WO2022213927A1 - 超声信号触发方法、装置和*** - Google Patents

超声信号触发方法、装置和*** Download PDF

Info

Publication number
WO2022213927A1
WO2022213927A1 PCT/CN2022/085065 CN2022085065W WO2022213927A1 WO 2022213927 A1 WO2022213927 A1 WO 2022213927A1 CN 2022085065 W CN2022085065 W CN 2022085065W WO 2022213927 A1 WO2022213927 A1 WO 2022213927A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection probe
contact
measured
preset range
determined
Prior art date
Application number
PCT/CN2022/085065
Other languages
English (en)
French (fr)
Inventor
何琼
邵金华
孙锦
Original Assignee
无锡海斯凯尔医学技术有限公司
北京索瑞特医学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡海斯凯尔医学技术有限公司, 北京索瑞特医学技术有限公司 filed Critical 无锡海斯凯尔医学技术有限公司
Publication of WO2022213927A1 publication Critical patent/WO2022213927A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00

Definitions

  • the embodiments of the present application relate to the technical field of ultrasonic measurement, and in particular, to a method, device, and system for triggering an ultrasonic signal.
  • Ultrasound imaging and elastography have a wide range of applications in health care and other fields.
  • detection probes are used to transmit ultrasonic signals (such as A-, M-, or B-ultrasound signals) and receive ultrasonic echo signals of the detected object, and then form an ultrasonic image. .
  • the detection probe when the detection probe is used to transmit ultrasonic signals, once the detection probe is in the detection mode, the detection probe will continue to transmit and receive ultrasonic signals regardless of whether the detection probe is in contact with the detection object.
  • the different degrees of contact between the detection probe and the object to be detected by different users will lead to different degrees of deformation of the tissue to be tested.
  • ultrasonic testing is performed on the same tissue to be tested under different degrees of deformation, deviations in the detection results will occur, thus affecting the detection. judge.
  • the embodiments of the present application provide an ultrasonic signal triggering method, device and system to solve the problem in the prior art that when the detection probe is in the detection mode, regardless of whether the detection probe contacts the detection object, the detection probe will continuously transmit and receive ultrasonic signals, The resulting energy waste and the service life of the imaging probe.
  • a first aspect of the embodiments of the present application provides an ultrasonic signal triggering method, including:
  • contact parameters between the detection probe and the object to be measured, where the contact parameters are used to represent the degree of contact between the detection probe and the object to be measured;
  • the detection probe is controlled to transmit and receive ultrasonic signals.
  • the contact parameter includes a pressure value between the detection probe and the object to be measured
  • controlling the detection probe to transmit and receive ultrasonic signals including:
  • the detection probe is controlled to transmit and receive ultrasonic signals to the object to be measured.
  • the contact parameter includes a displacement value of the detection probe relative to the object to be measured
  • controlling the detection probe to transmit and receive ultrasonic signals including:
  • the detection probe is controlled to transmit and receive ultrasonic signals to the object to be measured.
  • the method further includes:
  • the prompt information it is indicated on the display screen; and/or the indicator light is used to indicate; and/or the sound is indicated.
  • generating corresponding prompt information according to the judgment result of the contact parameter and the preset range condition including:
  • a second aspect of the embodiments of the present application provides an ultrasonic signal triggering device, including:
  • an acquisition module configured to acquire contact parameters between the detection probe and the object to be measured, where the contact parameters are used to represent the degree of contact between the detection probe and the object to be measured;
  • the control module is configured to control the detection probe to transmit and receive ultrasonic signals if it is determined that the contact parameter meets a preset range condition.
  • a third aspect of the embodiments of the present application provides an ultrasonic signal triggering system, including: a detection probe and a control device; wherein the control device communicates with the detection probe;
  • the detection probe is provided with a parameter sensor, which is used to acquire the contact parameters between the detection probe and the object to be measured, and send the contact parameters to the control device, and the contact parameters are used to represent the detection probe and the object to be measured. the degree of contact between;
  • the control device is configured to control the detection probe to transmit and receive ultrasonic signals if it is determined that the contact parameter meets a preset range condition.
  • the parameter sensor includes a pressure sensor and/or a displacement sensor.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when a processor executes the computer-executable instructions, the first aspect of the embodiments of the present application is implemented Provides the ultrasonic signal trigger method.
  • Embodiments of the present application provide an ultrasonic signal triggering method, device, system, and storage medium.
  • the contact parameters are used to represent the detection probe and the object to be measured.
  • the degree of contact between objects therefore, if it is determined that the contact parameter meets the preset range condition, the detection probe is controlled to transmit and receive ultrasonic signals. This process avoids the operator's judgment of transmitting ultrasonic signals based on subjective experience, realizes the effect of saving resources, and also increases the service life of the probe.
  • FIG. 1 is an application scenario diagram of a method for triggering an ultrasonic signal according to an exemplary embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for triggering an ultrasonic signal according to an exemplary embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for triggering an ultrasonic signal according to another exemplary embodiment of the present application
  • FIG. 4 is a schematic diagram of information display shown in an exemplary embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an ultrasonic signal triggering device according to an exemplary embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an ultrasonic signal triggering system according to an exemplary embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device according to an exemplary embodiment of the present application.
