WO2022213733A1 - 获取飞行航线的方法、装置、计算机设备及可读存储介质 - Google Patents

获取飞行航线的方法、装置、计算机设备及可读存储介质 Download PDF

Info

Publication number
WO2022213733A1
WO2022213733A1 PCT/CN2022/077476 CN2022077476W WO2022213733A1 WO 2022213733 A1 WO2022213733 A1 WO 2022213733A1 CN 2022077476 W CN2022077476 W CN 2022077476W WO 2022213733 A1 WO2022213733 A1 WO 2022213733A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
route
flight route
routes
aircraft
Prior art date
Application number
PCT/CN2022/077476
Other languages
English (en)
French (fr)
Inventor
张继伟
张邦彦
安培
眭泽智
黄金鑫
Original Assignee
北京三快在线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京三快在线科技有限公司 filed Critical 北京三快在线科技有限公司
Publication of WO2022213733A1 publication Critical patent/WO2022213733A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management

Definitions

  • the present application relates to the technical field of airspace management, and in particular, to obtaining flight routes.
  • the embodiment of the present application provides obtaining a flight route, and the technical solution includes the following contents.
  • a method for obtaining a flight route comprising:
  • the cost value of each reference flight route is determined based on the first information of each reference flight route in the multiple reference flight routes, and the first information of any reference flight route is used to indicate the corresponding value of any reference flight route.
  • a target flight path of the aircraft is selected from the plurality of reference flight paths.
  • the determining a plurality of reference flight routes of the aircraft based on the starting location and the destination location includes: determining a road network based on the starting location and the destination location; A flight area is determined by the air area that the ground object corresponding to the aircraft can observe on the road network; and multiple reference flight routes of the aircraft are determined in the flight area.
  • the determining the road network based on the starting position and the destination position includes: determining a plurality of ground surfaces between the starting position and the destination position based on the K-shortest path KSP algorithm road; the road network is obtained by fusing the plurality of surface roads.
  • the determining the cost value of each reference flight route based on the first information of each reference flight route in the plurality of reference flight routes includes: determining a second value of each reference flight route information, the second information of any reference flight route is used to indicate the distance between the ground mapping route corresponding to the any reference flight route and the central axis of the ground road; based on the first information of each reference flight route and all The second information of each reference flight route is used to determine the cost value of each reference flight route.
  • determining the cost value of each reference flight route based on the first information of each reference flight route in the plurality of reference flight routes includes: determining a flight period of the aircraft; a reference flight route, based on the first information of the any reference flight route in the flight period, determine the cost value of the any reference flight route, the any reference flight route in the first flight period.
  • the information is used to indicate the congestion level of the ground map route corresponding to any reference flight route in the flight period.
  • the selecting and obtaining the target flight route of the aircraft from the plurality of reference flight routes based on the cost values of the respective reference flight routes includes: comparing the plurality of reference flight routes according to the cost values.
  • the flight routes are sorted to obtain a sequence of flight routes; the reference number of reference flight routes in the sequence of flight routes are used as the first flight routes, and the target flight route of the aircraft is obtained by selecting from the first flight routes.
  • the reference number is multiple
  • the selecting and obtaining the target flight route of the aircraft from the first flight routes includes: converting a plurality of first flight routes to obtain a plurality of second flight routes route, any second flight route in the plurality of second flight routes includes a plurality of flight points, and any flight point in the plurality of flight points corresponds to at least one of time information and position information; Based on at least one of time information and position information corresponding to a flight point included in each of the plurality of second flight routes, the target of the aircraft is selected from the plurality of second flight routes flight route.
  • Selecting and obtaining the target flight route of the aircraft in the route includes: for any second flight route, determining the time information corresponding to the first flight point and the time corresponding to the last flight point in the any second flight route The time difference value between the information, the time difference value is used as the flight duration corresponding to the any second flight route; for any second flight route, determine the relative pairs in the any second flight route.
  • the sum of the position differences between the position information corresponding to the adjacent flight points, and the sum of the position differences is taken as the flight distance corresponding to any second flight route;
  • the flight duration and flight distance corresponding to the second flight routes are selected from the plurality of second flight routes to obtain the target flight route of the aircraft.
  • a device for obtaining a flight route comprising:
  • the acquisition module is used to acquire the starting position and destination position of the aircraft
  • a determining module configured to determine a plurality of reference flight routes of the aircraft based on the starting position and the destination position
  • the determining module is further configured to determine the cost value of each reference flight route based on the first information of each reference flight route in the plurality of reference flight routes, and the first information of any reference flight route is used to indicate all the reference flight routes.
  • the selection module is configured to select and obtain the target flight route of the aircraft from the multiple reference flight routes based on the cost values of the reference flight routes.
  • the determining module is configured to determine a road network based on the starting position and the destination position; and determine the flight based on the air area that the ground object corresponding to the aircraft can observe on the road network an area; a plurality of reference flight paths for the aircraft are determined in the flight area.
  • the determining module is configured to determine a plurality of ground roads between the starting position and the destination position based on the K shortest path KSP algorithm; fuse the plurality of ground roads to obtain the Road Network.
  • the determining module is configured to determine the second information of each reference flight route, and the second information of any reference flight route is used to indicate the ground mapping route corresponding to the any reference flight route the distance from the central axis of the ground road; based on the first information of the respective reference flight paths and the second information of the respective reference flight paths, the cost value of the respective reference flight paths is determined.
  • the determining module is configured to determine a flight period of the aircraft; for any reference flight route, determine the The cost value of any reference flight route, the first information of the any reference flight route in the flight period is used to indicate the congestion degree of the ground mapping route corresponding to the any reference flight route in the flight period.
  • the selection module is configured to sort the multiple reference flight routes according to the cost value to obtain a flight route sequence; and use the reference number of reference flight routes in the flight route sequence as the first flight The flight path is selected from the first flight path to obtain the target flight path of the aircraft.
  • the reference number is multiple
  • the selection module is configured to convert multiple first flight routes to obtain multiple second flight routes, any one of the multiple second flight routes
  • the second flight route includes a plurality of flight points, and any flight point in the plurality of flight points corresponds to at least one of time information and position information; based on each of the second flight routes in the plurality of second flight routes At least one of the time information and position information corresponding to the included flight point is selected, and the target flight route of the aircraft is obtained from the plurality of second flight routes.
  • the selection module is configured to, for any second flight route, determine the time information corresponding to the first flight point and the time corresponding to the last flight point in the any second flight route The time difference value between the information, the time difference value is used as the flight duration corresponding to the any second flight route; for any second flight route, determine the relative pairs in the any second flight route. The sum of the position differences between the position information corresponding to the adjacent flight points, and the sum of the position differences is taken as the flight distance corresponding to any second flight route; The flight duration and flight distance corresponding to the second flight routes are selected from the plurality of second flight routes to obtain the target flight route of the aircraft.
  • a computer device in one aspect, includes a memory and a processor; at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor to make the computer device.
  • a computer-readable storage medium having stored therein at least one instruction that is loaded and executed by a processor to cause a computer to implement any of the exemplary implementations of the present application The method provided by the example to obtain the flight route.
  • a computer program or computer program product comprising: computer instructions, which, when executed by a computer, cause the computer to implement any one of the examples of the present application The method for obtaining the flight route provided by the embodiment.
  • the target flight route is selected from the reference flight route, so that the congestion degree of the ground mapping route corresponding to the target flight route is lower. Therefore, during the flight of the aircraft according to the target flight route, the ground objects corresponding to the aircraft can move in coordination with the aircraft on the ground mapping route with a low degree of congestion.
  • a drone can operate in cooperation with the aircraft on a less-congested ground-mapped route, and an operator can drive a vehicle to follow the aircraft on a less-congested ground-mapped route.
  • FIG. 1 is a schematic diagram of an implementation environment provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for obtaining a flight route provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of marking a cost value in a voxel map provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a road network provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an observation range of a ground object provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the relationship between the ground mapping route and the central axis of the ground road provided by an embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of an apparatus for obtaining a flight route provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a server provided by an embodiment of the present application.
  • An embodiment of the present application provides a method for acquiring a flight route, and the method can be applied in the implementation environment as shown in FIG. 1 .
  • an aircraft 11 computer equipment 12 and ground mobile 13 are included.
  • the aircraft 11 is connected in communication with the computer device 12 to obtain a target flight route from the computer device 12 so as to fly according to the target flight route.
  • the ground moving device 13 is also connected in communication with the computer device 12 to obtain the ground map route of the target flight route from the computer device 12 to move based on the ground map route.
  • moving based on the ground mapping route includes: moving along the ground mapping route, or moving on both sides of the ground mapping route according to the same trend as the ground mapping route.
  • ground mobile devices 13 include, but are not limited to, unmanned vehicles and vehicles driven by operators.
  • the computer device 12 includes an electronic device or a server.
  • the electronic device can be any electronic product that can interact with the user in one or more ways such as keyboard, touchpad, touchscreen, remote control, voice interaction or handwriting device, such as PC (Personal Computer) , mobile phone, smart phone, PDA (Personal Digital Assistant), wearable device, Pocket PC (Pocket PC), tablet computer, smart car machine, etc.
  • the server can be a single server, a server cluster composed of multiple servers, or a cloud computing service center.
  • an embodiment of the present application provides a method for acquiring a flight route, and the method can be applied to the computer device shown in FIG. 1 .
  • the method includes the following steps.
  • the starting position and the destination position of the aircraft are often determined according to the flight tasks that the aircraft needs to perform.
  • the first flight mission that the aircraft needs to perform includes: moving from the current position to the pickup location.
  • the starting position of the aircraft includes the current location of the aircraft, and the destination location includes the pickup location.
  • the second flight task that the aircraft needs to perform includes: moving from the pickup location to the pickup location.
  • the starting position of the aircraft includes the pickup location, and the destination location includes the pickup location.
  • determining a plurality of reference flight paths of the aircraft based on the starting position and the destination position includes the following steps.
  • the road network was determined based on the starting location and the destination location.
  • a road network refers to a surface road network composed of multiple surface roads.
  • determining the road network based on the starting position and the destination position includes: determining a plurality of ground roads between the starting position and the destination position based on the KSP (K-shortest paths, K-shortest paths) algorithm, and merging the A road network is obtained from a plurality of ground roads, and the process can refer to 301 and 302 in FIG. 3 .
  • KSP K-shortest paths, K-shortest paths
  • multiple candidate ground roads can be determined based on the KSP algorithm, and the lengths of different candidate ground roads are the same or different.
  • the road network Arrange multiple candidate ground roads in order of length from small to large to obtain a ground road sequence, and determine the top K candidate ground roads in the ground road sequence as the above-mentioned multiple ground roads, where K is an integer not less than one.
  • the road network can be obtained by fusing multiple ground roads.
  • Figure 4 shows a road network obtained by fusing multiple surface roads. It can be understood that the above KSP algorithm is only an example, and is not used to limit this embodiment. In this embodiment, other algorithms or manners may also be used to determine multiple ground roads between the starting position and the destination position.
  • the target area where the aircraft may fly may be determined according to the historical flight records of the aircraft, and the target area may be determined according to the ground roads included in the target area.
  • the road network of the target area includes: in response to the starting location and the destination location being both located within the target area, determining a sub-area containing the starting location and the destination location in the target area, and The road network of this sub-area serves as the road network determined based on the starting location and the destination location.
  • This implementation does not limit the size and shape of the sub-region, and the size and shape of the sub-region can be determined according to experience, or set according to actual needs.
  • the flight area is determined based on the air area that can be observed on the road network by the ground object corresponding to the aircraft.
  • Fig. 5 shows the aerial area that can be observed by ground objects at any point on the road network.
  • the aerial area that can be observed by ground objects at any point on the road network is approximately a cone. This representation is also called LOS (line of sight, line of sight).
  • the ground object includes an unmanned vehicle, and based on the rotatable angle of the camera device set on the unmanned vehicle, the aerial area that the unmanned vehicle can observe at any point on the road network can be determined.
  • the ground object includes the operator driving the vehicle, and based on the operator's field of vision during the driving of the vehicle, the aerial area that the operator can observe at any point on the road network can be determined.
  • a plurality of points are determined on the road network, and the aerial areas that can be observed by the ground object at each point are fused, so as to obtain the aerial areas that the ground object can observe on the road network.
  • determining the flight area based on the air area that the ground object can observe on the road network includes: taking the air area that the ground object can observe on the road network as the flight area.
  • an area located between the first height and the second height is determined as the flight area from among the air areas in which the ground objects can be observed on the road network.
  • this embodiment does not limit the first height and the second height, and the first height and the second height may be heights set according to experience, or heights determined according to airspace management regulations.
