WO2022210796A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022210796A1
WO2022210796A1 PCT/JP2022/015713 JP2022015713W WO2022210796A1 WO 2022210796 A1 WO2022210796 A1 WO 2022210796A1 JP 2022015713 W JP2022015713 W JP 2022015713W WO 2022210796 A1 WO2022210796 A1 WO 2022210796A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
mode
composition ratio
compressor
Prior art date
Application number
PCT/JP2022/015713
Other languages
French (fr)
Japanese (ja)
Inventor
政貴 田中
英二 熊倉
育弘 岩田
隆平 加治
敦史 吉見
浩貴 上田
拓郎 山田
雅樹 中山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP22781007.4A priority Critical patent/EP4317849A4/en
Priority to CN202280026142.8A priority patent/CN117098959A/en
Publication of WO2022210796A1 publication Critical patent/WO2022210796A1/en
Priority to US18/374,327 priority patent/US20240019178A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2108Temperatures of a receiver

Definitions

  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2008-281326 describes the use of R1234yf, which has a low global warming potential, in a refrigeration cycle device instead of R134a.
  • a refrigerating cycle device includes a refrigerating cycle, a changing section, and a control section.
  • the refrigeration cycle uses a non-azeotropic refrigerant mixture containing a first refrigerant and a second refrigerant.
  • the changing unit changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle.
  • the control unit controls the operation of the change unit.
  • the controller executes a first mode and a second mode.
  • the first mode is a mode in which the operation of the change unit is controlled to allow the second refrigerant to flow substantially independently through the refrigeration cycle.
  • the second mode is a mode in which the operation of the change unit is controlled to allow the mixed refrigerant of the first refrigerant and the second refrigerant to flow through the refrigeration cycle.
  • the refrigeration cycle device of the first aspect can use the second refrigerant substantially alone, or can use a non-azeotropic mixed refrigerant containing the first refrigerant and the second refrigerant. Therefore, a refrigerant of suitable composition can be used.
  • the refrigerating cycle device is the refrigerating cycle device according to the first aspect, and in the first mode, a refrigerant having a second refrigerant concentration of 92 wt % or more is flowed through the refrigerating cycle.
  • the refrigerating cycle device is the refrigerating cycle device according to the second aspect, and in the first mode, a refrigerant having a second refrigerant concentration of 98 wt % or higher is flowed through the refrigerating cycle.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to third aspects, and further includes a detection unit.
  • the detection unit detects the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle.
  • the control unit controls the operation of the changing unit so that the composition ratio of the first refrigerant and the second refrigerant detected by the detection unit becomes the target composition ratio.
  • the composition ratio between the first refrigerant and the second refrigerant is changed while detecting the composition ratio of the refrigerant, so refrigerant with an appropriate composition can be used according to the operating conditions.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the first to fourth aspects, wherein the boiling point of the second refrigerant is higher than the boiling point of the first refrigerant.
  • the refrigerating cycle device is the refrigerating cycle device according to the fifth aspect, and the refrigerating cycle includes a utilization heat exchanger that adjusts the temperature of an object to be temperature-adjusted.
  • the control unit executes the first mode.
  • the control unit executes the second mode.
  • the second refrigerant when used as an evaporator, the second refrigerant can be used almost exclusively to operate with an emphasis on efficiency.
  • the required capacity when the heat exchanger is used as a heat radiator, the required capacity can be obtained by using the non-azeotropic mixed refrigerant of the first refrigerant and the second refrigerant.
  • a refrigerating cycle apparatus is the refrigerating cycle apparatus according to the sixth aspect, wherein when the utilization heat exchanger is used as a heat radiator, the controller controls the first mode or the second mode.
  • the second refrigerant may be used if it is unnecessary to use the mixed refrigerant of the first refrigerant and the second refrigerant due to the capacity. It can be used almost independently to drive with an emphasis on efficiency.
  • a refrigeration cycle device is the refrigeration cycle device according to the seventh aspect, and the refrigeration cycle includes a compressor.
  • the controller further controls the rotation speed of the compressor.
  • the control unit executes the second mode when the required capacity cannot be obtained even if the rotational speed of the compressor is increased to a predetermined rotational speed while the first mode is being executed.
  • a refrigerating cycle apparatus is the refrigerating cycle apparatus according to the sixth aspect or the seventh aspect, wherein the control unit controls the operation of the changing unit when executing the second mode to operate the refrigerating cycle.
  • the composition ratio of the first refrigerant and the second refrigerant in the flowing refrigerant is changed between the first composition ratio and the second composition ratio.
  • the second composition ratio has a higher proportion of the first refrigerant than the first composition ratio.
  • the composition ratio between the first refrigerant and the second refrigerant is changed in stages, so that the necessary capacity can be obtained while suppressing the decrease in efficiency.
  • a refrigeration cycle device is the refrigeration cycle device according to the ninth aspect, and the refrigeration cycle includes a compressor.
  • the controller further controls the rotation speed of the compressor.
  • the control unit changes either the number of rotations of the compressor or the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle according to changes in the required capacity of the refrigeration cycle device.
  • a refrigerating cycle device is the refrigerating cycle device according to the tenth aspect, wherein, when the required capacity increases, the control unit controls the rotation speed of the compressor and the first Of the composition ratios of the refrigerant and the second refrigerant, the one with the smaller amount of increase in the electric power of the compressor when changed is changed.
  • a refrigerating cycle device is the refrigerating cycle device according to the tenth or eleventh aspect, wherein the controller controls, when the required capacity is reduced, the ratio of the first refrigerant in the refrigerant flowing through the refrigerating cycle to When the ratio is higher than the predetermined value, the changing unit is controlled to decrease the ratio of the first refrigerant in the refrigerant flowing through the refrigerating cycle, and when the ratio of the first refrigerant in the refrigerant flowing through the refrigerating cycle is equal to or less than the predetermined value, Decrease compressor speed.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the first to twelfth aspects, and the first refrigerant is CO2.
  • the second refrigerant is R1234Ze or R1234yf.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the first to twelfth aspects, and the first refrigerant is R1132(E) or R1123.
  • the second refrigerant is R1234Ze or R1234yf.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to one embodiment
  • 2 is a schematic configuration diagram of a refrigeration cycle apparatus according to Modification A
  • FIG. 11 is a schematic configuration diagram of a refrigeration cycle apparatus according to Modification G;
  • a refrigeration cycle device is a device that uses a vapor compression refrigeration cycle to perform at least one of cooling of a temperature-adjusted object and heating of a temperature-adjusted object.
  • the refrigeration cycle device of the present disclosure uses a non-azeotropic mixed refrigerant as a refrigerant.
  • the refrigeration cycle device of the present disclosure changes the composition ratio of the refrigerant flowing through the refrigeration cycle according to conditions, as described later.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus 100. As shown in FIG. 1
  • the refrigeration cycle device 100 is an air conditioner that cools and heats the air whose temperature is to be adjusted.
  • the refrigeration cycle device 100 is not limited to this, and may be a device that cools and heats a liquid (for example, water) whose temperature is to be adjusted.
  • the refrigerating cycle device 100 mainly includes a main refrigerant circuit 50 as an example of a refrigerating cycle, a changing section 70, a detecting section 150, and a controller 110, as shown in FIG.
  • the refrigerant circuit 200 includes the main refrigerant circuit 50 and a first bypass flow path 80 of a change section 70 (to be described later) connected to the main refrigerant circuit 50 .
  • the refrigerant circuit 200 is filled with a non-azeotropic refrigerant mixture.
  • the main refrigerant circuit 50 uses a non-azeotropic refrigerant mixture.
  • a non-azeotropic refrigerant mixture is a mixture of at least two refrigerants.
  • the refrigerant circuit 200 of the refrigeration cycle apparatus 100 of the first embodiment is filled with a non-azeotropic mixed refrigerant containing only two types of refrigerants (first refrigerant and second refrigerant).
  • first refrigerant and second refrigerant first refrigerant and second refrigerant
  • the non-azeotropic refrigerant mixture may be a mixture of three or more refrigerants.
  • the second refrigerant may be an azeotropic or pseudo-azeotropic refrigerant mixture containing two or more refrigerants instead of one refrigerant.
  • the non-azeotropic mixed refrigerant is a mixed refrigerant of an azeotropic or pseudo-azeotropic mixed refrigerant containing two or more refrigerants as a second refrigerant and a first refrigerant that is non-azeotropic with the second refrigerant. Even though.
  • the first refrigerant is CO2 (carbon dioxide) and the second refrigerant is HFO (hydrofluoroolefin).
  • HFO is a refrigerant with a very low global warming potential.
  • a specific non-limiting example of HFO for use as the second refrigerant is R1234Ze (cis-1,3,3,3-tetrafluoropropene).
  • R1234yf (2,3,3,3-tetrafluoropropene) may be used as HFO of the second refrigerant.
  • CO2 is a refrigerant with a relatively low boiling point
  • R1234Ze and R1234yf are refrigerants with a relatively high boiling point.
  • the boiling point of the second refrigerant is higher than the boiling point of the first refrigerant.
  • the first refrigerant may be called a low boiling point refrigerant
  • the second refrigerant may be called a high boiling point refrigerant.
  • the ratio of the total weight of the first refrigerant charged in the refrigerant circuit 200 to the total weight of all refrigerants charged in the refrigerant circuit 200 of the refrigeration cycle device 100 is preferably 20 wt% or less.
  • the main refrigerant circuit 50, the changing section 70, the detecting section 150 and the controller 110 will be outlined.
  • the main refrigerant circuit 50 mainly includes a compressor 10, a flow path switching mechanism 15, a heat source heat exchanger 20, an expansion mechanism 30, and a utilization heat exchanger 40, as shown in FIG.
  • the compressor 10, the flow path switching mechanism 15, the heat source heat exchanger 20, the expansion mechanism 30, and the utilization heat exchanger 40 are connected by refrigerant pipes 52a to 52e, which will be described later, to form a main refrigerant circuit 50. (See Figure 1).
  • the refrigeration cycle device 100 circulates the refrigerant in the main refrigerant circuit 50 to cool and heat the air whose temperature is to be adjusted.
  • the changing unit 70 is a mechanism that changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 .
  • the detection unit 150 detects the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
  • the refrigeration cycle apparatus 100 has a heat source unit 2 having a casing (not shown) and a utilization unit connected to the heat source unit 2 via a refrigerant pipe. 4 and .
  • the heat source unit 2 is installed, for example, on the roof of the building in which the refrigerating cycle device 100 is installed, in a machine room, or around the building in which the refrigerating cycle device 100 is installed.
  • the usage unit 4 is arranged in a space to be air-conditioned or in a space near the space to be air-conditioned (for example, in the ceiling or in a machine room).
  • the casing of the heat source unit 2 includes the compressor 10 of the main refrigerant circuit 50, the flow path switching mechanism 15, the heat source heat exchanger 20, the expansion mechanism 30, the changing section 70, and the detecting section 150. , are mainly accommodated.
  • the casing of the utilization unit 4 mainly accommodates the utilization heat exchanger 40 of the main refrigerant circuit 50 .
  • the controller 110 controls operations of various components of the refrigeration cycle apparatus 100 .
  • the controller 110 controls the operation of the changing unit 70.
  • the controller 110 executes the first mode and the second mode by controlling the operation of the changing section 70 .
  • the first mode is a mode in which the operation of the changing unit 70 is controlled to allow the second refrigerant to flow through the main refrigerant circuit 50 substantially independently.
  • the second mode is a mode in which the operation of the changing unit 70 is controlled to allow the mixed refrigerant of the first refrigerant and the second refrigerant to flow through the main refrigerant circuit 50 .
  • the flow of the second refrigerant substantially alone is not limited to the state of flowing the second refrigerant that does not contain the first refrigerant, but the state of flowing the second refrigerant having a high concentration equal to or higher than a predetermined concentration (substantially state in which the second refrigerant flows alone).
  • the state in which the second refrigerant flows substantially alone through the main refrigerant circuit 50 includes the state in which the second refrigerant having a concentration of 92 wt % or more flows through the main refrigerant circuit 50 .
  • the refrigerant with the highest second refrigerant concentration (the refrigerant with the lowest first refrigerant concentration) is allowed to flow through the main refrigerant circuit 50 .
  • the main refrigerant circuit 50 is supplied with a refrigerant having a second refrigerant concentration of 98 wt % or higher.
  • the main refrigerant circuit 50 includes, as shown in FIG. and a utilization heat exchanger 40 .
  • the main refrigerant circuit 50 includes a suction pipe 52a as shown in FIG. , a discharge pipe 52b, a first gas refrigerant pipe 52c, a liquid refrigerant pipe 52d, and a second gas refrigerant pipe 52e (see FIG. 1).
  • the suction pipe 52 a connects the suction port 10 b of the compressor 10 and the channel switching mechanism 15 .
  • the discharge pipe 52b connects the discharge port 10c of the compressor 10 and the channel switching mechanism 15 .
  • the first gas refrigerant pipe 52 c connects the flow path switching mechanism 15 and the gas end of the heat source heat exchanger 20 .
  • the liquid refrigerant pipe 52 d connects the liquid end of the heat source heat exchanger 20 and the liquid end of the heat utilization heat exchanger 40 .
  • An expansion mechanism 30 is provided in the liquid refrigerant pipe 52d.
  • the second gas refrigerant pipe 52 e connects the gas end of the heat utilization heat exchanger 40 and the channel switching mechanism 15 .
  • (2-1-1) Compressor The compressor 10 sucks low-pressure refrigerant in the refrigeration cycle from the suction port 10b, compresses the refrigerant in a compression mechanism (not shown), and releases high-pressure refrigerant in the refrigeration cycle from the discharge port 10c. Dispense. Although only one compressor 10 is depicted in FIG. 1, the main refrigerant circuit 50 may have multiple compressors 10 connected in series or in parallel.
  • the compressor 10 is, for example, a scroll compressor.
  • the compressor 10 is not limited to this, and may be a compressor of a type other than a scroll compressor, such as a rotary compressor.
  • the type of compressor 10 may be selected as appropriate.
  • the compressor 10 is, but not limited to, an inverter-controlled compressor in which the rotation speed of the motor 10a is variable.
  • a later-described controller 110 that controls the operation of the compressor 10 controls the rotation speed of the motor 10a of the compressor 10 according to, for example, the air conditioning load.
  • the channel switching mechanism 15 is a mechanism that switches the flow direction of the refrigerant in the main refrigerant circuit 50 according to the operation mode (cooling operation mode/heating operation mode) of the refrigeration cycle device 100.
  • the cooling operation mode is an operation mode of the refrigeration cycle apparatus 100 that causes the heat source heat exchanger 20 to function as a radiator and the utilization heat exchanger 40 to function as an evaporator.
  • the heating operation mode is an operation mode of the refrigeration cycle apparatus 100 in which the utilization heat exchanger 40 functions as a radiator and the heat source heat exchanger 20 functions as an evaporator.
  • the flow path switching mechanism 15 switches the flow direction of the refrigerant in the main refrigerant circuit 50 so that the refrigerant discharged from the compressor 10 is sent to the heat source heat exchanger 20 .
  • the channel switching mechanism 15 communicates the suction pipe 52a with the second gas refrigerant pipe 52e and communicates the discharge pipe 52b with the first gas refrigerant pipe 52c (solid line in FIG. 1). reference).
  • the flow path switching mechanism 15 switches the flow direction of the refrigerant in the main refrigerant circuit 50 so that the refrigerant discharged from the compressor 10 is sent to the utilization heat exchanger 40 .
  • the channel switching mechanism 15 communicates the suction pipe 52a with the first gas refrigerant pipe 52c, and communicates the discharge pipe 52b with the second gas refrigerant pipe 52e (broken line in FIG. 1). reference).
  • the channel switching mechanism 15 is, for example, a four-way switching valve. However, the channel switching mechanism 15 may be realized by means other than the four-way switching valve. For example, the channel switching mechanism 15 may be configured by combining a plurality of solenoid valves and pipes so as to switch the flow direction of the refrigerant.
  • the heat source heat exchanger 20 functions as a refrigerant radiator when the refrigeration cycle device 100 is operated in the cooling operation mode, and functions as a refrigerant radiator when the refrigeration cycle device 100 is in the heating operation mode. When operated, it functions as an evaporator of refrigerant. Although only one heat source heat exchanger 20 is illustrated in FIG. 1, the main refrigerant circuit 50 may have a plurality of heat source heat exchangers 20 arranged in parallel.
  • the heat source heat exchanger 20 is, for example, a fin-and-tube heat exchanger having a plurality of heat transfer tubes and a plurality of heat transfer fins.
  • a first gas refrigerant pipe 52c is connected to one end of the heat source heat exchanger 20 as shown in FIG.
  • a liquid refrigerant pipe 52d is connected to the other end of the heat source heat exchanger 20 as shown in FIG.
  • refrigerant flows into the heat source heat exchanger 20 from the first gas refrigerant pipe 52c.
  • the refrigerant that has flowed into the heat source heat exchanger 20 from the first gas refrigerant pipe 52c exchanges heat with air supplied by a fan (not shown) to radiate heat, and at least a portion of the refrigerant is condensed.
  • the refrigerant that has dissipated heat in the heat source heat exchanger 20 flows out to the liquid refrigerant pipe 52d.
  • refrigerant flows into the heat source heat exchanger 20 from the liquid refrigerant pipe 52d.
  • the refrigerant that has flowed into the heat source heat exchanger 20 from the liquid refrigerant pipe 52d absorbs heat and evaporates by exchanging heat with air supplied by a fan (not shown) in the heat source heat exchanger 20 .
  • the refrigerant that has absorbed heat (heated) in the heat source heat exchanger 20 flows out to the first gas refrigerant pipe 52c.
  • heat is exchanged between the refrigerant flowing inside and the air as the heat source supplied to the heat source heat exchanger 20. It is not limited to a heat exchanger that exchanges heat between and a refrigerant.
  • the heat source heat exchanger 20 may be a heat exchanger that exchanges heat between a refrigerant flowing inside and a liquid as a heat source supplied to the heat source heat exchanger 20 .
  • the expansion mechanism 30 is a mechanism for decompressing the refrigerant and adjusting the flow rate of the refrigerant.
  • the expansion mechanism 30 is an electronic expansion valve whose opening is adjustable. The degree of opening of the expansion mechanism 30 is appropriately adjusted according to the operating conditions.
  • the expansion mechanism 30 is not limited to an electronic expansion valve, and may be a thermostatic expansion valve or a capillary tube.
  • the utilization heat exchanger 40 functions as a refrigerant evaporator when the refrigeration cycle device 100 is operated in the cooling operation mode, and functions as a refrigerant evaporator when the refrigeration cycle device 100 is operated in the heating operation mode. It functions as a heat radiator for the refrigerant when it is operated.
  • the utilization heat exchanger 40 cools the object of temperature adjustment (air in this embodiment).
  • the utilization heat exchanger 40 heats a temperature-adjusted object (air in this embodiment) when functioning as a radiator.
  • the refrigeration cycle device 100 has only one utilization heat exchanger 40 .
  • the main refrigerant circuit 50 of the refrigeration cycle device 100 may have a plurality of utilization heat exchangers 40 arranged in parallel.
  • each utilization unit 4 may have an expansion mechanism (not shown) (for example, an electronic expansion valve with adjustable opening) arranged on the liquid side of the utilization heat exchanger 40 .
  • the utilization heat exchanger 40 is, for example, a fin-and-tube heat exchanger having a plurality of heat transfer tubes and a plurality of heat transfer fins.
  • a liquid refrigerant pipe 52d is connected to one end of the utilization heat exchanger 40 as shown in FIG.
  • a second gas refrigerant pipe 52e is connected to the other end of the utilization heat exchanger 40 as shown in FIG.
  • refrigerant flows into the utilization heat exchanger 40 from the liquid refrigerant pipe 52d.
  • the refrigerant flowing into the utilization heat exchanger 40 from the liquid refrigerant pipe 52d exchanges heat with air supplied by a fan (not shown) in the utilization heat exchanger 40, absorbs heat, and evaporates.
  • the refrigerant that has absorbed heat (heated) in the heat utilization heat exchanger 40 flows out to the second gas refrigerant pipe 52e.
  • the air cooled by the heat exchanger 40 and the temperature of which is to be adjusted is blown out into the air-conditioned space.
  • refrigerant flows into the utilization heat exchanger 40 from the second gas refrigerant pipe 52e.
  • the refrigerant flowing into the utilization heat exchanger 40 from the second gas refrigerant pipe 52e radiates heat by exchanging heat with air supplied by a fan (not shown), and is at least partially condensed.
  • the refrigerant that has dissipated heat in the utilization heat exchanger 40 flows out to the liquid refrigerant pipe 52d. Note that the air heated by the heat exchanger 40 to be temperature-controlled is blown out into the air-conditioned space.
  • the changer 70 is a mechanism that changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 .
  • the change unit 70 includes a first bypass channel 80, a refrigerant container 72, a heat source side valve 82a, and a usage side valve 82b.
  • the first bypass channel 80 is a pipe that connects the heat source side end A of the main refrigerant circuit 50 and the usage side end B of the main refrigerant circuit 50 .
  • the heat source side end A is a portion of the liquid refrigerant pipe 52 d of the main refrigerant circuit 50 between the heat source heat exchanger 20 and the expansion mechanism 30 .
  • a utilization side end B is a portion of the liquid refrigerant pipe 52 d of the main refrigerant circuit 50 between the utilization heat exchanger 40 and the expansion mechanism 30 .
  • a coolant container 72, a heat source side valve 82a, and a usage side valve 82b are arranged in the first bypass channel 80.
  • the refrigerant container 72 is a container capable of storing refrigerant inside.
  • the heat source side valve 82 a is arranged between the heat source side end A and the changing portion 70 .
  • the usage-side valve 82 b is arranged between the usage-side end B and the changing section 70 .
  • the heat source side valve 82a and the utilization side valve 82b are electronic expansion valves whose degree of opening is adjustable.
  • a method for changing the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 by the changing unit 70 will be described.
  • the refrigerant is stored in the refrigerant container 72 according to the opening degrees of the heat source side valve 82a and the usage side valve 82b.
  • the ratio of the liquid phase to the gas phase of the refrigerant can be increased or decreased.
  • the composition ratio of the gas-phase refrigerant and the composition ratio of the liquid-phase refrigerant are approximately the same.
  • first refrigerant low boiling point refrigerant
  • second refrigerant high boiling point refrigerant
  • the opening degrees of the heat source side valve 82a and the usage side valve 82b are adjusted to change the amount of liquid-phase refrigerant and the amount of gas-phase refrigerant stored in the refrigerant container 72, The amount of first refrigerant applied can be increased or decreased.
  • the amount of the first refrigerant stored in the refrigerant container 72 is increased, the amount of the first refrigerant existing in the main refrigerant circuit 50 is reduced. can be enhanced. On the other hand, if the amount of the first refrigerant stored in the refrigerant container 72 is reduced, the amount of the first refrigerant existing in the main refrigerant circuit 50 will increase. can be lowered (the ratio of the first refrigerant is increased).
  • the detection section 150 detects the composition ratio of the first refrigerant and the second refrigerant in the refrigerant circulating in the main refrigerant circuit 50 .
  • the detection unit 150 includes a pipe 151 that connects between the heat source heat exchanger 20 and the expansion mechanism 30 and between the utilization heat exchanger 40 and the expansion mechanism 30 of the main refrigerant circuit 50 .
  • the pipe 151 is used for detecting the composition of the refrigerant flowing through the main refrigerant circuit 50, and is not directly necessary for the vapor compression refrigeration cycle.
  • the pipe 151 is a pipe having a smaller diameter than the liquid refrigerant pipe 52d, and a very small amount of refrigerant flows therethrough.
  • the detection unit 150 includes a refrigerant container 152 and a valve 154 arranged in the pipe 151 .
  • Valve 154 includes a first valve 154a and a second valve 154b.
  • the first valve 154 a is arranged between the connecting portion of the pipe 151 to the liquid refrigerant pipe 52 d between the heat source heat exchanger 20 and the expansion mechanism 30 and the refrigerant container 152 .
  • the second valve 154 b is arranged between the connecting portion of the pipe 151 to the liquid refrigerant pipe 52 d between the utilization heat exchanger 40 and the expansion mechanism 30 and the refrigerant container 152 .
  • the first valve 154a and the second valve 154b are, for example, electronic expansion valves with variable opening.
  • the detection unit 150 has a pressure sensor 156 that measures the pressure of the refrigerant inside the refrigerant container 152 and a temperature sensor 158 that measures the temperature of the refrigerant inside the refrigerant container 152 .
  • the controller 110 opens the first valve 154a and the second valve 154b as necessary so that two-phase (liquid and gaseous) refrigerant exists in the refrigerant container 152.
  • the first valve 154a and the second valve 154b are controlled to a predetermined degree of opening.
  • the controller 110 opens the first valve 154 a and the second valve 154 b so that two-phase refrigerant is stored in the refrigerant container 152 .
  • the valve 154b is controlled to a predetermined degree of opening.
  • the composition ratio can be calculated if the type of refrigerant used in the non-azeotropic refrigerant mixture and the pressure and temperature of the two-phase refrigerant are known. Therefore, the detection unit 150 determines the composition ratio of the refrigerant in the refrigerant container 152, in other words, the main The composition ratio between the first refrigerant and the second refrigerant in the refrigerant flowing through the liquid refrigerant pipe 52d of the refrigerant circuit 50 can be detected.
  • the composition ratio of the refrigerant is detected by the controller 110 functioning as part of the detection unit 150 and detecting the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 based on the measurement results of the pressure sensor 156 and the temperature sensor 158. (Calculation) may be performed.
  • the detection unit 150 may be a device independent of the controller 110 and detect the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 based on the measurement results of the pressure sensor 156 and the temperature sensor 158 .
  • the controller 110 detects the composition ratio of the refrigerant circulating through the main refrigerant circuit 50 based on the measurement results of the pressure sensor 156 and the temperature sensor 158 .
