WO2022213275A1 - Améliorations d'attribution de ressources pour sl - Google Patents

Améliorations d'attribution de ressources pour sl Download PDF

Info

Publication number
WO2022213275A1
WO2022213275A1 PCT/CN2021/085690 CN2021085690W WO2022213275A1 WO 2022213275 A1 WO2022213275 A1 WO 2022213275A1 CN 2021085690 W CN2021085690 W CN 2021085690W WO 2022213275 A1 WO2022213275 A1 WO 2022213275A1
Authority
WO
WIPO (PCT)
Prior art keywords
sci
peer
resource
reserved
preferred
Prior art date
Application number
PCT/CN2021/085690
Other languages
English (en)
Inventor
Lung-Sheng Tsai
Tao Chen
Original Assignee
Mediatek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc. filed Critical Mediatek Inc.
Priority to PCT/CN2021/085690 priority Critical patent/WO2022213275A1/fr
Publication of WO2022213275A1 publication Critical patent/WO2022213275A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about SL resource allocation enhancement.
  • V2X sidelink (SL) communication can be supported by the unicast, groupcast and broadcast communications.
  • SL resource allocation there are some issues to be addressed for SL resource allocation to improve the reliability and reduce the latency of SL communications.
  • the Rx UE assisted resource allocation mechanism can be applied to improve the reliability and reduce the overall latency for SL communication, which can work independently or jointly with Tx UE based sensing and resource allocation mechanism.
  • the Rx UE can transmit the assistance information to assist Tx UE’s resource selection.
  • the Rx UE can indicate the resources are not preferred via the signaling, e.g., one bit in the physical SL feedback channel (PSFCH) to the peer Tx UE if the reserved resources are not preferred based on the sensing results at Rx UE.
  • PSFCH physical SL feedback channel
  • the Rx UE can transmit at least SCI carrying resource reservation information from the peer Tx UE at least to the potential interfering UEs for resource collision avoidance if the reserved resources is preferred/acceptable based on the sensing results at Rx UE.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of proposed method or procedure to assist Tx UE’s transmission.
  • This inventions relates generally to wireless communications, and, more particularly, to methods and apparatus about resource allocation for SL.
  • the Rx UE can transmit the assistance information to assist Tx UE’s resource selection.
  • the Rx UE can indicate the resources are not preferred via the signaling, e.g., one bit in the physical SL feedback channel (PSFCH) to the peer Tx UE if the reserved resources are not preferred based on the sensing results at Rx UE.
  • PSFCH physical SL feedback channel
  • the Rx UE can transmit at least SCI carrying resource reservation information from the peer Tx UE at least to the potential interfering UEs for resource collision avoidance if the reserved resources is preferred/acceptable based on the sensing results at Rx UE.
  • the peer Tx UE is communicating with the peer Rx UE whereas the other Tx UE (s) is communicating with the other Rx UE (s) . Accordingly, the other Tx UE’s transmission to the other Rx UE may cause the interference at the peer Rx UE if lacking of the efficient coordination between the peer Tx UE and the other Tx UE.
  • Step 1 the peer Tx UE will send the data associated with the control channel which further (e.g., sidelink control information) carries the resource reservation information to indicate the time/frequency resources reserved for future transmissions.
  • further e.g., sidelink control information
  • Step 2 upon receiving the SCI information from the peer Tx UE, the peer Rx UE will check whether the resources reserved in SCI is acceptable or preferred according to the Rx UE’s sensing results in the past. To be noted, sensing by Rx UE will collect the channel priority and resource reservation info obtained from the SCI received from any UE (i.e., not only the peer Tx UE) , as well as RSRP results measured on the DMRS of the received SCI and/or the associated data DMRS.
  • the Rx UE can check the reserved resources in SCI and compare the RSRP performances of the peer Tx UE and the other potential interfering UEs with the same resource reservation according to the sensing results in the past. For example, if RSRP of the peer Tx UE is higher than RSRP of the potential interfering UE, the reserved resources by the peer Tx UE is determined as “preferred” from the peer Rx UE perspective. Otherwise, the reserved resources is deemed as “non-preferred” . Additionally, the comparison of RSRP performances can further taking into account the priority levels between the peer Tx UEs and the other potential interfering UEs.
  • the RSRP offset can be derived or (pre-) configured based on the priority levels of the peer Tx UE and the other potential interfering UEs. For the different pair of priority levels between the peer Tx UE and potential interfering UEs, the RSRP offset can be different. Then the peer Rx UE will compare the RSRP difference between the peer Tx UE and the potential interfering UE with an RSRP offset value derived from the function of the priority levels of the peer Tx UE and the potential interfering UE. If the RSRP difference is higher (or lower) than the RSRP offset value, the reserved resources are identified as “preferred” . Otherwise, the reserved resources will be identified as “non-preferred” .
