信用アンテナとに分ける場合、少なくとも一方が複数本のアンテナを含んでいてもよい。なお、基地局装置50が複数本の送受信用アンテナ又は送信用アンテナを備える場合、後述するビームフォーミングの技術を利用することができる。 Note that the number of antennas 27 is not limited to one. When the base station apparatus 50 has a plurality of antennas, for example, they may be divided into transmitting antennas and receiving antennas. Further, when the plurality of antennas are divided into a transmitting antenna and a receiving antenna, at least one of them may include a plurality of antennas. When the base station apparatus 50 is equipped with a plurality of transmitting/receiving antennas or transmitting antennas, it is possible to use beamforming technology, which will be described later.
 また、端末装置10及び基地局装置50は、図示を省略するが、例えば、GPS(Global Positioning System)受信機、方位センサ、重力センサ、温度センサ、加速度センサ等の各種のセンサ、指紋、網膜、虹彩、顔、声紋等の各種の生体認証機能、カメラ、マイク、スピーカ、ライト等の各種のデバイス、接続端子を含む入出力インターフェース等のうち、少なくとも1つをさらに備えていてもよい。 In addition, the terminal device 10 and the base station device 50, although not shown, include various sensors such as a GPS (Global Positioning System) receiver, direction sensor, gravity sensor, temperature sensor, acceleration sensor, fingerprint, retina, At least one of various biometric authentication functions such as iris, face, and voiceprint, various devices such as cameras, microphones, speakers, and lights, input/output interfaces including connection terminals, and the like may be further provided.
 <無線通信システムの具体例>
 次に、図3を参照しつつ、一実施形態に従う無線通信システムの具体例について説明する。図3は、一実施形態の具体例における無線通信システム100Aを示す構成図である。る。なお、図3では、無線通信システム100Aが備えるコアネットワーク装置90の描画を省略している。
<Specific example of wireless communication system>
Next, a specific example of a wireless communication system according to one embodiment will be described with reference to FIG. FIG. 3 is a configuration diagram showing a wireless communication system 100A in a specific example of one embodiment. be. 3, illustration of the core network device 90 included in the wireless communication system 100A is omitted.
 図3に示すように、無線通信システム100Aは、1つの基地局装置50-1と、3つの端末装置10-1,10-2,10-3とを含んで構成される。基地局装置50-1は、例えば半径数百メートルから十数キロメートルのカバレッジエリアを有するセルを形成する。基地局装置50-1は、自己が形成するセル内に存在(「在圏」ともいう)する端末装置10-1,10-2,10-3との間で無線通信を行い、端末装置10-1,10-2,10-3に移動体通信サービスを提供しようとする。 As shown in FIG. 3, the radio communication system 100A includes one base station device 50-1 and three terminal devices 10-1, 10-2 and 10-3. The base station device 50-1 forms a cell having a coverage area with a radius of several hundred meters to ten and several kilometers, for example. The base station device 50-1 performs wireless communication with the terminal devices 10-1, 10-2, and 10-3 existing (also referred to as “in-range”) within a cell formed by the base station device 50-1. -1, 10-2, 10-3 to provide mobile communication services.
 端末装置10-1,10-2,10-3は、それぞれ、パワークラスが異なる点を除き、同一又は略同一の端末装置である。端末装置10-1は、例えば、パワークラス1.5(以下、「PC1.5」ともいう)であり、最大送信電力が29dBmである。端末装置10-2は、例えば、パワークラス2(以下、「PC2」ともいう)であり、最大送信電力が26dBmである。端末装置10-3は、例えば、パワークラス3(以下、「PC3」ともいう)であり、最大送信電力が23dBmである。 The terminal devices 10-1, 10-2, and 10-3 are the same or substantially the same terminal devices, except that they have different power classes. The terminal device 10-1, for example, is of power class 1.5 (hereinafter also referred to as “PC1.5”) and has a maximum transmission power of 29 dBm. The terminal device 10-2, for example, is of power class 2 (hereinafter also referred to as “PC2”) and has a maximum transmission power of 26 dBm. The terminal device 10-3, for example, is of power class 3 (hereinafter also referred to as “PC3”) and has a maximum transmission power of 23 dBm.
 各端末装置10-1,10-2,10-3は、基地局装置50-1との間で無線通信を行うために、セルを選択する。なお、本明細書において、セルの選択及びセルを選択することは、前述したセル選択(cell selection)及びセル再選択(cell reselection)の少なくとも一方を意味する。セルの選択が完了し、各端末装置10-1,10-2,10-3がシステム報知情報とページング情報をモニタするセルを選択した状態になると、当該セルにキャンプオンしたことになる。よって、各端末装置10-1,10-2,10-3は、キャンプオンしたセルを形成する基地局装置50-1との間で、RRC接続を確立することが可能となる。RRC接続が完了すると、当該セルを形成する基地局装置50-1への接続状態になり、各端末装置10-1,10-2,10-3は、データの送信及び受信、つまり、データの上り通信及び下り通信が可能となる。 Each of the terminal devices 10-1, 10-2, and 10-3 selects a cell for wireless communication with the base station device 50-1. In this specification, selection of a cell and selection of a cell mean at least one of cell selection and cell reselection described above. When cell selection is completed and each terminal device 10-1, 10-2, 10-3 selects a cell for monitoring system broadcast information and paging information, it means that the terminal has camped on the cell. Therefore, each terminal device 10-1, 10-2, 10-3 can establish an RRC connection with the base station device 50-1 that forms the camped-on cell. When the RRC connection is completed, a connection state to the base station device 50-1 forming the cell is established, and each terminal device 10-1, 10-2, 10-3 can transmit and receive data, that is, transmit data. Uplink communication and downlink communication are possible.
 ここで、各端末装置10-1,10-2,10-3が基地局装置50-1のセルを選択する場合、当該セルは、少なくとも所定の選択基準、つまり、Srxlev>0を満たす必要がある。この選択用受信電力レベル値Srxlevは、以下の式(1)で算出される。
   Srxlev=Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation-Qoffsettemp …(1)
Here, when each terminal device 10-1, 10-2, 10-3 selects the cell of the base station device 50-1, the cell must satisfy at least a predetermined selection criterion, that is, Srxlev>0. be. This reception power level value for selection Srxlev is calculated by the following equation (1).
Srxlev=Q rxlevmeas −(Q rxlevmin +Q rxlevminoffset )−P compensation −Qoffset temp (1)
 式(1)において、Qrxlevmeasは、各端末装置10-1,10-2,10-3が測定した当該セルの受信電力レベル値である。Qrxlevminは、当該セルに対して要求される最低受信電力レベル値であり、Qrxlevminoffsetは、最低受信電力レベル値に対するオフセットである。Qrxlevmin及びQrxlevminoffsetは、それぞれ、基地局装置50-1から周期的に受信する報知情報、具体的には、システムインフォメーションブロック(SIB)に含まれる。なお、以下の説明において、前述した式(1)における(Qrxlevmin+Qrxlevminoffset)を最低受信電力レベル値であるものとする。Qoffsettempは、所定能条件を満たしたときに一時的に使用されるオフセット値である。以下において、説明を簡略化する目的で、Qoffsettempはゼロであるものとする。 In equation (1), Q rxlevmeas is the received power level value of the cell measured by each terminal device 10-1, 10-2, 10-3. Q rxlevmin is the minimum received power level value required for the cell, and Q rxlevminoffset is the offset to the minimum received power level value. Q rxlevmin and Q rxlevminoffset are included in broadcast information periodically received from the base station apparatus 50-1, specifically, system information block (SIB). In the following description, it is assumed that (Q rxlevmin +Q rxlevminoffset ) in Equation (1) above is the minimum received power level value. Qoffset temp is an offset value temporarily used when a predetermined performance condition is satisfied. In the following, Qoffset temp is assumed to be zero for the purpose of simplifying the explanation.