  • the airspace management regulations only allow the aircraft to move in the airspace 30-120 meters above the ground, so the first altitude is determined to be 30 meters, and the second altitude is determined to be 120 meters.
  • the three-dimensional space above the ground is represented by a voxel map, which is a three-dimensional map with a voxel block as the smallest unit.
  • Each voxel block corresponds to attribute information, and the attribute information of any voxel block is used to indicate whether there is an obstacle in the voxel block, or whether it can be used by an aircraft to pass through.
  • this embodiment determines the flight area in the voxel map.
  • the attribute information corresponding to the voxel block located in the flight area is used to indicate that the voxel block does not have obstacles and can be used for aircraft to pass through, and the attribute information corresponding to the voxel block not located in the above-mentioned flight area is used.
  • the information is used to indicate that the voxel block has obstacles and cannot be used by aircraft to pass.
  • a plurality of reference flight routes of the aircraft are determined in the flight area.
  • the flight area includes voxel blocks, so any reference flight route determined in the flight area can be regarded as a route composed of multiple voxel blocks.
  • the present embodiment applies the KSP algorithm in the voxel map, so as to determine a reference flight path composed of a plurality of voxel blocks.
  • the KSP algorithm is only an example, and other methods may also be used in this embodiment to determine multiple reference flight routes of the aircraft in the flight area.
  • the flight area in the embodiment of the present application is determined based on the air area that can be observed by the ground object corresponding to the aircraft on the road network, and multiple reference flight routes are determined in the flight area, regardless of the aircraft Whichever reference flight route is used to fly, the ground objects corresponding to the aircraft move on the road network, so that the aircraft is always within the observation range of the ground objects during the flight process, which is conducive to the coordinated movement of the ground objects and the aircraft.
  • This method is not only applicable to the scenario where the operator drives the vehicle to follow the aircraft, but also applies to the scenario where the unmanned vehicle and the aircraft operate cooperatively.
  • the cost value of each reference flight route is used to indicate the ground mapping route corresponding to any reference flight route. level of congestion.
  • the cost value is determined according to the first information, and the first information is used to indicate the congestion degree of the ground mapping route corresponding to the reference flight route, the cost value can also reflect the congestion degree of the ground mapping route corresponding to the reference flight route. For any reference flight route, the higher the congestion level indicated by the first information, the greater the cost value of the any reference flight route.
  • the first information includes at least one information among the average transit time of the ground mapping route corresponding to the any reference flight route, and the number of traffic lights included on the ground mapping route corresponding to the any reference flight route.
  • the sub-cost values are respectively determined based on the average passing time and the number of traffic lights, and the sub-cost values are weighted and summed to obtain the cost value of the reference flight route.
  • the weights corresponding to different sub-cost values are the same or different.
  • the above-mentioned average passing time and the number of traffic lights are only examples, and this embodiment does not limit the first information, and the first information may also include other information that can be used to indicate the degree of congestion.
  • determining the cost value of each reference flight route based on the first information of each reference flight route among the plurality of reference flight routes includes: determining the flight period of the aircraft. For any reference flight route, the cost value of any reference flight route is determined based on the first information of any reference flight route during the flight period. Wherein, the first information of any reference flight route during the flight period is used to indicate the congestion level of the ground mapping route corresponding to any reference flight route during the flight period. In this embodiment, the cost value of the reference flight route corresponding to the flight period is determined in a targeted manner, thereby ensuring the accuracy of the determined cost value.
  • the first information in multiple different time periods may also be acquired, and the cost value of each reference flight route may be determined by combining the first information in multiple different time periods.
  • a day is divided into a plurality of time periods, and the first information of the reference flight route in each time period of the day is obtained respectively, so as to determine the cost value of the reference flight route.
  • a partial time period with a high degree of congestion is selected from the plurality of time periods, and the first information of the reference flight route in each selected partial time period is obtained to determine the cost value of the reference flight route.
  • some time periods with a high degree of congestion include the noon time period of 11:00-13:00, the evening time period of 5:00-7:00, and so on.
  • this time period is only an example, and this embodiment does not limit the number of time periods and the duration of the time periods.
  • the road segment cost value of each road segment is determined based on the congestion degree of each road segment in the road network.
  • the road segment includes a road between two adjacent intersections.
  • determining the cost value of each reference flight route includes: for any reference flight route, determining the road segments included in the ground mapping route corresponding to the any reference flight route, and using the sum of the road segment cost values of the included road segments as the reference flight route.
  • the ground mapping route corresponding to the reference flight route includes segment A, segment B, segment C, and segment D, then the cost value of the reference flight route is the sum of segment A, segment B, segment C, and segment D.
  • determining the road segment cost value of each road segment based on the congestion degree of each road segment in the road network includes: for any road segment, according to at least one of the average passing time of the any road segment and the number of traffic lights included in the any road segment.
  • One is to determine the road segment cost value of any road segment.
  • the method of determining the cost value of the road segment reference may be made to the above-mentioned method of determining the cost value of the reference flight route, which will not be repeated here.
  • this embodiment marks the link cost value of each road segment on the voxel map. Therefore, after multiple reference flight routes are determined based on the voxel map, the cost value of the reference flight route can be obtained by calculating the cost value of the reference flight route based on the road segment cost value marked in the voxel map in the manner described in the above description.
  • the cost value of each reference flight route may also be determined based on the first information in combination with other information, see the following description.
  • determining the cost value of each reference flight route based on the first information of each reference flight route in the plurality of reference flight routes includes: determining the second information of each reference flight route, the value of any reference flight route The second information is used to indicate the distance between the ground mapping route corresponding to any reference flight route and the central axis of the ground road. Based on the first information of each reference flight line and the second information of each reference flight line, the cost value of each reference flight line is determined.
  • the smaller the distance between the ground mapping route corresponding to any reference flight route and the central axis of the ground road the closer the reference flight route is to directly above the ground road. If the aircraft flies according to the reference flight route, the attention of the driver driving the vehicle on the ground road is easily distracted, thereby affecting the driving safety. Therefore, in the exemplary embodiment, the smaller the distance between the ground mapping route corresponding to any reference flight route and the central axis of the ground road, the larger the cost value of any reference flight route, so that any reference flight route The less likely it is to be selected as the target flight route.
  • this embodiment determines the cost value of each reference flight route based on the first information and in combination with the second information used to indicate the distance.
  • determining the cost value of each reference flight route based on the first information of each reference flight route and the second information of each reference flight route including: for any reference flight route, determining a first cost value based on the first information , determining a second cost value based on the second information, and using the weighted summation value of the first cost value and the second cost value as the cost value of any reference flight route.
  • the process of determining the first cost value based on the first information refers to the above description, and details are not repeated here.
  • the smaller the distance indicated by the second information the closer the reference flight route is directly above the ground road, and the easier it is to distract the driver's attention, so the larger the second cost value determined based on the second information is. Therefore, the reference flight route with a smaller distance between the ground mapping route and the central axis of the ground road corresponds to a larger cost value.
  • the present embodiment establishes a cost value adjustment function based on the distance between the ground mapping route and the central axis of the ground road, the cost value adjustment function is normally distributed, and the value of the cost value adjustment function is the same everywhere. Greater than zero. When the distance between the ground mapping route and the central axis of the ground road is zero, the value of the cost value adjustment function is the largest.
  • determining the cost value of each reference flight route based on the first information of each reference flight route and the second information of each reference flight route including: for any reference flight route, based on the first information of the any reference flight route
  • the information determines a third cost value, determines a cost value adjustment value from the cost value adjustment function based on the second information, and adjusts the third cost value based on the cost value adjustment value to obtain the cost value of any reference flight route.
  • the cost value adjustment function it can be seen that the smaller the distance indicated by the second information, the larger the cost value adjustment value determined from the cost value adjustment function based on the second information.
  • the obtained cost value of any reference flight route is also larger, which can also make the distance between the ground mapping route and the central axis of the ground road smaller.
  • the reference flight route corresponds to a larger cost value.
  • adjusting the third cost value based on the cost value adjustment value includes: calculating a product of the cost value adjustment value and the third cost value, where the product can be used as the cost value of any reference flight route.
  • the ground mapping route corresponding to any reference flight route is not parallel to the central axis of the ground road, multiple points can be determined on the ground mapping route, and the cost value adjustment value corresponding to each point can be determined from the cost adjustment curve. Then, the average value of the cost value adjustment values corresponding to each point is calculated, and the third cost value determined based on the first information is adjusted according to the average value, thereby obtaining the cost value of the reference flight route.
  • the cost value of each reference flight route can reflect the congestion degree of the ground mapping route corresponding to each reference flight route. Determining the target flight route based on the cost value of each reference flight route can avoid using the reference flight route corresponding to the more congested ground mapping route as the target flight route for the aircraft to fly. That is to say, the congested degree of the ground mapping route corresponding to the selected target flight route is relatively small.
  • the ground objects corresponding to the aircraft can move based on the ground mapping route with less congestion, thereby avoiding the situation that the ground objects corresponding to the aircraft are difficult to move due to congestion. Therefore, it is not only beneficial for the ground object to move with the aircraft, but also to ensure that the aircraft is always within the observation range of the ground object during the flight.
  • selecting a target flight path of the aircraft from multiple reference flight paths based on cost values of each reference flight path includes: sorting the multiple reference flight paths according to the cost values to obtain a flight path sequence.
  • the reference number of reference flight routes in the flight route sequence are used as the first flight route, and the target flight route of the aircraft is obtained by selecting from the first flight route.
  • the multiple reference flight routes are sorted in ascending order of the cost values, so that the first reference flight routes in the sequence of flight routes are selected as the first flight routes.
  • the multiple reference flight routes are sorted in descending order of the cost values, so as to select the last reference number of reference flight routes in the sequence of flight routes as the first flight route. It can be seen that, in this embodiment, the reference flight route with a smaller cost value among the multiple reference flight routes is used as the first flight route.
  • This embodiment does not limit the reference quantity, and the reference quantity is a positive integer.
  • determining the reference flight route with the smallest cost value as the first flight route and correspondingly, selecting and obtaining the target flight route of the aircraft from the first flight route, including: using the first flight route as the aircraft target flight path.
  • the target flight route needs to be discrete into multiple points, any point corresponds to time information and position information, and the aircraft flies according to the time information and position information corresponding to each point.
  • the first point corresponds to time A1 and position B1
  • the second point corresponds to time A2 and position B2
  • the third point corresponds to time A3 and position B3, and time A1 ⁇ time A2 ⁇ time A3, the aircraft is at time A1
  • First arrive at the B1 position where the first point is located arrive at the B2 position where the second point is located at the time A2 and arrive at the B3 position where the third point is located at the time A3, so as to realize the flight according to the time information and position information corresponding to each point.
  • a jerk model is used to discretize the target flight path into a plurality of points corresponding to time information and position information.
  • the target flight route corresponds to a ground mapping route
  • the target flight route is divided into at least one route segment according to the road segments included in the ground mapping route, and the route segments and the road segments are in one-to-one correspondence.
  • each flight segment is input into the jerk model, so as to obtain each flight segment that is discrete into points.
  • the points included in each route segment that are discrete into points are spliced together, so as to obtain a target flight route that is discrete into multiple points, so as to facilitate the flight of the aircraft.
  • smoothing processing can also be performed on each point in the target flight route that is discrete into multiple points, so as to realize the stable flight of the aircraft.
  • this embodiment can also store the target flight route that is discrete into multiple points in the database, so as to facilitate subsequent calls from the database.
  • a plurality of reference flight routes whose cost value is not greater than the cost value threshold may be determined as the first flight route, and accordingly, the target flight route of the aircraft is selected from the first flight routes.
  • the method includes: selecting a first flight route from a plurality of first flight routes as a target flight route of the aircraft.
  • the embodiment of the present application does not limit the selection manner.
  • one of the multiple first flight routes may be selected as the target flight route of the aircraft.
  • the target flight route may be selected from the plurality of first flight routes in the manner described below.
  • selecting and obtaining the target flight route of the aircraft from the first flight routes includes: converting the plurality of first flight routes to obtain a plurality of second flight routes, a plurality of second flight routes Any second flight route in the flight route includes a plurality of flight points, and any flight point in the plurality of flight points corresponds to at least one of time information and position information. Based on at least one of time information and position information corresponding to a flight point included in each of the plurality of second flight routes, a target flight route of the aircraft is selected from the plurality of second flight routes.
  • the process of converting any first flight route to the second flight route may refer to the above process of discretizing the target flight route, which will not be repeated here.
  • the flight path of the aircraft is selected from the plurality of second flight routes.
  • the target flight route includes: for any second flight route, determining the time difference between the time information corresponding to the first flight point and the time information corresponding to the last flight point in any second flight route, and converting the time The difference is used as the flight duration corresponding to any second flight route.
