WO2022211488A1 - Hydride and preparation method therefor - Google Patents

Hydride and preparation method therefor Download PDF

Info

Publication number
WO2022211488A1
WO2022211488A1 PCT/KR2022/004504 KR2022004504W WO2022211488A1 WO 2022211488 A1 WO2022211488 A1 WO 2022211488A1 KR 2022004504 W KR2022004504 W KR 2022004504W WO 2022211488 A1 WO2022211488 A1 WO 2022211488A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydride
formula
hydrogen
dimensional
present application
Prior art date
Application number
PCT/KR2022/004504
Other languages
French (fr)
Korean (ko)
Inventor
김성웅
임동철
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210165300A external-priority patent/KR102639462B1/en
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2022211488A1 publication Critical patent/WO2022211488A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material

Definitions

  • the present application relates to hydrides and methods for their preparation.
  • Electrons are a new concept of material that directly determines the functionality of a material regardless of constituent elements and structural factors, while electrons exist as interstitial electrons in vacancies inside the crystal rather than around the nucleus of an atom. Electron materials have a low work function and can be used as an electron-emitting material, and can be used as a magnetic material such as a ferromagnetic material and a magneto-thermal material due to a high magnetic entropy change, and a catalyst due to high electron transfer efficiency It is a material that can be widely used as a material.
  • An ionic conductor refers to a material in which ions themselves carry an electric charge, unlike an electrical conductor in which electrons carry electric charge. refers to Hydrogen ion conductors with high ionic conductivity can be widely used in gas sensors, water splitting, fuel cells, electrochemical hydrogen compressor technology, and hydrogen ion batteries.
  • Nafion which is widely used as a hydrogen ion conductor in hydrogen fuel cells, etc., is a high molecular material with a very complex molecular structure and exhibits a low hydrogen ion conductivity of about 0.2 S/cm.
  • U.S. Patent No. 10173202 relates to a supported metal catalyst and a method for synthesizing ammonia using the catalyst, but the hydride is not recognized.
  • the present application is to solve the problems of the prior art, and an object of the present application is to provide a hydride based on a low-dimensional electron having high ionic conductivity and a method for manufacturing the same.
  • Another object of the present application is to provide a hydrogen ion conductor including the hydride.
  • the first aspect of the present application is a hydride comprising at least one compound selected from the group consisting of the following Chemical Formulas 1 to 3, wherein the hydride is an electron contained in the electron A hydride is provided, which is substituted with hydrogen:
  • X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er, and x is 0 ⁇ x ⁇ 3.5);
  • Z is Ti, Zr or Hf
  • W is O, S or Se
  • z is 0 ⁇ z ⁇ 3.5
  • the electron material may include one or more low-dimensional electron materials selected from the group consisting of the following Chemical Formulas 4 to 6, but is not limited thereto:
  • X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er
  • Y is Ca, Sr, or Ba
  • Z is Ti, Zr or Hf, and W is O, S or Se).
  • electrons included between the lattice structures of the electron oxide selected from the group consisting of Chemical Formulas 4 to 6 may be substituted with hydrogen, but is not limited thereto.
  • one or more compounds selected from the group consisting of Chemical Formulas 4 to 6 are arranged in a two-dimensional shape, and electrons disposed between the two-dimensional shape may be substituted with hydrogen, but It is not limited.
  • hydrogen in the hydride, hydrogen may be bonded to the low-dimensional compound itself selected from the group consisting of Chemical Formulas 4 to 6, but is not limited thereto.
  • the symmetry of the crystal structure of the electron nitride and the symmetry of the crystal structure of the hydride may be different from each other, but the present disclosure is not limited thereto.
  • the hydride may have the form of a single crystal, a polycrystal, or a thin film, but is not limited thereto.
  • the ionic conductivity of the hydride may be 0.1 S/cm to 3 S/cm, but is not limited thereto.
  • a second aspect of the present application comprises the steps of preparing one or more low-dimensional electron materials selected from the group consisting of the following Chemical Formulas 4 to 6; And to a method for producing a hydride comprising the step of heat-treating the low-dimensional electron hydrate in a hydrogen gas atmosphere:
  • X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er
  • Y is Ca, Sr, or Ba
  • Z is Ti, Zr or Hf, and W is O, S or Se).
  • the step of heat-treating the low-dimensional electron material in a hydrogen gas atmosphere electrons disposed between the lattice structure of the low-dimensional electron material are replaced with hydrogen, or the low-dimensional electron material and hydrogen may be combined, but is not limited thereto.
  • the hydrogen gas atmosphere may further include an inert gas, but is not limited thereto.
  • the heat treatment may be performed at 100° C. to 1,500° C., but is not limited thereto.
  • a third aspect of the present application relates to a hydrogen ion conductor comprising the hydride according to the first aspect.
  • the hydride according to the present application has a structure of a solid inorganic compound while having a high hydrogen ion conductivity, unlike the conventional hydride having a complex structure and weak mechanical properties, thereby storing hydrogen And it can be applied to various fields requiring movement.
  • a hydrogen ion conductor can be used in a fuel cell such as a hydrogen fuel cell when it has high ionic conductivity.
  • the hydrogen fuel cell including the hydrogen ion conductor may be operated at 500° C. to 700° C., but has a disadvantage in that it operates at a high temperature and has low stability.
  • a hydrogen ion conductor comprising a hydride according to the present disclosure may have a high ionic conductivity near about 200°C. That is, the hydrogen fuel cell including the hydrogen ion conductor according to the present application may have a lower operating temperature compared to the conventional hydrogen fuel cell, and by having a lower operating temperature, it may be operated for a long time, and stability may be increased.
  • the hydride according to the present application can be prepared by heat-treating a low-dimensional electron oxide in a hydrogen atmosphere, so that a high-performance hydrogen ion conductor can be manufactured by a simple process.
  • FIG. 1 is a schematic diagram of a hydride according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a device for measuring hydrogen ion conductivity of hydride according to an embodiment of the present application.
  • FIG. 3 is a photograph of a hydride according to an embodiment of the present application.
  • FIG. 4 is a photograph of a device for measuring hydrogen ion conductivity of hydride according to an embodiment of the present application.
  • 5 is a graph of the result of thermal desorption spectroscopy measurement of the amount of hydrogen contained in the hydride according to an embodiment of the present application.
  • FIG. 6 is a graph showing a result of X-ray diffraction analysis of a crystal structure change before and after hydrogen injection of a hydride according to an embodiment of the present application.
  • FIG. 7 shows the ionic conductivity of a hydride according to an embodiment of the present application.
  • the first aspect of the present application is a hydride comprising at least one compound selected from the group consisting of the following Chemical Formulas 1 to 3, wherein the hydride is an electron contained in the electron A hydride is provided, which is substituted with hydrogen:
  • X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er, and x is 0 ⁇ x ⁇ 3.5);
  • Z is Ti, Zr or Hf
  • W is O, S or Se
  • z is 0 ⁇ z ⁇ 3.5
  • the electron cargo according to the present application refers to a material in which electrons exist as an interstitial electron state in an empty space inside a crystal of a material instead of around an atomic nucleus, thereby directly determining the functionality of a material regardless of components and structural factors.
  • the hydride according to the present application includes hydrogen disposed between the lattice structure of the electronized material by replacing electrons in the lattice structure of the electronized material with hydrogen, and at the same time, the cation of the electronized material (eg, Formulas 1 to 3) of X, Y, and Z) and H - means that they are bonded.
  • the bond between the cation and hydrogen of the electron hydride is a bond made in a two-dimensional or one-dimensional structure, and since it is a weak bond compared to a bond made in a three-dimensional structure, the movement of hydrogen ions in the hydride is similar to that of the conventional hydride. Compared to that, it is free and may require less energy for the movement of hydrogen ions.
  • FIG. 1 is a schematic diagram of a hydride according to an embodiment of the present application, wherein the hydride of FIG. 1 is a schematic diagram of Gd 2 CH x (0 ⁇ x ⁇ 3.5) represented by Chemical Formula 1, but is not limited thereto.
  • the hydride of FIG. 1 is a schematic diagram of Gd 2 CH x (0 ⁇ x ⁇ 3.5) represented by Chemical Formula 1, but is not limited thereto.
  • the Gd 2 CH x it can be confirmed that hydrogen is bonded to Gd 2 C , and hydrogen ions, that is, H ⁇ are disposed between the lattice structure of the two-dimensional Gd 2 CH x instead of electrons.
  • H disposed between the lattice structures of the compound may be a hydrogen anion (H ⁇ ), but is not limited thereto.
  • H ⁇ hydrogen anion
  • all of the hydrogens disposed between the lattice structures of Gd 2 CH x may be H ⁇ .
  • the electron material may include one or more low-dimensional electron materials selected from the group consisting of the following Chemical Formulas 4 to 6, but is not limited thereto:
  • X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er
  • Y is Ca, Sr, or Ba
  • Z is Ti, Zr or Hf, and W is O, S or Se).
  • the low-dimensional electron material means that the electron material has a one-dimensional or two-dimensional structure, so that interstitial electrons are distributed one-dimensionally or two-dimensionally.
  • the hydride since the interstitial electrons are substituted with hydrogen (specifically H ⁇ ) by heat treatment in a hydrogen atmosphere, the hydride may form a one-dimensional or two-dimensionally distributed hydrogen arrangement, and , due to the hydrogen arrangement, the hydride may have high hydrogen ion conductivity.
  • ordinary hydrogen can be arranged in three dimensions to be relatively strongly bonded to other atoms in the lattice.
  • the hydrogen may be relatively weakly bound to other atoms in the lattice. That is, since the hydride has a one-dimensionally or two-dimensionally distributed hydrogen arrangement, hydrogen disposed between the lattices of the hydride or hydrogen bonded to a metal atom of the electron hydride forms a relatively weak bond with other atoms. It can move easily, and because of this, it can have higher hydrogen ion conductivity than a hydride having a three-dimensional structure because the energy required for movement is low.
  • electrons included between the lattice structures of the electron oxide selected from the group consisting of Chemical Formulas 4 to 6 may be substituted with hydrogen, but is not limited thereto.
  • one or more compounds selected from the group consisting of Chemical Formulas 4 to 6 are arranged in a two-dimensional shape, and electrons disposed between the two-dimensional shape may be substituted with hydrogen, but It is not limited.
  • the electrons and substituted hydrogens disposed between the lattice structure of the electron material, or the electrons and the substituted hydrogens disposed between the two-dimensional shapes must eventually be hydrogen bonded to the electrons, the charge of H ⁇ have a state
  • hydrogen in the hydride, hydrogen may be bonded to the low-dimensional compound itself selected from the group consisting of Chemical Formulas 4 to 6, but is not limited thereto.
  • the metal elements (X, Y, and Z of Formulas 4 to 6) of the low-dimensional compound and a hydrogen ion (H ⁇ ) may be combined.
  • the hydride according to the present application refers to a material in which hydrogen ions of H ⁇ exist in the empty space between the lattice structures and at the same time include a bond with hydrogen.
  • the symmetry of the crystal structure of the electron nitride and the symmetry of the crystal structure of the hydride may be different from each other, but the present disclosure is not limited thereto.
  • the hydride and the hydride may have the same lattice structure on the Bravais lattice, but the hydride is generated by combining the electrons with hydrogen and replacing interstitial electrons with hydrogen at the same time.
  • Silver may have different symmetry with the electron material due to bonding and substitution with the hydrogen.
  • the symmetry of the crystal structure refers to a space group.
  • the symmetry of the crystal structure of the electron nitride is R3-m
  • the symmetry of the crystal structure of the hydride may be P3-m1, but is not limited thereto.
  • the hydride may have the form of a single crystal, a polycrystal, or a thin film, but is not limited thereto.
  • the hydride since the hydride has a structure in which electrons having a one-dimensional or two-dimensional structure, and electrons disposed in the lattice structure of the one-dimensional or two-dimensional structure are substituted with hydrogen, the hydride has the above formula
  • a thin film made of one or more compounds selected from the group consisting of 1 to 3 may have a laminated form.
  • the hydride and the electron hydride may be subjected to thermal carbon bonding spectroscopy to determine whether the hydride contains hydrogen.
  • the thermal desorption spectroscopic analysis may analyze hydrogen desorbed from the sample when the sample is heated.
  • the ionic conductivity of the hydride may be 0.1 S/cm to 3 S/cm, but is not limited thereto.
  • the ionic conductivity of the hydride is about 0.1 S/cm to about 3 S/cm, about 0.2 S/cm to about 3 S/cm, about 0.3 S/cm to about 3 S/cm, about 0.4 S /cm to about 3 S/cm, about 0.5 S/cm to about 3 S/cm, about 0.6 S/cm to about 3 S/cm, about 0.7 S/cm to about 3 S/cm, about 0.8 S/cm to about 3 S/cm, from about 0.9 S/cm to about 3 S/cm, from about 1 S/cm to about 3 S/cm, from about 1.25 S/cm to about 3 S/cm, from about 1.5 S/cm to about 3 S/cm, about 1.75 S/cm to about 3 S/cm
  • the ionic conductivity of the conventional electron oxide or hydride is known to be less than 0.5 S/cm, but the ionic conductivity of the hydride according to the present application is 0.1 S/cm to 3 S/cm, which is higher than that of the conventional electron oxide or hydride. can have In this regard, the ionic conductivity of the hydride may increase or decrease depending on the environment in which the hydride is disposed or the temperature of the hydride.
  • a second aspect of the present application comprises the steps of preparing one or more low-dimensional electron materials selected from the group consisting of the following Chemical Formulas 4 to 6; And it relates to a method for producing a hydride comprising the step of heat-treating the low-dimensional electron hydrate in a hydrogen gas atmosphere:
  • X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er
  • Y is Ca, Sr, or Ba
  • Z is Ti, Zr or Hf, and W is O, S or Se).
  • one or more low-dimensional electron materials selected from the group consisting of Chemical Formulas 4 to 6 are prepared.
  • the low-dimensional electron oxide may be prepared by mixing a metal element (X, Y, or Z) and a non-metal element (C, N, W) in a 2:1 ratio and then melting,
  • a metal element X, Y, or Z
  • a non-metal element C, N, W
  • the present invention is not limited thereto.
  • the low-dimensional electronized material is heat-treated in a hydrogen gas atmosphere.
  • the step of heat-treating the low-dimensional electron material in a hydrogen gas atmosphere electrons disposed between the lattice structure of the low-dimensional electron material are replaced with hydrogen, or the low-dimensional electron material and hydrogen may be combined, but is not limited thereto.
  • the low-dimensional electron oxide is heat-treated in a hydrogen gas atmosphere, so that interstitial electrons are replaced with H ⁇ , and at the same time, hydrogen ions may be bonded to a metal element (X, Y, or Z) of the electron oxide. In this case, the substitution of the electrons and the bonding of the metal element and hydrogen may occur at the same time.
  • a portion of the hydrogen gas may be combined with the metal element of the low-dimensional electron material, and the other portion may be substituted with electrons disposed between the lattice structures of the low-dimensional electron material.
  • the hydrogen gas atmosphere may further include an inert gas, but is not limited thereto.
  • the hydrogen gas atmosphere may include Ar, but is not limited thereto.
  • the hydrogen gas atmosphere may further include an inert gas such as N 2 , but is not limited thereto.
  • the heat treatment may be performed at 100° C. to 1,500° C., but is not limited thereto.
  • the heat treatment may include about 100°C to about 1,500°C, about 200°C to about 1,500°C, about 300°C to about 1,500°C, about 400°C to about 1,500°C, about 500°C to about 1,500°C, about 600°C to about 1,500°C, about 700°C to about 1,500°C, about 800°C to about 1,500°C, about 900°C to about 1,500°C, about 1,000°C to about 1,500°C, about 1,100°C to about 1,500°C, about 1,200°C to about 1,500 °C, about 1,300 °C to about 1,500 °C, about 1,400 °C to about 1,500 °C, about 100 °C to about 200 °C, about 100 °C to about 300 °C, about 100 °C to about 400 °C, about 100 °C to about 500°C,
  • the low-dimensional electrons are thermally decomposed by high energy, or the amount of hydrogen injected into the low-dimensional electrons exits to the outside of the low-dimensional electrons. Problems such as an increase in the amount of hydrogen may occur.
  • the temperature of the heat treatment is less than 100° C., the interstitial electrons may not be replaced with hydrogen because the thermal energy is low, so that hydrogen is not injected into the low-dimensional electronic material.
  • a third aspect of the present application relates to a hydrogen ion conductor comprising the hydride according to the first aspect.
  • the hydrogen ion conductor may be selected from the group consisting of a hydrogen sensor, a water decomposition system, a fuel cell, a hydrogen ion battery, a hydrogen compressor, and combinations thereof, but is not limited thereto. .
  • the hydride has a higher hydrogen ion conductivity than a conventional electron oxide or hydride, it is suitable for devices that need to transfer, generate, or store hydrogen or hydrogen ions.
  • a two-dimensional Gd 2 C electronic material was prepared by melting and synthesizing raw materials quantitatively mixed with Gd and C at a molar ratio of 2 : 1 at a high temperature using an electric furnace for high temperature of 1000° C. or higher, and cooling the mixture. At this time, the synthesis atmosphere was conducted in an inert gas or a vacuum atmosphere having a pressure of 10 -1 Torr or less.
  • the synthesized electron material was processed into pellets in a glove box in an argon gas atmosphere to prepare a sample. Then, the prepared sample was loaded into a tubular electric furnace, and heated at a temperature of 300° C. for 24 hours while flowing a hydrogen/argon mixed gas, and hydrogen was injected into the two-dimensional Gd 2 C electron material.
  • FIG 3 is a photograph of a hydride according to an embodiment of the present application, Gd 2 CH x is taken, and Figure 4 is a photograph taken of a facility for measuring the ionic conductivity of the Gd 2 CH x .
  • a raw material prepared by quantitatively mixing Ca and Ca 3 N 2 in a molar ratio of 1:1 was reacted in an electric furnace for high temperature of 800° C. or higher, and then cooled to prepare Ca 2 N electronized material.
  • the Ca 2 N was carried out under an inert gas or a pressure of 10 -3 Torr or less.
  • the synthesized electron material is processed into pellets in a glove box in an argon gas atmosphere to prepare a sample, and then the prepared sample is loaded into a tubular electric furnace, and a hydrogen and argon mixed gas is flowed thereto for 24 hours at a temperature of 300°C. Hydrogen was injected into the interior of the two-dimensional Ca 2 N electrons by heating during
  • Hf and S were mixed at a molar ratio of 2: 1, pelletized, vacuum sealed in a silica tube, and then sintered at 500° C. for 50 to 70 hours in an electric furnace. Then, the heat-treated mixture was put into an arc melting facility, and melted and cooled at a temperature of 1,000° C. or higher under an argon atmosphere to prepare a two-dimensional Hf 2 S electride.
  • the synthesized electron material was processed into pellets in a glove box in an argon gas atmosphere to prepare a sample. Then, the prepared sample was loaded into a tubular electric furnace, and heated at a temperature of 300° C. for 24 hours while flowing a hydrogen/argon mixed gas, and hydrogen was injected into the two-dimensional Hf 2 S electron material.
  • 5 is a graph of the result of thermal desorption spectroscopy measurement of the amount of hydrogen contained in the hydride according to an embodiment of the present application.
  • thermal desorption spectroscopy analysis was performed. At this time, when the heat treatment temperature is 300 °C, it can be confirmed that the hydrogen injection degree is higher than when the heat treatment at 700 °C. It was confirmed that hydrogen was actually injected into the low-dimensional electrons through the heat treatment in a hydrogen atmosphere, and it was confirmed that the amount of hydrogen contained in the sample was changed according to the heat treatment temperature in the hydrogen atmosphere.
  • FIG. 6 is a graph showing a result of X-ray diffraction analysis of a crystal structure change before and after hydrogen injection of a hydride according to an embodiment of the present application.
  • the XRD peak is changed by heat treatment of Gd 2 C in a hydrogen gas atmosphere, it can be confirmed that Gd 2 CH x and Gd 2 C have different symmetric structures.
  • FIG. 7 shows the ionic conductivity of a hydride according to an embodiment of the present application.
  • the ionic conductivity of the hydride Gd 2 CH x is ⁇ 2.5 S/cm at 200° C., which means that it has a significantly larger value than the previously reported conductivity of hydrogen ion conductors.