 Pcompensationは、測定した受信電力レベル値Qrxlevmeas及び最低受信電力レベル値(Qrxlevmin+Qrxlevminoffset)を補償する補償値である。補償値Pcompensationは、以下の式(2)で算出される。
   Pcompensation=max(Pmax-PPowerClass,0) …(2)
P compensation is a compensation value that compensates for the measured received power level value Q rxlevmeas and the lowest received power level value (Q rxlevmin +Q rxlevminoffset ). The compensation value P compensation is calculated by Equation (2) below.
Pcompensation =max(Pmax− PPowerClass , 0) (2)
 式(2)において、Pmaxは指定された最大送信電力値であり、PPowerClassは各端末装置10-1,10-2,10-3のパワークラスに従う最大送信電力値である。指定された最大送信電力値Pmaxは、基地局装置50-1から周期的に受信する報知情報、具体的には、システムインフォメーションブロック(SIB)に含まれる。パワークラスに従う最大送信電力値PPowerClassは各端末装置10-1,10-2,10-3のメモリ22等に記憶されている。式(2)によれば、指定された最大送信電力値Pmaxとパワークラスに従う最大送信電力値PPowerClassとの差(Pmax-PPowerClass)とゼロとを比較し、大きい方の値が補償値Pcompensationに設定される。 In equation (2), Pmax is the designated maximum transmission power value, and P PowerClass is the maximum transmission power value according to the power class of each terminal device 10-1, 10-2, 10-3. The specified maximum transmission power value Pmax is included in broadcast information periodically received from the base station apparatus 50-1, specifically, in a system information block (SIB). The maximum transmission power value P PowerClass according to the power class is stored in the memory 22 or the like of each terminal device 10-1, 10-2, 10-3. According to equation (2), the difference (Pmax−P PowerClass ) between the specified maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class is compared with zero, and the larger value is the compensation value P compensation is set to
 近年、ハイパワー端末装置(HPUE)が導入されており、図3に示す具体例のように、無線通信システム100Aは、3つ以上のパワークラスの端末装置10-1,10-2,10-3が混在するようになっている。このように、異なるパワークラスの端末装置10-1,10-2,10-3が存在する状態では、基地局装置50-1は、接続を確立する前、つまり、アイドル状態の端末装置10-1,10-2,10-3に対し、指定された最大送信電力値Pmaxをあらかじめ送信し、特に高いパワークラスの端末装置の送信電力を制限する機会が増えることが予測される。 In recent years, high power terminal equipment (HPUE) has been introduced, and as in the specific example shown in FIG. are mixed. In this way, in a state where terminal devices 10-1, 10-2, and 10-3 of different power classes exist, the base station device 50-1 operates before establishing a connection, that is, the terminal device 10-1 in an idle state. , 10-2, and 10-3, the specified maximum transmission power value Pmax is transmitted in advance, and it is expected that there will be more opportunities to limit the transmission power of terminal devices of particularly high power classes.
 しかし、指定された最大送信電力値Pmaxを受信した場合、当該指定された最大送信電力値Pmaxより低いパワークラスの端末装置では、セルを選択する際のセル範囲(セルレンジ)が狭く(小さく)なることがあった。例えば、端末装置10-1,10-2,10-3において、測定した受信電力レベル値Qrxlevmeas及び最低受信電力レベル値(Qrxlevmin+Qrxlevminoffset)、つまり、補償値Pcompensationによる補償前の選択用受信電力レベル値Srxlevが、全てYdBm(Y>0)であったと仮定し、指定された最大送信電力値Pmaxが26dBmである場合を考えてみる。この場合、端末装置10-1及び端末装置10-2は補償値Pcompensationがゼロになる一方、端末装置10-3は補償値Pcompensationが3(=26-23)dBmになる。言い換えれば、端末装置10-1及び端末装置10-2では、セルを選択する際のセル範囲が図3において破線で示すセル範囲SR1であるのに対し、端末装置10-3では、セルを選択する際のセル範囲が図3において一点鎖線で示すセル範囲SR2になり、端末装置10-1及び端末装置10-2のセル範囲SR1より狭くなる。そのため、式(1)及び式(2)に従い、補償値Pcompensationで補償した選択用受信電力レベル値Srxlevに基づいてセルの選択を行うと、端末装置10-3は、基地局装置50-1のセルを選択せず、基地局装置50-1のセルに対して圏外であると判定してしまう可能性があった。その結果、端末装置10-3は、例えば、ハンドオーバーの発生頻度が増加したり、圏外エリアが拡がったりすることがある。 However, when the specified maximum transmission power value Pmax is received, the cell range when selecting a cell becomes narrower (smaller) in a terminal device of a power class lower than the specified maximum transmission power value Pmax. was there. For example, in the terminal devices 10-1, 10-2, and 10-3, the measured received power level value Q rxlevmeas and the lowest received power level value (Q rxlevmin +Q rxlevminoffset ), that is, for selection before compensation by the compensation value P compensation Assuming that the received power level values Srxlev were all Y dBm (Y>0), consider the case where the specified maximum transmit power value Pmax is 26 dBm. In this case, the compensation values P compensation of the terminal devices 10-1 and 10-2 are zero, while the compensation value P compensation of the terminal device 10-3 is 3 (=26-23) dBm. In other words, in the terminal device 10-1 and the terminal device 10-2, the cell range when selecting a cell is the cell range SR1 indicated by the dashed line in FIG. The cell range at this time becomes the cell range SR2 indicated by the dashed line in FIG. 3, which is narrower than the cell range SR1 of the terminal devices 10-1 and 10-2. Therefore, according to the equations (1) and (2), when cell selection is performed based on the reception power level value Srxlev for selection compensated with the compensation value P compensation , the terminal device 10-3 is the base station device 50-1 There is a possibility that the cell of the base station apparatus 50-1 is not selected and that the cell of the base station apparatus 50-1 is out of range. As a result, for the terminal device 10-3, for example, the frequency of handovers may increase, or the out-of-service area may expand.
 <機能ブロック構成>
 (端末装置)
 次に、図4を参照しつつ、一実施形態に従う端末装置の機能ブロック構成について説明する。図4は、一実施形態における端末装置10の機能ブロック構成の一例を示す構成図である。なお、図4は、本実施形態において必要な機能ブロックを示すためのものであり、端末装置10が図示以外の機能ブロックを備えることを排除するものではない。
<Functional block configuration>
(Terminal device)
Next, the functional block configuration of the terminal device according to one embodiment will be described with reference to FIG. FIG. 4 is a configuration diagram showing an example of the functional block configuration of the terminal device 10 according to one embodiment. Note that FIG. 4 is for showing the functional blocks necessary in the present embodiment, and does not exclude the terminal device 10 from having functional blocks other than those shown.