  • the peer Rx UE will send the assistance information to the peer Tx UE and/or the potential interfering UEs.
  • the peer Rx UE will send the “non-preferred” indication (NPI) to the peer Tx UE.
  • NPI non-preferred indication
  • Such indication e.g., one bit or multiple bits
  • PSFCH physical sidelink feedback channel
  • the PSFCH can carry a few more bits each time (e.g., two bits with one for A/N and the other for “non-preferred” indication) . In this case, it may require 4 PSFCH resources (sequences) to indicate two bits information.
  • PSFCH resources used for transmission can be determined by the function of source and/or dest UE IDs. If it is groupcast transmission, the PSFCH resources used for transmission can derived from the function of the group ID and/or member ID in the group.
  • PSFCH may carry one or multiple bits for “non-preferred” resource indication. If it is one bit, then the“non-preference” indication can be corresponding to the 2 nd resource in SCI (i.e., the 1 st reserved resource) . Alternatively, the “non-preferred” indication can be corresponding to all resources in SCI. in this case, some rules can be derived to determine the setting. For example, if any of one of the reserved resources is not preferred, this bit will be set and sent. If all of the resources are preferred or acceptable, this bit will not be sent.
  • the “non-preferred” indication can be corresponding to each reserved resource in SCI.
  • two bits of the “non-preferred” indication can be corresponding to the 2 nd resource in SCI (i.e., the 1 st reserved resource) and the 3 rd resource in SCI (i.e., 2 nd reserved resource) respectively.
  • the transmission timing of the “non-preferred” indication can be the same timing as A/N transmission (corresponding to the received SCI/data from the peer Tx UE) if the multiplexing is(pre-) configured.
  • the “non-preferred” indication can be sent in its own timing, e.g., x slots before the time instant of the reserved resource (s) wherein x can be the processing time at the peer Tx UE for processing of the received indication and performing resource re-selection if needed.
  • the A/N timing may be multiplexed with the “non-preferred” indication for transmission but following the timing of the “non-preferred” indication, i.e., y slots before the time instant of the reserved resource (s) wherein y can be the processing time at the peer Tx UE for processing of the received indication, performing resource re-selection if needed, processing of A/N bit and preparation ofretransmission or new transmission.
  • x and y can be same or different, which can be up to (pre-) configuration.
  • the Rx UE upon reception of the SCI/data from the peer Tx UE, the Rx UE is triggered for such NPI transmission if the reserved resource (s) is identified as “non-preferred” . Additionally, there can be the delay budget for the transmission of the “non-preferred” indication, e.g., x or y slots before the reserved resource (s) . If the delay budget is exceeded, the Rx UE can drop the transmission of the indication.
  • the peer Rx UE can send SCI (s) (1 st and/or 2 nd SCI) with/without the associated (dummy) data targeting to the potential other Tx UEs.
  • this additional SCI (s) “protecting SCI (s) ” to protect resources reserved by peer-Tx UE.
  • the SCI (s) can at least carry the resource reservation information, the priority information and/or the source UE ID information obtained from the SCI (s) of the peer Tx UE.
  • the 1 st SCI can carry the resource reservation information and the priority information obtained from the 1 st SCI of the peer Tx UE.
  • the 2 nd SCI can carry the peer Tx UE’s source ID (rather than peer Rx UE’s source ID) in the field of source UE ID. So it will look like the forwarding of the SCI from the peer Tx UE for the larger coverage to avoid the hidden node problem.
  • Rx UE may include the additional resource reservation information in the SCI if needed. In this case, the Rx UE may use its own UE ID as the source UE ID in the 2 nd SCI. Moreover, there could be the dummy data or not associated with the SCI transmission.
  • an Rx-UE may send protecting SCI by only 1 st SCI but without 2 nd SCI.
  • the 1 st SCI can provide information related to source UE ID so that the peer Tx UE can know this protecting SCI is (or is very likely) corresponding to its own reservation to avoid confusion in resource reservation.
  • source UE ID implied by this protecting SCI is the same as the peer Tx UE’s ID. This can be achieved in the following candidate solutions:
  • the protecting 1 st SCI carries peer Tx UE’s ID
  • the protecting 1 st SCI carries part of the peer Tx UE’s ID (e.g., a fixed number of MSBs/LSBs of the ID instead ofall bits of the UE ID) , or
  • the protecting 1 st SCI directly indicates this is a protecting SCI and let peer Tx-UE decides if this SCI is protecting SCI or not by checking fields in this protecting SCI and the 1 st SCI had been sent. For example, the peer Tx-UE may recognize this protecting SCI is due to its own transmission if reserved time/frequency resources implied by this protecting SCI are identical to those previously reserved by itself.
  • step 2. B the peer Rx UE needs to select time-frequency resource to send the protecting SCI (s) .