  • ultrasonic imaging has a wide range of applications in medical care and other fields.
  • detection probes are used to transmit ultrasonic signals (such as A-, M-, and B-ultrasound signals) and receive ultrasonic echo signals of the detection object, and then form an ultrasonic image.
  • ultrasonic signals such as A-, M-, and B-ultrasound signals
  • the technical solution of the present application mainly lies in: obtaining the contact parameters between the detection probe and the object to be measured, and the contact parameters are used to indicate the degree of contact between the detection probe and the object to be measured; If the contact parameter satisfies the preset range condition, the detection probe is controlled to transmit and receive ultrasonic signals, so as to form an ultrasonic image according to the received ultrasonic signals.
  • This process prevents the operator from judging the timing of transmitting ultrasonic signals based on subjective experience, which not only achieves the effect of saving resources, but also, by setting a preset range condition, no matter what kind of user operates, the detection probe can meet the requirements
  • the preset range condition automatically transmits and receives ultrasonic signals, which reduces the number of times that the user repeatedly adjusts the detection probe, thereby prolonging the service life of the probe to a certain extent.
  • FIG. 1 is an application scenario diagram of a method for triggering an ultrasonic signal according to an exemplary embodiment of the present application.
  • the main architecture of the application scenario provided by this embodiment includes: a detection probe 101, a control device 102, and a medium to be measured 103; the detection probe 101 applies appropriate pressure to the medium to be measured, and the control device 102 controls the detection probe to The medium to be measured 103 transmits ultrasonic signals, and receives ultrasonic signals returned by the medium to be measured.
  • the control device may be, but not limited to, a computer, a microprocessor, or a central processing unit.
  • FIG. 2 is a schematic flowchart of a method for triggering an ultrasonic signal according to an exemplary embodiment of the present application.
  • the execution subject of the method provided in this embodiment may be the control device in the embodiment shown in FIG. 1 .
  • the method provided in this embodiment may include the following steps.
  • S201 Acquire a contact parameter between a detection probe and an object to be measured, where the contact parameter is used to indicate a degree of contact between the detection probe and the object to be measured.
  • the relevant sensors can be installed on the detection probe in advance.
  • the operator When the operator needs to detect the object to be tested, the operator will touch the detection probe to the object to be tested and gradually apply pressure.
  • the sensor collects contact parameters in real time. contact state between objects.
  • a pressure sensor and/or a displacement sensor may be installed on the detection probe.
  • the pressure sensor collects the pressure value between the detection probe and the object to be measured in real time
  • the displacement sensor collects the detection probe in real time. Relative to the displacement value of the object to be measured, the contact state between the detection probe and the object to be measured is measured by the pressure value and/or the displacement value.
  • contact parameters may also be contact state parameters such as detection stress and strain.
  • the preset range condition may be determined through a large amount of data experiments, and when the contact parameter satisfies the preset range condition, a clear ultrasound image can be obtained according to the received ultrasound signal.
  • the value of the contact parameter will also increase.
  • the contact parameter is within the preset range, it means that the time to transmit the ultrasonic signal is reached, then The detection probe transmits ultrasonic signals to the object to be measured, and receives ultrasonic echo signals returned by the object to be measured.
  • the contact parameters between the detection probe and the object to be measured are obtained, and the contact parameters are used to indicate the degree of contact between the detection probe and the object to be measured; if it is determined that the contact parameters meet the preset requirements If the range condition is met, the detection probe is controlled to transmit and receive ultrasonic signals, so as to form an ultrasonic image according to the received ultrasonic signals.
  • This process prevents the operator from judging the timing of transmitting ultrasonic signals based on subjective experience, which not only achieves the effect of saving resources, but also, by setting a preset range condition, no matter what kind of user operates, the detection probe can meet the requirements
  • the preset range condition automatically transmits and receives ultrasonic signals, which reduces the number of times that the user repeatedly adjusts the detection probe, thereby prolonging the service life of the probe to a certain extent.
  • FIG. 3 is a schematic flowchart of a method for triggering an ultrasonic signal according to another exemplary embodiment of the present application. This embodiment further describes the method for triggering an ultrasonic signal in detail on the basis of the embodiment shown in FIG. 2 .
  • the method provided in this embodiment may include the following steps.
  • a pressure sensor and/or a displacement sensor can be installed on the detection probe in advance.
  • the operator When the operator needs to detect the object to be measured, the operator will touch the detection probe to the object to be measured and gradually apply pressure.
  • the pressure value and/or the relative displacement value can measure the contact state between the detection probe and the object to be measured.
  • S304 Generate an ultrasonic image of the object to be measured according to the ultrasonic echo signal.
  • the preset pressure range and the preset displacement range are obtained according to a large amount of test data, and when the pressure value is within the preset pressure range or the displacement value is within the preset displacement range, a clear ultrasound image can be obtained.
  • the pressure value is compared with two critical point values (the maximum pressure value and the minimum pressure value) within the preset pressure range, and when the pressure value is greater than the minimum pressure value within the preset pressure range and less than the preset pressure range
  • the maximum pressure value is equal to the minimum pressure value, or, when it is equal to the maximum pressure value, indicating that the pressure value is within the preset pressure range, the detection probe is controlled to transmit ultrasonic signals to the object to be measured.