Abstract

The present application relates to a hydride comprising at least one compound selected from the group consisting of chemical formulas 1 to 3, wherein an electron contained in an electride is substituted with hydrogen.

Description

수소화물 및 이의 제조 방법Hydride and method for preparing same
본원은 수소화물 및 이의 제조 방법에 관한 것이다.The present application relates to hydrides and methods for their preparation.
전자화물(electrides)은 전자가 원자핵 주위가 아닌 결정 내부의 빈 곳에 격자 간 전자(interstitial electrons)로 존재하면서 구성 원소 및 구조적 요인에 상관없이 소재의 기능성을 직접 결정하는 역할을 하는 신개념의 물질이다. 전자화물은 낮은 일 함수(work function)를 가져 전자방출 소재로 활용될 수 있고, 높은 자기 엔트로피 변화량으로 인해 강자성 소재, 자기 열 소재 등의 자성 소재로 활용될 수 있으며, 높은 전자전달 효율로 인해 촉매 소재로 널리 활용될 수 있는 물질이다.Electrons are a new concept of material that directly determines the functionality of a material regardless of constituent elements and structural factors, while electrons exist as interstitial electrons in vacancies inside the crystal rather than around the nucleus of an atom. Electron materials have a low work function and can be used as an electron-emitting material, and can be used as a magnetic material such as a ferromagnetic material and a magneto-thermal material due to a high magnetic entropy change, and a catalyst due to high electron transfer efficiency It is a material that can be widely used as a material.
이온 전도체(ionic conductor)는 전자가 전하를 운반하는 전기 전도체(electrical conductor)와는 다르게 이온 자체가 전하를 운반하는 물질을 말하며, 특히 수소이온 전도체는 수소가 전하를 운반하는 입자의 역할을 하는 물질을 일컫는다. 높은 이온 전도도를 가지는 수소이온 전도체는 가스 센서, 물 분해, 연료전지, 전기화학적 수소 압축기 기술, 수소이온 배터리 등에 널리 활용될 수 있다.An ionic conductor refers to a material in which ions themselves carry an electric charge, unlike an electrical conductor in which electrons carry electric charge. refers to Hydrogen ion conductors with high ionic conductivity can be widely used in gas sensors, water splitting, fuel cells, electrochemical hydrogen compressor technology, and hydrogen ion batteries.
그러나 현존하는 수소이온 전도체들은 복잡한 유기물 구조를 형성하고 있거나, 수소가 하이드록시기(hydroxyl group)의 형태로 존재하여 고성능의 이온 전도도를 나타내기 어렵다. 예를 들어 수소 연료전지 등에서 수소이온 전도체로 널리 활용되고 있는 Nafion은 고분자 물질로서 그 분자 구조가 매우 복잡하며 약 0.2 S/cm 전후의 낮은 수소이온 전도도를 나타낸다.However, existing hydrogen ion conductors form a complex organic structure, or hydrogen exists in the form of a hydroxyl group, so it is difficult to exhibit high ionic conductivity. For example, Nafion, which is widely used as a hydrogen ion conductor in hydrogen fuel cells, etc., is a high molecular material with a very complex molecular structure and exhibits a low hydrogen ion conductivity of about 0.2 S/cm.
본원의 배경이 되는 기술은 미국등록특허공보 제10173202호는 담지 금속 촉매 및 상기 촉매를 이용한 암모니아의 합성법에 대한 것이나, 수소화물에 대해서는 인식하지 못하고 있다.As for the background technology of the present application, U.S. Patent No. 10173202 relates to a supported metal catalyst and a method for synthesizing ammonia using the catalyst, but the hydride is not recognized.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 높은 이온 전도도를 가지는 저차원 전자화물 기반의 수소화물 및 이의 제조 방법을 제공하는 것을 목적으로 한다.The present application is to solve the problems of the prior art, and an object of the present application is to provide a hydride based on a low-dimensional electron having high ionic conductivity and a method for manufacturing the same.
또한, 본원은 상기 수소화물을 포함하는 수소 이온 전도체를 제공하는 것을 목적으로 한다.Another object of the present application is to provide a hydrogen ion conductor including the hydride.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problems to be achieved by the embodiments of the present application are not limited to the technical problems as described above, and other technical problems may exist.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은 하기 화학식 1 내지 3으로 구성된 군에서 선택된 하나 이상의 화합물을 포함하는 수소화물에 있어서, 상기 수소화물은 전자화물에 포함된 전자가 수소로 치환된 것인, 수소화물을 제공한다:As a technical means for achieving the above technical problem, the first aspect of the present application is a hydride comprising at least one compound selected from the group consisting of the following Chemical Formulas 1 to 3, wherein the hydride is an electron contained in the electron A hydride is provided, which is substituted with hydrogen:
[화학식 1][Formula 1]
X2CHx ;X 2 CH x ;
(화학식 1에 있어서, X는 Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho 또는 Er이고, x는 0 < x < 3.5임);(In Formula 1, X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er, and x is 0 < x < 3.5);
[화학식 2][Formula 2]
Y2NHy ;Y 2 NH y ;
(화학식 2에 있어서, Y는 Ca, Sr 또는 Ba이고, y는 0 < y < 3.5임);(in Formula 2, Y is Ca, Sr, or Ba, and y is 0 < y < 3.5);
[화학식 3][Formula 3]
Z2WHz ;Z 2 WH z ;
(화학식 3에 있어서, Z는 Ti, Zr 또는 Hf이고, W는 O, S 또는 Se이며, z 는 0 < z < 3.5 임).(In Formula 3, Z is Ti, Zr or Hf, W is O, S or Se, and z is 0 < z < 3.5).
본원의 일 구현예에 따르면, 상기 전자화물은 하기 화학식 4 내지 6 으로 구성된 군에서 선택된 하나 이상의 저차원 전자화물을 포함할 수 있으나, 이에 제한되는 것은 아니다:According to one embodiment of the present application, the electron material may include one or more low-dimensional electron materials selected from the group consisting of the following Chemical Formulas 4 to 6, but is not limited thereto:
[화학식 4][Formula 4]
X2C ;X 2 C ;
(화학식 4에 있어서, X는 Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho 또는 Er임);(In Formula 4, X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er);
[화학식 5][Formula 5]
Y2NY 2 N
(화학식 5에 있어서, Y는 Ca, Sr 또는 Ba 임);(In Formula 5, Y is Ca, Sr, or Ba);
[화학식 6][Formula 6]
Z2WZ 2 W
(화학식 6에 있어서, Z는 Ti, Zr 또는 Hf이고, W는 O, S 또는 Se 임).(In Formula 6, Z is Ti, Zr or Hf, and W is O, S or Se).
본원의 일 구현예에 따르면, 상기 수소화물은, 상기 화학식 4 내지 6 으로 구성된 군에서 선택된 전자화물 상의 격자 구조 사이에 포함된 전자가 수소로 치환될 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, in the hydride, electrons included between the lattice structures of the electron oxide selected from the group consisting of Chemical Formulas 4 to 6 may be substituted with hydrogen, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 수소화물은, 상기 화학식 4 내지 6으로 구성된 군에서 선택된 하나 이상의 화합물들이 이차원 형상으로 배열되고, 상기 이차원 형상 사이에 배치된 전자가 수소로 치환될 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the present application, in the hydride, one or more compounds selected from the group consisting of Chemical Formulas 4 to 6 are arranged in a two-dimensional shape, and electrons disposed between the two-dimensional shape may be substituted with hydrogen, but It is not limited.
본원의 일 구현예에 따르면, 상기 수소화물은, 상기 화학식 4 내지 6 으로 구성된 군에서 선택된 저차원 화합물 자체에 수소가 결합될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, in the hydride, hydrogen may be bonded to the low-dimensional compound itself selected from the group consisting of Chemical Formulas 4 to 6, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 전자화물의 결정 구조의 대칭성과 상기 수소화물의 결정 구조의 대칭성은 서로 상이할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the symmetry of the crystal structure of the electron nitride and the symmetry of the crystal structure of the hydride may be different from each other, but the present disclosure is not limited thereto.
본원의 일 구현예에 따르면, 상기 수소화물은 단결정, 다결정 또는 박막의 형태를 가질 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the hydride may have the form of a single crystal, a polycrystal, or a thin film, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 수소화물의 이온 전도도는, 0.1 S/cm 내지 3 S/cm 일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the ionic conductivity of the hydride may be 0.1 S/cm to 3 S/cm, but is not limited thereto.
또한, 본원의 제 2 측면은 하기 화학식 4 내지 6 으로 구성된 군에서 선택된 하나 이상의 저차원 전자화물을 제조하는 단계; 및 상기 저차원 전자화물을 수소 기체 분위기하에서 열처리하는 단계를 포함하는 수소화물의 제조 방법 에 대한 것이다:In addition, a second aspect of the present application comprises the steps of preparing one or more low-dimensional electron materials selected from the group consisting of the following Chemical Formulas 4 to 6; And to a method for producing a hydride comprising the step of heat-treating the low-dimensional electron hydrate in a hydrogen gas atmosphere:
[화학식 4][Formula 4]
X2C ;X 2 C ;
(화학식 4에 있어서, X는 Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho 또는 Er임);(In Formula 4, X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er);
[화학식 5][Formula 5]
Y2N ;Y 2 N ;
(화학식 5에 있어서, Y는 Ca, Sr 또는 Ba 임);(In Formula 5, Y is Ca, Sr, or Ba);
[화학식 6][Formula 6]
Z2W ;Z 2 W ;
(화학식 6에 있어서, Z는 Ti, Zr 또는 Hf이고, W는 O, S 또는 Se 임).(In Formula 6, Z is Ti, Zr or Hf, and W is O, S or Se).
본원의 일 구현예에 따르면, 상기 저차원 전자화물을 수소 기체 분위기 하에서 열처리하는 단계에서, 상기 저차원 전자화물의 격자 구조 사이에 배치된 전자가 수소로 치환하거나, 또는 상기 저차원 전자화물과 수소가 결합될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, in the step of heat-treating the low-dimensional electron material in a hydrogen gas atmosphere, electrons disposed between the lattice structure of the low-dimensional electron material are replaced with hydrogen, or the low-dimensional electron material and hydrogen may be combined, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 수소 기체 분위기는, 비활성 기체를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the hydrogen gas atmosphere may further include an inert gas, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 열처리하는 단계는 100℃ 내지 1,500℃ 에서 수행될 수 있으나, 이에 제한되는 것은 아니다.According to an exemplary embodiment of the present application, the heat treatment may be performed at 100° C. to 1,500° C., but is not limited thereto.