  • any second flight route determine the sum of the position differences between the position information corresponding to each pair of adjacent flight points in any second flight route, and use the sum of the position differences as the corresponding position of any second flight route flight distance. Based on the flight duration and flight distance corresponding to each of the plurality of second flight routes, a target flight route of the aircraft is selected from the plurality of second flight routes.
  • the flight duration corresponding to the second flight route is 30 minutes.
  • the second flight route including N flight points it is necessary to determine the first position difference between the position of the first flight point and the position of the second flight point, and the position of the second flight point.
  • the second position difference from the position of the third flight point, and so on determine the (N-1)th difference between the position of the (N-1)th flight point and the position of the Nth flight point ) position differences, so a total of (N-1) position differences are obtained.
  • the sum of the position differences of (N-1) position differences is calculated, and the sum of the position differences is used as the flight distance corresponding to the second flight route.
  • this embodiment selects the target flight route from the reference flight route based on the congestion degree of the ground mapping route corresponding to the reference flight route, so that the congestion degree of the ground mapping route corresponding to the target flight route is lower. Therefore, during the flight of the aircraft according to the target flight route, the ground objects corresponding to the aircraft can move in coordination with the aircraft on the ground mapping route with a low degree of congestion.
  • a drone can operate in cooperation with the aircraft on a less-congested ground-mapped route, and an operator can drive a vehicle to follow the aircraft on a less-congested ground-mapped route.
  • the information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data for analysis, stored data, displayed data, etc.
  • Signals are authorized by users or fully authorized by all parties, and the collection, use and processing of relevant data need to comply with relevant laws, regulations and standards of relevant countries and regions.
  • the starting position and destination position of the aircraft, the first information and the second information of the reference flight route, etc. involved in this application are all obtained under the condition of sufficient authorization.
  • An embodiment of the present application provides an apparatus for obtaining a flight route, and the apparatus for obtaining a flight route may implement the method for obtaining a flight route performed by the above computer equipment through the following multiple modules.
  • the device includes the following modules:
  • Obtaining module 701 for obtaining the starting position and destination position of the aircraft
  • a determining module 702 configured to determine multiple reference flight routes of the aircraft based on the starting position and the destination position;
  • the determination module 702 is further configured to determine the cost value of each reference flight route based on the first information of each reference flight route in the multiple reference flight routes, and the first information of any reference flight route is used to indicate that any reference flight route corresponds to The congestion level of the ground-mapped route;
  • the selection module 703 is configured to select and obtain a target flight route of the aircraft from a plurality of reference flight routes based on the cost value of each reference flight route.
  • the determining module 702 is configured to determine the road network based on the starting position and the destination position; determine the flight area based on the air area that the ground object corresponding to the aircraft can observe on the road network; determine the flight area of the aircraft in the flight area Multiple reference flight routes.
  • the determining module 702 is configured to determine a plurality of ground roads between the starting position and the destination position based on the K shortest path KSP algorithm; and fuse the plurality of ground roads to obtain a road network.
  • the determining module 702 is configured to determine the second information of each reference flight route, and the second information of any reference flight route is used to indicate the center of the ground mapping route and the ground road corresponding to any reference flight route The distance between the axes; the cost value of each reference flight path is determined based on the first information of each reference flight path and the second information of each reference flight path.
  • the determining module 702 is configured to determine the flight period of the aircraft; for any reference flight path, based on the first information of any reference flight path in the flight period, determine the cost value of any reference flight path, The first information of any reference flight route during the flight period is used to indicate the congestion level of the ground mapping route corresponding to any reference flight route during the flight period.
  • the selection module 703 is configured to sort a plurality of reference flight routes according to the cost value to obtain a flight route sequence; take the reference number of reference flight routes in the flight route sequence as the first flight route, from the first flight route Select the flight path to get the target flight path of the aircraft.
  • the reference number is multiple
  • the selection module 703 is configured to convert multiple first flight routes to obtain multiple second flight routes, and any second flight route in the multiple second flight routes includes multiple a plurality of flight points, and any flight point in the plurality of flight points corresponds to at least one of time information and position information; based on the time information corresponding to the flight point and At least one type of information in the position information is selected from a plurality of second flight routes to obtain the target flight route of the aircraft.
  • the selection module 703 is configured to, for any second flight route, determine the difference between the time information corresponding to the first flight point and the time information corresponding to the last flight point in any second flight route For any second flight route, determine the difference between the position information corresponding to each pair of adjacent flight points in any second flight route The sum of the position differences of the 2nd flight routes is taken as the flight distance corresponding to any second flight route; based on the flight duration and flight distance corresponding to each second flight route in the plurality of second flight routes In the second flight route, select the target flight route of the aircraft.
  • this embodiment selects the target flight route from the reference flight route based on the congestion degree of the ground mapping route corresponding to the reference flight route, so that the congestion degree of the ground mapping route corresponding to the target flight route is lower. Therefore, during the flight of the aircraft according to the target flight route, the ground objects corresponding to the aircraft can move in coordination with the aircraft on the ground mapping route with a low degree of congestion.
  • a drone can operate in cooperation with the aircraft on a less-congested ground-mapped route, and an operator can drive a vehicle to follow the aircraft on a less-congested ground-mapped route.
  • FIG. 8 it shows a schematic structural diagram of an electronic device 800 provided by an embodiment of the present application.
  • the electronic device 800 may be a portable mobile electronic device, such as: a smart phone, a tablet computer, an MP3 player (Moving Picture Experts Group Audio Layer III, moving picture expert compression standard audio layer 3), MP4 (Moving Picture Experts Group Audio Layer IV) , Motion Picture Expert Compresses Standard Audio Layer 4) Player, Laptop or Desktop.
  • Electronic device 800 may also be called user equipment, portable electronic device, laptop electronic device, desktop electronic device, and the like by other names.
  • the electronic device 800 includes: a processor 801 and a memory 802 .
  • the processor 801 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and the like.
  • the processor 801 may use at least one of the group consisting of DSP (Digital Signal Processing, digital signal processing), FPGA (Field-Programmable Gate Array, field programmable gate array), and PLA (Programmable Logic Array, programmable logic array).
  • DSP Digital Signal Processing, digital signal processing
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • PLA Programmable Logic Array, programmable logic array
  • the processor 801 may also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the wake-up state, also called CPU (Central Processing Unit, central processing unit); the coprocessor is A low-power processor for processing data in a standby state.
  • the processor 801 may be integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is used for rendering and drawing the content that the display screen 805 needs to display.
  • the processor 801 may further include an AI (Artificial Intelligence, artificial intelligence) processor, where the AI processor is used to process computing operations related to machine learning.
  • AI Artificial Intelligence, artificial intelligence
  • Memory 802 may include one or more computer-readable storage media, which may be non-transitory. Memory 802 may also include high-speed random access memory, as well as non-volatile memory, such as one or more disk storage devices, flash storage devices. In some embodiments, a non-transitory computer-readable storage medium in the memory 802 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 801 to implement the acquisition flight provided by the method embodiments of the present application. route method.
  • the electronic device 800 may optionally further include: a peripheral device interface 803 and at least one peripheral device.
  • the processor 801, the memory 802 and the peripheral device interface 803 may be connected by a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface 803 through a bus, a signal line or a circuit board.
  • the peripheral device includes: at least one of the group consisting of a radio frequency circuit 804 , a display screen 805 , a camera component 806 , an audio circuit 807 , a positioning component 808 and a power supply 809 .
  • the peripheral device interface 803 may be used to connect at least one peripheral device related to I/O (Input/Output) to the processor 801 and the memory 802 .
  • processor 801, memory 802, and peripherals interface 803 are integrated on the same chip or circuit board; in some other embodiments, any one of processor 801, memory 802, and peripherals interface 803 or The two can be implemented on a separate chip or circuit board, which is not limited in this embodiment.
  • the radio frequency circuit 804 is used for receiving and transmitting RF (Radio Frequency, radio frequency) signals, also called electromagnetic signals.
  • the radio frequency circuit 804 communicates with the communication network and other communication devices via electromagnetic signals.
  • the radio frequency circuit 804 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals.
  • radio frequency circuitry 804 includes an antenna system, an RF transceiver, one or more amplifiers, tuners, oscillators, digital signal processors, codec chipsets, subscriber identity module cards, and the like.
  • the radio frequency circuit 804 may communicate with other electronic devices through at least one wireless communication protocol.
  • the wireless communication protocols include, but are not limited to, metropolitan area networks, mobile communication networks of various generations (2G, 3G, 4G, and 5G), wireless local area networks and/or Wi-Fi (Wireless Fidelity, wireless fidelity) networks.
  • the radio frequency circuit 804 may further include a circuit related to NFC (Near Field Communication, short-range wireless communication), which is not limited in this application.
  • the display screen 805 is used to display UI (User Interface, user interface).
  • the UI can include graphics, text, icons, video, and any combination thereof.
  • the display screen 805 also has the ability to acquire touch signals on or above the surface of the display screen 805 .
  • the touch signal can be input to the processor 801 as a control signal for processing.
  • the display screen 805 may also be used to provide virtual buttons and/or virtual keyboards, also referred to as soft buttons and/or soft keyboards.
  • the display screen 805 may be a flexible display screen disposed on a curved or folded surface of the electronic device 800 . Even, the display screen 805 can also be set as a non-rectangular irregular figure, that is, a special-shaped screen.
  • the display screen 805 can be prepared by using materials such as LCD (Liquid Crystal Display, liquid crystal display), OLED (Organic Light-Emitting Diode, organic light emitting diode).
  • the camera assembly 806 is used to capture images or video.
  • the camera assembly 806 includes a front camera and a rear camera.
  • the front camera is arranged on the front panel of the electronic device, and the rear camera is arranged on the back of the electronic device.
  • there are at least two rear cameras which are any one of a main camera, a depth-of-field camera, a wide-angle camera, and a telephoto camera, so as to realize the fusion of the main camera and the depth-of-field camera to realize the background blur function, the main camera It is integrated with the wide-angle camera to achieve panoramic shooting and VR (Virtual Reality, virtual reality) shooting functions or other integrated shooting functions.
  • camera assembly 806 may also include a flash.
  • the flash can be a single color temperature flash or a dual color temperature flash. Dual color temperature flash refers to the combination of warm light flash and cold light flash, which can be used for light compensation under different color temperatures.
  • Audio circuitry 807 may include a microphone and speakers.
  • the microphone is used to collect the sound waves of the user and the environment, convert the sound waves into electrical signals, and input them to the processor 801 for processing, or to the radio frequency circuit 804 to realize voice communication.
  • the microphone may also be an array microphone or an omnidirectional collection microphone.
  • the speaker is used to convert the electrical signal from the processor 801 or the radio frequency circuit 804 into sound waves.
  • the loudspeaker can be a traditional thin-film loudspeaker or a piezoelectric ceramic loudspeaker.
  • audio circuitry 807 may also include a headphone jack.
  • the positioning component 808 is used to locate the current geographic location of the electronic device 800 to implement navigation or LBS (Location Based Service).
  • the positioning component 808 may be a positioning component based on the GPS (Global Positioning System, global positioning system) of the United States, the Beidou system of China, the Grenas system of Russia, or the Galileo system of the European Union.
  • Power supply 809 is used to power various components in electronic device 800 .
  • the power source 809 may be alternating current, direct current, disposable batteries or rechargeable batteries.
  • the rechargeable battery can support wired charging or wireless charging.
  • the rechargeable battery can also be used to support fast charging technology.
  • electronic device 800 also includes one or more sensors 810 .
  • the one or more sensors 810 include, but are not limited to, an acceleration sensor 811, a gyro sensor 812, a pressure sensor 813, a fingerprint sensor 814, an optical sensor 815, and a proximity sensor 816.
  • the acceleration sensor 811 can detect the magnitude of acceleration on the three coordinate axes of the coordinate system established by the electronic device 800 .
  • the acceleration sensor 811 can be used to detect the components of the gravitational acceleration on the three coordinate axes.
  • the processor 801 can control the display screen 805 to display the user interface in a landscape view or a portrait view according to the gravitational acceleration signal collected by the acceleration sensor 811 .
  • the acceleration sensor 811 can also be used for game or user movement data collection.
  • the gyroscope sensor 812 can detect the body direction and rotation angle of the electronic device 800 , and the gyroscope sensor 812 can cooperate with the acceleration sensor 811 to collect 3D actions of the user on the electronic device 800 .
  • the processor 801 can implement the following functions according to the data collected by the gyroscope sensor 812 : motion sensing (such as changing the UI according to the user's tilt operation), image stabilization during shooting, game control, and inertial navigation.
