WO2022210851A1 - Flexible ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic device - Google Patents

Flexible ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic device Download PDF

Info

Publication number
WO2022210851A1
WO2022210851A1 PCT/JP2022/015873 JP2022015873W WO2022210851A1 WO 2022210851 A1 WO2022210851 A1 WO 2022210851A1 JP 2022015873 W JP2022015873 W JP 2022015873W WO 2022210851 A1 WO2022210851 A1 WO 2022210851A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
element array
flexible
plate
array substrate
Prior art date
Application number
PCT/JP2022/015873
Other languages
French (fr)
Japanese (ja)
Inventor
真理 酒井
学 西脇
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Priority to JP2023511470A priority Critical patent/JPWO2022210851A1/ja
Publication of WO2022210851A1 publication Critical patent/WO2022210851A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present disclosure relates to flexible ultrasound probe heads, ultrasound probes, and ultrasound diagnostic equipment.
  • An ultrasound diagnostic device is an inspection device that uses ultrasound to examine the inside of the body and structures.
  • ultrasonic waves are transmitted from the body surface to the inside of the body, from the inner surface of the circulatory system and organs to the inside of the body, and from the surface of the structure to the inside of the structure. and the presence or absence of defects, etc., and make a diagnosis. Since the displayed images appear to move in real time, it is possible to perform treatment while confirming the position of the lesion, to observe blood flow dynamics, etc., and because it is a non-invasive technique, it is widely used in the medical field. It is
  • linear, sector, and convex types of ultrasonic probes There are linear, sector, and convex types of ultrasonic probes, and these types are selected according to the purpose of observation and the observation site.
  • the linear type is used for examination of tissues positioned shallow from the body surface
  • the convex type is used for examination of tissues positioned deep from the body surface.
  • Patent document 1 shows an example of conventional technology of a convex ultrasonic probe.
  • the ultrasonic element of such an ultrasonic probe is formed by cutting a piezoelectric ceramic sandwiched between electrodes into strips.
  • Patent Documents 2 and 3 disclose such ultrasound probes. Further, for details of the MEMS for manufacturing this, for example, reference can be made to Patent Literature 4.
  • an ultrasonic probe using a piezoelectric MEMS ultrasonic transducer as an ultrasonic element uses a flat substrate such as a silicon substrate for forming the ultrasonic element. is a linear ultrasonic probe.
  • the present disclosure provides a novel ultrasonic probe head that can be used as both linear and convex type probes.
  • a flexible ultrasonic probe head comprising at least an ultrasonic element array substrate and a plate-shaped elastic body supporting the ultrasonic element array substrate, the ultrasonic element array substrate is flexible and includes a plurality of piezoelectric MEMS ultrasonic transducers on the substrate; The ultrasonic element array substrate is supported along a stress neutral plane generated when the plate-shaped elastic body is bent in the thickness direction along the axis in the array arrangement direction, Flexible ultrasound probe head.
  • the flexible ultrasonic probe head according to any one of aspects 1 to 6, wherein the piezoelectric MEMS ultrasonic transducer includes at least an upper electrode, a piezoelectric thin film, a lower electrode, and a vibrating film in this order.
  • a flexible ultrasonic probe head comprising the ultrasonic element array substrate according to aspect 10 and a plate-shaped elastic body supporting the ultrasonic element array substrate.
  • Ultrasonic diagnosis comprising at least the ultrasonic probe according to aspect 12 or 13, a processing unit that processes a signal from the ultrasonic probe, and a display device that converts the signal from the processing unit into image data and displays it Device.
  • FIG. 1 illustrates a ZY cross-sectional view of an example flexible ultrasound probe head of the present disclosure.
  • FIG. 2 illustrates a plan view in the XY direction of one example of a flexible ultrasound probe head of the present disclosure.
  • FIG. 3 illustrates a ZX cross-sectional view of an example piezoelectric MEMS ultrasonic transducer on an ultrasonic element array substrate. 4 is an enlarged view of the piezoelectric MEMS ultrasonic transducer of the flexible ultrasonic probe head of the present disclosure of FIG. 2;
  • FIG. FIG. 5 illustrates steps in a method of manufacturing a flexible ultrasound probe head of the present disclosure.
  • FIG. 6 shows an example of switching the ultrasonic probe head of the present disclosure between a linear type and a convex type.
  • FIG. 7 illustrates a cross-sectional view of the distal portion of the ultrasound probe of the present disclosure.
  • FIG. 8 illustrates an ultrasound diagnostic apparatus of the present disclosure.
  • a flexible ultrasonic probe head of the present disclosure includes at least an ultrasonic element array substrate and a plate-like elastic body that supports the ultrasonic element array substrate, The stress generated when the ultrasonic element array base material is flexible and includes a plurality of piezoelectric MEMS ultrasonic transducers, and the plate-like elastic body is bent in the thickness direction along the axis in the array arrangement direction.
  • the ultrasonic element array substrate is supported along the neutral plane.
  • the present inventors have found that even when piezoelectric MEMS ultrasonic transducers are used, the ultrasonic element array substrate can be supported along the stress neutral plane of the elastic plate. Therefore, even if the entire probe head is bent until it has a sufficient curvature as a convex probe, the ultrasonic element array substrate, especially the piezoelectric thin film of the piezoelectric MEMS ultrasonic transducer, can be used without causing cracks or the like. I found This allows the probe head of the present disclosure to switch between convex and linear ultrasonic probes, even when using an array substrate of piezoelectric MEMS ultrasonic transducers. A probe using the probe head of the present disclosure does not need to be changed in probe type, and thus can save time and effort during use. In addition, when a probe using the probe head of the present disclosure is adopted in a portable ultrasonic diagnostic apparatus, there is no need to carry two probes. It is extremely advantageous when used in
  • the ultrasonic element array substrate is supported along the stress neutral plane generated when the plate-like elastic body is bent in the thickness direction along the axis in the array arrangement direction.
  • the ultrasonic element array substrate is supported on the plane within a range of 1%.
  • “when the elastic plate is bent in the thickness direction along the axis in the array arrangement direction” means when the elastic plate is bent in the Z direction along the X axis.
  • stress neutral plane means that when a bending force is applied to approximately the center of a certain member, a distribution of tensile stress and compressive stress occurs perpendicular to the direction in which the force is applied. The surface where the tensile stress and compressive stress are balanced and no stress occurs.
  • the stress neutral plane can be calculated by a finite element method analysis using a simplified model of the member. For example, the stress neutral surface of the plate-like elastic body can be calculated as a simple plate even if there is a slit or the like for pulling out the flexible printed circuit board.
  • the thickness direction of the plate-shaped elastic body A stress neutral plane parallel to the array alignment direction and the array transverse direction is generated at a specific position of .
  • the ultrasonic element array substrate is supported by the elastic plate along its stress neutral plane.
  • FIG. 1 shows a cross-sectional view in the ZY direction of an example of the flexible ultrasound probe head 100 of the present disclosure.
  • FIG. 2 also shows a plan view in the XY direction of an example flexible ultrasound probe head 100 of the present disclosure.
  • the X direction, Y direction, and Z direction are also referred to as the array arrangement direction, the array transverse direction, and the thickness direction, respectively.
  • the terms “array arrangement direction” and “array transverse direction” are for convenience of explanation with reference to FIGS. The manner is not limited and, for example, the array may be square.
  • the flexible ultrasonic probe head 100 includes at least an ultrasonic element array substrate 10 and plate-shaped elastic bodies 20 that support both ends of the ultrasonic element array substrate 10 in the array transverse direction. , further comprising an acoustic lens 30 and a flexible printed circuit board 40 .
  • the ultrasonic element array substrate 10 includes a plurality of piezoelectric MEMS ultrasonic transducers 1 on a substrate 2. As shown in FIG. can be included above.
  • the ultrasonic element array substrate 10 extends in a plane in the array arrangement direction and the transverse direction, and is flexible so that it can be bent when a force is applied in the thickness direction along the array arrangement direction because the thickness direction is small. have a sexuality. Also, the ultrasonic element array substrate 10 includes a plurality of piezoelectric MEMS ultrasonic transducers 1 on the substrate 2 .
  • the ultrasonic element array substrate 10 can be supported by plate-like elastic bodies 20 at both ends in the array transverse direction. As shown in FIG. 2, the ultrasonic element array substrate 10 is supported by plate-like elastic bodies 20 only at both ends in the array transverse direction, and is supported by plate-like elastic bodies 20 at both ends in the array arrangement direction. It may be open without being supported by the elastic body 20 . However, the ultrasonic element array substrate 10 may be supported by the elastic plate 20 also in the array arrangement direction.
  • the ultrasonic element array substrate 10 is formed with plate-like elastic bodies at both ends thereof, as shown in FIG. It is not limited to the embodiments supported by 20. If the ultrasonic element array substrate 10, particularly the piezoelectric thin film 1d of the piezoelectric MEMS ultrasonic transducer 1, is supported so that stress is hardly applied when the flexible ultrasonic probe head 100 is bent, the ultrasonic element array The base material 10 may be supported in any manner by the elastic plate.
  • an embodiment in which the ultrasonic element array substrate 10 is supported only at one end by the plate-like elastic body 20, and an embodiment in which the ultrasonic element array substrate 10 is supported by the plate-like elastic body 20 only at its central portion. can have a form.
  • one of the lengths in the array arrangement direction and the array transverse direction is very short compared to the other (for example, 1:5 or more), and the bending stiffness of the ultrasonic element array substrate 10 is Although this is suitable when the flexural rigidity ratio of the plate-like elastic body 20 is large (for example, 50 or more), the ultrasonic element array substrate 10 as shown in FIG.
  • the embodiment supported by 20 is generally preferred.
  • the ultrasonic element array substrate 10 is supported by the plate-like elastic body 20 along the stress neutral plane A of the plate-like elastic body 20 .
  • the ultrasonic element array substrate At least both ends of the material 10 in the transverse direction of the array are supported.
  • the thickness of the plate-like elastic body 20 is The ultrasonic element array substrate 10 is supported at a position within a range of 0.3 mm vertically from the center of the direction. In this case, it is not necessary to cover the entire thickness of the ultrasonic element array substrate 10 at a position within a range of 0.3 mm above and below, and at least part of the thickness of the ultrasonic element array substrate 10 should be included in the range. In this case, it is particularly preferred that the piezoelectric MEMS ultrasonic transducer 1 is included in the range of locations. In this case, stress is less likely to be applied to the piezoelectric thin film of the piezoelectric MEMS ultrasonic transducer 1, which is easily destroyed.
  • the ultrasonic element array substrate 10 is supported so that the stress neutral plane A of the elastic plate 20 is within the range from the upper end of the upper electrode 1a of the piezoelectric MEMS ultrasonic transducer 1 to the lower end of the diaphragm 1d.
  • the ultrasonic element array substrate 10 is less likely to break.
  • the position at which the ultrasonic element array substrate 10 is supported by the plate-like elastic body 20 and/or the position of the stress neutral plane A of the plate-like elastic body 20 is higher than the position of the piezoelectric thin film of the piezoelectric MEMS ultrasonic transducer 1 (In particular, it can be below the position of the interface between the piezoelectric thin film and the lower electrode in the thickness direction. Since the position where the ultrasonic element array substrate 10 is supported and/or the position of the stress neutral plane A is below the piezoelectric thin film, when a bending force is applied to the ultrasonic transducer 1, the piezoelectric thin film Tensile stress is applied at all locations.
  • tensile stress can be applied to the entire piezoelectric thin film without applying tensile stress to a portion of the piezoelectric thin film and compressive stress to other portions. If the stress applied to the piezoelectric thin film changes greatly depending on the location of the piezoelectric thin film, the frequency characteristics of the vibrator will change depending on the location. can let
  • the average thickness of the ultrasonic element array substrate 10 may be 300 ⁇ m or less, 200 ⁇ m or less, 150 ⁇ m or less, 100 ⁇ m or less, 80 ⁇ m or less, or 50 ⁇ m or less, and may be 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, or 50 ⁇ m or more. There may be.
  • the average thickness of the ultrasonic element array substrate 10 may be, for example, 20 ⁇ m or more and 300 ⁇ m or less, or 30 ⁇ m or more and 100 ⁇ m or less.
  • the ultrasonic element array substrate 10 is flexible enough to bend when force is applied in the thickness direction, and the curvature R of the ultrasonic element array substrate 10 is 100 mm or less, Even if it is bent by 50 mm or less, or 40 mm or less, or by 10 mm or more, 20 mm or more, 30 mm or more, or 40 mm or more, it is preferable that it can be used without problems in terms of strength and the like.
  • the ultrasonic element array substrate 10 can be used without problems in terms of strength even if the curvature R is in the range of 10 mm to 100 mm or 20 mm to 50 mm. Also, within this range, the curvature is sufficient for a convex ultrasonic probe.
  • the ultrasonic element array substrate 10 is more flexible than the plate-shaped elastic body 20.
  • the ratio of the bending stiffness of the plate-shaped elastic body 20 to the bending stiffness of the ultrasonic element array substrate 10 (plate-shaped elastic body 20/array substrate 10) is 3 or more, 5 or more, 10 or more, 30 or more, 50 or more, or 100 or more, 10000 or less, 5000 or less, 3000 or less, 1000 or less, 500 or less, 300 or less, 100 or less , or 50 or less.
  • This ratio may be, for example, 3 or more and 10,000 or less, or 10 or more and 500 or less.
  • bending stiffness can be calculated based on cantilever measurements.
  • Table 1 below exemplifies the flexural rigidity values of the ultrasonic element array substrate 10 having a specific size and two types of plate-shaped elastic bodies 20 having a specific size.
  • the ultrasonic element array substrate 10 can include the piezoelectric MEMS ultrasonic transducers 1 on the grooves 2 a of the substrate 2 .
  • the substrate 2 can be formed with a plurality of grooves 2a by MEMS and includes a body portion 2b in which no grooves 2a are present.
  • the substrate 2 is, for example, a silicon substrate, and includes a silicon body portion 2b, and a silicon oxide portion formed by oxidizing the silicon substrate can constitute a part of the piezoelectric MEMS ultrasonic transducer 1.
  • the piezoelectric MEMS ultrasonic transducer 1 is a piezoelectric ultrasonic element formed on a substrate by means of MEMS well known in the art, such as those described in US Pat.
  • FIG. 3 shows an enlarged cross-sectional view of an example of the piezoelectric MEMS ultrasonic transducer 1 of the ultrasonic element array substrate 10 in the ZX direction.
  • the piezoelectric MEMS ultrasonic transducer 1 can include an upper electrode 1a, a piezoelectric thin film 1b, a lower electrode 1c, and a vibrating membrane 1d.
  • the piezoelectric MEMS ultrasonic transducer 1 may further include a waterproof protective film on the upper electrode 1a.
  • the upper electrode 1a and the lower electrode 1c well-known electrodes in this field can be used, and for example, they may be formed of a metal thin film.
  • the upper electrode 1a and the lower electrode 1c apply a pulse voltage or an alternating voltage to the piezoelectric thin film 1b, the piezoelectric thin film 1b is stretched/extended to vibrate the piezoelectric thin film 1b and the vibrating film 1d.
  • the ultrasonic transducer 1 can also operate as a receiving element that receives ultrasonic echoes that are returned after the emitted ultrasonic waves are reflected from the object to be measured.
  • the ultrasonic echo vibrates the vibrating membrane 1d, and this vibration applies stress to the piezoelectric thin film 1b, generating a voltage between the upper electrode 1a and the lower electrode 1c, which can be extracted as a received signal.
  • FIG. 4 is an enlarged view of the piezoelectric MEMS ultrasonic transducer 1 of the embodiment shown in FIG.
  • the upper electrode 1a electrically connects the ultrasonic transducers 1 adjacent in the array arrangement direction (X direction), the piezoelectric thin film 1b is positioned below it, and the lower electrode 1c is below the piezoelectric thin film 1b. and electrically connects adjacent ultrasonic transducers 1 in the array transverse direction (Y direction).