또한, 본원의 제 3 측면은 상기 제 1 측면에 따른 수소화물을 포함하는, 수소이온 전도체에 대한 것이다.Also, a third aspect of the present application relates to a hydrogen ion conductor comprising the hydride according to the first aspect.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.The above-described problem solving means are merely exemplary, and should not be construed as limiting the present application. In addition to the exemplary embodiments described above, additional embodiments may exist in the drawings and detailed description.
전술한 본원의 과제 해결 수단에 의하면, 구조가 복잡하고 기계적 특성에 취약한 종래의 수소화물과 달리 본원에 따른 수소화물은, 높은 수소 이온 전도도를 가지면서 고체 형태의 무기 화합물의 구조를 가져 수소의 저장 및 이동이 필요한 다양한 분야에 응용될 수 있다.According to the above-described means for solving the problems of the present application, the hydride according to the present application has a structure of a solid inorganic compound while having a high hydrogen ion conductivity, unlike the conventional hydride having a complex structure and weak mechanical properties, thereby storing hydrogen And it can be applied to various fields requiring movement.
일반적으로, 수소 이온 전도체는 높은 이온 전도도를 가질 경우 수소 연료 전지 등의 연료 전지에 사용될 수 있다. 상기 수소 이온 전도체를 포함하는 수소 연료 전지는 500℃ 내지 700℃ 에서 작동될 수 있으나, 고온에서 작동하여 안정성이 낮은 단점이 있다.In general, a hydrogen ion conductor can be used in a fuel cell such as a hydrogen fuel cell when it has high ionic conductivity. The hydrogen fuel cell including the hydrogen ion conductor may be operated at 500° C. to 700° C., but has a disadvantage in that it operates at a high temperature and has low stability.
그러나 본원에 따른 수소화물을 포함하는 수소 이온 전도체는 약 200℃ 근처에서 높은 이온 전도도를 가질 수 있다. 즉, 본원에 따른 수소 이온 전도체를 포함하는 수소 연료 전지는, 종래의 수소 연료 전지에 비해 낮은 작동 온도를 가질 수 있고, 낮은 작동 온도를 가짐으로써 장시간 작동이 가능하며, 안정성을 높일 수 있다. However, a hydrogen ion conductor comprising a hydride according to the present disclosure may have a high ionic conductivity near about 200°C. That is, the hydrogen fuel cell including the hydrogen ion conductor according to the present application may have a lower operating temperature compared to the conventional hydrogen fuel cell, and by having a lower operating temperature, it may be operated for a long time, and stability may be increased.
또한, 본원에 따른 수소화물은 저차원 전자화물을 수소 분위기에서 열처리하는 것으로 제조될 수 있어 고성능의 수소 이온 전도체를 간단한 공정으로 제조할 수 있다.In addition, the hydride according to the present application can be prepared by heat-treating a low-dimensional electron oxide in a hydrogen atmosphere, so that a high-performance hydrogen ion conductor can be manufactured by a simple process.
다만, 본원에서 얻을 수 있는 효과는 상기된 바와 같은 효과들로 한정되지 않으며, 또 다른 효과들이 존재할 수 있다.However, the effects obtainable herein are not limited to the above-described effects, and other effects may exist.
도 1 은 본원의 일 구현예에 따른 수소화물의 모식도이다.1 is a schematic diagram of a hydride according to an embodiment of the present application.
도 2 는 본원의 일 구현예에 따른 수소화물의 수소 이온 전도도 측정 설비의 모식도이다.2 is a schematic diagram of a device for measuring hydrogen ion conductivity of hydride according to an embodiment of the present application.
도 3 은 본원의 일 실시예에 따른 수소화물의 사진이다.3 is a photograph of a hydride according to an embodiment of the present application.
도 4 는 본원의 일 실시예에 따른 수소화물의 수소 이온 전도도 측정 설비의 사진이다.4 is a photograph of a device for measuring hydrogen ion conductivity of hydride according to an embodiment of the present application.
도 5 는 본원의 일 실시예에 따른 수소화물에 포한됨 수소량을 열 탈착 분광(thermal desorption spectroscopy) 측정한 결과의 그래프이다.5 is a graph of the result of thermal desorption spectroscopy measurement of the amount of hydrogen contained in the hydride according to an embodiment of the present application.
도 6 은 본원의 일 실시예에 따른 수소화물의 수소 주입 전후의 결정구조 변화를 X선 회절 분석으로 분석한 결과를 나타낸 그래프이다.6 is a graph showing a result of X-ray diffraction analysis of a crystal structure change before and after hydrogen injection of a hydride according to an embodiment of the present application.
도 7 은 본원의 일 실시예에 따른 수소화물의 이온 전도도를 나타낸 것이다.7 shows the ionic conductivity of a hydride according to an embodiment of the present application.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. Hereinafter, embodiments of the present application will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art to which the present application pertains can easily implement them.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.However, the present application may be implemented in several different forms and is not limited to the embodiments described herein. And in order to clearly explain the present application in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우 뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다 Throughout this specification, when a part is said to be "connected" with another part, it includes not only the case where it is "directly connected" but also the case where it is "electrically connected" with another element interposed therebetween. do
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when it is said that a member is positioned "on", "on", "on", "under", "under", or "under" another member, this means that a member is located on the other member. It includes not only the case where they are in contact, but also the case where another member exists between two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when a part "includes" a component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다. As used herein, the terms “about,” “substantially,” and the like, to the extent used herein, are used in or close to the numerical value when the manufacturing and material tolerances inherent in the stated meaning are presented, and to aid in the understanding of the present application. It is used to prevent an unconscionable infringer from using the mentioned disclosure unfairly. Also, throughout this specification, "step to" or "step to" does not mean "step for".
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination of these" included in the expression of the Markush form means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the Markush form, and the components It is meant to include one or more selected from the group consisting of.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A 또는 B, 또는, A 및 B" 를 의미한다.Throughout this specification, reference to “A and/or B” means “A or B, or A and B”.
이하에서는 본원의 수소화물 및 이의 제조 방법에 대하여, 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.Hereinafter, the hydride of the present application and a method for preparing the same will be described in detail with reference to embodiments, examples, and drawings. However, the present application is not limited to these embodiments and examples and drawings.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은 하기 화학식 1 내지 3으로 구성된 군에서 선택된 하나 이상의 화합물을 포함하는 수소화물에 있어서, 상기 수소화물은 전자화물에 포함된 전자가 수소로 치환된 것인, 수소화물을 제공한다:As a technical means for achieving the above technical problem, the first aspect of the present application is a hydride comprising at least one compound selected from the group consisting of the following Chemical Formulas 1 to 3, wherein the hydride is an electron contained in the electron A hydride is provided, which is substituted with hydrogen:
[화학식 1][Formula 1]
X2CHx ;X 2 CH x ;
(화학식 1에 있어서, X는 Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho 또는 Er이고, x는 0 < x < 3.5임);(In Formula 1, X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er, and x is 0 < x < 3.5);
[화학식 2][Formula 2]
Y2NHy ;Y 2 NH y ;
(화학식 2에 있어서, Y는 Ca, Sr 또는 Ba이고, y는 0 < y < 3.5임);(in Formula 2, Y is Ca, Sr, or Ba, and y is 0 < y < 3.5);
[화학식 3][Formula 3]
Z2WHz ;Z 2 WH z ;
(화학식 3에 있어서, Z는 Ti, Zr 또는 Hf이고, W는 O, S 또는 Se이며, z 는 0 < z < 3.5 임).(In Formula 3, Z is Ti, Zr or Hf, W is O, S or Se, and z is 0 < z < 3.5).
본원에 따른 전자화물은, 전자가 원자핵의 주위 대신 물질의 결정 내부 빈 곳에 격자간 전자(interstitial electron) 상태로 존재하여 구성 요소 및 구조적 요인과 무관하게 소재의 기능성을 직접 결정하는 물질을 의미한다.The electron cargo according to the present application refers to a material in which electrons exist as an interstitial electron state in an empty space inside a crystal of a material instead of around an atomic nucleus, thereby directly determining the functionality of a material regardless of components and structural factors.
본원에 따른 수소화물은 상기 전자화물의 격자 구조에 존재하는 전자가 수소로 치환됨으로써 상기 전자화물의 격자 구조 사이에 배치된 수소를 포함하면서, 동시에 상기 전자화물의 양이온(예를 들어 화학식 1 내지 3 의 X, Y, 및 Z)과 H- 가 결합된 것을 의미한다. 후술하겠지만, 상기 전자화물의 양이온과 수소의 결합은 2 차원 또는 1 차원 구조에서 이루어진 결합으로서, 3 차원 구조에서 이루어진 결합에 비해 약한 결합이기 때문에 상기 수소화물은 수소 이온의 이동이 종래의 수소화물에 비해 자유롭고 수소 이온의 이동에 적은 에너지가 필요할 수 있다.The hydride according to the present application includes hydrogen disposed between the lattice structure of the electronized material by replacing electrons in the lattice structure of the electronized material with hydrogen, and at the same time, the cation of the electronized material (eg, Formulas 1 to 3) of X, Y, and Z) and H - means that they are bonded. As will be described later, the bond between the cation and hydrogen of the electron hydride is a bond made in a two-dimensional or one-dimensional structure, and since it is a weak bond compared to a bond made in a three-dimensional structure, the movement of hydrogen ions in the hydride is similar to that of the conventional hydride. Compared to that, it is free and may require less energy for the movement of hydrogen ions.