  • the pressure sensor 813 may be disposed on the side frame of the electronic device 800 and/or the lower layer of the display screen 805 .
  • the processor 801 can perform left and right hand identification or shortcut operations according to the holding signal collected by the pressure sensor 813 .
  • the processor 801 controls the operability controls on the UI interface according to the user's pressure operation on the display screen 805 .
  • the operability controls include at least one of the group consisting of button controls, scroll bar controls, icon controls, and menu controls.
  • the fingerprint sensor 814 is used to collect the user's fingerprint, and the processor 801 identifies the user's identity according to the fingerprint collected by the fingerprint sensor 814 , or the fingerprint sensor 814 identifies the user's identity according to the collected fingerprint. When the user's identity is identified as a trusted identity, the processor 801 authorizes the user to perform related sensitive operations, including unlocking the screen, viewing encrypted information, downloading software, making payments, and changing settings.
  • the fingerprint sensor 814 may be disposed on the front, back, or side of the electronic device 800 . When the electronic device 800 is provided with physical buttons or a manufacturer's logo, the fingerprint sensor 814 may be integrated with the physical buttons or the manufacturer's logo.
  • Optical sensor 815 is used to collect ambient light intensity.
  • the processor 801 may control the display brightness of the display screen 805 according to the ambient light intensity collected by the optical sensor 815 . Specifically, when the ambient light intensity is high, the display brightness of the display screen 805 is increased; when the ambient light intensity is low, the display brightness of the display screen 805 is decreased.
  • the processor 801 may also dynamically adjust the shooting parameters of the camera assembly 806 according to the ambient light intensity collected by the optical sensor 815 .
  • Proximity sensor 816 also referred to as a distance sensor, is typically provided on the front panel of electronic device 800 .
  • Proximity sensor 816 is used to collect the distance between the user and the front of electronic device 800 .
  • the processor 801 controls the display screen 805 to switch from the bright screen state to the off screen state; when the proximity sensor 816 detects When the distance between the user and the front of the electronic device 800 gradually increases, the processor 801 controls the display screen 805 to switch from the off-screen state to the bright-screen state.
  • FIG. 8 does not constitute a limitation on the electronic device 800, and may include more or less components than the one shown, or combine some components, or adopt different component arrangements.
  • FIG. 9 is a schematic structural diagram of a server provided by an embodiment of the present application.
  • the server 900 may vary greatly due to different configurations or performance, and may include one or more processors 901 and one or more memories 902, wherein, At least one piece of program code is stored in the one or more memories 902, and the at least one piece of program code is loaded and executed by the one or more processors 901, so that the server implements the method for obtaining the flight route provided by the above method embodiments.
  • the server 900 may also have components such as a wired or wireless network interface, a keyboard, and an input/output interface for input and output, and the server 900 may also include other components for realizing device functions, which will not be repeated here.
  • An embodiment of the present application provides a computer device, the computer device includes a memory and a processor; at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor, so that the computer device implements any of the examples of the present application
  • the method for obtaining the flight route provided by the exemplary embodiment is a computer device, the computer device includes a memory and a processor; at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor, so that the computer device implements any of the examples of the present application.
  • An embodiment of the present application provides a computer-readable storage medium, where at least one instruction is stored in the computer-readable storage medium, and the instruction is loaded and executed by a processor, so that the computer can implement any one of the exemplary embodiments of the present application.
  • the method of obtaining the flight route is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, the instruction is stored in the computer-readable storage medium, and the instruction is loaded and executed by a processor, so that the computer can implement any one of the exemplary embodiments of the present application.
  • the method of obtaining the flight route is described in accordance with a processor.
  • the embodiments of the present application provide a computer program or computer program product.
  • the computer program or computer program product includes: computer instructions.
  • the computer instructions When the computer instructions are executed by a computer, the computer can realize the acquisition provided by any of the exemplary embodiments of the present application. method of flight route.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Human Resources & Organizations (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

获取飞行航线的方法、装置、计算机设备及可读存储介质,属于空域管理技术领域。获取飞行航线的方法包括:步骤201,获取飞行器的起始位置和目的位置,基于起始位置和目的位置确定飞行器的多个参考飞行航线。步骤202,基于多个参考飞行航线中各个参考飞行航线的第一信息,确定各个参考飞行航线的代价数值,任一参考飞行航线的第一信息用于指示任一参考飞行航线对应的地面映射路线的拥堵程度。步骤203,基于各个参考飞行航线的代价数值,从多个参考飞行航线中选择得到飞行器的目标飞行航线。

Description

[根据细则37.2由ISA制定的发明名称] 获取飞行航线的方法、装置、计算机设备及可读存储介质
本申请要求于2021年04月06日提交的申请号为202110368147.6、申请名称为“获取飞行航线的方法、装置、计算机设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空域管理技术领域,特别涉及获取飞行航线。
背景技术
随着空域管理技术的发展,被允许进入空域的飞行器也越来越多。在空域中,飞行器往往需要按照飞行航线来进行飞行。因此,如何获取飞行器的飞行航线,是保证飞行器的飞行安全的关键。
发明内容
本申请实施例提供了获取飞行航线,技术方案包括如下内容。
一方面,提供了一种获取飞行航线的方法,所述方法包括:
获取飞行器的起始位置和目的位置,基于所述起始位置和所述目的位置确定所述飞行器的多个参考飞行航线;
基于所述多个参考飞行航线中各个参考飞行航线的第一信息,确定所述各个参考飞行航线的代价数值,任一参考飞行航线的第一信息用于指示所述任一参考飞行航线对应的地面映射路线的拥堵程度;
基于所述各个参考飞行航线的代价数值,从所述多个参考飞行航线中选择得到所述飞行器的目标飞行航线。
在示例性实施例中,所述基于所述起始位置和所述目的位置确定所述飞行器的多个参考飞行航线,包括:基于所述起始位置和所述目的位置确定路网;基于所述飞行器对应的地面对象在所述路网上能够观测到的空中区域确定飞行区域;在所述飞行区域中确定所述飞行器的多个参考飞行航线。
在示例性实施例中,所述基于所述起始位置和所述目的位置确定路网,包括:基于K最短路径KSP算法,在所述起始位置和所述目的位置之间确定多个地面道路;融合所述多个地面道路得到所述路网。
在示例性实施例中,所述基于所述多个参考飞行航线中各个参考飞行航线的第一信息,确定所述各个参考飞行航线的代价数值,包括:确定所述各个参考飞行航线的第二信息,任一参考飞行航线的第二信息用于指示所述任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离;基于所述各个参考飞行航线的第一信息和所述各个参考飞行航线的第二信息,确定所述各个参考飞行航线的代价数值。