  • the peer Rx UE sends protecting SCI (s) to protect resources that are indicated by “frequency resource assignment” and “time resource assignment” fields and a resource reservation period in the received SCI sent by the peer Tx UE.
  • the resources to be protected can be:
  • the protecting SCI should indicate resource (s) to be protected by reusing its own “frequency resource assignment” and “time resource assignment” fields.
  • Sensing based resource-selection procedure e.g., UE procedure for determining the subset of resources to be reported to higher layers in PSSCH resource selection in sidelink resource allocation mode 2 defined in NR
  • UE procedure for determining the subset of resources to be reported to higher layers in PSSCH resource selection in sidelink resource allocation mode 2 defined in NR
  • a delay budget constraint should be introduced so that the protecting SCI can be received early enough and allows that all potential co-channel Tx UEs have sufficient processing time (denoted by T proc ) to decode the protecting SCI and then avoid resource collision.
  • the peer Rx UE may send protecting SCI at time slot t protect such that t protect is at most K slots earlier than the time slot t0+P.
  • the peer Rx UE may send protecting SCI at time slot t protect such that t protect is at most K slots earlier than the time slot t1.
  • SCI format 1-A can indicate at most three reserved resources, it may be beneficial to allow the protecting SCI to indicate at most N reserved resources, which include the resource occupied by the protecting SCI itself and the three reserved resources to be protected, with N>3.
  • N the resource occupied by the protecting SCI itself
  • N the resource occupied by the protecting SCI itself
  • N the resource occupied by the protecting SCI itself
  • N the resource occupied by the protecting SCI itself
  • the Rx UE upon reception of the SCI/data from the peer Tx UE, the Rx UE is triggered for such protecting SCI transmission if the reserved resource (s) is identified as “preferred” . Additionally, there can be the delay budget for the transmission of the SCI (s) information, e.g., x or y slots before the reserved resource (s) . If the delay budget is exceeded, the Rx UE can drop the transmission of the SCI (s) w/wo (dummy) data.
  • Step 3 upon reception of the “non-preferred” indication in Step 2. A, the resource re-selection can be triggered at the peer Tx UE to avoid the resources marked as “non-preferred” by the peer Rx UE.
  • Step 3. B-2 upon reception of the SCI (s) w/wo (dummy) data in Step 2. B, the peer Tx UE can know it is own reservation according to the source UE ID (i.e., source UE ID is same as the peer Tx UE’s ID) so that the corresponding reception and/or sensing can be skipped/dropped to avoid confusion of the resource selection.
  • the source UE ID i.e., source UE ID is same as the peer Tx UE’s ID
  • Step 3. B-1 upon reception of the SCI (s) w/wo (dummy) data in Step 2. B, the other Tx UE (s) (or potential interfering UEs) can receive the SCI (s) and perform sensing. Accordingly, the other Tx UE (s) will take into account the sensing results (e.g., the resource reservation and channel priority of the peer Tx UE forwarded by the peer Rx UE, as well as RSRP performance of the peer Rx UE) for the resource selection. This can avoid the collision with the peer Tx UE’s transmission and improve the performance by avoidance of the hidden node problem.
  • the sensing results e.g., the resource reservation and channel priority of the peer Tx UE forwarded by the peer Rx UE, as well as RSRP performance of the peer Rx UE
  • Step 3 B-1 if the other UE (s) receiving the protecting SCI (s) is capable to know this SCI is for protecting purpose but not a legacy SCI, it performs sensing according to the decoded protecting SCI (s) , but it can ignore the first reserved resource occupied by this protecting SCI, because the peer Tx UE actually does not transmit signal on this resource.
  • the peer Rx UE can be deemed as an assisting UE which may assist the resource (re-) selection not only for the peer Tx UE but also for the other Tx UE (s) .
  • the UE may perform sensing for resource (re-) selection based on the traffic type and/or resource reservation info by taking into account UE power consumption. If the traffic type is periodic traffic with known packet arrival time and/or the (periodic/aperiodic) resource has been reserved by SCI (and/or selected by UE but not reserved) , the UE should perform sensing before the reserved (and/or selected by UE) time and/or the traffic arrival time. If the traffic type is aperiodic traffic with unknown packet arrival time and/or the resource has not been reserved by SCI (and/or selected by UE) , the UE can perform sensing after the packet arrival. Moreover, the higher layer may indicate the traffic type or reservation type so that UE can know whether to perform prior sensing or post sensing.
  • Combinations such as “at least one of A, B, or C” , “one or more of A, B, or C” , “at least one of A, B, and C” , “one or more of A, B, and C” , and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C” , “one or more of A, B, or C” , “at least one of A, B, and C” , “one or more of A, B, and C” , and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

La présente divulgation concerne de manière générale des communications sans fil, et plus particulièrement, des procédés et un appareil concernant l'attribution de ressources pour SL. Pour l'attribution de ressources SL, l'UE Rx peut transmettre les informations d'assistance pour aider à la sélection des ressources de l'UE Tx. Pour la ressource réservée indiquée dans les SCI en provenance de l'UE Tx pair, l'UE Rx peut indiquer que les ressources ne sont pas préférées par l'intermédiaire de la signalisation, par exemple par un bit dans le canal de rétroaction SL physique (PSFCH) à l'UE Tx pair si les ressources réservées ne sont pas préférées sur la base des résultats de détection au niveau de l'UE Rx. D'autre part, l'UE Rx peut transmettre au moins des SCI contenant des informations de réservation de ressources de l'UE Tx pair au moins aux UE brouilleurs potentiels pour éviter une collision de ressources si les ressources réservées sont préférées/acceptables sur la base des résultats de détection au niveau de l'UE Rx.
PCT/CN2021/085690 2021-04-06 2021-04-06 Améliorations d'attribution de ressources pour sl WO2022213275A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085690 WO2022213275A1 (fr) 2021-04-06 2021-04-06 Améliorations d'attribution de ressources pour sl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085690 WO2022213275A1 (fr) 2021-04-06 2021-04-06 Améliorations d'attribution de ressources pour sl