도 1 은 본원의 일 구현예에 따른 수소화물의 모식도로서, 도 1 의 수소화물은 상기 화학식 1 로서 표현되는 Gd2CHx(0<x<3.5)의 모식도이나 이에 제한되는 것은 아니다. 도 1 을 참조하면, 상기 Gd2CHx 는 Gd2C 에 수소가 결합되고, 이차원 Gd2CHx 의 격자 구조 사이에는 전자 대신 수소 이온, 즉 H- 가 배치되있음을 확인할 수 있다.1 is a schematic diagram of a hydride according to an embodiment of the present application, wherein the hydride of FIG. 1 is a schematic diagram of Gd 2 CH x (0<x<3.5) represented by Chemical Formula 1, but is not limited thereto. Referring to FIG. 1 , in the Gd 2 CH x , it can be confirmed that hydrogen is bonded to Gd 2 C , and hydrogen ions, that is, H are disposed between the lattice structure of the two-dimensional Gd 2 CH x instead of electrons.
이와 관련하여, 상기 화합물의 격자 구조 사이에 배치된 H 는 수소 음이온(H-)일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어 Gd2CHx 의 격자 구조 사이에 배치된 수소 모두 H- 일 수 있다.In this regard, H disposed between the lattice structures of the compound may be a hydrogen anion (H ), but is not limited thereto. For example, all of the hydrogens disposed between the lattice structures of Gd 2 CH x may be H .
상기 화학식 1 내지 3 에서, x, y, 또는 z 가 3.5 이상이 되면, 수소가 상기 화학식 1 내지 3 으로 구성된 군에서 선택된 하나 이상의 화합물의 2 차원 구조 또는 1 차원 구조의 빈 공간에 도입되지 않고, 상기 화합물의 결정 격자가 뒤틀리거나 훼손될 수 있다. 이와 같이 결정 격자가 훼손된 화합물은 전자화물 및/또는 수소화물의 특성이 발현되지 않는다.In Formulas 1 to 3, when x, y, or z is 3.5 or more, hydrogen is not introduced into the empty space of the two-dimensional structure or the one-dimensional structure of one or more compounds selected from the group consisting of Formulas 1 to 3, The crystal lattice of the compound may be distorted or damaged. As such, the compound in which the crystal lattice is damaged does not exhibit the properties of electrons and/or hydrides.
본원의 일 구현예에 따르면, 상기 전자화물은 하기 화학식 4 내지 6 으로 구성된 군에서 선택된 하나 이상의 저차원 전자화물을 포함할 수 있으나, 이에 제한되는 것은 아니다:According to one embodiment of the present application, the electron material may include one or more low-dimensional electron materials selected from the group consisting of the following Chemical Formulas 4 to 6, but is not limited thereto:
[화학식 4][Formula 4]
X2C ;X 2 C ;
(화학식 4에 있어서, X는 Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho 또는 Er임);(In Formula 4, X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er);
[화학식 5][Formula 5]
Y2NY 2 N
(화학식 5에 있어서, Y는 Ca, Sr 또는 Ba 임);(In Formula 5, Y is Ca, Sr, or Ba);
[화학식 6][Formula 6]
Z2WZ 2 W
(화학식 6에 있어서, Z는 Ti, Zr 또는 Hf이고, W는 O, S 또는 Se 임).(In Formula 6, Z is Ti, Zr or Hf, and W is O, S or Se).
본원에 따른 저차원 전자화물은, 상기 전자화물이 1 차원 또는 2 차원 구조를 가져 격자간 전자가 1차원 또는 2 차원적으로 분포되어 있음을 의미하는 것이다. 후술하겠지만, 상기 저차원 전자화물은 수소 분위기에서 열처리됨으로써 격자간 전자가 수소(구체적으로 H-)로 치환되기 때문에, 상기 수소화물은 1 차원 또는 2 차원적으로 분포된 수소 배열이 형성될 수 있고, 상기 수소 배열에 의해 상기 수소화물은 높은 수소 이온 전도도를 가질 수 있다.The low-dimensional electron material according to the present application means that the electron material has a one-dimensional or two-dimensional structure, so that interstitial electrons are distributed one-dimensionally or two-dimensionally. As will be described later, since the interstitial electrons are substituted with hydrogen (specifically H ) by heat treatment in a hydrogen atmosphere, the hydride may form a one-dimensional or two-dimensionally distributed hydrogen arrangement, and , due to the hydrogen arrangement, the hydride may have high hydrogen ion conductivity.
구체적으로, 일반적인 수소는 3 차원으로 배열되어 격자 내의 다른 원자와 상대적으로 강하게 결합될 수 있다. 그러나, 본원에 따른 수소화물과 같이, 수소가 1 차원 또는 2 차원적으로 분포되어 있을 경우, 상기 수소는 격자 내의 다른 원자와 상대적으로 약하게 결합될 수 있다. 즉, 상기 수소화물은 1 차원 또는 2 차원적으로 분포된 수소 배열을 갖기 때문에, 상기 수소화물의 격자 사이에 배치된 수소 또는 전자화물의 금속 원자와 결합된 수소는 다른 원자와 상대적으로 약한 결합을 가져 쉽게 이동할 수 있고, 이로 인해 이동에 필요한 에너지가 적어 3 차원 구조를 갖는 수소화물에 비해 더 높은 수소 이온 전도도를 가질 수 있다.Specifically, ordinary hydrogen can be arranged in three dimensions to be relatively strongly bonded to other atoms in the lattice. However, when hydrogen is distributed one-dimensionally or two-dimensionally, as in the hydride according to the present application, the hydrogen may be relatively weakly bound to other atoms in the lattice. That is, since the hydride has a one-dimensionally or two-dimensionally distributed hydrogen arrangement, hydrogen disposed between the lattices of the hydride or hydrogen bonded to a metal atom of the electron hydride forms a relatively weak bond with other atoms. It can move easily, and because of this, it can have higher hydrogen ion conductivity than a hydride having a three-dimensional structure because the energy required for movement is low.
본원의 일 구현예에 따르면, 상기 수소화물은, 상기 화학식 4 내지 6 으로 구성된 군에서 선택된 전자화물 상의 격자 구조 사이에 포함된 전자가 수소로 치환될 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, in the hydride, electrons included between the lattice structures of the electron oxide selected from the group consisting of Chemical Formulas 4 to 6 may be substituted with hydrogen, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 수소화물은, 상기 화학식 4 내지 6으로 구성된 군에서 선택된 하나 이상의 화합물들이 이차원 형상으로 배열되고, 상기 이차원 형상 사이에 배치된 전자가 수소로 치환될 수 있으나, 이에 제한되는 것은 아니다. 이와 관련하여, 상기 전자화물의 격자 구조의 사이에 배치된 전자와 치환된 수소, 또는 이차원 형상 사이에 배치된 전자와 치환된 수소는 결국 전자와 결합된 수소일 수 밖에 없기 때문에, H- 의 전하 상태를 가진다. According to one embodiment of the present application, in the hydride, one or more compounds selected from the group consisting of Chemical Formulas 4 to 6 are arranged in a two-dimensional shape, and electrons disposed between the two-dimensional shape may be substituted with hydrogen, but It is not limited. In this regard, since the electrons and substituted hydrogens disposed between the lattice structure of the electron material, or the electrons and the substituted hydrogens disposed between the two-dimensional shapes, must eventually be hydrogen bonded to the electrons, the charge of H have a state
본원의 일 구현예에 따르면, 상기 수소화물은, 상기 화학식 4 내지 6 으로 구성된 군에서 선택된 저차원 화합물 자체에 수소가 결합될 수 있으나, 이에 제한되는 것은 아니다. 상술하였듯, 상기 저차원 화합물의 금속 원소(화학식 4 내지 6 의 X, Y, 및 Z)와 수소 이온(H-)이 결합될 수 있다.According to one embodiment of the present application, in the hydride, hydrogen may be bonded to the low-dimensional compound itself selected from the group consisting of Chemical Formulas 4 to 6, but is not limited thereto. As described above, the metal elements (X, Y, and Z of Formulas 4 to 6) of the low-dimensional compound and a hydrogen ion (H ) may be combined.
상술한 내용을 종합하면, 본원에 따른 수소화물은, 격자 구조 사이의 빈 공간에 H- 의 수소 이온이 존재하면서, 동시에 수소와의 결합을 포함하는 물질을 의미한다.Summarizing the above, the hydride according to the present application refers to a material in which hydrogen ions of H exist in the empty space between the lattice structures and at the same time include a bond with hydrogen.
본원의 일 구현예에 따르면, 상기 전자화물의 결정 구조의 대칭성과 상기 수소화물의 결정 구조의 대칭성은 서로 상이할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 상기 전자화물 및 상기 수소화물은 브라베 격자(Bravais lattice) 상으로는 동일한 격자 구조를 가질 수 있으나 상기 전자화물이 수소와 결합하고 동시에 전자화물의 격자간 전자가 수소로 치환되어 생성된 수소화물은, 상기 수소와의 결합 및 치환에 의해 상기 전자화물과 대칭성이 달라질 수 있다. 이와 관련하여, 상기 결정 구조의 대칭성은, 공간군을 의미한다.According to the exemplary embodiment of the present disclosure, the symmetry of the crystal structure of the electron nitride and the symmetry of the crystal structure of the hydride may be different from each other, but the present disclosure is not limited thereto. Specifically, the hydride and the hydride may have the same lattice structure on the Bravais lattice, but the hydride is generated by combining the electrons with hydrogen and replacing interstitial electrons with hydrogen at the same time. Silver may have different symmetry with the electron material due to bonding and substitution with the hydrogen. In this regard, the symmetry of the crystal structure refers to a space group.
예를 들어, 상기 전자화물의 결정 구조의 대칭성이 R3-m 일 경우, 상기 수소화물의 결정 구조의 대칭성은 P3-m1 일 수 있으나, 이에 제한되는 것은 아니다.For example, when the symmetry of the crystal structure of the electron nitride is R3-m, the symmetry of the crystal structure of the hydride may be P3-m1, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 수소화물은 단결정, 다결정 또는 박막의 형태를 가질 수 있으나, 이에 제한되는 것은 아니다. 이와 관련하여, 상기 수소화물은 1 차원 또는 2 차원 구조를 갖는 전자화물, 및 상기 1 차원 또는 2 차원 구조의 격자 구조에 배치된 전자가 수소로 치환된 구조를 갖기 때문에, 상기 수소화물은 상기 화학식 1 내지 3 으로 구성된 군에서 선택된 하나 이상의 화합물로 이루어진 박막이 적층된 형태를 가질 수 있다.According to one embodiment of the present application, the hydride may have the form of a single crystal, a polycrystal, or a thin film, but is not limited thereto. In this regard, since the hydride has a structure in which electrons having a one-dimensional or two-dimensional structure, and electrons disposed in the lattice structure of the one-dimensional or two-dimensional structure are substituted with hydrogen, the hydride has the above formula A thin film made of one or more compounds selected from the group consisting of 1 to 3 may have a laminated form.
후술하겠지만, 상기 수소화물이 수소를 포함하는지 여부를 확인하기 위해 상기 수소화물 및 전자화물을 열탄착 분광 분석할 수 있다. 상기 열탈착 분광 분석은 시료를 가열하면 시료로부터 탈착된 수소를 분석할 수 있다.As will be described later, the hydride and the electron hydride may be subjected to thermal carbon bonding spectroscopy to determine whether the hydride contains hydrogen. The thermal desorption spectroscopic analysis may analyze hydrogen desorbed from the sample when the sample is heated.