 図4に示すように、端末装置10は、機能ブロックとして、受信部11と、算出部12と、選択制御部13と、を備える。 As shown in FIG. 4, the terminal device 10 includes a receiver 11, a calculator 12, and a selection controller 13 as functional blocks.
 受信部11は、周辺の基地局装置50から、最大送信電力値と補償値に関する情報を示す補償値関連情報とを受信するように構成されている。 The receiving unit 11 is configured to receive the maximum transmission power value and the compensation value-related information indicating information on the compensation value from the surrounding base station device 50 .
 最大送信電力値は、前述の指定された最大送信電力値Pmaxである。補償値は、指定された最大送信電力値Pmaxとパワークラスに従う最大送信電力値PPowerClassとに基づく値、つまり、前述の補償値Pcompensationである。 The maximum transmission power value is the maximum transmission power value Pmax specified above. The compensation value is a value based on the designated maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class, that is, the above compensation value P compensation .
 補償値関連情報は、例えば、基地局装置50から周期的に受信する報知情報に含まれる。これにより、基地局装置50との接続前のアイドル状態において、最大送信電力値Pmaxと補償値関連情報とを受信することができる。 The compensation value-related information is included, for example, in broadcast information periodically received from the base station device 50. Thereby, in the idle state before connection with the base station apparatus 50, the maximum transmission power value Pmax and the compensation value-related information can be received.
 より好ましくは、補償値関連情報は、報知情報におけるシステムインフォメーションブロック(SIB)のいずれか、つまり、システム報知情報に含まれる。ここで、システム報知情報は、プライマリ同期信号(PSS)及びセカンダリ同期信号(SSS)の同期信号を用いたセルサーチ後に、最初に読み取られる情報である。よって、補償値関連情報は、基地局装置50から受信するシステム報知情報に含まれことにより、基地局装置50との接続前のアイドル状態の早い段階において、最大送信電力値Pmaxと補償値関連情報とを受信することができる。 More preferably, the compensation value-related information is included in any system information block (SIB) in the broadcast information, that is, in the system broadcast information. Here, the system broadcast information is information read first after cell search using synchronization signals of the primary synchronization signal (PSS) and the secondary synchronization signal (SSS). Therefore, since the compensation value-related information is included in the system broadcast information received from the base station device 50, the maximum transmission power value Pmax and the compensation value-related information and can be received.
 補償値関連情報は、補償値Pcompensationの適用の可否を示す適用可否情報を含む。補償値Pcompensationの適用の可否は、補償値Pcompensationを使用するか否か、と言い換えてもよい。具体的には、適用可否情報に、補償値Pcompensationを使用することを表す値、例えば“1”、又は、補償値Pcompensationを使用しないことを表す値、例えば“0”が格納される。なお、補償値Pcompensationを使用しないことには、補償値Pcompensationとしてゼロを用いることを含む。 The compensation value-related information includes applicability information indicating whether the compensation value P compensation is applicable. Whether or not the compensation value P compensation can be applied may be rephrased as whether or not the compensation value P compensation is used. Specifically, the applicability information stores a value, such as "1", indicating that the compensation value P compensation is used, or a value, such as "0", indicating that the compensation value P compensation is not used. Not using the compensation value P compensation includes using zero as the compensation value P compensation .
 また、補償値関連情報は、適用可否情報に代えて、又は、適用可否情報とともに、指定された最大送信電力値Pmaxとパワークラスに従う最大送信電力値PPowerClassとの差(Pmax-PPowerClass)に乗じる係数kを示す係数情報を含んでいてもよい。係数情報が示す係数kは、1以外の実数である。係数情報にゼロが設定される場合、前述した補償値Pcompensationを使用しない場合に相当する。よって、係数情報がゼロか否かによって、補償値Pcompensationを使用するか否かを判定してもよい。 In addition, the compensation value-related information, instead of the applicability information, or together with the applicability information, is multiplied by the difference (Pmax−P PowerClass ) between the specified maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class. It may contain coefficient information indicating the coefficient k. The coefficient k indicated by the coefficient information is a real number other than 1. When the coefficient information is set to zero, it corresponds to the case where the compensation value P compensation described above is not used. Therefore, whether or not to use the compensation value P compensation may be determined depending on whether or not the coefficient information is zero.
 算出部12は、補償値Pcompensationを含む所定の式を用い、前述の選択用受信電力レベル値Srxlevを算出するように構成されている。所定の式は、例えば、前述した式(1)、若しくは、前述した式(1)及び後述する式(3)である。また、算出部12は、補償値関連情報に基づいて、補償値Pcompensationを算出するように構成されている。 The calculator 12 is configured to calculate the above-described selection reception power level value Srxlev using a predetermined formula including the compensation value P compensation . The predetermined formula is, for example, formula (1) described above, or formula (1) described above and formula (3) described later. Further, the calculator 12 is configured to calculate the compensation value P compensation based on the compensation value related information.
 より詳細には、算出部12は、例えば補償値関連情報に含まれる適用可否情報に基づいて、補償値Pcompensationを算出するように構成されている。具体的には、算出部12は、適用可否情報に基づいて、補償値Pcompensationを適用するか否かを判定する。補償値Pcompensationを適用すると判定した場合、算出部12は、前述した式(2)を用いて補償値Pcompensationを算出し、前述した式(1)に代入して選択用受信電力レベル値Srxlevを算出する。一方、補償値Pcompensationを適用しないと判定した場合、算出部12は、式(2)を用いずに、補償値Pcompensationにゼロを設定する。言い換えれば、算出部12は、補償値Pcompensationをゼロと算出し、前述した式(1)に代入して選択用受信電力レベル値Srxlevを算出する。そのため、端末装置10のパワークラスが最大送信電力値Pmaxより小さい場合でも、選択用受信電力レベル値Srxlevにおいて、端末装置10のパワークラスによる影響は抑制される。そして、セルの選択におけるセル範囲は、変化しない(狭くならない)。 More specifically, the calculator 12 is configured to calculate the compensation value P compensation based on the applicability information included in the compensation value related information, for example. Specifically, the calculator 12 determines whether to apply the compensation value P compensation based on the applicability information. When it is determined to apply the compensation value P compensation , the calculation unit 12 calculates the compensation value P compensation using the above-described formula (2), substitutes it into the above-described formula (1), and obtains the selection reception power level value Srxlev Calculate On the other hand, when determining not to apply the compensation value P compensation , the calculation unit 12 sets the compensation value P compensation to zero without using Equation (2). In other words, the calculation unit 12 calculates the compensation value P compensation as zero, and substitutes it into the above-described formula (1) to calculate the selection reception power level value Srxlev. Therefore, even if the power class of the terminal device 10 is smaller than the maximum transmission power value Pmax, the influence of the power class of the terminal device 10 is suppressed at the reception power level value Srxlev for selection. And the cell range in cell selection does not change (narrow).
 このように、補償値関連情報は、補償値Pcompensationの適用の可否を示す適用可否情報を含み、算出部12は、適用可否情報に基づいて補償値Pcompensationを算出することにより、適用可否情報に応じて、例えば、所定の式における補償値Pcompensationを使用するか否かを判定することができ、補償値Pcompensationを容易に算出することができる。 Thus, the compensation value-related information includes applicability information indicating applicability of the compensation value P compensation , and the calculation unit 12 calculates the compensation value P compensation based on the applicability information, thereby obtaining the applicability information , for example, whether or not to use the compensation value P compensation in the predetermined formula can be determined, and the compensation value P compensation can be easily calculated.