在示例性实施例中,所述任一参考飞行航线对应的地面映射路线与地面道路的中心轴之 间的距离越小,则所述任一参考飞行航线的代价数值越大,使得所述任一参考飞行航线被选择为所述目标飞行航线的可能性越小。
在示例性实施例中,所述基于所述多个参考飞行航线中各个参考飞行航线的第一信息,确定所述各个参考飞行航线的代价数值,包括:确定所述飞行器的飞行时段;对于任一参考飞行航线,基于所述任一参考飞行航线在所述飞行时段的第一信息,确定所述任一参考飞行航线的代价数值,所述任一参考飞行航线在所述飞行时段的第一信息用于指示所述任一参考飞行航线对应的地面映射路线在所述飞行时段的拥堵程度。
在示例性实施例中,所述基于所述各个参考飞行航线的代价数值,从所述多个参考飞行航线中选择得到所述飞行器的目标飞行航线,包括:按照代价数值对所述多个参考飞行航线进行排序,得到飞行航线序列;将所述飞行航线序列中参考数量个参考飞行航线作为第一飞行航线,从所述第一飞行航线中选择得到所述飞行器的目标飞行航线。
在示例性实施例中,所述参考数量为多个,所述从所述第一飞行航线中选择得到所述飞行器的目标飞行航线,包括:转换多个第一飞行航线得到多个第二飞行航线,所述多个第二飞行航线中的任一第二飞行航线包括多个飞行点,所述多个飞行点中的任一飞行点对应有时间信息和位置信息中的至少一种信息;基于所述多个第二飞行航线中各个第二飞行航线包括的飞行点对应的时间信息和位置信息中的至少一种信息,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线。
在示例性实施例中,所述基于所述多个第二飞行航线中各个第二飞行航线包括的飞行点对应的时间信息和位置信息中的至少一种信息,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线,包括:对于任一第二飞行航线,确定所述任一第二飞行航线中的第一个飞行点对应的时间信息和最后一个飞行点对应的时间信息之间的时间差值,将所述时间差值作为所述任一第二飞行航线对应的飞行时长;对于任一第二飞行航线,确定所述任一第二飞行航线中的各对相邻飞行点对应的位置信息之间的位置差值之和,将所述位置差值之和作为所述任一第二飞行航线对应的飞行距离;基于所述多个第二飞行航线中各个第二飞行航线对应的飞行时长和飞行距离,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线。
一方面,提供了一种获取飞行航线的装置,所述装置包括:
获取模块,用于获取飞行器的起始位置和目的位置;
确定模块,用于基于所述起始位置和所述目的位置确定所述飞行器的多个参考飞行航线;
所述确定模块,还用于基于所述多个参考飞行航线中各个参考飞行航线的第一信息,确定所述各个参考飞行航线的代价数值,任一参考飞行航线的第一信息用于指示所述任一参考飞行航线对应的地面映射路线的拥堵程度;
选择模块,用于基于所述各个参考飞行航线的代价数值,从所述多个参考飞行航线中选择得到所述飞行器的目标飞行航线。
在示例性实施例中,所述确定模块,用于基于所述起始位置和所述目的位置确定路网;基于所述飞行器对应的地面对象在所述路网上能够观测到的空中区域确定飞行区域;在所述飞行区域中确定所述飞行器的多个参考飞行航线。
在示例性实施例中,所述确定模块,用于基于K最短路径KSP算法,在所述起始位置和 所述目的位置之间确定多个地面道路;融合所述多个地面道路得到所述路网。
在示例性实施例中,所述确定模块,用于确定所述各个参考飞行航线的第二信息,任一参考飞行航线的第二信息用于指示所述任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离;基于所述各个参考飞行航线的第一信息和所述各个参考飞行航线的第二信息,确定所述各个参考飞行航线的代价数值。
在示例性实施例中,所述任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离越小,则所述任一参考飞行航线的代价数值越大,使得所述任一参考飞行航线被选择为所述目标飞行航线的可能性越小。
在示例性实施例中,所述确定模块,用于确定所述飞行器的飞行时段;对于任一参考飞行航线,基于所述任一参考飞行航线在所述飞行时段的第一信息,确定所述任一参考飞行航线的代价数值,所述任一参考飞行航线在所述飞行时段的第一信息用于指示所述任一参考飞行航线对应的地面映射路线在所述飞行时段的拥堵程度。
在示例性实施例中,所述选择模块,用于按照代价数值对所述多个参考飞行航线进行排序,得到飞行航线序列;将所述飞行航线序列中参考数量个参考飞行航线作为第一飞行航线,从所述第一飞行航线中选择得到所述飞行器的目标飞行航线。
在示例性实施例中,所述参考数量为多个,所述选择模块,用于转换多个第一飞行航线得到多个第二飞行航线,所述多个第二飞行航线中的任一第二飞行航线包括多个飞行点,所述多个飞行点中的任一飞行点对应有时间信息和位置信息中的至少一种信息;基于所述多个第二飞行航线中各个第二飞行航线包括的飞行点对应的时间信息和位置信息中的至少一种信息,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线。
在示例性实施例中,所述选择模块,用于对于任一第二飞行航线,确定所述任一第二飞行航线中的第一个飞行点对应的时间信息和最后一个飞行点对应的时间信息之间的时间差值,将所述时间差值作为所述任一第二飞行航线对应的飞行时长;对于任一第二飞行航线,确定所述任一第二飞行航线中的各对相邻飞行点对应的位置信息之间的位置差值之和,将所述位置差值之和作为所述任一第二飞行航线对应的飞行距离;基于所述多个第二飞行航线中各个第二飞行航线对应的飞行时长和飞行距离,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线。
一方面,提供了一种计算机设备,所述计算机设备包括存储器及处理器;所述存储器中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行,以使所述计算机设备实现本申请的任一种示例性实施例所提供的获取飞行航线的方法。
一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行,以使计算机实现本申请的任一种示例性实施例所提供的获取飞行航线的方法。
另一方面,提供了一种计算机程序或计算机程序产品,所述计算机程序或计算机程序产品包括:计算机指令,所述计算机指令被计算机执行时,使得所述计算机实现本申请的任一种示例性实施例所提供的获取飞行航线的方法。
本申请实施例所提供的技术方案带来的有益效果至少包括:
以参考飞行航线对应的地面映射路线的拥堵程度为依据,从参考飞行航线中选择得到目标飞行航线,从而使得目标飞行航线对应的地面映射路线的拥堵程度较低。因此,在飞行器按照目标飞行航线进行飞行的过程中,飞行器对应的地面对象能够在拥堵程度较低的地面映射路线上配合飞行器进行移动。例如,无人机能够在拥堵程度较低的地面映射路线上与该飞行器协作运行,运营人员能够在拥堵程度较低的地面映射路线上驾驶车辆跟随该飞行器。从而,避免由于地面映射路线过于拥堵而导致飞行器对应的地面对象难以移动的情况的发生,不仅适于地面对象与飞行器配合移动,而且有利于保证飞行器在飞行过程中始终位于地面对象的观测范围内。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的实施环境示意图;
图2是本申请实施例提供的获取飞行航线的方法的流程图;
图3是本申请实施例提供的在体素地图中标注代价数值的流程示意图;
图4是本申请实施例提供的路网的示意图;
图5是本申请实施例提供的地面对象的观测范围的示意图;
图6是本申请实施例提供的地面映射路线与地面道路中心轴的关系示意图;
图7是本申请实施例提供的获取飞行航线的装置的结构示意图;
图8是本申请实施例提供的电子设备的结构示意图;
图9是本申请实施例提供的服务器的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例提供了一种获取飞行航线的方法,该方法可应用于如图1所示的实施环境中。图1中,包括飞行器11、计算机设备12和地面移动装置13。飞行器11与计算机设备12通信连接,以从计算机设备12获取目标飞行航线,从而按照该目标飞行航线进行飞行。地面移动装置13也与计算机设备12通信连接,以从计算机设备12获取目标飞行航线的地面映射路线,从而基于地面映射路线移动。其中,基于地面映射路线移动包括:沿地面映射路线进行移动,或者,在地面映射路线两侧按照与地面映射路线相同的趋势进行移动。由此,保证了飞行器11在飞行过程中位于地面移动装置13的观测范围内,图1中的虚线示出了地面移动装置13的观测范围。示例性地,地面移动装置13包括但不限于无人车和由运营人员驾驶的车辆。
其中,计算机设备12包括电子设备或者服务器。电子设备可以是任何一种可与用户通过键盘、触摸板、触摸屏、遥控器、语音交互或手写设备等一种或多种方式进行人机交互的电子产品,例如PC(Personal Computer,个人计算机)、手机、智能手机、PDA(Personal Digital Assistant,个人数字助手)、可穿戴设备、掌上电脑PPC(Pocket PC)、平板电脑、智能车机 等。服务器可以是一台服务器,也可以是由多台服务器组成的服务器集群,或者是一个云计算服务中心。
本领域技术人员应能理解上述电子设备和服务器仅为举例,其他现有的或今后可能出现的电子设备或服务器如可适用于本申请,也应包含在本申请保护范围以内,并在此以引用方式包含于此。
基于上述图1所示的实施环境,参见图2,本申请实施例提供了一种获取飞行航线的方法,该方法可应用于图1所示的计算机设备中。如图2所示,该方法包括如下的步骤。
201,获取飞行器的起始位置和目的位置,基于起始位置和目的位置确定飞行器的多个参考飞行航线。
其中,飞行器的起始位置和目的位置往往根据飞行器需要执行的飞行任务确定。例如,在物品配送场景中,飞行器需要将物品从取货地点转移至收货地点。因此,飞行器需要执行的第一个飞行任务包括:从当前位置移动至取货地点,则在第一个飞行任务中,飞行器的起始位置包括飞行器当前所在位置、目的位置包括取货地点。飞行器需要执行的第二个飞行任务包括:从取货地点移动至收货地点,则在第二个飞行任务中,飞行器的起始位置包括取货地点、目的位置包括收货地点。
在示例性实施例中,基于起始位置和目的位置确定飞行器的多个参考飞行航线,包括如下的步骤。
2011,基于起始位置和目的位置确定路网。
路网是指由多个地面道路构成的地面道路网络。在示例性实施例中,基于起始位置和目的位置确定路网,包括:基于KSP(K-shortest paths,K最短路径)算法,在起始位置和目的位置之间确定多个地面道路,融合多个地面道路得到路网,该过程可参见图3中的301和302。其中,基于KSP算法能够确定出多个备选地面道路,不同备选地面道路的长度相同或者不同。按照长度从小到大的顺序对多个备选地面道路进行排列,得到地面道路序列,将地面道路序列中前K个备选地面道路确定为上述多个地面道路,K为不小于一的整数。之后,通过融合多个地面道路即可得到路网。例如,图4示出了融合多个地面道路得到的路网。能够理解的是,上述KSP算法仅为举例,不用于对本实施例造成限定。本实施例也可以通过其他算法或方式确定起始位置和目的位置之间的多个地面道路。
考虑到路网确定效率,本实施例也可以在基于起始位置和目的位置确定路网之前,根据飞行器的历史飞行记录确定飞行器可能飞行的目标区域,根据该目标区域内包括的地面道路确定该目标区域的路网。相应地,基于起始位置和目的位置确定路网,包括:响应于起始位置和目的位置均位于该目标区域内,在该目标区域中确定包含该起始位置和目的位置的子区域,将该子区域的路网作为基于起始位置和目的位置确定的路网。本实施不对子区域的大小和形状进行限定,子区域的大小和形状可以根据经验确定,或者根据实际需要设置。
2012,基于飞行器对应的地面对象在路网上能够观测到的空中区域确定飞行区域。
参见图5,图5示出了地面对象在路网上任一点处能够观测到的空中区域。地面对象在路网上任一点处能够观测到的空中区域近似为圆锥体,此种表示方式也称为LOS(line of sight,视线)方式。示例性地,地面对象包括无人车,基于无人车上设置的摄像设备的可转动角度,能够确定无人车在路网上任一点处能够观测到的空中区域。或者,地面对象包括驾驶车辆的 运营人员,基于运营人员在车辆驾驶过程中的视野范围,能够确定运营人员在路网上任一点处能够观测到的空中区域。
示例性地,本实施例在路网上确定多个点,融合该地面对象在各个点处能够观测到的空中区域,从而得到地面对象在路网上能够观测到的空中区域。之后,基于地面对象在路网上能够观测到的空中区域确定飞行区域,包括:将地面对象在路网上能够观测到空中区域作为飞行区域。或者,如图5所示,从地面对象在路网上能够观测到的空中区域中,将位于第一高度与第二高度之间的区域确定为飞行区域。其中,本实施例不对第一高度与第二高度进行限定,第一高度和第二高度可以是根据经验设置的高度,或者是根据空域管理规定确定的高度。例如,空域管理规定仅允许飞行器在距地面30-120米的空域中移动,则将第一高度确定为30米,将第二高度确定为120米。
示例性地,位于地面之上的三维空间通过体素地图(voxel map)来表示,体素地图是以体素块为最小单位的三维地图。各个体素块分别对应有属性信息,任一体素块的属性信息用于指示该体素块是否存在障碍,或者说是否能够用于飞行器通过。参见图3中的303,本实施例在体素地图中确定飞行区域。则在体素地图中,位于飞行区域中的体素块对应的属性信息用于指示该体素块不存在障碍、能够用于飞行器通过,而不位于上述飞行区域中的体素块对应的属性信息用于指示该体素块存在障碍、不能够用于飞行器通过。
2013,在飞行区域中确定飞行器的多个参考飞行航线。
其中,飞行区域中包括有体素块,因而在飞行区域中确定的任一参考飞行航线均可以看作是由多个体素块组成的航线。示例性地,本实施例在体素地图中应用KSP算法,从而确定由多个体素块组成的参考飞行航线。该KSP算法仅为举例,本实施例也可以采用其他方式在飞行区域中确定飞行器的多个参考飞行航线。
需要说明的是,由于本申请实施例中飞行区域是基于飞行器对应的地面对象在路网上能够观测到的空中区域确定的,而多个参考飞行航线均是在飞行区域中确定的,因而无论飞行器按照哪个参考飞行航线飞行,飞行器对应的地面对象通过在路网上的移动,均能使得飞行器在飞行过程中始终位于地面对象的观测范围内,有利于地面对象与飞行器的配合移动。该方式不仅适用于运营人员驾驶车辆跟随飞行器的场景,也适用于无人车与飞行器协作运行的场景。
202,基于多个参考飞行航线中各个参考飞行航线的第一信息,确定各个参考飞行航线的代价数值,任一参考飞行航线的第一信息用于指示任一参考飞行航线对应的地面映射路线的拥堵程度。
由于代价数值是根据第一信息确定的,而第一信息用于指示参考飞行航线对应的地面映射路线的拥堵程度,因而代价数值也能够体现出参考飞行航线对应的地面映射路线的拥堵程度。对于任一参考飞行航线而言,第一信息所指示的拥堵程度越高,则该任一参考飞行航线的代价数值越大。