본원의 일 구현예에 따르면, 상기 수소화물의 이온 전도도는, 0.1 S/cm 내지 3 S/cm 일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 수소화물의 이온 전도도는 약 0.1 S/cm 내지 약 3 S/cm, 약 0.2 S/cm 내지 약 3 S/cm, 약 0.3 S/cm 내지 약 3 S/cm, 약 0.4 S/cm 내지 약 3 S/cm, 약 0.5 S/cm 내지 약 3 S/cm, 약 0.6 S/cm 내지 약 3 S/cm, 약 0.7 S/cm 내지 약 3 S/cm, 약 0.8 S/cm 내지 약 3 S/cm, 약 0.9 S/cm 내지 약 3 S/cm, 약 1 S/cm 내지 약 3 S/cm, 약 1.25 S/cm 내지 약 3 S/cm, 약 1.5 S/cm 내지 약 3 S/cm, 약 1.75 S/cm 내지 약 3 S/cm, 약 2 S/cm 내지 약 3 S/cm, 약 2.25 S/cm 내지 약 3 S/cm, 약 2.5 S/cm 내지 약 3 S/cm, 약 2.75 S/cm 내지 약 3 S/cm, 약 0.1 S/cm 내지 약 0.2 S/cm, 약 0.1 S/cm 내지 약 0.3 S/cm, 약 0.1 S/cm 내지 약 0.4 S/cm, 약 0.1 S/cm 내지 약 0.5 S/cm, 약 0.1 S/cm 내지 약 0.6 S/cm, 약 0.1 S/cm 내지 약 0.7 S/cm, 약 0.1 S/cm 내지 약 0.8 S/cm, 약 0.1 S/cm 내지 약 0.9 S/cm, 약 0.1 S/cm 내지 약 1 S/cm, 약 0.1 S/cm 내지 약 1.25 S/cm, 약 0.1 S/cm 내지 약 1.5 S/cm, 약 0.1 S/cm 내지 약 1.75 S/cm, 약 0.1 S/cm 내지 약 2 S/cm, 약 0.1 S/cm 내지 약 2.25 S/cm, 약 0.1 S/cm 내지 약 2.5 S/cm, 약 0.1 S/cm 내지 약 2.75 S/cm, 약 0.2 S/cm 내지 약 2.75 S/cm, 약 0.3 S/cm 내지 약 2.5 S/cm, 약 0.4 S/cm 내지 약 2.25 S/cm, 약 0.5 S/cm 내지 약 2 S/cm, 약 0.6 S/cm 내지 약 1.75 S/cm, 약 0.7 S/cm 내지 약 1.5 S/cm, 약 0.8 S/cm 내지 약 1.25 S/cm, 또는 약 0.9 S/cm 내지 약 1 S/cm 일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the ionic conductivity of the hydride may be 0.1 S/cm to 3 S/cm, but is not limited thereto. For example, the ionic conductivity of the hydride is about 0.1 S/cm to about 3 S/cm, about 0.2 S/cm to about 3 S/cm, about 0.3 S/cm to about 3 S/cm, about 0.4 S /cm to about 3 S/cm, about 0.5 S/cm to about 3 S/cm, about 0.6 S/cm to about 3 S/cm, about 0.7 S/cm to about 3 S/cm, about 0.8 S/cm to about 3 S/cm, from about 0.9 S/cm to about 3 S/cm, from about 1 S/cm to about 3 S/cm, from about 1.25 S/cm to about 3 S/cm, from about 1.5 S/cm to about 3 S/cm, about 1.75 S/cm to about 3 S/cm, about 2 S/cm to about 3 S/cm, about 2.25 S/cm to about 3 S/cm, about 2.5 S/cm to about 3 S /cm, about 2.75 S/cm to about 3 S/cm, about 0.1 S/cm to about 0.2 S/cm, about 0.1 S/cm to about 0.3 S/cm, about 0.1 S/cm to about 0.4 S/cm , about 0.1 S/cm to about 0.5 S/cm, about 0.1 S/cm to about 0.6 S/cm, about 0.1 S/cm to about 0.7 S/cm, about 0.1 S/cm to about 0.8 S/cm, about 0.1 S/cm to about 0.9 S/cm, about 0.1 S/cm to about 1 S/cm, about 0.1 S/cm to about 1.25 S/cm, about 0.1 S/cm to about 1.5 S/cm, about 0.1 S /cm to about 1.75 S/cm, about 0.1 S/cm to about 2 S/cm, about 0.1 S/cm to about 2.25 S/cm, about 0.1 S/cm to about 2.5 S/cm, about 0.1 S/cm to about 2.75 S/cm, from about 0.2 S/cm to about 2.75 S/cm, from about 0.3 S/cm to about 2.5 S/cm, from about 0.4 S/cm to about 2.25 S/cm, from about 0.5 S/cm to about 2 S/cm, about 0.6 S/cm to about 1.75 S/cm, about 0.7 S/cm to about 1.5 S /cm, about 0.8 S/cm to about 1.25 S/cm, or about 0.9 S/cm to about 1 S/cm, but is not limited thereto.
종래의 전자화물 또는 수소화물의 이온 전도도는 0.5 S/cm 미만으로 알려져 있으나, 본원에 따른 수소화물의 이온 전도도는 0.1 S/cm 내지 3 S/cm 로 종래의 전자화물 또는 수소화물보다 높은 이온 전도도를 가질 수 있다. 이와 관련하여, 상기 수소화물의 이온 전도도는 수소화물이 배치된 환경 또는 수소화물의 온도에 따라 증가 또는 감소할 수 있다.The ionic conductivity of the conventional electron oxide or hydride is known to be less than 0.5 S/cm, but the ionic conductivity of the hydride according to the present application is 0.1 S/cm to 3 S/cm, which is higher than that of the conventional electron oxide or hydride. can have In this regard, the ionic conductivity of the hydride may increase or decrease depending on the environment in which the hydride is disposed or the temperature of the hydride.
또한, 본원의 제 2 측면은 하기 화학식 4 내지 6 으로 구성된 군에서 선택된 하나 이상의 저차원 전자화물을 제조하는 단계; 및 상기 저차원 전자화물을 수소 기체 분위기하에서 열처리하는 단계를 포함하는 수소화물의 제조 방법에 대한 것이다:In addition, a second aspect of the present application comprises the steps of preparing one or more low-dimensional electron materials selected from the group consisting of the following Chemical Formulas 4 to 6; And it relates to a method for producing a hydride comprising the step of heat-treating the low-dimensional electron hydrate in a hydrogen gas atmosphere:
[화학식 4][Formula 4]
X2C ;X 2 C ;
(화학식 4에 있어서, X는 Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho 또는 Er임);(In Formula 4, X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er);
[화학식 5][Formula 5]
Y2N ;Y 2 N ;
(화학식 5에 있어서, Y는 Ca, Sr 또는 Ba 임);(In Formula 5, Y is Ca, Sr, or Ba);
[화학식 6][Formula 6]
Z2W ;Z 2 W ;
(화학식 6에 있어서, Z는 Ti, Zr 또는 Hf이고, W는 O, S 또는 Se 임).(In Formula 6, Z is Ti, Zr or Hf, and W is O, S or Se).
본원의 제 2 측면의 수소화물의 제조 방법에 대하여, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 본원의 제 1 측면에 기재된 내용은 본원의 제 2 측면에 동일하게 적용될 수 있다.With respect to the method for producing a hydride of the second aspect of the present application, detailed descriptions of parts overlapping with the first aspect of the present application are omitted, but even if the description is omitted, the contents described in the first aspect of the present application are the second The same can be applied to the side.
먼저, 화학식 4 내지 6 으로 구성된 군에서 선택된 하나 이상의 저차원 전자화물을 제조한다.First, one or more low-dimensional electron materials selected from the group consisting of Chemical Formulas 4 to 6 are prepared.
본원의 일 구현예에 따르면, 상기 저차원 전자화물은, 금속 원소(X, Y, 또는 Z) 및 비금속 원소(C, N, W)을 2:1로 혼합한 후 용융함으로써 제조할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the low-dimensional electron oxide may be prepared by mixing a metal element (X, Y, or Z) and a non-metal element (C, N, W) in a 2:1 ratio and then melting, However, the present invention is not limited thereto.
이어서, 상기 저차원 전자화물을 수소 기체 분위기하에서 열처리한다.Next, the low-dimensional electronized material is heat-treated in a hydrogen gas atmosphere.
본원의 일 구현예에 따르면, 상기 저차원 전자화물을 수소 기체 분위기 하에서 열처리하는 단계에서, 상기 저차원 전자화물의 격자 구조 사이에 배치된 전자가 수소로 치환하거나, 또는 상기 저차원 전자화물과 수소가 결합될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, in the step of heat-treating the low-dimensional electron material in a hydrogen gas atmosphere, electrons disposed between the lattice structure of the low-dimensional electron material are replaced with hydrogen, or the low-dimensional electron material and hydrogen may be combined, but is not limited thereto.
상기 저차원 전자화물은 수소 기체 분위기에서 열처리됨으로써, 격자간 전자가 H- 로 치환되면서, 동시에 전자화물의 금속 원소(X, Y, 또는 Z)에 수소 이온이 결합될 수 있다. 이 때, 상기 전자의 치환 및 금속 원소와 수소의 결합은 동시에 발생할 수 있다.The low-dimensional electron oxide is heat-treated in a hydrogen gas atmosphere, so that interstitial electrons are replaced with H , and at the same time, hydrogen ions may be bonded to a metal element (X, Y, or Z) of the electron oxide. In this case, the substitution of the electrons and the bonding of the metal element and hydrogen may occur at the same time.
즉, 상기 수소 기체의 일부, 상기 저차원 전자화물의 금속 원소와 결합되고, 다른 일부는 상기 저차원 전자화물의 격자 구조 사이에 배치된 전자와 치환될 수 있다.That is, a portion of the hydrogen gas may be combined with the metal element of the low-dimensional electron material, and the other portion may be substituted with electrons disposed between the lattice structures of the low-dimensional electron material.
본원의 일 구현예에 따르면, 상기 수소 기체 분위기는, 비활성 기체를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 수소 기체 분위기는 Ar 을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 수소 기체 분위기는 N2 와 같은 불활성 기체를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the hydrogen gas atmosphere may further include an inert gas, but is not limited thereto. For example, the hydrogen gas atmosphere may include Ar, but is not limited thereto. In addition, the hydrogen gas atmosphere may further include an inert gas such as N 2 , but is not limited thereto.
본원의 일 구현예에 따르면, 상기 열처리하는 단계는 100℃ 내지 1,500℃ 에서 수행될 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 열처리하는 단계는 약 100℃ 내지 약 1,500℃, 약 200℃ 내지 약 1,500℃, 약 300℃ 내지 약 1,500℃, 약 400℃ 내지 약 1,500℃, 약 500℃ 내지 약 1,500℃, 약 600℃ 내지 약 1,500℃, 약 700℃ 내지 약 1,500℃, 약 800℃ 내지 약 1,500℃, 약 900℃ 내지 약 1,500℃, 약 1,000℃ 내지 약 1,500℃, 약 1,100℃ 내지 약 1,500℃, 약 1,200℃ 내지 약 1,500℃, 약 1,300℃ 내지 약 1,500℃, 약 1,400℃ 내지 약 1,500℃, 약 100℃ 내지 약 200℃, 약 100℃ 내지 약 300℃, 약 100℃ 내지 약 400℃, 약 100℃ 내지 약 500℃, 약 100℃ 내지 약 600℃, 약 100℃ 내지 약 700℃, 약 100℃ 내지 약 800℃, 약 100℃ 내지 약 900℃, 약 100℃ 내지 약 1,000℃, 약 100℃ 내지 약 1,100℃, 약 100℃ 내지 약 1,200℃, 약 100℃ 내지 약 1,300℃, 약 100℃ 내지 약 1,400℃, 약 200℃ 내지 약 1,400℃, 약 300℃ 내지 약 1,300℃, 약 400℃ 내지 약 1,200℃, 약 500℃ 내지 약 1,100℃, 약 600℃ 내지 약 1,000℃, 약 700℃ 내지 약 900℃, 또는 약 800℃ 에서 수행될 수 있으나, 이에 제한되는 것은 아니다.According to an exemplary embodiment of the present application, the heat treatment may be performed at 100° C. to 1,500° C., but is not limited thereto. For example, the heat treatment may include about 100°C to about 1,500°C, about 200°C to about 1,500°C, about 300°C to about 1,500°C, about 400°C to about 1,500°C, about 500°C to about 1,500°C, about 600°C to about 1,500°C, about 700°C to about 1,500°C, about 800°C to about 1,500°C, about 900°C to about 1,500°C, about 1,000°C to about 1,500°C, about 1,100°C to about 1,500°C, about 1,200°C to about 1,500 °C, about 1,300 °C to about 1,500 °C, about 1,400 °C to about 1,500 °C, about 100 °C to about 200 °C, about 100 °C to about 300 °C, about 100 °C to about 400 °C, about 100 °C to about 500°C, about 100°C to about 600°C, about 100°C to about 700°C, about 100°C to about 800°C, about 100°C to about 900°C, about 100°C to about 1,000°C, about 100°C to about 1,100°C , from about 100 °C to about 1,200 °C, from about 100 °C to about 1,300 °C, from about 100 °C to about 1,400 °C, from about 200 °C to about 1,400 °C, from about 300 °C to about 1,300 °C, from about 400 °C to about 1,200 °C, about 500° C. to about 1,100° C., about 600° C. to about 1,000° C., about 700° C. to about 900° C., or about 800° C., but is not limited thereto.