 あるいは、算出部12は、例えば補償値関連情報に含まれる係数情報に基づいて、補償値Pcompensationを算出するように構成されている。具体的には、算出部12は、係数情報が示す係数kを含む以下の式(3)を用い、補償値Pcompensationを算出する。
   Pcompensation=max(k×(Pmax-PPowerClass),0) …(3)
Alternatively, the calculator 12 is configured to calculate the compensation value P compensation based on, for example, coefficient information included in the compensation value related information. Specifically, the calculator 12 calculates the compensation value P compensation using the following equation (3) including the coefficient k indicated by the coefficient information.
Pcompensation =max(k×(Pmax− PPowerClass ), 0) (3)
 式(3)は、最大送信電力値Pmaxとパワークラスに従う最大送信電力値PPowerClassとの差に係数kを乗じている点で、前述の式(2)と異なる。式(3)によれば、係数kと差(Pmax-PPowerClass)とを乗算した値とゼロとを比較し、大きい方の値が補償値Pcompensationに設定される。式(3)を用いて算出された補償値Pcompensationは、前述した式(1)に代入され、選択用受信電力レベル値Srxlevが算出される。そのため、端末装置10のパワークラスが最大送信電力値Pmaxより小さい場合に、選択用受信電力レベル値Srxlevにおいて、端末装置10のパワークラスによる影響は、変更可能になる。そして、セルの選択におけるセル範囲の変化の程度(度合い)を調整することができる。 Equation (3) differs from Equation (2) above in that the difference between the maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class is multiplied by a coefficient k. According to equation (3), the value obtained by multiplying the coefficient k by the difference (Pmax−P PowerClass ) is compared with zero, and the larger value is set as the compensation value P compensation . The compensation value P compensation calculated using the equation (3) is substituted into the aforementioned equation (1) to calculate the reception power level value for selection Srxlev. Therefore, when the power class of the terminal device 10 is smaller than the maximum transmission power value Pmax, the influence of the power class of the terminal device 10 on the reception power level value Srxlev for selection can be changed. Then, it is possible to adjust the extent (degree) of change of the cell range in cell selection.
 このように、補償値関連情報は、最大送信電力値Pmaxとパワークラスに従う最大送信電力値PPowerClassとの差(Pmax-PPowerClass)に乗じる係数kを示す係数情報を含み、算出部12は、補償値関連情報に含まれる係数情報に基づいて補償値Pcompensationを算出することにより、所定の式において、補償値Pcompensationによる補償の度合い(程度)を調整することができる。 Thus, the compensation value-related information includes coefficient information indicating a coefficient k by which the difference (Pmax−P PowerClass ) between the maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class is multiplied, and the calculation unit 12 calculates the compensation By calculating the compensation value P compensation based on the coefficient information included in the value-related information, it is possible to adjust the degree of compensation by the compensation value P compensation in a predetermined formula.
 選択制御部13は、算出された選択用受信電力レベル値Srxlevに基づいて、基地局装置50が形成するセルの選択を制御するように構成されている。より詳細には、選択制御部13は、少なくとも選択用受信電力レベル値Srxlev>0を満たすか否かを判定する。そして、少なくとも選択用受信電力レベル値Srxlev>0を満たすと判定されたときに、選択制御部13は当該セルを選択する。この場合、端末装置10は、当該セルに在圏することになる。一方、少なくとも選択用受信電力レベル値Srxlev>0を満たさないと判定されたときに、選択制御部13は当該セルを選択しない。この場合、端末装置10は、当該セルに対して圏外となり、他の周辺セルを検索することになる。 The selection control unit 13 is configured to control selection of a cell formed by the base station device 50 based on the calculated reception power level value for selection Srxlev. More specifically, the selection control unit 13 determines whether or not at least the reception power level value for selection Srxlev>0 is satisfied. Then, when it is determined that at least the reception power level value for selection Srxlev>0 is satisfied, the selection control unit 13 selects the cell. In this case, the terminal device 10 is located in the cell. On the other hand, when it is determined that at least the reception power level value for selection Srxlev>0 is not satisfied, the selection control unit 13 does not select the cell. In this case, the terminal device 10 is out of service area for the cell and searches for other neighboring cells.
 なお、選択用受信電力レベル値Srxlev>0は、セルを選択する際の所定の選択基準の1つに過ぎない。3GPPは、セル選択(cell selection)の選択基準について、例えば前述の非特許文献1及び非特許文献2の5.2.3.2に“Cell Selection Criterion"として規定しており、選択制御部13は、選択用受信電力レベル値Srxlev>0の条件に加え、3GPPが規定する条件に基づいて、セル選択(cell selection)を制御してもよい。 It should be noted that the reception power level value for selection Srxlev>0 is only one of the predetermined selection criteria when selecting a cell. 3GPP defines the selection criteria for cell selection as "Cell Selection Criterion" in 5.2.3.2 of Non-Patent Document 1 and Non-Patent Document 2, for example, and the selection control unit 13 may control cell selection based on conditions defined by 3GPP in addition to the condition that the reception power level value for selection Srxlev>0.
 本実施形態では、セル選択(cell selection)の例を用いて説明したが、これに限定されるものではない。例えば、3GPPは、セル再選択(cell reselection)についても、同様の“Cell Selection Criterion"を規定しており、選択制御部13は、3GPPが規定する条件に基づいて、セル再選択(cell reselection)を制御してもよい。選択制御部13は、遷移先のセル、つまり、ターゲットセルについて、少なくとも選択用受信電力レベル値Srxlev>0を満たすか否かを判定する。 Although this embodiment has been described using an example of cell selection, it is not limited to this. For example, 3GPP defines a similar "Cell Selection Criterion" for cell reselection, and the selection control unit 13 is based on the conditions defined by 3GPP, cell reselection may be controlled. The selection control unit 13 determines whether or not at least the reception power level value for selection Srxlev>0 is satisfied for the transition destination cell, that is, the target cell.
 このように、補償値関連情報に基づいて補償値Pcompensationを算出し、補償値Pcompensationを含む所定の式を用いて算出された選択用受信電力レベル値Srxlevに基づいてセルの選択を制御することにより、受信した最大送信電力値Pmaxより小さいパワークラスの端末装置10において、基地局装置50から受信した補償値関連情報に応じて、例えば、所定の式における補償値Pcompensationをゼロにすることが可能になる。従って、セルに対して測定した受信電力レベル値Qrxlevmeasが小さい場合でも、従来の端末装置と比較して、端末装置10は、当該セルの圏外となる可能性を低減することができ、セルを適切に選択することができる。また、従来の端末装置と比較して、端末装置10は、補償値関連情報に基づく補償値Pcompensationを算出することで、セルを選択する際のセル範囲(セルレンジ)の自由度を高めることができる。 Thus, the compensation value P compensation is calculated based on the compensation value-related information, and cell selection is controlled based on the reception power level value Srxlev for selection calculated using a predetermined formula including the compensation value P compensation . Accordingly, in the terminal device 10 of the power class smaller than the received maximum transmission power value Pmax, according to the compensation value-related information received from the base station device 50, for example, the compensation value P compensation in the predetermined formula can be set to zero. be possible. Therefore, even when the received power level value Q rxlevmeas measured for the cell is small, the terminal device 10 can reduce the possibility of being out of the service area of the cell, compared with the conventional terminal device. can be properly selected. In addition, compared with the conventional terminal device, the terminal device 10 calculates the compensation value P compensation based on the compensation value-related information, thereby increasing the degree of freedom of the cell range when selecting a cell. can.