  • data representing the relationship between the pressure and temperature of the two-phase refrigerant and the composition ratio of the non-azeotropic refrigerant mixture are stored.
  • the controller 110 is based on the data stored in the memory representing the relationship between the pressure and temperature of the two-phase refrigerant and the composition ratio of the non-azeotropic refrigerant mixture, and the measurement results of the pressure sensor 156 and the temperature sensor 158. to detect the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
  • the method of detecting the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 is not necessarily limited to the method exemplified here, and the detection unit 150 can be detected by another method or by using equipment different from the above method. may be used to detect the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
  • the controller 110 is a control unit for controlling operations of various devices of the refrigeration cycle apparatus 100 .
  • the controller 110 mainly includes, for example, a microcontroller unit (MCU) and various electric circuits and electronic circuits (not shown).
  • the MCU includes a CPU, memory, I/O interfaces, and the like.
  • Various programs for the CPU of the MCU to execute are stored in the memory of the MCU.
  • an FPGA or an ASIC may be used for the controller 110 .
  • the various functions of the controller 110 do not need to be implemented by software, and may be implemented by hardware or through cooperation between hardware and software.
  • the controller 110 may be a device independent of the heat source unit 2 and the utilization unit 4. Further, the controller 110 is not a device independent of the heat source unit 2 and the usage unit 4. For example, a controller (not shown) mounted on the heat source unit 2, a controller (not shown) mounted on the utilization unit 4, may function as the controller 110 by working together.
  • the controller 110 is electrically connected to the compressor 10, the flow path switching mechanism 15, and the expansion mechanism 30 of the main refrigerant circuit 50, and controls the operations of the compressor 10, the flow path switching mechanism 15, and the expansion mechanism 30. (See Figure 1). Further, the controller 110 controls the operation of a fan (not shown) that supplies air to the heat source heat exchanger 20 of the heat source unit 2 and a fan (not shown) that supplies air to the utilization heat exchanger 40 of the utilization unit 4. These fans are electrically connected. The controller 110 is also electrically connected to the heat source side valve 82a and the usage side valve 82b of the changing unit 70, and controls the operation of the heat source side valve 82a and the usage side valve 82b (see FIG. 1).
  • the controller 110 is electrically connected to the first valve 154a and the second valve 154b so as to control the operation of the first valve 154a and the second valve 154b of the detector 150 . Also, the controller 110 is electrically connected to the pressure sensor 156 and the temperature sensor 158 and can acquire the measured values of the pressure sensor 156 and the temperature sensor 158 . The controller 110 is also electrically connected to sensors (not shown) arranged at various locations in the refrigeration cycle apparatus 100 other than the pressure sensor 156 and the temperature sensor 158, and can acquire measurement values of these sensors.
  • the controller 110 executes various controls, for example, by the CPU executing a program stored in the memory.
  • the controller 110 controls operations of various devices of the refrigeration cycle device 100 when the refrigeration cycle device 100 performs cooling operation or heating operation.
  • the controller 110 increases or decreases the rotation speed of the compressor 10 according to the required capacity of the refrigeration cycle device 100, or controls the operation of the change unit 70 to The composition ratio with the second refrigerant is changed.
  • composition ratio control to avoid complication of the description
  • the controller 110 performs the cooling operation when an instruction to perform the cooling operation is given from a remote controller (not shown) or when it is determined that the cooling operation needs to be performed in view of the temperature of the air-conditioned space. to run.
  • the controller 110 controls the operation of the flow path switching mechanism 15 so that the heat source heat exchanger 20 functions as a refrigerant radiator and the utilization heat exchanger 40 functions as a refrigerant evaporator.
  • the controller 110 also starts the operation of the compressor 10 and the fans mounted in the heat source unit 2 and the utilization unit 4 (not shown).
  • the controller 110 controls the rotation speed of the motor 10a of the compressor 10, the heat source unit 2 and the utilization unit 4 based on the measurement values of various sensors of the refrigeration cycle apparatus 100, the target temperature of the air-conditioned space set by the user, and the like. The number of rotations of the fan mounted on the , and the opening degree of the electronic expansion valve as the expansion mechanism 30 are adjusted.
  • the controller 110 performs the heating operation when an instruction to perform the heating operation is given from a remote controller (not shown) or when it is determined that the heating operation needs to be performed in view of the temperature of the air-conditioned space. to run.
  • the controller 110 controls the operation of the flow path switching mechanism 15 so that the heat source heat exchanger 20 functions as a refrigerant evaporator and the utilization heat exchanger 40 functions as a refrigerant radiator.
  • the controller 110 also starts the operation of the compressor 10 and the fans mounted in the heat source unit 2 and the utilization unit 4 (not shown).
  • the controller 110 controls the rotation speed of the motor 10a of the compressor 10, the heat source unit 2 and the utilization unit 4 based on the measurement values of various sensors of the refrigeration cycle apparatus 100, the target temperature of the air-conditioned space set by the user, and the like. The number of rotations of the fan mounted on the , and the opening degree of the electronic expansion valve as the expansion mechanism 30 are adjusted.
  • the controller 110 interrupts the heating operation, controls the operation of the flow path switching mechanism 15, and controls the flow direction of the refrigerant in the main refrigerant circuit 50. is switched in the same direction as during cooling operation to perform defrost operation (reverse cycle defrost operation).
  • the defrost operation is an operation for removing frost adhering to the heat source heat exchanger 20 . Since the defrost operation of the refrigeration cycle device is generally known, the detailed description of the defrost operation will be omitted.
  • the controller 110 operates in a first mode in which the second refrigerant flows substantially independently in the main refrigerant circuit 50, and in a main mode. The reason for switching between the second mode in which the mixed refrigerant of the first refrigerant and the second refrigerant flows through the refrigerant circuit 50 will be described.
  • the refrigeration cycle device 100 can be operated with relatively high efficiency.
  • a second refrigerant refrigerant with a high boiling point
  • a high boiling point refrigerant is used, there is a possibility of insufficient performance during heating operation at low outside temperatures.
  • a non-azeotropic mixed refrigerant in which a high boiling point refrigerant is mixed with a first refrigerant (low boiling point refrigerant) such as CO2
  • the lack of capacity can be compensated for.
  • the efficiency is lower than in the case of using the second refrigerant alone.
  • the controller 110 operates in accordance with the required capacity of the refrigeration cycle apparatus 100 to operate in a first mode in which the second refrigerant is allowed to flow substantially solely through the main refrigerant circuit 50, and in which a mixture of the first refrigerant and the second refrigerant flows through the main refrigerant circuit 50.
  • a second mode in which the coolant flows is switched and executed.
  • the controller 110 executes the first mode during cooling operation in which the required capacity is relatively low and insufficient capacity is unlikely to occur even if the second refrigerant is used substantially alone.
  • controller 110 does not execute the second mode during cooling operation.
  • the controller 110 executes the first mode when using the utilization heat exchanger 40 as an evaporator. Therefore, although detailed description is omitted, after execution of the second mode (for example, after execution of the second mode during heating operation, when composition ratio control for executing the first mode is not performed) 2), the controller 110 executes composition ratio control for allowing the second refrigerant to flow substantially solely through the main refrigerant circuit 50 at the start of the cooling operation.
  • the controller 110 executes the second mode during heating operation when the required capacity tends to be relatively large and the first mode is likely to result in insufficient capacity. In short, the controller 110 executes the second mode when using the utilization heat exchanger 40 as a radiator.
  • FIG. 2 shows the change in COP when changing the capacity by changing the rotation speed of the motor 10a of the compressor 10, and the change in COP when changing the capacity by changing the ratio of the first refrigerant in the refrigerant.
  • a solid line in FIG. 2 indicates a change in COP when the rotation speed of the motor 10a of the compressor 10 is increased to increase the capacity of the refrigeration cycle apparatus 100.
  • controller 110 does not always execute the second mode during heating operation (in other words, when utilizing heat exchanger 40 as a radiator), but according to the required capacity of refrigeration cycle device 100, It is preferable to execute the first mode or the second mode.
  • the controller 110 can combine control of the rotational speed of the motor 10a of the compressor 10 and composition ratio control.
  • FIG. 3 is an example of a flow chart of control performed when the refrigeration cycle apparatus 100 has insufficient capacity.
  • FIG. 4 is an example of a flow chart of control performed when the refrigeration cycle apparatus 100 is overcapacity. The processes of FIGS. 3 and 4 are executed in parallel.
  • the position corresponding to the intersection of the line shown by the two-dot chain line in FIG. It is assumed that the rotation speed (upper limit rotation speed) of the motor 10a is obtained in advance.
  • the upper limit rotation speed may be obtained by experiments using an actual machine, or may be obtained by simulation or theoretical calculation.
  • the memory of the controller 110 stores the value of the upper limit rotation speed obtained in advance.
  • the controller 110 controls the rotation speed of the motor 10a of the compressor 10 according to the flowchart of FIG. Control the composition ratio.
  • step S1 of the flow chart in Fig. 3 it is determined whether the required capacity cannot be achieved in the current operation (whether the capacity is insufficient). The determination of step S1 is repeatedly executed until it is determined that the ability is insufficient.
  • step S2 it is determined whether or not the current rotation speed of the motor 10a of the compressor 10 is the upper limit rotation speed. If it is determined that the rotation speed of the motor 10a of the compressor 10 has not reached the upper limit rotation speed, the process proceeds to step S3.
  • step S3 the controller 110 increases the rotation speed of the motor 10a of the compressor 10.
  • the controller 110 may increase the rotational speed by a predetermined value, or may change the increment of the rotational speed according to the performance that is insufficient for the required performance. After performing step S3, the process returns to step S1.
  • step S2 if it is determined in step S2 that the rotation speed of the motor 10a of the compressor 10 has reached the upper limit rotation speed, the process proceeds to step S4.
  • step S ⁇ b>4 the controller 110 performs composition ratio control to increase the ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 .
  • the controller 110 executes the second mode when the required capacity cannot be obtained even if the rotation speed of the compressor 10 is increased to a predetermined rotation speed (upper limit rotation speed) while executing the first mode,
  • the changing unit 70 is controlled so that the mixed refrigerant of the first refrigerant and the second refrigerant flows through the main refrigerant circuit 50 .
  • the controller 110 may increase the ratio of the first refrigerant by a predetermined value (for example, increase by 2 wt%), or the ratio of the first refrigerant may be determined by how much to increase
  • step S4 the controller 110 changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 detected by the detection unit 150 to the target composition ratio.
  • the opening degrees of the heat source side valve 82a and the usage side valve 82b of the unit 70 are controlled.
  • the controller 110 opens the heat source side valve 82a and the utilization side valve 82b. close up. After performing step S4, the process returns to step S1.
  • step S4 when the process of step S4 is performed again after step S4 is performed, the controller 110 controls the operation of the changing unit 70 in the second mode so that the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50
  • the composition ratio of the refrigerant and the second refrigerant is changed between the first composition ratio and the second composition ratio in which the ratio of the first refrigerant is higher than the first composition ratio.
  • the controller 110 executes the process described in the flowchart of FIG. 4 in parallel with the process described in the flowchart of FIG. 3 during the heating operation.
  • the controller 110 controls the rotational speed of the motor 10a of the compressor 10 according to the flow chart of FIG. , to control the composition ratio.
  • step S11 of the flow chart of FIG. 4 it is determined whether or not the capacity is excessive with respect to the required capacity in the current operation. The determination of step S11 is repeatedly executed until it is determined that the capacity is excessive.
  • step S12 it is determined whether or not the current ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 (in other words, the concentration of the first refrigerant) is the lower limit value.
  • the lower limit value of the ratio of the first refrigerant is, for example, a predetermined concentration at which the controller 110 determines that the refrigerant flowing through the main refrigerant circuit 50 is substantially the single second refrigerant.
  • the controller 110 determines whether or not the mode being executed is the first mode.
  • step S12 If it is determined in step S12 that the ratio of the first refrigerant in the current refrigerant flowing through the main refrigerant circuit 50 is the lower limit value (if it is determined that the first mode is being executed), the process proceeds to step S13. . On the other hand, if it is determined that the current ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 is not the lower limit value, the process proceeds to step S14.
  • step S13 the controller 110 reduces the rotation speed of the motor 10a of the compressor 10.
  • the controller 110 may reduce the rotation speed by a predetermined value, or may change how much the rotation speed is reduced according to the excess capacity with respect to the required capacity. After performing step S13, the process returns to step S11.
  • step S ⁇ b>14 the controller 110 performs composition ratio control to reduce the ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 .
  • the controller 110 may reduce the ratio of the first refrigerant by a predetermined value, or determine how much the ratio of the first refrigerant should be reduced according to the excess capacity with respect to the required capacity. You can change it.
  • step S14 the controller 110 changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 detected by the detection unit 150 to the target composition ratio.
  • the opening degrees of the heat source side valve 82a and the usage side valve 82b of the unit 70 are controlled.
  • the controller 110 opens the heat source side valve 82a and the utilization side valve 82b. close up.
  • the refrigeration cycle device 100 includes a main refrigerant circuit 50, a changing section 70, and a controller 110 as an example of a control section.
  • the main refrigerant circuit 50 uses a non-azeotropic mixed refrigerant containing a first refrigerant and a second refrigerant.
  • the changing unit 70 changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 .
  • Controller 110 controls the operation of changing unit 70 .
  • Controller 110 executes a first mode and a second mode.
  • the first mode is a mode in which the operation of the changing unit 70 is controlled to allow the second refrigerant to flow through the main refrigerant circuit 50 substantially independently.
  • the second mode is a mode in which the operation of the changing unit 70 is controlled to allow the mixed refrigerant of the first refrigerant and the second refrigerant to flow through the main refrigerant circuit 50 .
  • the refrigeration cycle device 100 can use the second refrigerant substantially alone, or can use a non-azeotropic mixed refrigerant containing the first refrigerant and the second refrigerant. Refrigerants with different compositions can be used.
  • a refrigerant having a second refrigerant concentration of 92 wt % or more is allowed to flow through the main refrigerant circuit 50.
  • the main refrigerant circuit 50 in the first mode, is fed with a second refrigerant having a concentration of 98 wt% or more.
  • the refrigeration cycle device 100 includes a detection section 150 .
  • the detection unit 150 detects the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 .
  • the controller 110 controls the operation of the changing unit 70 so that the composition ratio of the first refrigerant and the second refrigerant detected by the detection unit 150 becomes the target composition ratio.
  • the composition ratio between the first refrigerant and the second refrigerant is changed while detecting the composition ratio of the refrigerant, so refrigerant with an appropriate composition can be used according to the operating conditions.
  • the boiling point of the second refrigerant is higher than the boiling point of the first refrigerant.
  • the first refrigerant is CO2.
  • the second refrigerant is R1234Ze or R1234yf.
  • the main refrigerant circuit 50 includes the utilization heat exchanger 40 that adjusts the temperature of a temperature-adjusted object.
  • the controller 110 executes the first mode.
  • the controller 110 executes the second mode.
  • the second refrigerant can be used substantially independently to operate with an emphasis on efficiency.
  • the heat exchanger 40 which is likely to have insufficient capacity, is used as a radiator, the required capacity can be obtained by using the non-azeotropic mixed refrigerant of the first refrigerant and the second refrigerant. .
  • the controller 110 executes the first mode or the second mode according to the required capacity of the refrigerating cycle device 100 .
  • the second refrigerant is used substantially independently. It can be used to drive with an emphasis on efficiency.
  • main refrigerant circuit 50 includes compressor 10 .
  • Controller 110 controls the rotation speed of compressor 10 .
  • the controller 110 executes the second mode when the required performance cannot be obtained even if the rotational speed of the compressor 10 is increased to a predetermined rotational speed (upper limit rotational speed) while the first mode is being executed.
  • the controller 110 controls the operation of the changing unit 70 to change the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50. , the first composition ratio and the second composition ratio. In the second composition ratio, the proportion of the first refrigerant is higher than in the first composition ratio.
  • the composition ratio between the first refrigerant and the second refrigerant is changed in stages, so that the necessary capacity can be obtained while suppressing the decrease in efficiency.
  • Refrigeration cycle device 100 includes compressor 10 in main refrigerant circuit 50 .
  • Controller 110 controls the rotation speed of compressor 10 .
  • the controller 110 controls either the rotational speed of the compressor 10 or the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 in accordance with changes in the required capacity of the refrigeration cycle device 100. to change
  • the controller 110 closes the main refrigerant circuit 50 when the ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 is higher than a predetermined value (lower limit) when the required capacity is reduced.
  • the changing unit 70 is controlled to reduce the ratio of the first refrigerant in the flowing refrigerant, and when the ratio of the first refrigerant in the refrigerant flowing in the main refrigerant circuit 50 is equal to or less than a predetermined value (lower limit value), the compressor 10 Decrease the rpm.
  • the mechanism for changing the composition of the refrigerant flowing through the main refrigerant circuit 50 is not limited to the mechanism like the changing section 70 of the above embodiment.
  • the refrigeration cycle apparatus 100 may have a changing section 170 instead of the changing section 70 as shown in FIG.
  • the changing unit 170 includes a container 172 filled with an adsorbent 172a.
  • Other configurations are the same as those of the changing unit 70 of the above embodiment.
  • the adsorbent 172a has the property of adsorbing the first refrigerant. Specifically, in the refrigeration cycle apparatus 100 of the first embodiment, the adsorbent 172a has the property of adsorbing CO2.
  • the adsorbent 172a has a property of not adsorbing the second refrigerant. Specifically, in the refrigeration cycle apparatus 100 of the first embodiment, the adsorbent 172a does not adsorb R1234Ze or R1234yf used as the second refrigerant. Alternatively, the adsorbent 172a may adsorb the second refrigerant in addition to the first refrigerant, but may have a characteristic that the adsorption performance of the second refrigerant is lower than that of the first refrigerant.
  • the adsorbent 172a is, for example, zeolite with high CO2 adsorption performance.
  • the adsorbent 172a may be a metal-organic framework (MOF) having high CO2 adsorption performance.
  • MOF metal-organic framework
  • the type of the adsorbent 172a is the exemplified type if it adsorbs the first refrigerant and does not adsorb the second refrigerant or if the adsorption performance of the second refrigerant is lower than the adsorption performance of the first refrigerant. Not limited to materials.
  • the heat source side valve 82 a and the utilization side valve 82 b are opened, and part of the refrigerant flowing through the main refrigerant circuit 50 flows into the container 172 .
  • the refrigerant passes through the container 172, the first refrigerant is adsorbed by the adsorbent 172a, while the second refrigerant is not or hardly adsorbed by the adsorbent 172a. becomes a refrigerant with a high ratio of By allowing this to flow into the main refrigerant circuit 50, the ratio of the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 can be increased.
  • the heat source side valve 82 a and the utilization side valve 82 b are opened, and part of the refrigerant flowing through the main refrigerant circuit 50 flows into the container 172 .
  • the adsorbent 172a in the container 172 is further heated by using the heat of the high-temperature refrigerant discharged from the compressor 10, or by using the heat generated by the illustrated heater or the like.
  • the first refrigerant is desorbed from the adsorbent 172a and mixed with the refrigerant flowing through the container 172, so that the refrigerant flowing out of the container 172 has a lower ratio of the second refrigerant (the ratio of the second refrigerant is lower than when it flowed into the container 172). low refrigerant ratio).
  • this refrigerant By allowing this refrigerant to flow into the main refrigerant circuit 50, the ratio of the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 can be reduced. In other words, by causing this refrigerant to flow into the main refrigerant circuit 50, the ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 can be increased.
  • the configuration of the change section is not limited to the illustrated one, and other configurations may be used as long as the composition ratio of the refrigerant flowing through the main refrigerant circuit 50 can be changed.
  • the modification may utilize a refrigerant rectification tower.
  • the refrigeration cycle apparatus using a non-azeotropic refrigerant mixture in which the first refrigerant is CO2 and the second refrigerant is HFO refrigerant R1234Ze or R1234yf has been described.
  • the types of the first refrigerant and the second refrigerant are not limited to the illustrated refrigerants.
  • the first refrigerant may be HFO refrigerant R1132(E) (trans-1,2-difluoroethylene) or R1123 (trifluoroethylene).
  • the refrigeration cycle device of the present disclosure is described by taking the refrigeration cycle device 100 installed in a building or the like as an example.
  • the refrigeration cycle apparatus of the present disclosure is not limited to those installed in buildings.
  • the refrigeration cycle device of the present disclosure may be, for example, a device mounted on a vehicle such as an automobile.
  • the refrigeration cycle device of the present disclosure is described by taking as an example the case where the refrigeration cycle device 100 includes the heat source unit 2 and the utilization unit 4 connected to the heat source unit 2 through refrigerant piping.
  • the refrigeration cycle device of the present disclosure is not limited to such devices.
  • the refrigeration cycle apparatus of the present disclosure may be an integrated apparatus in which all devices are mounted in one casing.
  • the controller 110 executes the first mode in which the second refrigerant is used substantially alone when the utilization heat exchanger 40 is used as an evaporator.
  • the controller 110 is not limited to this, and in addition to the first mode, the controller 110, when using the utilization heat exchanger 40 as an evaporator, if there is a condition that causes a problem of insufficient capacity, A second mode may be performed in which a non-azeotropic refrigerant mixture of the first refrigerant and the second refrigerant is used.
  • the refrigeration cycle device may be a device that only performs an operation for cooling the object to be temperature-adjusted.
  • the refrigeration cycle device 100 is a device capable of switching between an operation using the heat exchanger 40 as an evaporator and an operation using the heat exchanger 40 as a radiator.
  • the refrigeration cycle device 100 is not limited to this, and may be a device that mainly performs only the operation using the utilization heat exchanger 40 as a radiator.
  • the relationship between the capacity and the power consumption when the rotation speed of the motor 10a of the compressor 10 is changed, and the ratio of the first refrigerant of the refrigerant flowing through the main refrigerant circuit 50 is changed.
  • the relationship between the capacity and the amount of power consumption when the engine is turned on may be obtained, and the upper limit rotation speed of the compressor, which serves as a threshold, may be determined in advance.
  • the upper limit rotation speed is stored, for example, in the memory (storage unit) of the controller 110 .
  • the compressor 10 may be provided with an ammeter or a watt-hour meter 10d. Then, when the demand for the refrigerating cycle device 100 increases, the controller 110 maintains the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 without changing the composition ratio of the motor 10a of the compressor 10. The change in the current value when the rotation speed is changed, and the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 is changed without changing the rotation speed of the motor 10a of the compressor 10. A change in the current value in each case may be actually measured. Then, the controller 110 may select, of the two controls, the one in which the current value of the compressor 10 actually increased less as the control to be finally executed.
  • the composition ratio between the first refrigerant and the second refrigerant is changed stepwise in the second mode, but it is not limited to this.
  • the controller 110 controls the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 to always be a predetermined (always the same) composition ratio. good.
  • the present disclosure is widely applicable and useful to refrigeration cycle devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Provided is a refrigeration cycle device in which a refrigerant of an appropriate composition can be used in accordance with the operation conditions. A refrigeration cycle device (100) comprises a main refrigerant circuit (50), a change part (70), and a controller (110). The main refrigerant circuit uses a non-azeotropic mixture refrigerant which includes a first refrigerant and a second refrigerant. The change part changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit. The controller controls the action of the change part. The controller executes a first mode and a second mode. In the first mode, the action of the change part is controlled to allow substantially sole flowing of the second refrigerant through the main refrigerant circuit. In the second mode, the action of the change part is controlled to allow flowing of a refrigerant mixture of the first refrigerant and the second refrigerant through the main refrigerant circuit.