示例性地,第一信息包括该任一参考飞行航线对应的地面映射路线的平均通过时间,以及该任一参考飞行航线对应的地面映射路线上包括的交通信号灯数量中的至少一种信息。令无人车或者运营人员驾驶车辆多次通过该任一参考飞行航线对应的地面映射路线,计算各个通过时间的平均值,从而得到上述平均通过时间。其中,平均通过时间越长,则说明拥堵程度越高,因而代价数值越大。交通信号灯数量越大,则越可能发生拥堵,因而代价数值越大。 示例性地,本实施例基于平均通过时间和交通信号灯数量分别确定子代价数值,对子代价数值进行加权求和,从而得到参考飞行航线的代价数值。在加权求和过程中,不同子代价数值对应的权重相同或者不同。当然,上述平均通过时间和交通信号灯数量仅为举例,本实施例不对第一信息进行限定,第一信息还可以包括其他能够用于指示拥堵程度的信息。
能够理解的是,任一参考飞行航线对应的地面映射路线在不同时段内的拥堵程度可能不同,则参考飞行航线在不同时段的第一信息也可能不同,因而参考飞行航线在不同时段内对应的代价数值也可能不同。在示例性实施例中,基于多个参考飞行航线中各个参考飞行航线的第一信息,确定各个参考飞行航线的代价数值,包括:确定飞行器的飞行时段。对于任一参考飞行航线,基于任一参考飞行航线在飞行时段的第一信息,确定任一参考飞行航线的代价数值。其中,任一参考飞行航线在飞行时段的第一信息用于指示任一参考飞行航线对应的地面映射路线在飞行时段的拥堵程度。在该实施例中,具有针对性的确定了参考飞行航线对应于飞行时段的代价数值,从而保证了所确定的代价数值的准确性。
或者,本实施例还可以获取多个不同时段内的第一信息,综合多个不同时段内的第一信息确定各个参考飞行航线的代价数值。示例性地,将一天划分为多个时段,分别获取参考飞行航线在一天中各个时段的第一信息,以确定参考飞行航线的代价数值。或者,在划分得到多个时段之后,从多个时段中选择拥堵程度较高的部分时段,获取参考飞行航线在各个所选择的部分时段中的第一信息,以确定参考飞行航线的代价数值。例如,拥堵程度较高的部分时段包括11:00-13:00的中午时段、5:00-7:00的傍晚时段等。当然,该时段仅为举例,本实施例不对时段数量以及时段的时长加以限定。
示例性地,考虑到代价数值的确定效率,本实施例在确定各个参考飞行航线的代价数值之前,先基于路网中各个路段的拥堵程度,确定各个路段的路段代价数值。其中,路段包括两个相邻的路口之间的道路。相应地,确定各个参考飞行航线的代价数值,包括:对于任一参考飞行航线,确定该任一参考飞行航线对应的地面映射路线包括的路段,将所包括路段的路段代价数值之和作为该参考飞行航线。例如,在图4中,参考飞行航线对应的地面映射路线包括A路段、B路段、C路段和D路段,则该参考飞行航线的代价数值即为A路段、B路段、C路段和D路段的路段代价数值之和。示例性地,基于路网中各个路段的拥堵程度确定各个路段的路段代价数值,包括:对于任一路段,根据该任一路段的平均通过时间和该任一路段包括的交通信号灯数量中的至少一种,确定该任一路段的路段代价数值。确定路段代价数值的方式可以参见上文确定参考飞行航线的代价数值的方式,此处不再进行赘述。
示例性地,参见图3中的304,在确定各个路段的路段代价数值之后,本实施例将各个路段的路段代价数值标注于体素地图中。从而,在基于体素地图确定多个参考飞行航线之后,便可以基于体素地图中标注的路段代价数值,按照上述说明中的方式计算得到参考飞行航线的代价数值。
以上对根据第一信息确定各个参考飞行航线的代价数值的情况进行了说明。在本实施例中,还可以在第一信息的基础上结合其他信息确定各个参考飞行航线的代价数值,参见如下说明。
在示例性实施例中,基于多个参考飞行航线中各个参考飞行航线的第一信息,确定各个参考飞行航线的代价数值,包括:确定各个参考飞行航线的第二信息,任一参考飞行航线的第二信息用于指示任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离。 基于各个参考飞行航线的第一信息和各个参考飞行航线的第二信息,确定各个参考飞行航线的代价数值。
其中,任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离越小,则说明该参考飞行航线越接近于地面道路的正上方。如果飞行器按照该参考飞行航线飞行,则容易分散在地面道路上驾驶车辆的驾驶员的注意力,从而影响驾驶安全性。因此,在示例性实施例中,任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离越小,则任一参考飞行航线的代价数值越大,使得任一参考飞行航线被选择为目标飞行航线的可能性越小。通过此种方式,距离越小则参考飞行航线被选择为目标飞行航线的可能性越小,使得选择出的目标飞行航线不容易影响驾驶员的注意力,保证了驾驶安全性。基于此,本实施例在第一信息的基础上,结合用于指示该距离的第二信息确定各个参考飞行航线的代价数值。
示例性地,基于各个参考飞行航线的第一信息和各个参考飞行航线的第二信息,确定各个参考飞行航线的代价数值,包括:对于任一参考飞行航线,基于第一信息确定第一代价数值,基于第二信息确定第二代价数值,将第一代价数值与第二代价数值的加权求和值作为该任一参考飞行航线的代价数值。其中,基于第一信息确定第一代价数值的过程参见上文说明,此处不再进行赘述。第二信息所指示的距离越小,则参考飞行航线越接近于地面道路的正上方、越容易分散驾驶员注意力,因而基于第二信息确定的第二代价数值越大。从而,使得地面映射路线与地面道路的中心轴之间距离较小的参考飞行航线对应较大的代价数值。
或者,参见图6,本实施例基于地面映射路线与地面道路的中心轴之间的距离建立代价数值调整函数,该代价数值调整函数呈正态分布,该代价数值调整函数各处的取值均大于零。当地面映射路线与地面道路的中心轴之间的距离为零时,该代价数值调整函数的取值最大。
相应地,基于各个参考飞行航线的第一信息和各个参考飞行航线的第二信息,确定各个参考飞行航线的代价数值,包括:对于任一参考飞行航线,基于该任一参考飞行航线的第一信息确定第三代价数值,基于第二信息从该代价数值调整函数中确定代价数值调整数值,基于代价数值调整数值对第三代价数值进行调整,从而得到该任一参考飞行航线的代价数值。基于该代价数值调整函数能够看出,第二信息所指示的距离越小,则基于第二信息从该代价数值调整函数中确定的代价数值调整数值越大。因此,基于代价数值调整数值对第三代价数值进行调整后,所得到的该任一参考飞行航线的代价数值也越大,同样能够使得地面映射路线与地面道路的中心轴之间距离较小的参考飞行航线对应较大的代价数值。
示例性地,基于代价数值调整数值对第三代价数值进行调整,包括:计算代价数值调整数值与第三代价数值的乘积,该乘积可以作为该任一参考飞行航线的代价数值。另外,响应于任一参考飞行航线对应的地面映射路线与地面道路的中心轴不平行,则可以在地面映射路线上确定多个点,从代价调整曲线中确定各个点对应的代价数值调整数值。之后,再计算各个点对应的代价数值调整数值的平均值,按照该平均值对基于第一信息确定的第三代价数值进行调整,从而得到参考飞行航线的代价数值。
203,基于各个参考飞行航线的代价数值,从多个参考飞行航线中选择得到飞行器的目标飞行航线。
其中,各个参考飞行航线的代价数值能够体现出各个参考飞行航线对应的地面映射路线的拥堵程度。基于各个参考飞行航线的代价数值进行目标飞行航线的确定,能够避免将较为拥堵的地面映射路线对应的参考飞行航线作为用于飞行器进行飞行的目标飞行航线。也就是 说,选择得到的目标飞行航线对应的地面映射路线的拥堵程度较小。在飞行器按照目标飞行航线进行飞行的过程中,飞行器对应的地面对象能够基于拥堵程度较小的地面映射路线进行移动,从而避免了由于拥堵而导致飞行器对应的地面对象难以移动的情况的发生。因此,不仅有利于地面对象配合飞行器进行移动,还有利于保证飞行器在飞行过程中始终位于地面对象的观测范围内。
在示例性实施例中,基于各个参考飞行航线的代价数值,从多个参考飞行航线中选择得到飞行器的目标飞行航线,包括:按照代价数值对多个参考飞行航线进行排序,得到飞行航线序列。将飞行航线序列中参考数量个参考飞行航线作为第一飞行航线,从第一飞行航线中选择得到飞行器的目标飞行航线。示例性地,按照代价数值从小到大的顺序对多个参考飞行航线进行排序,从而选择飞行航线序列中前参考数量个参考飞行航线作为第一飞行航线。或者,按照代价数值从大到小的顺序对多个参考飞行航线进行排序,从而选择飞行航线序列中后参考数量个参考飞行航线作为第一飞行航线。能够看出,本实施例中将多个参考飞行航线中代价数值较小的参考飞行航线作为了第一飞行航线。
本实施例不对参考数量进行限定,该参考数量为正整数。响应于参考数量为一,则将代价数值最小的参考飞行航线确定为第一飞行航线,相应地,从第一飞行航线中选择得到飞行器的目标飞行航线,包括:将该第一飞行航线作为飞行器的目标飞行航线。
需要说明的是,在确定目标飞行航线之后,本实施例需要将目标飞行航线离散为多个点,任一点对应有时间信息和位置信息,飞行器按照各个点对应的时间信息和位置信息进行飞行。例如,第一个点对应A1时刻和B1位置,第二个点对应A2时刻和B2位置,第三个点对应A3时刻和B3位置,且A1时刻<A2时刻<A3时刻,则飞行器在A1时刻首先到达第一个点所在的B1位置,在A2时刻到达第二个点所在的B2位置,在A3时刻到达第三个所在的B3位置,从而按照各个点对应的时间信息和位置信息实现了飞行。
示例性地,本实施例中通过加加速度模型(jerk model)将目标飞行航线离散为多个对应有时间信息和位置信息的点。其中,目标飞行航线对应有地面映射路线,按照地面映射路线包括的路段将目标飞行航线划分为至少一个航线段,航线段与路段一一对应。之后,将各个航线段分别输入加加速度模型,从而得到离散为点的各个航线段。之后,再对离散为点的各个航线段包括的点进行拼接,从而得到离散为多个点的目标飞行航线,以便于飞行器进行飞行。本实施例还可以对离散为多个点的目标飞行航线中的各个点进行平滑处理,以便于实现飞行器的稳定飞行。在得到离散为多个点的目标飞行航线之后,本实施例还可以将离散为多个点的目标飞行航线存储于数据库中,以便于后续从数据库中进行调用。
或者,响应于参考数量为多个,则可将代价数值不大于代价数值阈值的多个参考飞行航线确定为第一飞行航线,相应地,从第一飞行航线中选择得到飞行器的目标飞行航线,包括:从多个第一飞行航线中选择一个第一飞行航线作为飞行器的目标飞行航线。本申请实施例不对选择方式加以限定。例如,可以从多个第一飞行航线中任选一个第一飞行航线作为飞行器的目标飞行航线。又例如,可以按照如下说明中的方式从多个第一飞行航线中选择得到目标飞行航线。
在示例性实施例中,响应于参考数量为多个,从第一飞行航线中选择得到飞行器的目标飞行航线,包括:转换多个第一飞行航线得到多个第二飞行航线,多个第二飞行航线中的任一第二飞行航线包括多个飞行点,多个飞行点中的任一飞行点对应有时间信息和位置信息中 的至少一种信息。基于多个第二飞行航线中各个第二飞行航线包括的飞行点对应的时间信息和位置信息中的至少一种信息,从多个第二飞行航线中选择得到飞行器的目标飞行航线。
其中,将任一第一飞行航线转换为第二飞行航线的过程可以参见上文对目标飞行航线进行离散的过程,此处不再进行赘述。在示例性实施例中,基于多个第二飞行航线中各个第二飞行航线包括的飞行点对应的时间信息和位置信息中的至少一种信息,从多个第二飞行航线中选择得到飞行器的目标飞行航线,包括:对于任一第二飞行航线,确定任一第二飞行航线中的第一个飞行点对应的时间信息和最后一个飞行点对应的时间信息之间的时间差值,将时间差值作为任一第二飞行航线对应的飞行时长。对于任一第二飞行航线,确定任一第二飞行航线中的各对相邻飞行点对应的位置信息之间的位置差值之和,将位置差值之和作为任一第二飞行航线对应的飞行距离。基于多个第二飞行航线中各个第二飞行航线对应的飞行时长和飞行距离,从多个第二飞行航线中选择得到飞行器的目标飞行航线。
例如,第二飞行航线中第一个飞行点对应的时间信息为5:00,最后一个飞行点对应的时间信息为5:30,则该第二飞行航线对应的飞行时长为30分钟。另外,以第二飞行航线包括N个飞行点为例,则需要确定第一个飞行点所在位置与第二个飞行点所在位置之间的第一个位置差值、第二个飞行点所在位置与第三个飞行点所在位置之间的第二个位置差值,以此类推,确定第(N-1)个飞行点所在位置与第N个飞行点所在位置之间的第(N-1)个位置差值,因而共得到(N-1)个位置差值。之后,计算(N-1)个位置差值的位置差值之和,将位置差值之和作为该第二飞行航线对应的飞行距离。
综上所述,本实施例以参考飞行航线对应的地面映射路线的拥堵程度为依据,从参考飞行航线中选择得到目标飞行航线,从而使得目标飞行航线对应的地面映射路线的拥堵程度较低。因此,在飞行器按照目标飞行航线进行飞行的过程中,飞行器对应的地面对象能够在拥堵程度较低的地面映射路线上配合飞行器进行移动。例如,无人机能够在拥堵程度较低的地面映射路线上与该飞行器协作运行,运营人员能够在拥堵程度较低的地面映射路线上驾驶车辆跟随该飞行器。从而,避免由于地面映射路线过于拥堵而导致飞行器对应的地面对象难以移动的情况的发生,不仅适于地面对象与飞行器配合移动,而且有利于保证飞行器在飞行过程中始终位于地面对象的观测范围内。
需要说明的是,本申请实施例所涉及的信息(包括但不限于用户设备信息、用户个人信息等)、数据(包括但不限于用于分析的数据、存储的数据、展示的数据等)以及信号,均为经用户授权或者经过各方充分授权的,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。例如,本申请中涉及到的飞行器的起始位置和目的位置、参考飞行航线的第一信息和第二信息等等都是在充分授权的情况下获取的。
本申请实施例提供了一种获取飞行航线的装置,该获取飞行航线的装置可通过如下多个模块来实现上述计算机设备所执行的获取飞行航线的方法。参见图7,该装置包括如下的模块:
获取模块701,用于获取飞行器的起始位置和目的位置;
确定模块702,用于基于起始位置和目的位置确定飞行器的多个参考飞行航线;
确定模块702,还用于基于多个参考飞行航线中各个参考飞行航线的第一信息,确定各个参考飞行航线的代价数值,任一参考飞行航线的第一信息用于指示任一参考飞行航线对应 的地面映射路线的拥堵程度;
选择模块703,用于基于各个参考飞行航线的代价数值,从多个参考飞行航线中选择得到飞行器的目标飞行航线。
在示例性实施例中,确定模块702,用于基于起始位置和目的位置确定路网;基于飞行器对应的地面对象在路网上能够观测到的空中区域确定飞行区域;在飞行区域中确定飞行器的多个参考飞行航线。
在示例性实施例中,确定模块702,用于基于K最短路径KSP算法,在起始位置和目的位置之间确定多个地面道路;融合多个地面道路得到路网。
在示例性实施例中,确定模块702,用于确定各个参考飞行航线的第二信息,任一参考飞行航线的第二信息用于指示任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离;基于各个参考飞行航线的第一信息和各个参考飞行航线的第二信息,确定各个参考飞行航线的代价数值。
在示例性实施例中,确定模块702,用于确定飞行器的飞行时段;对于任一参考飞行航线,基于任一参考飞行航线在飞行时段的第一信息,确定任一参考飞行航线的代价数值,任一参考飞行航线在飞行时段的第一信息用于指示任一参考飞行航线对应的地面映射路线在飞行时段的拥堵程度。
在示例性实施例中,选择模块703,用于按照代价数值对多个参考飞行航线进行排序,得到飞行航线序列;将飞行航线序列中参考数量个参考飞行航线作为第一飞行航线,从第一飞行航线中选择得到飞行器的目标飞行航线。
在示例性实施例中,参考数量为多个,选择模块703,用于转换多个第一飞行航线得到多个第二飞行航线,多个第二飞行航线中的任一第二飞行航线包括多个飞行点,多个飞行点中的任一飞行点对应有时间信息和位置信息中的至少一种信息;基于多个第二飞行航线中各个第二飞行航线包括的飞行点对应的时间信息和位置信息中的至少一种信息,从多个第二飞行航线中选择得到飞行器的目标飞行航线。