 選択制御部13は、セルの選択以外の処理、例えば、RRC接続の確立を含むランダムアクセス処理等も制御してもよい。RRC接続が完了すると、当該セルを形成する基地局装置50への接続状態になり、端末装置10は、データの送信及び受信、つまり、データの上り通信及び下り通信が可能となる。 The selection control unit 13 may also control processes other than cell selection, such as random access processes including RRC connection establishment. When the RRC connection is completed, the terminal device 10 becomes connected to the base station device 50 forming the cell, and the terminal device 10 can transmit and receive data, that is, perform uplink and downlink communication of data.
 なお、受信部11は、例えばアンテナ27及び通信装置24により実現されてもよいし、通信装置24に加えてプロセッサ21が記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。算出部12及び選択制御部13は、プロセッサ21が、記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USB(Universal Serial Bus)メモリ、又はCD-ROM(Compact Disc ROM)等の記憶媒体であってもよい。 The receiving unit 11 may be realized by the antenna 27 and the communication device 24, for example, or may be realized by the processor 21 executing a program stored in the storage device 23 in addition to the communication device 24. The calculator 12 and the selection controller 13 may be implemented by the processor 21 executing a program stored in the storage device 23 . When executing a program, the program may be stored in a storage medium. The storage medium storing the program may be a non-transitory computer readable medium. The non-temporary storage medium is not particularly limited, but may be, for example, a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
 (基地局装置)
 次に、図5を参照しつつ、一実施形態に従う基地局装置の機能ブロック構成について説明する。図5は、一実施形態における基地局装置50の機能ブロック構成の一例を示す構成図である。なお、図5は、本実施形態において必要な機能ブロックを示すためのものであり、基地局装置50が図示以外の機能ブロックを備えることを排除するものではない。
(Base station equipment)
Next, the functional block configuration of the base station apparatus according to one embodiment will be described with reference to FIG. FIG. 5 is a configuration diagram showing an example of the functional block configuration of the base station device 50 in one embodiment. Note that FIG. 5 is intended to show the functional blocks required in this embodiment, and does not exclude that the base station apparatus 50 has functional blocks other than those shown.
 図5に示すように、基地局装置50は、機能ブロックとして、送信部51と、設定部52と、を備える。 As shown in FIG. 5, the base station device 50 includes a transmitting section 51 and a setting section 52 as functional blocks.
 送信部51は、端末装置10の最大送信電力値と補償値に関する情報を示す補償値関連情報とを、アイドル状態の端末装置10に送信するように構成されている。前述したように、最大送信電力値は、周辺に存在する端末装置に対し、基地局装置50が指定する最大送信電力値Pmaxである。また、補償値は、基地局装置50が指定する最大送信電力値Pmaxと端末装置10のパワークラスに従う最大送信電力値PPowerClassとに基づく値、つまり、補償値Pcompensationである。補償値関連情報は、前述の適用可否情報と、これに加えて、又は、これとともに前述の係数情報とを含んで構成される。補償値関連情報は、例えば、周期的に送信する報知情報に含まれ、より好ましくは、システムインフォメーションブロック(SIB)で構成されるシステム情報に含まれる。 The transmission unit 51 is configured to transmit the maximum transmission power value of the terminal device 10 and compensation value-related information indicating information related to the compensation value to the terminal device 10 in the idle state. As described above, the maximum transmission power value is the maximum transmission power value Pmax specified by the base station apparatus 50 for terminal apparatuses existing in the vicinity. Also, the compensation value is a value based on the maximum transmission power value Pmax specified by the base station device 50 and the maximum transmission power value P PowerClass according to the power class of the terminal device 10, that is, the compensation value P compensation . The compensation value-related information includes the aforementioned applicability information and additionally or together with the above-described coefficient information. The compensation value-related information is included in, for example, periodically transmitted broadcast information, and more preferably included in system information configured by a system information block (SIB).
 このように、端末装置10の最大送信電力値Pmaxと補償値Pcompensationに関する情報を示す補償値関連情報とを、アイドル状態の端末装置10に送信することにより、端末装置10の送信電力を制限するとともに、例えば、補償値関連情報に基づいてセルを選択する際のセル範囲(セルレンジ)を設定することが可能になる。 In this way, by transmitting the maximum transmission power value Pmax of the terminal device 10 and the compensation value-related information indicating information about the compensation value P compensation to the terminal device 10 in the idle state, the transmission power of the terminal device 10 is limited. Along with this, for example, it is possible to set a cell range when selecting a cell based on the compensation value related information.
 設定部52は、送信部51によって送信される、最大送信電力値Pmax及び補償値関連情報を設定するように構成されている。端末装置10の最大送信電力値は、主に当該基地局装置50が設置される国の法制上の制限により、定められた値(上限値)が存在する。この値は、メモリ22等にあらかじめ記憶されており、設定部52は、メモリ22等から読み出した当該値を最大送信電力値Pmaxに設定する。これに対し、補償値関連情報、つまり、適用可否情報及び係数情報は、基地局装置50ごとに設定される。すなわち、設定部52は、周辺に設置された基地局装置50の数、セルサイズ、密度等に基づいて、適用可否情報及び係数情報を設定する。設定部52は、適用可否情報に、例えば、補償値Pcompensationの適用を表す値、例えば“1”、又は、補償値Pcompensationの不適用(適用しないこと)を表す値、例えば“0”を設定する。また、設定部52は、係数情報に、端末装置10において、最大送信電力値Pmaxと端末装置10のパワークラスに従う最大送信電力値PPowerClassとの差(Pmax-PPowerClass)に乗じる値、具体的には1以外の実数を設定する。なお、設定部52は、周辺に設置された基地局装置50に加え、周辺に存在する端末装置10の数等にも基づいて、適用可否情報及び係数情報を設定してもよい。これにより、補償値関連情報を柔軟に設定することができる。 The setting unit 52 is configured to set the maximum transmission power value Pmax and compensation value-related information transmitted by the transmission unit 51 . The maximum transmission power value of the terminal device 10 has a value (upper limit) determined mainly by the legal restrictions of the country where the base station device 50 is installed. This value is pre-stored in the memory 22 or the like, and the setting unit 52 sets the value read from the memory 22 or the like as the maximum transmission power value Pmax. On the other hand, compensation value related information, that is, applicability information and coefficient information, is set for each base station apparatus 50 . That is, the setting unit 52 sets the applicability information and the coefficient information based on the number of base station apparatuses 50 installed in the vicinity, the cell size, the density, and the like. The setting unit 52 sets the applicability information to, for example, a value representing application of the compensation value P compensation , such as “1”, or a value representing non-application (non-application) of the compensation value P compensation , such as “0”. set. Further, the setting unit 52 sets the coefficient information to a value to be multiplied by the difference (Pmax−P PowerClass ) between the maximum transmission power value Pmax and the maximum transmission power value P PowerClass according to the power class of the terminal device 10 in the terminal device 10, specifically sets a real number other than 1. Note that the setting unit 52 may set the applicability information and the coefficient information based on the number of terminal devices 10 existing in the vicinity in addition to the base station devices 50 installed in the vicinity. Thereby, compensation value related information can be flexibly set.