Description

冷凍サイクル装置refrigeration cycle equipment
 冷凍サイクル装置に関する。 Regarding the refrigeration cycle equipment.
 冷凍サイクル装置に使用する冷媒には、冷媒としての性能に加え、安全性が高い、環境負荷が小さい等の様々な要求を満たすことが求められている。例えば、特許文献1(特開2008-281326号公報)には、R134aに代えて、地球温暖化係数の小さなR1234yfを冷凍サイクル装置に使用することが記載されている。  Refrigerants used in refrigeration cycle equipment are required to satisfy various requirements, such as high safety and low environmental impact, in addition to performance as a refrigerant. For example, Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2008-281326) describes the use of R1234yf, which has a low global warming potential, in a refrigeration cycle device instead of R134a.
 しかし、冷媒に対する様々な要求がある中で、運転条件によらず、効率が良く、十分な能力を得ることが可能な冷媒を選定することは一般に困難である。 However, among the various requirements for refrigerants, it is generally difficult to select a refrigerant that is efficient and capable of obtaining sufficient capacity regardless of operating conditions.
 第1観点に係る冷凍サイクル装置は、冷凍サイクルと、変更部と、制御部と、を備える。冷凍サイクルは、第1冷媒と第2冷媒とを含む非共沸混合冷媒を用いる。変更部は、冷凍サイクルを流れる冷媒中の、第1冷媒と第2冷媒との組成比を変更する。制御部は、変更部の動作を制御する。制御部は、第1モードと、第2モードと、を実行する。第1モードは、変更部の動作を制御して冷凍サイクルに第2冷媒を略単独で流すモードである。第2モードは、変更部の動作を制御して冷凍サイクルに第1冷媒と第2冷媒との混合冷媒を流すモードである。 A refrigerating cycle device according to a first aspect includes a refrigerating cycle, a changing section, and a control section. The refrigeration cycle uses a non-azeotropic refrigerant mixture containing a first refrigerant and a second refrigerant. The changing unit changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle. The control unit controls the operation of the change unit. The controller executes a first mode and a second mode. The first mode is a mode in which the operation of the change unit is controlled to allow the second refrigerant to flow substantially independently through the refrigeration cycle. The second mode is a mode in which the operation of the change unit is controlled to allow the mixed refrigerant of the first refrigerant and the second refrigerant to flow through the refrigeration cycle.
 第1観点の冷凍サイクル装置は、第2冷媒を略単独で使用することも、第1冷媒と第2冷媒とを含む非共沸混合冷媒を使用することも可能であるため、運転条件に応じて、適切な組成の冷媒を使用できる。 The refrigeration cycle device of the first aspect can use the second refrigerant substantially alone, or can use a non-azeotropic mixed refrigerant containing the first refrigerant and the second refrigerant. Therefore, a refrigerant of suitable composition can be used.
 第2観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、第1モードでは、冷凍サイクルに第2冷媒の濃度が92wt%以上の冷媒が流される。 The refrigerating cycle device according to the second aspect is the refrigerating cycle device according to the first aspect, and in the first mode, a refrigerant having a second refrigerant concentration of 92 wt % or more is flowed through the refrigerating cycle.
 第3観点に係る冷凍サイクル装置は、第2観点の冷凍サイクル装置であって、第1モードでは、冷凍サイクルに第2冷媒の濃度が98wt%以上の冷媒が流される。 The refrigerating cycle device according to the third aspect is the refrigerating cycle device according to the second aspect, and in the first mode, a refrigerant having a second refrigerant concentration of 98 wt % or higher is flowed through the refrigerating cycle.
 第4観点に係る冷凍サイクル装置は、第1観点から第3観点のいずれかの冷凍サイクル装置であって、検知部を更に備える。検知部は、冷凍サイクルを流れる冷媒中の、第1冷媒と第2冷媒との組成比を検知する。制御部は、検知部が検知する第1冷媒と第2冷媒との組成比が目標組成比になるように、変更部の動作を制御する。 A refrigeration cycle apparatus according to a fourth aspect is the refrigeration cycle apparatus according to any one of the first to third aspects, and further includes a detection unit. The detection unit detects the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle. The control unit controls the operation of the changing unit so that the composition ratio of the first refrigerant and the second refrigerant detected by the detection unit becomes the target composition ratio.
 第4観点の冷凍サイクル装置では、冷媒の組成比を検知しながら、第1冷媒と第2冷媒との組成比を変更するので、運転条件に応じ、適切な組成の冷媒を使用できる。 In the refrigeration cycle device of the fourth aspect, the composition ratio between the first refrigerant and the second refrigerant is changed while detecting the composition ratio of the refrigerant, so refrigerant with an appropriate composition can be used according to the operating conditions.
 第5観点に係る冷凍サイクル装置は、第1観点から第4観点のいずれかの冷凍サイクル装置であって、第2冷媒の沸点は、第1冷媒の沸点より高い。 A refrigeration cycle device according to a fifth aspect is the refrigeration cycle device according to any one of the first to fourth aspects, wherein the boiling point of the second refrigerant is higher than the boiling point of the first refrigerant.
 第6観点に係る冷凍サイクル装置は、第5観点の冷凍サイクル装置であって、冷凍サイクルは、温度調整対象の温度調整を行う利用熱交換器を含む。利用熱交換器を蒸発器として利用する際に、制御部は、第1モードを実行する。利用熱交換器を放熱器として利用する際に、制御部は、第2モードを実行する。 The refrigerating cycle device according to the sixth aspect is the refrigerating cycle device according to the fifth aspect, and the refrigerating cycle includes a utilization heat exchanger that adjusts the temperature of an object to be temperature-adjusted. When using the utilization heat exchanger as an evaporator, the control unit executes the first mode. When using the utilization heat exchanger as a radiator, the control unit executes the second mode.
 第6観点の冷凍サイクル装置では、利用熱交換器を蒸発器として利用する際には第2冷媒を略単独で使用して効率を重視した運転をすることができる。一方、能力不足の発生しやすい利用熱交換器を放熱器として利用する運転の際には、第1冷媒と第2冷媒との非共沸混合冷媒を用いて必要な能力を得ることができる。 In the refrigeration cycle device of the sixth aspect, when the heat exchanger is used as an evaporator, the second refrigerant can be used almost exclusively to operate with an emphasis on efficiency. On the other hand, when the heat exchanger is used as a heat radiator, the required capacity can be obtained by using the non-azeotropic mixed refrigerant of the first refrigerant and the second refrigerant.
 第7観点に係る冷凍サイクル装置は、第6観点の冷凍サイクル装置であって、利用熱交換器を放熱器として利用する際に、制御部は、冷凍サイクル装置に対する要求能力に応じて、第1モード又は第2モードを実行する。 A refrigerating cycle apparatus according to a seventh aspect is the refrigerating cycle apparatus according to the sixth aspect, wherein when the utilization heat exchanger is used as a heat radiator, the controller controls the first mode or the second mode.
 第7観点の冷凍サイクル装置では、利用熱交換器を放熱器として利用する際にも、能力的に第1冷媒と第2冷媒との混合冷媒を用いることが不要であれば、第2冷媒を略単独で使用して効率を重視した運転を行うことができる。 In the refrigeration cycle apparatus of the seventh aspect, even when the heat exchanger is used as a heat radiator, the second refrigerant may be used if it is unnecessary to use the mixed refrigerant of the first refrigerant and the second refrigerant due to the capacity. It can be used almost independently to drive with an emphasis on efficiency.
 第8観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷凍サイクルは、圧縮機を含む。制御部は、圧縮機の回転数を更に制御する。制御部は、第1モードを実行中に、圧縮機の回転数を所定の回転数に上げても要求能力が得られない場合に、第2モードを実行する。 A refrigeration cycle device according to the eighth aspect is the refrigeration cycle device according to the seventh aspect, and the refrigeration cycle includes a compressor. The controller further controls the rotation speed of the compressor. The control unit executes the second mode when the required capacity cannot be obtained even if the rotational speed of the compressor is increased to a predetermined rotational speed while the first mode is being executed.
 第8観点の冷凍サイクル装置では、効率の低下を抑制しつつ、必要な能力を得ることができる。 With the refrigeration cycle device of the eighth aspect, it is possible to obtain the necessary capacity while suppressing a decrease in efficiency.
 第9観点に係る冷凍サイクル装置は、第6観点又は第7観点の冷凍サイクル装置であって、制御部は、第2モードを実行する際に、変更部の動作を制御して、冷凍サイクルを流れる冷媒中の第1冷媒と第2冷媒との組成比を、第1組成比と、第2組成比と、の間で変更する。第2組成比は、第1組成比より第1冷媒の比率が高い。 A refrigerating cycle apparatus according to a ninth aspect is the refrigerating cycle apparatus according to the sixth aspect or the seventh aspect, wherein the control unit controls the operation of the changing unit when executing the second mode to operate the refrigerating cycle. The composition ratio of the first refrigerant and the second refrigerant in the flowing refrigerant is changed between the first composition ratio and the second composition ratio. The second composition ratio has a higher proportion of the first refrigerant than the first composition ratio.
 第9観点の冷凍サイクル装置では、第1冷媒と第2冷媒との組成比を段階的に変化させるので、効率の低下は抑制しつつ、必要な能力を得ることができる。 In the refrigeration cycle device of the ninth aspect, the composition ratio between the first refrigerant and the second refrigerant is changed in stages, so that the necessary capacity can be obtained while suppressing the decrease in efficiency.
 第10観点に係る冷凍サイクル装置は、第9観点の冷凍サイクル装置であって、冷凍サイクルは、圧縮機を含む。制御部は、圧縮機の回転数を更に制御する。制御部は、冷凍サイクル装置に対する要求能力の変化に応じて、圧縮機の回転数、又は、冷凍サイクルを流れる冷媒中の第1冷媒と第2冷媒との組成比、のいずれかを変更する。 A refrigeration cycle device according to the tenth aspect is the refrigeration cycle device according to the ninth aspect, and the refrigeration cycle includes a compressor. The controller further controls the rotation speed of the compressor. The control unit changes either the number of rotations of the compressor or the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle according to changes in the required capacity of the refrigeration cycle device.
 第10観点の冷凍サイクル装置では、効率の低下は抑制しつつ、必要な能力を得ることができる。 With the refrigeration cycle device of the tenth aspect, it is possible to obtain the necessary capacity while suppressing a decrease in efficiency.
 第11観点に係る冷凍サイクル装置は、第10観点の冷凍サイクル装置であって、制御部は、要求能力が増大した際に、圧縮機の回転数、及び、冷凍サイクルを流れる冷媒中の第1冷媒と第2冷媒との組成比のうち、変更した際の圧縮機の電力増加量が少ない方を変更する。 A refrigerating cycle device according to an eleventh aspect is the refrigerating cycle device according to the tenth aspect, wherein, when the required capacity increases, the control unit controls the rotation speed of the compressor and the first Of the composition ratios of the refrigerant and the second refrigerant, the one with the smaller amount of increase in the electric power of the compressor when changed is changed.
 第11観点の冷凍サイクル装置では、効率の低下は抑制しつつ、必要な能力を得ることができる。 With the refrigeration cycle device of the eleventh aspect, it is possible to obtain the necessary capacity while suppressing a decrease in efficiency.
 第12観点に係る冷凍サイクル装置は、第10観点又は第11観点の冷凍サイクル装置であって、制御部は、要求能力が低下した際に、冷凍サイクルを流れる冷媒中の第1冷媒の比率が所定値より高い場合には、冷凍サイクルを流れる冷媒中の第1冷媒の比率を下げるよう変更部を制御し、冷凍サイクルを流れる冷媒中の第1冷媒の比率が所定値以下の場合には、圧縮機の回転数を下げる。 A refrigerating cycle device according to a twelfth aspect is the refrigerating cycle device according to the tenth or eleventh aspect, wherein the controller controls, when the required capacity is reduced, the ratio of the first refrigerant in the refrigerant flowing through the refrigerating cycle to When the ratio is higher than the predetermined value, the changing unit is controlled to decrease the ratio of the first refrigerant in the refrigerant flowing through the refrigerating cycle, and when the ratio of the first refrigerant in the refrigerant flowing through the refrigerating cycle is equal to or less than the predetermined value, Decrease compressor speed.
 第12観点の冷凍サイクル装置では、効率の低下は抑制しつつ、必要な能力を得ることができる。 With the refrigeration cycle device of the twelfth aspect, it is possible to obtain the necessary capacity while suppressing a decrease in efficiency.
 第13観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれかの冷凍サイクル装置であって、第1冷媒は、CO2である。第2冷媒は、R1234Ze又はR1234yfである。 A refrigeration cycle device according to a thirteenth aspect is the refrigeration cycle device according to any one of the first to twelfth aspects, and the first refrigerant is CO2. The second refrigerant is R1234Ze or R1234yf.
 第14観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれかの冷凍サイクル装置であって、第1冷媒は、R1132(E)又はR1123である。第2冷媒は、R1234Ze又はR1234yfである。 A refrigeration cycle device according to a fourteenth aspect is the refrigeration cycle device according to any one of the first to twelfth aspects, and the first refrigerant is R1132(E) or R1123. The second refrigerant is R1234Ze or R1234yf.
一実施形態に係る冷凍サイクル装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle apparatus according to one embodiment; FIG. 圧縮機のモータの回転数を変更して能力を変更する際のCOPの変化と、冷媒中の第1冷媒の比率を変更して能力を変更する際のCOPの変化と、を模式的に表した図である。Schematically represents changes in COP when changing the capacity by changing the rotation speed of the compressor motor and changes in COP when changing the capacity by changing the ratio of the first refrigerant in the refrigerant. It is a diagram of 冷凍サイクル装置の能力不足時に行われる制御のフローチャートの例である。It is an example of the flowchart of the control performed at the time of the capacity|capacitance shortage of a refrigerating-cycle apparatus. 冷凍サイクル装置の能力過剰時に行われる制御のフローチャートの例である。It is an example of the flowchart of the control performed when the capacity|capacitance of a refrigerating-cycle apparatus is excessive. 変形例Aに係る冷凍サイクル装置の概略構成図である。2 is a schematic configuration diagram of a refrigeration cycle apparatus according to Modification A; FIG. 変形例Gに係る冷凍サイクル装置の概略構成図である。FIG. 11 is a schematic configuration diagram of a refrigeration cycle apparatus according to Modification G;
 以下に、図面を参照して、本開示の冷凍サイクル装置の実施形態を説明する。 Embodiments of the refrigeration cycle apparatus of the present disclosure will be described below with reference to the drawings.
 冷凍サイクル装置は、蒸気圧縮式の冷凍サイクルを利用して、温度調整対象の冷却及び温度調整対象の加熱の少なくとも一方を行う装置である。本開示の冷凍サイクル装置は、冷媒として、非共沸混合冷媒を使用する。本開示の冷凍サイクル装置は、後述のように、条件に応じ、冷凍サイクルを流れる冷媒の組成比を変更する。 A refrigeration cycle device is a device that uses a vapor compression refrigeration cycle to perform at least one of cooling of a temperature-adjusted object and heating of a temperature-adjusted object. The refrigeration cycle device of the present disclosure uses a non-azeotropic mixed refrigerant as a refrigerant. The refrigeration cycle device of the present disclosure changes the composition ratio of the refrigerant flowing through the refrigeration cycle according to conditions, as described later.
 <第1実施形態>
 (1)全体概要
 図1を参照して、第1実施形態に係る冷凍サイクル装置100を説明する。図1は、冷凍サイクル装置100の概略構成図である。
<First embodiment>
(1) Overall Overview A refrigeration cycle apparatus 100 according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus 100. As shown in FIG.
 ここでは、冷凍サイクル装置100は、温度調整対象である空気の冷却及び加熱を行う空調装置である。ただし、これに限定されるものではなく、冷凍サイクル装置100は、温度調整対象の液体(例えば水)の冷却及び加熱を行う装置でもよい。 Here, the refrigeration cycle device 100 is an air conditioner that cools and heats the air whose temperature is to be adjusted. However, the refrigeration cycle device 100 is not limited to this, and may be a device that cools and heats a liquid (for example, water) whose temperature is to be adjusted.
 冷凍サイクル装置100は、図1に示すように、冷凍サイクルの一例としての主冷媒回路50と、変更部70と、検知部150と、コントローラ110と、を主に備える。主冷媒回路50と、主冷媒回路50に接続される後述する変更部70の第1バイパス流路80と、を含めて、冷媒回路200と呼ぶ。 The refrigerating cycle device 100 mainly includes a main refrigerant circuit 50 as an example of a refrigerating cycle, a changing section 70, a detecting section 150, and a controller 110, as shown in FIG. The refrigerant circuit 200 includes the main refrigerant circuit 50 and a first bypass flow path 80 of a change section 70 (to be described later) connected to the main refrigerant circuit 50 .
 冷媒回路200には、非共沸混合冷媒が充填されている。言い換えれば、主冷媒回路50は、非共沸混合冷媒を用いる。非共沸混合冷媒は、少なくとも2種類の冷媒の混合物である。第1実施形態の冷凍サイクル装置100の冷媒回路200には、2種類の冷媒(第1冷媒及び第2冷媒)だけを含む非共沸混合冷媒が充填される。ただし、これに限定されるものではなく、非共沸混合冷媒は、3種類以上の冷媒の混合物であってもよい。例えば、第2冷媒は、1種類の冷媒ではなく、2種類以上の冷媒を含む共沸混合冷媒又は疑似共沸混合冷媒であってもよい。要するに、非共沸混合冷媒は、第2冷媒としての2種類以上の冷媒を含む共沸混合冷媒又は疑似共沸混合冷媒と、第2冷媒とは非共沸の第1冷媒と、の混合冷媒であっても。 The refrigerant circuit 200 is filled with a non-azeotropic refrigerant mixture. In other words, the main refrigerant circuit 50 uses a non-azeotropic refrigerant mixture. A non-azeotropic refrigerant mixture is a mixture of at least two refrigerants. The refrigerant circuit 200 of the refrigeration cycle apparatus 100 of the first embodiment is filled with a non-azeotropic mixed refrigerant containing only two types of refrigerants (first refrigerant and second refrigerant). However, it is not limited to this, and the non-azeotropic refrigerant mixture may be a mixture of three or more refrigerants. For example, the second refrigerant may be an azeotropic or pseudo-azeotropic refrigerant mixture containing two or more refrigerants instead of one refrigerant. In short, the non-azeotropic mixed refrigerant is a mixed refrigerant of an azeotropic or pseudo-azeotropic mixed refrigerant containing two or more refrigerants as a second refrigerant and a first refrigerant that is non-azeotropic with the second refrigerant. Even though.
 限定するものではないが、具体的には、第1冷媒は、CO2(二酸化炭素)であり、第2冷媒は、HFO(ハイドロフルオロオレフィン)である。HFOは、温暖化係数が極めて低い冷媒である。限定するものではないが、第2冷媒として用いられるHFOの具体例は、R1234Ze(シス-1,3,3,3-テトラフルオロプロペン)である。また、例えば、R1234Zeに代えて、R1234yf(2,3,3,3-テトラフルオロプロペン)が、第2冷媒のHFOとして用いられてもよい。CO2は沸点の比較的低い冷媒であり、R1234ZeやR1234yfは沸点の比較的高い冷媒である。言い換えれば、第2冷媒の沸点は、第1冷媒の沸点より高い。以下では、第1冷媒を低沸点冷媒と呼び、第2冷媒を高沸点冷媒と呼ぶ場合がある。 Although not limited, specifically, the first refrigerant is CO2 (carbon dioxide) and the second refrigerant is HFO (hydrofluoroolefin). HFO is a refrigerant with a very low global warming potential. A specific non-limiting example of HFO for use as the second refrigerant is R1234Ze (cis-1,3,3,3-tetrafluoropropene). Further, for example, instead of R1234Ze, R1234yf (2,3,3,3-tetrafluoropropene) may be used as HFO of the second refrigerant. CO2 is a refrigerant with a relatively low boiling point, and R1234Ze and R1234yf are refrigerants with a relatively high boiling point. In other words, the boiling point of the second refrigerant is higher than the boiling point of the first refrigerant. Hereinafter, the first refrigerant may be called a low boiling point refrigerant, and the second refrigerant may be called a high boiling point refrigerant.
 冷凍サイクル装置100の冷媒回路200に充填されている全冷媒の総重量に対する、冷媒回路200に充填されている第1冷媒の総重量の割合は、20wt%以下であることが好ましい。 The ratio of the total weight of the first refrigerant charged in the refrigerant circuit 200 to the total weight of all refrigerants charged in the refrigerant circuit 200 of the refrigeration cycle device 100 is preferably 20 wt% or less.
 主冷媒回路50、変更部70、検知部150及びコントローラ110について概説する。 The main refrigerant circuit 50, the changing section 70, the detecting section 150 and the controller 110 will be outlined.
 主冷媒回路50は、図1に示すように、圧縮機10と、流路切換機構15と、熱源熱交換器20と、膨張機構30と、利用熱交換器40と、を主に含む。圧縮機10と、流路切換機構15と、熱源熱交換器20と、膨張機構30と、利用熱交換器40とは、後述する冷媒配管52a~52eにより接続されて主冷媒回路50を構成する(図1参照)。冷凍サイクル装置100は、冷媒を主冷媒回路50において循環させることで、温度調整対象の空気の冷却及び加熱を行う。 The main refrigerant circuit 50 mainly includes a compressor 10, a flow path switching mechanism 15, a heat source heat exchanger 20, an expansion mechanism 30, and a utilization heat exchanger 40, as shown in FIG. The compressor 10, the flow path switching mechanism 15, the heat source heat exchanger 20, the expansion mechanism 30, and the utilization heat exchanger 40 are connected by refrigerant pipes 52a to 52e, which will be described later, to form a main refrigerant circuit 50. (See Figure 1). The refrigeration cycle device 100 circulates the refrigerant in the main refrigerant circuit 50 to cool and heat the air whose temperature is to be adjusted.
 変更部70は、主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比を変更する機構である。 The changing unit 70 is a mechanism that changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 .
 検知部150は、主冷媒回路50内を循環する冷媒の組成比を検知する。 The detection unit 150 detects the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
 なお、冷凍サイクル装置100は、図1に二点鎖線で示すように、図示しないケーシングを有する熱源ユニット2と、図示しないケーシングを有し、熱源ユニット2と冷媒配管を介して接続される利用ユニット4と、を備える。熱源ユニット2は、例えば、冷凍サイクル装置100の設置される建物の屋上又は機械室や、冷凍サイクル装置100の設置される建物の周囲等に設置される。利用ユニット4は、空調対象空間内や、空調対象空間の近傍の空間(例えば天井裏や機械室等)に配置される。限定するものではないが、熱源ユニット2のケーシングには、主冷媒回路50の圧縮機10、流路切換機構15、熱源熱交換器20及び膨張機構30と、変更部70と、検知部150と、が主に収容される。利用ユニット4のケーシングには、主冷媒回路50の利用熱交換器40が主に収容される。 1, the refrigeration cycle apparatus 100 has a heat source unit 2 having a casing (not shown) and a utilization unit connected to the heat source unit 2 via a refrigerant pipe. 4 and . The heat source unit 2 is installed, for example, on the roof of the building in which the refrigerating cycle device 100 is installed, in a machine room, or around the building in which the refrigerating cycle device 100 is installed. The usage unit 4 is arranged in a space to be air-conditioned or in a space near the space to be air-conditioned (for example, in the ceiling or in a machine room). Although not limited, the casing of the heat source unit 2 includes the compressor 10 of the main refrigerant circuit 50, the flow path switching mechanism 15, the heat source heat exchanger 20, the expansion mechanism 30, the changing section 70, and the detecting section 150. , are mainly accommodated. The casing of the utilization unit 4 mainly accommodates the utilization heat exchanger 40 of the main refrigerant circuit 50 .
 コントローラ110は、冷凍サイクル装置100の各種構成の動作を制御する。 The controller 110 controls operations of various components of the refrigeration cycle apparatus 100 .
 例えば、コントローラ110は、変更部70の動作を制御する。コントローラ110は、変更部70の動作を制御することで、第1モードと、第2モードと、を実行する。第1モードは、変更部70の動作を制御して主冷媒回路50に第2冷媒を略単独で流すモードである。第2モードは、変更部70の動作を制御して主冷媒回路50に第1冷媒と第2冷媒との混合冷媒を流すモードである。 For example, the controller 110 controls the operation of the changing unit 70. The controller 110 executes the first mode and the second mode by controlling the operation of the changing section 70 . The first mode is a mode in which the operation of the changing unit 70 is controlled to allow the second refrigerant to flow through the main refrigerant circuit 50 substantially independently. The second mode is a mode in which the operation of the changing unit 70 is controlled to allow the mixed refrigerant of the first refrigerant and the second refrigerant to flow through the main refrigerant circuit 50 .
 なお、ここで、第2冷媒を略単独で流すとは、第1冷媒を含まない第2冷媒を流す状態に限定されず、所定濃度以上の高濃度の第2冷媒を流す状態(実質的に第2冷媒を単独で流す状態)を含む。具体的には、主冷媒回路50に第2冷媒を略単独で流す状態には、主冷媒回路50に92wt%以上の濃度の第2冷媒を流す状態を含む。なお、第1モードでは、なるべく第2冷媒の濃度が高い冷媒(第1冷媒の濃度が低い冷媒)が主冷媒回路50に流されることが好ましい。好ましくは、第1モードでは、主冷媒回路50には、第2冷媒の濃度が98wt%以上の冷媒が流される。 It should be noted that the flow of the second refrigerant substantially alone is not limited to the state of flowing the second refrigerant that does not contain the first refrigerant, but the state of flowing the second refrigerant having a high concentration equal to or higher than a predetermined concentration (substantially state in which the second refrigerant flows alone). Specifically, the state in which the second refrigerant flows substantially alone through the main refrigerant circuit 50 includes the state in which the second refrigerant having a concentration of 92 wt % or more flows through the main refrigerant circuit 50 . In addition, in the first mode, it is preferable that the refrigerant with the highest second refrigerant concentration (the refrigerant with the lowest first refrigerant concentration) is allowed to flow through the main refrigerant circuit 50 . Preferably, in the first mode, the main refrigerant circuit 50 is supplied with a refrigerant having a second refrigerant concentration of 98 wt % or higher.
 (2)詳細構成
 (2-1)主冷媒回路
 主冷媒回路50は、図1に示すように、圧縮機10と、流路切換機構15と、熱源熱交換器20と、膨張機構30と、利用熱交換器40と、を主に含む。
(2) Detailed Configuration (2-1) Main Refrigerant Circuit The main refrigerant circuit 50 includes, as shown in FIG. and a utilization heat exchanger 40 .
 主冷媒回路50は、圧縮機10、流路切換機構15、熱源熱交換器20、膨張機構30、及び利用熱交換器40を接続するための配管として、図1に示すように、吸入管52aと、吐出管52bと、第1ガス冷媒管52cと、液冷媒管52dと、第2ガス冷媒管52eと、を有する(図1参照)。吸入管52aは、圧縮機10の吸入口10bと、流路切換機構15と、を接続している。吐出管52bは、圧縮機10の吐出口10cと、流路切換機構15と、を接続している。第1ガス冷媒管52cは、流路切換機構15と、熱源熱交換器20のガス端と、を接続している。液冷媒管52dは、熱源熱交換器20の液端と、利用熱交換器40の液端と、を接続している。液冷媒管52dには、膨張機構30が設けられている。第2ガス冷媒管52eは、利用熱交換器40のガス端と、流路切換機構15と、を接続している。 The main refrigerant circuit 50 includes a suction pipe 52a as shown in FIG. , a discharge pipe 52b, a first gas refrigerant pipe 52c, a liquid refrigerant pipe 52d, and a second gas refrigerant pipe 52e (see FIG. 1). The suction pipe 52 a connects the suction port 10 b of the compressor 10 and the channel switching mechanism 15 . The discharge pipe 52b connects the discharge port 10c of the compressor 10 and the channel switching mechanism 15 . The first gas refrigerant pipe 52 c connects the flow path switching mechanism 15 and the gas end of the heat source heat exchanger 20 . The liquid refrigerant pipe 52 d connects the liquid end of the heat source heat exchanger 20 and the liquid end of the heat utilization heat exchanger 40 . An expansion mechanism 30 is provided in the liquid refrigerant pipe 52d. The second gas refrigerant pipe 52 e connects the gas end of the heat utilization heat exchanger 40 and the channel switching mechanism 15 .