  • the groove 2a of the substrate 2 is formed in a wider range than the piezoelectric thin film 1b.
  • the upper electrodes 1a are connected to the flexible printed board 40 at both ends in the array arrangement direction (X direction) through upper electrode lead-out wirings 1a' extending in the array transverse direction (Y direction). can be electrically connected.
  • the lower electrode 1c can be electrically connected to the flexible printed circuit board 40 through the lower electrode lead wiring at the end in the array transverse direction (Y direction).
  • These wirings and the flexible printed board 40 can be connected by a well-known connection method such as wire bonding or an anisotropic conductive film (ACF).
  • the configurations of the upper electrode 1a and the lower electrode 1c may be opposite to each other with respect to the configuration of FIG. That is, the lower electrode 1c can electrically connect the piezoelectric MEMS ultrasonic transducers 1 in the array arrangement direction (X direction).
  • the lower electrode 1c can be electrically connected to the flexible printed circuit board 40 at both ends in the array arrangement direction (X direction) through lower electrode lead wires extending in the array transverse direction (Y direction).
  • the upper electrode 1a can be electrically connected to the flexible printed circuit board 40 at the end in the array transverse direction (Y direction).
  • the configurations of the upper electrode 1a and the lower electrode 1c are not limited to these configurations, and these electrodes expand and contract the piezoelectric thin film 1b by applying a pulse voltage or an alternating voltage to the piezoelectric thin film 1b. It suffices if the piezoelectric thin film 1b and the vibrating film 1d can be vibrated.
  • the piezoelectric thin film 1b is formed of a piezoelectric thin film well known in this field.
  • the piezoelectric thin film 1b is formed so as to cover at least a portion of the upper electrode 1a and at least a portion of the lower electrode 1c.
  • Examples of the piezoelectric material of the piezoelectric thin film 1b include PZT (lead zirconate titanate), lead titanate (PbTiO 3 ), lead zirconate (PbZrO 3 ), lead lanthanum titanate ((Pb, La)TiO 3 ), and the like. can be mentioned.
  • the average thickness of the piezoelectric thin film 1b may be 50 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, 10 ⁇ m or less, 5 ⁇ m or less, or 3 ⁇ m or less. Alternatively, it may be 3 ⁇ m or more.
  • the average thickness of the piezoelectric thin film 1b may be, for example, 0.1 ⁇ m or more and 50 ⁇ m or less, or 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the vibrating film 1d can form a monomorph structure or a bimorph structure together with the piezoelectric thin film 1b, and can function as an ultrasonic vibrator.
  • a thin film of silica, alumina, zirconia, or the like can be used as the vibrating film 1d.
  • it may have a two-layer structure of a silica thin film and a zirconia thin film.
  • the substrate 2 is a silicon substrate
  • the silica thin film can be formed by thermally oxidizing the substrate surface.
  • the thin silica film may be formed when the grooves 2a are formed in the silicon substrate 2.
  • a zirconia thin film can be formed on a silica thin film by a method such as sputtering.
  • the average thickness of the diaphragm 1d may be 10 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less, 1 ⁇ m or less, 0.8 ⁇ m or less, or 0.5 ⁇ m or less, and may be 0.05 ⁇ m or more, 0.1 ⁇ m or more, or 0.2 ⁇ m or more. , 0.3 ⁇ m or more, or 0.5 ⁇ m or more.
  • the average thickness of the diaphragm 1d may be, for example, 0.05 ⁇ m or more and 10 ⁇ m or less, or 0.3 ⁇ m or more and 3 ⁇ m or less.
  • the substrate 2 is a substrate for forming the ultrasonic transducer 1 by MEMS, and is, for example, a silicon substrate.
  • a groove 2a is preferably formed in the substrate 2, so that the piezoelectric thin film 1b and the vibrating film 1d are easily vibrated.
  • the width of the groove portion 2a of the substrate 2 may be 500 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, or 30 ⁇ m or less, or 10 ⁇ m or more, 30 ⁇ m or more, or 50 ⁇ m or less in both the array arrangement direction and the transverse direction. or more, or 100 ⁇ m or more.
  • the width of the groove 2a may be, for example, 10 ⁇ m or more and 500 ⁇ m or less, or 30 ⁇ m or more and 200 ⁇ m or less, both in the array arrangement direction and in the transverse direction.
  • the average thickness of the body portion 2b of the substrate 2 other than the groove portion 2a may be 200 ⁇ m or less, 150 ⁇ m or less, 100 ⁇ m or less, 80 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less, and may be 10 ⁇ m or more and 20 ⁇ m. 25 ⁇ m or more, or 30 ⁇ m or more.
  • the average thickness of the body portion 2b of the substrate 2 may be, for example, between 10 ⁇ m and 200 ⁇ m, or between 20 ⁇ m and 60 ⁇ m.
  • the average thickness of the body portion when using a silicon substrate may be 80 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less, and may be 10 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, or 30 ⁇ m or more. There may be.
  • the average thickness of the body portion of the silicon substrate may be, for example, between 10 ⁇ m and 80 ⁇ m, or between 20 ⁇ m and 60 ⁇ m.
  • a silicon substrate used in this field usually has a thickness in the range of 500 ⁇ m to 1 mm, and the ultrasonic element array substrate 10 using such a silicon substrate does not have flexibility.
  • the present inventors have found that by using a silicon substrate having a thickness within the range described above, it is possible to obtain an ultrasonic wave with a degree of flexibility that provides a sufficient curvature as a convex ultrasonic probe and a practically sufficient strength. It has been found to be applied to the element array substrate 10.
  • the piezoelectric MEMS ultrasonic transducer 1 may be formed on a thin silicon substrate, or a piezoelectric MEMS ultrasonic transducer 1 may be formed on a thick silicon substrate. After forming the MEMS ultrasonic transducer 1, the silicon substrate may be thinned by, for example, polishing the silicon substrate from the back side.
  • One ultrasonic element array substrate 10 of the present disclosure includes a silicon substrate 2 having a plurality of grooves 2a, and a piezoelectric MEMS ultrasonic transducer 1 on the plurality of grooves 2a.
  • the average thickness of 2b is 80 ⁇ m or less.
  • the ultrasonic element array substrate 10 can provide the ultrasonic element array substrate 10 with sufficient flexibility and practically sufficient strength.
  • the ultrasonic element array substrate 10 can be supported by various methods and used advantageously as an ultrasonic probe head 100 capable of switching between a linear type and a convex type. be able to.
  • the configurations of the ultrasonic element array substrate 10 described above can be referred to.
  • the plate-like elastic body 20 extends in the planes in the array arrangement direction and the array transverse direction, and has a plate-like shape because its thickness direction is smaller than the other directions. Therefore, the plate-shaped elastic body 20 is substantially parallel to the plane extending in the array arrangement direction and the array transverse direction of the ultrasonic element array substrate 10 .
  • the plate-shaped elastic body 20 can be composed of an upper plate-shaped elastic body 21 and a lower plate-shaped elastic body 22, and the array transverse direction (Y direction) can be sandwiched between the upper plate-like elastic body 21 and the lower plate-like elastic body 22 .
  • the plate-shaped elastic body 20 can extend on the outer periphery of both ends in the array arrangement direction and the transverse direction of the plane of the ultrasonic element array substrate 10, and and/or support the ultrasonic element array substrate at both ends in the transverse direction of the array.
  • the method of fixing the ultrasonic element array substrate 10 by the plate-shaped elastic body 20 is not particularly limited, but examples include adhesion, welding, fitting, and the like.
  • the material of the plate-shaped elastic body 20 is not particularly limited as long as the ultrasonic element array base 10 can be bent appropriately to make the probe head flexible, but it is composed of a metal material, a ceramic material, a resin material, or the like. be able to.
  • the average thickness of the plate-like elastic body 20 depends on the thickness of the plate-like elastic body, but may be 10 mm or less, 8 mm or less, 5 mm or less, 3 mm or less, 2 mm or less, or 1 mm or less, or 0.3 mm. It may be 0.5 mm or more, 1 mm or more, or 2 mm or more.
  • the average thickness of the elastic plate 20 may be, for example, 0.3 mm or more and 10 mm or less, or 0.5 mm or more and 5 mm or less.
  • the acoustic lens 30 is a member for focusing the ultrasonic waves output from the probe and improving the resolution, and can function as an ultrasonic lens.
  • the acoustic lens 30 can adopt a well-known one in this field, and may be an acoustic lens made of silicone rubber, for example.
  • the acoustic lens 30 can be arranged on the ultrasonic element array substrate 10 so as to cover the piezoelectric MEMS ultrasonic transducer 1 .
  • the acoustic lens 30 and the ultrasonic element array substrate 10 can be adhered by an adhesive layer not shown in FIG. 1, and the adhesive layer can also serve as an acoustic matching layer.
  • the difference in acoustic impedance between the piezoelectric MEMS ultrasonic transducer 1 and the subject can be reduced, the reflection of ultrasonic waves can be reduced, and the ultrasonic waves can be efficiently incident on the subject.
  • the flexible printed board 40 is bonded to the ultrasonic element array substrate 10 and gives electrical signals to the piezoelectric MEMS ultrasonic transducer 1 .
  • the flexible printed board 40 one well known in this field can be adopted.
  • a board in which metal wiring is formed on a polyimide film can be used.
  • the arrangement of the flexible printed board 40 is not particularly limited as long as it can be bonded to the ultrasonic element array substrate 10.
  • the flexible printed board 40 and the ultrasonic element array substrate 10 are joined from there, but the embodiment is not limited to this.
  • a flexible printed circuit board extraction slit 41 is provided at any location on the elastic plate 20, and the flexible printed circuit board 40 and the ultrasonic element array substrate 10 can be joined through the gap.
  • the flexible printed circuit board 40 is connected only from one side of the ultrasonic element array substrate 10 in the array transverse direction. may be connected by
  • FIG. 5 illustrates steps in a method of manufacturing a flexible ultrasound probe head.
  • the flexible ultrasonic probe head 100 is obtained, for example, by (a) obtaining an ultrasonic element array substrate 10 including a plurality of piezoelectric MEMS ultrasonic transducers 1 on a substrate 2 having a thickness of 100 ⁇ m or more; connecting the element array substrate 10 and the flexible printed substrate 40; (c) bonding the ultrasonic element array substrate 10 and the upper elastic plate 21; (d) connecting the ultrasonic element array substrate 10 (e) bonding the ultrasonic element array substrate 10 and the lower elastic plate 22; and (f) bonding the acoustic lens 30. , can be included.
  • step (d) the essential step in the method of the present disclosure is step (d), and the steps other than step (d) are performed in the same manner as in the prior art. be able to.
  • step (a) the vibrating membrane 1d is formed on the substrate 2 first.
  • the substrate 2 is a silicon substrate
  • a silicon oxide layer is formed as one layer of the vibration film 1d on the upper side of the silicon substrate by thermal oxidation treatment, CVD, or the like.
  • a zirconia film or the like is formed by sputtering, vapor deposition, or the like as another layer of the vibrating film 1d.
  • the lower electrode 1c is formed in a pattern on the vibrating membrane 1d by photolithography or the like.
  • the piezoelectric thin film 1b is formed by spin-coating the sol of the precursor solution or the like, and the film is patterned by photolithography or the like.
  • the upper electrode 1a is formed in the same manner as the lower electrode 1c.
  • the piezoelectric MEMS ultrasonic transducer 1 is formed on the substrate 2.
  • a groove 2a is formed in the substrate 2 by anisotropic etching or the like.
  • step (b) the electrodes of the ultrasonic element array substrate 10 and the flexible printed board 40 are connected.
  • This step is not particularly limited as long as it can electrically connect them, and can be performed by a known method.
  • the method is not particularly limited as long as the ultrasonic element array substrate 10 and the plate-like elastic body 20 can be joined. .
  • This step (d) is a step of thinning the substrate 2 having a thickness of 100 ⁇ m or more by chemical mechanical polishing or the like. Thereby, the thickness of the body portion 2b of the substrate 2 can be set to 80 ⁇ m or less, and flexibility can be imparted to the ultrasonic probe head 100.
  • FIG. This step (d) is preferably performed after steps (b) and (c). After thinning the substrate 2, the ultrasonic element array substrate 10 becomes flexible and becomes difficult to handle as a single unit. This is because it is easy to use. Further, by fixing the ultrasonic element array substrate 10 to the upper plate-like elastic body 21, handling after thinning is facilitated.
  • the ultrasonic probe of the present disclosure includes the flexible ultrasonic probe head as described above, a bending forming member for bending the plate-like elastic body, and a housing.
  • the bending member is not particularly limited as long as it can bend the plate-shaped elastic body of the flexible ultrasonic probe head
  • the housing is not particularly limited as long as it can be used as a housing for the ultrasonic probe.
  • FIG. 6 shows an example of switching the ultrasonic probe head of the present disclosure between a linear type and a convex type.
  • the bending member 110 supports the flexible ultrasonic probe head 100 at three points, that is, the central portion and both ends, and the flexible ultrasonic probe head 100 can be bent by changing the positional relationship of the supporting members. It can be a member that forms a curve in the sonic probe head 100 .
  • a central support member 111 that supports the flexible ultrasound probe head 100 in the center and an end support member 112 that supports the flexible ultrasound probe head 100 at the ends are formed by wires.
  • the center support member 111 can support plate-shaped elastic bodies on both end sides in the array arrangement direction (X direction) of the flexible ultrasonic probe head 100, and the end support members 112 also support the center portion. It can be supported at both ends in the array arrangement direction (X direction) so that it can be supported at the same position as the support member 111 in the array arrangement direction (X direction).
  • the bending member 110 may be configured to bend the flexible ultrasonic probe head 100 by changing the distance between the support members (111, 112) using a rack and pinion mechanism.
  • the flexible ultrasonic probe head 100 may be curved by placing a balloon-shaped bag under the flexible ultrasonic probe head 100 and inflating/deflating the balloon.
  • the ultrasonic probe may be provided with a strain sensor 130 on the elastic plate 20 of the flexible ultrasonic probe head 100 .
  • the strain sensor 130 can prevent the probe head 100 from bending too much and breaking.
  • the bending member 110 may have means for mechanically or electronically controlling the degree of bending of the bending member 110 to prevent the probe head 100 from bending too much and breaking.
  • FIG. 7 illustrates a cross-sectional view of the tip portion of the ultrasonic probe.
  • a sealing member 140 may be present between the housing 120 of the ultrasound probe 200 and the flexible ultrasound probe head 100 .
  • the sealing member 140 is not particularly limited as long as it can prevent moisture or the like from entering the housing 120, but may be silicone rubber, for example.
  • An ultrasonic diagnostic apparatus of the present disclosure includes at least the above-described ultrasonic probe, a processing unit that processes signals from the ultrasonic probe, and a display device that converts the signals from the processing unit into image data and displays the image data. Transmission, reception and processing of signals and control of the ultrasound probe can be performed by methods well known in the art, such as those described in US Pat.
  • FIG. 8 illustrates an ultrasonic diagnostic apparatus of the present disclosure.
  • An ultrasound diagnostic apparatus 1000 of the present disclosure includes an ultrasound probe 200 and a display device 300 , and the ultrasound probe 200 and display device 300 are connected by a cable 400 .
  • the ultrasonic diagnostic apparatus 1000 is a portable apparatus, but may be a stationary apparatus.
  • the ultrasonic probe 200 and the display device 300 are connected by a cable, but they can also be connected wirelessly.
  • a processing unit that processes signals from the ultrasound probe 200 is not shown, but may reside in the ultrasound probe 200 or may reside in the display device 300 .
  • Piezoelectric MEMS ultrasonic transducer 1a Upper electrode 1a' Lead wiring 1b for upper electrode Piezoelectric thin film 1c Lower electrode 1d Vibration film 2 Substrate 2a Groove 2b Body portion 10 Ultrasonic element array substrate 20 Plate-like elastic body 21 Upper plate-like elastic body 22 lower plate-like elastic body 30 acoustic lens 40 flexible printed circuit board 100 flexible ultrasonic probe head 110 bending member 111 central support member 111a spool 112 end support member 113 wire 120 housing 130 strain sensor 140 sealing member 200 Ultrasonic probe 300 Display device 400 Cable 1000 Ultrasonic diagnostic device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

The present disclosure provides a novel ultrasonic probe head that can be used for both linear and convex type probes. An acoustic wave probe head (100) of the present disclosure is a flexible ultrasonic probe head (100) comprising at least an ultrasonic element array base (10) and a planar elastic body (20) for supporting the ultrasonic element array base (10), wherein: the ultrasonic element array base (10) is flexible and includes a plurality of piezoelectric MEMS ultrasonic transducers (1) on a substrate (2); and the ultrasonic element array base (10) is supported along a stress neutral surface (A) that is created when the planar elastic body (20) is bent in the thickness direction along the axis in the direction of arrangement of the array.

Description

可撓性超音波プローブヘッド、超音波プローブ、及び超音波診断装置Flexible ultrasound probe head, ultrasound probe, and ultrasound diagnostic device
 本開示は、可撓性超音波プローブヘッド、超音波プローブ、及び超音波診断装置に関する。 The present disclosure relates to flexible ultrasound probe heads, ultrasound probes, and ultrasound diagnostic equipment.
 超音波診断装置は、超音波を用いて体内や構造体内を調べる検査装置である。この検査装置の超音波プローブを用いて体表から体内、循環器や臓器の内表面から体内、そして構造体表面から構造体内に超音波を発信し、その反射波を処理して画像化し、病変や欠陥の有無等を判読し、診断を行う。映し出される画像は、リアルタイムで動いて見えるため、病変の位置を確認しながら行う治療、血流動態の観察等も行うことができ、かつ非侵襲的な手法であるために、医療分野で広く利用されている。 An ultrasound diagnostic device is an inspection device that uses ultrasound to examine the inside of the body and structures. Using the ultrasonic probe of this inspection device, ultrasonic waves are transmitted from the body surface to the inside of the body, from the inner surface of the circulatory system and organs to the inside of the body, and from the surface of the structure to the inside of the structure. and the presence or absence of defects, etc., and make a diagnosis. Since the displayed images appear to move in real time, it is possible to perform treatment while confirming the position of the lesion, to observe blood flow dynamics, etc., and because it is a non-invasive technique, it is widely used in the medical field. It is
 超音波プローブは、リニア型、セクタ型、及びコンベックス型があり、観察目的及び観察部位に応じてこれらの型を選択する。例えば、リニア型は、体表から浅い部位に位置する組織の検査に用いられ、コンベックス型は、体表から深い部位に位置する組織の検査に用いられる。 There are linear, sector, and convex types of ultrasonic probes, and these types are selected according to the purpose of observation and the observation site. For example, the linear type is used for examination of tissues positioned shallow from the body surface, and the convex type is used for examination of tissues positioned deep from the body surface.
 特許文献1は、コンベックス型超音波プローブの従来技術の例を示している。このような超音波プローブの超音波素子は、電極でサンドイッチされた圧電セラミックが短冊状に切断されて形成される。 Patent document 1 shows an example of conventional technology of a convex ultrasonic probe. The ultrasonic element of such an ultrasonic probe is formed by cutting a piezoelectric ceramic sandwiched between electrodes into strips.
 また、近年、圧電MEMS超音波トランスデューサ(pMUT:Piezoelectric Micromachined Ultrasonic Transducers)を超音波素子として用いた超音波プローブが開発されている。特許文献2及び3は、このような超音波プローブを開示している。また、これを製造するためのMEMSの詳細については、例えば、特許文献4を参照することができる。 Also, in recent years, ultrasonic probes using piezoelectric MEMS ultrasonic transducers (pMUT: Piezoelectric Micromachined Ultrasonic Transducers) as ultrasonic elements have been developed. Patent Documents 2 and 3 disclose such ultrasound probes. Further, for details of the MEMS for manufacturing this, for example, reference can be made to Patent Literature 4.
特開平8-79895号公報JP-A-8-79895 特開2014-146883号公報JP 2014-146883 A 特開2016-018835号公報JP 2016-018835 A 特表2006-516368号公報Japanese Patent Publication No. 2006-516368
 特許文献2及び3に記載のように、圧電MEMS超音波トランスデューサを超音波素子として用いた超音波プローブは、その超音波素子を形成する基板が、シリコン基板等の平板状基板であるため、通常はリニア型の超音波プローブである。 As described in Patent Documents 2 and 3, an ultrasonic probe using a piezoelectric MEMS ultrasonic transducer as an ultrasonic element uses a flat substrate such as a silicon substrate for forming the ultrasonic element. is a linear ultrasonic probe.
 本開示は、リニア型とコンベックス型の両方の型式のプローブとして用いることができる、新規な超音波プローブヘッドを提供する。 The present disclosure provides a novel ultrasonic probe head that can be used as both linear and convex type probes.
 本発明者らは、以下の態様を有する本開示により、上記課題を解決できることを見出した。
《態様1》
 超音波素子アレイ基材、及び前記超音波素子アレイ基材を支持する板状弾性体を少なくとも具備する可撓性超音波プローブヘッドであって、
 前記超音波素子アレイ基材が、可撓性を有しており、かつ圧電MEMS超音波トランスデューサを基板上に複数含み、
 前記板状弾性体をアレイ配列方向の軸に沿って厚さ方向に曲げた時に生じる応力中立面に沿って、前記超音波素子アレイ基材が支持されている、
 可撓性超音波プローブヘッド。
《態様2》
 前記超音波素子アレイ基材が、複数の溝部を有するシリコン基板、及び前記複数の溝部上の前記圧電MEMS超音波トランスデューサを含む、態様1に記載の可撓性超音波プローブヘッド。
《態様3》
 前記シリコン基板の本体部分の平均厚さが、80μm以下である、態様2に記載の可撓性超音波プローブヘッド。
《態様4》
 前記板状弾性体の平均厚さが、0.5mm~5mmであり、かつ前記板状弾性体が金属体である、態様1~3のいずれか一項に記載の可撓性超音波プローブヘッド。
《態様5》
 超音波素子アレイ基材の曲げ剛性に対する板状弾性体の曲げ剛性の比(板状弾性体/超音波素子アレイ基材)が、10以上である、態様1~4のいずれか一項に記載の可撓性超音波プローブヘッド。
《態様6》
 前記板状弾性体が、上部板状弾性体及び下部板状弾性体からなり、前記上部板状弾性体及び下部板状弾性体が、前記超音波素子アレイ基材を挟持している、態様1~5のいずれか一項に記載の可撓性超音波プローブヘッド。
《態様7》
 前記圧電MEMS超音波トランスデューサが、上部電極、圧電薄膜、下部電極、及び振動膜をこの順に少なくとも含む、態様1~6のいずれか一項に記載の可撓性超音波プローブヘッド。
《態様8》
 前記応力中立面が、前記圧電MEMS超音波トランスデューサの前記上部電極の上端から前記振動膜の下端の範囲内にある、態様7に記載の可撓性超音波プローブヘッド。
《態様9》
 前記応力中立面が、前記圧電薄膜と下部電極との界面よりも下側に位置する、態様7又は8に記載の可撓性超音波プローブヘッド。
《態様10》
 複数の溝部を有するシリコン基板、前記複数の溝部上の圧電MEMS超音波トランスデューサを含む、超音波素子アレイ基材であって、
 前記シリコン基板の本体部分の平均厚さが、80μm以下である、
 超音波素子アレイ基材。
《態様11》
 態様10に記載の超音波素子アレイ基材、及び前記超音波素子アレイ基材を支持する板状弾性体を具備する、可撓性超音波プローブヘッド。
《態様12》
 態様1~9及び11のいずれか一項に記載の可撓性超音波プローブヘッド、前記板状弾性体を湾曲化するための湾曲形成部材、及び筐体を具備する、超音波プローブ。
《態様13》
 前記板状弾性体に歪みセンサを具備する、態様12に記載の超音波プローブ。
《態様14》
 態様12又は13に記載の超音波プローブ、前記超音波プローブからの信号を処理する処理部、及び前記処理部からの信号を画像データに変換して表示する表示装置を少なくとも具備する、超音波診断装置。
The present inventors have found that the above problems can be solved by the present disclosure having the following aspects.
<<Aspect 1>>
A flexible ultrasonic probe head comprising at least an ultrasonic element array substrate and a plate-shaped elastic body supporting the ultrasonic element array substrate,
the ultrasonic element array substrate is flexible and includes a plurality of piezoelectric MEMS ultrasonic transducers on the substrate;
The ultrasonic element array substrate is supported along a stress neutral plane generated when the plate-shaped elastic body is bent in the thickness direction along the axis in the array arrangement direction,
Flexible ultrasound probe head.
<<Aspect 2>>
Aspect 1. The flexible ultrasonic probe head of aspect 1, wherein the ultrasonic element array substrate comprises a silicon substrate having a plurality of grooves, and the piezoelectric MEMS ultrasonic transducers on the plurality of grooves.
<<Aspect 3>>
3. The flexible ultrasonic probe head according to aspect 2, wherein the average thickness of the body portion of the silicon substrate is 80 μm or less.
<<Aspect 4>>
The flexible ultrasonic probe head according to any one of aspects 1 to 3, wherein the plate-like elastic body has an average thickness of 0.5 mm to 5 mm, and the plate-like elastic body is a metal body. .
<<Aspect 5>>
Aspects 1 to 4, wherein the ratio of the bending stiffness of the plate-like elastic body to the bending stiffness of the ultrasonic element array base material (plate-like elastic body/ultrasonic element array base material) is 10 or more. flexible ultrasound probe head.
<<Aspect 6>>
Aspect 1, wherein the plate-like elastic body comprises an upper plate-like elastic body and a lower plate-like elastic body, and the upper plate-like elastic body and the lower plate-like elastic body sandwich the ultrasonic element array substrate. 6. A flexible ultrasonic probe head according to any one of claims 1 to 5.
<<Aspect 7>>
7. The flexible ultrasonic probe head according to any one of aspects 1 to 6, wherein the piezoelectric MEMS ultrasonic transducer includes at least an upper electrode, a piezoelectric thin film, a lower electrode, and a vibrating film in this order.
<<Aspect 8>>
Aspect 7. The flexible ultrasonic probe head of aspect 7, wherein the stress neutral plane is within a range from a top edge of the top electrode of the piezoelectric MEMS ultrasound transducer to a bottom edge of the vibrating membrane.
<<Aspect 9>>
9. The flexible ultrasonic probe head according to aspect 7 or 8, wherein the stress-neutral plane is located below an interface between the piezoelectric thin film and the lower electrode.
<<Aspect 10>>
An ultrasonic element array substrate comprising a silicon substrate having a plurality of grooves, a piezoelectric MEMS ultrasonic transducer on the plurality of grooves,
The average thickness of the main body portion of the silicon substrate is 80 μm or less.
Ultrasonic element array substrate.
<<Aspect 11>>
A flexible ultrasonic probe head comprising the ultrasonic element array substrate according to aspect 10 and a plate-shaped elastic body supporting the ultrasonic element array substrate.
<<Aspect 12>>
An ultrasonic probe comprising the flexible ultrasonic probe head according to any one of aspects 1 to 9 and 11, a bending forming member for bending the elastic plate, and a housing.
<<Aspect 13>>
13. The ultrasonic probe according to aspect 12, wherein the plate-like elastic body is provided with a strain sensor.
<<Aspect 14>>
Ultrasonic diagnosis comprising at least the ultrasonic probe according to aspect 12 or 13, a processing unit that processes a signal from the ultrasonic probe, and a display device that converts the signal from the processing unit into image data and displays it Device.
図1は、本開示の可撓性超音波プローブヘッドの一例のZ-Y方向の断面図を示している。FIG. 1 illustrates a ZY cross-sectional view of an example flexible ultrasound probe head of the present disclosure. 図2は、本開示の可撓性超音波プローブヘッドの一例のX-Y方向の平面図を示している。FIG. 2 illustrates a plan view in the XY direction of one example of a flexible ultrasound probe head of the present disclosure. 図3は、超音波素子アレイ基材の圧電MEMS超音波トランスデューサの一例のZ-X方向の断面図を例示している。FIG. 3 illustrates a ZX cross-sectional view of an example piezoelectric MEMS ultrasonic transducer on an ultrasonic element array substrate. 図4は、図2の本開示の可撓性超音波プローブヘッドの圧電MEMS超音波トランスデューサを拡大して示した図である。4 is an enlarged view of the piezoelectric MEMS ultrasonic transducer of the flexible ultrasonic probe head of the present disclosure of FIG. 2; FIG. 図5は、本開示の可撓性超音波プローブヘッドの製造方法の各工程を例示している。FIG. 5 illustrates steps in a method of manufacturing a flexible ultrasound probe head of the present disclosure. 図6は、本開示の超音波プローブヘッドをリニア型とコンベックス型とで切り替えている例を示している。FIG. 6 shows an example of switching the ultrasonic probe head of the present disclosure between a linear type and a convex type. 図7は、本開示の超音波プローブの先端部分における断面図を例示している。FIG. 7 illustrates a cross-sectional view of the distal portion of the ultrasound probe of the present disclosure. 図8は、本開示の超音波診断装置を例示している。FIG. 8 illustrates an ultrasound diagnostic apparatus of the present disclosure.
 《可撓性超音波プローブヘッド》
 本開示の可撓性超音波プローブヘッドは、超音波素子アレイ基材、及び前記超音波素子アレイ基材を支持する板状弾性体を少なくとも具備する可撓性超音波プローブヘッドであって、前記超音波素子アレイ基材が、可撓性を有しており、かつ圧電MEMS超音波トランスデューサを複数含み、前記板状弾性体をアレイ配列方向の軸に沿って厚さ方向に曲げた時に生じる応力中立面に沿って、前記超音波素子アレイ基材が支持されている。
《Flexible ultrasonic probe head》
A flexible ultrasonic probe head of the present disclosure includes at least an ultrasonic element array substrate and a plate-like elastic body that supports the ultrasonic element array substrate, The stress generated when the ultrasonic element array base material is flexible and includes a plurality of piezoelectric MEMS ultrasonic transducers, and the plate-like elastic body is bent in the thickness direction along the axis in the array arrangement direction. The ultrasonic element array substrate is supported along the neutral plane.
 本発明者らは、圧電MEMS超音波トランスデューサを用いた場合であっても、超音波素子アレイ基材を板状弾性体の応力中立面に沿って、超音波素子アレイ基材を支持することによって、コンベックス型のプローブとして十分な曲率を有するまでプローブヘッド全体を曲げても、超音波素子アレイ基材、特に圧電MEMS超音波トランスデューサの圧電薄膜に割れ等を生じさせることなく、問題なく使用できることを見出した。これによって、本開示のプローブヘッドは、圧電MEMS超音波トランスデューサのアレイ基材を使っていても、超音波プローブをコンベックス型とリニア型とで切り替えが可能になった。本開示のプローブヘッドを用いたプローブは、プローブの型式を変更する必要がないため、使用時の手間を省くことができる。また、携帯型の超音波診断装置に本開示のプローブヘッドを用いたプローブを採用した場合、2つのプローブを携帯する必要がないため、その超音波診断装置は、院外での使用時、救急用での使用時等に極めて有利である。 The present inventors have found that even when piezoelectric MEMS ultrasonic transducers are used, the ultrasonic element array substrate can be supported along the stress neutral plane of the elastic plate. Therefore, even if the entire probe head is bent until it has a sufficient curvature as a convex probe, the ultrasonic element array substrate, especially the piezoelectric thin film of the piezoelectric MEMS ultrasonic transducer, can be used without causing cracks or the like. I found This allows the probe head of the present disclosure to switch between convex and linear ultrasonic probes, even when using an array substrate of piezoelectric MEMS ultrasonic transducers. A probe using the probe head of the present disclosure does not need to be changed in probe type, and thus can save time and effort during use. In addition, when a probe using the probe head of the present disclosure is adopted in a portable ultrasonic diagnostic apparatus, there is no need to carry two probes. It is extremely advantageous when used in
 本明細書において、「板状弾性体をアレイ配列方向の軸に沿って厚さ方向に曲げた時に生じる応力中立面に沿って、超音波素子アレイ基材が支持されている」とは、板状弾性体の厚さ方向及びアレイ横断方向の断面内の、厚さ方向の曲げに対する応力中立面から、板状弾性体の厚さの上下10%以内、5%以内、3%以内、又は1%以内の範囲の位置の平面上で、超音波素子アレイ基材が支持されていることを意味する。例えば、図1及び図2において、「板状弾性体をアレイ配列方向の軸に沿って厚さ方向に曲げた時」とは、板状弾性体をX軸に沿ってZ方向に曲げた場合をいう。そして、その曲げによって発生する応力中立面のZ方向の位置に合わせて、超音波素子アレイ基材が板状弾性体に支持されている。 In this specification, "the ultrasonic element array substrate is supported along the stress neutral plane generated when the plate-like elastic body is bent in the thickness direction along the axis in the array arrangement direction." Within 10%, 5%, 3% above and below the thickness of the plate-like elastic body from the stress neutral plane against bending in the thickness direction in the cross section of the plate-like elastic body in the thickness direction and the array transverse direction, Or, it means that the ultrasonic element array substrate is supported on the plane within a range of 1%. For example, in FIGS. 1 and 2, "when the elastic plate is bent in the thickness direction along the axis in the array arrangement direction" means when the elastic plate is bent in the Z direction along the X axis. Say. The ultrasonic element array substrate is supported by the plate-like elastic body so as to match the position in the Z direction of the stress neutral plane generated by the bending.
 本明細書において、「応力中立面」とは、ある部材の略中心部に対し曲げの力を加えた時に、力を加えた方向に垂直に引張応力及び圧縮応力の分布が生じるが、それらの引張応力及び圧縮応力が釣り合って応力が生じない面をいう。応力中立面は、部材を単純化したモデルを用いて有限要素法による解析によって計算することができる。例えば、板状弾性体の応力中立面は、フレキシブル印刷基板を引き出すためのスリット等があったとしても、単なる板として計算することができる。アレイ横断方向及びアレイ配列方向に延びる板状弾性体に対して、アレイ横断方向の略中心部においてアレイ配列方向の軸に沿って厚さ方向に力を加えると、板状弾性体の厚さ方向の特定の位置に、アレイ配列方向及びアレイ横断方向に平行な応力中立面が生じる。本開示の可撓性超音波プローブヘッドでは、その応力中立面に沿って、超音波素子アレイ基材が板状弾性体によって支持される。 In this specification, the term "stress neutral plane" means that when a bending force is applied to approximately the center of a certain member, a distribution of tensile stress and compressive stress occurs perpendicular to the direction in which the force is applied. The surface where the tensile stress and compressive stress are balanced and no stress occurs. The stress neutral plane can be calculated by a finite element method analysis using a simplified model of the member. For example, the stress neutral surface of the plate-like elastic body can be calculated as a simple plate even if there is a slit or the like for pulling out the flexible printed circuit board. When a force is applied in the thickness direction along the axis in the array arrangement direction at substantially the center in the array transverse direction to the plate-shaped elastic body extending in the array transverse direction and the array arrangement direction, the thickness direction of the plate-shaped elastic body A stress neutral plane parallel to the array alignment direction and the array transverse direction is generated at a specific position of . In the flexible ultrasonic probe head of the present disclosure, the ultrasonic element array substrate is supported by the elastic plate along its stress neutral plane.
 図1に、本開示の可撓性超音波プローブヘッド100の一例のZ-Y方向の断面図を示す。また、図2に、本開示の可撓性超音波プローブヘッド100の一例のX-Y方向の平面図を示す。以下、X方向、Y方向、及びZ方向を、それぞれアレイ配列方向、アレイ横断方向及び厚さ方向ともいう。なお、本明細書において、「アレイ配列方向」及び「アレイ横断方向」とは、図1~図8を参照して説明するための便宜上のものであり、圧電MEMS超音波トランスデューサの向き及び配列の仕方については、限定されるものではなく、例えばその配列は正方形状であってもよい。 FIG. 1 shows a cross-sectional view in the ZY direction of an example of the flexible ultrasound probe head 100 of the present disclosure. FIG. 2 also shows a plan view in the XY direction of an example flexible ultrasound probe head 100 of the present disclosure. Hereinafter, the X direction, Y direction, and Z direction are also referred to as the array arrangement direction, the array transverse direction, and the thickness direction, respectively. In this specification, the terms “array arrangement direction” and “array transverse direction” are for convenience of explanation with reference to FIGS. The manner is not limited and, for example, the array may be square.
 図1では、可撓性超音波プローブヘッド100は、超音波素子アレイ基材10、及び超音波素子アレイ基材10のアレイ横断方向両端部を支持する板状弾性体20を少なくとも具備しており、さらに音響レンズ30及びフレキシブル印刷基板40を具備している。超音波素子アレイ基材10は、複数の圧電MEMS超音波トランスデューサ1を基板2上に含んでおり、図1に示すように、複数の圧電MEMS超音波トランスデューサ1は、基板2の複数の溝部2a上に含むことができる。 In FIG. 1, the flexible ultrasonic probe head 100 includes at least an ultrasonic element array substrate 10 and plate-shaped elastic bodies 20 that support both ends of the ultrasonic element array substrate 10 in the array transverse direction. , further comprising an acoustic lens 30 and a flexible printed circuit board 40 . The ultrasonic element array substrate 10 includes a plurality of piezoelectric MEMS ultrasonic transducers 1 on a substrate 2. As shown in FIG. can be included above.
〈超音波素子アレイ基材10〉
 超音波素子アレイ基材10は、アレイ配列方向及び横断方向の平面に延び、厚さ方向が小さいことによって、アレイ配列方向に沿って厚さ方向に力を加えた時に撓むことができる可撓性を有している。また、超音波素子アレイ基材10は、圧電MEMS超音波トランスデューサ1を基板2上に複数含む。
<Ultrasonic element array substrate 10>
The ultrasonic element array substrate 10 extends in a plane in the array arrangement direction and the transverse direction, and is flexible so that it can be bent when a force is applied in the thickness direction along the array arrangement direction because the thickness direction is small. have a sexuality. Also, the ultrasonic element array substrate 10 includes a plurality of piezoelectric MEMS ultrasonic transducers 1 on the substrate 2 .
 図1に示されているように、超音波素子アレイ基材10を、アレイ横断方向両端部で板状弾性体20によって支持することができる。図2に示されているように、超音波素子アレイ基材10は、アレイ横断方向の両端部においてのみ、板状弾性体20に支持されており、アレイ配列方向の両端部においては、板状弾性体20に支持されずに開放されていてもよい。ただし、超音波素子アレイ基材10は、アレイ配列方向でも板状弾性体20によって支持されていてもよい。 As shown in FIG. 1, the ultrasonic element array substrate 10 can be supported by plate-like elastic bodies 20 at both ends in the array transverse direction. As shown in FIG. 2, the ultrasonic element array substrate 10 is supported by plate-like elastic bodies 20 only at both ends in the array transverse direction, and is supported by plate-like elastic bodies 20 at both ends in the array arrangement direction. It may be open without being supported by the elastic body 20 . However, the ultrasonic element array substrate 10 may be supported by the elastic plate 20 also in the array arrangement direction.
 ただし、本開示の可撓性超音波プローブヘッド100の有利な効果が得られる範囲であれば、超音波素子アレイ基材10は、図1に示されるような、その両端部で板状弾性体20によって支持される実施形態に限定されない。可撓性超音波プローブヘッド100を曲げた時に、超音波素子アレイ基材10、特に圧電MEMS超音波トランスデューサ1の圧電薄膜1dに応力がかかりにくくなるように支持されていれば、超音波素子アレイ基材10は板状弾性体によってどのように支持されていてもよい。例えば、超音波素子アレイ基材10がその一端のみで板状弾性体20によって支持される実施形態、及び超音波素子アレイ基材10がその中央部のみで板状弾性体20によって支持される実施形態がありうる。ただし、これらの実施形態では、アレイ配列方向とアレイ横断方向との長さの一方が他方に対して非常に短く(例えば、1:5以上)、かつ超音波素子アレイ基材10の曲げ剛性に対する板状弾性体20の曲げ剛性の比が大きい場合(例えば、50以上)には好適ではあるものの、図1に記載したような、超音波素子アレイ基材10がその両端部で板状弾性体20によって支持される実施形態が通常は好適である。 However, as long as the advantageous effects of the flexible ultrasonic probe head 100 of the present disclosure can be obtained, the ultrasonic element array substrate 10 is formed with plate-like elastic bodies at both ends thereof, as shown in FIG. It is not limited to the embodiments supported by 20. If the ultrasonic element array substrate 10, particularly the piezoelectric thin film 1d of the piezoelectric MEMS ultrasonic transducer 1, is supported so that stress is hardly applied when the flexible ultrasonic probe head 100 is bent, the ultrasonic element array The base material 10 may be supported in any manner by the elastic plate. For example, an embodiment in which the ultrasonic element array substrate 10 is supported only at one end by the plate-like elastic body 20, and an embodiment in which the ultrasonic element array substrate 10 is supported by the plate-like elastic body 20 only at its central portion. can have a form. However, in these embodiments, one of the lengths in the array arrangement direction and the array transverse direction is very short compared to the other (for example, 1:5 or more), and the bending stiffness of the ultrasonic element array substrate 10 is Although this is suitable when the flexural rigidity ratio of the plate-like elastic body 20 is large (for example, 50 or more), the ultrasonic element array substrate 10 as shown in FIG. The embodiment supported by 20 is generally preferred.
 超音波素子アレイ基材10は、板状弾性体20の応力中立面Aに沿って、板状弾性体20に支持されている。例えば、板状弾性体20の応力中立面Aから、板状弾性体20の厚さの上下20%以内の範囲の位置のアレイ配列方向及びアレイ横断方向の平面上で、超音波素子アレイ基材10のアレイ横断方向の両端部が少なくとも支持されている。例えば、板状弾性体20が3mmの厚さを有しており、板状弾性体20の厚さの半分の位置に応力中立面Aがある場合には、板状弾性体20の厚さ方向の中心から上下0.3mmの範囲の位置で、超音波素子アレイ基材10が支持される。この場合において、その上下0.3mmの範囲の位置に、超音波素子アレイ基材10の厚さの全体にわたって包含されている必要はなく、超音波素子アレイ基材10の厚さの少なくとも一部がその範囲の位置に含まれていればよい。この場合において、圧電MEMS超音波トランスデューサ1が、その範囲の位置に含まれていることが特に好ましい。この場合には、破壊されやすい圧電MEMS超音波トランスデューサ1の圧電薄膜に応力がかかりにくくなる。 The ultrasonic element array substrate 10 is supported by the plate-like elastic body 20 along the stress neutral plane A of the plate-like elastic body 20 . For example, from the stress neutral plane A of the plate-shaped elastic body 20, on a plane in the array arrangement direction and the array transverse direction within a range of 20% above and below the thickness of the plate-shaped elastic body 20, the ultrasonic element array substrate At least both ends of the material 10 in the transverse direction of the array are supported. For example, if the plate-like elastic body 20 has a thickness of 3 mm and the stress neutral plane A is at a position half the thickness of the plate-like elastic body 20, then the thickness of the plate-like elastic body 20 is The ultrasonic element array substrate 10 is supported at a position within a range of 0.3 mm vertically from the center of the direction. In this case, it is not necessary to cover the entire thickness of the ultrasonic element array substrate 10 at a position within a range of 0.3 mm above and below, and at least part of the thickness of the ultrasonic element array substrate 10 should be included in the range. In this case, it is particularly preferred that the piezoelectric MEMS ultrasonic transducer 1 is included in the range of locations. In this case, stress is less likely to be applied to the piezoelectric thin film of the piezoelectric MEMS ultrasonic transducer 1, which is easily destroyed.
 特に、超音波素子アレイ基材10は、板状弾性体20の応力中立面Aが、圧電MEMS超音波トランスデューサ1の上部電極1aの上端から振動膜1dの下端の範囲内にあるように支持されることができる。このような場合には、超音波素子アレイ基材10に曲げの力が加わっても、超音波素子アレイ基材10(特に、圧電MEMS超音波トランスデューサ1)は破壊されにくい。 In particular, the ultrasonic element array substrate 10 is supported so that the stress neutral plane A of the elastic plate 20 is within the range from the upper end of the upper electrode 1a of the piezoelectric MEMS ultrasonic transducer 1 to the lower end of the diaphragm 1d. can be In such a case, even if a bending force is applied to the ultrasonic element array substrate 10, the ultrasonic element array substrate 10 (particularly, the piezoelectric MEMS ultrasonic transducer 1) is less likely to break.
 超音波素子アレイ基材10が板状弾性体20に支持される位置及び/又は板状弾性体20の応力中立面Aの位置は、圧電MEMS超音波トランスデューサ1の圧電薄膜の位置よりも(特に、圧電薄膜と下部電極との界面の位置よりも)、厚さ方向で下側とすることができる。超音波素子アレイ基材10が支持される位置及び/又は応力中立面Aの位置が、圧電薄膜よりも下側にあることによって、超音波トランスデューサ1に曲げの力が加わった時に、圧電薄膜全体の位置で引張応力がかかる。すなわち、そのような位置関係にすることによって、圧電薄膜の一部では引張応力がかかり、その他の部分では圧縮応力がかかるということがなく、圧電薄膜の全体に引張応力をかけることができる。圧電薄膜にかかる応力が圧電薄膜の場所によって大きく変わると、その場所に応じて振動子の周波数特性が変わってしまうが、上記の実施形態であれば、超音波振動を設計どおりに効果的に行わせることができる。 The position at which the ultrasonic element array substrate 10 is supported by the plate-like elastic body 20 and/or the position of the stress neutral plane A of the plate-like elastic body 20 is higher than the position of the piezoelectric thin film of the piezoelectric MEMS ultrasonic transducer 1 ( In particular, it can be below the position of the interface between the piezoelectric thin film and the lower electrode in the thickness direction. Since the position where the ultrasonic element array substrate 10 is supported and/or the position of the stress neutral plane A is below the piezoelectric thin film, when a bending force is applied to the ultrasonic transducer 1, the piezoelectric thin film Tensile stress is applied at all locations. That is, by setting such a positional relationship, tensile stress can be applied to the entire piezoelectric thin film without applying tensile stress to a portion of the piezoelectric thin film and compressive stress to other portions. If the stress applied to the piezoelectric thin film changes greatly depending on the location of the piezoelectric thin film, the frequency characteristics of the vibrator will change depending on the location. can let
 超音波素子アレイ基材10の平均厚さは、300μm以下、200μm以下、150μm以下、100μm以下、80μm以下、又は50μm以下であってもよく、20μm以上、30μm以上、40μm以上、又は50μm以上であってもよい。超音波素子アレイ基材10の平均厚さは、例えば、20μm以上300μm以下、又は30μm以上100μm以下であってもよい。 The average thickness of the ultrasonic element array substrate 10 may be 300 μm or less, 200 μm or less, 150 μm or less, 100 μm or less, 80 μm or less, or 50 μm or less, and may be 20 μm or more, 30 μm or more, 40 μm or more, or 50 μm or more. There may be. The average thickness of the ultrasonic element array substrate 10 may be, for example, 20 μm or more and 300 μm or less, or 30 μm or more and 100 μm or less.
 超音波素子アレイ基材10は、厚さ方向に力を加えた時に撓むことができる可撓性を有しており、超音波素子アレイ基材10の曲率Rは、100mm以下、80mm以下、50mm以下、又は40mm以下で、また10mm以上、20mm以上、30mm以上、又は40mm以上で曲げられても、強度上等で問題なく使用することができることが好ましい。例えば、超音波素子アレイ基材10は、曲率Rが10mm以上100mm以下、又は20mm以上50mm以下の範囲であっても、強度上等で問題なく使用することができる。また、この範囲であれば、コンベックス型の超音波プローブとして十分な曲率となる。 The ultrasonic element array substrate 10 is flexible enough to bend when force is applied in the thickness direction, and the curvature R of the ultrasonic element array substrate 10 is 100 mm or less, Even if it is bent by 50 mm or less, or 40 mm or less, or by 10 mm or more, 20 mm or more, 30 mm or more, or 40 mm or more, it is preferable that it can be used without problems in terms of strength and the like. For example, the ultrasonic element array substrate 10 can be used without problems in terms of strength even if the curvature R is in the range of 10 mm to 100 mm or 20 mm to 50 mm. Also, within this range, the curvature is sufficient for a convex ultrasonic probe.
 超音波素子アレイ基材10は、板状弾性体20よりも可撓性が高く、例えば、超音波素子アレイ基材10の曲げ剛性に対する板状弾性体20の曲げ剛性の比(板状弾性体20/アレイ基材10)は、3以上、5以上、10以上、30以上、50以上、又は100以上であり、10000以下、5000以下、3000以下、1000以下、500以下、300以下、100以下、又は50以下であってもよい。この比は、例えば、3以上10000以下、又は10以上500以下であってもよい。ここで、曲げ剛性は、片持ちの測定値に基づいて計算することができる。すなわち、一端を壁に固定した、長さ(L)の部材に先端集中荷重(P)を与えた場合に、発生するたわみ(δ)を測定し、その測定値から、曲げ剛性(E・I)は、P・L/(3・δ)で計算することができる。なお、曲げ剛性は、その部材のヤング率(E)と断面二次モーメント(I)の積で表される。 The ultrasonic element array substrate 10 is more flexible than the plate-shaped elastic body 20. For example, the ratio of the bending stiffness of the plate-shaped elastic body 20 to the bending stiffness of the ultrasonic element array substrate 10 (plate-shaped elastic body 20/array substrate 10) is 3 or more, 5 or more, 10 or more, 30 or more, 50 or more, or 100 or more, 10000 or less, 5000 or less, 3000 or less, 1000 or less, 500 or less, 300 or less, 100 or less , or 50 or less. This ratio may be, for example, 3 or more and 10,000 or less, or 10 or more and 500 or less. Here, bending stiffness can be calculated based on cantilever measurements. That is, when a concentrated load (P) is applied to a member of length (L) with one end fixed to a wall, the generated deflection (δ) is measured, and the bending stiffness (E · I ) can be calculated by P·L 3 /(3·δ). The flexural rigidity is represented by the product of the Young's modulus (E) and the moment of inertia (I) of the member.
 以下の表1に、特定の大きさの超音波素子アレイ基材10と、特定の大きさの2種類の板状弾性体20の曲げ剛性の値を例示する。
Figure JPOXMLDOC01-appb-T000001
Table 1 below exemplifies the flexural rigidity values of the ultrasonic element array substrate 10 having a specific size and two types of plate-shaped elastic bodies 20 having a specific size.
Figure JPOXMLDOC01-appb-T000001
 図1に示されているように、超音波素子アレイ基材10は、圧電MEMS超音波トランスデューサ1を基板2の溝部2a上に含むことができる。基板2には、MEMSによって複数の溝部2aを形成することができ、溝部2aが存在しない本体部分2bを含む。基板2は、例えばシリコン基板であり、シリコン本体部分2bを含み、及びシリコン基板を酸化処理して形成された酸化シリコン部分は、圧電MEMS超音波トランスデューサ1の一部を構成することができる。 As shown in FIG. 1 , the ultrasonic element array substrate 10 can include the piezoelectric MEMS ultrasonic transducers 1 on the grooves 2 a of the substrate 2 . The substrate 2 can be formed with a plurality of grooves 2a by MEMS and includes a body portion 2b in which no grooves 2a are present. The substrate 2 is, for example, a silicon substrate, and includes a silicon body portion 2b, and a silicon oxide portion formed by oxidizing the silicon substrate can constitute a part of the piezoelectric MEMS ultrasonic transducer 1.
〈超音波素子アレイ基材10-圧電MEMS超音波トランスデューサ1〉
 圧電MEMS超音波トランスデューサ1は、例えば特許文献3及び4に記載のような本分野で周知のMEMSによって、基板上に形成した圧電超音波素子である。
<Ultrasonic element array substrate 10-Piezoelectric MEMS ultrasonic transducer 1>
The piezoelectric MEMS ultrasonic transducer 1 is a piezoelectric ultrasonic element formed on a substrate by means of MEMS well known in the art, such as those described in US Pat.
 図3に、超音波素子アレイ基材10の圧電MEMS超音波トランスデューサ1の一例のZ-X方向の断面図を拡大して示す。図3に示されているように、圧電MEMS超音波トランスデューサ1は、上部電極1a、圧電薄膜1b、下部電極1c、及び振動膜1dを含むことができる。圧電MEMS超音波トランスデューサ1は、さらに耐水性保護膜を上部電極1a上に含むこともできる。 FIG. 3 shows an enlarged cross-sectional view of an example of the piezoelectric MEMS ultrasonic transducer 1 of the ultrasonic element array substrate 10 in the ZX direction. As shown in FIG. 3, the piezoelectric MEMS ultrasonic transducer 1 can include an upper electrode 1a, a piezoelectric thin film 1b, a lower electrode 1c, and a vibrating membrane 1d. The piezoelectric MEMS ultrasonic transducer 1 may further include a waterproof protective film on the upper electrode 1a.
 上部電極1a及び下部電極1cは、本分野で周知の電極を用いることができ、例えば金属薄膜から形成されていてもよい。上部電極1a及び下部電極1cが、圧電薄膜1bにパルス電圧または交流電圧を与えることによって、圧電薄膜1bを伸縮/伸長させて圧電薄膜1bと振動膜1dとを振動させる。 For the upper electrode 1a and the lower electrode 1c, well-known electrodes in this field can be used, and for example, they may be formed of a metal thin film. When the upper electrode 1a and the lower electrode 1c apply a pulse voltage or an alternating voltage to the piezoelectric thin film 1b, the piezoelectric thin film 1b is stretched/extended to vibrate the piezoelectric thin film 1b and the vibrating film 1d.
 なお、超音波トランスデューサ1は、出射された超音波が測定対象物から反射されて戻ってくる超音波エコーを受信する受信素子としても動作することができる。超音波エコーにより振動膜1dが振動し、この振動によって圧電薄膜1bに応力が加わり、上部電極1aと下部電極1cとの間に電圧が発生するため、これを受信信号として取り出すことができる。 It should be noted that the ultrasonic transducer 1 can also operate as a receiving element that receives ultrasonic echoes that are returned after the emitted ultrasonic waves are reflected from the object to be measured. The ultrasonic echo vibrates the vibrating membrane 1d, and this vibration applies stress to the piezoelectric thin film 1b, generating a voltage between the upper electrode 1a and the lower electrode 1c, which can be extracted as a received signal.
 図4は、図2に示した実施形態の圧電MEMS超音波トランスデューサ1を拡大して示した図である。上部電極1aは、アレイ配列方向(X方向)に隣接する超音波トランスデューサ1を電気的に接続し、その下側に圧電薄膜1bが位置しており、下部電極1cは、圧電薄膜1bの下側に位置しており、アレイ横断方向(Y方向)に隣接する超音波トランスデューサ1を電気的に接続している。この実施形態においては、圧電薄膜1bよりも広い範囲に基板2の溝部2aが形成されている。 FIG. 4 is an enlarged view of the piezoelectric MEMS ultrasonic transducer 1 of the embodiment shown in FIG. The upper electrode 1a electrically connects the ultrasonic transducers 1 adjacent in the array arrangement direction (X direction), the piezoelectric thin film 1b is positioned below it, and the lower electrode 1c is below the piezoelectric thin film 1b. and electrically connects adjacent ultrasonic transducers 1 in the array transverse direction (Y direction). In this embodiment, the groove 2a of the substrate 2 is formed in a wider range than the piezoelectric thin film 1b.
 図2に示されているように、上部電極1aは、アレイ配列方向(X方向)の両端部において、アレイ横断方向(Y方向)に伸びる上部電極用引出し配線1a’を通じて、フレキシブル印刷基板40に電気的に接続することができる。下部電極1cは、アレイ横断方向(Y方向)の端部において、下部電極用引出し配線を通じて、フレキシブル印刷基板40に電気的に接続することができる。これらの配線とフレキシブル印刷基板40とは、例えばワイヤーボンディングや異方性導電フィルム(ACF:Anisotropic Conductive Film)など周知の接続方法によって接続することができる。 As shown in FIG. 2, the upper electrodes 1a are connected to the flexible printed board 40 at both ends in the array arrangement direction (X direction) through upper electrode lead-out wirings 1a' extending in the array transverse direction (Y direction). can be electrically connected. The lower electrode 1c can be electrically connected to the flexible printed circuit board 40 through the lower electrode lead wiring at the end in the array transverse direction (Y direction). These wirings and the flexible printed board 40 can be connected by a well-known connection method such as wire bonding or an anisotropic conductive film (ACF).
 上部電極1a及び下部電極1cの構成は、図2の構成とは、互いに反対になっていてもよい。すなわち、下部電極1cが、各圧電MEMS超音波トランスデューサ1をアレイ配列方向(X方向)で電気的に接続することができる。また、下部電極1cは、アレイ配列方向(X方向)の両端部において、アレイ横断方向(Y方向)に伸びる下部電極用引出し配線を通じて、フレキシブル印刷基板40に電気的に接続することができる。この実施形態において、上部電極1aは、アレイ横断方向(Y方向)の端部において、フレキシブル印刷基板40に電気的に接続することができる。 The configurations of the upper electrode 1a and the lower electrode 1c may be opposite to each other with respect to the configuration of FIG. That is, the lower electrode 1c can electrically connect the piezoelectric MEMS ultrasonic transducers 1 in the array arrangement direction (X direction). In addition, the lower electrode 1c can be electrically connected to the flexible printed circuit board 40 at both ends in the array arrangement direction (X direction) through lower electrode lead wires extending in the array transverse direction (Y direction). In this embodiment, the upper electrode 1a can be electrically connected to the flexible printed circuit board 40 at the end in the array transverse direction (Y direction).
 また、上部電極1a及び下部電極1cの構成は、これらの構成に限定されることはなく、これらの電極は、圧電薄膜1bにパルス電圧または交流電圧を与えることによって圧電薄膜1bを伸縮/伸長させて圧電薄膜1bと振動膜1dを振動させることができればよい。 Moreover, the configurations of the upper electrode 1a and the lower electrode 1c are not limited to these configurations, and these electrodes expand and contract the piezoelectric thin film 1b by applying a pulse voltage or an alternating voltage to the piezoelectric thin film 1b. It suffices if the piezoelectric thin film 1b and the vibrating film 1d can be vibrated.
 圧電薄膜1bは、本分野で周知の圧電体の薄膜により形成される。圧電薄膜1bは、上部電極1aによってその少なくとも一部が覆われ、かつ下部電極1cの少なくとも一部を覆うように形成される。圧電薄膜1bの圧電体としては、例えばPZT(ジルコン酸チタン酸鉛)、チタン酸鉛(PbTiO)、ジルコン酸鉛(PbZrO)、チタン酸鉛ランタン((Pb、La)TiO)等を挙げることができる。 The piezoelectric thin film 1b is formed of a piezoelectric thin film well known in this field. The piezoelectric thin film 1b is formed so as to cover at least a portion of the upper electrode 1a and at least a portion of the lower electrode 1c. Examples of the piezoelectric material of the piezoelectric thin film 1b include PZT (lead zirconate titanate), lead titanate (PbTiO 3 ), lead zirconate (PbZrO 3 ), lead lanthanum titanate ((Pb, La)TiO 3 ), and the like. can be mentioned.
 圧電薄膜1bの平均厚みは、50μm以下、30μm以下、20μm以下、10μm以下、5μm以下、又は3μm以下であってもよく、0.1μm以上、0.3μm以上、0.5μm以上、1μm以上、又は3μm以上であってもよい。圧電薄膜1bの平均厚さは、例えば、0.1μm以上50μm以下、又は0.5μm以上20μm以下であってもよい。 The average thickness of the piezoelectric thin film 1b may be 50 μm or less, 30 μm or less, 20 μm or less, 10 μm or less, 5 μm or less, or 3 μm or less. Alternatively, it may be 3 μm or more. The average thickness of the piezoelectric thin film 1b may be, for example, 0.1 μm or more and 50 μm or less, or 0.5 μm or more and 20 μm or less.
 振動膜1dは、圧電薄膜1bとともに、モノモルフ構造又はバイモルフ構造を構成して、超音波振動子として機能することができる。振動膜1dとしては、シリカ、アルミナ、ジルコニア等の薄膜を用いることができ、例えばシリカ薄膜とジルコニア薄膜との2層構造により構成されていてもよい。ここで、シリカ薄膜は、基板2がシリコン基板である場合、基板表面を熱酸化処理することで成膜することができる。この場合、シリカ薄膜は、シリコン基板2に溝部2aを設ける際に形成されたものであってもよい。また、ジルコニア薄膜は、シリカ薄膜上に例えばスパッタリングなどの手法により成膜することができる。 The vibrating film 1d can form a monomorph structure or a bimorph structure together with the piezoelectric thin film 1b, and can function as an ultrasonic vibrator. A thin film of silica, alumina, zirconia, or the like can be used as the vibrating film 1d. For example, it may have a two-layer structure of a silica thin film and a zirconia thin film. Here, when the substrate 2 is a silicon substrate, the silica thin film can be formed by thermally oxidizing the substrate surface. In this case, the thin silica film may be formed when the grooves 2a are formed in the silicon substrate 2. FIG. A zirconia thin film can be formed on a silica thin film by a method such as sputtering.
 振動膜1dの平均厚みは、10μm以下、5μm以下、3μm以下、1μm以下、0.8μm以下、又は0.5μm以下であってもよく、0.05μm以上、0.1μm以上、0.2μm以上、0.3μm以上、又は0.5μm以上であってもよい。振動膜1dの平均厚さは、例えば、0.05μm以上10μm以下、又は0.3μm以上3μm以下であってもよい。 The average thickness of the diaphragm 1d may be 10 μm or less, 5 μm or less, 3 μm or less, 1 μm or less, 0.8 μm or less, or 0.5 μm or less, and may be 0.05 μm or more, 0.1 μm or more, or 0.2 μm or more. , 0.3 μm or more, or 0.5 μm or more. The average thickness of the diaphragm 1d may be, for example, 0.05 μm or more and 10 μm or less, or 0.3 μm or more and 3 μm or less.
〈超音波素子アレイ基材10-基板2〉
 基板2は、超音波トランスデューサ1をMEMSで形成する際の基板であり、例えばシリコン基板である。基板2には、溝部2aが形成されていることが好ましく、これにより圧電薄膜1b及び振動膜1dが振動しやすくなっている。
<Ultrasonic element array substrate 10 - substrate 2>
The substrate 2 is a substrate for forming the ultrasonic transducer 1 by MEMS, and is, for example, a silicon substrate. A groove 2a is preferably formed in the substrate 2, so that the piezoelectric thin film 1b and the vibrating film 1d are easily vibrated.
 基板2の溝部2aの幅は、アレイ配列方向及び横断方向のいずれも、500μm以下、300μm以下、200μm以下、100μm以下、50μm以下、又は30μm以下であってもよく、10μm以上、30μm以上、50μm以上、又は100μm以上であってもよい。溝部2aの幅は、アレイ配列方向及び横断方向のいずれも、例えば、10μm以上500μm以下、又は30μm以上200μm以下であってもよい。 The width of the groove portion 2a of the substrate 2 may be 500 μm or less, 300 μm or less, 200 μm or less, 100 μm or less, 50 μm or less, or 30 μm or less, or 10 μm or more, 30 μm or more, or 50 μm or less in both the array arrangement direction and the transverse direction. or more, or 100 μm or more. The width of the groove 2a may be, for example, 10 μm or more and 500 μm or less, or 30 μm or more and 200 μm or less, both in the array arrangement direction and in the transverse direction.
 基板2の溝部2a以外の本体部分2bにおける平均厚さは、200μm以下、150μm以下、100μm以下、80μm以下、60μm以下、50μm以下、40μm以下、又は30μm以下であってもよく、10μm以上、20μm以上、25μm以上、又は30μm以上であってもよい。基板2の本体部分2bの平均厚さは、例えば、10μm以上200μm以下、又は20μm以上60μm以下であってもよい。 The average thickness of the body portion 2b of the substrate 2 other than the groove portion 2a may be 200 μm or less, 150 μm or less, 100 μm or less, 80 μm or less, 60 μm or less, 50 μm or less, 40 μm or less, or 30 μm or less, and may be 10 μm or more and 20 μm. 25 μm or more, or 30 μm or more. The average thickness of the body portion 2b of the substrate 2 may be, for example, between 10 μm and 200 μm, or between 20 μm and 60 μm.
 特に、シリコン基板を用いる場合の本体部分における平均厚さは、80μm以下、60μm以下、50μm以下、40μm以下、又は30μm以下であってもよく、10μm以上、20μm以上、25μm以上、又は30μm以上であってもよい。シリコン基板の本体部分の平均厚さは、例えば、10μm以上80μm以下、又は20μm以上60μm以下であってもよい。 In particular, the average thickness of the body portion when using a silicon substrate may be 80 μm or less, 60 μm or less, 50 μm or less, 40 μm or less, or 30 μm or less, and may be 10 μm or more, 20 μm or more, 25 μm or more, or 30 μm or more. There may be. The average thickness of the body portion of the silicon substrate may be, for example, between 10 μm and 80 μm, or between 20 μm and 60 μm.
 本分野において用いられるシリコン基板は、通常は厚さが500μm~1mmの範囲であり、このようなシリコン基板を用いた超音波素子アレイ基材10は、可撓性を有さない。本発明者らは、厚さが上記のような範囲のシリコン基板を用いることによって、コンベックス型の超音波プローブとして十分な曲率を与える程度の可撓性と実用上十分な強度とを、超音波素子アレイ基材10に与えられることを見出した。なお、そのような超音波素子アレイ基材10を得るために、薄い厚さのシリコン基板上に、圧電MEMS超音波トランスデューサ1を形成してもよく、又は厚さのあるシリコン基板上に、圧電MEMS超音波トランスデューサ1を形成してから、シリコン基板を背面から研磨すること等によって、シリコン基板を薄化してもよい。 A silicon substrate used in this field usually has a thickness in the range of 500 μm to 1 mm, and the ultrasonic element array substrate 10 using such a silicon substrate does not have flexibility. The present inventors have found that by using a silicon substrate having a thickness within the range described above, it is possible to obtain an ultrasonic wave with a degree of flexibility that provides a sufficient curvature as a convex ultrasonic probe and a practically sufficient strength. It has been found to be applied to the element array substrate 10. In order to obtain such an ultrasonic element array substrate 10, the piezoelectric MEMS ultrasonic transducer 1 may be formed on a thin silicon substrate, or a piezoelectric MEMS ultrasonic transducer 1 may be formed on a thick silicon substrate. After forming the MEMS ultrasonic transducer 1, the silicon substrate may be thinned by, for example, polishing the silicon substrate from the back side.
〈超音波素子アレイ基材10-他の実施形態〉
 本開示の1つの超音波素子アレイ基材10は、複数の溝部2aを有するシリコン基板2、及び複数の溝部2a上の圧電MEMS超音波トランスデューサ1を含み、シリコン基板2の溝部2a以外の本体部分2bの平均厚さが、80μm以下である。
<Ultrasonic element array substrate 10 - another embodiment>
One ultrasonic element array substrate 10 of the present disclosure includes a silicon substrate 2 having a plurality of grooves 2a, and a piezoelectric MEMS ultrasonic transducer 1 on the plurality of grooves 2a. The average thickness of 2b is 80 μm or less.
 本発明者らは、このような超音波素子アレイ基材10であれば、十分な可撓性と実用上十分な強度とを、超音波素子アレイ基材10に与えられることを見出した。このような超音波素子アレイ基材10を用いることによって、様々な方法で超音波素子アレイ基材10を支持して、リニア型とコンベックス型とを切替可能な超音波プローブヘッド100として有利に用いることができる。 The inventors have found that such an ultrasonic element array substrate 10 can provide the ultrasonic element array substrate 10 with sufficient flexibility and practically sufficient strength. By using such an ultrasonic element array substrate 10, the ultrasonic element array substrate 10 can be supported by various methods and used advantageously as an ultrasonic probe head 100 capable of switching between a linear type and a convex type. be able to.
 この開示の超音波素子アレイ基材10についての他の構成は、上記の超音波素子アレイ基材10についての構成を参照することができる。 For other configurations of the ultrasonic element array substrate 10 of this disclosure, the configurations of the ultrasonic element array substrate 10 described above can be referred to.
〈板状弾性体20〉
 板状弾性体20は、アレイ配列方向及びアレイ横断方向の平面に延び、厚さ方向が他の方向よりも小さいことによって、板状となっている。したがって、板状弾性体20は、超音波素子アレイ基材10のアレイ配列方向及びアレイ横断方向に延びる平面に略平行となる。
<Plate-shaped elastic body 20>
The plate-like elastic body 20 extends in the planes in the array arrangement direction and the array transverse direction, and has a plate-like shape because its thickness direction is smaller than the other directions. Therefore, the plate-shaped elastic body 20 is substantially parallel to the plane extending in the array arrangement direction and the array transverse direction of the ultrasonic element array substrate 10 .
 図1に示されているように、板状弾性体20は、上部板状弾性体21及び下部板状弾性体22から構成することができ、超音波素子アレイ基材10のアレイ横断方向(Y方向)の両端部を、上部板状弾性体21及び下部板状弾性体22によって挟持させることができる。 As shown in FIG. 1, the plate-shaped elastic body 20 can be composed of an upper plate-shaped elastic body 21 and a lower plate-shaped elastic body 22, and the array transverse direction (Y direction) can be sandwiched between the upper plate-like elastic body 21 and the lower plate-like elastic body 22 .
 図2に示されているように、板状弾性体20は、超音波素子アレイ基材10の平面のアレイ配列方向及び横断方向の両端側の外周に延在することができ、そのアレイ配列方向及び/又はアレイ横断方向の両端部で超音波素子アレイ基材を支持することができる。 As shown in FIG. 2, the plate-shaped elastic body 20 can extend on the outer periphery of both ends in the array arrangement direction and the transverse direction of the plane of the ultrasonic element array substrate 10, and and/or support the ultrasonic element array substrate at both ends in the transverse direction of the array.
 板状弾性体20による超音波素子アレイ基材10の固定の方法は、特に限定されないが、接着、溶接、嵌め合い等を挙げることができる。 The method of fixing the ultrasonic element array substrate 10 by the plate-shaped elastic body 20 is not particularly limited, but examples include adhesion, welding, fitting, and the like.
 板状弾性体20の材料は、超音波素子アレイ基材10を適切に曲げて、プローブヘッドを可撓性にすることができれば特に限定されないが、金属材料、セラミック材料、樹脂材料等から構成することができる。 The material of the plate-shaped elastic body 20 is not particularly limited as long as the ultrasonic element array base 10 can be bent appropriately to make the probe head flexible, but it is composed of a metal material, a ceramic material, a resin material, or the like. be able to.
 板状弾性体20の平均厚さは、板状弾性体の厚みにも依存するが、10mm以下、8mm以下、5mm以下、3mm以下、2mm以下、又は1mm以下であってもよく、0.3mm以上、0.5mm以上、1mm以上、又は2mm以上であってもよい。板状弾性体20の平均厚さは、例えば、0.3mm以上10mm以下、又は0.5mm以上5mm以下であってもよい。  The average thickness of the plate-like elastic body 20 depends on the thickness of the plate-like elastic body, but may be 10 mm or less, 8 mm or less, 5 mm or less, 3 mm or less, 2 mm or less, or 1 mm or less, or 0.3 mm. It may be 0.5 mm or more, 1 mm or more, or 2 mm or more. The average thickness of the elastic plate 20 may be, for example, 0.3 mm or more and 10 mm or less, or 0.5 mm or more and 5 mm or less. 
〈音響レンズ30〉
 音響レンズ30は、プローブから出力された超音波を集束させ、分解能を向上させるための部材であり、超音波のレンズとして機能させることができる。
<Acoustic lens 30>
The acoustic lens 30 is a member for focusing the ultrasonic waves output from the probe and improving the resolution, and can function as an ultrasonic lens.
 音響レンズ30は、本分野において周知のものを採用することができ、例えばシリコーンゴム製の音響レンズであってもよい。 The acoustic lens 30 can adopt a well-known one in this field, and may be an acoustic lens made of silicone rubber, for example.
 図1に示すように、音響レンズ30は、圧電MEMS超音波トランスデューサ1を覆うように、超音波素子アレイ基材10上に配置することができる。 As shown in FIG. 1, the acoustic lens 30 can be arranged on the ultrasonic element array substrate 10 so as to cover the piezoelectric MEMS ultrasonic transducer 1 .
 音響レンズ30と超音波素子アレイ基材10とは、図1には図示されていない接着層によって接着することができ、接着層は、音響整合層を兼ねることができる。それにより、圧電MEMS超音波トランスデューサ1と被験者との音響インピーダンスの差を小さくして、超音波の反射を低減させて、効率よく被験者に超音波を入射させることができる。 The acoustic lens 30 and the ultrasonic element array substrate 10 can be adhered by an adhesive layer not shown in FIG. 1, and the adhesive layer can also serve as an acoustic matching layer. As a result, the difference in acoustic impedance between the piezoelectric MEMS ultrasonic transducer 1 and the subject can be reduced, the reflection of ultrasonic waves can be reduced, and the ultrasonic waves can be efficiently incident on the subject.
〈フレキシブル印刷基板40〉
 フレキシブル印刷基板40は、超音波素子アレイ基材10と接合し、圧電MEMS超音波トランスデューサ1に電気的な信号を与える。
<Flexible printed circuit board 40>
The flexible printed board 40 is bonded to the ultrasonic element array substrate 10 and gives electrical signals to the piezoelectric MEMS ultrasonic transducer 1 .
 フレキシブル印刷基板40は、本分野において周知のものを採用することができ、例えばポリイミド系のフィルムに金属配線を形成した基板を用いることができる。 For the flexible printed board 40, one well known in this field can be adopted. For example, a board in which metal wiring is formed on a polyimide film can be used.