  • the pressure value is less than the minimum pressure value, it means that the pressure between the detection probe and the object to be measured is too small and needs to be boosted appropriately.
  • the pressure value is greater than the maximum pressure value, it means that the pressure between the detection probe and the object to be measured is too large Appropriate decompression.
  • the displacement value is used to judge, when the displacement value is greater than the minimum displacement value in the preset displacement range and less than the maximum displacement value, or equal to the minimum displacement value, or equal to the maximum displacement value, it indicates that the detection probe and the When the pressure between the objects is moderate, the detection probe is controlled to emit ultrasonic signals to the object to be measured. If the displacement value is less than the minimum displacement value in the preset displacement range, it means that the pressure between the detection probe and the object to be measured is too small, and it needs to be boosted appropriately. When the displacement value is greater than the maximum displacement value in the preset displacement range, it means that the detection The pressure between the probe and the object to be measured is too large, and appropriate decompression is required.
  • the preset pressure range is [5, 20]N (N).
  • the control The detection probe emits ultrasonic signals to the object to be measured.
  • the pressure value is 4N, it means that there is underpressure between the detection probe and the object to be measured, and the operator needs to continue to apply pressure; when the pressure value is 23N, it means that there is an overpressure between the detection probe and the object to be measured, and the operator needs to reduce the pressure pressure.
  • the detection probe can automatically transmit the ultrasonic signal when the pressure value and/or the displacement value meet the preset range conditions, or it can also transmit the ultrasonic signal when the preset range conditions are met and the transmitting instruction input by the user is received. .
  • the detection probe does not transmit ultrasonic signals.
  • the user can input the transmission command by touching or pressing the switch button on the detection probe,
  • the firing command can also be input by stepping on the foot switch connected to the detection probe.
  • the transmitted ultrasound signal may be an A ultrasound signal, an M ultrasound signal, or a B ultrasound.
  • the refresh rate of the M-Ultra signal can be adjusted in real time by setting parameters. For example, the refresh rate of the M-Ultra signal can be dozens of frames per second or hundreds of frames per second according to application requirements.
  • the ultrasonic signal triggering method further includes: generating corresponding prompt information according to the judgment result of the contact parameter and the preset range condition; and sending the prompt information to a display screen for display.
  • undervoltage information is generated; if it is determined that the contact parameter is within the preset range, suitable pressure information is generated; if it is determined that the When the contact parameter is greater than the maximum value in the preset range, overvoltage information is generated.
  • the preset pressure range is [5, 20]N (N)
  • the pressure between the detection probe and the object to be measured is 4N
  • pressure please increase the pressure to a suitable pressure range” prompt information, and send the generated prompt information to the display screen for display, as shown in Figure 4, the display screen of the device displays "Under pressure, please increase the pressure to suitable pressure range".
  • a prompt message of "suitable pressure, please start testing” will be generated; if the pressure between the detection probe and the object to be measured is 24N, the pressure between the detection probe and the object to be measured will be If the pressure is too large, the prompt message "Overpressure, please reduce the pressure to a suitable pressure range” will be generated.
  • the generated prompt information can also be played by voice, so that the operator can adjust the pressure between the detection probe and the object to be measured according to the voice prompt without looking at the display screen.
  • FIG. 5 is a schematic structural diagram of an ultrasonic signal triggering device according to an exemplary embodiment of the present application.
  • the apparatus includes: an acquisition module 501 and a control module 502; wherein, the acquisition module 501 is used to acquire contact parameters between the detection probe and the object to be measured, and the contact parameters are used to represent The degree of contact between the detection probe and the object to be measured; the control module 502 is configured to control the detection probe to transmit and receive ultrasonic signals if it is determined that the contact parameter meets a preset range condition.
  • the contact parameter includes the pressure value between the detection probe and the object to be measured;
  • the control module is specifically used for:
  • the detection probe is controlled to transmit and receive ultrasonic signals to the object to be measured.
  • the contact parameter includes the displacement value of the detection probe relative to the object to be measured;
  • the control module is specifically used for:
  • the detection probe is controlled to transmit and receive ultrasonic signals to the object to be measured.
  • the apparatus provided in this embodiment further includes: a generating module 503, configured to generate corresponding prompt information according to the judgment result of the contact parameter and the preset range condition; and send the prompt information to a display screen for display.
  • a generating module 503 configured to generate corresponding prompt information according to the judgment result of the contact parameter and the preset range condition; and send the prompt information to a display screen for display.
  • the generating module is specifically configured to: if it is determined that the contact parameter is less than the minimum value in the preset range, generate undervoltage information; if it is determined that the contact parameter is within the preset range, generate Pressure adaptation information; if it is determined that the contact parameter is greater than the maximum value in the preset range, overvoltage information is generated.
  • the apparatus provided in this embodiment further includes: a voice module 504, configured to voice broadcast the prompt information.