 なお、送信部51は、例えば通信装置24により実現されてもよいし、通信装置24に加えてプロセッサ21が記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。設定部52は、プロセッサ21が、記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USBメモリ、又はCD-ROM等の記憶媒体であってもよい。 The transmission unit 51 may be implemented by the communication device 24, for example, or may be implemented by the processor 21 executing a program stored in the storage device 23 in addition to the communication device 24. The setting unit 52 may be implemented by the processor 21 executing a program stored in the storage device 23 . When executing a program, the program may be stored in a storage medium. The storage medium storing the program may be a computer-readable non-temporary storage medium. The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
 <処理手順>
 次に、図6及び図7を参照しつつ、一実施形態に従う無線通信システムが行う処理手順について説明する。図6は、一実施形態における無線通信システム100Aが行う処理手順の一例を説明するためのタイムチャートである。図7は、一実施形態における端末装置10-3がセルを選択する際のセル範囲の一例を示す概念図である。なお、図6では、説明の簡略化のため、図3に示す無線通信システム100Aの処理手順のうち、基地局装置50-1と端末装置10-3との間の処理手順について説明し、基地局装置50-1と端末装置10-1との間の処理手順及び基地局装置50-1と端末装置10-2との間の処理手順については、その説明を省略する。また、図6では、端末装置10-3を「UE」と、基地局装置50-1を「gNB」とも表記する。
<Processing procedure>
Next, a processing procedure performed by the wireless communication system according to one embodiment will be described with reference to FIGS. 6 and 7. FIG. FIG. 6 is a time chart for explaining an example of a processing procedure performed by the wireless communication system 100A in one embodiment. FIG. 7 is a conceptual diagram showing an example of a cell range when the terminal device 10-3 selects a cell in one embodiment. 6, for simplification of explanation, the processing procedure between the base station device 50-1 and the terminal device 10-3 among the processing procedures of the radio communication system 100A shown in FIG. Descriptions of the processing procedure between the station device 50-1 and the terminal device 10-1 and the processing procedure between the base station device 50-1 and the terminal device 10-2 are omitted. In addition, in FIG. 6, the terminal device 10-3 is also denoted as "UE", and the base station device 50-1 is also denoted as "gNB".
 図6に示すように、基地局装置50-1は、周辺の端末装置に、周期的に同期信号を送信しており、セルサーチ手順を開始した端末装置10-3において、受信部11は、基地局装置50-1からの同期信号を受信する(S101)。 As shown in FIG. 6, the base station device 50-1 periodically transmits synchronization signals to peripheral terminal devices. A synchronization signal is received from the base station device 50-1 (S101).
 次に、端末装置10-3は、同期信号によって同期した基地局装置50-1から、参照信号を受信する(S102)。そして、端末装置10-3は、受信した参照信号に基づいて、基地局装置50-1によって形成されたセルの受信電力を測定する(S103)。端末装置10-3が測定する受信電力は、例えば、RSRP(Reference Signal Received Power)、又は、RSSI(Received  Signal Strength Indication)である。測定する受信電力は、前述の測定した受信電力レベル値Qrxlevmeasとして使用される。なお、ステップS103において、端末装置10-3は、受信した参照信号に基づいて、受信電力品質を測定してもよい。この場合、測定される受信電力品質は、例えば、RSRQ(Reference Signal Received Quality)、又は、SINR(Signal to Interference Noise Ratio)である。 Next, the terminal device 10-3 receives the reference signal from the base station device 50-1 synchronized by the synchronization signal (S102). Then, the terminal device 10-3 measures the reception power of the cell formed by the base station device 50-1 based on the received reference signal (S103). The received power measured by the terminal device 10-3 is, for example, RSRP (Reference Signal Received Power) or RSSI (Received Signal Strength Indication). The measured received power is used as the measured received power level value Q rxlevmeas described above. In step S103, the terminal device 10-3 may measure received power quality based on the received reference signal. In this case, the received power quality to be measured is, for example, RSRQ (Reference Signal Received Quality) or SINR (Signal to Interference Noise Ratio).
 次に、基地局装置50-1において、送信部51は、システムインフォメーションブロック(SIB)に、最大送信電力値Pmax及び補償値関連情報を含む報知情報を送信する(S104)。設定部52は、例えば、補償値関連情報における適用可否情報に、“0”を設定している。これに対し、端末装置10-3において、受信部11は、同期信号によって同期した基地局装置50-1から、最大送信電力値Pmax及び補償値関連情報を含む報知情報を受信する(S105)。 Next, in the base station device 50-1, the transmission unit 51 transmits broadcast information including the maximum transmission power value Pmax and compensation value-related information to the system information block (SIB) (S104). For example, the setting unit 52 sets “0” to the applicability information in the compensation value related information. On the other hand, in the terminal device 10-3, the receiving section 11 receives notification information including the maximum transmission power value Pmax and compensation value-related information from the base station device 50-1 synchronized by the synchronization signal (S105).
 次に、算出部12は、前述した式(1)を用いて選択用受信電力レベル値Srxlevを算出する(S106)。このとき、算出部12は、補償値関連情報に基づいて補償値Pcompensationを算出する。前述した例では、適用可否情報に“0”が設定されているので、算出部12は、補償値Pcompensationをゼロとして、選択用受信電力レベル値Srxlevを算出する。 Next, the calculation unit 12 calculates the reception power level value for selection Srxlev using the formula (1) described above (S106). At this time, the calculator 12 calculates the compensation value P compensation based on the compensation value related information. In the above-described example, the applicability information is set to "0", so the calculator 12 sets the compensation value P compensation to zero and calculates the reception power level value Srxlev for selection.
 ここで、従来の方法と同様に、補償値Pcompensationを算出する場合、図7に示すように、端末装置がセルを選択する際のセル範囲は、破線で示すセル範囲SR’となる。一方、端末装置10-3は、補償値関連情報に基づいて補償値Pcompensationを算出することで、セルを選択する際のセル範囲の自由度を高めることができる。そのため、端末装置10-3がセルを選択する際のセル範囲は、実線で示すセル範囲SRとなり、セル範囲SR’と比較して、広くすることができる。 Here, as in the conventional method, when calculating the compensation value P compensation , as shown in FIG. 7, the cell range when the terminal device selects a cell is the cell range SR' indicated by the dashed line. On the other hand, the terminal device 10-3 calculates the compensation value P compensation based on the compensation value-related information, thereby increasing the degree of freedom of the cell range when selecting a cell. Therefore, the cell range when the terminal device 10-3 selects a cell is the cell range SR indicated by the solid line, which can be wider than the cell range SR'.
 図6の説明に戻り、次に、選択制御部13は、少なくとも選択用受信電力レベル値Srxlev>0を満たすか否かを判定し、基地局装置50-1のセルの選択を制御する(S107)。選択用受信電力レベル値Srxlev>0を満たす場合、選択制御部13は、基地局装置50-1のセルを選択し、端末装置10-3は当該セルに在圏することになる。選択用受信電力レベル値Srxlev>0を満たさない場合、端末装置10-3は、再度セルサーチ手順を行い、周辺の他の基地局装置50が形成するセルを検索する。 Returning to the description of FIG. 6, next, the selection control unit 13 determines whether or not at least the reception power level value for selection Srxlev>0 is satisfied, and controls cell selection of the base station device 50-1 (S107 ). If the reception power level value for selection Srxlev>0 is satisfied, the selection control unit 13 selects the cell of the base station device 50-1, and the terminal device 10-3 is located in that cell. If the reception power level value for selection Srxlev>0 is not satisfied, the terminal device 10-3 performs the cell search procedure again to search for cells formed by other nearby base station devices 50. FIG.
 次に、図8及び図9を参照しつつ、一実施形態に従う端末装置及び基地局装置が行う処理手順について説明する。図8は、一実施形態における端末装置10が行う処理手順の一例を説明するためのフローチャートである。図9は、一実施形態における基地局装置50が行う処理手順の一例を説明するためのフローチャートである。 Next, a processing procedure performed by the terminal device and the base station device according to one embodiment will be described with reference to FIGS. 8 and 9. FIG. FIG. 8 is a flowchart for explaining an example of a processing procedure performed by the terminal device 10 according to one embodiment. FIG. 9 is a flowchart for explaining an example of a processing procedure performed by the base station device 50 in one embodiment.
 以下の説明では、基地局装置50が形成するセルに対し、受信電力レベル値Qrxlevmeasをあらかじめ測定しているものとする。 In the following description, it is assumed that the received power level value Q rxlevmeas is measured in advance for the cell formed by the base station device 50 .
 (端末装置の処理手順)
 図8に示すように、最初に、受信部11は、基地局装置50から、最大送信電力値Pmax及び補償値関連情報を含む報知情報を受信する(S201)。
(Processing procedure of terminal device)
As shown in FIG. 8, first, the receiver 11 receives notification information including the maximum transmission power value Pmax and compensation value-related information from the base station device 50 (S201).
 次に、算出部12は、前述した式(1)を用いて選択用受信電力レベル値Srxlevを算出する(S202)。このとき、算出部12は、ステップS201で受信した補償値関連情報に基づいて補償値Pcompensationを算出し、算出した補償値Pcompensationを式(1)で使用する。 Next, the calculation unit 12 calculates the reception power level value for selection Srxlev using the formula (1) described above (S202). At this time, the calculator 12 calculates the compensation value P compensation based on the compensation value-related information received in step S201, and uses the calculated compensation value P compensation in equation (1).
 次に、選択制御部13は、ステップS202で算出された選択用受信電力レベル値Srxlevに基づいて、基地局装置50のセルの選択を制御する(S203)。 Next, the selection control unit 13 controls cell selection of the base station apparatus 50 based on the selection reception power level value Srxlev calculated in step S202 (S203).
 (基地局装置の処理手順)
 図9に示すように、最初に、設定部52は、最大送信電力値Pmaxと補償値関連情報とを設定する(S251)。
(Processing procedure of base station device)
As shown in FIG. 9, first, the setting unit 52 sets the maximum transmission power value Pmax and compensation value-related information (S251).
 次に、送信部51は、ステップS251で設定した最大送信電力値Pmax及び補償値関連情報を含む報知情報を、アイドル状態の端末装置10に送信する(S252)。 Next, the transmission unit 51 transmits notification information including the maximum transmission power value Pmax set in step S251 and compensation value-related information to the terminal device 10 in the idle state (S252).
 なお、本実施形態で説明したシーケンス及びフローチャートは、処理に矛盾が生じない限り、順序を入れ替えてもよい。 It should be noted that the sequence and flowchart described in this embodiment may be rearranged as long as there is no contradiction in processing.
 以上、本発明の例示的な実施形態について説明した。本実施形態の端末装置10及び無線通信方法によれば、補償値関連情報に基づいて補償値Pcompensationを算出し、補償値Pcompensationを含む所定の式を用いて算出された選択用受信電力レベル値Srxlevに基づいてセルの選択を制御する。これにより、受信した最大送信電力値Pmaxより小さいパワークラスの端末装置10において、基地局装置50から受信した補償値関連情報に応じて、例えば、所定の式における補償値Pcompensationをゼロにすることが可能になる。従って、セルに対して測定した受信電力レベル値Qrxlevmeasが小さい場合でも、従来の端末装置と比較して、端末装置10は、当該セルの圏外となる可能性を低減することができ、セルを適切に選択することができる。また、従来の端末装置と比較して、端末装置10は、補償値関連情報に基づく補償値Pcompensationを算出することで、セルを選択する際のセル範囲(セルレンジ)の自由度を高めることができる。 Exemplary embodiments of the invention have been described above. According to the terminal device 10 and the wireless communication method of the present embodiment, the compensation value P compensation is calculated based on the compensation value related information, and the reception power level for selection calculated using a predetermined formula including the compensation value P compensation Control cell selection based on the value Srxlev. As a result, in the terminal device 10 of the power class smaller than the received maximum transmission power value Pmax, for example, the compensation value P compensation in the predetermined formula can be set to zero according to the compensation value-related information received from the base station device 50. be possible. Therefore, even when the received power level value Q rxlevmeas measured for the cell is small, the terminal device 10 can reduce the possibility of being out of the service area of the cell, compared with the conventional terminal device. can be properly selected. In addition, compared with the conventional terminal device, the terminal device 10 calculates the compensation value P compensation based on the compensation value-related information, thereby increasing the degree of freedom of the cell range when selecting a cell. can.
 また、本実施形態の基地局装置50によれば、端末装置10の最大送信電力値Pmaxと補償値Pcompensationに関する情報を示す補償値関連情報とを、アイドル状態の端末装置10に送信する。これにより、端末装置10の送信電力を制限するとともに、例えば、補償値関連情報に基づいてセルを選択する際のセル範囲(セルレンジ)を設定することが可能になる。 Further, according to the base station device 50 of the present embodiment, the maximum transmission power value Pmax of the terminal device 10 and compensation value-related information indicating information on the compensation value P compensation are transmitted to the terminal device 10 in the idle state. This makes it possible to limit the transmission power of the terminal device 10 and to set a cell range when selecting a cell based on the compensation value-related information, for example.
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。すなわち、実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。 It should be noted that the embodiments described above are intended to facilitate understanding of the present invention, and are not intended to limit and interpret the present invention. The present invention may be modified/improved without departing from its spirit, and the present invention also includes equivalents thereof. In other words, any design modifications made by those skilled in the art to the embodiments are also included in the scope of the present invention as long as they have the features of the present invention. For example, each element provided in the embodiment and its arrangement, material, condition, shape, size, etc. are not limited to those illustrated and can be changed as appropriate. In addition, the embodiments are examples, and it goes without saying that partial substitutions or combinations of configurations shown in different embodiments are possible, and these are also included in the scope of the present invention as long as they include the features of the present invention.
 10,10-1,10-2,10-3,10-m…端末装置、11…受信部、12…算出部、13…選択制御部、21…プロセッサ、22…メモリ、23…記憶装置、24…通信装置、25…入力装置、26…出力装置、27…アンテナ、50,50-1,50-n…基地局装置、51…送信部、52…設定部、90…コアネットワーク装置、100,100A…無線通信システム、SR,SR’ ,SR1,SR2…セル範囲。 10, 10-1, 10-2, 10-3, 10-m... terminal device, 11... receiving unit, 12... calculating unit, 13... selection control unit, 21... processor, 22... memory, 23... storage device, 24... communication device, 25... input device, 26... output device, 27... antenna, 50, 50-1, 50-n... base station apparatus, 51... transmitter, 52... setting unit, 90... core network device, 100 , 100A... radio communication system, SR, SR', SR1, SR2... cell range.