在示例性实施例中,选择模块703,用于对于任一第二飞行航线,确定任一第二飞行航线中的第一个飞行点对应的时间信息和最后一个飞行点对应的时间信息之间的时间差值,将时间差值作为任一第二飞行航线对应的飞行时长;对于任一第二飞行航线,确定任一第二飞行航线中的各对相邻飞行点对应的位置信息之间的位置差值之和,将位置差值之和作为任一第二飞行航线对应的飞行距离;基于多个第二飞行航线中各个第二飞行航线对应的飞行时长和飞行距离,从多个第二飞行航线中选择得到飞行器的目标飞行航线。
综上所述,本实施例以参考飞行航线对应的地面映射路线的拥堵程度为依据,从参考飞行航线中选择得到目标飞行航线,从而使得目标飞行航线对应的地面映射路线的拥堵程度较低。因此,在飞行器按照目标飞行航线进行飞行的过程中,飞行器对应的地面对象能够在拥堵程度较低的地面映射路线上配合飞行器进行移动。例如,无人机能够在拥堵程度较低的地面映射路线上与该飞行器协作运行,运营人员能够在拥堵程度较低的地面映射路线上驾驶车辆跟随该飞行器。从而,避免由于地面映射路线过于拥堵而导致飞行器对应的地面对象难以移动的情况的发生,不仅适于地面对象与飞行器配合移动,而且有利于保证飞行器在飞行过程中始终位于地面对象的观测范围内。
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各功能模块的划分进 行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
参见图8,其示出了本申请实施例提供的一种电子设备800的结构示意图。该电子设备800可以是便携式移动电子设备,比如:智能手机、平板电脑、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、笔记本电脑或台式电脑。电子设备800还可能被称为用户设备、便携式电子设备、膝上型电子设备、台式电子设备等其他名称。
通常,电子设备800包括有:处理器801和存储器802。
处理器801可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器801可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)所组成的群组中的至少一种硬件形式来实现。处理器801也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器801可以集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏805所需要显示的内容的渲染和绘制。一些实施例中,处理器801还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器802可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器802还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器802中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器801所执行以实现本申请中方法实施例提供的获取飞行航线的方法。
在一些实施例中,电子设备800还可选包括有:***设备接口803和至少一个***设备。处理器801、存储器802和***设备接口803之间可以通过总线或信号线相连。各个***设备可以通过总线、信号线或电路板与***设备接口803相连。具体地,***设备包括:射频电路804、显示屏805、摄像头组件806、音频电路807、定位组件808和电源809所组成的群组中的至少一种。
***设备接口803可被用于将I/O(Input/Output,输入/输出)相关的至少一个***设备连接到处理器801和存储器802。在一些实施例中,处理器801、存储器802和***设备接口803被集成在同一芯片或电路板上;在一些其他实施例中,处理器801、存储器802和***设备接口803中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
射频电路804用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路804通过电磁信号与通信网络以及其他通信设备进行通信。射频电路804将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选地,射频电路804包 括:天线***、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等等。射频电路804可以通过至少一种无线通信协议来与其它电子设备进行通信。该无线通信协议包括但不限于:城域网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或Wi-Fi(Wireless Fidelity,无线保真)网络。在一些实施例中,射频电路804还可以包括NFC(Near Field Communication,近距离无线通信)有关的电路,本申请对此不加以限定。
显示屏805用于显示UI(User Interface,用户界面)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏805是触摸显示屏时,显示屏805还具有采集在显示屏805的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器801进行处理。此时,显示屏805还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏805可以为一个,设置在电子设备800的前面板;在另一些实施例中,显示屏805可以为至少两个,分别设置在电子设备800的不同表面或呈折叠设计;在另一些实施例中,显示屏805可以是柔性显示屏,设置在电子设备800的弯曲表面上或折叠面上。甚至,显示屏805还可以设置成非矩形的不规则图形,也即异形屏。显示屏805可以采用LCD(Liquid Crystal Display,液晶显示屏)、OLED(Organic Light-Emitting Diode,有机发光二极管)等材质制备。
摄像头组件806用于采集图像或视频。可选地,摄像头组件806包括前置摄像头和后置摄像头。通常,前置摄像头设置在电子设备的前面板,后置摄像头设置在电子设备的背面。在一些实施例中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄以及VR(Virtual Reality,虚拟现实)拍摄功能或者其它融合拍摄功能。在一些实施例中,摄像头组件806还可以包括闪光灯。闪光灯可以是单色温闪光灯,也可以是双色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,可以用于不同色温下的光线补偿。
音频电路807可以包括麦克风和扬声器。麦克风用于采集用户及环境的声波,并将声波转换为电信号输入至处理器801进行处理,或者输入至射频电路804以实现语音通信。出于立体声采集或降噪的目的,麦克风可以为多个,分别设置在电子设备800的不同部位。麦克风还可以是阵列麦克风或全向采集型麦克风。扬声器则用于将来自处理器801或射频电路804的电信号转换为声波。扬声器可以是传统的薄膜扬声器,也可以是压电陶瓷扬声器。当扬声器是压电陶瓷扬声器时,不仅可以将电信号转换为人类可听见的声波,也可以将电信号转换为人类听不见的声波以进行测距等用途。在一些实施例中,音频电路807还可以包括耳机插孔。
定位组件808用于定位电子设备800的当前地理位置,以实现导航或LBS(Location Based Service,基于位置的服务)。定位组件808可以是基于美国的GPS(Global Positioning System,全球定位***)、中国的北斗***、俄罗斯的格雷纳斯***或欧盟的伽利略***的定位组件。
电源809用于为电子设备800中的各个组件进行供电。电源809可以是交流电、直流电、一次性电池或可充电电池。当电源809包括可充电电池时,该可充电电池可以支持有线充电或无线充电。该可充电电池还可以用于支持快充技术。
在一些实施例中,电子设备800还包括有一个或多个传感器810。该一个或多个传感器 810包括但不限于:加速度传感器811、陀螺仪传感器812、压力传感器813、指纹传感器814、光学传感器815以及接近传感器816。
加速度传感器811可以检测以电子设备800建立的坐标系的三个坐标轴上的加速度大小。比如,加速度传感器811可以用于检测重力加速度在三个坐标轴上的分量。处理器801可以根据加速度传感器811采集的重力加速度信号,控制显示屏805以横向视图或纵向视图进行用户界面的显示。加速度传感器811还可以用于游戏或者用户的运动数据的采集。
陀螺仪传感器812可以检测电子设备800的机体方向及转动角度,陀螺仪传感器812可以与加速度传感器811协同采集用户对电子设备800的3D动作。处理器801根据陀螺仪传感器812采集的数据,可以实现如下功能:动作感应(比如根据用户的倾斜操作来改变UI)、拍摄时的图像稳定、游戏控制以及惯性导航。
压力传感器813可以设置在电子设备800的侧边框和/或显示屏805的下层。当压力传感器813设置在电子设备800的侧边框时,可以检测用户对电子设备800的握持信号,由处理器801根据压力传感器813采集的握持信号进行左右手识别或快捷操作。当压力传感器813设置在显示屏805的下层时,由处理器801根据用户对显示屏805的压力操作,实现对UI界面上的可操作性控件进行控制。可操作性控件包括按钮控件、滚动条控件、图标控件、菜单控件所组成的群组中的至少一种。
指纹传感器814用于采集用户的指纹,由处理器801根据指纹传感器814采集到的指纹识别用户的身份,或者,由指纹传感器814根据采集到的指纹识别用户的身份。在识别出用户的身份为可信身份时,由处理器801授权该用户执行相关的敏感操作,该敏感操作包括解锁屏幕、查看加密信息、下载软件、支付及更改设置等。指纹传感器814可以被设置在电子设备800的正面、背面或侧面。当电子设备800上设置有物理按键或厂商Logo时,指纹传感器814可以与物理按键或厂商Logo集成在一起。
光学传感器815用于采集环境光强度。在一个实施例中,处理器801可以根据光学传感器815采集的环境光强度,控制显示屏805的显示亮度。具体地,当环境光强度较高时,调高显示屏805的显示亮度;当环境光强度较低时,调低显示屏805的显示亮度。在另一个实施例中,处理器801还可以根据光学传感器815采集的环境光强度,动态调整摄像头组件806的拍摄参数。
接近传感器816,也称距离传感器,通常设置在电子设备800的前面板。接近传感器816用于采集用户与电子设备800的正面之间的距离。在一个实施例中,当接近传感器816检测到用户与电子设备800的正面之间的距离逐渐变小时,由处理器801控制显示屏805从亮屏状态切换为息屏状态;当接近传感器816检测到用户与电子设备800的正面之间的距离逐渐变大时,由处理器801控制显示屏805从息屏状态切换为亮屏状态。
本领域技术人员可以理解,图8中示出的结构并不构成对电子设备800的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
图9为本申请实施例提供的服务器的结构示意图,该服务器900可因配置或性能不同而产生比较大的差异,可以包括一个或多个处理器901和一个或多个的存储器902,其中,该一个或多个存储器902中存储有至少一条程序代码,该至少一条程序代码由该一个或多个处理器901加载并执行,以使服务器实现上述各个方法实施例提供的获取飞行航线的方法。当 然,该服务器900还可以具有有线或无线网络接口、键盘以及输入输出接口等部件,以便进行输入输出,该服务器900还可以包括其他用于实现设备功能的部件,在此不做赘述。
本申请实施例提供了一种计算机设备,计算机设备包括存储器及处理器;存储器中存储有至少一条指令,至少一条指令由处理器加载并执行,以使该计算机设备实现本申请的任一种示例性实施例所提供的获取飞行航线的方法。
本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有至少一条指令,指令由处理器加载并执行,以使计算机实现本申请的任一种示例性实施例所提供的获取飞行航线的方法。
本申请实施例提供了一种计算机程序或计算机程序产品,计算机程序或计算机程序产品包括:计算机指令,计算机指令被计算机执行时,使得计算机实现本申请的任一种示例性实施例所提供的获取飞行航线的方法。
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种获取飞行航线的方法,其中,所述方法包括:
    获取飞行器的起始位置和目的位置,基于所述起始位置和所述目的位置确定所述飞行器的多个参考飞行航线;
    基于所述多个参考飞行航线中各个参考飞行航线的第一信息,确定所述各个参考飞行航线的代价数值,任一参考飞行航线的第一信息用于指示所述任一参考飞行航线对应的地面映射路线的拥堵程度;
    基于所述各个参考飞行航线的代价数值,从所述多个参考飞行航线中选择得到所述飞行器的目标飞行航线。
  2. 根据权利要求1所述的方法,其中,所述基于所述起始位置和所述目的位置确定所述飞行器的多个参考飞行航线,包括:
    基于所述起始位置和所述目的位置确定路网;
    基于所述飞行器对应的地面对象在所述路网上能够观测到的空中区域确定飞行区域;
    在所述飞行区域中确定所述飞行器的多个参考飞行航线。
  3. 根据权利要求2所述的方法,其中,所述基于所述起始位置和所述目的位置确定路网,包括:
    基于K最短路径KSP算法,在所述起始位置和所述目的位置之间确定多个地面道路;
    融合所述多个地面道路得到所述路网。
  4. 根据权利要求1所述的方法,其中,所述基于所述多个参考飞行航线中各个参考飞行航线的第一信息,确定所述各个参考飞行航线的代价数值,包括:
    确定所述各个参考飞行航线的第二信息,任一参考飞行航线的第二信息用于指示所述任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离;
    基于所述各个参考飞行航线的第一信息和所述各个参考飞行航线的第二信息,确定所述各个参考飞行航线的代价数值。
  5. 根据权利要求4所述的方法,其中,所述任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离越小,则所述任一参考飞行航线的代价数值越大,使得所述任一参考飞行航线被选择为所述目标飞行航线的可能性越小。
  6. 根据权利要求1所述的方法,其中,所述基于所述多个参考飞行航线中各个参考飞行航线的第一信息,确定所述各个参考飞行航线的代价数值,包括:
    确定所述飞行器的飞行时段;
    对于任一参考飞行航线,基于所述任一参考飞行航线在所述飞行时段的第一信息,确定所述任一参考飞行航线的代价数值,所述任一参考飞行航线在所述飞行时段的第一信息用于指示所述任一参考飞行航线对应的地面映射路线在所述飞行时段的拥堵程度。
  7. 根据权利要求1-6任一所述的方法,其中,所述基于所述各个参考飞行航线的代价数值,从所述多个参考飞行航线中选择得到所述飞行器的目标飞行航线,包括:
    按照代价数值对所述多个参考飞行航线进行排序,得到飞行航线序列;
    将所述飞行航线序列中参考数量个参考飞行航线作为第一飞行航线,从所述第一飞行航线中选择得到所述飞行器的目标飞行航线。