 (2-1-1)圧縮機
 圧縮機10は、吸入口10bから冷凍サイクルにおける低圧の冷媒を吸入して、図示しない圧縮機構において冷媒を圧縮し、冷凍サイクルにおける高圧の冷媒を吐出口10cから吐出する。図1では、圧縮機10は1台だけ描画されているが、主冷媒回路50は、直列又は並列に接続された複数の圧縮機10を有してもよい。
(2-1-1) Compressor The compressor 10 sucks low-pressure refrigerant in the refrigeration cycle from the suction port 10b, compresses the refrigerant in a compression mechanism (not shown), and releases high-pressure refrigerant in the refrigeration cycle from the discharge port 10c. Dispense. Although only one compressor 10 is depicted in FIG. 1, the main refrigerant circuit 50 may have multiple compressors 10 connected in series or in parallel.
 圧縮機10は、例えばスクロール圧縮機である。ただし、これに限定されるものではなく、圧縮機10は、ロータリ圧縮機等、スクロール圧縮機以外のタイプの圧縮機でもよい。圧縮機10の種類は、適宜選択されればよい。 The compressor 10 is, for example, a scroll compressor. However, the compressor 10 is not limited to this, and may be a compressor of a type other than a scroll compressor, such as a rotary compressor. The type of compressor 10 may be selected as appropriate.
 圧縮機10は、限定するものではないが、モータ10aの回転数が可変の、インバータ制御方式の圧縮機である。圧縮機10の動作を制御する後述のコントローラ110は、例えば空調負荷に応じ、圧縮機10のモータ10aの回転数を制御する。 The compressor 10 is, but not limited to, an inverter-controlled compressor in which the rotation speed of the motor 10a is variable. A later-described controller 110 that controls the operation of the compressor 10 controls the rotation speed of the motor 10a of the compressor 10 according to, for example, the air conditioning load.
 (2-1-2)流路切換機構
 流路切換機構15は、冷凍サイクル装置100の運転モード(冷房運転モード/暖房運転モード)に応じ、主冷媒回路50における冷媒の流れ方向を切り換える機構である。冷房運転モードは、熱源熱交換器20を放熱器として機能させ、利用熱交換器40を蒸発器として機能させる冷凍サイクル装置100の運転モードである。暖房運転モードは、利用熱交換器40を放熱器として機能させ、熱源熱交換器20を蒸発器として機能させる冷凍サイクル装置100の運転モードである。
(2-1-2) Channel Switching Mechanism The channel switching mechanism 15 is a mechanism that switches the flow direction of the refrigerant in the main refrigerant circuit 50 according to the operation mode (cooling operation mode/heating operation mode) of the refrigeration cycle device 100. be. The cooling operation mode is an operation mode of the refrigeration cycle apparatus 100 that causes the heat source heat exchanger 20 to function as a radiator and the utilization heat exchanger 40 to function as an evaporator. The heating operation mode is an operation mode of the refrigeration cycle apparatus 100 in which the utilization heat exchanger 40 functions as a radiator and the heat source heat exchanger 20 functions as an evaporator.
 冷房運転モードでは、流路切換機構15は、圧縮機10が吐出する冷媒が熱源熱交換器20に送られるように、主冷媒回路50における冷媒の流向を切り換える。具体的には、冷房運転モードでは、流路切換機構15は、吸入管52aを第2ガス冷媒管52eと連通させ、吐出管52bを第1ガス冷媒管52cと連通させる(図1中の実線参照)。 In the cooling operation mode, the flow path switching mechanism 15 switches the flow direction of the refrigerant in the main refrigerant circuit 50 so that the refrigerant discharged from the compressor 10 is sent to the heat source heat exchanger 20 . Specifically, in the cooling operation mode, the channel switching mechanism 15 communicates the suction pipe 52a with the second gas refrigerant pipe 52e and communicates the discharge pipe 52b with the first gas refrigerant pipe 52c (solid line in FIG. 1). reference).
 暖房運転モードでは、流路切換機構15は、圧縮機10が吐出する冷媒が利用熱交換器40に送られるように、主冷媒回路50における冷媒の流向を切り換える。具体的には、暖房運転モードでは、流路切換機構15は、吸入管52aを第1ガス冷媒管52cと連通させ、吐出管52bを第2ガス冷媒管52eと連通させる(図1中の破線参照)。 In the heating operation mode, the flow path switching mechanism 15 switches the flow direction of the refrigerant in the main refrigerant circuit 50 so that the refrigerant discharged from the compressor 10 is sent to the utilization heat exchanger 40 . Specifically, in the heating operation mode, the channel switching mechanism 15 communicates the suction pipe 52a with the first gas refrigerant pipe 52c, and communicates the discharge pipe 52b with the second gas refrigerant pipe 52e (broken line in FIG. 1). reference).
 流路切換機構15は、例えば四路切換弁である。ただし、流路切換機構15は、四路切換弁以外で実現されてもよい。例えば、流路切換機構15は、上記の冷媒の流れ方向の切り換えを実現できるように、複数の電磁弁と配管とを組み合わせて構成されてもよい。 The channel switching mechanism 15 is, for example, a four-way switching valve. However, the channel switching mechanism 15 may be realized by means other than the four-way switching valve. For example, the channel switching mechanism 15 may be configured by combining a plurality of solenoid valves and pipes so as to switch the flow direction of the refrigerant.
 (2-1-3)熱源熱交換器
 熱源熱交換器20は、冷凍サイクル装置100が冷房運転モードで運転される際には冷媒の放熱器として機能し、冷凍サイクル装置100が暖房運転モードで運転される際には冷媒の蒸発器として機能する。図1では、熱源熱交換器20は1台だけ描画されているが、主冷媒回路50は、複数の並列に配置された熱源熱交換器20を有してもよい。
(2-1-3) Heat Source Heat Exchanger The heat source heat exchanger 20 functions as a refrigerant radiator when the refrigeration cycle device 100 is operated in the cooling operation mode, and functions as a refrigerant radiator when the refrigeration cycle device 100 is in the heating operation mode. When operated, it functions as an evaporator of refrigerant. Although only one heat source heat exchanger 20 is illustrated in FIG. 1, the main refrigerant circuit 50 may have a plurality of heat source heat exchangers 20 arranged in parallel.
 限定するものではないが、熱源熱交換器20は、例えば、複数の伝熱管及び複数の伝熱フィンを有するフィンアンドチューブ型の熱交換器である。 Although not limited, the heat source heat exchanger 20 is, for example, a fin-and-tube heat exchanger having a plurality of heat transfer tubes and a plurality of heat transfer fins.
 熱源熱交換器20の一端には、図1に示すように第1ガス冷媒管52cが接続される。熱源熱交換器20の他端には、図1に示すように液冷媒管52dが接続される。 A first gas refrigerant pipe 52c is connected to one end of the heat source heat exchanger 20 as shown in FIG. A liquid refrigerant pipe 52d is connected to the other end of the heat source heat exchanger 20 as shown in FIG.
 冷凍サイクル装置100が冷房運転モードで運転される際には、第1ガス冷媒管52cから熱源熱交換器20に冷媒が流入する。第1ガス冷媒管52cから熱源熱交換器20に流入した冷媒は、図示しないファンにより供給される空気と熱交換することで放熱し、少なくとも一部が凝縮する。熱源熱交換器20で放熱した冷媒は、液冷媒管52dに流出する。 When the refrigeration cycle device 100 is operated in the cooling operation mode, refrigerant flows into the heat source heat exchanger 20 from the first gas refrigerant pipe 52c. The refrigerant that has flowed into the heat source heat exchanger 20 from the first gas refrigerant pipe 52c exchanges heat with air supplied by a fan (not shown) to radiate heat, and at least a portion of the refrigerant is condensed. The refrigerant that has dissipated heat in the heat source heat exchanger 20 flows out to the liquid refrigerant pipe 52d.
 冷凍サイクル装置100が暖房運転モードで運転される際には、液冷媒管52dから熱源熱交換器20に冷媒が流入する。液冷媒管52dから熱源熱交換器20に流入した冷媒は、熱源熱交換器20で、図示しないファンにより供給される空気と熱交換することで吸熱し、蒸発する。熱源熱交換器20で吸熱した(加熱された)冷媒は、第1ガス冷媒管52cへと流出する。 When the refrigeration cycle device 100 is operated in the heating operation mode, refrigerant flows into the heat source heat exchanger 20 from the liquid refrigerant pipe 52d. The refrigerant that has flowed into the heat source heat exchanger 20 from the liquid refrigerant pipe 52d absorbs heat and evaporates by exchanging heat with air supplied by a fan (not shown) in the heat source heat exchanger 20 . The refrigerant that has absorbed heat (heated) in the heat source heat exchanger 20 flows out to the first gas refrigerant pipe 52c.
 なお、本実施形態では、熱源熱交換器20では、内部を流れる冷媒と、熱源熱交換器20に供給される熱源としての空気の間で熱交換が行われるが、熱源熱交換器20は空気と冷媒との間で熱交換を行う熱交換器に限定されない。例えば、熱源熱交換器20は、内部を流れる冷媒と、熱源熱交換器20に供給される熱源としての液体との間で熱交換を行う熱交換器であってもよい。 In this embodiment, in the heat source heat exchanger 20, heat is exchanged between the refrigerant flowing inside and the air as the heat source supplied to the heat source heat exchanger 20. It is not limited to a heat exchanger that exchanges heat between and a refrigerant. For example, the heat source heat exchanger 20 may be a heat exchanger that exchanges heat between a refrigerant flowing inside and a liquid as a heat source supplied to the heat source heat exchanger 20 .
 (2-1-4)膨張機構
 膨張機構30は、冷媒の減圧や、冷媒の流量調節を行う機構である。本実施形態では、膨張機構30は、開度調節可能な電子膨張弁である。膨張機構30の開度は、運転状況に応じて適宜調節される。なお、膨張機構30は、電子膨張弁に限定されるものではなく、温度自動膨張弁や、キャピラリチューブであってもよい。
(2-1-4) Expansion Mechanism The expansion mechanism 30 is a mechanism for decompressing the refrigerant and adjusting the flow rate of the refrigerant. In this embodiment, the expansion mechanism 30 is an electronic expansion valve whose opening is adjustable. The degree of opening of the expansion mechanism 30 is appropriately adjusted according to the operating conditions. Note that the expansion mechanism 30 is not limited to an electronic expansion valve, and may be a thermostatic expansion valve or a capillary tube.
 (2-1-5)利用熱交換器
 利用熱交換器40は、冷凍サイクル装置100が冷房運転モードで運転される際には冷媒の蒸発器として機能し、冷凍サイクル装置100が暖房運転モードで運転される際には冷媒の放熱器として機能する。利用熱交換器40は、蒸発器として機能する際には、温度調整対象(本実施形態では空気)を冷却する。利用熱交換器40は、放熱器として機能する際には、温度調整対象(本実施形態では空気)を加熱する。
(2-1-5) Utilization heat exchanger The utilization heat exchanger 40 functions as a refrigerant evaporator when the refrigeration cycle device 100 is operated in the cooling operation mode, and functions as a refrigerant evaporator when the refrigeration cycle device 100 is operated in the heating operation mode. It functions as a heat radiator for the refrigerant when it is operated. When functioning as an evaporator, the utilization heat exchanger 40 cools the object of temperature adjustment (air in this embodiment). The utilization heat exchanger 40 heats a temperature-adjusted object (air in this embodiment) when functioning as a radiator.
 なお、図1に示した例では、冷凍サイクル装置100は、利用熱交換器40を1台だけ有する。ただし、これに限定されるものではない。冷凍サイクル装置100の主冷媒回路50は、並列に配置された複数の利用熱交換器40を有してもよい。そして、各利用ユニット4は、利用熱交換器40の液側に配置される、図示しない膨張機構(例えば開度調整可能な電子膨張弁)を有してもよい。 In addition, in the example shown in FIG. 1 , the refrigeration cycle device 100 has only one utilization heat exchanger 40 . However, it is not limited to this. The main refrigerant circuit 50 of the refrigeration cycle device 100 may have a plurality of utilization heat exchangers 40 arranged in parallel. Further, each utilization unit 4 may have an expansion mechanism (not shown) (for example, an electronic expansion valve with adjustable opening) arranged on the liquid side of the utilization heat exchanger 40 .
 限定するものではないが、利用熱交換器40は、例えば、複数の伝熱管及び複数の伝熱フィンを有するフィンアンドチューブ型の熱交換器である。 Although not limited, the utilization heat exchanger 40 is, for example, a fin-and-tube heat exchanger having a plurality of heat transfer tubes and a plurality of heat transfer fins.
 利用熱交換器40の一端には、図1に示すように液冷媒管52dが接続される。利用熱交換器40の他端には、図1に示すように第2ガス冷媒管52eが接続される。 A liquid refrigerant pipe 52d is connected to one end of the utilization heat exchanger 40 as shown in FIG. A second gas refrigerant pipe 52e is connected to the other end of the utilization heat exchanger 40 as shown in FIG.
 冷凍サイクル装置100が冷房運転モードで運転される際には、液冷媒管52dから利用熱交換器40に冷媒が流入する。液冷媒管52dから利用熱交換器40に流入した冷媒は、利用熱交換器40で、図示しないファンにより供給される空気と熱交換して吸熱し、蒸発する。利用熱交換器40で吸熱した(加熱された)冷媒は、第2ガス冷媒管52eへと流出する。なお、利用熱交換器40で冷却された温度調整対象としての空気は、空調対象空間へと吹き出す。 When the refrigeration cycle device 100 is operated in the cooling operation mode, refrigerant flows into the utilization heat exchanger 40 from the liquid refrigerant pipe 52d. The refrigerant flowing into the utilization heat exchanger 40 from the liquid refrigerant pipe 52d exchanges heat with air supplied by a fan (not shown) in the utilization heat exchanger 40, absorbs heat, and evaporates. The refrigerant that has absorbed heat (heated) in the heat utilization heat exchanger 40 flows out to the second gas refrigerant pipe 52e. The air cooled by the heat exchanger 40 and the temperature of which is to be adjusted is blown out into the air-conditioned space.
 冷凍サイクル装置100が暖房運転モードで運転される際には、第2ガス冷媒管52eから利用熱交換器40に冷媒が流入する。第2ガス冷媒管52eから利用熱交換器40に流入した冷媒は、図示しないファンにより供給される空気と熱交換することで放熱し、少なくとも一部が凝縮する。利用熱交換器40で放熱した冷媒は、液冷媒管52dに流出する。なお、利用熱交換器40で加熱された温度調整対象としての空気は、空調対象空間へと吹き出す。 When the refrigeration cycle device 100 is operated in the heating operation mode, refrigerant flows into the utilization heat exchanger 40 from the second gas refrigerant pipe 52e. The refrigerant flowing into the utilization heat exchanger 40 from the second gas refrigerant pipe 52e radiates heat by exchanging heat with air supplied by a fan (not shown), and is at least partially condensed. The refrigerant that has dissipated heat in the utilization heat exchanger 40 flows out to the liquid refrigerant pipe 52d. Note that the air heated by the heat exchanger 40 to be temperature-controlled is blown out into the air-conditioned space.
 (2-2)変更部
 変更部70は、主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比を変更する機構である。
(2-2) Changer The changer 70 is a mechanism that changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 .
 変更部70は、第1バイパス流路80と、冷媒容器72と、熱源側弁82aと、利用側弁82bと、を含む。 The change unit 70 includes a first bypass channel 80, a refrigerant container 72, a heat source side valve 82a, and a usage side valve 82b.
 第1バイパス流路80は、主冷媒回路50の熱源側端Aと、主冷媒回路50の利用側端Bと、を接続する配管である。熱源側端Aは、主冷媒回路50の液冷媒管52dの、熱源熱交換器20と膨張機構30との間の部分である。利用側端Bは、主冷媒回路50の液冷媒管52dの、利用熱交換器40と膨張機構30との間の部分である。 The first bypass channel 80 is a pipe that connects the heat source side end A of the main refrigerant circuit 50 and the usage side end B of the main refrigerant circuit 50 . The heat source side end A is a portion of the liquid refrigerant pipe 52 d of the main refrigerant circuit 50 between the heat source heat exchanger 20 and the expansion mechanism 30 . A utilization side end B is a portion of the liquid refrigerant pipe 52 d of the main refrigerant circuit 50 between the utilization heat exchanger 40 and the expansion mechanism 30 .
 第1バイパス流路80には、冷媒容器72と、熱源側弁82aと、利用側弁82bと、が配置される。 A coolant container 72, a heat source side valve 82a, and a usage side valve 82b are arranged in the first bypass channel 80.
 冷媒容器72は、内部に冷媒を貯留可能な容器である。 The refrigerant container 72 is a container capable of storing refrigerant inside.
 熱源側弁82aは、熱源側端Aと変更部70との間に配置される。利用側弁82bは、利用側端Bと変更部70との間に配置される。熱源側弁82a及び利用側弁82bは、開度調整可能な電子膨張弁である。 The heat source side valve 82 a is arranged between the heat source side end A and the changing portion 70 . The usage-side valve 82 b is arranged between the usage-side end B and the changing section 70 . The heat source side valve 82a and the utilization side valve 82b are electronic expansion valves whose degree of opening is adjustable.
 変更部70が、主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比を変更する方法について説明する。 A method for changing the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 by the changing unit 70 will be described.
 冷凍サイクル装置100の運転中に、熱源側弁82a及び利用側弁82bの開度が調節されると、熱源側弁82aと利用側弁82bとの開度に応じて、冷媒容器72に貯留される冷媒の液相と気相との比率を増減させることができる。 When the opening degrees of the heat source side valve 82a and the usage side valve 82b are adjusted during the operation of the refrigeration cycle apparatus 100, the refrigerant is stored in the refrigerant container 72 according to the opening degrees of the heat source side valve 82a and the usage side valve 82b. The ratio of the liquid phase to the gas phase of the refrigerant can be increased or decreased.
 共沸混合冷媒や疑似共沸混合冷媒が気液二相の状態で存在する場合には、気相の冷媒の組成比と、液相の冷媒の組成比と、は概ね同一となる。 When the azeotropic refrigerant mixture or the pseudo-azeotropic refrigerant mixture exists in a gas-liquid two-phase state, the composition ratio of the gas-phase refrigerant and the composition ratio of the liquid-phase refrigerant are approximately the same.
 これに対し、低沸点冷媒(第1冷媒)と高沸点冷媒(第2冷媒)との非共沸混合冷媒が気液二相の状態で存在する場合には、液相部分では高沸点冷媒の比率が高くなり、ガス相部分では低沸点冷媒の比率が高くなる。そのため、熱源側弁82a及び利用側弁82bとの開度を調節して、冷媒容器72に貯留される液相の冷媒量とガス相の冷媒量とを変化させれば、冷媒容器72に貯留される第1冷媒の量を増減させることができる。そして、冷媒容器72に貯留される第1冷媒を増加させれば、主冷媒回路50中に存在する第1冷媒の量が減るため、主冷媒回路50を流れる冷媒中の第2冷媒の比率を高めることができる。一方で、冷媒容器72に貯留される第1冷媒を減少させれば、主冷媒回路50中に存在する第1冷媒の量が増えるため、主冷媒回路50を流れる冷媒中の第2冷媒の比率を下げる(第1冷媒の比率を高める)ことができる。 On the other hand, when a non-azeotropic mixed refrigerant of a low boiling point refrigerant (first refrigerant) and a high boiling point refrigerant (second refrigerant) exists in a gas-liquid two-phase state, the high boiling point refrigerant is present in the liquid phase. The ratio becomes high, and the ratio of the low boiling point refrigerant becomes high in the gas phase portion. Therefore, if the opening degrees of the heat source side valve 82a and the usage side valve 82b are adjusted to change the amount of liquid-phase refrigerant and the amount of gas-phase refrigerant stored in the refrigerant container 72, The amount of first refrigerant applied can be increased or decreased. If the amount of the first refrigerant stored in the refrigerant container 72 is increased, the amount of the first refrigerant existing in the main refrigerant circuit 50 is reduced. can be enhanced. On the other hand, if the amount of the first refrigerant stored in the refrigerant container 72 is reduced, the amount of the first refrigerant existing in the main refrigerant circuit 50 will increase. can be lowered (the ratio of the first refrigerant is increased).
 (2-3)検知部
 検知部150は、主冷媒回路50内を循環する冷媒中の、第1冷媒と第2冷媒との組成比を検知する。
(2-3) Detection Section The detection section 150 detects the composition ratio of the first refrigerant and the second refrigerant in the refrigerant circulating in the main refrigerant circuit 50 .
 検知部150は、主冷媒回路50の、熱源熱交換器20と膨張機構30との間と利用熱交換器40と膨張機構30との間と、を接続する配管151を含む。なお、配管151は、主冷媒回路50を流れる冷媒の組成の検知に用いられるものであり、蒸気圧縮式冷凍サイクルには直接的には不要な配管である。配管151は、液冷媒管52dに比べて細径の配管であり、ごく少量の冷媒が流れる。 The detection unit 150 includes a pipe 151 that connects between the heat source heat exchanger 20 and the expansion mechanism 30 and between the utilization heat exchanger 40 and the expansion mechanism 30 of the main refrigerant circuit 50 . The pipe 151 is used for detecting the composition of the refrigerant flowing through the main refrigerant circuit 50, and is not directly necessary for the vapor compression refrigeration cycle. The pipe 151 is a pipe having a smaller diameter than the liquid refrigerant pipe 52d, and a very small amount of refrigerant flows therethrough.
 検知部150は、配管151に配置される、冷媒容器152と、弁154と、を含む。弁154は、第1弁154aと、第2弁154bと、を含む。第1弁154aは、配管151の、熱源熱交換器20と膨張機構30との間における液冷媒管52dとの接続部と、冷媒容器152と、の間に配置される。第2弁154bは、配管151の、利用熱交換器40と膨張機構30との間における液冷媒管52dとの接続部と、冷媒容器152と、の間に配置される。第1弁154a及び第2弁154bは、例えば開度可変の電子膨張弁である。ただし、これに限定されるものではなく、第1弁154a及び第2弁154bは、例えばキャピラリチューブであってもよい。検知部150は、冷媒容器152内の冷媒の圧力を計測する圧力センサ156と、冷媒容器152内の冷媒の温度を計測する温度センサ158と、を有する。 The detection unit 150 includes a refrigerant container 152 and a valve 154 arranged in the pipe 151 . Valve 154 includes a first valve 154a and a second valve 154b. The first valve 154 a is arranged between the connecting portion of the pipe 151 to the liquid refrigerant pipe 52 d between the heat source heat exchanger 20 and the expansion mechanism 30 and the refrigerant container 152 . The second valve 154 b is arranged between the connecting portion of the pipe 151 to the liquid refrigerant pipe 52 d between the utilization heat exchanger 40 and the expansion mechanism 30 and the refrigerant container 152 . The first valve 154a and the second valve 154b are, for example, electronic expansion valves with variable opening. However, it is not limited to this, and the first valve 154a and the second valve 154b may be capillary tubes, for example. The detection unit 150 has a pressure sensor 156 that measures the pressure of the refrigerant inside the refrigerant container 152 and a temperature sensor 158 that measures the temperature of the refrigerant inside the refrigerant container 152 .
 コントローラ110は、冷房運転時や暖房運転時に、必要に応じ、第1弁154a及び第2弁154bを開き、冷媒容器152内に二相の(液相及び気相の)冷媒が存在するように、第1弁154a及び第2弁154bを所定の開度に制御する。例えば、コントローラ110は、吸着制御及び脱着制御を行う際に、第1弁154a及び第2弁154bを開き、冷媒容器152に二相の冷媒が貯留されるように、第1弁154a及び第2弁154bを所定の開度に制御する。 During cooling operation or heating operation, the controller 110 opens the first valve 154a and the second valve 154b as necessary so that two-phase (liquid and gaseous) refrigerant exists in the refrigerant container 152. , the first valve 154a and the second valve 154b are controlled to a predetermined degree of opening. For example, when performing adsorption control and desorption control, the controller 110 opens the first valve 154 a and the second valve 154 b so that two-phase refrigerant is stored in the refrigerant container 152 . The valve 154b is controlled to a predetermined degree of opening.
 非共沸混合冷媒では、非共沸混合冷媒に用いられている冷媒の種類と、二相冷媒の圧力及び温度が分かれば、その組成比が算出可能である。そのため、検知部150は、圧力センサ156の計測する二相冷媒の圧力と、温度センサ158の計測する二相冷媒の温度と、に基づいて、冷媒容器152内の冷媒の組成比、言い換えれば主冷媒回路50の液冷媒管52dを流れる冷媒中の第1冷媒と第2冷媒との組成比を検知できる。 For a non-azeotropic refrigerant mixture, the composition ratio can be calculated if the type of refrigerant used in the non-azeotropic refrigerant mixture and the pressure and temperature of the two-phase refrigerant are known. Therefore, the detection unit 150 determines the composition ratio of the refrigerant in the refrigerant container 152, in other words, the main The composition ratio between the first refrigerant and the second refrigerant in the refrigerant flowing through the liquid refrigerant pipe 52d of the refrigerant circuit 50 can be detected.
 なお、冷媒の組成比は、コントローラ110が、検知部150の一部として機能して、圧力センサ156及び温度センサ158の計測結果に基づいて、主冷媒回路50を循環する冷媒の組成比を検知(算出)してもよい。あるいは、検知部150は、コントローラ110とは独立した装置で、圧力センサ156及び温度センサ158の計測結果に基づいて主冷媒回路50を循環する冷媒の組成比を検知してもよい。 The composition ratio of the refrigerant is detected by the controller 110 functioning as part of the detection unit 150 and detecting the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 based on the measurement results of the pressure sensor 156 and the temperature sensor 158. (Calculation) may be performed. Alternatively, the detection unit 150 may be a device independent of the controller 110 and detect the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 based on the measurement results of the pressure sensor 156 and the temperature sensor 158 .
 本実施形態では、コントローラ110が、圧力センサ156及び温度センサ158の計測結果に基づいて、主冷媒回路50を循環する冷媒の組成比を検知するものとして説明する。具体的には、コントローラ110のメモリ(記憶部)には、使用する非共沸混合冷媒について、二相冷媒の圧力及び温度と、非共沸混合冷媒の組成比の関係を表すデータ(例えば、テーブルや関係式)が記憶されている。コントローラ110は、メモリに記憶されている、二相冷媒の圧力及び温度と、非共沸混合冷媒の組成比との関係を表すデータと、圧力センサ156及び温度センサ158の計測結果と、に基づいて、主冷媒回路50を循環する冷媒の組成比を検知する。 In this embodiment, the controller 110 detects the composition ratio of the refrigerant circulating through the main refrigerant circuit 50 based on the measurement results of the pressure sensor 156 and the temperature sensor 158 . Specifically, data representing the relationship between the pressure and temperature of the two-phase refrigerant and the composition ratio of the non-azeotropic refrigerant mixture (for example, tables and relational expressions) are stored. The controller 110 is based on the data stored in the memory representing the relationship between the pressure and temperature of the two-phase refrigerant and the composition ratio of the non-azeotropic refrigerant mixture, and the measurement results of the pressure sensor 156 and the temperature sensor 158. to detect the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
 なお、主冷媒回路50を循環する冷媒の組成比の検知方法は、ここで例示した方法に限定される必要はなく、検知部150は、他の方法で、又、上記方法とは異なる機器を用いて、主冷媒回路50を循環する冷媒の組成比を検知してもよい。 Note that the method of detecting the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 is not necessarily limited to the method exemplified here, and the detection unit 150 can be detected by another method or by using equipment different from the above method. may be used to detect the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
 (2-4)コントローラ
 コントローラ110は、冷凍サイクル装置100の各種機器の動作を制御するための制御部である。
(2-4) Controller The controller 110 is a control unit for controlling operations of various devices of the refrigeration cycle apparatus 100 .
 コントローラ110は、例えば、マイクロコントローラユニット(MCU)や各種の電気回路や電子回路を主に含む(図示省略)。MCUは、CPU、メモリ、I/Oインタフェース等を含む。MCUのメモリには、MCUのCPUが実行するための各種プログラムが記憶されている。また、コントローラ110には、FPGAやASICが利用されてもよい。なお、コントローラ110の各種機能は、ソフトウェアで実現される必要はなく、ハードウェアで実現されても、ハードウェアとソフトウェアとが協働することで実現されてもよい。 The controller 110 mainly includes, for example, a microcontroller unit (MCU) and various electric circuits and electronic circuits (not shown). The MCU includes a CPU, memory, I/O interfaces, and the like. Various programs for the CPU of the MCU to execute are stored in the memory of the MCU. Also, an FPGA or an ASIC may be used for the controller 110 . Note that the various functions of the controller 110 do not need to be implemented by software, and may be implemented by hardware or through cooperation between hardware and software.