  • FIG. 6 is a schematic structural diagram of an ultrasonic signal triggering system according to an exemplary embodiment of the present application.
  • the system provided in this embodiment includes: a detection probe 61 and a control device 62; wherein, the control device communicates with the detection probe; the detection probe is provided with a parameter sensor 611 for acquiring the detection probe contact parameters with the object to be measured, and send the contact parameters to the control device, where the contact parameters are used to indicate the degree of contact between the detection probe and the object to be measured; the control device is used for : if it is determined that the contact parameter satisfies the preset range condition, the detection probe is controlled to transmit and receive ultrasonic signals, so as to form an ultrasonic image according to the received ultrasonic signals.
  • system provided in this embodiment further includes a display screen 621 , and the display screen can be set on the control device 62 to be integrated with the control device, as shown in FIG. 6 .
  • the display screen may also be a separate display, and the display is connected with the control device in a wired or wireless manner.
  • the detection probe 61 is provided with a switch 612 for controlling the detection probe to emit ultrasonic signals.
  • the switch is ergonomically arranged at the handshake of the detection probe to facilitate the operator's touch operation.
  • the system provided in this embodiment further includes a foot switch 63, which communicates with the detection probe and is used to control the detection probe to emit ultrasonic signals.
  • control device in this embodiment may be, but not limited to, a computer, a microprocessor, or a central processing unit.
  • the contact parameter includes a pressure value between the detection probe and the object to be measured; the control device 62 is specifically configured to: determine whether the pressure value is within a preset pressure range, and if the determination result is yes , the detection probe is controlled to transmit and receive ultrasonic signals to the object to be measured.
  • the contact parameter includes a displacement value of the detection probe relative to the object to be measured; the control device 62 is specifically configured to: determine whether the displacement value is within a preset displacement range, and if the determination result is yes, then The detection probe is controlled to transmit and receive ultrasonic signals to the object to be measured.
  • the parameter sensor is a pressure sensor.
  • the pressure sensor collects the pressure value between the detection probe and the object to be measured.
  • the parameter sensor also includes a displacement sensor, an elastic device (such as a shrapnel device or a spring device) connected to the displacement sensor, and the elastic device is in contact with the object to be measured.
  • the elastic device moves and displaces The sensor acquires the moving distance of the detection probe relative to the object to be measured by detecting the moving distance of the elastic device.
  • control device 62 is further configured to: generate corresponding prompt information according to the judgment result of the contact parameter and the preset range condition; and send the prompt information to the display screen for display.
  • control device 62 is specifically configured to: if it is determined that the contact parameter is less than the minimum value in the preset range, generate undervoltage information; if it is determined that the contact parameter is within the preset range, Then generate suitable pressure information; if it is determined that the contact parameter is greater than the maximum value in the preset range, generate overvoltage information.
  • control device 62 is further configured to: voice broadcast the prompt information.
  • the control device compares the contact parameters with the preset range conditions.
  • the detection probe is controlled to transmit ultrasonic signals, which not only saves resources, but also, by setting a preset range condition, no matter what kind of user operates, the detection probe can automatically transmit when the preset range condition is met. And receive ultrasonic signals, reducing the number of times the user repeatedly adjusts the detection probe, thereby extending the service life of the probe to a certain extent.
  • FIG. 7 is a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application.
  • the electronic device 70 provided in this embodiment includes: at least one processor 701 and a memory 702 .
  • the processor 701 and the memory 702 are connected through a bus 703 .
  • the at least one processor 701 executes the computer-executed instructions stored in the memory 702, so that the at least one processor 701 executes the ultrasonic signal triggering method in the above method embodiments.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, referred to as: DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, referred to as: ASIC) and so on.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the method disclosed in conjunction with the invention can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include high-speed RAM memory, and may also include non-volatile storage NVM, such as at least one disk memory.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus, or the like.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present application are not limited to only one bus or one type of bus.
  • Another embodiment of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when a processor executes the computer-executable instructions, the ultrasonic signals in the above method embodiments are implemented trigger method.
  • the above-mentioned computer-readable storage medium can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable Programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable Programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • An exemplary readable storage medium is coupled to the processor such that the processor can read information from, and write information to, the readable storage medium.
  • the readable storage medium can also be an integral part of the processor.
  • the processor and the readable storage medium may be located in an application specific integrated circuit (Application Specific Integrated Circuits, ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the readable storage medium may also exist in the device as discrete components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本申请实施例提供一种超声信号触发方法、装置和***,该方法包括:获取检测探头与待测对象之间的接触参数,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号,以根据接收到的超声信号形成超声影像。不仅实现了节省资源的效果,并且通过设定一个预设范围条件,无论什么样的用户进行操作,检测探头都可以在满足该预设范围条件时发射及接收超声信号,减少了用户反复调整检测探头的次数,减少了不同用户操作检测探头与待检测对象的不同接触程度对于采集信号的影响,保证了相关采集信号的一致性,并且在一定程度上延长了探头的使用寿命。