Claims (7)

  1.  基地局装置と無線通信を行う端末装置であって、
     前記端末装置の最大送信電力値と、該最大送信電力値及び前記端末装置のパワークラスに基づく補償値に関する情報を示す補償値関連情報とを、前記基地局装置から受信する受信部と、
     前記補償値を含む所定の式を用いて選択用受信電力レベル値を算出する算出部と、
     前記選択用受信電力レベル値に基づいて、セルの選択を制御する選択制御部と、を備え、
     前記算出部は、前記補償値関連情報に基づいて前記補償値を算出する、
     端末装置。
    A terminal device that performs wireless communication with a base station device,
    a receiving unit for receiving, from the base station apparatus, a maximum transmission power value of the terminal device and compensation value-related information indicating information about a compensation value based on the maximum transmission power value and the power class of the terminal device;
    a calculation unit that calculates a reception power level value for selection using a predetermined formula including the compensation value;
    a selection control unit that controls cell selection based on the reception power level value for selection;
    The calculation unit calculates the compensation value based on the compensation value related information.
    Terminal equipment.
  2.  前記前記補償値関連情報は、前記補償値の適用の可否を示す適用可否情報を含み、
     前記算出部は、前記適用可否情報に基づいて前記補償値を算出する、
     請求項1に記載の端末装置。
    The compensation value related information includes applicability information indicating whether the compensation value is applicable,
    The calculation unit calculates the compensation value based on the applicability information.
    The terminal device according to claim 1.
  3.  前記補償値関連情報は、前記最大送信電力値と前記パワークラスに従う送信電力値との差に乗じる係数を示す係数情報を含み、
     前記算出部は、前記係数情報に基づいて前記補償値を算出する、
     請求項1又は2に記載の端末装置。
    The compensation value-related information includes coefficient information indicating a coefficient by which the difference between the maximum transmission power value and the transmission power value according to the power class is multiplied,
    The calculation unit calculates the compensation value based on the coefficient information.
    The terminal device according to claim 1 or 2.
  4.  前記補償値関連情報は、前記基地局装置から受信する報知情報に含まれる、
     請求項1から3のいずれか一項に記載の端末装置。
    The compensation value-related information is included in broadcast information received from the base station device,
    The terminal device according to any one of claims 1 to 3.
  5.  前記補償値関連情報は、前記基地局装置から受信するシステム報知情報に含まれる、
     請求項4に記載の端末装置。
    The compensation value-related information is included in system broadcast information received from the base station device,
    The terminal device according to claim 4.
  6.  端末装置と無線通信を行う基地局装置であって、
     前記端末装置の最大送信電力値と、該最大送信電力値及び前記端末装置のパワークラスに基づく補償値に関する情報を示す補償値関連情報とを、アイドル状態の端末装置に送信する送信部を備える、
     基地局装置。
    A base station device that performs wireless communication with a terminal device,
    A transmission unit for transmitting a maximum transmission power value of the terminal device and compensation value-related information indicating information on a compensation value based on the maximum transmission power value and the power class of the terminal device to the terminal device in an idle state,
    Base station equipment.
  7.  端末装置に使用される無線通信方法であって、
     前記端末装置の最大送信電力値と、該最大送信電力値及び前記端末装置のパワークラスに基づく補償値に関する情報を示す補償値関連情報とを、基地局装置から受信するステップと、
     前記補償値を含む所定の式を用いて選択用受信電力レベル値を算出するステップと、
     前記選択用受信電力レベル値に基づいて、セルの選択を制御するステップと、を含み、
     前記算出するステップは、前記補償値関連情報に基づいて前記補償値を算出することを含む、
     無線通信方法。
    A wireless communication method used in a terminal device,
    a step of receiving, from a base station apparatus, a maximum transmission power value of the terminal device and compensation value-related information indicating information on a compensation value based on the maximum transmission power value and the power class of the terminal device;
    calculating a receiving power level value for selection using a predetermined formula including the compensation value;
    and controlling cell selection based on the selected received power level value;
    The calculating step includes calculating the compensation value based on the compensation value-related information,
    wireless communication method.
PCT/JP2021/014589 2021-04-06 2021-04-06 Terminal device, base station device, and wireless communication method WO2022215151A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014589 WO2022215151A1 (en) 2021-04-06 2021-04-06 Terminal device, base station device, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014589 WO2022215151A1 (en) 2021-04-06 2021-04-06 Terminal device, base station device, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2022215151A1 true WO2022215151A1 (en) 2022-10-13

Family

ID=83545264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014589 WO2022215151A1 (en) 2021-04-06 2021-04-06 Terminal device, base station device, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2022215151A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202513A1 (en) * 2019-04-03 2020-10-08 株式会社Nttドコモ User device and base station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202513A1 (en) * 2019-04-03 2020-10-08 株式会社Nttドコモ User device and base station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Miscellaneous corrections", 3GPP TSG RAN WG2 #111-E R2-2008466, 1 September 2020 (2020-09-01), XP051926412, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_111-e/Docs/R2-2008466.zip> *

Similar Documents

Publication Publication Date Title
US10064078B2 (en) Wireless communications method, user equipment, and network node
US9414268B2 (en) User equipment and a radio network node, and methods therein for device-to-device communication
US11405971B2 (en) Location assisted dynamic mode preference between 5G and 4G
US11005639B2 (en) Methods and apparatus for associating carriers in a wireless communication network
JP2023512019A (en) Interaction of wake-up signal (WUS) and downlink positioning reference signal (PRS) reception in wireless networks
WO2016095637A1 (en) Apparatus, device, and processing method for realizing high-frequency communication based on blind area
US11019473B2 (en) Communication device and communication method
TW202203700A (en) Transitioning between multi-link and single-link mode on a transmission opportunity (txop) basis
KR20220133881A (en) Positioning reference signals (PRS) triggered based on downlink control information (DCI)
CN106851712A (en) A kind of method of Message Processing, base station and terminal
TW202228470A (en) Radio resource control (rrc) inactive mode positioning
WO2022215151A1 (en) Terminal device, base station device, and wireless communication method
JP6732184B2 (en) User terminal and mobile communication method
WO2022153445A1 (en) User terminal and wireless communication method
CN116980904A (en) Information processing method, network side equipment and terminal
WO2023199433A1 (en) Terminal device, base station device, and wireless communication method
WO2023053449A1 (en) Terminal device, base station device, and wireless communication method
WO2021019711A1 (en) Terminal apparatus, base station apparatus, and wireless communication method
WO2021156994A1 (en) Terminal device, base station device, and wireless communication method
WO2024047709A1 (en) Terminal device and wireless communication method
WO2022153461A1 (en) Terminal device and wireless communication method
WO2023053264A1 (en) Terminal device and wireless communication method
WO2023074521A1 (en) Terminal device, base station device, management device, and communication method
JP7418589B2 (en) User terminal and wireless communication method
WO2021156984A1 (en) Terminal device and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935959

Country of ref document: EP

Kind code of ref document: A1