 コントローラ110は、熱源ユニット2及び利用ユニット4とは独立した装置であってもよい。また、コントローラ110は、熱源ユニット2及び利用ユニット4と独立した装置ではなく、例えば、熱源ユニット2に搭載されている図示しない制御部と、利用ユニット4に搭載されている図示しない制御部と、が協働することで、コントローラ110として機能してもよい。 The controller 110 may be a device independent of the heat source unit 2 and the utilization unit 4. Further, the controller 110 is not a device independent of the heat source unit 2 and the usage unit 4. For example, a controller (not shown) mounted on the heat source unit 2, a controller (not shown) mounted on the utilization unit 4, may function as the controller 110 by working together.
 コントローラ110は、主冷媒回路50の、圧縮機10、流路切換機構15、及び膨張機構30と電気的に接続され、圧縮機10、流路切換機構15、及び膨張機構30の動作を制御する(図1参照)。また、コントローラ110は、熱源ユニット2の熱源熱交換器20に空気を供給する図示しないファンや、利用ユニット4の利用熱交換器40に空気を供給する図示しないファンの動作を制御できるように、これらのファンと電気的に接続されている。また、コントローラ110は、変更部70の熱源側弁82a及び利用側弁82bと電気的に接続され、熱源側弁82a及び利用側弁82bの動作を制御する(図1参照)。また、コントローラ110は、検知部150の第1弁154a及び第2弁154bの動作を制御できるように、第1弁154a及び第2弁154bと電気的に接続されている。また、コントローラ110は、圧力センサ156及び温度センサ158と電気的に接続され、圧力センサ156及び温度センサ158の計測値を取得可能である。また、コントローラ110は、圧力センサ156及び温度センサ158以外の冷凍サイクル装置100の様々な場所に配置される図示しないセンサとも電気的に接続され、これらのセンサの計測値を取得可能である。 The controller 110 is electrically connected to the compressor 10, the flow path switching mechanism 15, and the expansion mechanism 30 of the main refrigerant circuit 50, and controls the operations of the compressor 10, the flow path switching mechanism 15, and the expansion mechanism 30. (See Figure 1). Further, the controller 110 controls the operation of a fan (not shown) that supplies air to the heat source heat exchanger 20 of the heat source unit 2 and a fan (not shown) that supplies air to the utilization heat exchanger 40 of the utilization unit 4. These fans are electrically connected. The controller 110 is also electrically connected to the heat source side valve 82a and the usage side valve 82b of the changing unit 70, and controls the operation of the heat source side valve 82a and the usage side valve 82b (see FIG. 1). Also, the controller 110 is electrically connected to the first valve 154a and the second valve 154b so as to control the operation of the first valve 154a and the second valve 154b of the detector 150 . Also, the controller 110 is electrically connected to the pressure sensor 156 and the temperature sensor 158 and can acquire the measured values of the pressure sensor 156 and the temperature sensor 158 . The controller 110 is also electrically connected to sensors (not shown) arranged at various locations in the refrigeration cycle apparatus 100 other than the pressure sensor 156 and the temperature sensor 158, and can acquire measurement values of these sensors.
 コントローラ110は、例えば、CPUが、メモリに記憶されているプログラムを実行することで、各種制御を実行する。例えば、コントローラ110は、冷凍サイクル装置100が冷房運転や暖房運転を行う際に、冷凍サイクル装置100の各種機器の動作を制御する。また、コントローラ110は、冷凍サイクル装置100に対する要求能力に応じ、圧縮機10の回転数を増減したり、変更部70の動作を制御して主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比を変更したりする。 The controller 110 executes various controls, for example, by the CPU executing a program stored in the memory. For example, the controller 110 controls operations of various devices of the refrigeration cycle device 100 when the refrigeration cycle device 100 performs cooling operation or heating operation. In addition, the controller 110 increases or decreases the rotation speed of the compressor 10 according to the required capacity of the refrigeration cycle device 100, or controls the operation of the change unit 70 to The composition ratio with the second refrigerant is changed.
 以下に、変更部70による主冷媒回路50を流れる冷媒中の第1冷媒と第2冷媒との組成比の制御については触れずに、冷房運転時と暖房運転時における冷凍サイクル装置100の各種機器の基本的な動作について説明する。 Hereinafter, without mentioning the control of the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 by the changing unit 70, various devices of the refrigeration cycle device 100 during the cooling operation and the heating operation will be described. The basic operation of is explained.
 その後に、冷凍サイクル装置100に対する要求能力に応じた、圧縮機10の回転数の制御や、変更部70を用いた主冷媒回路50を流れる冷媒中の第1冷媒と第2冷媒との組成比の制御(以後、説明が煩雑になるのを避けるため組成比制御と呼ぶ場合がある)について説明する。 After that, the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 using the control of the rotation speed of the compressor 10 according to the required capacity of the refrigeration cycle device 100 and the change unit 70 control (hereinafter sometimes referred to as composition ratio control to avoid complication of the description) will be described.
 (2-5-1)冷房運転
 コントローラ110は、図示しないリモコンから冷房運転の実行が指示された時や、空調対象空間の温度から見て冷房運転の実行が必要と判断される時に、冷房運転を実行する。
(2-5-1) Cooling operation The controller 110 performs the cooling operation when an instruction to perform the cooling operation is given from a remote controller (not shown) or when it is determined that the cooling operation needs to be performed in view of the temperature of the air-conditioned space. to run.
 冷房運転時には、コントローラ110は、熱源熱交換器20が冷媒の放熱器として機能し、利用熱交換器40が冷媒の蒸発器として機能するように、流路切換機構15の動作を制御する。また、コントローラ110は、圧縮機10や、図示しない熱源ユニット2及び利用ユニット4に搭載されているファンの運転を開始する。また、コントローラ110は、冷凍サイクル装置100の各種センサの計測値や、ユーザが設定する空調対象空間の目標温度等に基づき、圧縮機10のモータ10aの回転数や、熱源ユニット2及び利用ユニット4に搭載されているファンの回転数や、膨張機構30としての電子膨張弁の開度を調節する。 During cooling operation, the controller 110 controls the operation of the flow path switching mechanism 15 so that the heat source heat exchanger 20 functions as a refrigerant radiator and the utilization heat exchanger 40 functions as a refrigerant evaporator. The controller 110 also starts the operation of the compressor 10 and the fans mounted in the heat source unit 2 and the utilization unit 4 (not shown). In addition, the controller 110 controls the rotation speed of the motor 10a of the compressor 10, the heat source unit 2 and the utilization unit 4 based on the measurement values of various sensors of the refrigeration cycle apparatus 100, the target temperature of the air-conditioned space set by the user, and the like. The number of rotations of the fan mounted on the , and the opening degree of the electronic expansion valve as the expansion mechanism 30 are adjusted.
 (2-5-2)暖房運転
 コントローラ110は、図示しないリモコンから暖房運転の実行が指示された時や、空調対象空間の温度から見て暖房運転の実行が必要と判断される時に、暖房運転を実行する。
(2-5-2) Heating operation The controller 110 performs the heating operation when an instruction to perform the heating operation is given from a remote controller (not shown) or when it is determined that the heating operation needs to be performed in view of the temperature of the air-conditioned space. to run.
 暖房運転時には、コントローラ110は、熱源熱交換器20が冷媒の蒸発器として機能し、利用熱交換器40が冷媒の放熱器として機能するように、流路切換機構15の動作を制御する。また、コントローラ110は、圧縮機10や、図示しない熱源ユニット2及び利用ユニット4に搭載されているファンの運転を開始する。また、コントローラ110は、冷凍サイクル装置100の各種センサの計測値や、ユーザが設定する空調対象空間の目標温度等に基づき、圧縮機10のモータ10aの回転数や、熱源ユニット2及び利用ユニット4に搭載されているファンの回転数や、膨張機構30としての電子膨張弁の開度を調節する。 During heating operation, the controller 110 controls the operation of the flow path switching mechanism 15 so that the heat source heat exchanger 20 functions as a refrigerant evaporator and the utilization heat exchanger 40 functions as a refrigerant radiator. The controller 110 also starts the operation of the compressor 10 and the fans mounted in the heat source unit 2 and the utilization unit 4 (not shown). In addition, the controller 110 controls the rotation speed of the motor 10a of the compressor 10, the heat source unit 2 and the utilization unit 4 based on the measurement values of various sensors of the refrigeration cycle apparatus 100, the target temperature of the air-conditioned space set by the user, and the like. The number of rotations of the fan mounted on the , and the opening degree of the electronic expansion valve as the expansion mechanism 30 are adjusted.
 なお、コントローラ110は、暖房運転時に熱源熱交換器20への着霜が検知されると、暖房運転を中断し、流路切換機構15の動作を制御し、主冷媒回路50における冷媒の流れ方向を冷房運転時と同方向に切り換えて、デフロスト運転(逆サイクルデフロスト運転)を行う。デフロスト運転は、熱源熱交換器20に付着した霜を除去するための運転である。冷凍サイクル装置のデフロスト運転については、一般に知られているため、デフロスト運転の詳細については説明を省略する。 Note that when frost formation on the heat source heat exchanger 20 is detected during heating operation, the controller 110 interrupts the heating operation, controls the operation of the flow path switching mechanism 15, and controls the flow direction of the refrigerant in the main refrigerant circuit 50. is switched in the same direction as during cooling operation to perform defrost operation (reverse cycle defrost operation). The defrost operation is an operation for removing frost adhering to the heat source heat exchanger 20 . Since the defrost operation of the refrigeration cycle device is generally known, the detailed description of the defrost operation will be omitted.
 (2-5-3)要求能力に応じた圧縮機及び変更部の制御
 以下に、コントローラ110が実行する、冷凍サイクル装置100に対する要求能力に応じた圧縮機10及び変更部70の制御について説明する。
(2-5-3) Control of Compressor and Changer Dependent on Required Capability Control of compressor 10 and changer 70 according to the required capability of refrigeration cycle device 100, executed by controller 110, will be described below. .
 まず、冷凍サイクル装置100に対する要求能力に応じた圧縮機10及び変更部70の制御について説明する前に、コントローラ110が、主冷媒回路50に第2冷媒を略単独で流す第1モードと、主冷媒回路50に第1冷媒と第2冷媒との混合冷媒を流す第2モードと、を切り換えて実行する理由について説明する。 First, before describing the control of the compressor 10 and the changing unit 70 according to the required capacity of the refrigeration cycle device 100, the controller 110 operates in a first mode in which the second refrigerant flows substantially independently in the main refrigerant circuit 50, and in a main mode. The reason for switching between the second mode in which the mixed refrigerant of the first refrigerant and the second refrigerant flows through the refrigerant circuit 50 will be described.
 R1234ZeやR1234yfのような第2冷媒(高沸点冷媒)を用いる場合、冷凍サイクル装置100の比較的効率の良い運転が可能である。しかし、高沸点冷媒を利用すると、低外気温時に暖房運転を行う際に能力不足が生じる可能性がある。これに対し、高沸点冷媒に、CO2のような第1冷媒(低沸点冷媒)を混合した非共沸混合冷媒を用いることで、能力不足を補うことができる。ただし、第2冷媒に第1冷媒を混合した非共沸混合冷媒を用いる場合には、第2冷媒を単独で使用する場合に比べ効率が低下するという課題がある。 When using a second refrigerant (refrigerant with a high boiling point) such as R1234Ze or R1234yf, the refrigeration cycle device 100 can be operated with relatively high efficiency. However, if a high boiling point refrigerant is used, there is a possibility of insufficient performance during heating operation at low outside temperatures. On the other hand, by using a non-azeotropic mixed refrigerant in which a high boiling point refrigerant is mixed with a first refrigerant (low boiling point refrigerant) such as CO2, the lack of capacity can be compensated for. However, in the case of using a non-azeotropic mixed refrigerant in which the first refrigerant is mixed with the second refrigerant, there is a problem that the efficiency is lower than in the case of using the second refrigerant alone.
 そこで、コントローラ110は、冷凍サイクル装置100に対する要求能力に応じて、主冷媒回路50に第2冷媒を略単独で流す第1モードと、主冷媒回路50に第1冷媒と第2冷媒との混合冷媒を流す第2モードと、を切り換えて実行する。 Therefore, the controller 110 operates in accordance with the required capacity of the refrigeration cycle apparatus 100 to operate in a first mode in which the second refrigerant is allowed to flow substantially solely through the main refrigerant circuit 50, and in which a mixture of the first refrigerant and the second refrigerant flows through the main refrigerant circuit 50. A second mode in which the coolant flows is switched and executed.
 具体的には、コントローラ110は、要求能力が比較的低く、第2冷媒を略単独で使用しても能力不足が発生しにくい冷房運転時には、第1モードを実行する。ここでは、コントローラ110は、冷房運転時には、第2モードを実行しない。要するに、コントローラ110は、利用熱交換器40を蒸発器として利用する際には、第1モードを実行する。そのため、詳細な説明は省略するが、第2モードの実行後には(例えば、暖房運転中に第2モードを実行した後に、第1モードを実行するための組成比制御が行われていない場合には)、コントローラ110は、冷房運転の開始時に、主冷媒回路50に第2冷媒を略単独で流すための組成比制御を実行する。 Specifically, the controller 110 executes the first mode during cooling operation in which the required capacity is relatively low and insufficient capacity is unlikely to occur even if the second refrigerant is used substantially alone. Here, controller 110 does not execute the second mode during cooling operation. In short, the controller 110 executes the first mode when using the utilization heat exchanger 40 as an evaporator. Therefore, although detailed description is omitted, after execution of the second mode (for example, after execution of the second mode during heating operation, when composition ratio control for executing the first mode is not performed) 2), the controller 110 executes composition ratio control for allowing the second refrigerant to flow substantially solely through the main refrigerant circuit 50 at the start of the cooling operation.
 一方、コントローラ110は、要求能力が比較的大きくなりやすく、第1モードでは能力不足が発生する可能性のある暖房運転時には、第2モードを実行する。要するに、コントローラ110は、利用熱交換器40を放熱器として利用する際には、第2モードを実行する。 On the other hand, the controller 110 executes the second mode during heating operation when the required capacity tends to be relatively large and the first mode is likely to result in insufficient capacity. In short, the controller 110 executes the second mode when using the utilization heat exchanger 40 as a radiator.
 制御方法として、暖房運転時に、常に第2モードを実行することも可能である。 As a control method, it is also possible to always execute the second mode during heating operation.
 しかし、暖房運転時であっても、第1モードを実行した方が効率の良い場合もある。図2を参照しながら説明する。図2は、圧縮機10のモータ10aの回転数を変更して能力を変更する時のCOPの変化と、冷媒中の第1冷媒の比率を変更して能力を変更する時のCOPの変化と、を模式的に表した図である。図2中の実線は、圧縮機10のモータ10aの回転数を増加させて冷凍サイクル装置100の能力を増加させる時のCOPの変化を示す。図2中の破線は、主冷媒回路50を流れる冷媒中の第1冷媒の比率を増加させて冷凍サイクル装置100の能力を増加させる時のCOPの変化を示す。図2から分かるように、ある所定の能力値までは(図中の二点鎖線参照)、圧縮機10のモータ10aの回転数を増加させてその能力を得る方が、組成比制御(変更部70を用いた主冷媒回路50を流れる冷媒中の第1冷媒と第2冷媒との組成比の制御)を行って能力を確保するよりもCOPが高いことが分かる。 However, even during heating operation, it may be more efficient to execute the first mode. Description will be made with reference to FIG. FIG. 2 shows the change in COP when changing the capacity by changing the rotation speed of the motor 10a of the compressor 10, and the change in COP when changing the capacity by changing the ratio of the first refrigerant in the refrigerant. , is a diagram schematically showing. A solid line in FIG. 2 indicates a change in COP when the rotation speed of the motor 10a of the compressor 10 is increased to increase the capacity of the refrigeration cycle apparatus 100. As shown in FIG. A dashed line in FIG. 2 indicates a change in COP when the ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 is increased to increase the capacity of the refrigeration cycle device 100 . As can be seen from FIG. 2, up to a certain capacity value (see the two-dot chain line in the figure), it is better to increase the rotational speed of the motor 10a of the compressor 10 to obtain the capacity. 70 is used to control the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50) to secure the capacity.
 そこで、コントローラ110は、暖房運転時に(言い換えれば、利用熱交換器40を放熱器として利用する際に)、常に第2モードを実行するのではなく、冷凍サイクル装置100に対する要求能力に応じて、第1モード、又は、第2モードを実行することが好ましい。具体的には、コントローラ110は、以下に図3及び図4を参照しながら説明するように、圧縮機10のモータ10aの回転数の制御と、組成比制御と、を組み合わせて実行することが好ましい。図3は、冷凍サイクル装置100の能力不足時に行われる制御のフローチャートの例である。図4は、冷凍サイクル装置100の能力過剰時に行われる制御のフローチャートの例である。図3及び図4の処理は並列的に実行される。 Therefore, controller 110 does not always execute the second mode during heating operation (in other words, when utilizing heat exchanger 40 as a radiator), but according to the required capacity of refrigeration cycle device 100, It is preferable to execute the first mode or the second mode. Specifically, as described below with reference to FIGS. 3 and 4, the controller 110 can combine control of the rotational speed of the motor 10a of the compressor 10 and composition ratio control. preferable. FIG. 3 is an example of a flow chart of control performed when the refrigeration cycle apparatus 100 has insufficient capacity. FIG. 4 is an example of a flow chart of control performed when the refrigeration cycle apparatus 100 is overcapacity. The processes of FIGS. 3 and 4 are executed in parallel.
 説明の前提として、図2中の、二点鎖線で示す線と、圧縮機10のモータ10aの回転数を変更して能力を変更する時のCOPの変化を示す実線と、の交点に当たる位置のモータ10aの回転数(上限回転数)が予め得られているものとする。上限回転数は、実機を用いた実験で得られてもよいし、シミュレーションや、理論的な計算により得られてもよい。コントローラ110のメモリには、予め得られた上限回転数の値が記憶されている。 As a premise for the explanation, the position corresponding to the intersection of the line shown by the two-dot chain line in FIG. It is assumed that the rotation speed (upper limit rotation speed) of the motor 10a is obtained in advance. The upper limit rotation speed may be obtained by experiments using an actual machine, or may be obtained by simulation or theoretical calculation. The memory of the controller 110 stores the value of the upper limit rotation speed obtained in advance.
 コントローラ110は、暖房運転時に、要求能力が増加し、現状の運転では要求能力を達成できない場合(能力不足時)に、図3のフローチャートに従い、圧縮機10のモータ10aの回転数の制御又は、組成比制御を行う。 The controller 110 controls the rotation speed of the motor 10a of the compressor 10 according to the flowchart of FIG. Control the composition ratio.
 図3のフローチャートのステップS1では、現状の運転では要求能力を達成できないのかが(能力不足か否か)が判断される。ステップS1の判断は、能力不足と判断されるまで繰り替えし実行される。  In step S1 of the flow chart in Fig. 3, it is determined whether the required capacity cannot be achieved in the current operation (whether the capacity is insufficient). The determination of step S1 is repeatedly executed until it is determined that the ability is insufficient.
 能力不足と判断された場合、処理はステップS2に進む。ステップS2では、現在の圧縮機10のモータ10aの回転数が上限回転数であるか否かが判断される。圧縮機10のモータ10aの回転数が上限回転数に達していないと判断された場合、処理はステップS3に進む。 If it is determined that the ability is insufficient, the process proceeds to step S2. In step S2, it is determined whether or not the current rotation speed of the motor 10a of the compressor 10 is the upper limit rotation speed. If it is determined that the rotation speed of the motor 10a of the compressor 10 has not reached the upper limit rotation speed, the process proceeds to step S3.
 ステップS3では、コントローラ110は、圧縮機10のモータ10aの回転数を増加させる。ステップS3では、コントローラ110は、予め定められた値だけ回転数を増加されてもよいし、要求能力に対して不足する能力に応じて回転数の増分を変更してもよい。ステップS3の実施後、処理はステップS1に戻る。 At step S3, the controller 110 increases the rotation speed of the motor 10a of the compressor 10. In step S3, the controller 110 may increase the rotational speed by a predetermined value, or may change the increment of the rotational speed according to the performance that is insufficient for the required performance. After performing step S3, the process returns to step S1.
 一方、ステップS2で、圧縮機10のモータ10aの回転数が上限回転数に達していると判断された場合には、処理はステップS4に進む。ステップS4では、コントローラ110は、組成比制御を行い、主冷媒回路50を流れる冷媒中の第1冷媒の比率を増加させる。要するに、コントローラ110は、第1モードを実行中に、圧縮機10の回転数を所定の回転数(上限回転数)に上げても要求能力が得られない場合に、第2モードを実行し、主冷媒回路50に、第1冷媒と第2冷媒との混合冷媒が流れるように変更部70を制御する。ステップS4で、コントローラ110は、予め定められた値だけ第1冷媒の比率を増加させてもよいし(例えば2wt%増やす等)、要求能力に対して不足する能力に応じて第1冷媒の比率をどれだけ増加させるかが決定してもよい。 On the other hand, if it is determined in step S2 that the rotation speed of the motor 10a of the compressor 10 has reached the upper limit rotation speed, the process proceeds to step S4. In step S<b>4 , the controller 110 performs composition ratio control to increase the ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 . In short, the controller 110 executes the second mode when the required capacity cannot be obtained even if the rotation speed of the compressor 10 is increased to a predetermined rotation speed (upper limit rotation speed) while executing the first mode, The changing unit 70 is controlled so that the mixed refrigerant of the first refrigerant and the second refrigerant flows through the main refrigerant circuit 50 . In step S4, the controller 110 may increase the ratio of the first refrigerant by a predetermined value (for example, increase by 2 wt%), or the ratio of the first refrigerant may may be determined by how much to increase
 ステップS4では、具体的には、コントローラ110は、検知部150が検知する主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比が目標組成比になるように、変更部70の熱源側弁82a及び利用側弁82bの開度を制御する。そして、検知部150が検知する主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比が目標組成比になると、コントローラ110は、熱源側弁82a及び利用側弁82bを閉じる。ステップS4の実施後、処理はステップS1に戻る。 Specifically, in step S4, the controller 110 changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 detected by the detection unit 150 to the target composition ratio. The opening degrees of the heat source side valve 82a and the usage side valve 82b of the unit 70 are controlled. Then, when the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 detected by the detection unit 150 reaches the target composition ratio, the controller 110 opens the heat source side valve 82a and the utilization side valve 82b. close up. After performing step S4, the process returns to step S1.
 なお、ステップS4の実施後に、再びステップS4の処理が行われる場合には、コントローラ110は、第2モードにおいて、変更部70の動作を制御して、主冷媒回路50を流れる冷媒中の第1冷媒と第2冷媒との組成比を、第1組成比と、第1組成比より第1冷媒の比率が高い第2組成比と、の間で変更することになる。このように、第1冷媒の比率を段階的に変化させることで、第1冷媒を過剰に含む冷媒を用いることで生じる効率の低下は抑制しつつ、必要な能力を確保することができる。 Note that when the process of step S4 is performed again after step S4 is performed, the controller 110 controls the operation of the changing unit 70 in the second mode so that the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 The composition ratio of the refrigerant and the second refrigerant is changed between the first composition ratio and the second composition ratio in which the ratio of the first refrigerant is higher than the first composition ratio. In this way, by changing the ratio of the first refrigerant stepwise, it is possible to secure the necessary capacity while suppressing the decrease in efficiency caused by using the refrigerant containing an excessive amount of the first refrigerant.
 コントローラ110は、暖房運転時に、図3のフローチャートで説明する処理と並列的に、図4のフローチャートで説明する処理を実行する。コントローラ110は、暖房運転時に、要求能力が低下し、現状の運転では要求能力が過剰である場合(能力過剰時)に、図4のフローチャートに従い、圧縮機10のモータ10aの回転数の制御又は、組成比制御を行う。 The controller 110 executes the process described in the flowchart of FIG. 4 in parallel with the process described in the flowchart of FIG. 3 during the heating operation. The controller 110 controls the rotational speed of the motor 10a of the compressor 10 according to the flow chart of FIG. , to control the composition ratio.
 図4のフローチャートのステップS11では、現状の運転では要求能力に対して能力が過剰か否かが判断される。ステップS11の判断は、能力過剰と判断されるまで繰り替え時実行される。 In step S11 of the flow chart of FIG. 4, it is determined whether or not the capacity is excessive with respect to the required capacity in the current operation. The determination of step S11 is repeatedly executed until it is determined that the capacity is excessive.
 能力過剰と判断された場合には、ステップS12に進む。ステップS12では、現在の主冷媒回路50を流れる冷媒中の第1冷媒の比率(言い換えれば第1冷媒の濃度)が下限値であるか否かが判断される。第1冷媒の比率の下限値は、例えば、コントローラ110が、主冷媒回路50を流れる冷媒が、略単独の第2冷媒であると判断する濃度であり、予め定められている。言い換えれば、ステップS12では、コントローラ110は、実行しているモードが第1モードであるか否かを判断する。 If it is judged to be overcapacity, proceed to step S12. In step S12, it is determined whether or not the current ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 (in other words, the concentration of the first refrigerant) is the lower limit value. The lower limit value of the ratio of the first refrigerant is, for example, a predetermined concentration at which the controller 110 determines that the refrigerant flowing through the main refrigerant circuit 50 is substantially the single second refrigerant. In other words, at step S12, the controller 110 determines whether or not the mode being executed is the first mode.
 ステップS12で、現在の主冷媒回路50を流れる冷媒中の第1冷媒の比率が下限値であると判定されると(第1モードを実行中と判断されると)、処理はステップS13に進む。一方、現在の主冷媒回路50を流れる冷媒中の第1冷媒の比率が下限値ではないと判定されると、処理はステップS14に進む。 If it is determined in step S12 that the ratio of the first refrigerant in the current refrigerant flowing through the main refrigerant circuit 50 is the lower limit value (if it is determined that the first mode is being executed), the process proceeds to step S13. . On the other hand, if it is determined that the current ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 is not the lower limit value, the process proceeds to step S14.
 ステップS13では、コントローラ110は、圧縮機10のモータ10aの回転数を減少させる。ステップS3では、コントローラ110は、予め定められた値だけ回転数が減少されてもよいし、要求能力に対して過剰な能力に応じてどれだけ回転数を減少するかを変更してもよい。ステップS13の実施後、処理はステップS11に戻る。 At step S13, the controller 110 reduces the rotation speed of the motor 10a of the compressor 10. In step S3, the controller 110 may reduce the rotation speed by a predetermined value, or may change how much the rotation speed is reduced according to the excess capacity with respect to the required capacity. After performing step S13, the process returns to step S11.