상기 열처리하는 단계가 1,500℃ 를 초과하는 온도에서 수행될 경우 높은 에너지에 의해 상기 저차원 전자화물이 열분해되거나, 상기 저차원 전자화물 내부로 주입되는 수소의 양보다 상기 저차원 전자화물 외부로 빠져나가는 수소의 양이 많아지는 등의 문제가 발생할 수 있다. 또한, 상기 열처리하는 단계의 온도가 100℃ 미만인 경우 열 에너지가 낮아 상기 저차원 전자화물 내부에 수소가 주입되지 않아 격자간 전자가 수소로 치환되지 않을 수 있다.When the heat treatment step is performed at a temperature exceeding 1,500° C., the low-dimensional electrons are thermally decomposed by high energy, or the amount of hydrogen injected into the low-dimensional electrons exits to the outside of the low-dimensional electrons. Problems such as an increase in the amount of hydrogen may occur. In addition, when the temperature of the heat treatment is less than 100° C., the interstitial electrons may not be replaced with hydrogen because the thermal energy is low, so that hydrogen is not injected into the low-dimensional electronic material.
또한, 본원의 제 3 측면은 상기 제 1 측면에 따른 수소화물을 포함하는, 수소이온 전도체에 대한 것이다.Also, a third aspect of the present application relates to a hydrogen ion conductor comprising the hydride according to the first aspect.
본원의 일 구현예에 따르면, 상기 수소 이온 전도체는, 수소 센서, 물 분해 시스템, 연료 전지, 수소 이온 배터리, 수소 압축기 및 이들의 조합들로 이루어진 군에서 선택된 것에 포함될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the hydrogen ion conductor may be selected from the group consisting of a hydrogen sensor, a water decomposition system, a fuel cell, a hydrogen ion battery, a hydrogen compressor, and combinations thereof, but is not limited thereto. .
상술하였듯, 상기 수소화물은 통상적인 전자화물 또는 수소화물 대비 수소 이온 전도도가 높기 때문에, 수소 또는 수소 이온을 전달, 생성, 또는 보관할 필요가 있는 기기에As described above, since the hydride has a higher hydrogen ion conductivity than a conventional electron oxide or hydride, it is suitable for devices that need to transfer, generate, or store hydrogen or hydrogen ions.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.The present invention will be described in more detail through the following examples, but the following examples are for illustrative purposes only and are not intended to limit the scope of the present application.
[실시예 1] : Gd2CHx 의 제조[Example 1]: Preparation of Gd 2 CH x
Gd및 C를 2 : 1의 몰비(molar ratio)로 정량 배합한 원재료를 1000℃ 이상의 고온용 전기로를 이용하여 고온에서 용융, 합성 후 냉각시켜 2 차원 Gd2C 전자화물을 제조하였다. 이 때, 합성 분위기는 비활성 기체 또는 10-1 Torr 이하의 압력을 가지는 진공 분위기에서 진행하였다.A two-dimensional Gd 2 C electronic material was prepared by melting and synthesizing raw materials quantitatively mixed with Gd and C at a molar ratio of 2 : 1 at a high temperature using an electric furnace for high temperature of 1000° C. or higher, and cooling the mixture. At this time, the synthesis atmosphere was conducted in an inert gas or a vacuum atmosphere having a pressure of 10 -1 Torr or less.
이어서, 합성된 전자화물을 아르곤 가스 분위기의 글러브 박스 안에서 펠렛 형태로 가공하여 시료를 준비하였다. 이어서, 준비된 시료를 관상형 전기로에 로딩한 후, 수소/아르곤 혼합가스를 흘려주며 300℃의 온도에서 24시간 동안 가열하여 상기 2 차원 Gd2C 전자화물의 내부에 수소를 주입하였다.Then, the synthesized electron material was processed into pellets in a glove box in an argon gas atmosphere to prepare a sample. Then, the prepared sample was loaded into a tubular electric furnace, and heated at a temperature of 300° C. for 24 hours while flowing a hydrogen/argon mixed gas, and hydrogen was injected into the two-dimensional Gd 2 C electron material.
도 3 은 본원의 일 실시예에 따른 수소화물의 사진으로서, Gd2CHx 를 촬영한 것이고, 도 4 는 상기 Gd2CHx 의 이온 전도도를 측정하기 위한 설비를 촬영한 사진이다.3 is a photograph of a hydride according to an embodiment of the present application, Gd 2 CH x is taken, and Figure 4 is a photograph taken of a facility for measuring the ionic conductivity of the Gd 2 CH x .
[실시예 2] : Ca2NHx 의 제조[Example 2]: Preparation of Ca 2 NH x
Ca와 Ca3N2를 1 : 1의 몰비로 정량 배합한 원재료를 800℃ 이상의 고온용 전기로에서 반응시킨 후 냉각시켜 Ca2N 전자화물을 제조하였다. 이 때, 상기 Ca2N 은 비활성 기체 또는 10-3 Torr 이하의 압력 하에서 진행하였다. 이어서, 합성된 전자화물을 아르곤 가스 분위기의 글러브 박스 안에서 펠렛 형태로 가공하여 시료를 준비한 후, 준비된 시료를 관상형 전기로에 로딩한 후, 수소 및 아르곤 혼합가스를 흘려주며 300℃의 온도에서 24시간 동안 가열하여 상기 2 차원 Ca2N 전자화물의 내부에 수소를 주입하였다A raw material prepared by quantitatively mixing Ca and Ca 3 N 2 in a molar ratio of 1:1 was reacted in an electric furnace for high temperature of 800° C. or higher, and then cooled to prepare Ca 2 N electronized material. At this time, the Ca 2 N was carried out under an inert gas or a pressure of 10 -3 Torr or less. Next, the synthesized electron material is processed into pellets in a glove box in an argon gas atmosphere to prepare a sample, and then the prepared sample is loaded into a tubular electric furnace, and a hydrogen and argon mixed gas is flowed thereto for 24 hours at a temperature of 300°C. Hydrogen was injected into the interior of the two-dimensional Ca 2 N electrons by heating during
[실시예 3] : Hf2SHx의 제조[Example 3]: Preparation of Hf 2 SH x
Hf및 S를 2 : 1의 몰비(molar ratio)로 혼합하고, 펠렛화하여 실리카 튜브에 진공 봉입한 후 전기로에 넣어 500℃ 에서 50 시간 내지 70 시간 소결하였다. 이어서, 열처리된 혼합물을 아크 용융 설비에 넣고, 아르곤 분위기 하에서 1,000℃ 이상의 온도에서 용융 및 냉각시켜 2 차원 Hf2S 전자화물을 제조하였다.Hf and S were mixed at a molar ratio of 2: 1, pelletized, vacuum sealed in a silica tube, and then sintered at 500° C. for 50 to 70 hours in an electric furnace. Then, the heat-treated mixture was put into an arc melting facility, and melted and cooled at a temperature of 1,000° C. or higher under an argon atmosphere to prepare a two-dimensional Hf 2 S electride.
이어서, 합성된 전자화물을 아르곤 가스 분위기의 글러브 박스 안에서 펠렛 형태로 가공하여 시료를 준비하였다. 이어서, 준비된 시료를 관상형 전기로에 로딩한 후, 수소/아르곤 혼합가스를 흘려주며 300℃의 온도에서 24시간 동안 가열하여 상기 2 차원 Hf2S 전자화물의 내부에 수소를 주입하였다.Then, the synthesized electron material was processed into pellets in a glove box in an argon gas atmosphere to prepare a sample. Then, the prepared sample was loaded into a tubular electric furnace, and heated at a temperature of 300° C. for 24 hours while flowing a hydrogen/argon mixed gas, and hydrogen was injected into the two-dimensional Hf 2 S electron material.
[실험예 1][Experimental Example 1]
도 5 는 본원의 일 실시예에 따른 수소화물에 포한됨 수소량을 열 탈착 분광(thermal desorption spectroscopy) 측정한 결과의 그래프이다.5 is a graph of the result of thermal desorption spectroscopy measurement of the amount of hydrogen contained in the hydride according to an embodiment of the present application.
상기 실시예 1 에 따라 제조된 Gd2CHx 수소화물에 포함된 수소의 양을 확인하기 위해 열 탈착 분광법(thermal desorption spectroscopy) 분석을 진행하였다. 이 때, 열처리 온도가 300℃ 인 경우, 700℃ 에서 열처리했을 때에 비해 수소 주입 정도가 높아졌음을 확인할 수 있다. 수소 분위기에서의 열처리를 통해 저차원 전자화물에 실제로 수소가 주입되는 것을 확인하였으며, 수소 분위기에서의 열처리 온도에 따라 샘플에 함유된 수소의 양이 변화하는 것을 확인하였다.In order to confirm the amount of hydrogen contained in the Gd 2 CH x hydride prepared according to Example 1, thermal desorption spectroscopy analysis was performed. At this time, when the heat treatment temperature is 300 ℃, it can be confirmed that the hydrogen injection degree is higher than when the heat treatment at 700 ℃. It was confirmed that hydrogen was actually injected into the low-dimensional electrons through the heat treatment in a hydrogen atmosphere, and it was confirmed that the amount of hydrogen contained in the sample was changed according to the heat treatment temperature in the hydrogen atmosphere.
[실험예 2][Experimental Example 2]
도 6 은 본원의 일 실시예에 따른 수소화물의 수소 주입 전후의 결정구조 변화를 X선 회절 분석으로 분석한 결과를 나타낸 그래프이다. 도 6 을 참조하면, 상기 Gd2C 는 수소 기체 분위기에서 열처리됨으로써 XRD 피크가 변경되기 때문에, Gd2CHx 와 Gd2C 는 대칭 구조가 상이함을 확인할 수 있다.6 is a graph showing a result of X-ray diffraction analysis of a crystal structure change before and after hydrogen injection of a hydride according to an embodiment of the present application. Referring to FIG. 6 , since the XRD peak is changed by heat treatment of Gd 2 C in a hydrogen gas atmosphere, it can be confirmed that Gd 2 CH x and Gd 2 C have different symmetric structures.
[실험예 3][Experimental Example 3]
도 7 은 본원의 일 실시예에 따른 수소화물의 이온 전도도를 나타낸 것이다.7 shows the ionic conductivity of a hydride according to an embodiment of the present application.
도 7 을 참조하면, 상기 수소화물 Gd2CHx 의 이온 전도도는 200℃ 에서 ~ 2.5 S/cm 로서, 이는 기존에 보고되었던 수소이온 전도체들의 전도도보다 월등히 큰 값을 가지고 있음을 의미한다.Referring to FIG. 7 , the ionic conductivity of the hydride Gd 2 CH x is ~2.5 S/cm at 200° C., which means that it has a significantly larger value than the previously reported conductivity of hydrogen ion conductors.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present application is for illustration, and those of ordinary skill in the art to which the present application pertains will understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and likewise components described as distributed may also be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present application.