 フレキシブル印刷基板40は、超音波素子アレイ基材10と接合できれば、特にその配置等について限定はされないが、例えば、図1では、フレキシブル印刷基板引き出しスリット41を、上部板状弾性体21及び下部板状弾性体22の間に形成し、そこからフレキシブル印刷基板40と超音波素子アレイ基材10とを接合しているが、このような実施形態に限定されるものではない。板状弾性体20のいずれかの場所にフレキシブル印刷基板引き出しスリット41を設けて、その間を通じて、フレキシブル印刷基板40と超音波素子アレイ基材10とを接合することができる。 The arrangement of the flexible printed board 40 is not particularly limited as long as it can be bonded to the ultrasonic element array substrate 10. For example, in FIG. The flexible printed board 40 and the ultrasonic element array substrate 10 are joined from there, but the embodiment is not limited to this. A flexible printed circuit board extraction slit 41 is provided at any location on the elastic plate 20, and the flexible printed circuit board 40 and the ultrasonic element array substrate 10 can be joined through the gap.
 図2を参照すると、フレキシブル印刷基板40は、超音波素子アレイ基材10のアレイ横断方向の片側からのみで接続されているが、特許文献2及び3に記載のように、アレイ横断方向の両側で接続されていてもよい。 Referring to FIG. 2, the flexible printed circuit board 40 is connected only from one side of the ultrasonic element array substrate 10 in the array transverse direction. may be connected by
《可撓性超音波プローブヘッドの製造方法》
 図5は、可撓性超音波プローブヘッドの製造方法の各工程を例示している。可撓性超音波プローブヘッド100は、例えば、(a)厚さ100μm以上の基板2上に圧電MEMS超音波トランスデューサ1を複数含む、超音波素子アレイ基材10を得ること;(b)超音波素子アレイ基材10とフレキシブル印刷基板40とを接続すること;(c)超音波素子アレイ基材10と上部板状弾性体21とを接合すること;(d)超音波素子アレイ基材10の基板2の厚さを80μm以下にするまで薄化すること;(e)超音波素子アレイ基材10と下部板状弾性体22とを接合すること;及び(f)音響レンズ30を接着すること、を含むことができる。
<<Manufacturing method of flexible ultrasonic probe head>>
FIG. 5 illustrates steps in a method of manufacturing a flexible ultrasound probe head. The flexible ultrasonic probe head 100 is obtained, for example, by (a) obtaining an ultrasonic element array substrate 10 including a plurality of piezoelectric MEMS ultrasonic transducers 1 on a substrate 2 having a thickness of 100 μm or more; connecting the element array substrate 10 and the flexible printed substrate 40; (c) bonding the ultrasonic element array substrate 10 and the upper elastic plate 21; (d) connecting the ultrasonic element array substrate 10 (e) bonding the ultrasonic element array substrate 10 and the lower elastic plate 22; and (f) bonding the acoustic lens 30. , can be included.
 これらの工程(a)~(f)のうちで、本開示の方法で本質的な工程は、工程(d)であり、工程(d)以外の工程については、従来技術と同様の方法で行うことができる。 Among these steps (a) to (f), the essential step in the method of the present disclosure is step (d), and the steps other than step (d) are performed in the same manner as in the prior art. be able to.
 工程(a)では、基板2にまず振動膜1dを形成する。この場合において、基板2がシリコン基板である場合、熱酸化処理、CVD等によってシリコン基板の上部側に振動膜1dの1つの層として酸化ケイ素層を形成する。次に、振動膜1dのもう1つの層としてジルコニア膜等をスパッタ、蒸着等によって形成する。 In step (a), the vibrating membrane 1d is formed on the substrate 2 first. In this case, if the substrate 2 is a silicon substrate, a silicon oxide layer is formed as one layer of the vibration film 1d on the upper side of the silicon substrate by thermal oxidation treatment, CVD, or the like. Next, a zirconia film or the like is formed by sputtering, vapor deposition, or the like as another layer of the vibrating film 1d.
 その後、スパッタ、蒸着等によって金属薄膜を形成した後、フォトリソグラフィ等によって、振動膜1d上に下部電極1cをパターン状に形成する。次に、圧電薄膜1bを、前駆体溶液のゾルをスピンコート等することによって形成し、さらにその膜をフォトリソグラフィ等によってパターン状に形成する。そして、上部電極1aを、下部電極1cと同様にして形成する。このようにして、圧電MEMS超音波トランスデューサ1を基板2上に形成する。 After that, after forming a metal thin film by sputtering, vapor deposition, or the like, the lower electrode 1c is formed in a pattern on the vibrating membrane 1d by photolithography or the like. Next, the piezoelectric thin film 1b is formed by spin-coating the sol of the precursor solution or the like, and the film is patterned by photolithography or the like. Then, the upper electrode 1a is formed in the same manner as the lower electrode 1c. Thus, the piezoelectric MEMS ultrasonic transducer 1 is formed on the substrate 2. FIG.
 そして、基板2の、圧電MEMS超音波トランスデューサ1が形成されていない側において、異方性エッチング等によって、基板2に溝部2aを形成する。 Then, on the side of the substrate 2 where the piezoelectric MEMS ultrasonic transducer 1 is not formed, a groove 2a is formed in the substrate 2 by anisotropic etching or the like.
 工程(b)において、超音波素子アレイ基材10の電極と及びフレキシブル印刷基板40とを接続する。この工程は、これらを電気的に接続させることができれば、特にその方法は限定されず、周知の方法で行うことができる。工程(c)及び工程(e)については、超音波素子アレイ基材10と板状弾性体20とを接合させることができれば、特にその方法は限定されず、例えば接着剤によって接合してもよい。 In step (b), the electrodes of the ultrasonic element array substrate 10 and the flexible printed board 40 are connected. This step is not particularly limited as long as it can electrically connect them, and can be performed by a known method. As for the steps (c) and (e), the method is not particularly limited as long as the ultrasonic element array substrate 10 and the plate-like elastic body 20 can be joined. .
 この工程(d)は、厚さ100μm以上の基板2を、化学機械研磨等によって薄化する工程である。これによって、基板2の本体部分2bの厚さを80μm以下にして、超音波プローブヘッド100に可撓性を与えることができる。この工程(d)は、工程(b)及び(c)の後に行うことが好ましい。基板2を薄化した後は、超音波素子アレイ基材10が可撓性となり、単体でのハンドリングが難しくなるのに対して、薄化前であれば、フレキシブル印刷基板40への接続が比較的容易であるためである。また、超音波素子アレイ基材10を上部板状弾性体21に固定しておくことで、薄化後のハンドリングも容易となる。 This step (d) is a step of thinning the substrate 2 having a thickness of 100 μm or more by chemical mechanical polishing or the like. Thereby, the thickness of the body portion 2b of the substrate 2 can be set to 80 μm or less, and flexibility can be imparted to the ultrasonic probe head 100. FIG. This step (d) is preferably performed after steps (b) and (c). After thinning the substrate 2, the ultrasonic element array substrate 10 becomes flexible and becomes difficult to handle as a single unit. This is because it is easy to use. Further, by fixing the ultrasonic element array substrate 10 to the upper plate-like elastic body 21, handling after thinning is facilitated.
《超音波プローブ》
 本開示の超音波プローブは、上記のような可撓性超音波プローブヘッド、板状弾性体を湾曲化するための湾曲形成部材、及び筐体を具備する。湾曲形成部材は、可撓性超音波プローブヘッドの板状弾性体を湾曲化させることができれば特に限定されず、また筐体についても、超音波プローブの筐体として利用できれば特に限定されない。
《Ultrasonic Probe》
The ultrasonic probe of the present disclosure includes the flexible ultrasonic probe head as described above, a bending forming member for bending the plate-like elastic body, and a housing. The bending member is not particularly limited as long as it can bend the plate-shaped elastic body of the flexible ultrasonic probe head, and the housing is not particularly limited as long as it can be used as a housing for the ultrasonic probe.
 図6は、本開示の超音波プローブヘッドをリニア型とコンベックス型とで切り替えている例を示している。図6に示すように、湾曲形成部材110は、可撓性超音波プローブヘッド100の中心部及び両端部の3点を支持し、その支持部材の位置関係を変更することによって、可撓性超音波プローブヘッド100に湾曲を形成する部材であることができる。図6に記載の実施形態では、可撓性超音波プローブヘッド100を中心部で支持する中心部支持部材111及び可撓性超音波プローブヘッド100の端部で支持する端部支持部材112をワイヤ113でつないで、中心部支持部材111にあるスプール111aでワイヤ113を巻き上げることで、支持部材の位置関係を変更し、可撓性超音波プローブヘッド100に湾曲を形成している。なお、中心部支持部材111は、可撓性超音波プローブヘッド100のアレイ配列方向(X方向)の両端側にある板状弾性体を支持することができ、端部支持部材112も、中心部支持部材111とアレイ配列方向(X方向)で同じ位置に支持できるように、アレイ配列方向(X方向)の両端側で支持することができる。 FIG. 6 shows an example of switching the ultrasonic probe head of the present disclosure between a linear type and a convex type. As shown in FIG. 6, the bending member 110 supports the flexible ultrasonic probe head 100 at three points, that is, the central portion and both ends, and the flexible ultrasonic probe head 100 can be bent by changing the positional relationship of the supporting members. It can be a member that forms a curve in the sonic probe head 100 . In the embodiment shown in FIG. 6, a central support member 111 that supports the flexible ultrasound probe head 100 in the center and an end support member 112 that supports the flexible ultrasound probe head 100 at the ends are formed by wires. By connecting at 113 and winding up the wire 113 with the spool 111a on the central support member 111, the positional relationship of the support members is changed and the flexible ultrasonic probe head 100 is formed with a curve. Note that the center support member 111 can support plate-shaped elastic bodies on both end sides in the array arrangement direction (X direction) of the flexible ultrasonic probe head 100, and the end support members 112 also support the center portion. It can be supported at both ends in the array arrangement direction (X direction) so that it can be supported at the same position as the support member 111 in the array arrangement direction (X direction).
 湾曲形成部材110は、ラックアンドピニオン機構を利用して、支持部材(111,112)間の距離を変えて、可撓性超音波プローブヘッド100を湾曲化する構成であってもよい。または、可撓性超音波プローブヘッド100の下部に、バルーン状の袋体を配置し、バルーンを膨張/収縮させることによって、可撓性超音波プローブヘッド100を湾曲化させてもよい。 The bending member 110 may be configured to bend the flexible ultrasonic probe head 100 by changing the distance between the support members (111, 112) using a rack and pinion mechanism. Alternatively, the flexible ultrasonic probe head 100 may be curved by placing a balloon-shaped bag under the flexible ultrasonic probe head 100 and inflating/deflating the balloon.
 超音波ブローブには、可撓性超音波プローブヘッド100の板状弾性体20に歪みセンサ130が具備されていてもよい。歪みセンサ130によって、歪みの大きさを制御することによって、プローブヘッド100が曲がりすぎて破壊することを防止することができる。または、プローブヘッド100が曲がりすぎて破壊することを防止するために、湾曲形成部材110の湾曲の程度を機械的又は電子的に制御する手段が湾曲形成部材110にあってもよい。 The ultrasonic probe may be provided with a strain sensor 130 on the elastic plate 20 of the flexible ultrasonic probe head 100 . By controlling the amount of strain, the strain sensor 130 can prevent the probe head 100 from bending too much and breaking. Alternatively, the bending member 110 may have means for mechanically or electronically controlling the degree of bending of the bending member 110 to prevent the probe head 100 from bending too much and breaking.
 図7は、超音波プローブの先端部分における断面図を例示している。超音波プローブ200の筐体120と可撓性超音波プローブヘッド100との間には、封止部材140が存在していてもよい。封止部材140は、筐体120内に水分等が侵入するのを防止できれば特に限定されないが、例えばシリコーンゴムであってもよい。 FIG. 7 illustrates a cross-sectional view of the tip portion of the ultrasonic probe. A sealing member 140 may be present between the housing 120 of the ultrasound probe 200 and the flexible ultrasound probe head 100 . The sealing member 140 is not particularly limited as long as it can prevent moisture or the like from entering the housing 120, but may be silicone rubber, for example.
《超音波診断装置》
 本開示の超音波診断装置は、上記の超音波プローブ、超音波プローブからの信号を処理する処理部、及び処理部からの信号を画像データに変換して表示する表示装置を少なくとも具備する。信号の送受信及び処理並びに超音波プローブの制御については、例えば特許文献2及び3に記載のような本分野で周知の方法によって行うことができる。
《Ultrasound diagnostic device》
An ultrasonic diagnostic apparatus of the present disclosure includes at least the above-described ultrasonic probe, a processing unit that processes signals from the ultrasonic probe, and a display device that converts the signals from the processing unit into image data and displays the image data. Transmission, reception and processing of signals and control of the ultrasound probe can be performed by methods well known in the art, such as those described in US Pat.
 図8は、本開示の超音波診断装置を例示している。本開示の超音波診断装置1000は、超音波プローブ200及び表示装置300を具備しており、超音波プローブ200と表示装置300とは、ケーブル400で接続されている。この実施形態では、超音波診断装置1000は、持ち運び可能な装置であるが、据置型の装置であってもよい。また、この実施形態では、超音波プローブ200と表示装置300とはケーブルで接続されているが、無線で接続することもできる。超音波プローブ200からの信号を処理する処理部は、図示されていないが、超音波プローブ200内に存在していてもよく、又は表示装置300に存在していてもよい。 FIG. 8 illustrates an ultrasonic diagnostic apparatus of the present disclosure. An ultrasound diagnostic apparatus 1000 of the present disclosure includes an ultrasound probe 200 and a display device 300 , and the ultrasound probe 200 and display device 300 are connected by a cable 400 . In this embodiment, the ultrasonic diagnostic apparatus 1000 is a portable apparatus, but may be a stationary apparatus. Moreover, in this embodiment, the ultrasonic probe 200 and the display device 300 are connected by a cable, but they can also be connected wirelessly. A processing unit that processes signals from the ultrasound probe 200 is not shown, but may reside in the ultrasound probe 200 or may reside in the display device 300 .
1 圧電MEMS超音波トランスデューサ
1a 上部電極
1a’ 上部電極用引出し配線
1b 圧電薄膜
1c 下部電極
1d 振動膜
2 基板
2a 溝部
2b 本体部分
10 超音波素子アレイ基材
20 板状弾性体
21 上部板状弾性体
22 下部板状弾性体
30 音響レンズ
40 フレキシブル印刷基板
100 可撓性超音波プローブヘッド
110 湾曲形成部材
111 中心部支持部材
111a スプール
112 端部支持部材
113 ワイヤ
120 筐体
130 歪みセンサ
140 封止部材
200 超音波プローブ
300 表示装置
400 ケーブル
1000 超音波診断装置