 ステップS14では、コントローラ110は、組成比制御を行い、主冷媒回路50を流れる冷媒中の第1冷媒の比率を低下させる。ステップS14では、コントローラ110は、予め定められた値だけ第1冷媒の比率を低下させてもよいし、要求能力に対して過剰な能力に応じて第1冷媒の比率をどれだけ低下させるかを変更してもよい。 In step S<b>14 , the controller 110 performs composition ratio control to reduce the ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 . In step S14, the controller 110 may reduce the ratio of the first refrigerant by a predetermined value, or determine how much the ratio of the first refrigerant should be reduced according to the excess capacity with respect to the required capacity. You can change it.
 ステップS14では、具体的には、コントローラ110は、検知部150が検知する主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比が目標組成比になるように、変更部70の熱源側弁82a及び利用側弁82bの開度を制御する。そして、検知部150が検知する主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比が目標組成比になると、コントローラ110は、熱源側弁82a及び利用側弁82bを閉じる。ステップS14の実施後、処理はステップS11に戻る。 Specifically, in step S14, the controller 110 changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 detected by the detection unit 150 to the target composition ratio. The opening degrees of the heat source side valve 82a and the usage side valve 82b of the unit 70 are controlled. Then, when the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 detected by the detection unit 150 reaches the target composition ratio, the controller 110 opens the heat source side valve 82a and the utilization side valve 82b. close up. After performing step S14, the process returns to step S11.
 (3)特徴
 (3-1)
 冷凍サイクル装置100は、主冷媒回路50と、変更部70と、制御部の一例としてのコントローラ110と、を備える。主冷媒回路50は、第1冷媒と第2冷媒とを含む非共沸混合冷媒を用いる。変更部70は、主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比を変更する。コントローラ110は、変更部70の動作を制御する。コントローラ110は、第1モードと、第2モードと、を実行する。第1モードは、変更部70の動作を制御して主冷媒回路50に第2冷媒を略単独で流すモードである。第2モードは、変更部70の動作を制御して主冷媒回路50に第1冷媒と第2冷媒との混合冷媒を流すモードである。
(3) Features (3-1)
The refrigeration cycle device 100 includes a main refrigerant circuit 50, a changing section 70, and a controller 110 as an example of a control section. The main refrigerant circuit 50 uses a non-azeotropic mixed refrigerant containing a first refrigerant and a second refrigerant. The changing unit 70 changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 . Controller 110 controls the operation of changing unit 70 . Controller 110 executes a first mode and a second mode. The first mode is a mode in which the operation of the changing unit 70 is controlled to allow the second refrigerant to flow through the main refrigerant circuit 50 substantially independently. The second mode is a mode in which the operation of the changing unit 70 is controlled to allow the mixed refrigerant of the first refrigerant and the second refrigerant to flow through the main refrigerant circuit 50 .
 冷凍サイクル装置100は、第2冷媒を略単独で使用することも、第1冷媒と第2冷媒とを含む非共沸混合冷媒を使用することも可能であるため、運転条件に応じて、適切な組成の冷媒を使用できる。 The refrigeration cycle device 100 can use the second refrigerant substantially alone, or can use a non-azeotropic mixed refrigerant containing the first refrigerant and the second refrigerant. Refrigerants with different compositions can be used.
 なお、好ましくは、冷凍サイクル装置100では、第1モードでは、主冷媒回路50に第2冷媒の濃度が92wt%以上の冷媒が流される。 It should be noted that preferably, in the refrigeration cycle device 100, in the first mode, a refrigerant having a second refrigerant concentration of 92 wt % or more is allowed to flow through the main refrigerant circuit 50.
 また、さらに好ましくは、冷凍サイクル装置100では、第1モードでは、主冷媒回路50に第2冷媒の濃度が98wt%以上の冷媒が流される。 Further, more preferably, in the refrigeration cycle device 100, in the first mode, the main refrigerant circuit 50 is fed with a second refrigerant having a concentration of 98 wt% or more.
 (3-2)
 冷凍サイクル装置100は、検知部150を備える。検知部150は、主冷媒回路50を流れる冷媒中の、第1冷媒と第2冷媒との組成比を検知する。コントローラ110は、検知部150が検知する第1冷媒と第2冷媒との組成比が目標組成比になるように、変更部70の動作を制御する。
(3-2)
The refrigeration cycle device 100 includes a detection section 150 . The detection unit 150 detects the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 . The controller 110 controls the operation of the changing unit 70 so that the composition ratio of the first refrigerant and the second refrigerant detected by the detection unit 150 becomes the target composition ratio.
 冷凍サイクル装置100では、冷媒の組成比を検知しながら、第1冷媒と第2冷媒との組成比を変更するので、運転条件に応じ、適切な組成の冷媒を使用できる。 In the refrigeration cycle device 100, the composition ratio between the first refrigerant and the second refrigerant is changed while detecting the composition ratio of the refrigerant, so refrigerant with an appropriate composition can be used according to the operating conditions.
 (3-3)
 冷凍サイクル装置100では、第2冷媒の沸点は、第1冷媒の沸点より高い。
(3-3)
In the refrigeration cycle device 100, the boiling point of the second refrigerant is higher than the boiling point of the first refrigerant.
 例えば、具体的には、第1冷媒は、CO2である。第2冷媒は、R1234Ze又はR1234yfである。 For example, specifically, the first refrigerant is CO2. The second refrigerant is R1234Ze or R1234yf.
 (3-4)
 冷凍サイクル装置100では、主冷媒回路50は、温度調整対象の温度調整を行う利用熱交換器40を含む。利用熱交換器40を蒸発器として利用する際に、コントローラ110は、第1モードを実行する。利用熱交換器40を放熱器として利用する際に、コントローラ110は、第2モードを実行する。
(3-4)
In the refrigeration cycle apparatus 100, the main refrigerant circuit 50 includes the utilization heat exchanger 40 that adjusts the temperature of a temperature-adjusted object. When utilizing the utilization heat exchanger 40 as an evaporator, the controller 110 executes the first mode. When using the utilization heat exchanger 40 as a radiator, the controller 110 executes the second mode.
 冷凍サイクル装置100では、利用熱交換器40を蒸発器として利用する際には第2冷媒を略単独で使用して効率を重視した運転をすることができる。一方、能力不足の発生しやすい利用熱交換器40を放熱器として利用する運転の際には、第1冷媒と第2冷媒との非共沸混合冷媒を用いて必要な能力を得ることができる。 In the refrigeration cycle device 100, when the utilization heat exchanger 40 is used as an evaporator, the second refrigerant can be used substantially independently to operate with an emphasis on efficiency. On the other hand, when the heat exchanger 40, which is likely to have insufficient capacity, is used as a radiator, the required capacity can be obtained by using the non-azeotropic mixed refrigerant of the first refrigerant and the second refrigerant. .
 (3-5)
 冷凍サイクル装置100は、利用熱交換器40を放熱器として利用する際に、コントローラ110は、冷凍サイクル装置100に対する要求能力に応じて、第1モード又は第2モードを実行する。
(3-5)
When the refrigerating cycle device 100 uses the utilization heat exchanger 40 as a radiator, the controller 110 executes the first mode or the second mode according to the required capacity of the refrigerating cycle device 100 .
 冷凍サイクル装置100では、利用熱交換器40を放熱器として利用する際にも、能力的に第1冷媒と第2冷媒との混合冷媒を用いることが不要であれば、第2冷媒を略単独で使用して効率を重視した運転を行うことができる。 In the refrigerating cycle device 100, even when the utilization heat exchanger 40 is used as a radiator, if it is not necessary to use the mixed refrigerant of the first refrigerant and the second refrigerant due to the capacity, the second refrigerant is used substantially independently. It can be used to drive with an emphasis on efficiency.
 (3-6)
 冷凍サイクル装置100では、主冷媒回路50は、圧縮機10を含む。コントローラ110は、圧縮機10の回転数を制御する。コントローラ110は、第1モードを実行中に、圧縮機10の回転数を所定の回転数(上限回転数)に上げても要求能力が得られない場合に、第2モードを実行する。
(3-6)
In refrigeration cycle device 100 , main refrigerant circuit 50 includes compressor 10 . Controller 110 controls the rotation speed of compressor 10 . The controller 110 executes the second mode when the required performance cannot be obtained even if the rotational speed of the compressor 10 is increased to a predetermined rotational speed (upper limit rotational speed) while the first mode is being executed.
 冷凍サイクル装置100では、効率の低下を抑制しつつ、必要な能力を得ることができる。 With the refrigeration cycle device 100, it is possible to obtain the necessary capacity while suppressing a decrease in efficiency.
 (3-7)
 冷凍サイクル装置100では、コントローラ110は、第2モードを実行する際に、変更部70の動作を制御して、主冷媒回路50を流れる冷媒中の第1冷媒と第2冷媒との組成比を、第1組成比と、第2組成比と、の間で変更する。第2組成比では、第1組成比より第1冷媒の比率が高い。
(3-7)
In the refrigeration cycle device 100, when the second mode is executed, the controller 110 controls the operation of the changing unit 70 to change the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50. , the first composition ratio and the second composition ratio. In the second composition ratio, the proportion of the first refrigerant is higher than in the first composition ratio.
 冷凍サイクル装置100では、第1冷媒と第2冷媒との組成比を段階的に変化させるので、効率の低下は抑制しつつ、必要な能力を得ることができる。 In the refrigeration cycle device 100, the composition ratio between the first refrigerant and the second refrigerant is changed in stages, so that the necessary capacity can be obtained while suppressing the decrease in efficiency.
 (3-8)
 冷凍サイクル装置100は、主冷媒回路50は、圧縮機10を含む。コントローラ110は、圧縮機10の回転数を制御する。コントローラ110は、冷凍サイクル装置100に対する要求能力の変化に応じて、圧縮機10の回転数、又は、主冷媒回路50を流れる冷媒中の第1冷媒と第2冷媒との組成比、のいずれかを変更する。
(3-8)
Refrigeration cycle device 100 includes compressor 10 in main refrigerant circuit 50 . Controller 110 controls the rotation speed of compressor 10 . The controller 110 controls either the rotational speed of the compressor 10 or the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 in accordance with changes in the required capacity of the refrigeration cycle device 100. to change
 冷凍サイクル装置100では、効率の低下は抑制しつつ、必要な能力を得ることができる。 With the refrigeration cycle device 100, it is possible to obtain the necessary capacity while suppressing a decrease in efficiency.
 (3-9)
 冷凍サイクル装置100では、コントローラ110は、要求能力が低下した際に、主冷媒回路50を流れる冷媒中の第1冷媒の比率が所定値(下限値)より高い場合には、主冷媒回路50を流れる冷媒中の第1冷媒の比率を下げるよう変更部70を制御し、主冷媒回路50を流れる冷媒中の第1冷媒の比率が所定値(下限値)以下の場合には、圧縮機10の回転数を下げる。
(3-9)
In the refrigeration cycle device 100, the controller 110 closes the main refrigerant circuit 50 when the ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 is higher than a predetermined value (lower limit) when the required capacity is reduced. The changing unit 70 is controlled to reduce the ratio of the first refrigerant in the flowing refrigerant, and when the ratio of the first refrigerant in the refrigerant flowing in the main refrigerant circuit 50 is equal to or less than a predetermined value (lower limit value), the compressor 10 Decrease the rpm.
 冷凍サイクル装置100では、効率の低下は抑制しつつ、必要な能力を得ることができる。 With the refrigeration cycle device 100, it is possible to obtain the necessary capacity while suppressing a decrease in efficiency.
 (4)変形例
 以下に、上記実施形態の変形例を説明する。なお、以下の変形例は、互いに矛盾しない範囲で適宜組み合わせられてもよい。
(4) Modifications Modifications of the above embodiment will be described below. It should be noted that the following modified examples may be appropriately combined within a mutually consistent range.
 (4-1)変形例A
 主冷媒回路50を流れる冷媒の組成を変更するための機構は、上記実施形態の変更部70のような機構に限定されるものではない。例えば、冷凍サイクル装置100は、図5のように、変更部70に代えて、変更部170を有するものであってもよい。
(4-1) Modification A
The mechanism for changing the composition of the refrigerant flowing through the main refrigerant circuit 50 is not limited to the mechanism like the changing section 70 of the above embodiment. For example, the refrigeration cycle apparatus 100 may have a changing section 170 instead of the changing section 70 as shown in FIG.
 変更部170は、冷媒容器72に代えて、内部に吸着材172aが充填されている容器172を含む。その他の構成については、上記実施形態の変更部70と同様である。 Instead of the refrigerant container 72, the changing unit 170 includes a container 172 filled with an adsorbent 172a. Other configurations are the same as those of the changing unit 70 of the above embodiment.
 吸着材172aは、第1冷媒を吸着する特性を有する。具体的に、第1実施形態の冷凍サイクル装置100では、吸着材172aは、CO2を吸着する特性を有する。 The adsorbent 172a has the property of adsorbing the first refrigerant. Specifically, in the refrigeration cycle apparatus 100 of the first embodiment, the adsorbent 172a has the property of adsorbing CO2.
 また、吸着材172aは、第2冷媒を吸着しない特性を有する。具体的に、第1実施形態の冷凍サイクル装置100では、吸着材172aは、第2冷媒として使用されるR1234ZeやR1234yfを吸着しない。あるいは、吸着材172aは、第1冷媒に加えて第2冷媒も吸着するものの、第2冷媒の吸着性能が第1冷媒の吸着性能より低い特性を有するものでもよい。 Also, the adsorbent 172a has a property of not adsorbing the second refrigerant. Specifically, in the refrigeration cycle apparatus 100 of the first embodiment, the adsorbent 172a does not adsorb R1234Ze or R1234yf used as the second refrigerant. Alternatively, the adsorbent 172a may adsorb the second refrigerant in addition to the first refrigerant, but may have a characteristic that the adsorption performance of the second refrigerant is lower than that of the first refrigerant.
 なお、吸着材172aは、例えばCO2の吸着性能が高いゼオライトである。また、吸着材172aは、CO2の吸着性能が高い金属有機構造体(MOF)であってもよい。なお、吸着材172aの種類は、第1冷媒を吸着し、かつ、第2冷媒を吸着しない又は第2冷媒の吸着性能が第1冷媒の吸着性能より低いものであれば、例示した種類の吸着材に限定されない。 Note that the adsorbent 172a is, for example, zeolite with high CO2 adsorption performance. Alternatively, the adsorbent 172a may be a metal-organic framework (MOF) having high CO2 adsorption performance. The type of the adsorbent 172a is the exemplified type if it adsorbs the first refrigerant and does not adsorb the second refrigerant or if the adsorption performance of the second refrigerant is lower than the adsorption performance of the first refrigerant. Not limited to materials.
 変更部170では、吸着材172aに第1冷媒を吸着させる場合には、熱源側弁82a及び利用側弁82bが開かれ、主冷媒回路50を流れる冷媒の一部が、容器172に流入する。冷媒が容器172内を通過する際、第1冷媒は吸着材172aに吸着される一方で、第2冷媒は吸着材172aに吸着されない又はほとんど吸着されないので、容器172を通過した冷媒は第2冷媒の比率が高い冷媒となる。これを主冷媒回路50に流入させることで、主冷媒回路50を流れる冷媒中の第2冷媒の比率を増加させることができる。 In the changing unit 170 , when the adsorbent 172 a adsorbs the first refrigerant, the heat source side valve 82 a and the utilization side valve 82 b are opened, and part of the refrigerant flowing through the main refrigerant circuit 50 flows into the container 172 . When the refrigerant passes through the container 172, the first refrigerant is adsorbed by the adsorbent 172a, while the second refrigerant is not or hardly adsorbed by the adsorbent 172a. becomes a refrigerant with a high ratio of By allowing this to flow into the main refrigerant circuit 50, the ratio of the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 can be increased.
 一方、吸着材172aから第1冷媒を脱着させる場合にも、熱源側弁82a及び利用側弁82bが開かれ、主冷媒回路50を流れる冷媒の一部が、容器172に流入する。脱着時には、さらに、例えば圧縮機10から吐出される高温の冷媒の熱を利用して、あるいは、図示内ヒータ等の発する熱を利用して、容器172内の吸着材172aが加熱される。その結果、吸着材172aから第1冷媒が脱着され、容器172を流れる冷媒に混入するので、容器172から流出する冷媒は、第2冷媒の比率が低い(容器172に流入した時よりも第2冷媒の比率が低い)冷媒となる。この冷媒を主冷媒回路50に流入させることで、主冷媒回路50を流れる冷媒中の第2冷媒の比率を低下させることができる。言い換えれば、この冷媒を主冷媒回路50に流入させることで、主冷媒回路50を流れる冷媒中の第1冷媒の比率を増加させることができる。 On the other hand, also when the first refrigerant is desorbed from the adsorbent 172 a , the heat source side valve 82 a and the utilization side valve 82 b are opened, and part of the refrigerant flowing through the main refrigerant circuit 50 flows into the container 172 . At the time of desorption, the adsorbent 172a in the container 172 is further heated by using the heat of the high-temperature refrigerant discharged from the compressor 10, or by using the heat generated by the illustrated heater or the like. As a result, the first refrigerant is desorbed from the adsorbent 172a and mixed with the refrigerant flowing through the container 172, so that the refrigerant flowing out of the container 172 has a lower ratio of the second refrigerant (the ratio of the second refrigerant is lower than when it flowed into the container 172). low refrigerant ratio). By allowing this refrigerant to flow into the main refrigerant circuit 50, the ratio of the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 can be reduced. In other words, by causing this refrigerant to flow into the main refrigerant circuit 50, the ratio of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 can be increased.
 さらに、変更部の構成は、例示のものに限定されず、主冷媒回路50を流れる冷媒の組成比を変更可能であれば、他の構成であってもよい。例えば、変更部は、冷媒精留塔を利用するものであってもよい。 Furthermore, the configuration of the change section is not limited to the illustrated one, and other configurations may be used as long as the composition ratio of the refrigerant flowing through the main refrigerant circuit 50 can be changed. For example, the modification may utilize a refrigerant rectification tower.
 (4-2)変形例B
 上記実施形態では、第1冷媒はCO2であり、第2冷媒はHFO冷媒のR1234Ze又はR1234yfである非共沸混合冷媒を用いる冷凍サイクル装置について説明を行った。ただし、第1冷媒及び第2冷媒の種類は例示の冷媒に限定されるものではない。例えば、第1冷媒は、HFO冷媒のR1132(E)(トランス-1,2?ジフルオロエチレン)またはR1123(トリフルオロエチレン)であってもよい。このような冷媒の組合せでも、第2冷媒を実質的に単独で用いることで高効率の運転を実現しつつ、第2冷媒を単独で用いる場合には能力が不足する場合には、第1冷媒と第2冷媒との非共沸混合冷媒を用いることで能力不足を補うことができる。
(4-2) Modification B
In the above embodiment, the refrigeration cycle apparatus using a non-azeotropic refrigerant mixture in which the first refrigerant is CO2 and the second refrigerant is HFO refrigerant R1234Ze or R1234yf has been described. However, the types of the first refrigerant and the second refrigerant are not limited to the illustrated refrigerants. For example, the first refrigerant may be HFO refrigerant R1132(E) (trans-1,2-difluoroethylene) or R1123 (trifluoroethylene). Even with such a combination of refrigerants, high-efficiency operation is realized by using the second refrigerant substantially alone, and if the capacity is insufficient when the second refrigerant is used alone, the first refrigerant Insufficient capacity can be compensated for by using a non-azeotropic mixture of refrigerant and the second refrigerant.
 (4-3)変形例C
 上記実施形態では、建物等に設置される冷凍サイクル装置100を例に、本開示の冷凍サイクル装置を説明している。しかし、本開示の冷凍サイクル装置は、建物に設置されるものに限定されない。本開示の冷凍サイクル装置は、例えば、自動車等の乗物に搭載される装置であってもよい。
(4-3) Modification C
In the above embodiment, the refrigeration cycle device of the present disclosure is described by taking the refrigeration cycle device 100 installed in a building or the like as an example. However, the refrigeration cycle apparatus of the present disclosure is not limited to those installed in buildings. The refrigeration cycle device of the present disclosure may be, for example, a device mounted on a vehicle such as an automobile.
 (4-4)変形例D
 上記実施形態では、冷凍サイクル装置100が、熱源ユニット2と、熱源ユニット2に冷媒配管により接続される利用ユニット4と、を有する場合を例に、本開示の冷凍サイクル装置を説明している。しかし、本開示の冷凍サイクル装置は、このような装置に限定されるものではない。例えば、本開示の冷凍サイクル装置は、全ての機器が1つのケーシングに搭載される一体式の装置であってもよい。
(4-4) Modification D
In the above-described embodiment, the refrigeration cycle device of the present disclosure is described by taking as an example the case where the refrigeration cycle device 100 includes the heat source unit 2 and the utilization unit 4 connected to the heat source unit 2 through refrigerant piping. However, the refrigeration cycle device of the present disclosure is not limited to such devices. For example, the refrigeration cycle apparatus of the present disclosure may be an integrated apparatus in which all devices are mounted in one casing.
 (4-5)変形例E
 上記実施形態では、コントローラ110は、利用熱交換器40を蒸発器として使用する際には、第2冷媒が実質単独で使用される第1モードを実行する。ただし、これに限定されるものでなく、コントローラ110は、利用熱交換器40を蒸発器として使用する際にも、能力不足が問題となる条件が存在する場合には、第1モードに加え、第1冷媒と第2冷媒との非共沸混合冷媒が使用される第2モードを実行してもよい。この場合、冷凍サイクル装置は、温度調整対象を冷却する運転だけを行う装置であってもよい。
(4-5) Modification E
In the above embodiment, the controller 110 executes the first mode in which the second refrigerant is used substantially alone when the utilization heat exchanger 40 is used as an evaporator. However, the controller 110 is not limited to this, and in addition to the first mode, the controller 110, when using the utilization heat exchanger 40 as an evaporator, if there is a condition that causes a problem of insufficient capacity, A second mode may be performed in which a non-azeotropic refrigerant mixture of the first refrigerant and the second refrigerant is used. In this case, the refrigeration cycle device may be a device that only performs an operation for cooling the object to be temperature-adjusted.
 (4-6)変形例F
 上記実施形態では、冷凍サイクル装置100は、利用熱交換器40を蒸発器として使用する運転と、利用熱交換器40を放熱器として使用する運転と、を切り換えて実行可能な装置である。ただし、これに限定されるものでなく、冷凍サイクル装置100は、利用熱交換器40を放熱器として使用する運転だけを主に行う装置であってもよい。
(4-6) Modification F
In the above embodiment, the refrigeration cycle device 100 is a device capable of switching between an operation using the heat exchanger 40 as an evaporator and an operation using the heat exchanger 40 as a radiator. However, the refrigeration cycle device 100 is not limited to this, and may be a device that mainly performs only the operation using the utilization heat exchanger 40 as a radiator.
 (4-7)変形例G
 上記実施形態では、要求能力の変化に応じて冷凍サイクル装置100の能力を増大させる際に、コントローラ110は、圧縮機10のモータ10aの回転数と、主冷媒回路50を流れる冷媒の組成比のうち、変更後によりCOPを高く維持可能な方を変更する。これに代えて、コントローラ110は、要求能力の変化に応じて冷凍サイクル装置100の能力を増大させる際に、圧縮機10のモータ10aの回転数と、主冷媒回路50を流れる冷媒の組成比のうち、より電力増加量の低い方を変更してもよい。
(4-7) Modification G
In the above embodiment, when increasing the capacity of the refrigeration cycle device 100 in accordance with changes in the required capacity, the controller 110 controls the rotation speed of the motor 10a of the compressor 10 and the composition ratio of the refrigerant flowing through the main refrigerant circuit 50. Of these, the one that can maintain a higher COP after the change is changed. Instead, when increasing the capacity of the refrigeration cycle device 100 in response to changes in the required capacity, the controller 110 changes the rotation speed of the motor 10a of the compressor 10 and the composition ratio of the refrigerant flowing through the main refrigerant circuit 50. Of these, the one with the lower power increase amount may be changed.
 このような制御を行うため、例えば、圧縮機10のモータ10aの回転数を変化させた場合の能力と電力使用量との関係と、主冷媒回路50を流れる冷媒の第1冷媒の比率を変化させた場合の能力と電力使用量との関係と、が求められ、閾値となる圧縮機の上限回転数が予め決定されていてもよい。上限回転数は、例えばコントローラ110のメモリ(記憶部)に記憶される。 In order to perform such control, for example, the relationship between the capacity and the power consumption when the rotation speed of the motor 10a of the compressor 10 is changed, and the ratio of the first refrigerant of the refrigerant flowing through the main refrigerant circuit 50 is changed. The relationship between the capacity and the amount of power consumption when the engine is turned on may be obtained, and the upper limit rotation speed of the compressor, which serves as a threshold, may be determined in advance. The upper limit rotation speed is stored, for example, in the memory (storage unit) of the controller 110 .
 他の例では、図6のように、圧縮機10に電流計又は電力量計10dが設けられてもよい。そして、コントローラ110は、冷凍サイクル装置100に対する要求が増大した場合に、主冷媒回路50を流れる冷媒中の第1冷媒と第2冷媒との組成比は変化させずに圧縮機10のモータ10aの回転数を変えた場合の電流値の変化と、圧縮機10のモータ10aの回転数は変化させずに主冷媒回路50を流れる冷媒中の第1冷媒と第2冷媒との組成比を変えた場合の電流値の変化とを、それぞれ実測してもよい。そして、コントローラ110は、2つの制御のうち、圧縮機10の電流値の増加が実際に少なかった方を、最終的に実行する制御として選択してもよい。 In another example, as shown in FIG. 6, the compressor 10 may be provided with an ammeter or a watt-hour meter 10d. Then, when the demand for the refrigerating cycle device 100 increases, the controller 110 maintains the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 without changing the composition ratio of the motor 10a of the compressor 10. The change in the current value when the rotation speed is changed, and the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 is changed without changing the rotation speed of the motor 10a of the compressor 10. A change in the current value in each case may be actually measured. Then, the controller 110 may select, of the two controls, the one in which the current value of the compressor 10 actually increased less as the control to be finally executed.
 (4-8)変形例H
 上記実施形態では、第2モードにおいて、第1冷媒と第2冷媒との組成比を段階的に変化させているが、これに限定されるものではない。例えば、第2モードでは、コントローラ110は、主冷媒回路50を流れる冷媒中の第1冷媒と第2冷媒との組成比を、常に所定の(常に同一の)組成比になるよう制御してもよい。
(4-8) Modification H
In the above embodiment, the composition ratio between the first refrigerant and the second refrigerant is changed stepwise in the second mode, but it is not limited to this. For example, in the second mode, the controller 110 controls the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the main refrigerant circuit 50 to always be a predetermined (always the same) composition ratio. good.
 <付記>
 以上、本開示の実施形態及び変形例を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
<Appendix>
While embodiments and modifications of the present disclosure have been described above, it will be appreciated that various changes in form and detail are possible without departing from the spirit and scope of the present disclosure as defined in the claims. Will.
 本開示は、冷凍サイクル装置に広く適用でき有用である。 The present disclosure is widely applicable and useful to refrigeration cycle devices.
10 圧縮機
40 利用熱交換器
50 主冷媒回路(冷凍サイクル)
70 変更部
100 冷凍サイクル装置
110 コントローラ(制御部)
150 検知部
170 変更部
10 compressor 40 utilization heat exchanger 50 main refrigerant circuit (refrigeration cycle)
70 change unit 100 refrigeration cycle device 110 controller (control unit)
150 detection unit 170 change unit
特開2008-281326号公報JP 2008-281326 A