Description

超声信号触发方法、装置和*** 技术领域
本申请实施例涉及超声测量技术领域,尤其涉及一种超声信号触发方法、装置和***。
背景技术
超声成像和弹性成像在医疗保健等领域具有广泛的应用,通常利用检测探头发射超声信号(例如:A超、M超、或B超信号)以及接收检测对象的超声回波信号,然后形成超声影像。
现有技术中,在利用检测探头发射超声信号时,一旦检测探头处于探测模式,无论检测探头是否接触到了检测对象,检测探头都会持续地发射和接收超声信号。
现有方法不仅会造成能源浪费,还会影响探头的使用寿命。
而且,不同用户操作检测探头与待检测对象的不同接触程度将会导致待测组织不同的形变程度,在不同形变程度下对同一待测组织进行超声检测时,会出现检测结果偏差,从而影响检测判断。
发明内容
本申请实施例提供一种超声信号触发方法、装置和***,以解决现有技术中当检测探头处于探测模式时,无论检测探头是否接触到了检测对象,检测探头都会持续地发射和接收超声信号,导致的能源浪费和影像探头的使用寿命的问题。
本申请实施例的第一方面提供一种超声信号触发方法,包括:
获取检测探头与待测对象之间的接触参数,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;
若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号。
可选的,所述接触参数包括检测探头和所述待测对象之间的压力值;
所述若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号,包括:
判断所述压力值是否在预设压力范围内,若判断结果为是,则控制所述检测探头向所述待测对象发射及接收超声信号。
可选的,所述接触参数包括检测探头相对所述待测对象的位移值;
所述若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号,包括:
判断所述位移值是否在预设位移范围内,若判断结果为是,则控制所述检测探头向所述待测对象发射及接收超声信号。
可选的,所述方法还包括:
根据所述接触参数与预设范围条件的判断结果,生成相应的提示信息;
根据所述提示信息,在显示屏幕上进行指示;和/或用指示灯进行指示;和/或用声音指示。
可选的,所述根据所述接触参数与预设范围条件的判断结果,生成相应的提示信息,包括:
若判定所述接触参数小于所述预设范围中的最小值,则生成欠压信息;
若判定所述接触参数在所述预设范围内,则生成适压信息;
若判定所述接触参数大于所述预设范围中的最大值,则生成过压信息。
本申请实施例的第二方面提供一种超声信号触发装置,包括:
获取模块,用于获取检测探头与待测对象之间的接触参数,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;
控制模块,用于若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号。
本申请实施例的第三方面提供一种超声信号触发***,包括:检测探头和控制设备;其中,所述控制设备与所述检测探头通信;
检测探头设置有参数传感器,用于获取检测探头与待测对象之间的接触参数,并将所述接触参数发送至控制设备,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;
所述控制设备用于若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号。
可选的,所述参数传感器包括压力传感器和/或位移传感器。
本申请实施例的第四方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现本申请实施例第一方面提供的超声信号触发方法。
本申请实施例提供一种超声信号触发方法、装置、***和存储介质,通过获取检测探头与待测对象之间的接触参数,由于所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;因此,若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号。这一过程避免了操作者根据主观经验判断发射超声信号,实现了节省资源的效果,同时也增加了探头的使用寿命。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一示例性实施例示出的超声信号触发方法的应用场景图;
图2是本申请一示例性实施例示出的超声信号触发方法的流程示意图;
图3是本申请另一示例性实施例示出的超声信号触发方法的流程示意图;
图4是本申请一示例性实施例示出的信息显示示意图;
图5是本申请一示例性实施例示出的超声信号触发装置的结构示意图;
图6是本申请一示例性实施例示出的超声信号触发***的结构示意图;
图7是本申请一示例性实施例示出的电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
目前,超声成像在医疗保健等领域具有广泛的应用,通常利用检测探头发射超声信号(例如:A超、M超、B超等信号)以及接收检测对象的超声回波信号,然后形成超声影像。
现有技术中,在利用检测探头发射超声信号时,一旦检测探头处于探测模式,无论检测探头是否接触到了检测对象,检测探头都会持续地发射和接收超声信号。现有方法不仅会造成
能源浪费。并且,现有技术中,用户也都是凭借经验,来调整检测探头和待测对象之间的接触程度,从而得到更清晰的超声影像,然而,不同用户的经验不同,对于经验较少的用户很难将检测探头和待测对象之间调整到一个最佳接触状态使得形成的超声影像最清晰,必然会反复调整检测探头和待测对象之间的接触,从而影像探头的使用寿命。
针对此缺陷,本申请的技术方案主要在于:获取检测探头与待测 对象之间的接触参数,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号,以根据接收到的超声信号形成超声影像。这一过程避免了操作者根据主观经验判断发射超声信号的时机,不仅实现了节省资源的效果,并且,通过设定一个预设范围条件,无论什么样的用户进行操作,检测探头都可以在满足该预设范围条件自动发射及接收超声信号,减少了用户反复调整检测探头的次数,从而在一定程度上延长了探头的使用寿命。
图1是本申请一示例性实施例示出的超声信号触发方法的应用场景图。
如图1所示,本实施例提供的应用场景的主要架构包括:检测探头101、控制设备102以及待测介质103;检测探头101向待测介质施压适当压力,控制设备102控制检测探头向待测介质103发射超声信号,并接收待测介质返回的超声信号。
其中,控制设备可以但不限于是计算机、微处理器或者中央处理器等。
图2是本申请一示例性实施例示出的超声信号触发的方法的流程示意图,本实施例提供的方法的执行主体可以是图1所示实施例中的控制设备。
如图2所示,本实施例提供的方法可以包括以下步骤。
S201,获取检测探头与待测对象之间的接触参数,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度。
具体的,可以预先在检测探头上安装相关的传感器,在操作者需要检测待测对象时将检测探头接触待测对象并逐渐施加压力,传感器实时采集接触参数,该接触参数可以衡量检测探头和待测对象之间的接触状态。
示例性的,检测探头上可以安装压力传感器和/或安装位移传感器,在操作者测量过程中压力传感器实时采集检测探头和待测对象之间的压力值,和/或,位移传感器实时采集检测探头相对于待测对象的位移值,用压力值和/或位移值来衡量检测探头和待测对象之间的接触状态。
需要说明的是,接触参数还可以是检测应力、应变等等接触状态参数。
S202,若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号。
其中,预设范围条件可以是经大量数据试验确定的,当接触参数满足预设范围条件时,根据接收的超声信号能够得到清晰的超声影像。
具体的,随着操作者向待测对象施加的压力越来越大,接触参数的值也会越来越大,当接触参数在预设范围内时,说明达到了发射超声信号的时机,则检测探头向待测对象发射超声信号,并接收待测对象返回的超声回波信号。
本实施例中,获取检测探头与待测对象之间的接触参数,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号,以根据接收到的超声信号形成超声影像。这一过程避免了操作者根据主观经验判断发射超声信号的时机,不仅实现了节省资源的效果,并且,通过设定一个预设范围条件,无论什么样的用户进行操作,检测探头都可以在满足该预设范围条件自动发射及接收超声信号,减少了用户反复调整检测探头的次数,从而在一定程度上延长了探头的使用寿命。
图3是本申请另一示例性实施例示出的超声信号触发方法的流程示意图,本实施例在图2所示实施例的基础上对超声信号触发方法进一步详细描述。
如图3所示,本实施例提供的方法可以包括以下步骤。
S301,获取检测探头与待测对象之间的压力值和/或位移值,所述压力值和/或位移值用于表示所述检测探头与所述待测对象之间的接触程度;
具体的,可以预先在检测探头上安装压力传感器和/或位移传感器,在操作者需要检测待测对象时将检测探头接触待测对象并逐渐施加压力,传感器实时采集检测探头和待测对象之间的压力值和/或相对位移值,该压力值和/或位移值均可以衡量检测探头和待测对象之间的接触状态。
S302,若所述压力值在预设压力范围内,和/或,所述位移值在预设位移范围内,则控制所述检测探头向所述待测对象发射超声信号;
S303,接收所述待测对象的超声回波信号;
S304,根据所述超声回波信号生成所述待测对象的超声影像。
其中,预设压力范围和预设位移范围是根据大量试验数据得到的,当压力值在预设压力范围内或位移值在预设位移范围内时,能够得到清晰的超声影像。
具体的,将压力值与预设压力范围内的两个临界点值(最大压力值和最小压力值)进行比较,当压力值大于预设压力范围内的最小压力值且小于预设压力范围内的最大压力值,或者,等于最小压力值,或者,等于最大压力值时,说明压力值在预设压力范围内,则控制检测探头向待测对象发射超声信号。当压力值小于最小压力值说明检测探头与待测对象之间的压力过小,需要适当增压,当压力值大于最大压力值时,说明检测探头与待测对象之间的压力过大,需要适当减压。
同理,若以位移值进行判断,当位移值大于预设位移范围中的最小位移值且小于最大位移值,或者,等于最小位移值,或者,等于最大位移值时,说明检测探头与待测对象之间的压力适中,则控制检测探头向待测对象发射超声信号。若位移值小于预设位移范围中的最小位移值,说明检测探头与待测对象之间的压力过小,需要适当增压,当位移值大于预设位移范围中的最大位移值时,说明检测探头与待测对象之间的压力过大,需要适当减压。
示例性的,预设压力范围是[5,20]牛(N),当检测探头与待测对象之间的压力为该范围内的任意一个值时(比如,5N、16N和20N),控制检测探头向待测对象发射超声信号。当压力值为4N时,说明检测探头与待测对象之间欠压,操作者需要继续施加压力;当压力值为23N时,说明检测探头与待测对象之间过压,操作者需要减小压力。
需要说明的是,检测探头可以在压力值和/或位移值满足预设范围条件时,自动发射超声信号,也可以是在满足预设范围条件并且接收到用户输入的发射指令时再发射超声信号。
需要说明的是,若仅仅接收到了用户输入的发射信号,但是检测探头和待测对象之间的压力值和/或位移值不满足预设范围条件,则检测探头不发射超声信号。
可以理解的是,用户可以通过触摸或按压检测探头上的开关按钮输入发射指令,
也可以通过踩踏与检测探头连接的脚踏开关来输入发射指令。
在一个实施例中,发射的超声信号可以是A超信号,可以是M超信号,还可以是B超。其中M超信号的刷新速度可以通过设置参数进行实时调控,比如,根据应用需求M超的刷新速度可以是每秒几十帧,也可以是每秒几百帧。
一些实施例中,所述超声信号触发方法还包括:根据所述接触参数与预设范围条件的判断结果,生成相应的提示信息;并将所述提示信息发送至显示屏幕进行显示。
具体的,若判定所述接触参数小于所述预设范围中的最小值,则生成欠压信息;若判定所述接触参数在所述预设范围内,则生成适压信息;若判定所述接触参数大于所述预设范围中的最大值,则生成过压信息。
示例性的,若预设压力范围为[5,20]牛(N),若检测探头与待测对象之间的压力为4N,说明检测探头和待测对象之间欠压,则生成“欠压,请增大压力至合适的压力范围”的提示信息,并将生成的提示信息发送至显示屏幕显示,如图4所示,设备的显示屏幕上显示有“欠压,请增大压力至合适的压力范围”。若检测探头与待测对象之间的压力为10N,则生成“适压,请开始检测”的提示信息;若检测探头与待测对象之间的压力为24N,则检测探头和待测对象之间压力过大,则生成“过压,请减小压力至合适的压力范围”的提示信息。
进一步的,还可以通过语音的方式,播放生成的提示信息,使得操作者不看显示屏幕便可以根据语音提示来调整检测探头和待测对象之间的压力。
图5是本申请一示例性实施例示出的超声信号触发装置的结构示意图。
如图5所示,本实施例提供的装置包括:获取模块501和控制模块502;其中,获取模块501,用于获取检测探头与待测对象之间的接触参数,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;控制模块502,用于若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号。
进一步的,所述接触参数包括检测探头和所述待测对象之间的压 力值;所述控制模块具体用于:
判断所述压力值是否在预设压力范围内,若判断结果为是,则控制所述检测探头向所述待测对象发射及接收超声信号。
进一步的,所述接触参数包括检测探头相对所述待测对象的位移值;所述控制模块具体用于:
判断所述位移值是否在预设位移范围内,若判断结果为是,则控制所述检测探头向所述待测对象发射及接收超声信号。
进一步的,本实施例提供的装置还包括:生成模块503,用于根据所述接触参数与预设范围条件的判断结果,生成相应的提示信息;将所述提示信息发送至显示屏幕进行显示。
进一步的,所述生成模块具体用于:若判定所述接触参数小于所述预设范围中的最小值,则生成欠压信息;若判定所述接触参数在所述预设范围内,则生成适压信息;若判定所述接触参数大于所述预设范围中的最大值,则生成过压信息。
进一步的,本实施例提供的装置还包括:语音模块504,用于语音播报所述提示信息。
本实施例中,各个模块的具体功能实现未作详细说明的部分可以参考有关该方法实施例中的描述。
图6是本申请一示例性实施例示出的超声信号触发***的结构示意图。
如图6所示,本实施例提供的***包括:检测探头61和控制设备62;其中,所述控制设备与所述检测探头通信;所述检测探头设置有参数传感器611,用于获取检测探头与待测对象之间的接触参数,并将所述接触参数发送至控制设备,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;所述控制设备用于:若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号,以根据接收到的超声信号形成超声影像。
进一步的,本实施例提供的***还包括显示屏幕621,该显示屏幕可以设置在控制设备62上与控制设备成为一体,如图6所示。另一种可能的实施例中,显示屏幕还可以是一个单独的显示器,显示器通过有线或无 线的方式与控制设备连接。
进一步的,本实施例提供的***中,检测探头61上设置有开关612,用于控制检测探头发射超声信号,该开关根据人体工学设置在检测探头的握手处,便于操作者触摸操作。