  8. 根据权利要求7所述的方法,其中,所述参考数量为多个,所述从所述第一飞行航线中选择得到所述飞行器的目标飞行航线,包括:
    转换多个第一飞行航线得到多个第二飞行航线,所述多个第二飞行航线中的任一第二飞行航线包括多个飞行点,所述多个飞行点中的任一飞行点对应有时间信息和位置信息中的至少一种信息;
    基于所述多个第二飞行航线中各个第二飞行航线包括的飞行点对应的时间信息和位置信息中的至少一种信息,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线。
  9. 根据权利要求8所述的方法,其中,所述基于所述多个第二飞行航线中各个第二飞行航线包括的飞行点对应的时间信息和位置信息中的至少一种信息,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线,包括:
    对于任一第二飞行航线,确定所述任一第二飞行航线中的第一个飞行点对应的时间信息和最后一个飞行点对应的时间信息之间的时间差值,将所述时间差值作为所述任一第二飞行航线对应的飞行时长;
    对于任一第二飞行航线,确定所述任一第二飞行航线中的各对相邻飞行点对应的位置信息之间的位置差值之和,将所述位置差值之和作为所述任一第二飞行航线对应的飞行距离;
    基于所述多个第二飞行航线中各个第二飞行航线对应的飞行时长和飞行距离,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线。
  10. 一种获取飞行航线的装置,其中,所述装置包括:
    获取模块,用于获取飞行器的起始位置和目的位置;
    确定模块,用于基于所述起始位置和所述目的位置确定所述飞行器的多个参考飞行航线;
    所述确定模块,还用于基于所述多个参考飞行航线中各个参考飞行航线的第一信息,确定所述各个参考飞行航线的代价数值,任一参考飞行航线的第一信息用于指示所述任一参考飞行航线对应的地面映射路线的拥堵程度;
    选择模块,用于基于所述各个参考飞行航线的代价数值,从所述多个参考飞行航线中选择得到所述飞行器的目标飞行航线。
  11. 根据权利要求10所述的装置,其中,所述确定模块,用于基于所述起始位置和所述目的位置确定路网;基于所述飞行器对应的地面对象在所述路网上能够观测到的空中区域确定飞行区域;在所述飞行区域中确定所述飞行器的多个参考飞行航线。
  12. 根据权利要求11所述的装置,其中,所述确定模块,用于基于K最短路径KSP算法,在所述起始位置和所述目的位置之间确定多个地面道路;融合所述多个地面道路得到所述路网。
  13. 根据权利要求10所述的装置,其中,所述确定模块,用于确定所述各个参考飞行航线的第二信息,任一参考飞行航线的第二信息用于指示所述任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离;基于所述各个参考飞行航线的第一信息和所述各个参考飞行航线的第二信息,确定所述各个参考飞行航线的代价数值。
  14. 根据权利要求13所述的装置,其中,所述任一参考飞行航线对应的地面映射路线与地面道路的中心轴之间的距离越小,则所述任一参考飞行航线的代价数值越大,使得所述任一参考飞行航线被选择为所述目标飞行航线的可能性越小。
  15. 根据权利要求10所述的装置,其中,所述确定模块,用于确定所述飞行器的飞行时段;对于任一参考飞行航线,基于所述任一参考飞行航线在所述飞行时段的第一信息,确定所述任一参考飞行航线的代价数值,所述任一参考飞行航线在所述飞行时段的第一信息用于指示所述任一参考飞行航线对应的地面映射路线在所述飞行时段的拥堵程度。
  16. 根据权利要求10-15任一所述的装置,其中,所述选择模块,用于按照代价数值对所述多个参考飞行航线进行排序,得到飞行航线序列;将所述飞行航线序列中参考数量个参考飞行航线作为第一飞行航线,从所述第一飞行航线中选择得到所述飞行器的目标飞行航线。
  17. 根据权利要求16所述的装置,其中,所述参考数量为多个,所述选择模块,用于转换多个第一飞行航线得到多个第二飞行航线,所述多个第二飞行航线中的任一第二飞行航线包括多个飞行点,所述多个飞行点中的任一飞行点对应有时间信息和位置信息中的至少一种信息;基于所述多个第二飞行航线中各个第二飞行航线包括的飞行点对应的时间信息和位置信息中的至少一种信息,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线。
  18. 根据权利要求17所述的装置,其中,所述选择模块,用于对于任一第二飞行航线,确定所述任一第二飞行航线中的第一个飞行点对应的时间信息和最后一个飞行点对应的时间信息之间的时间差值,将所述时间差值作为所述任一第二飞行航线对应的飞行时长;对于任一第二飞行航线,确定所述任一第二飞行航线中的各对相邻飞行点对应的位置信息之间的位置差值之和,将所述位置差值之和作为所述任一第二飞行航线对应的飞行距离;基于所述多个第二飞行航线中各个第二飞行航线对应的飞行时长和飞行距离,从所述多个第二飞行航线中选择得到所述飞行器的目标飞行航线。
  19. 一种计算机设备,其中,所述计算机设备包括存储器及处理器;所述存储器中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行,以使所述计算机设备实现权利要求1-9任一所述的获取飞行航线的方法。
  20. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行,以使计算机实现如权利要求1-9任一所述的获取飞行航线的方法。
PCT/CN2022/077476 2021-04-06 2022-02-23 获取飞行航线的方法、装置、计算机设备及可读存储介质 WO2022213733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110368147.6 2021-04-06
CN202110368147.6A CN112802369B (zh) 2021-04-06 2021-04-06 获取飞行航线的方法、装置、计算机设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022213733A1 true WO2022213733A1 (zh) 2022-10-13

Family

ID=75816267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077476 WO2022213733A1 (zh) 2021-04-06 2022-02-23 获取飞行航线的方法、装置、计算机设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN112802369B (zh)
WO (1) WO2022213733A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802369B (zh) * 2021-04-06 2021-07-16 北京三快在线科技有限公司 获取飞行航线的方法、装置、计算机设备及可读存储介质
CN114415709A (zh) * 2021-12-01 2022-04-29 中国卫通集团股份有限公司 航线规划方法、装置及电子设备
CN114661067A (zh) * 2022-05-06 2022-06-24 广东汇天航空航天科技有限公司 飞行控制方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898160A (zh) * 2015-09-30 2017-06-27 空中客车集团印度私人有限公司 航路飞行路径优化
US20200057456A1 (en) * 2018-08-16 2020-02-20 Mitsubishi Heavy Industries, Ltd. Guiding device, flying object and guiding method
CN110850891A (zh) * 2019-11-11 2020-02-28 西北工业大学 一种基于空间和时间协同的多无人机动态航路规划方法
WO2020120470A1 (fr) * 2018-12-13 2020-06-18 Safety Line Procede d'optimisation d'un plan de vol
CN111656424A (zh) * 2018-11-22 2020-09-11 彩虹研究所股份公司 基于大数据的自动飞行无人机***及其自动飞行方法
CN111752299A (zh) * 2019-11-25 2020-10-09 广州极飞科技有限公司 基于车道复用的无人机控制方法、无人机及***
CN112802369A (zh) * 2021-04-06 2021-05-14 北京三快在线科技有限公司 获取飞行航线的方法、装置、计算机设备及可读存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204791568U (zh) * 2015-08-07 2015-11-18 谢拓 车辆跟随飞行***
CN109415122B (zh) * 2016-06-06 2022-07-05 福特全球技术公司 用于自动化车辆和无人机递送的***、方法和装置
CN108089591A (zh) * 2016-11-22 2018-05-29 菜鸟智能物流控股有限公司 区域安全系数的标定及其航线规划、飞行方法和相关设备
US10147330B2 (en) * 2017-03-31 2018-12-04 The Boeing Company Aircraft flight path holding pattern system and method
CN109781124B (zh) * 2017-11-14 2020-10-27 长城汽车股份有限公司 一种无人机救援方法、装置、无人机及车辆
DE102018204205A1 (de) * 2018-03-20 2019-09-26 Ford Global Technologies, Llc System und Verfahren zur Zustellung von Waren von einem Startpunkt zu einem Zielpunkt mittels Drohnen
CN109544971A (zh) * 2018-05-31 2019-03-29 亿航智能设备(广州)有限公司 基于无人机的调度方法、无人机及无人机集群
CN108877273A (zh) * 2018-08-30 2018-11-23 深圳市研本品牌设计有限公司 一种无人机配合救援的方法
CN109101040A (zh) * 2018-08-30 2018-12-28 深圳市研本品牌设计有限公司 一种用于辅助救援的无人机
KR20200075330A (ko) * 2018-12-18 2020-06-26 현대자동차주식회사 무인비행장치를 포함하는 시스템 및 시스템의 협업 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898160A (zh) * 2015-09-30 2017-06-27 空中客车集团印度私人有限公司 航路飞行路径优化
US20200057456A1 (en) * 2018-08-16 2020-02-20 Mitsubishi Heavy Industries, Ltd. Guiding device, flying object and guiding method
CN111656424A (zh) * 2018-11-22 2020-09-11 彩虹研究所股份公司 基于大数据的自动飞行无人机***及其自动飞行方法
WO2020120470A1 (fr) * 2018-12-13 2020-06-18 Safety Line Procede d'optimisation d'un plan de vol
CN110850891A (zh) * 2019-11-11 2020-02-28 西北工业大学 一种基于空间和时间协同的多无人机动态航路规划方法
CN111752299A (zh) * 2019-11-25 2020-10-09 广州极飞科技有限公司 基于车道复用的无人机控制方法、无人机及***
CN112802369A (zh) * 2021-04-06 2021-05-14 北京三快在线科技有限公司 获取飞行航线的方法、装置、计算机设备及可读存储介质

Also Published As

Publication number Publication date
CN112802369A (zh) 2021-05-14
CN112802369B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN110148294B (zh) 路况状态确定方法及装置
WO2022213733A1 (zh) 获取飞行航线的方法、装置、计算机设备及可读存储介质
CN111182453B (zh) 定位方法、装置、电子设备及存储介质
CN110618800A (zh) 一种界面显示的方法、装置、设备和存储介质
WO2021082483A1 (en) Method and apparatus for controlling vehicle
CN110095128B (zh) 获取缺失道路情报的方法、装置、设备及存储介质
CN107909840B (zh) 信息发布方法、装置及计算机可读存储介质
WO2021103841A1 (zh) 控制车辆
EP3832605A1 (en) Method and device for determining potentially visible set, apparatus, and storage medium
CN111192341A (zh) 生成高精地图的方法、装置、自动驾驶设备及存储介质
CN113469620A (zh) 配送资源的调度方法、装置、设备及计算机可读存储介质
CN113160427A (zh) 虚拟场景的创建方法、装置、设备及存储介质
WO2022142713A1 (zh) 监测车辆行驶信息的方法及装置
CN112269939B (zh) 自动驾驶的场景搜索方法、装置、终端、服务器及介质
CN112991439B (zh) 定位目标物体的方法、装置、电子设备及介质
CN111754564B (zh) 视频展示方法、装置、设备及存储介质
CN112734346B (zh) 航线覆盖范围的确定方法、装置、设备及可读存储介质
CN110990728A (zh) 兴趣点信息的管理方法、装置、设备及存储介质
CN112817337B (zh) 获取路径的方法、装置、设备和可读存储介质
CN110399688B (zh) 自动驾驶的环境工况确定方法、装置及存储介质
CN111707263B (zh) 路径规划方法、装置、电子设备及存储介质
CN112863168A (zh) 疏导交通的方法、装置、电子设备及介质
WO2024087456A1 (zh) 确定朝向信息以及自动驾驶车辆
CN111597285B (zh) 路网拼接方法、装置、电子设备及存储介质
CN112991790B (zh) 提示用户的方法、装置、电子设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22783803

Country of ref document: EP

Kind code of ref document: A1