Claims (14)

  1.  第1冷媒と第2冷媒とを含む非共沸混合冷媒を用いる冷凍サイクル(50)と、
     前記冷凍サイクルを流れる冷媒中の、前記第1冷媒と前記第2冷媒との組成比を変更する変更部(70,170)と、
     前記変更部の動作を制御する制御部(110)と、
    を備え、
     前記制御部は、前記変更部の動作を制御して前記冷凍サイクルに前記第2冷媒を略単独で流す第1モードと、前記変更部の動作を制御して前記冷凍サイクルに前記第1冷媒と前記第2冷媒との混合冷媒を流す第2モードと、を実行する、
    冷凍サイクル装置(100)。
    a refrigeration cycle (50) using a non-azeotropic refrigerant mixture containing a first refrigerant and a second refrigerant;
    a changing unit (70, 170) that changes the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle;
    a control unit (110) for controlling the operation of the changing unit;
    with
    The control unit controls the operation of the changing unit to allow the second refrigerant to flow substantially alone in the refrigerating cycle, and controls the operation of the changing unit to supply the first refrigerant to the refrigerating cycle. a second mode in which the mixed refrigerant with the second refrigerant flows;
    A refrigeration cycle device (100).
  2.  前記第1モードでは、前記冷凍サイクルに前記第2冷媒の濃度が92wt%以上の冷媒が流される、
    請求項1に記載の冷凍サイクル装置。
    In the first mode, a refrigerant having a concentration of the second refrigerant of 92 wt% or more is passed through the refrigeration cycle,
    The refrigeration cycle apparatus according to claim 1.
  3.  前記第1モードでは、前記冷凍サイクルに前記第2冷媒の濃度が98wt%以上の冷媒が流される、
    請求項2に記載の冷凍サイクル装置。
    In the first mode, a refrigerant having a concentration of 98 wt% or more of the second refrigerant is flowed through the refrigeration cycle,
    The refrigeration cycle apparatus according to claim 2.
  4.  前記冷凍サイクルを流れる冷媒中の、前記第1冷媒と前記第2冷媒との組成比を検知する検知部(150)、を更に備え、
     前記制御部は、前記検知部が検知する前記第1冷媒と前記第2冷媒との組成比が目標組成比になるように、前記変更部の動作を制御する、
    請求項1から3のいずれか1項に記載の冷凍サイクル装置。
    further comprising a detection unit (150) for detecting the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle,
    The control unit controls the operation of the changing unit so that the composition ratio of the first refrigerant and the second refrigerant detected by the detection unit becomes a target composition ratio.
    The refrigeration cycle apparatus according to any one of claims 1 to 3.
  5.  前記第2冷媒の沸点は、前記第1冷媒の沸点より高い、
    請求項1から4のいずれか1項に記載の冷凍サイクル装置。
    The boiling point of the second refrigerant is higher than the boiling point of the first refrigerant,
    The refrigeration cycle apparatus according to any one of claims 1 to 4.
  6.  前記冷凍サイクルは、温度調整対象の温度調整を行う利用熱交換器(40)を含み、
     前記利用熱交換器を蒸発器として利用する際に、前記制御部は、前記第1モードを実行し、
     前記利用熱交換器を放熱器として利用する際に、前記制御部は、前記第2モードを実行する、
    請求項5に記載の冷凍サイクル装置。
    The refrigeration cycle includes a utilization heat exchanger (40) that adjusts the temperature of a temperature adjustment target,
    When using the utilization heat exchanger as an evaporator, the control unit executes the first mode,
    When using the utilization heat exchanger as a radiator, the control unit executes the second mode.
    The refrigeration cycle apparatus according to claim 5.
  7.  前記利用熱交換器を前記放熱器として利用する際に、前記制御部は、前記冷凍サイクル装置に対する要求能力に応じて、前記第1モード又は前記第2モードを実行する、
    請求項6に記載の冷凍サイクル装置。
    When using the utilization heat exchanger as the radiator, the control unit executes the first mode or the second mode according to the required capacity of the refrigeration cycle device.
    The refrigeration cycle apparatus according to claim 6.
  8.  前記冷凍サイクルは、圧縮機(10)を含み、
     前記制御部は、前記圧縮機の回転数を更に制御し、
     前記制御部は、前記第1モードを実行中に、前記圧縮機の回転数を所定の回転数に上げても前記要求能力が得られない場合に、前記第2モードを実行する、
    請求項7に記載の冷凍サイクル装置(100)。
    The refrigeration cycle includes a compressor (10),
    The control unit further controls the rotation speed of the compressor,
    The control unit executes the second mode when the required capacity cannot be obtained even if the rotation speed of the compressor is increased to a predetermined rotation speed while the first mode is being executed.
    The refrigeration cycle apparatus (100) according to claim 7.
  9.  前記制御部は、前記第2モードを実行する際に、前記変更部の動作を制御して、前記冷凍サイクルを流れる冷媒中の前記第1冷媒と前記第2冷媒との組成比を、第1組成比と、前記第1組成比より前記第1冷媒の比率が高い第2組成比と、の間で変更する、
    請求項6又は7に記載の冷凍サイクル装置。
    When executing the second mode, the control unit controls the operation of the changing unit to change the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle to a first change between the composition ratio and a second composition ratio in which the ratio of the first refrigerant is higher than the first composition ratio;
    The refrigeration cycle device according to claim 6 or 7.
  10.  前記冷凍サイクルは、圧縮機(10)を含み、
     前記制御部は、前記圧縮機の回転数を更に制御し、
     前記制御部は、前記冷凍サイクル装置に対する要求能力の変化に応じて、前記圧縮機の回転数、又は、前記冷凍サイクルを流れる冷媒中の前記第1冷媒と前記第2冷媒との組成比、のいずれかを変更する、
    請求項9に記載の冷凍サイクル装置。
    The refrigeration cycle includes a compressor (10),
    The control unit further controls the rotation speed of the compressor,
    The control unit adjusts the rotation speed of the compressor or the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle according to changes in the required capacity of the refrigeration cycle device. change any
    The refrigeration cycle apparatus according to claim 9.
  11.  前記制御部は、前記要求能力が増大した際に、前記圧縮機の回転数、及び、前記冷凍サイクルを流れる冷媒中の前記第1冷媒と前記第2冷媒との組成比のうち、変更した際の前記圧縮機の電力増加量が少ない方を変更する、
    請求項10に記載の冷凍サイクル装置。
    When the required capacity increases, the control unit changes the rotation speed of the compressor and the composition ratio of the first refrigerant and the second refrigerant in the refrigerant flowing through the refrigeration cycle. change the one with the smaller power increase amount of the compressor of
    The refrigeration cycle device according to claim 10.
  12.  前記制御部は、前記要求能力が低下した際に、前記冷凍サイクルを流れる冷媒中の前記第1冷媒の比率が所定値より高い場合には、前記冷凍サイクルを流れる冷媒中の前記第1冷媒の比率を下げるよう前記変更部を制御し、前記冷凍サイクルを流れる冷媒中の前記第1冷媒の比率が前記所定値以下の場合には、前記圧縮機の回転数を下げる、
    請求項10又は11に記載の冷凍サイクル装置。
    If the ratio of the first refrigerant in the refrigerant flowing through the refrigerating cycle is higher than a predetermined value when the required capacity is lowered, the control unit controls the amount of the first refrigerant in the refrigerant flowing through the refrigerating cycle. controlling the changing unit to reduce the ratio, and reducing the rotation speed of the compressor when the ratio of the first refrigerant in the refrigerant flowing through the refrigeration cycle is equal to or less than the predetermined value;
    The refrigeration cycle apparatus according to claim 10 or 11.
  13.  前記第1冷媒は、CO2であり、
     前記第2冷媒は、R1234Ze又はR1234yfである、
    請求項1から12のいずれか1項に記載の冷凍サイクル装置。
    the first refrigerant is CO2,
    The second refrigerant is R1234Ze or R1234yf,
    The refrigeration cycle apparatus according to any one of claims 1 to 12.
  14.  前記第1冷媒は、R1132(E)またはR1123であり、
     前記第2冷媒は、R1234Ze又はR1234yfである、
    請求項1から12のいずれか1項に記載の冷凍サイクル装置。
     