Claims (13)

  1. 하기 화학식 1 내지 3으로 구성된 군에서 선택된 하나 이상의 화합물을 포함하는 수소화물에 있어서, In the hydride containing one or more compounds selected from the group consisting of the following formulas 1 to 3,
    상기 수소화물은 전자화물에 포함된 전자가 수소로 치환된 것인, 수소화물:The hydride is a hydride in which the electrons contained in the hydride are substituted with hydrogen:
    [화학식 1][Formula 1]
    X2CHx ;X 2 CH x ;
    (화학식 1에 있어서, X는 Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho 또는 Er이고, x는 0 < x < 3.5임);(In Formula 1, X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er, and x is 0 < x < 3.5);
    [화학식 2][Formula 2]
    Y2NHy ;Y 2 NH y ;
    (화학식 2에 있어서, Y는 Ca, Sr 또는 Ba이고, y는 0 < y < 3.5임);(in Formula 2, Y is Ca, Sr, or Ba, and y is 0 < y < 3.5);
    [화학식 3][Formula 3]
    Z2WHz ;Z 2 WH z ;
    (화학식 3에 있어서, Z는 Ti, Zr 또는 Hf이고, W는 O, S 또는 Se이며, z 는 0 < z < 3.5 임).(In Formula 3, Z is Ti, Zr or Hf, W is O, S or Se, and z is 0 < z < 3.5).
  2. 제 1 항에 있어서,The method of claim 1,
    상기 전자화물은 하기 화학식 4 내지 6 으로 구성된 군에서 선택된 하나 이상의 저차원 전자화물을 포함하는 것인, 수소화물:The hydride is a hydride comprising one or more low-dimensional electrons selected from the group consisting of the following formulas 4 to 6:
    [화학식 4][Formula 4]
    X2C ;X 2 C ;
    (화학식 4에 있어서, X는 Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho 또는 Er임);(In Formula 4, X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er);
    [화학식 5][Formula 5]
    Y2NY 2 N
    (화학식 5에 있어서, Y는 Ca, Sr 또는 Ba 임);(In Formula 5, Y is Ca, Sr, or Ba);
    [화학식 6][Formula 6]
    Z2WZ 2 W
    (화학식 6에 있어서, Z는 Ti, Zr 또는 Hf이고, W는 O, S 또는 Se 임).(In Formula 6, Z is Ti, Zr or Hf, and W is O, S or Se).
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 수소화물은, 상기 화학식 4 내지 6 으로 구성된 군에서 선택된 전자화물 상의 격자 구조 사이에 포함된 전자가 수소로 치환된 것인, 수소화물.In the hydride, an electron included between the lattice structure of the electron compound selected from the group consisting of Chemical Formulas 4 to 6 is substituted with hydrogen.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 수소화물은, 상기 화학식 4 내지 6으로 구성된 군에서 선택된 하나 이상의 화합물들이 이차원 형상으로 배열되고, 상기 이차원 형상 사이에 배치된 전자가 수소로 치환된 것인, 수소화물.In the hydride, one or more compounds selected from the group consisting of Chemical Formulas 4 to 6 are arranged in a two-dimensional shape, and electrons disposed between the two-dimensional shapes are substituted with hydrogen.
  5. 제 2 항에 있어서,3. The method of claim 2,
    상기 수소화물은, 상기 화학식 4 내지 6 으로 구성된 군에서 선택된 저차원 화합물 자체에 수소가 결합된 것인 수소화물.The hydride is a hydride in which hydrogen is bonded to the low-dimensional compound itself selected from the group consisting of Chemical Formulas 4 to 6.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 전자화물의 결정 구조의 대칭성과 상기 수소화물의 결정 구조의 대칭성은 서로 상이한 것인, 수소화물.The symmetry of the crystal structure of the hydride and the symmetry of the crystal structure of the hydride are different from each other.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 수소화물은 단결정, 다결정 또는 박막의 형태를 갖는 것인, 수소화물.The hydride will have the form of a single crystal, polycrystal or thin film, the hydride.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 수소화물의 이온 전도도는, 0.1 S/cm 내지 3 S/cm 인, 수소화물.The ion conductivity of the hydride is 0.1 S/cm to 3 S/cm, the hydride.
  9. 하기 화학식 4 내지 6 으로 구성된 군에서 선택된 어느 하나 이상의 저차원 전자화물을 제조하는 단계; 및preparing one or more low-dimensional electron materials selected from the group consisting of the following Chemical Formulas 4 to 6; and
    상기 저차원 전자화물을 수소 기체 분위기하에서 열처리하는 단계; heat-treating the low-dimensional electronized material in a hydrogen gas atmosphere;
    를 포함하는 containing
    수소화물의 제조 방법:Process for preparing hydrides:
    [화학식 4][Formula 4]
    X2C ;X 2 C ;
    (화학식 4에 있어서, X는 Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho 또는 Er임);(In Formula 4, X is Sc, Y, La, Ce, Eu, Gd, Tb, Dy, Ho or Er);
    [화학식 5][Formula 5]
    Y2NY 2 N
    (화학식 5에 있어서, Y는 Ca, Sr 또는 Ba 임);(In Formula 5, Y is Ca, Sr, or Ba);
    [화학식 6][Formula 6]
    Z2WZ 2 W
    (화학식 6에 있어서, Z는 Ti, Zr 또는 Hf이고, W는 O, S 또는 Se 임).(In Formula 6, Z is Ti, Zr or Hf, and W is O, S or Se).
  10. 제 9 항에 있어서,10. The method of claim 9,
    상기 저차원 전자화물을 수소 기체 분위기 하에서 열처리하는 단계에서, 상기 저차원 전자화물의 격자 구조 사이에 배치된 전자가 수소로 치환하거나, 또는 상기 저차원 전자화물과 수소가 결합되는 것인, 수소화물의 제조 방법.In the step of heat-treating the low-dimensional electron material in a hydrogen gas atmosphere, electrons disposed between the lattice structures of the low-dimensional electron material are replaced with hydrogen, or the low-dimensional electron material and hydrogen are combined, the hydride manufacturing method.
  11. 제 9 항에 있어서,10. The method of claim 9,
    상기 수소 기체 분위기는, 비활성 기체를 추가 포함하는 것인, 수소화물의 제조 방법.The hydrogen gas atmosphere, the method for producing a hydride will further include an inert gas.
  12. 제 9 항에 있어서,10. The method of claim 9,
    상기 열처리하는 단계는 100℃ 내지 1,500℃ 에서 수행되는 것인, 수소화물의 제조 방법.The heat treatment step is to be carried out at 100 ℃ to 1,500 ℃, the method for producing a hydride.
  13. 제 1 항에 따른 수소화물을 포함하는, 수소이온 전도체.A hydrogen ion conductor comprising the hydride according to claim 1 .
PCT/KR2022/004504 2021-04-01 2022-03-30 Hydride and preparation method therefor WO2022211488A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0042497 2021-04-01
KR20210042497 2021-04-01
KR10-2021-0165300 2021-11-26
KR1020210165300A KR102639462B1 (en) 2021-04-01 2021-11-26 Hydride and manufacturing method for the same