进一步的,参见图6,本实施例提供的***还包括脚踏开关63,该脚踏开关与检测探头通信,用于控制检测探头发射超声信号。
需要说明的是,本实施例中的控制设备可以但不限于是计算机、微处理器或者中央处理器等。
可选地,所述接触参数包括检测探头和所述待测对象之间的压力值;所述控制设备62具体用于:判断所述压力值是否在预设压力范围内,若判断结果为是,则控制所述检测探头向所述待测对象发射及接收超声信号。
可选地,所述接触参数包括检测探头相对所述待测对象的位移值;所述控制设备62具体用于:判断所述位移值是否在预设位移范围内,若判断结果为是,则控制所述检测探头向所述待测对象发射及接收超声信号。
相应的,参数传感器为压力传感器,当检测探头给待测对象施加压力时,压力传感器采集检测探头和待测对象之间的压力值。参数传感器还包括位移传感器,与位移传感器连接的有弹性装置(比如弹片装置或者弹簧装置),该弹性装置与待测对象接触,当检测探头给待测对象施加压力时,弹性装置发生移动,位移传感器通过检测该弹性装置的移动距离来获取检测探头相对于待测对象的移动距离。
进一步的,所述控制设备62还用于:根据所述接触参数与预设范围条件的判断结果,生成相应的提示信息;将所述提示信息发送至显示屏幕进行显示。
可选地,所述控制设备62具体用于:若判定所述接触参数小于所述预设范围中的最小值,则生成欠压信息;若判定所述接触参数在所述预设范围内,则生成适压信息;若判定所述接触参数大于所述预设范围中的最大值,则生成过压信息。
进一步的,所述控制设备62还用于:语音播报所述提示信息。
本实施例中,通过在检测探头上设置参数传感器,并通过参数传感器实时采集检测探头和待测对象之间的接触参数,控制设备将接触参数与 预设范围条件进行比较,当接触参数满足预设条件时控制检测探头发射超声信号,不仅实现了节省资源的效果,并且,通过设定一个预设范围条件,无论什么样的用户进行操作,检测探头都可以在满足该预设范围条件自动发射及接收超声信号,减少了用户反复调整检测探头的次数,从而在一定程度上延长了探头的使用寿命。
本实施例中,各个模块的具体功能实现未作详细说明的部分可以参考有关该方法实施例中的描述。
图7为本申请实施例提供的电子设备的硬件结构示意图。如图7所示,本实施例提供的电子设备70包括:至少一个处理器701和存储器702。其中,处理器701、存储器702通过总线703连接。
在具体实现过程中,至少一个处理器701执行所述存储器702存储的计算机执行指令,使得至少一个处理器701执行上述方法实施例中的超声信号触发方法。
处理器701的具体实现过程可参见上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
在上述的图7所示的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
本申请的另一实施例提供一种计算机可读存储介质,所述计算机 可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现上述方法实施例中的超声信号触发方法。
上述的计算机可读存储介质,上述可读存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。可读存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的可读存储介质耦合至处理器,从而使处理器能够从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。当然,处理器和可读存储介质也可以作为分立组件存在于设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种超声信号触发方法,其特征在于,包括:
    获取检测探头与待测对象之间的接触参数,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;
    若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号。
  2. 根据权利要求1所述的方法,其特征在于,所述接触参数包括检测探头和所述待测对象之间的压力值;
    所述若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号,包括:
    判断所述压力值是否在预设压力范围内,若判断结果为是,则控制所述检测探头向所述待测对象发射及接收超声信号。
  3. 根据权利要求1所述的方法,其特征在于,所述接触参数包括检测探头相对所述待测对象的位移值;
    所述若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号,包括:
    判断所述位移值是否在预设位移范围内,若判断结果为是,则控制所述检测探头向所述待测对象发射及接收超声信号。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,还包括:
    根据所述接触参数与预设范围条件的判断结果,生成相应的提示信息;
    根据所述提示信息,在显示屏幕上进行指示;和/或用指示灯进行指示;和/或用声音指示。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述接触参数与预设范围条件的判断结果,生成相应的提示信息,包括:
    若判定所述接触参数小于所述预设范围中的最小值,则生成欠压信息;
    若判定所述接触参数在所述预设范围内,则生成适压信息;
    若判定所述接触参数大于所述预设范围中的最大值,则生成过压信息。
  6. 一种超声信号触发装置,其特征在于,包括:
    获取模块,用于获取检测探头与待测对象之间的接触参数,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;
    控制模块,用于若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号。
  7. 一种超声信号触发***,其特征在于,包括:检测探头和控制设备;其中,所述控制设备与所述检测探头通信;
    检测探头设置有参数传感器,用于获取检测探头与待测对象之间的接触参数,并将所述接触参数发送至控制设备,所述接触参数用于表示所述检测探头与所述待测对象之间的接触程度;
    所述控制设备用于若判定所述接触参数满足预设范围条件,则控制所述检测探头发射及接收超声信号。
  8. 根据权利要求7所述的***,其特征在于,所述参数传感器包括压力传感器和/或位移传感器。
  9. 一种电子设备,其特征在于,包括:至少一个处理器和存储器;
    所述存储器存储计算机执行指令;
    所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行如权利要求1至5任一项所述的超声信号触发方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求1至5任一项所述的超声信号触发方法。
PCT/CN2022/085065 2021-04-06 2022-04-02 超声信号触发方法、装置和*** WO2022213927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110368513.8A CN113093193A (zh) 2021-04-06 2021-04-06 超声信号触发方法、装置和***
CN202110368513.8 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213927A1 true WO2022213927A1 (zh) 2022-10-13