 
1 Piezoelectric MEMS ultrasonic transducer 1a Upper electrode 1a' Lead wiring 1b for upper electrode Piezoelectric thin film 1c Lower electrode 1d Vibration film 2 Substrate 2a Groove 2b Body portion 10 Ultrasonic element array substrate 20 Plate-like elastic body 21 Upper plate-like elastic body 22 lower plate-like elastic body 30 acoustic lens 40 flexible printed circuit board 100 flexible ultrasonic probe head 110 bending member 111 central support member 111a spool 112 end support member 113 wire 120 housing 130 strain sensor 140 sealing member 200 Ultrasonic probe 300 Display device 400 Cable 1000 Ultrasonic diagnostic device

Claims (14)

  1.  超音波素子アレイ基材、及び前記超音波素子アレイ基材を支持する板状弾性体を少なくとも具備する可撓性超音波プローブヘッドであって、
     前記超音波素子アレイ基材が、可撓性を有しており、かつ圧電MEMS超音波トランスデューサを基板上に複数含み、
     前記板状弾性体をアレイ配列方向の軸に沿って厚さ方向に曲げた時に生じる応力中立面に沿って、前記超音波素子アレイ基材が支持されている、
     可撓性超音波プローブヘッド。
    A flexible ultrasonic probe head comprising at least an ultrasonic element array substrate and a plate-shaped elastic body supporting the ultrasonic element array substrate,
    the ultrasonic element array substrate is flexible and includes a plurality of piezoelectric MEMS ultrasonic transducers on the substrate;
    The ultrasonic element array substrate is supported along a stress neutral plane generated when the plate-shaped elastic body is bent in the thickness direction along the axis in the array arrangement direction,
    Flexible ultrasound probe head.
  2.  前記超音波素子アレイ基材が、複数の溝部を有するシリコン基板、及び前記複数の溝部上の前記圧電MEMS超音波トランスデューサを含む、請求項1に記載の可撓性超音波プローブヘッド。 The flexible ultrasonic probe head of claim 1, wherein said ultrasonic element array substrate comprises a silicon substrate having a plurality of grooves and said piezoelectric MEMS ultrasonic transducers on said plurality of grooves.
  3.  前記シリコン基板の本体部分の平均厚さが、80μm以下である、請求項2に記載の可撓性超音波プローブヘッド。 The flexible ultrasonic probe head according to claim 2, wherein the average thickness of the body portion of the silicon substrate is 80 µm or less.
  4.  前記板状弾性体の平均厚さが、0.5mm~5mmであり、かつ前記板状弾性体が金属体である、請求項1~3のいずれか一項に記載の可撓性超音波プローブヘッド。 The flexible ultrasonic probe according to any one of claims 1 to 3, wherein the plate-like elastic body has an average thickness of 0.5 mm to 5 mm, and the plate-like elastic body is a metal body. head.
  5.  超音波素子アレイ基材の曲げ剛性に対する板状弾性体の曲げ剛性の比(板状弾性体/超音波素子アレイ基材)が、10以上である、請求項1~4のいずれか一項に記載の可撓性超音波プローブヘッド。 The ratio of the bending stiffness of the plate-like elastic body to the bending stiffness of the ultrasonic element array base material (plate-like elastic body/ultrasonic element array base material) is 10 or more, according to any one of claims 1 to 4. A flexible ultrasound probe head as described.
  6.  前記板状弾性体が、上部板状弾性体及び下部板状弾性体からなり、前記上部板状弾性体及び下部板状弾性体が、前記超音波素子アレイ基材を挟持している、請求項1~5のいずれか一項に記載の可撓性超音波プローブヘッド。 3. The elastic plate-like body comprises an upper elastic plate-like body and a lower elastic plate-like body, and the upper elastic plate-like body and the lower elastic plate-like body sandwich the ultrasonic element array substrate. The flexible ultrasonic probe head according to any one of 1-5.
  7.  前記圧電MEMS超音波トランスデューサが、上部電極、圧電薄膜、下部電極、及び振動膜をこの順に少なくとも含む、請求項1~6のいずれか一項に記載の可撓性超音波プローブヘッド。 The flexible ultrasonic probe head according to any one of claims 1 to 6, wherein the piezoelectric MEMS ultrasonic transducer includes at least an upper electrode, a piezoelectric thin film, a lower electrode, and a vibrating film in this order.
  8.  前記応力中立面が、前記圧電MEMS超音波トランスデューサの前記上部電極の上端から前記振動膜の下端の範囲内にある、請求項7に記載の可撓性超音波プローブヘッド。 8. The flexible ultrasonic probe head of claim 7, wherein the stress neutral plane is within a range from the upper end of the upper electrode of the piezoelectric MEMS ultrasonic transducer to the lower end of the vibrating membrane.
  9.  前記応力中立面が、前記圧電薄膜と下部電極との界面よりも下側に位置する、請求項7又は8に記載の可撓性超音波プローブヘッド。 The flexible ultrasonic probe head according to claim 7 or 8, wherein the stress neutral plane is located below the interface between the piezoelectric thin film and the lower electrode.
  10.  複数の溝部を有するシリコン基板、前記複数の溝部上の圧電MEMS超音波トランスデューサを含む、超音波素子アレイ基材であって、
     前記シリコン基板の本体部分の平均厚さが、80μm以下である、
     超音波素子アレイ基材。
    An ultrasonic element array substrate comprising a silicon substrate having a plurality of grooves, a piezoelectric MEMS ultrasonic transducer on the plurality of grooves,
    The average thickness of the main body portion of the silicon substrate is 80 μm or less.
    Ultrasonic element array substrate.
  11.  請求項10に記載の超音波素子アレイ基材、及び前記超音波素子アレイ基材を支持する板状弾性体を具備する、可撓性超音波プローブヘッド。 A flexible ultrasonic probe head comprising the ultrasonic element array substrate according to claim 10 and a plate-like elastic body that supports the ultrasonic element array substrate.
  12.  請求項1~9及び11のいずれか一項に記載の可撓性超音波プローブヘッド、前記板状弾性体を湾曲化するための湾曲形成部材、及び筐体を具備する、超音波プローブ。 An ultrasonic probe comprising the flexible ultrasonic probe head according to any one of claims 1 to 9 and 11, a bending forming member for bending the elastic plate, and a housing.
  13.  前記板状弾性体に歪みセンサを具備する、請求項12に記載の超音波プローブ。 The ultrasonic probe according to claim 12, wherein the plate-like elastic body is provided with a strain sensor.
  14.  請求項12又は13に記載の超音波プローブ、前記超音波プローブからの信号を処理する処理部、及び前記処理部からの信号を画像データに変換して表示する表示装置を少なくとも具備する、超音波診断装置。

     
    14. The ultrasonic probe according to claim 12 or 13, comprising at least a processing unit that processes a signal from the ultrasonic probe, and a display device that converts the signal from the processing unit into image data and displays it, ultrasound diagnostic equipment.

PCT/JP2022/015873 2021-03-30 2022-03-30 Flexible ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic device WO2022210851A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511470A JPWO2022210851A1 (en) 2021-03-30 2022-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-057458 2021-03-30
JP2021057458 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210851A1 true WO2022210851A1 (en) 2022-10-06

Family

ID=83456503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015873 WO2022210851A1 (en) 2021-03-30 2022-03-30 Flexible ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic device

Country Status (2)

Country Link
JP (1) JPWO2022210851A1 (en)
WO (1) WO2022210851A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1042395A (en) * 1996-07-19 1998-02-13 Kanda Tsushin Kogyo Co Ltd Ultrasonic probe and ultrasonic inspection device
WO2005120355A1 (en) * 2004-06-07 2005-12-22 Olympus Corporation Electrostatic capacity type ultrasonic transducer
JP2006247130A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Ultrasonic probe and manufacturing method thereof
WO2012023619A1 (en) * 2010-08-20 2012-02-23 株式会社日立メディコ Ultrasound probe and ultrasound diagnostic device using same
JP2013144063A (en) * 2012-01-16 2013-07-25 Olympus Medical Systems Corp Ultrasound unit, ultrasonic endoscope, and method of manufacturing ultrasound unit
JP2013165753A (en) * 2012-02-14 2013-08-29 Hitachi Aloka Medical Ltd Ultrasonic probe and ultrasonic diagnostic apparatus using the same
JP2013258624A (en) * 2012-06-14 2013-12-26 Seiko Epson Corp Ultrasonic transducer element package, ultrasonic transducer element chip, probe, probe head, electronic apparatus, ultrasonic diagnostic device, and manufacturing method of ultrasonic transducer element package
JP2016529834A (en) * 2013-08-26 2016-09-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ultrasonic transducer assembly and method for manufacturing an ultrasonic transducer assembly
US20170256699A1 (en) * 2016-03-01 2017-09-07 Qualcomm Incorporated Sensor device
JP2018183426A (en) * 2017-04-26 2018-11-22 株式会社日立製作所 Ultrasonic imaging apparatus, ultrasonic transducer, and manufacturing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1042395A (en) * 1996-07-19 1998-02-13 Kanda Tsushin Kogyo Co Ltd Ultrasonic probe and ultrasonic inspection device
WO2005120355A1 (en) * 2004-06-07 2005-12-22 Olympus Corporation Electrostatic capacity type ultrasonic transducer
JP2006247130A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Ultrasonic probe and manufacturing method thereof
WO2012023619A1 (en) * 2010-08-20 2012-02-23 株式会社日立メディコ Ultrasound probe and ultrasound diagnostic device using same
JP2013144063A (en) * 2012-01-16 2013-07-25 Olympus Medical Systems Corp Ultrasound unit, ultrasonic endoscope, and method of manufacturing ultrasound unit
JP2013165753A (en) * 2012-02-14 2013-08-29 Hitachi Aloka Medical Ltd Ultrasonic probe and ultrasonic diagnostic apparatus using the same
JP2013258624A (en) * 2012-06-14 2013-12-26 Seiko Epson Corp Ultrasonic transducer element package, ultrasonic transducer element chip, probe, probe head, electronic apparatus, ultrasonic diagnostic device, and manufacturing method of ultrasonic transducer element package
JP2016529834A (en) * 2013-08-26 2016-09-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ultrasonic transducer assembly and method for manufacturing an ultrasonic transducer assembly
US20170256699A1 (en) * 2016-03-01 2017-09-07 Qualcomm Incorporated Sensor device
JP2018183426A (en) * 2017-04-26 2018-11-22 株式会社日立製作所 Ultrasonic imaging apparatus, ultrasonic transducer, and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2022210851A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US20160329482A1 (en) Ultrasonic transducer device, probe head, ultrasonic probe, electronic machine and ultrasonic diagnostic apparatus
US9592534B2 (en) Ultrasonic transducer element chip, probe, electronic instrument, and ultrasonic diagnostic device
JP4774393B2 (en) Ultrasonic transducer, ultrasonic diagnostic apparatus and ultrasonic microscope
US8026651B2 (en) Ultrasound transducer and electronic device
EP1810619B1 (en) Capacitive ultrasonic transducer and endo cavity ultrasonic diagnosis system using the same
JP5019997B2 (en) Ultrasonic transducer, ultrasonic diagnostic apparatus and ultrasonic microscope
JP6065421B2 (en) Ultrasonic probe and ultrasonic inspection device
JP4703382B2 (en) Structure of transducer array, manufacturing method thereof, and ultrasonic probe
JP5852461B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
Dangi et al. Ring PMUT array based miniaturized photoacoustic endoscopy device
US20200101492A1 (en) Capacitive transducer, manufacturing method thereof, and image forming apparatus
JP7028013B2 (en) Ultrasonic probe and ultrasonic diagnostic equipment
JP2015130994A (en) Ultrasonic device, ultrasonic transducer device, electronic apparatus and ultrasonic imaging device
JP4774394B2 (en) Ultrasonic transducer, ultrasonic transducer manufacturing method, ultrasonic diagnostic apparatus, and ultrasonic microscope
JP2014146884A (en) Ultrasonic device, ultrasonic probe, electronic apparatus and ultrasonic image apparatus
WO2022210851A1 (en) Flexible ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic device
CN112791926A (en) Ultrasonic imaging apparatus and ultrasonic imaging system
JP5834679B2 (en) Ultrasonic probe and ultrasonic diagnostic imaging apparatus
JP2013098724A (en) Piezoelectric device, ultrasonic probe and manufacturing method of piezoelectric device
WO2022210887A1 (en) Ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic apparatus
JP7153985B2 (en) capacitive and piezoelectric devices
TWI822190B (en) Ultrasonic transducing module and ultrasonic probe
JP2019165307A (en) Ultrasonic sensor
JP2018029315A (en) Ultrasonic transducer, ultrasonic probe using the same, and electronic apparatus
JP6288235B2 (en) Ultrasonic probe and ultrasonic inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511470

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781061

Country of ref document: EP

Kind code of ref document: A1