Publications (1)

Publication Number Publication Date
WO2022211488A1 true WO2022211488A1 (en) 2022-10-06

Family

ID=83459441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004504 WO2022211488A1 (en) 2021-04-01 2022-03-30 Hydride and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2022211488A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160361712A1 (en) * 2014-02-27 2016-12-15 Japan Science And Technology Agency Supported metal catalyst and method of synthesizing ammonia using the same
KR20200060284A (en) * 2018-11-21 2020-05-29 성균관대학교산학협력단 2 Dimensional ferrimagnetic electride and preparation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160361712A1 (en) * 2014-02-27 2016-12-15 Japan Science And Technology Agency Supported metal catalyst and method of synthesizing ammonia using the same
KR20200060284A (en) * 2018-11-21 2020-05-29 성균관대학교산학협력단 2 Dimensional ferrimagnetic electride and preparation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALTORFER, F. ; BUHRER, W. ; WINKLER, B. ; CODDENS, G. ; ESSMANN, R. ; JACOBS, H.: "H^--jump diffusion in barium-nitride-hydride Ba"2NH", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM; NL, NL, vol. 70-71, 1 May 1994 (1994-05-01), NL , pages 272 - 277, XP024657337, ISSN: 0167-2738, DOI: 10.1016/0167-2738(94)90322-0 *
BAI QIANG, HE XINGFENG, ZHU YIZHOU, MO YIFEI: "First-Principles Study of Oxyhydride H – Ion Conductors: Toward Facile Anion Conduction in Oxide-Based Materials", ACS APPLIED ENERGY MATERIALS, vol. 1, no. 4, 23 April 2018 (2018-04-23), pages 1626 - 1634, XP055972265, ISSN: 2574-0962, DOI: 10.1021/acsaem.8b00077 *
KURA CHIHARU, FUJIMOTO SHO, KUNISADA YUJI, KOWALSKI DAMIAN, TSUJI ETSUSHI, ZHU CHUNYU, HABAZAKI HIROKI, AOKI YOSHITAKA: "Enhanced hydrogen permeability of hafnium nitride nanocrystalline membranes by interfacial hydride conduction", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 6, no. 6, 1 January 2018 (2018-01-01), GB , pages 2730 - 2741, XP055972262, ISSN: 2050-7488, DOI: 10.1039/C7TA10253D *

Similar Documents

Publication Publication Date Title
WO2015050420A1 (en) Novel compound semiconductor and use thereof
CA1338202C (en) Chemical vapor deposition of oxide films containing alkaline earth metals from metal-organic sources
WO2012026775A2 (en) Thermoelectric material, and thermoelectric module and thermoelectric device comprising the thermoelectric material
WO2015034317A1 (en) Thermoelectric material and method for manufacturing same
WO2015057019A1 (en) Thermoelectric material and method for manufacturing same
Wong‐Ng et al. Crystal chemistry and phase equilibrium studies of the BaO (BaCO3)–½R2O3–CuOx systems in air: VI, R= Neodymium
WO2022211488A1 (en) Hydride and preparation method therefor
WO2012148197A2 (en) Novel compound semiconductor and use thereof
Timokhin et al. Synthesis and characterisation of LK-99
WO2019156259A1 (en) Superconductor comprising magnesium diboride and manufacturing method therefor
Seiji et al. Synthesis of a new “124” compound, PrBa2Cu4O8
WO2019151643A1 (en) Layered znbi, znbi nanosheet, and preparation methods therefor
WO2016052948A1 (en) Compound semiconductor and manufacturing method thereof
WO2018101496A1 (en) Method for manufacturing superconductor comprising magnesium diboride, and superconductor comprising magnesium diboride
CN102000815B (en) Negative pressure solid phase reaction preparation method for FeAs powder
WO2015034318A1 (en) Thermoelectric material
WO2020050466A1 (en) Tin diselenide-based thermoelectric material and method for producing same
WO2015057018A1 (en) Thermoelectric material and method for manufacturing same
Miyakawa et al. Novel Room Temperature Stable Electride 12SrO• 7Al2O3 Thin Films: Fabrication, Optical and Electron Transport Properties
WO2019146913A1 (en) Catalyst for hydrogen evolution reaction, comprising copper promoter
Rojek et al. 115 K superconductivity in Bi Pb(Ag, Nb, Sb) Sr Ca Cu O systems
WO2015034321A1 (en) Method for manufacturing thermoelectric material
WO2015057000A1 (en) Thermoelectric material and method for manufacturing same
Fruth et al. High-Tc phase obtained in the Pb/Sb doped Bi–Sr–Ca–Cu–O system
WO2012148198A2 (en) Novel compound semiconductor and usage thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781607

Country of ref document: EP

Kind code of ref document: A1