Publications (1)

Publication Number Publication Date
WO2022213275A1 true WO2022213275A1 (fr) 2022-10-13

Family

ID=83545920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085690 WO2022213275A1 (fr) 2021-04-06 2021-04-06 Améliorations d'attribution de ressources pour sl

Country Status (1)

Country Link
WO (1) WO2022213275A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294983A (zh) * 2019-01-30 2020-06-16 展讯通信(上海)有限公司 直接通信的资源优化方法及装置、存储介质、终端
WO2020173655A1 (fr) * 2019-02-25 2020-09-03 Nokia Technologies Oy Coordination de réservation de ressources de mode -2 de liaison latérale pour des communications v2x
CN112369111A (zh) * 2018-07-09 2021-02-12 瑞典爱立信有限公司 用于预期d2d传输的无线电资源状态的多级指示符
CN112422247A (zh) * 2019-08-21 2021-02-26 财团法人工业技术研究院 用于执行侧链路传输的方法及使用其的用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112369111A (zh) * 2018-07-09 2021-02-12 瑞典爱立信有限公司 用于预期d2d传输的无线电资源状态的多级指示符
CN111294983A (zh) * 2019-01-30 2020-06-16 展讯通信(上海)有限公司 直接通信的资源优化方法及装置、存储介质、终端
WO2020173655A1 (fr) * 2019-02-25 2020-09-03 Nokia Technologies Oy Coordination de réservation de ressources de mode -2 de liaison latérale pour des communications v2x
CN112422247A (zh) * 2019-08-21 2021-02-26 财团法人工业技术研究院 用于执行侧链路传输的方法及使用其的用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Discussion on Mode 2 enhancements", 3GPP DRAFT; R1-2101926, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 29 January 2021 (2021-01-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051976002 *

Similar Documents

Publication Publication Date Title
TWI696373B (zh) 新無線電系統中ssbs之有效利用
TWI762456B (zh) 在共享通訊媒體上傳送存取點的子訊框定時
KR101901219B1 (ko) 전송 방법 및 통신 장치
CN1643852B (zh) 在无线媒介中实现快速信道切换的***和方法
US11997625B2 (en) Method and apparatus for synchronization in sidelink communications
US10091713B2 (en) Numerology and frames for networks in the sub-1GHz (S1G) band
CN111567127A (zh) 终端设备、基站设备和方法
US9107078B2 (en) Methods and apparatuses for low-rate television white space (TVWS) enablement
JP7042793B2 (ja) 無線通信システムにおける方法
JP2023101787A (ja) サイドリンクチャネルリソースユニットの構成のための方法および装置
CA2817673A1 (fr) Configuration de sous-trame
US20120057575A1 (en) Method and apparatus for simultaneous beam training
US20230091088A1 (en) Communication method and apparatus, device, and storage medium
EP3949221A1 (fr) Gestion de transmissions dans la fenêtre de transmission de rafales de découverte de cellules de desserte (dbt)
WO2018088486A1 (fr) Système de communication sans fil et procédé de transmission de signal de référence
WO2017133668A1 (fr) Dispositif électronique dans un système de communication sans fil, et procédé de communication sans fil
WO2022208484A1 (fr) Pt-rs pour transmissions pusch à de multiples trp
WO2020220959A1 (fr) Procédé et dispositif de transmission d'informations, nœud, et serveur
WO2022208482A1 (fr) Systèmes et procédés pour pusch multi-trp non basé sur un livre de codes
US20200177427A1 (en) Method and apparatus for sequence generation
WO2010052522A1 (fr) Regroupement de messages de canal d'accès aléatoire
WO2022213275A1 (fr) Améliorations d'attribution de ressources pour sl
WO2022152427A1 (fr) Équipement d'utilisateur et station de base impliqués dans une radiorecherche
CN110547014A (zh) 电子装置、信息处理设备和信息处理方法
US20230180192A1 (en) Communication method and apparatus, and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935511

Country of ref document: EP

Kind code of ref document: A1