Family

ID=76674712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085065 WO2022213927A1 (zh) 2021-04-06 2022-04-02 超声信号触发方法、装置和***

Country Status (2)

Country Link
CN (1) CN113093193A (zh)
WO (1) WO2022213927A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093193A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 超声信号触发方法、装置和***
CN114052791A (zh) * 2021-11-17 2022-02-18 武汉联影医疗科技有限公司 一种超声成像方法和***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824189A (zh) * 2012-08-20 2012-12-19 深圳市理邦精密仪器股份有限公司 一种超声波探头适时发射接收方法及装置
CN105433983A (zh) * 2015-12-15 2016-03-30 北京汇影互联科技有限公司 一种超声诊断设备及切换超声探头工作状态的方法
US20190209129A1 (en) * 2018-01-09 2019-07-11 Samsung Medison Co., Ltd. Ultrasonic imaging apparatus
CN209996346U (zh) * 2017-12-27 2020-01-31 深圳迈瑞生物医疗电子股份有限公司 超声波探头
CN113093193A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 超声信号触发方法、装置和***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210019406U (zh) * 2017-12-27 2020-02-07 深圳迈瑞生物医疗电子股份有限公司 超声波探头
CN209450553U (zh) * 2018-06-19 2019-10-01 福建(泉州)哈工大工程技术研究院 一种医用超声波检测装置
CN110301939A (zh) * 2019-07-15 2019-10-08 无锡海斯凯尔医学技术有限公司 组织成像和参数检测***
CN112386276A (zh) * 2019-08-14 2021-02-23 深圳迈瑞生物医疗电子股份有限公司 剪切波弹性成像方法、超声成像***及计算机可读存储介质
CN110801248B (zh) * 2019-11-06 2022-05-24 北京智影技术有限公司 控制方法、超声诊断主机、超声探头及可读存储介质
CN112472133B (zh) * 2020-12-22 2024-07-09 深圳市德力凯医疗设备股份有限公司 一种超声探头的姿态监控方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824189A (zh) * 2012-08-20 2012-12-19 深圳市理邦精密仪器股份有限公司 一种超声波探头适时发射接收方法及装置
CN105433983A (zh) * 2015-12-15 2016-03-30 北京汇影互联科技有限公司 一种超声诊断设备及切换超声探头工作状态的方法
CN209996346U (zh) * 2017-12-27 2020-01-31 深圳迈瑞生物医疗电子股份有限公司 超声波探头
US20190209129A1 (en) * 2018-01-09 2019-07-11 Samsung Medison Co., Ltd. Ultrasonic imaging apparatus
CN113093193A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 超声信号触发方法、装置和***

Also Published As

Publication number Publication date
CN113093193A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022213927A1 (zh) 超声信号触发方法、装置和***
CN106250883B (zh) 压力指纹识别方法、装置及终端设备
WO2022213928A1 (zh) 组织弹性检测方法、装置和***
US11224406B2 (en) Ultrasound diagnosis apparatus and ultrasound probe maintenance apparatus
WO2022213939A1 (zh) 弹性测量方法、装置、***和存储介质
JP5510449B2 (ja) 超音波診断装置
CN113796848B (zh) 一种人体阻抗测量方法、设备及计算机可读存储介质
CN108780366A (zh) 触摸面板装置和触摸面板装置的处理方法
JP2018149173A5 (zh)
JP6443056B2 (ja) 超音波診断装置
US9921190B2 (en) Method and apparatus to monitor acoustic probes during repair
WO2022213948A1 (zh) 弹性检测方法及装置
US20130165782A1 (en) Ultrasonic diagnosis apparatus and control program of the same
JP4962711B2 (ja) 内臓脂肪測定装置、内臓脂肪測定方法及びそのためのプログラム
JP2010167083A (ja) 超音波診断装置の電力供給方法及び超音波診断装置
US10509014B2 (en) Method and device for the testing of ultrasound probes
JP5065798B2 (ja) 眼科用超音波測定装置及びプログラム
US20190143610A1 (en) Method And Apparatus For Detection Of Loose Stack Joints And Cracked Components Of Ultrasonic Stacks
JP2008220690A (ja) 超音波診断装置
CN115144125B (zh) 电子设备按压部的压感检测校准方法、模块及***
CN104013439A (zh) 基于电压校准的超声波叠加检测***
US20240122571A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
JP2019107419A5 (zh)
CN116671960A (zh) 弹性成像方法、装置、电子设备及弹性成像***
CN104042242A (zh) 带增益调整的超声波叠加去噪检测***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22783993

Country of ref document: EP

Kind code of ref document: A1