    the first refrigerant is R1132 (E) or R1123,
    The second refrigerant is R1234Ze or R1234yf,
    The refrigeration cycle apparatus according to any one of claims 1 to 12.
PCT/JP2022/015713 2021-03-31 2022-03-29 Refrigeration cycle device WO2022210796A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22781007.4A EP4317849A4 (en) 2021-03-31 2022-03-29 Refrigeration cycle device
CN202280026142.8A CN117098959A (en) 2021-03-31 2022-03-29 Refrigeration cycle device
US18/374,327 US20240019178A1 (en) 2021-03-31 2023-09-28 Refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-062241 2021-03-31
JP2021062241A JP7216308B2 (en) 2021-03-31 2021-03-31 refrigeration cycle equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/374,327 Continuation US20240019178A1 (en) 2021-03-31 2023-09-28 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2022210796A1 true WO2022210796A1 (en) 2022-10-06

Family

ID=83459475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015713 WO2022210796A1 (en) 2021-03-31 2022-03-29 Refrigeration cycle device

Country Status (5)

Country Link
US (1) US20240019178A1 (en)
EP (1) EP4317849A4 (en)
JP (2) JP7216308B2 (en)
CN (1) CN117098959A (en)
WO (1) WO2022210796A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162853A (en) * 1986-01-10 1987-07-18 株式会社日立製作所 Refrigeration cycle
JPH06337177A (en) * 1993-03-29 1994-12-06 Toshiba Corp Refrigerating device
JP2002039648A (en) * 2000-07-25 2002-02-06 Mitsubishi Electric Corp Refrigerant charging method and air conditioner
JP2004232951A (en) * 2003-01-30 2004-08-19 Mitsubishi Electric Corp Refrigerant sealing method
JP2008281326A (en) 2007-04-11 2008-11-20 Calsonic Kansei Corp Refrigerating unit and heat exchanger used for the refrigerating unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128257B1 (en) * 2014-03-17 2020-04-22 Mitsubishi Electric Corporation Method for operating a refrigeration cycle device
JP6567167B2 (en) * 2016-03-23 2019-08-28 三菱電機株式会社 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162853A (en) * 1986-01-10 1987-07-18 株式会社日立製作所 Refrigeration cycle
JPH06337177A (en) * 1993-03-29 1994-12-06 Toshiba Corp Refrigerating device
JP2002039648A (en) * 2000-07-25 2002-02-06 Mitsubishi Electric Corp Refrigerant charging method and air conditioner
JP2004232951A (en) * 2003-01-30 2004-08-19 Mitsubishi Electric Corp Refrigerant sealing method
JP2008281326A (en) 2007-04-11 2008-11-20 Calsonic Kansei Corp Refrigerating unit and heat exchanger used for the refrigerating unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4317849A4

Also Published As

Publication number Publication date
EP4317849A4 (en) 2024-04-17
US20240019178A1 (en) 2024-01-18
EP4317849A1 (en) 2024-02-07
CN117098959A (en) 2023-11-21
JP2023038281A (en) 2023-03-16
JP7216308B2 (en) 2023-02-01
JP2022157804A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
JP5762427B2 (en) Air conditioner
JP4740984B2 (en) Refrigeration air conditioner
JP5595508B2 (en) Air conditioner
US9032747B2 (en) Multi-mode air conditioner with refrigerant cycle and heat medium cycle
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
JP2011112233A (en) Air conditioning device
EP2955462B1 (en) Heat pump apparatus
JPWO2011030418A1 (en) Air conditioner
JP5908183B1 (en) Air conditioner
JP5837099B2 (en) Air conditioner
JP6120943B2 (en) Air conditioner
JP5312606B2 (en) Air conditioner
WO2019017350A1 (en) Freezer
WO2019017370A1 (en) Freezer
JP7216308B2 (en) refrigeration cycle equipment
WO2015140878A1 (en) Accumulator and refrigeration cycle apparatus
JPWO2019021464A1 (en) Air conditioner
JP7157353B1 (en) refrigeration cycle equipment
CN117136288B (en) Refrigeration cycle device
JPWO2013111180A1 (en) Refrigerant charging method for air conditioner, air conditioner
JP2005212652A (en) Freezing cycle for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280026142.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022781007

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022781007

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE