WO2022210706A1 - 精製重合体微粒子の製造方法および樹脂組成物の製造方法 - Google Patents

精製重合体微粒子の製造方法および樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2022210706A1
WO2022210706A1 PCT/JP2022/015432 JP2022015432W WO2022210706A1 WO 2022210706 A1 WO2022210706 A1 WO 2022210706A1 JP 2022015432 W JP2022015432 W JP 2022015432W WO 2022210706 A1 WO2022210706 A1 WO 2022210706A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
polymer
fine particles
aggregates
weight
Prior art date
Application number
PCT/JP2022/015432
Other languages
English (en)
French (fr)
Inventor
展祥 舞鶴
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023511376A priority Critical patent/JPWO2022210706A1/ja
Publication of WO2022210706A1 publication Critical patent/WO2022210706A1/ja
Priority to US18/374,971 priority patent/US20240026092A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/06Vinyl aromatic monomers and methacrylates as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/16Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/52Aqueous emulsion or latex, e.g. containing polymers of a glass transition temperature (Tg) below 20°C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer

Definitions

  • the present invention relates to a method for producing purified polymer fine particles and a method for producing a resin composition.
  • Thermosetting resins are used in various fields because they have various excellent properties such as high heat resistance and mechanical strength.
  • thermosetting resins epoxy resins are used in a wide range of applications, for example, as matrix resins for electronic circuit sealants, paints, adhesives, and fiber-reinforced materials.
  • Epoxy resins are excellent in heat resistance, chemical resistance, insulation, etc., but have the problem of insufficient impact resistance, which is a characteristic of thermosetting resins.
  • a method of adding an elastomer to a thermosetting resin is widely used to improve the impact resistance of the thermosetting resin.
  • Examples of the elastomer include polymer microparticles (for example, crosslinked polymer microparticles).
  • Polymer microparticles can generally have a particle size of less than 1 ⁇ m.
  • the polymer microparticle particles produced by collecting several primary particles of polymer microparticles having a particle diameter of less than 1 ⁇ m are referred to as secondary particles.
  • secondary particles Although it is possible to disperse the secondary particles of the polymer fine particles in the thermosetting resin, it is very difficult on an industrial level to disperse the primary particles of the polymer fine particles in the thermosetting resin.
  • Patent Document 1 discloses a method for producing a purified polymer obtained by removing water and impurities (such as an emulsifier) from a latex containing fine polymer particles.
  • impurities such as an emulsifier
  • a method of mixing coalesced fine particles with a thermosetting resin is disclosed.
  • an aggregate of polymer fine particles is obtained by mixing a latex containing polymer fine particles with an organic solvent and then bringing the obtained mixture into contact with water.
  • Purified polymer microparticles with reduced impurities are obtained by separating the resulting aggregates from the aqueous phase containing impurities.
  • One embodiment of the present invention has been made in view of the above problem, and an object thereof is to provide a novel method that can efficiently purify polymer microparticles from latex and has a reduced environmental load. .
  • the present inventor has completed the present invention as a result of diligent studies to solve the above problems.
  • the method for producing purified polymer microparticles (A) includes an organic solvent mixing step of mixing a latex containing polymer microparticles (A) and an emulsifier with an organic solvent (B), a mixed state maintaining step of either or both standing and stirring the mixture obtained in the organic solvent mixing step, wherein the emulsifier contains a lipophilic portion and a hydrophilic portion, and the hydrophilic portion is , with polyoxyethylene groups.
  • a method for producing purified polymer microparticles (A) includes an organic solvent mixing step of mixing a latex containing polymer microparticles (A) and an emulsifier with an organic solvent (B), A loose aggregation step of bringing the mixture obtained in the organic solvent mixing step into contact with water to form aggregates of the polymer fine particles (A) containing the organic solvent (B) in an aqueous phase, and a separation step of separating aggregates from the aqueous phase, and further comprising, after the separation step, repeating one or more cycles selected from (i) and (ii) below.
  • a first process comprising a second step of forming aggregates of polymer fine particles (A) contained in an aqueous phase, and a third step of separating the aggregates obtained in the second step from the aqueous phase.
  • a second step comprising a second step of forming aggregates of polymer fine particles (A) contained in an aqueous phase, and a third step of separating the aggregates obtained in the second step from the aqueous phase. cycle.
  • FIG. 4 is a graph showing changes over time in the viscosity of a mixture of a latex containing a phosphorus-based emulsifier having a polyoxyethylene group or a sulfur-based emulsifier having no polyoxyethylene group and an organic solvent.
  • the fine polymer particles (A) and the emulsifier are present in the solvent (latex solvent) in a bound state.
  • the emulsifier moves to the interface between the latex solvent and the organic solvent (B), and the bond between the fine polymer particles (A) and the emulsifier is dissociated.
  • the fine polymer particles (A) migrate from the latex solvent into the organic solvent (B).
  • the fine polymer particles (A) form aggregates.
  • the aggregates formed can be separated from the aqueous phase by any separation means.
  • the polymer fine particles (A) are transferred into the organic solvent (B). takes longer to move.
  • the emulsifier having a polyoxyethylene group has a higher affinity for (a) the polymer fine particles (A) than the emulsifier having a linear alkylbenzene, so the polymer fine particles (A ) and emulsifier bond dissociation takes longer.
  • one embodiment of the present invention is not limited to such estimation.
  • the step of standing and/or stirring the mixture of the latex and the organic solvent (B) (the step of maintaining the mixed state in the first production method) dissociates and polymerizes the polymer fine particles (A) and the emulsifier.
  • the movement of the coalesced fine particles (A) into the organic solvent (B) is promoted.
  • the viscosity of the mixture increases.
  • the mixture is brought into contact with water, whereby the polymer fine particles (A ) can aggregate well. Therefore, it is possible to prevent white turbidity of the discharged liquid due to contamination of the unaggregated polymer fine particles (A).
  • a method for producing purified polymer microparticles (A) includes an organic solvent mixing step of mixing a latex containing polymer microparticles (A) and an emulsifier with an organic solvent (B), and a mixed state maintaining step of either or both standing and stirring the mixture obtained in the organic solvent mixing step.
  • the emulsifier contains a lipophilic portion and a hydrophilic portion, and the hydrophilic portion has a polyoxyethylene group.
  • method for producing purified polymer microparticles (A) can also be said to be “purification method for polymer microparticles (A)". Further, the method for producing the purified polymer microparticles (A) according to one embodiment of the present invention may be hereinafter referred to as "first production method”.
  • stirring means all cases other than standing still, so the state of the mixture corresponds to either “standing” or “stirring".
  • both standing and stirring the mixture means (i) standing and then stirring, or (ii) stirring and then standing. means either Stirring may be continuously continued from the organic solvent mixing step to the mixed state maintaining step.
  • the first manufacturing method uses an emulsifier having a polyoxyethylene group. Therefore, the first production method has the advantage of reducing the environmental load over the prior art that uses an emulsifier having a straight-chain alkylbenzene. Further, according to the first production method, purified polymer fine particles (A) are efficiently produced from a latex containing polymer fine particles (A) prepared using an emulsifier having a polyoxyethylene group with a low environmental load. can be manufactured. In addition, the purified polymer microparticles (A) obtained by the first production method have the advantage that the content of impurities such as emulsifiers, more specifically elements P and S derived from emulsifiers, is low. Furthermore, the first production method has the advantage of being excellent in production efficiency because the discharged liquid produced by the first production method contains very little polymer fine particles (A).
  • Latex refers to a solution containing a solvent, fine polymer particles (A) and an emulsifier, and in which the fine polymer particles (A) and the emulsifier are dispersed in the solvent. "Latex” can also be said to be “suspension of fine polymer particles (A)".
  • the solvent for the latex is not particularly limited, water is an example.
  • a latex in which water is used as a solvent is sometimes referred to as an "aqueous latex” and can also be said to be an "aqueous suspension of polymer microparticles (A)".
  • the fine polymer particles (A) are preferably dispersed in the form of primary particles in the latex solvent.
  • a latex containing the polymer fine particles (A) and an emulsifier can be produced by known methods such as emulsion polymerization of the polymer fine particles (A) and a method of suspending the polymer fine particles (A) and the emulsifier in a solvent.
  • can be manufactured by The method for emulsion polymerization of the fine polymer particles (A) will be described in detail in the section (2-3. Production method of fine polymer particles (A)) below.
  • Polymer microparticles (A) Other aspects of the polymer microparticles (A) are not particularly limited as long as they are microparticles obtained by polymerization.
  • the polymer microparticles (A) preferably have a graft portion.
  • graft portion intends a polymer grafted to any polymer.
  • the polymer fine particles (A) having a graft portion can also be said to be a graft copolymer. That is, the fine polymer particles (A) are preferably graft copolymers.
  • the advantage that the polymer fine particles (A) can exhibit suitable behavior is obtained in the first production method and the resin composition production method described later. have.
  • the graft portion contains, as structural units, structural units derived from one or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers. It is preferably (including) a polymer.
  • a graft section having the above configuration can serve a variety of purposes. "Various roles” include, for example, (i) improving the compatibility between the polymer fine particles (A) and the resin (D), which is the matrix resin of the resin composition, (ii) in the resin (D) and (iii) enabling the polymer fine particles (A) to be dispersed in the state of primary particles in the resin composition or its cured product, etc. is.
  • aromatic vinyl monomers include styrene, ⁇ -methylstyrene, p-methylstyrene, and divinylbenzene.
  • vinyl cyan monomers include acrylonitrile and methacrylonitrile.
  • (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hydroxyethyl (meth)acrylate, and hydroxybutyl (meth)acrylate.
  • (meth)acrylate is intended herein acrylate and/or methacrylate.
  • One or more monomers selected from the group consisting of the above-mentioned aromatic vinyl monomers, vinyl cyan monomers, and (meth)acrylate monomers may be used alone, Two or more kinds may be used in combination.
  • a structural unit derived from an aromatic vinyl monomer, a structural unit derived from a vinyl cyanide monomer, and a structural unit derived from a (meth)acrylate monomer are combined to form a graft portion 100 In % by weight, preferably 10 to 95% by weight, more preferably 30 to 92% by weight, more preferably 50 to 90% by weight, particularly preferably 60 to 87% by weight, 70 to Most preferably it contains 85% by weight.
  • the graft portion preferably contains, as a structural unit, a structural unit derived from a monomer having a reactive group.
  • the monomer having a reactive group includes an epoxy group, an oxetane group, a hydroxyl group, an amino group, an imide group, a carboxylic acid group, a carboxylic acid anhydride group, a cyclic ester, a cyclic amide, a benzoxazine group, and a cyanate ester group.
  • the grafted portion of the fine polymer particles (A) and the resin (D) (for example, thermosetting resin) can be chemically bonded in the resin composition.
  • the fine polymer particles (A) can be maintained in a good dispersed state without agglomeration of the fine polymer particles (A) in the resin composition or the cured product thereof.
  • epoxy group-containing monomers include glycidyl group-containing vinyl monomers such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and allyl glycidyl ether.
  • monomers having a hydroxyl group include, for example, (i) 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and other hydroxy straight-chain alkyl (meth)acrylates; Acrylates (especially hydroxy linear C1-6 alkyl (meth)acrylates); (ii) caprolactone-modified hydroxy (meth)acrylates; (iii) ⁇ -(hydroxymethyl)methyl acrylate, ⁇ -(hydroxymethyl)ethyl acrylate hydroxy-branched alkyl (meth)acrylates such as; (iv) mono(meth)acrylates of polyester diols (especially saturated polyester diols) obtained from dihydric carboxylic acids (such as phthalic acid) and dihydric alcohols (such as propylene glycol); hydroxyl group-containing (meth)acrylates, and the like.
  • polyester diols especially saturated polyester diols obtained from dihydric carboxy
  • monomers having a carboxylic acid group include monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid.
  • monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid
  • dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid.
  • the monocarboxylic acid is preferably used as the monocarboxylic acid.
  • the graft portion preferably contains 0.5 to 90% by weight, more preferably 1 to 50% by weight, of structural units derived from a monomer having a reactive group in 100% by weight of the graft portion. It is more preferable to contain up to 35% by weight, particularly preferably 3 to 20% by weight.
  • the graft portion contains (i) 0.5% by weight or more of structural units derived from a monomer having a reactive group in 100% by weight of the graft portion, the resulting resin composition has sufficient impact resistance. (ii) when it contains 90% by weight or less, the resulting resin composition can provide a cured product having sufficient impact resistance, and the resin composition has the advantage of good storage stability.
  • the structural unit derived from a monomer having a reactive group is preferably contained in the graft portion, and more preferably contained only in the graft portion.
  • the graft part may contain a structural unit derived from a polyfunctional monomer as a structural unit.
  • a structural unit derived from a polyfunctional monomer swelling of the polymer fine particles (A) in the resin composition can be prevented, and (ii) the viscosity of the resin composition (iii) dispersibility of the fine polymer particles (A) in the resin (D) (e.g., thermosetting resin) is improved, etc. has the advantage of
  • the obtained resin composition has better toughness and A cured product having better impact resistance can be provided.
  • a polyfunctional monomer can also be said to be a monomer having two or more radically polymerizable reactive groups in the same molecule.
  • Said radically polymerizable reactive group is preferably a carbon-carbon double bond.
  • polyfunctional monomers include (meth)acrylates having an ethylenically unsaturated double bond, such as allylalkyl (meth)acrylates and allyloxyalkyl (meth)acrylates, butadiene is not included. be done.
  • Examples of monomers having two (meth)acrylic groups include ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, and cyclohexanedimethanol.
  • Examples of the polyethylene glycol di(meth)acrylates include triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol (600) di(meth)acrylate, and the like. are exemplified.
  • alkoxylated trimethylolpropane tri(meth)acrylates include trimethylolpropane tri(meth)acrylate and trimethylolpropane triethoxy tri(meth)acrylate.
  • examples of monomers having four (meth)acrylic groups include pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, and the like. Furthermore, dipentaerythritol penta(meth)acrylate etc. are illustrated as a monomer which has five (meth)acrylic groups. Furthermore, examples of monomers having six (meth)acrylic groups include ditrimethylolpropane hexa(meth)acrylate. Polyfunctional monomers also include diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene, and the like.
  • polyfunctional monomers that can be preferably used for polymerization of the graft portion include allyl methacrylate, ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, and butanediol.
  • the graft portion preferably contains 1 to 20% by weight, more preferably 5 to 15% by weight, of the structural unit derived from the polyfunctional monomer in 100% by weight of the graft portion.
  • the above-described monomers may be used alone or in combination of two or more.
  • the graft portion may contain, as structural units, structural units derived from other monomers in addition to the structural units derived from the monomers described above.
  • the graft portion is preferably a polymer graft-bonded to an elastic body, which will be described later.
  • the glass transition temperature of the graft portion is preferably 190°C or lower, more preferably 160°C or lower, more preferably 140°C or lower, more preferably 120°C or lower, preferably 80°C or lower, more preferably 70°C or lower, and 60°C.
  • the following is more preferable, 50° C. or less is more preferable, 40° C. or less is more preferable, 30° C. or less is more preferable, 20° C. or less is more preferable, 10° C. or less is more preferable, 0° C. or less is more preferable, and ⁇ 20° C.
  • -40°C or less is more preferable, -45°C or less is more preferable, -50°C or less is more preferable, -55°C or less is more preferable, -60°C or less is more preferable, -65°C or less is More preferably -70°C or less, more preferably -75°C or less, more preferably -80°C or less, more preferably -85°C or less, more preferably -90°C or less, more preferably -95°C or less , -100°C or lower is more preferred, -105°C or lower is more preferred, -110°C or lower is more preferred, -115°C or lower is more preferred, -120°C or lower is even more preferred, and -125°C or lower is particularly preferred.
  • the glass transition temperature of the graft portion is preferably 0° C. or higher, more preferably 30° C. or higher, more preferably 50° C. or higher, more preferably 70° C. or higher, still more preferably 90° C. or higher, and particularly preferably 110° C. or lower. preferable.
  • the Tg of the graft part can be determined by the composition of the constituent units contained in the graft part.
  • the Tg of the obtained graft portion can be adjusted by changing the composition of the monomers used when manufacturing (polymerizing) the graft portion.
  • the Tg of the graft portion can be obtained by performing viscoelasticity measurement using a flat plate made of polymer fine particles (A). Specifically, Tg can be measured as follows: (1) For a flat plate made of polymer fine particles (A), a dynamic viscoelasticity measuring device (eg, DVA-200 manufactured by IT Keisoku Co., Ltd.) ) is used to perform dynamic viscoelasticity measurement under tensile conditions to obtain a tan ⁇ graph; (2) Regarding the obtained tan ⁇ graph, the tan ⁇ peak temperature is taken as the glass transition temperature.
  • the highest peak temperature is taken as the glass transition temperature of the graft portion.
  • the polymer fine particle (A) is a polymer having the same structure as the graft portion and is not graft-bonded to any polymer (for example, an elastic body described later). may have In the present specification, "a polymer having the same structure as the graft portion and not grafted to any polymer" is also referred to as a non-grafted polymer.
  • the non-grafted polymer also constitutes part of the fine polymer particles (A) according to one embodiment of the present invention.
  • the non-graft polymer can also be said to be a polymer that is not graft-bonded to any polymer among the polymers produced in the polymerization of the graft portion.
  • the ratio of the polymer grafted to an arbitrary polymer that is, the ratio of the graft portion, among the polymers produced in the polymerization of the graft portion is referred to as the graft ratio.
  • the graft ratio can also be said to be a value represented by (weight of grafted portion)/ ⁇ (weight of grafted portion)+(weight of non-grafted polymer) ⁇ 100.
  • the graft ratio of the graft portion is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more.
  • the graft ratio is 70% or more, there is an advantage that the viscosity of the resin composition does not become too high.
  • the method for calculating the graft ratio is as follows. First, an aqueous suspension containing the polymer fine particles (A) is obtained, and then powder particles of the polymer fine particles (A) are obtained from the aqueous suspension. Specifically, the method for obtaining powdery particles of the polymer microparticles (A) from the aqueous suspension includes (i) coagulating the polymer microparticles (A) in the aqueous suspension, and (ii) A method of obtaining powder particles of polymer fine particles (A) by dehydrating the obtained coagulate and (iii) further drying the coagulate can be mentioned.
  • MEK methyl ethyl ketone
  • the obtained MEK melt is separated into a component soluble in MEK (MEK soluble matter) and a component insoluble in MEK (MEK insoluble matter).
  • (1) to (3) are performed: (1) Using a centrifuge (CP60E, manufactured by Hitachi Koki Co., Ltd.), the obtained MEK is dissolved at a rotation speed of 30000 rpm for 1 hour.
  • the weight of the polymer other than the graft portion is the charged amount of the monomer constituting the polymer other than the graft portion.
  • a polymer other than the graft portion is, for example, an elastic body.
  • the fine polymer particles (A) contain a surface-crosslinked polymer, which will be described later, the polymer other than the graft portion contains both the elastic body and the surface-crosslinked polymer.
  • the weight of the polymer of the graft portion is the charged amount of the monomers constituting the polymer of the graft portion.
  • the method of coagulating the polymer microparticles (A) is not particularly limited, and a method using a solvent, a method using a coagulant, a method of spraying an aqueous suspension, or the like can be used. .
  • the graft portion may consist of only one type of graft portion having structural units of the same composition. In one embodiment of the present invention, the graft portion may consist of a plurality of types of graft portions each having a different composition of structural units.
  • each of the plurality of types of graft portions is designated as graft portion 1 , graft portion 2 , . . . , graft portion n (n is an integer of 2 or more).
  • the graft portion may comprise a composite of graft portion 1 1 , graft portion 2 2 , . . . , and graft portion n , each polymerized separately.
  • the graft portion may contain one polymer obtained by sequentially polymerizing graft portion 1 1 , graft portion 2 2 , . . . , and graft portion n .
  • Such polymerization of a plurality of polymerized portions (graft portions) in order is also referred to as multi-stage polymerization.
  • a polymer obtained by multistage polymerization of a plurality of types of graft portions is also referred to as a multistage polymerization graft portion.
  • a method for producing the multistage polymerized graft portion will be described in detail later.
  • the graft portion When the graft portion consists of multiple types of graft portions, not all of these multiple types of graft portions may be graft-bonded to the elastic body. At least a part of at least one type of graft portion may be graft-bonded to the elastic body, and other types (a plurality of other types) of graft portions are graft portions that are graft-bonded to the elastic body. may be grafted to. Further, when the graft portion is composed of a plurality of types of graft portions, a plurality of types of polymers that are polymers having the same configuration as the plurality of types of graft portions and are not graft-bonded to the elastic body graft polymer).
  • a multistage polymerized graft portion composed of graft portion 1 , graft portion 2 , . . . , and graft portion n will be described.
  • the graft portion n may cover at least a portion of the graft portion n-1 , or may cover the entirety of the graft portion n-1 .
  • a part of the graft portion n may be inside the graft portion n ⁇ 1 .
  • each of the plurality of graft portions may form a layered structure.
  • graft portion 1 forms the innermost layer in the graft portion
  • graft portion 2 is formed on the outer side of graft portion 1 .
  • an aspect in which the layer of the graft portion 3 is formed as the outermost layer outside the layer of the graft portion 2 is also an aspect of the present invention.
  • a multi-stage polymerized graft portion in which each of a plurality of graft portions forms a layered structure can also be called a multi-layer graft portion. That is, in one embodiment of the present invention, the graft portion may include (i) a composite of multiple types of graft portions, (ii) a multi-stage polymerization graft portion and/or (iii) a multi-layer graft portion.
  • the graft portion in the resulting polymer fine particles (A) is At least a portion of any polymer may be coated.
  • the arbitrary polymer and the graft portion are polymerized in this order, which means that the arbitrary polymer and the graft portion are polymerized in multiple stages.
  • the polymer microparticles (A) obtained by multistage polymerization of an arbitrary polymer and a graft portion can also be said to be a multistage polymer.
  • the graft part can cover at least a portion of any polymer (for example, an elastic body described later), or can cover the whole of any polymer.
  • part of the graft part may enter inside any polymer.
  • At least a portion of the graft portion preferably covers at least a portion of the elastic body. In other words, at least part of the graft portion is preferably present on the outermost side of the fine polymer particles (A).
  • any polymer (for example, an elastic body to be described later) and the graft portion may form a layered structure.
  • the elastic body forms the innermost layer (also referred to as a core layer) and the layer of the graft portion is formed as the outermost layer (also referred to as a shell layer) on the outside of the elastic body is also an aspect of the present invention.
  • a structure in which an elastic body is used as a core layer and a graft portion is used as a shell layer can be called a core-shell structure.
  • the polymer fine particles (A) in which the elastic body and the graft part form a layered structure (core-shell structure) can be called a multi-layered polymer or a core-shell polymer. That is, in one embodiment of the present invention, the polymer fine particle (A) may be a multi-stage polymer and/or a multi-layer polymer or core-shell polymer. However, the fine polymer particles (A) are not limited to the above configuration as long as they have a graft portion.
  • the polymer fine particles (A) further have an elastic body.
  • the above-mentioned graft portion is preferably a polymer grafted to the elastic body. That is, the fine polymer particles (A) are more preferably a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body.
  • An embodiment of the present invention will be described below, taking as an example the case where the polymer fine particles (A) are a rubber-containing graft copolymer.
  • the elastic body preferably contains one or more selected from the group consisting of diene rubber, (meth)acrylate rubber and organosiloxane rubber.
  • the elastic body may contain natural rubber in addition to the rubbers described above.
  • the elastic body can also be called an elastic portion or a rubber particle.
  • the elastic body contains diene rubber (Case A)
  • Case A the resulting resin composition can provide a cured product with excellent toughness and impact resistance.
  • a cured product having excellent toughness and/or impact resistance can also be said to be a cured product having excellent durability.
  • the diene-based rubber is an elastic body containing, as a structural unit, a structural unit derived from a diene-based monomer.
  • the diene-based monomer can also be called a conjugated diene-based monomer.
  • the diene rubber contains 50 to 100% by weight of structural units derived from a diene monomer out of 100% by weight of structural units, and a diene monomer other than a diene monomer copolymerizable with a diene monomer. 0 to 50% by weight of a structural unit derived from a vinyl-based monomer.
  • the diene-based rubber may contain structural units derived from (meth)acrylate-based monomers as structural units in an amount smaller than the structural units derived from diene-based monomers.
  • diene-based monomers examples include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), and 2-chloro-1,3-butadiene. These diene-based monomers may be used alone or in combination of two or more.
  • Vinyl-based monomers other than diene-based monomers copolymerizable with diene-based monomers include, for example, styrene, ⁇ -methylstyrene, and monochlorostyrene.
  • Vinylarenes such as , dichlorostyrene; Vinylcarboxylic acids such as acrylic acid and methacrylic acid; Vinyl cyanides such as acrylonitrile and methacrylonitrile; Vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; , propylene, butylene, and isobutylene; and polyfunctional monomers such as diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, and divinylbenzene.
  • the vinyl-based monomer A described above may be used alone or in combination of two or more. Among the vinyl-based monomers A described above, styrene is particularly preferred.
  • the structural unit derived from the vinyl-based monomer A is an optional component.
  • the diene-based rubber may be composed only of structural units derived from diene-based monomers.
  • the diene-based rubber may be butadiene rubber (also referred to as polybutadiene rubber) composed of structural units derived from 1,3-butadiene, or butadiene- Styrene rubber (also called polystyrene-butadiene) is preferred, and butadiene rubber is more preferred.
  • the polymer fine particles (A) containing the diene rubber can more effectively exhibit the desired effects.
  • butadiene-styrene rubber is more preferable in that the transparency of the resulting cured product can be enhanced by adjusting the refractive index.
  • the (meth)acrylate rubber is an elastic body containing, as a structural unit, a structural unit derived from a (meth)acrylate monomer.
  • the (meth)acrylate rubber contains 50 to 100% by weight of structural units derived from a (meth)acrylate monomer in 100% by weight of the structural units, and It may contain 0 to 50% by weight of constitutional units derived from vinyl monomers other than polymerizable (meth)acrylate monomers.
  • the (meth)acrylate-based rubber may contain structural units derived from a diene-based monomer in an amount smaller than the structural units derived from the (meth)acrylate-based monomer. good.
  • (meth)acrylate monomers examples include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, and dodecyl (meth)acrylate.
  • Alkyl (meth)acrylates such as stearyl (meth)acrylate and behenyl (meth)acrylate; Aromatic ring-containing (meth)acrylates such as phenoxyethyl (meth)acrylate and benzyl (meth)acrylate; ) acrylate, hydroxyalkyl (meth)acrylates such as 4-hydroxybutyl (meth)acrylate; glycidyl (meth)acrylates such as glycidyl (meth)acrylate and glycidylalkyl (meth)acrylate; alkoxyalkyl (meth)acrylates; Allylalkyl (meth)acrylates such as allyl (meth)acrylate and allylalkyl (meth)acrylate; monoethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, etc.
  • Examples include polyfunctional (meth)acrylates. These (meth)acrylate monomers may be used alone or in combination of two or more. Among these (meth)acrylate monomers, ethyl (meth)acrylate, butyl (meth)acrylate and 2-ethylhexyl (meth)acrylate are preferred, and butyl (meth)acrylate is more preferred.
  • the (meth)acrylate rubber is preferably one or more selected from the group consisting of ethyl (meth)acrylate rubber, butyl (meth)acrylate rubber and 2-ethylhexyl (meth)acrylate rubber.
  • butyl (meth)acrylate rubber is more preferred.
  • Ethyl (meth)acrylate rubber is rubber composed of structural units derived from ethyl (meth)acrylate
  • butyl (meth)acrylate rubber is rubber composed of structural units derived from butyl (meth)acrylate
  • a meth)acrylate rubber is a rubber composed of structural units derived from 2-ethylhexyl (meth)acrylate.
  • the glass transition temperature (Tg) of the elastic body is lowered, so that the polymer fine particles (A) and the resin composition having a low Tg can be obtained.
  • the obtained resin composition can provide a cured product having excellent toughness, and (ii) the viscosity of the resin composition can be made lower.
  • the vinyl-based monomer other than the (meth)acrylate-based monomer copolymerizable with the (meth)acrylate-based monomer (hereinafter also referred to as vinyl-based monomer B), the vinyl-based monomer The monomers listed in Form A are included. Only one kind of the vinyl-based monomer B may be used, or two or more kinds thereof may be used in combination. Among the vinyl-based monomers B, styrene is particularly preferred.
  • the structural unit derived from the vinyl monomer B is an optional component.
  • the (meth)acrylate rubber may be composed only of structural units derived from (meth)acrylate monomers.
  • the elastic body contains organosiloxane rubber (Case C)
  • Case C the resulting resin composition has sufficient heat resistance and can provide a cured product with excellent impact resistance at low temperatures.
  • Organosiloxane-based rubbers include, for example, (i) composed of alkyl- or aryl-disubstituted silyloxy units such as dimethylsilyloxy, diethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy, and dimethylsilyloxy-diphenylsilyloxy.
  • Organosiloxane polymers (ii) organosiloxane polymers composed of alkyl- or aryl-monosubstituted silyloxy units such as organohydrogensilyloxy in which some of the alkyl side chains are substituted with hydrogen atoms. be done. These organosiloxane polymers may be used alone or in combination of two or more.
  • a polymer composed of dimethylsilyloxy units is referred to as dimethylsilyloxy rubber
  • a polymer composed of methylphenylsilyloxy units is referred to as methylphenylsilyloxy rubber.
  • Polymers composed of oxy units are called dimethylsilyloxy-diphenylsilyloxy rubbers.
  • the organosiloxane-based rubbers (i) include dimethylsilyloxy rubber and methylphenylsilyl because the resulting resin composition containing the powder can provide a cured product or molded product having excellent heat resistance. It is preferably one or more selected from the group consisting of oxyrubber and dimethylsilyloxy-diphenylsilyloxyrubber, and (ii) dimethylsilyloxyrubber is preferred because it is readily available and economical. more preferred.
  • the fine polymer particles (A) preferably contain 80% by weight or more, more preferably 90% by weight or more, of the organosiloxane rubber in 100% by weight of the elastic material contained in the fine polymer particles (A). It is more preferable to have According to the configuration, the obtained resin composition can provide a cured product having excellent heat resistance.
  • the elastic body may further contain an elastic body other than diene rubber, (meth)acrylate rubber and organosiloxane rubber.
  • elastic bodies other than diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers include natural rubbers.
  • the elastomer is butadiene rubber, butadiene-styrene rubber, butadiene-(meth)acrylate rubber, ethyl (meth)acrylate rubber, butyl (meth)acrylate rubber, 2-ethylhexyl (meth)acrylate rubber. , dimethylsilyloxy rubber, methylphenylsilyloxy rubber, and dimethylsilyloxy-diphenylsilyloxy rubber, preferably one or more selected from the group consisting of butadiene rubber, butadiene-styrene rubber, butyl (meth)acrylate It is more preferably one or more selected from the group consisting of rubber and dimethylsilyloxy rubber.
  • a crosslinked structure of elastic body From the viewpoint of maintaining the dispersion stability of the polymer fine particles (A) in the thermosetting resin, it is preferable that a crosslinked structure is introduced into the elastic body.
  • a method for introducing a crosslinked structure into the elastic body a generally used method can be adopted, and examples thereof include the following methods. That is, in the production of the elastic body, a monomer capable of constituting the elastic body is mixed with a cross-linkable monomer such as a polyfunctional monomer and/or a mercapto group-containing compound, and then polymerized. . In this specification, manufacturing a polymer such as an elastomer is also referred to as polymerizing the polymer.
  • Methods for introducing a crosslinked structure into an organosiloxane rubber include the following methods: (A) when polymerizing an organosiloxane rubber, a polyfunctional alkoxysilane compound and another material are combined; (B) introducing a reactive group (e.g., (i) a mercapto group and (ii) a reactive vinyl group, etc.) into an organosiloxane-based rubber, and then to the resulting reaction product, (i) a method of radical reaction by adding an organic peroxide or (ii) a polymerizable vinyl monomer or the like, or (C) a polyfunctional monomer when polymerizing an organosiloxane rubber; and/or a method of mixing a crosslinkable monomer such as a mercapto group-containing compound with other materials, followed by polymerization, and the like.
  • a reactive group e.g., (i) a mercapto group and (ii) a reactive vinyl group, etc.
  • polyfunctional monomers examples include the polyfunctional monomers exemplified in the above section (graft portion).
  • Mercapto group-containing compounds include alkyl group-substituted mercaptans, allyl group-substituted mercaptans, aryl group-substituted mercaptans, hydroxy group-substituted mercaptans, alkoxy group-substituted mercaptans, cyano group-substituted mercaptans, amino group-substituted mercaptans, silyl group-substituted mercaptans, and acid group-substituted mercaptans. mercaptans, halo group-substituted mercaptans, acyl group-substituted mercaptans, and the like.
  • alkyl-substituted mercaptan an alkyl-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkyl-substituted mercaptan having 1 to 10 carbon atoms is more preferable.
  • aryl group-substituted mercaptan a phenyl group-substituted mercaptan is preferred.
  • alkoxy-substituted mercaptan an alkoxy-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkoxy-substituted mercaptan having 1 to 10 carbon atoms is more preferable.
  • the acid group-substituted mercaptan is preferably an alkyl group-substituted mercaptan having a carboxyl group and having 1 to 10 carbon atoms or an aryl group-substituted mercaptan having a carboxyl group and having 1 to 12 carbon atoms.
  • the glass transition temperature of the elastic body is preferably 80° C. or lower, more preferably 70° C. or lower, more preferably 60° C. or lower, more preferably 50° C. or lower, more preferably 40° C. or lower, more preferably 30° C. or lower.
  • ° C. or lower is more preferred, 10 ° C. or lower is more preferred, 0 ° C. or lower is more preferred, -20 ° C. or lower is more preferred, -40 ° C. or lower is more preferred, -45 ° C. or lower is more preferred, and -50 ° C. or lower is more preferred.
  • glass transition temperature may be referred to as "Tg”.
  • polymer fine particles (A) having a low Tg and a resin composition having a low Tg can be obtained.
  • the obtained resin composition can provide a cured product having excellent toughness.
  • the viscosity of the resin composition obtained can be made lower.
  • the Tg of the elastic body can be obtained by performing viscoelasticity measurement using a flat plate made of polymer fine particles (A).
  • Tg can be measured as follows: (1) For a flat plate made of polymer fine particles (A), a dynamic viscoelasticity measuring device (eg, DVA-200 manufactured by IT Keisoku Co., Ltd.) ) is used to perform dynamic viscoelasticity measurement under tensile conditions to obtain a tan ⁇ graph; (2) Regarding the obtained tan ⁇ graph, the tan ⁇ peak temperature is taken as the glass transition temperature.
  • a dynamic viscoelasticity measuring device eg, DVA-200 manufactured by IT Keisoku Co., Ltd.
  • the elastic modulus (rigidity) of the resulting cured product can be suppressed from decreasing, that is, a cured product having a sufficient elastic modulus (rigidity) can be obtained. 20° C. or higher is more preferred, 50° C. or higher is even more preferred, 80° C. or higher is particularly preferred, and 120° C. or higher is most preferred.
  • the Tg of the elastic body can be determined by the composition of the constituent units contained in the elastic body. In other words, the Tg of the resulting elastic body can be adjusted by changing the composition of the monomers used when manufacturing (polymerizing) the elastic body.
  • a group of monomers that provide a homopolymer having a Tg greater than 0 ° C. is referred to as a monomer group a.
  • a group of monomers that provide a homopolymer having a Tg of less than 0° C. when only one type of monomer is polymerized is referred to as a monomer group b.
  • An elastic body G is defined as an elastic body containing 0 to 50% by weight (more preferably 1 to 35% by weight) of structural units derived from one type of monomer.
  • the elastic body G has a Tg greater than 0°C. Moreover, when the elastic body contains the elastic body G, the obtained resin composition can provide a cured product having sufficient rigidity.
  • a crosslinked structure is introduced into the elastic body.
  • Methods for introducing the crosslinked structure include the methods described above.
  • Examples of monomers that can be included in the monomer group a include, but are not limited to, styrene, unsubstituted vinyl aromatic compounds such as 2-vinylnaphthalene; vinyl-substituted compounds such as ⁇ -methylstyrene; Aromatic compounds; ring-alkylated vinyls such as 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene and 2,4,6-trimethylstyrene Aromatic compounds; Ring alkoxylated vinyl aromatic compounds such as 4-methoxystyrene and 4-ethoxystyrene; Ring halogenated vinyl aromatic compounds such as 2-chlorostyrene and 3-chlorostyrene; 4-acetoxystyrene and the like ring-ester-substituted vinyl aromatic compounds; ring hydroxylated vinyl aromatic compounds such as 4-hydroxystyrene
  • Examples of the monomer b include ethyl acrylate, butyl acrylate (also known as butyl acrylate), 2-ethylhexyl acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate, and the like. is mentioned. These monomers b may be used alone or in combination of two or more. Among these monomers b, particularly preferred are ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate.
  • the volume average particle diameter of the elastic body is preferably 0.03 ⁇ m to 50.00 ⁇ m, more preferably 0.05 ⁇ m to 10.00 ⁇ m, more preferably 0.08 ⁇ m to 2.00 ⁇ m, and further preferably 0.10 ⁇ m to 1.00 ⁇ m. It is preferably 0.10 ⁇ m to 0.80 ⁇ m, and particularly preferably 0.10 ⁇ m to 0.50 ⁇ m.
  • the volume average particle diameter of the elastic body is (i) 0.03 ⁇ m or more, an elastic body having a desired volume average particle diameter can be stably obtained, and (ii) when it is 50.00 ⁇ m or less, it can be obtained.
  • the heat resistance and impact resistance of the cured product or molded product to be obtained are improved.
  • the volume average particle size of the elastic body can be measured by using an aqueous suspension containing the elastic body as a sample and using a dynamic light scattering particle size distribution analyzer or the like. A method for measuring the volume average particle size of the elastic body will be described in detail in Examples below.
  • the proportion of the elastic body in the polymer fine particles (A) is preferably 40 to 97 wt%, more preferably 60 to 95 wt%, and 70 to 93 wt%, based on 100 wt% of the polymer fine particles (A) as a whole. is more preferred.
  • the proportion of the elastic body is (i) 40% by weight or more, the obtained resin composition can provide a cured product having excellent toughness and impact resistance, and (ii) is 97% by weight or less. In this case, since the polymer fine particles (A) do not easily aggregate, the resin composition does not become highly viscous, and as a result, the obtained resin composition can be excellent in handling.
  • the elastomer is swellable in a suitable solvent, but substantially insoluble.
  • the elastic body is preferably insoluble in the thermosetting resin used.
  • the elastic body preferably has a gel content of 60% by weight or more, more preferably 80% by weight or more, even more preferably 90% by weight or more, and particularly preferably 95% by weight or more.
  • the obtained resin composition can provide a cured product having excellent toughness.
  • the method for calculating the gel content is as follows. First, an aqueous suspension containing the polymer fine particles (A) is obtained, and then powder particles of the polymer fine particles (A) are obtained from the aqueous suspension.
  • the method for obtaining powdery particles of the polymer microparticles (A) from the aqueous suspension is not particularly limited. For example, (i) aggregate the polymer microparticles (A) in the aqueous suspension, ) dehydrating the obtained aggregates, and (iii) further drying the aggregates to obtain powder particles of the polymer fine particles (A). Next, 2.0 g of powder particles of polymer fine particles (A) are dissolved in 50 mL of methyl ethyl ketone (MEK).
  • MEK methyl ethyl ketone
  • the obtained MEK melt is separated into a component soluble in MEK (MEK soluble matter) and a component insoluble in MEK (MEK insoluble matter).
  • MEK soluble matter MEK soluble matter
  • MEK insoluble matter MEK insoluble matter
  • a centrifuge manufactured by Hitachi Koki Co., Ltd., CP60E
  • the obtained MEK lysate was subjected to centrifugation for 1 hour at a rotation speed of 30000 rpm, and the lysate was subjected to MEK soluble. It is separated into a soluble portion and an MEK insoluble portion.
  • a total of 3 sets of centrifugation operations are carried out.
  • the weights of the obtained MEK soluble matter and MEK insoluble matter are measured, and the gel content is calculated from the following formula.
  • the "elastic body" of the fine polymer particles (A) may consist of only one type of elastic body having the same composition of structural units.
  • the "elastic body" of the fine polymer particles (A) is one selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers.
  • the "elastic body" of the fine polymer particles (A) may consist of a plurality of types of elastic bodies having different compositions of structural units.
  • the "elastic body” of the fine polymer particles (A) may be two or more selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers.
  • the "elastic body” of the fine polymer particles (A) may be one selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers.
  • the "elastic body" of the fine polymer particles (A) may be a plurality of types of diene-based rubbers, (meth)acrylate-based rubbers, or organosiloxane-based rubbers each having a different composition of structural units.
  • the "elastic body" of the fine polymer particles (A) is composed of a plurality of types of elastic bodies having different compositions of structural units.
  • each of the plurality of types of elastic bodies is defined as elastic body 1 , elastic body 2 , . . . , and elastic body n .
  • n is an integer of 2 or more.
  • the "elastic body" of the fine polymer particles (A) may include a composite of separately polymerized elastic bodies 1 , 2 , . . . , and elastic body n .
  • the "elastic body" of the fine polymer particles (A) may include one elastic body obtained by polymerizing the elastic body 1 , the elastic body 2 , . . . and the elastic body n in order. Such polymerization of a plurality of elastic bodies (polymers) in order is also called multistage polymerization. A single elastic body obtained by multi-stage polymerization of a plurality of types of elastic bodies is also referred to as a multi-stage polymerized elastic body. A method for producing the multi-stage polymer elastic body will be described in detail later.
  • a multistage polymerized elastic body composed of elastic body 1 , elastic body 2 , . . . , and elastic body n will be described.
  • the elastic body n may cover at least a portion of the elastic body n - 1, or may cover the entirety of the elastic body n-1 .
  • part of the elastic body n may be inside the elastic body n-1 .
  • each of the plurality of elastic bodies may form a layered structure.
  • the multi-stage polymerized elastic body is composed of elastic body 1 , elastic body 2 , and elastic body 3
  • the elastic body 1 forms the innermost layer
  • the elastic body 2 layer is formed on the outer side of the elastic body 1
  • a mode in which the layer of the elastic body 3 is formed as the outermost layer of the elastic body outside the layer of the elastic body 2 is also one mode of the present invention.
  • a multi-stage polymerized elastic body in which each of a plurality of elastic bodies forms a layered structure can also be called a multi-layered elastic body.
  • the "elastic body" of the fine polymer particles (A) is (i) a composite of multiple types of elastic bodies, (ii) a multi-stage polymer elastic body and/or (iii) a multi-layer elastic It may contain a body.
  • the rubber-containing graft copolymer preferably further has a surface-crosslinked polymer in addition to the elastic body and the graft portion graft-bonded to the elastic body.
  • the fine polymer particles (A) preferably further have a surface-crosslinked polymer in addition to the elastic body and the graft portion graft-bonded to the elastic body.
  • An embodiment of the present invention will be described below, taking as an example the case where the polymer fine particles (A) (for example, a rubber-containing graft copolymer) further has a surface-crosslinked polymer.
  • the following effects may also be obtained: (i) the effect of lowering the viscosity of the resin composition described later, and (ii) the effect of increasing the crosslink density in the elastic body. and (iii) the effect of increasing the graft efficiency of the graft.
  • the crosslink density in the elastic means the degree of the number of crosslink structures in the whole elastic.
  • the surface-crosslinked polymer contains, as structural units, 30 to 100% by weight of structural units derived from a polyfunctional monomer and 0 to 70% by weight of structural units derived from other vinyl monomers, a total of 100 % by weight of the polymer.
  • Polyfunctional monomers that can be used for polymerization of the surface-crosslinked polymer include the same monomers as the polyfunctional monomers described above.
  • polyfunctional monomers that can be preferably used for polymerization of the surface-crosslinked polymer include allyl methacrylate, ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate (e.g. 1,3-butylene glycol dimethacrylate), butanediol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, and polyethylene glycol di(meth)acrylates. Only one type of these polyfunctional monomers may be used, or two or more types may be used in combination.
  • the polymer microparticles (A) may contain a surface-crosslinked polymer polymerized independently of the polymerization of the rubber-containing graft copolymer, or may contain a surface-crosslinked polymer polymerized together with the rubber-containing graft copolymer. May include coalescing.
  • the fine polymer particles (A) may be a multi-stage polymer obtained by multi-stage polymerization of an elastic body, a surface-crosslinked polymer and a graft portion in this order. In any of these embodiments, the surface-crosslinked polymer can cover at least a portion of the elastic body.
  • the surface-crosslinked polymer can also be regarded as part of the elastic body.
  • the surface-crosslinked polymer can also be regarded as a part of the rubber-containing graft copolymer, and can also be said to be a surface-crosslinked polymer portion.
  • the graft portion may be (i) graft-bonded to an elastic body other than the surface-crosslinked polymer, and (ii) to the surface-crosslinked polymer. (iii) may be graft-bonded to both an elastic body other than the surface-crosslinked polymer and the surface-crosslinked polymer.
  • the volume-average particle diameter of the elastic body mentioned above means the volume-average particle diameter of the elastic body containing the surface-crosslinked polymer.
  • the surface cross-linked polymer may cover a portion of the elastic or may cover the entire elastic.
  • part of the surface-crosslinked polymer may be embedded inside the elastic body.
  • the graft portion may cover a portion of the surface cross-linked polymer or may cover the entire surface cross-linked polymer.
  • part of the graft portion may be embedded inside the surface-crosslinked polymer.
  • the elastic body, the surface-crosslinked polymer and the graft portion may have a layered structure.
  • the elastic body is the innermost layer (core layer)
  • the surface-crosslinked polymer layer is present as an intermediate layer outside the elastic body
  • the graft portion layer is the outermost layer (shell layer) outside the surface-crosslinked polymer.
  • present aspect is also an aspect of the invention.
  • the volume average particle diameter (Mv) of the fine polymer particles (A) is preferably from 0.03 ⁇ m to 50.00 ⁇ m, since a highly stable resin composition having a desired viscosity can be obtained.
  • 05 ⁇ m to 10.00 ⁇ m is more preferable, 0.08 ⁇ m to 2.00 ⁇ m is more preferable, 0.10 ⁇ m to 1.00 ⁇ m is still more preferable, 0.10 ⁇ m to 0.80 ⁇ m is even more preferable, and 0.10 ⁇ m to 0.50 ⁇ m is particularly preferred.
  • the volume average particle diameter (Mv) of the polymer fine particles (A) is within the above range, the advantage is that the polymer fine particles (A) have good dispersibility in the resin (D) (for example, thermosetting resin). also have
  • the "volume average particle diameter (Mv) of the polymer microparticles (A)" is intended to be the volume average particle diameter of the primary particles of the polymer microparticles (A), unless otherwise specified. do.
  • the volume average particle size of the polymer fine particles (A) can be measured using a dynamic light scattering particle size distribution analyzer or the like using an aqueous latex containing the polymer fine particles (A) as a sample.
  • the fine polymer particles (A) can be produced, for example, by polymerizing an elastic body and then graft-polymerizing a polymer forming a graft portion to the elastic body in the presence of the elastic body.
  • the polymer microparticles (A) can be produced by known methods such as emulsion polymerization, suspension polymerization, and microsuspension polymerization. Specifically, the polymerization of the elastic body, the polymerization of the graft portion (graft polymerization), and the polymerization of the surface-crosslinked polymer in the fine polymer particles (A) are performed by known methods such as emulsion polymerization, suspension polymerization, It can be carried out by a method such as a microsuspension polymerization method. Among these, the emulsion polymerization method is particularly preferable as the method for producing the polymer fine particles (A).
  • composition design of the polymer microparticles (A) is easy, (ii) industrial production of the polymer microparticles (A) is easy, and (iii) in the first production method It has the advantage that a latex suitable for use is readily available.
  • the method for producing the elastic body, the graft portion, and the surface-crosslinked polymer having any configuration that can be contained in the fine polymer particles (A) will be described.
  • the elastic body contains at least one selected from the group consisting of diene-based rubbers and (meth)acrylate-based rubbers.
  • the elastic body can be produced, for example, by a method such as emulsion polymerization, suspension polymerization, or microsuspension polymerization. .
  • the elastic body contains organosiloxane rubber.
  • the elastic body can be produced, for example, by a method such as emulsion polymerization, suspension polymerization, or microsuspension polymerization. .
  • the "elastic body” of the fine polymer particles (A) consists of a plurality of types of elastic bodies (eg, elastic body 1 , elastic body 2 , . . . , elastic body n ) will be described.
  • the elastic bodies 1 1 , 2 2 , . may be produced.
  • a multi-stage polymerized elastic body can be obtained by sequentially performing the following steps (1) to (4): (1) elastic body 1 is polymerized to obtain elastic body 1 ; ( 3) Polymerize elastic 3 in the presence of elastic 1 + 2 to obtain three-step elastic 1+2+3 ; ( 4) Thereafter, following the same procedure, the elastic body n is polymerized in the presence of the elastic body 1+2+...+(n-1) to obtain the multi-stage polymerized elastic body 1+2+...+n .
  • the graft portion can be formed, for example, by polymerizing a monomer used for forming the graft portion by known radical polymerization in the presence of an arbitrary polymer (for example, an elastic body).
  • an arbitrary polymer for example, an elastic body.
  • the polymerization of the graft portion is preferably carried out by emulsion polymerization.
  • the graft portion can be manufactured, for example, according to the method described in WO2005/028546.
  • a method of manufacturing a graft portion when the graft portion is composed of a plurality of types of graft portions will be described.
  • the graft portion 1 1 , the graft portion 2 2 , . (composite) may be produced.
  • a multi-stage polymerized graft portion can be obtained by sequentially performing the steps (1) to (4) below: (1) Graft portion 1 is polymerized to obtain graft portion 1 ; ( 3) then polymerize graft portion 3 in the presence of graft portion 1 + 2 to obtain three-step graft portion 1+2+3 ; ( 4) Thereafter, after performing the same procedure, the graft portion n is polymerized in the presence of the graft portion 1 + 2+ .
  • the polymer microparticles (A) may be produced by polymerizing the graft portions having a plurality of types of graft portions and then graft-polymerizing the graft portions onto the elastic body. .
  • the polymer microparticles (A) may be produced by sequentially carrying out multistage graft polymerization of a plurality of types of polymers constituting the graft portion to the elastic body in the presence of the elastic body.
  • a surface-crosslinked polymer can be formed by polymerizing a monomer used for forming the surface-crosslinked polymer by known radical polymerization in the presence of an arbitrary polymer (for example, an elastic body).
  • an arbitrary polymer for example, an elastic body.
  • the polymerization of the surface-crosslinked polymer is preferably carried out by an emulsion polymerization method.
  • a known emulsifier (dispersant) can be used as an emulsifier (dispersant) for the production of the polymer fine particles (A).
  • the emulsifier is preferably an emulsifier with polyoxyethylene groups.
  • the emulsifier having a polyoxyethylene group will be described in detail in the section (2-4. Emulsifier) below.
  • thermal decomposition initiator When an emulsion polymerization method is adopted as the method for producing the polymer fine particles (A), a thermal decomposition initiator can be used for the production of the polymer fine particles (A).
  • the thermal decomposition initiators include, for example, (i) 2,2′-azobisisobutyronitrile, and (ii) peroxides such as organic and inorganic peroxides, and other known initiators. agents can be mentioned.
  • organic peroxides examples include t-butyl peroxyisopropyl carbonate, paramenthane hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, and t- and hexyl peroxide.
  • inorganic peroxides include hydrogen peroxide, potassium persulfate, and ammonium persulfate.
  • a redox initiator can also be used for the production of polymer fine particles (A).
  • the redox initiators include (i) peroxides such as organic and inorganic peroxides and (ii) transition metal salts such as iron(II) sulfate, sodium formaldehyde sulfoxylate, and glucose. It is an initiator used in combination with a reducing agent.
  • a chelating agent such as disodium ethylenediaminetetraacetate and, if necessary, a phosphorus-containing compound such as sodium pyrophosphate may be used in combination.
  • a redox initiator When a redox initiator is used, polymerization can be carried out even at a low temperature at which the peroxide is not substantially thermally decomposed, and the polymerization temperature can be set in a wide range. Therefore, it is preferable to use a redox initiator.
  • redox initiators using organic peroxides such as cumene hydroperoxide, dicumyl peroxide, paramenthane hydroperoxide, and t-butyl hydroperoxide as peroxides are preferred.
  • the amount of the initiator used, and the amount of the reducing agent, transition metal salt, chelating agent, etc. used when a redox initiator is used, can be used within a known range.
  • a known chain transfer agent is used for the purpose of introducing a crosslinked structure into the elastic body, the graft part or the surface crosslinked polymer, when using a polyfunctional monomer in the polymerization of the elastic body, the graft part or the surface crosslinked polymer.
  • a chain transfer agent can be used within the range of the amount used.
  • a surfactant can be used in the production of the polymer microparticles (A).
  • the types and amounts of the surfactants used are within known ranges.
  • a latex containing the polymer fine particles (A) and an emulsifier can be obtained by the above-described method for producing the polymer fine particles (A). That is, the description in the section (2-3. Production method of fine polymer particles (A)) can be incorporated as the description on the production method of latex.
  • the emulsifier contained in the latex contains a lipophilic portion and a hydrophilic portion, the hydrophilic portion having a polyoxyethylene group.
  • an emulsifier containing a lipophilic site and a hydrophilic site, the hydrophilic site having a polyoxyethylene group may be simply referred to as "an emulsifier having a polyoxyethylene group”.
  • the origin of the polyoxyethylene group-containing emulsifier contained in the latex is not particularly limited.
  • the emulsifier having a polyoxyethylene group contained in the latex is the emulsifier used in the production of the polymer fine particles (A).
  • the emulsifier used in the production of the polymer fine particles (A) may be derived from
  • a lipophilic site is a site with a chemical structure that has a high affinity with organic solvents. Since the particle surface of the fine polymer particles (A) has many hydrophobic portions, the lipophilic sites also have a high affinity with the fine polymer particles (A).
  • Lipophilic sites include sites having an aliphatic group, an aromatic group, and the like. Among these, from the viewpoint of availability, the lipophilic site is preferably a site having an aliphatic group.
  • the aliphatic group that constitutes the lipophilic portion may be linear or cyclic, and may be saturated or unsaturated. When the aliphatic group is chain, it may be linear or branched. Chain aliphatic groups include alkyl groups and alkenyl groups having 2 to 20 carbon atoms.
  • Cyclic aliphatic groups include cycloalkyl groups having 3 to 10 carbon atoms.
  • a hydrogen atom bonded to a chain aliphatic group may be substituted with one or more substituents.
  • a halogen atom etc. are mentioned as the said substituent.
  • a hydrophilic site is a site having a chemical structure with a high affinity for water, and has a polyoxyethylene group ( --CH.sub.2-- CH.sub.2 --O--).
  • the polyoxyethylene group preferably has an added mole number of ethylene oxide (n in the structural formula shown below) of 1 to 15, more preferably 1 to 10. It is more preferably 2-10, and particularly preferably 4-10.
  • Examples of the emulsifier having a polyoxyethylene group include an emulsifier in which the hydrophilic moiety contains a sulfate ester moiety (hereinafter, an emulsifier in which the hydrophilic moiety contains a sulfate ester moiety is also referred to as a "sulfur emulsifier”), or an emulsifier in which the hydrophilic moiety contains a phosphorus
  • An emulsifier containing an acid ester moiety hereinafter, an emulsifier containing a phosphate ester moiety as a hydrophilic moiety is also referred to as a "phosphorus emulsifier” is preferred.
  • the emulsifier is more preferably a sulfur-based emulsifier in which the hydrophilic portion contains a sulfate ester portion. Further, from the viewpoint of less environmental load, the emulsifier is more preferably a phosphorous emulsifier containing a phosphate ester moiety.
  • Specific examples of phosphorus-based emulsifiers in which the hydrophilic moiety has a polyoxyethylene group and a phosphate ester moiety include polyoxyethylene alkyl ether phosphate, sodium polyoxyethylene alkyl ether phosphate, and potassium polyoxyethylene alkyl ether phosphate. etc. These polyoxyethylene group-containing emulsifiers may be used alone or in combination of two or more.
  • the amount of the polymer fine particles (A) in the latex is not particularly limited. Any amount that can be formed may be used. From the viewpoint of efficiently producing the purified polymer microparticles (A), the amount of the polymer microparticles (A) in the latex is preferably 10% by weight to 50% by weight with respect to 100% by weight of the latex. , more preferably 15% to 50% by weight, even more preferably 25% to 50% by weight, and particularly preferably 30% to 50% by weight. When the amount of polymer fine particles (A) in the latex is within the above range, purified polymer fine particles (A) can be produced efficiently.
  • the amount of the emulsifier in the latex is not particularly limited, but it is preferable to use as little as possible within a range that does not interfere with the emulsification stability of the fine polymer particles (A).
  • organic solvent (B) Although the organic solvent (B) is not particularly limited, it is preferably an organic solvent that exhibits partial solubility in water.
  • organic solvent partially soluble in water means an organic solvent whose solubility in water at 20°C is 5% to 40% by weight.
  • the solubility of the organic solvent (B) at 20°C in water at 20°C is preferably 5% to 40% by weight, more preferably 5% to 30% by weight.
  • the solubility of the organic solvent (B) at 20°C in water at 20°C is 40% by weight or less, when the latex containing the polymer fine particles (A) and the emulsifier is mixed with the organic solvent (B), the organic solvent The fine polymer particles (A) do not substantially solidify and precipitate in (B). Therefore, there is an advantage that the mixing operation can be performed smoothly.
  • the solubility of the organic solvent (B) at 20°C in water at 20°C is 5% by weight or more, the organic solvent (B) has sufficient miscibility with the latex containing the polymer microparticles (A) and the emulsifier. have Therefore, there is an advantage that the mixing operation can be performed smoothly. That is, when the organic solvent (B) is an organic solvent partially soluble in water, the latex containing the fine polymer particles (A) and the emulsifier can be smoothly mixed with the organic solvent (B). have the advantage of being able to
  • the organic solvent (B) is such that when the organic solvent (B) is mixed with the latex containing the polymer fine particles (A) and an emulsifier, the polymer fine particles (A) are substantially coagulated in the organic solvent (B).
  • Preferred are organic solvents in which mixing can be achieved without precipitating. This configuration has the advantage that the latex containing the polymer fine particles (A) and the emulsifier and the organic solvent (B) can be smoothly mixed.
  • organic solvent (B) examples include esters (e.g., methyl acetate, ethyl acetate, propyl acetate, butyl acetate, etc.), ketones (e.g., acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, etc.), and alcohols.
  • esters e.g., methyl acetate, ethyl acetate, propyl acetate, butyl acetate, etc.
  • ketones e.g., acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, etc.
  • alcohols e.g., acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, etc.
  • Methyl ethyl ketone has a high affinity with the organic solvent (C) and resin (D) described below, and is readily available. Therefore, the organic solvent (B) preferably contains 50% by weight or more of methyl ethyl ketone, more preferably 75% by weight or more, and particularly preferably 85% by weight or more.
  • the organic solvent mixing step is a step of mixing a latex containing fine polymer particles (A) and an emulsifier with an organic solvent (B).
  • the organic solvent mixing step can also be said to be a step of simply combining a latex containing fine polymer particles (A) and an emulsifier with an organic solvent (B).
  • the organic solvent mixing step does not include the step of allowing the mixture obtained by combining the latex and the organic solvent (B) to stand for 5 minutes or more, but also includes the step of stirring the mixture for 5 minutes or more. do not have.
  • the organic solvent mixing step is a step of allowing the mixture obtained by combining the latex and the organic solvent (B) to stand for less than 5 minutes, and/or stirring the mixture for less than 5 minutes. A step may be included.
  • a general apparatus When standing after the organic solvent mixing step, a general apparatus includes a stirring tank with a stirring blade. When stirring is performed after the organic solvent mixing step, general equipment includes a stirring vessel with stirring blades, a static mixer (static mixer), and a line mixer (a system in which a stirring device is incorporated into a part of piping). .
  • the organic solvent (B) may be added to the latex while stirring the latex
  • the latex may be added to the organic solvent (B) while stirring the organic solvent (B);
  • B) may be added together (simultaneously) to an empty stirred tank while stirring the mixture in the tank.
  • the suitable amount of the organic solvent (B) used in the organic solvent mixing step varies depending on the amount of the polymer fine particles (A) in the latex, the type of the polymer fine particles (A), etc., and is not particularly limited.
  • the amount of the organic solvent (B) used in the organic solvent mixing step is preferably 50 to 400 parts by weight, preferably 70 to 300 parts by weight, with respect to 100 parts by weight of the latex. More preferably, 70 parts by weight to 200 parts by weight, more preferably 70 parts by weight to 150 parts by weight, more preferably 70 parts by weight to 140 parts by weight, more preferably 70 parts by weight to It is more preferably 130 parts by weight, further preferably 70 to 120 parts by weight, and particularly preferably 70 to 110 parts by weight.
  • the amount of the organic solvent (B) used in the organic solvent mixing step is 50 parts by weight or more, (i) the polymer fine particles (A) can be stably dispersed in the organic solvent (B), ( ii) It has the advantage that the mixture of latex and organic solvent (B) tends to be of low viscosity and easy to handle. Further, when the amount of the organic solvent (B) used in the organic solvent mixing step is 400 parts by weight or less, the organic solvent (B) can be efficiently removed in the production of the resin composition described later. have advantages.
  • the temperature of the latex and the organic solvent (B) to be subjected to the organic solvent mixing step is not particularly limited as long as the latex and the organic solvent (B) can be uniformly mixed.
  • the mixed state maintaining step is a step of either or both standing and stirring the mixture obtained in the organic solvent mixing step.
  • the mixture of the latex and the organic solvent (B) is allowed to stand, stirred, or both to dissociate the emulsifier having a polyoxyethylene group from the polymer fine particles (A). It can also be said to be a step of moving the fine polymer particles (A) into the organic solvent (B).
  • the mixture In the mixed state maintaining step, it is preferable to either or both allow the mixture to stand still and stir until the viscosity of the mixture obtained in the organic solvent mixing step becomes constant.
  • the present inventor newly discovered the following findings regarding the viscosity of the mixture of latex and organic solvent (B).
  • the viscosity of the mixture remains constant even after a certain period of time from immediately after mixing and does not change. This is because, when the latex contains linear alkylbenzene, almost all of the fine polymer particles (A) in the latex migrate into the organic solvent (B) immediately after mixing the latex with the organic solvent (B).
  • an embodiment of the present invention is not limited to this speculation.
  • the viscosity of the mixture increases with the lapse of time immediately after mixing. / Or after stirring for a certain period of time, it becomes constant and eventually stops changing completely (saturates).
  • the phrase “constant viscosity” refers to the viscosity of the mixture (V t1 ) at a certain point, and the viscosity of the mixture (V t2 ), the absolute value of the difference (V t2 - V t1 ) is the difference between the viscosity (V 0 ) at the start of mixing (0 minutes) and the viscosity (V 1 ) at saturation when the viscosity has completely stopped changing. It is intended that the value (%) obtained by dividing by (V 1 ⁇ V 0 ) and multiplying by 100 (
  • the emulsifier having a polyoxyethylene group can be sufficiently dissociated from the polymer fine particles (A), and the polymer fine particles (A ) can be sufficiently transferred into the organic solvent (B).
  • the amount of polymer microparticles (A) mixed in the aqueous phase (effluent) separated and removed in the separation step described later can be remarkably reduced.
  • the change in viscosity of the mixture containing the emulsifier having a polyoxyethylene group is presumed to be due to the slow dissociation rate between the polymer fine particles (A) and the emulsifier having a polyoxyethylene group. An embodiment is not limited to this inference.
  • the viscosity change of the mixture may be monitored while the mixture of the latex and the organic solvent (B) is allowed to stand and/or stirred.
  • Various methods can be used to monitor changes in the viscosity of the mixture, and are not particularly limited.
  • the mixture is sampled at a time while it is still and/or stirred, and the viscosity of the resulting sample is measured using a viscometer. can do.
  • a method for measuring the viscosity of the mixture with a viscometer will be described in detail in the examples below.
  • a mixture of 100 parts by weight of latex (solid concentration of polymer microparticles (A) in 100% by weight of latex: 10 to 50% by weight) and 50 to 400 parts by weight of organic solvent (B). is allowed to stand in the tank for 30 minutes or more, the viscosity of the mixture becomes constant.
  • 100 parts by weight of latex solid concentration of polymer microparticles (A) in 100% by weight of latex: 10 to 50% by weight
  • 50 to 400 parts by weight of organic solvent (B) By stirring the mixture in a stirring vessel with a stirring blade at a stirring speed of 10 rpm to 5000 rpm for a stirring time of 10 minutes or more, the viscosity of the mixture becomes constant.
  • the time required for the mixture to stand still depends on the type of the polymer fine particles (A), the emulsifier and the organic solvent (B) having a polyoxyethylene group, and the amount of the polymer fine particles (A) in the mixture. (concentration) and the concentration in the mixture of emulsifiers having polyoxyethylene groups, etc., and is not particularly limited.
  • the time required for the mixture to stand still in the mixed state maintaining step is, for example, preferably 30 minutes or longer, more preferably 45 minutes or longer, and even more preferably 60 minutes or longer. A minute or more is particularly preferred.
  • the emulsifier having a polyoxyethylene group can be sufficiently dissociated from the polymer fine particles (A), and the polymer fine particles (A) are sufficiently dispersed in the organic solvent (B). can be moved. As a result, the amount of the fine polymer particles (A) mixed in the aqueous phase (effluent) separated and removed in the separation step to be described later can be significantly reduced.
  • the upper limit of the time required for the mixture to stand in the mixed state maintaining step is not particularly limited, but from the viewpoint of efficiency, it is preferably 5 hours or less, more preferably 2 hours or less.
  • the suitable temperature of the mixture depends on the type of the polymer fine particles (A), the emulsifier having a polyoxyethylene group and the organic solvent (B), and the solid content concentration in the mixture of the polymer fine particles (A). , the concentration of the polyoxyethylene group-containing emulsifier in the mixture, etc., and is not particularly limited.
  • the temperature of the mixture when subjected to the mixed state maintaining step is, for example, preferably 10°C to 50°C, more preferably 15°C to 40°C, and 20°C to 40°C. is more preferred.
  • the emulsifier having a polyoxyethylene group is sufficiently removed from the polymer fine particles (A). It has the advantage that it can be dissociated.
  • the temperature of the mixture obtained by the mixed state maintaining step can also be said to be “the temperature of the mixture after the mixed state maintaining step”.
  • the mixed state maintaining step may be performed directly in the device (for example, a stirring tank, static mixer, line mixer, etc.) in which the organic solvent mixing step was performed, or may be performed in a device different from the device in which the organic solvent mixing step was performed. good too.
  • the first production method may further include a loose agglomeration step after the mixed state maintaining step.
  • the loose aggregation step is a step of bringing the mixture that has undergone the mixed state maintaining step into contact with water to form aggregates of the polymer fine particles (A) containing the organic solvent (B) in the aqueous phase.
  • the slow aggregation step can also be said to be a step of transferring impurities such as water and emulsifiers from the mixture of the latex and the organic solvent (B) into the aqueous phase.
  • a part of the organic solvent (B) contained in the mixture is also dissolved in water by the operation of bringing the mixture that has undergone the mixed state maintaining step into contact with water, forming an aqueous phase.
  • impurities such as latex-derived moisture and emulsifiers contained in the mixture are also expelled into the aqueous phase. Therefore, the mixture becomes a form in which the fine polymer particles (A) are concentrated in the water-containing organic solvent (B), resulting in formation of aggregates.
  • the slow aggregation step can be carried out under stirring or under flow conditions that can impart fluidity equivalent to stirring. desirable.
  • the loose flocculation step can be carried out, for example, by batch operation or continuous operation in a stirred tank equipped with a stirrer.
  • the method of bringing the mixture into contact with water is not particularly limited as long as the mixture and water come into contact.
  • water to the mixture (i-1) a method of continuously adding a constant amount, (i-2) a method of dividing and adding a constant amount, and (i-3) all at once and (ii) the mixture to water, (ii-1) a method of continuously adding a constant amount, (ii-2) a method of dividing and adding a constant amount, and ( ii-3) A method of adding them all at once, etc. can be applied.
  • the mixture and water it is preferable to continuously supply the mixture and water to a device equipped with a stirring function to bring them into contact with each other to continuously obtain aggregates and an aqueous phase.
  • the shape of the stirring impeller and the device for stirring is not particularly limited.
  • agglomerates generally have floating properties in an aqueous phase
  • the bottom of the device means the position that is 1/3 or less of the height from the bottom of the device to the liquid surface
  • the top of the device means the height from the bottom of the device to the liquid surface. It means that the height is 2/3 or more from the bottom.
  • the amount of water to be brought into contact with the mixture in the slow aggregation step varies depending on the type of polymer fine particles (A), the solid content concentration in the latex of the polymer fine particles (A), and the type and amount of the organic solvent (B).
  • the amount of the water is preferably 40 parts by weight to 350 parts by weight, and 60 parts by weight to 250 parts by weight, with respect to 100 parts by weight of the organic solvent (B) used in the organic solvent mixing step. is more preferable.
  • the amount of water is 40 parts by weight or more, there is an advantage that aggregates of the fine polymer particles (A) are likely to form.
  • the concentration of the organic solvent (B) in the produced aggregates is in a suitable range, and the aggregates are re-dispersed into the organic solvent (C) in the re-dispersion step described later. It has the advantage of being easy to disperse.
  • Suitable temperatures for the mixture and water when subjected to the slow aggregation step vary depending on the types of the polymer fine particles (A), the emulsifier and the organic solvent (B), the concentrations in the mixture of the polymer fine particles (A) and the emulsifier, etc. It is not particularly limited.
  • the temperature of the mixture and water when subjected to the slow-aggregation step and/or the temperature of the aggregates and water phase obtained by the slow-aggregation step is preferably, for example, 10 ° C. to 50 ° C., It is more preferably 15°C to 40°C, even more preferably 20°C to 40°C.
  • the aggregation state is good, and the organic It has the advantage that the solvent is difficult to volatilize.
  • the first production method may further include, after the slow-aggregation step, a separation step of separating aggregates produced in the slow-aggregation step from the aqueous phase.
  • a separation step of separating aggregates produced in the slow-aggregation step from the aqueous phase.
  • the method for separating aggregates from the aqueous phase is not particularly limited.
  • common filtration methods such as filtration using filter paper, filter cloth, or a metal screen with relatively large openings can be used.
  • the amount of the polymer microparticles (A) contained in the aqueous phase separated and removed in the separation step is preferably 5% by weight or less, more preferably 3% by weight or less, based on 100% by weight of the aqueous phase. It is more preferably 2% by weight or less, particularly preferably 1% by weight or less, and most preferably the polymer fine particles (A) are not substantially contained in the aqueous phase.
  • the permeability of the aqueous phase separated and removed in the separation step is preferably 5% or more, more preferably 10% or more, further preferably 15% or more, and 20% or more. is more preferable, and 30% or more is particularly preferable. If the permeability of the water phase is 5% or more, it can be said that the water phase has good permeability. In addition, in many cases, an aqueous phase having a transmittance of 30% or more is not visually confirmed to be cloudy. The method for measuring the permeability of the aqueous phase will be described in detail in the examples below.
  • the preferred temperature of the aggregates and the aqueous phase when subjected to the separation step is the preferred temperature of the aggregates and the aqueous phase obtained by the slow aggregation step described in the section (1-2-9. Slow aggregation step). is the same as the temperature
  • the first production method may further include, after the separation step, a step of repeating one or more cycles selected from (i) and (ii) below (also referred to as a washing step).
  • a first process comprising a second step of forming aggregates of polymer fine particles (A) contained in an aqueous phase, and a third step of separating the aggregates obtained in the second step from the aqueous phase.
  • a second step comprising a second step of forming aggregates of polymer fine particles (A) contained in an aqueous phase, and a third step of separating the aggregates obtained in the second step from the aqueous phase. cycle.
  • the first production method is a method of using an organic solvent (B) in order to obtain purified polymer fine particles (A) from a latex containing polymer fine particles (A).
  • the aggregates of polymer fine particles (A) obtained in the separation step are loose aggregates having reversibility with respect to coalescence and dispersion of particles.
  • loose agglomerate see [1-3. aggregates of fine polymer particles (A)].
  • Aggregates obtained in the separation step are aggregates having a size of, for example, several centimeters or more.
  • Aggregates (i.e., loose aggregates) obtained in the separation step have (i) the property that they tend to form finer-sized aggregates in water (however, aggregates of a size that can be seen by the naked eye), and (ii) in an organic solvent. So, the property that it tends to become agglomerates of very fine size (agglomerates of a size that cannot be seen by the naked eye) and/or that the polymer fine particles (A) contained in the aggregates tend to be dispersed again as primary particles. Prepare. Therefore, by performing the washing step of adding water or an organic solvent to the aggregate, there is an advantage that impurities inside the aggregate can be efficiently washed and removed.
  • the aggregates having a size of, for example, several centimeters or more are turned into very fine lumps (a size that cannot be seen by the naked eye).
  • aggregates), and/or at least part of the polymer fine particles (A) contained in the aggregates are dispersed again as primary particles.
  • impurities inside the aggregates are released into the organic solvent (B) (first step of the first cycle).
  • the polymer microparticles (A) are aggregated to regenerate aggregates having a size of, for example, several centimeters or more (first 2nd step of the cycle of 1).
  • the amount of impurities inside the aggregate can be reduced.
  • the aggregates obtained after the washing process have a reduced content of impurities compared to the aggregates before the washing process.
  • the aggregates obtained after the washing step are loose aggregates, (i) the polymer fine particles (A) return to primary particles or become finer aggregates, and aggregate or become finer aggregates. It can be done reversibly. Therefore, by repeating the washing step, the content of impurities in aggregates can be further reduced.
  • Aggregates obtained by a general method of aggregating the polymer fine particles (A) without using an organic solvent are irreversible with respect to coalescence and dispersion of the polymer fine particles. be. Therefore, it is difficult to reduce or enlarge the aggregates of polymer microparticles obtained by aggregation by subsequent operations (for example, addition of water or an organic solvent). Therefore, even if water or an organic solvent is added to the aggregate, only the surface of the aggregate is washed, and it is not easy to wash and remove impurities inside the aggregate.
  • the productivity can be increased by repeating one or more cycles selected from the first cycle and the second cycle.
  • the organic solvent used in the organic solvent mixing step A method of increasing the amount of (B) and the amount of water used in the loose flocculation step is also conceivable.
  • the polymer fine particles (A) when performing the above-described washing step, without increasing the amount of the organic solvent (B) used in the organic solvent mixing step and the amount of water used in the loose aggregation step, that is, the polymer fine particles (A) It is possible to reduce the amount of impurities such as emulsifiers in the finally obtained purified polymer fine particles (A) without reducing the production amount of . That is, the polymer microparticles (A) in which the content of impurities such as emulsifiers, more specifically the elements P and S derived from the emulsifier, is further reduced by performing the washing step (that is, the purified polymer microparticles (A) ) can be efficiently produced.
  • the number of cycles selected from the first cycle and the second cycle is not particularly limited, and the larger the number of cycles, the more the amount of impurities contained in the aggregates can be reduced. From the viewpoint of obtaining aggregates with extremely low impurity content, in the washing step, it is more preferable to repeat the cycle selected from the first cycle and the second cycle two or more times, and more preferably three or more cycles. It is preferred, and it is particularly preferred to repeat 4 or more cycles.
  • the washing step when the cycle selected from the first cycle and the second cycle is repeated two or more cycles, (i) even if the first cycle is performed two or more times and the second cycle is not performed (ii) the second cycle may be performed two or more times and the first cycle may not be performed; (iii) the first cycle and the second cycle may be performed one or more times, respectively; It may be a mode of performing.
  • the first step of the first cycle is a step of adding an organic solvent (B) to aggregates separated from the aqueous phase.
  • the aggregates become very fine aggregates (aggregates of a size that cannot be seen by the naked eye), and/or at least a portion of the polymer fine particles (A) contained in the aggregates are primary particles. and the impurities inside the aggregates are released into the organic solvent (B).
  • the apparatus and method for adding the organic solvent (B) to the aggregate separated from the aqueous phase include the apparatus and method described in the section (1-2-7. Organic solvent mixing step).
  • a suitable amount of the organic solvent (B) added to the aggregates in the first step of the first cycle varies depending on the amount of the polymer fine particles (A) in the aggregates, the type of the polymer fine particles (A), and the like. , is not particularly limited.
  • the amount of the organic solvent (B) added to the aggregates in the first step of the first cycle is preferably 1 part by weight to 400 parts by weight with respect to 100 parts by weight of the aggregates. It is more preferably from 10 parts by weight to 300 parts by weight, and even more preferably from 10 parts by weight to 100 parts by weight.
  • the amount of the organic solvent (B) added to the aggregates in the first step of the first cycle is 1 part by weight or more, (i) the polymer fine particles (A) are stably contained in the organic solvent (B). It has the advantage that it can be dispersed, (ii) the mixture of aggregates and organic solvent (B) tends to be of low viscosity and easy to handle. Further, when the amount of the organic solvent (B) added to the aggregate in the first step of the first cycle is 400 parts by weight or less, the amount of water added in the second step of the first cycle can be reduced. have the advantage of being able to
  • the temperature of the aggregate and the organic solvent (B) subjected to the first step of the first cycle is not particularly limited as long as it is a temperature at which the aggregate and the organic solvent (B) can be uniformly mixed.
  • the second step of the first cycle is the step of contacting the mixture obtained in the first step of the first cycle with water.
  • aggregates for example, aggregates having a size of several centimeters or more
  • This step can also be said to be a step of transferring impurities such as water and an emulsifier from the mixture of the aggregate and the organic solvent (B) into the aqueous phase.
  • a suitable amount of water to be added to the aggregates in the second step of the first cycle varies depending on the amount of the polymer fine particles (A) in the aggregates, the type of the polymer fine particles (A), etc., and is not particularly limited. .
  • the amount of water added to the aggregates in the second step of the first cycle is preferably 50 parts by weight to 500 parts by weight with respect to 100 parts by weight of the aggregates, and 50 parts by weight to 400 parts by weight. It is more preferably 50 parts by weight to 300 parts by weight.
  • the amount of impurities such as an emulsifier in the finally obtained purified polymer fine particles (A) (e.g.
  • the content of the elements P and S can be reduced. Further, when the amount of water added to the aggregate in the second step of the first cycle is 500 parts by weight or less, the amount of the organic solvent (B) added in the first step of the first cycle can be reduced.
  • the temperatures of the aggregates and water to be subjected to the second step of the first cycle are not particularly limited.
  • the third step of the first cycle is the separation of the aggregates obtained in the second step of the first cycle from the aqueous phase. This step can be performed in the same manner as the separation step. Apparatus and method for carrying out the process, and preferable conditions for carrying out the process refer to the above section (1-2-10. Separation step).
  • the first step of the second cycle is adding water to the aggregates separated from the aqueous phase. Through this process, the aggregates become finer lumps (however, lumps of a size that can be seen with the naked eye), and impurities inside the aggregates are released into the water.
  • the method of adding water to the aggregate is not particularly limited. For example, a method of continuously adding water to aggregates, a method of collectively adding water, and the like can be applied.
  • the device for adding water to the aggregates is not particularly limited.
  • a stirring tank with stirring blades may be used.
  • a suitable amount of water to be added to the aggregates in the first step of the second cycle varies depending on the amount of the polymer fine particles (A) in the aggregates, the type of the polymer fine particles (A), etc., and is not particularly limited. .
  • the amount of water added to the aggregates in the first step of the second cycle is preferably 50 parts by weight to 500 parts by weight with respect to 100 parts by weight of the aggregates, and 50 parts by weight to 400 parts by weight. It is more preferably 50 parts by weight to 300 parts by weight.
  • the amount of water added to the aggregates in the first step of the second cycle is 50 parts by weight or more, the amount of impurities such as emulsifiers in the finally obtained purified polymer fine particles (A) (for example, It has the advantage that the content of the elements P and S) can be reduced.
  • the amount of water added to the aggregate in the first step of the second cycle is 500 parts by weight or less, the amount of organic solvent added in the second step of the second cycle can be reduced. have advantages.
  • the temperatures of the aggregates and water to be subjected to the first step of the second cycle are not particularly limited.
  • the second step of the second cycle is the step of contacting the mixture obtained in the first step of the second cycle with the organic solvent (B). Through this process, fine clumps in the mixture are aggregated to reproduce aggregates having a larger size (for example, a size of several centimeters or more).
  • the method of contacting the mixture with the organic solvent (B) is not particularly limited.
  • a method of continuously adding the organic solvent (B) to the mixture, a method of collectively adding the organic solvent (B), and the like can be applied.
  • the device for adding the organic solvent (B) to the mixture is not particularly limited.
  • the device used in the first step of the second cycle for example, a stirring tank with stirring blades
  • the device used in the first step of the second cycle can be used as it is.
  • a suitable amount of the organic solvent (B) to be added to the mixture in the second step of the second cycle is the type of the polymer microparticles (A), the amount of the polymer microparticles (A) in the mixture, and the amount of water in the mixture. is not particularly limited.
  • the amount of organic solvent (B) added to the mixture in the second step of the second cycle is from 1 part by weight to 400 parts by weight per 100 parts by weight of the water added in the first step of the second cycle. It is preferably 1 part by weight to 300 parts by weight, even more preferably 1 part by weight to 10 parts by weight.
  • the amount of the organic solvent (B) is 1 part by weight or more, there is an advantage that aggregates of the fine polymer particles (A) are easily generated.
  • the concentration of the organic solvent (B) in the generated aggregates is in a suitable range, and the aggregates are dispersed in the organic solvent ( C) has the advantage of being easy to redisperse.
  • Suitable temperatures for the mixture and the organic solvent (B) when subjected to the second step of the second cycle are the types of the polymer fine particles (A), the emulsifier and the organic solvent (B), the polymer fine particles (A) and the emulsifier is not particularly limited, depending on the concentration in the mixture of
  • the temperature of the mixture and the organic solvent (B) when subjected to the second step of the second cycle and/or the temperature of the aggregates and aqueous phase obtained by the second step of the second cycle is, for example, preferably 10°C to 50°C, more preferably 15°C to 40°C, even more preferably 20°C to 40°C.
  • the temperature of the mixture and the organic solvent (B) when subjected to the second step of the second cycle, and / or the temperature of the aggregate and the aqueous phase obtained by the second step of the second cycle is within the above range. In some cases, it has the advantage that the aggregation state is good and the organic solvent used is difficult to volatilize.
  • the third step of the second cycle is the separation of the aggregates obtained in the second step of the second cycle from the aqueous phase. This step can be performed in the same manner as the separation step. Apparatus and method for carrying out the process, and preferable conditions for carrying out the process refer to the above section (1-2-10. Separation step).
  • Method A is a general aggregation method of polymer fine particles (A), for example, a method using a coagulant or a method of heating latex.
  • impurities such as emulsifiers and electrolytes
  • method A it is not easy to remove these impurities from the aggregates even when the aggregates are washed with water.
  • the impurities derived from the production of the latex and the aggregation operation of the polymer fine particles (A) are released from the aggregates and migrate to the aqueous phase. Therefore, in the first manufacturing method, these impurities can be easily removed from the aggregate.
  • Aggregates obtained by method A are strong aggregates that are difficult to redisperse from the aggregates to the state of primary particles of polymer microparticles (A) even by mechanical shearing.
  • the aggregates obtained by the first production method are mixed with, for example, an organic solvent (C) having an affinity for the polymer microparticles (A) under agitation to obtain the weight contained in the aggregates.
  • Most of the coalesced fine particles (A) can be dispersed again as primary particles. That is, the aggregate obtained by the first production method has reversibility in the organic solvent with respect to coalescence and dispersion of particles. In the present specification, such "reversible aggregates" are referred to as "loose aggregates”.
  • the amount of the organic solvent (B) contained in the aggregates is 30% by weight in 100% by weight of the aggregates. % or more, more preferably 35% by weight or more.
  • the purified polymer microparticles (A) can also be obtained as dry powder by subjecting the aggregates to dehydration and/or solvent removal, and then further drying the aggregates. By washing the aggregates with water that does not contain the organic solvent (B) before drying the aggregates, it is possible to prevent particles from coalescing during drying. Through such an operation, a dry powder of purified fine polymer particles (A) with extremely few impurities can be obtained.
  • the content of element S is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 200 ppm or less relative to the weight of the aggregate. It is preferably 100 ppm or less, and particularly preferably 100 ppm or less.
  • the content of the element P in the aggregate obtained by the first production method is preferably 1000 ppm or less, more preferably 500 ppm or less, and more preferably 200 ppm or less relative to the weight of the aggregate. It is preferably 100 ppm or less, and particularly preferably 100 ppm or less.
  • the aggregate obtained by the first production method preferably has a total content of the elements S and P of 2000 ppm or less, more preferably 1000 ppm or less, and 400 ppm or less relative to the weight of the aggregate. is more preferably 200 ppm or less, and particularly preferably 100 ppm or less.
  • the lower the content of the element S and/or P in the aggregate obtained by the first production method the less the adverse effect on the long-term reliability of the resin composition mixed with the resin (D).
  • the content of elements S and/or P in the aggregate obtained by the first production method can also be said to be the content of impurities (contaminants) in the aggregate.
  • the origin of these elements is not particularly limited.
  • the origin of the element S and/or P in the aggregate may be (i) the emulsifier used in the production of the polymer microparticles (A), or (i) the emulsifier used in the production of the polymer microparticles (A).
  • Water and monomers, and trace elements contained in the organic solvent (B) may also be used.
  • the content of elements S and/or P in the aggregate obtained by the first production method can be measured using a fluorescent X-ray analyzer, liquid chromatography, ICP emission spectrometer, or the like.
  • the aggregates separated from the aqueous phase are redispersed in an organic solvent (C). It includes a redispersion step and a resin mixing step of mixing the dispersion obtained in the redispersion step and the resin (D).
  • the method for producing a resin composition according to one embodiment of the present invention includes the method for producing purified polymer fine particles (A) according to one embodiment of the present invention (first production method) as one step.
  • first production method the method for producing purified polymer fine particles (A) according to one embodiment of the present invention
  • an aggregate of purified polymer fine particles (A) is produced as an intermediate product.
  • the method for producing a resin composition according to one embodiment of the present invention aggregates of purified polymer fine particles (A) are used to obtain a resin composition through a redispersion step and a resin mixing step. Therefore, there is an advantage that a resin composition containing few impurities and having excellent dispersibility of the polymer fine particles (A) can be efficiently provided with a small environmental load. In addition, "ability to efficiently provide a resin composition” is also referred to as "improvement in productivity". Further, in the method for producing a resin composition according to one embodiment of the present invention, the organic solvent mixing step, the mixed state maintaining step, the slow aggregation step, the separation step, the redispersion step, and the resin mixing step are continuously performed. (In addition, a washing step may optionally be performed between the separation step and the re-dispersion step). Therefore, it is possible to adopt a continuous manufacturing method suitable for manufacturing a large amount of a small variety of products.
  • the redispersion step is a step of redispersing the aggregates separated in the separation step or washing step in the organic solvent (C).
  • the redispersion step can also be said to be a step of adding the organic solvent (C) to the aggregates separated in the separation step or washing step and mixing the obtained mixture.
  • a dispersion liquid in which the purified polymer fine particles (A) in the aggregates are dispersed in the organic solvent (C) substantially in the form of primary particles can be obtained.
  • the organic solvent (C) is not particularly limited, and any organic solvent capable of redispersing the fine polymer particles (A) can be used.
  • the organic solvent (C) may consist of only one kind of organic solvent, or may be a mixture of two or more kinds of organic solvents.
  • organic solvent (C) examples include the solvents exemplified for the organic solvent (B), aliphatic hydrocarbons (e.g., hexane, heptane, octane, cyclohexane, ethylcyclohexane, etc.), and mixtures of these solvents. can be exemplified. From the viewpoint of ensuring the redispersibility of the aggregates, it is preferable to use the same organic solvent as the organic solvent (B) used in the organic solvent mixing step.
  • aliphatic hydrocarbons e.g., hexane, heptane, octane, cyclohexane, ethylcyclohexane, etc.
  • mixtures of these solvents can be exemplified. From the viewpoint of ensuring the redispersibility of the aggregates, it is preferable to use the same organic solvent as the organic solvent (B) used in the organic solvent mixing step.
  • the amount of the organic solvent (C) used in the redispersion step is not particularly limited, and the type and amount of the polymer fine particles (A) contained in the aggregates and the type of the organic solvent (B) contained in the aggregates and amount, and the type of the organic solvent (C).
  • the amount of the organic solvent (C) used in the redispersion step is preferably 100 parts by weight to 500 parts by weight with respect to 100 parts by weight of the aggregates, and 150 parts by weight to 400 parts by weight. more preferably 200 to 350 parts by weight, particularly preferably 250 to 300 parts by weight.
  • the amount of the organic solvent (C) used in the redispersion step is 100 parts by weight or more with respect to 100 parts by weight of the aggregates, (i) the polymer fine particles (A) are uniformly dispersed in the organic solvent (C). (ii) it prevents clumps of agglomerates from remaining, and (iii) the dispersion tends to be of low viscosity and easy to handle. Moreover, when the amount of the organic solvent (C) used in the redispersion step is 500 parts by weight or less, there is an advantage that the final volatile matter can be efficiently evaporated.
  • the suitable temperature of the aggregate and the organic solvent (C) when subjected to the re-dispersion step is not particularly limited.
  • the temperature of the aggregate and the organic solvent (C) when subjected to the re-dispersion step and / or the temperature of the dispersion obtained in the re-dispersion step is, for example, preferably 10 ° C. to 50 ° C. , 15°C to 40°C, more preferably 20°C to 40°C.
  • the resulting dispersion contains polymer fine particles ( It has the advantage that A) is well dispersed in the organic solvent (C) and that the organic solvent used is difficult to volatilize.
  • the resin mixing step is a step of mixing the dispersion obtained in the redispersion step and the resin (D).
  • a composition can be obtained.
  • thermosetting resin is at least one selected from the group consisting of resins containing polymers obtained by polymerizing ethylenically unsaturated monomers, epoxy resins, phenol resins, polyol resins and amino-formaldehyde resins (melamine resins). It preferably contains seeds.
  • Thermosetting resins also include resins containing polymers obtained by polymerizing aromatic polyester raw materials. Examples of aromatic polyester raw materials include aromatic vinyl compounds, (meth)acrylic acid derivatives, vinyl cyanide compounds, radically polymerizable monomers such as maleimide compounds, dimethyl terephthalate, and alkylene glycol. These thermosetting resins may be used alone or in combination of two or more.
  • the ethylenically unsaturated monomer is not particularly limited as long as it has at least one ethylenically unsaturated bond in the molecule.
  • ethylenically unsaturated monomers include acrylic acid, ⁇ -alkyl acrylic acid, ⁇ -alkyl acrylic acid ester, ⁇ -alkyl acrylic acid, ⁇ -alkyl acrylic acid ester, methacrylic acid, esters of acrylic acid, and methacrylic acid.
  • epoxy resin is not particularly limited as long as it has at least one epoxy bond in the molecule.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, novolac type epoxy resin, Glycidyl ether type epoxy resin of bisphenol A propylene oxide adduct, hydrogenated bisphenol A (or F) type epoxy resin, fluorinated epoxy resin, rubber-modified epoxy resin containing polybutadiene or NBR, glycidyl ether of tetrabromobisphenol A, etc.
  • Flame-retardant epoxy resins p-oxybenzoic acid glycidyl ether ester type epoxy resins, m-aminophenol type epoxy resins, diaminodiphenylmethane type epoxy resins, urethane-modified epoxy resins having urethane bonds, various alicyclic epoxy resins, polyhydric Glycidyl ethers of alcohols, hydantoin type epoxy resins, epoxidized unsaturated polymers such as petroleum resins, aminoglycidyl ether resins, and the like.
  • Epoxy resins examples include N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, triglycidyl isocyanurate, polyalkylene glycol diglycidyl ether, and glycerin.
  • Epoxy resins also include epoxy compounds obtained by subjecting the above-mentioned epoxy resins to addition reaction with bisphenol A (or F) or polybasic acids. Epoxy resins are not limited to these, and commonly used epoxy resins can be used. These epoxy resins may be used alone or in combination of two or more.
  • epoxy resins described above those having at least two epoxy groups in one molecule have high reactivity in curing the resin composition, and the resulting cured product tends to form a three-dimensional network. preferable.
  • epoxy resins having at least two epoxy groups in one molecule epoxy resins containing bisphenol-type epoxy resins as a main component are preferred because of their excellent economic efficiency and availability.
  • the phenol resin is not particularly limited as long as it is a compound obtained by reacting phenols and aldehydes.
  • phenols include, but are not limited to, phenol, ortho-cresol, meta-cresol, para-cresol, xylenol, para-tert-butylphenol, para-octylphenol, para-phenylphenol, bisphenol A, bisphenol F, and resorcinol. be done.
  • Particularly preferred phenols include phenol and cresol.
  • Aldehydes are not particularly limited, but include, for example, formaldehyde, acetaldehyde, butyraldehyde, acrolein, and mixtures thereof.
  • the aldehydes it is possible to use the above-mentioned aldehyde-generating source substances or solutions of these aldehydes.
  • formaldehyde is preferred because it is easy to operate when reacting phenols and aldehydes.
  • the molar ratio (F/P) of phenols (P) and aldehydes (F) (hereinafter also referred to as reaction molar ratio) when reacting phenols and aldehydes is not particularly limited.
  • the reaction molar ratio (F/P) is preferably 0.4-1.0, more preferably 0.5-0.8.
  • the reaction molar ratio (F/P) is preferably 0.4-4.0, more preferably 0.8-2.5.
  • the reaction molar ratio is at least the above lower limit, the yield is not too low, and there is no possibility that the molecular weight of the obtained phenol resin will be small.
  • the reaction molar ratio is equal to or less than the above upper limit
  • the molecular weight of the phenol resin does not become too large and the softening point does not become too high, so sufficient fluidity can be obtained during heating.
  • the reaction molar ratio is equal to or less than the upper limit, the molecular weight can be easily controlled, and there is no risk of gelation or partial gelation due to reaction conditions.
  • a polyol resin is a compound having two or more active hydrogens at its terminals, and is a bifunctional or higher polyol having a molecular weight of about 50 to 20,000.
  • Examples of polyol resins include aliphatic alcohols, aromatic alcohols, polyether-type polyols, polyester-type polyols, polyolefin polyols, and acrylic polyols.
  • the fatty alcohol may be either a dihydric alcohol or a trihydric or higher alcohol (trihydric alcohol, tetrahydric alcohol, etc.).
  • Dihydric alcohols include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl -Alkylene glycols such as 1,5-pentanediol and neopentyl glycol (especially alkylene glycols having about 1 to 6 carbon atoms), dehydration of two or more molecules (for example, about 2 to 6 molecules) of the alkylene glycols condensates (diethylene glycol, dipropylene glycol, tripropylene glycol, etc.);
  • trihydric alcohols include glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hex
  • tetrahydric alcohols examples include pentaerythritol and diglycerin.
  • saccharides such as a monosaccharide, an oligosaccharide, and a polysaccharide, are mentioned.
  • aromatic alcohols examples include bisphenols such as bisphenol A and bisphenol F; biphenyls such as dihydroxybiphenyl; polyhydric phenols such as hydroquinone and phenol-formaldehyde condensates; and naphthalene diol.
  • polyether-type polyols examples include random copolymers obtained by ring-opening polymerization of ethylene oxide, propylene oxide, butylene oxide, styrene oxide, etc. in the presence of one or more initiators containing active hydrogen. Coalescing or block copolymers and the like, and mixtures of these copolymers and the like.
  • Active hydrogen-containing initiators used for ring-opening polymerization of polyether-type polyols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 1, Diols such as 6-hexanediol, neopentyl glycol and bisphenol A; Triols such as trimethylolethane, trimethylolpropane and glycerin; Sugars such as monosaccharides, oligosaccharides and polysaccharides; Sorbitol; Ammonia, ethylenediamine, urea, monomethyl amines such as diethanolamine and monoethyldiethanolamine;
  • polyester-type polyols include (i) polybasic acids such as maleic acid, fumaric acid, adipic acid, sebacic acid, phthalic acid, dodecanedioic acid, isophthalic acid, and azelaic acid and/or their acid anhydrides, and (ii) ) a polyhydric alcohol such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, A polymer obtained by polycondensation at a temperature of 150 to 270° C.
  • polybasic acids such as maleic acid, fumaric acid, adipic acid, sebacic acid, phthalic acid, dodecanedioic acid, isophthalic acid, and azelaic acid and/or their acid anhydrides
  • a polyhydric alcohol
  • polyester-type polyols include ring-opening polymers such as ⁇ -caprolactone and valerolactone, and (ii) active hydrogen compounds having two or more active hydrogens such as polycarbonate diols and castor oil. is mentioned.
  • Polyolefin-type polyols include polybutadiene polyol, polyisoprene polyol, and hydrogenated products thereof.
  • acrylic polyols examples include (i) hydroxyl group-containing monomers such as hydroxyethyl (meth)acrylate, hydroxybutyl (meth)acrylate, and vinylphenol, and (ii) n-butyl (meth)acrylate and 2-ethylhexyl Examples include copolymers with general-purpose monomers such as (meth)acrylates, and mixtures of these copolymers.
  • polyether-type polyols are preferable because the obtained resin composition has a low viscosity and excellent workability, and the resin composition can provide a cured product having an excellent balance between hardness and toughness.
  • polyester-type polyols are preferable because the obtained resin composition can provide a cured product having excellent adhesiveness.
  • the amino-formaldehyde resin is not particularly limited as long as it is a compound obtained by reacting an amino compound with an aldehyde in the presence of an alkaline catalyst.
  • the amino compounds include melamine; 6-substituted guanamines such as guanamine, acetoguanamine and benzoguanamine; CTU guanamine (3,9-bis[2-(3,5-diamino-2,4,6-triazaphenyl) ethyl]-2,4,8,10-tetraoxaspiro[5,5]undecane), CMTU guanamine (3,9-bis[(3,5-diamino-2,4,6-triazaphenyl)methyl]- amine-substituted triazine compounds such as 2,4,8,10-tetraoxaspiro[5,5]undecane); and ureas such as urea, thiourea, and
  • Examples of the amino compound include substituted melamine compounds in which the hydrogen of the amino group of melamine is substituted with an alkyl group, an alkenyl group, and/or a phenyl group (U.S. Pat. No. 5,998,573 (corresponding Japanese publication: JP-A-9-143238), and substituted melamine compounds in which the hydrogen of the amino group of melamine is substituted with a hydroxyalkyl group, a hydroxyalkyloxyalkyl group, and/or an aminoalkyl group (US Pat. No. 5).
  • 322,915 corresponding to Japanese Laid-Open Publication No. 5-202157) can also be used.
  • amino compound among the above-mentioned compounds, melamine, guanamine, acetoguanamine, and benzoguanamine, which are polyfunctional amino compounds, are preferable because they are industrially produced and inexpensive, and melamine is particularly preferable.
  • the above amino compounds may be used alone or in combination of two or more.
  • phenols such as phenol, cresol, alkylphenol, resorcinol, hydroquinone and pyrogallol
  • aniline may be additionally used.
  • the aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde, and furfural.
  • formaldehyde and paraformaldehyde are preferable because they are inexpensive and have good reactivity with the above-mentioned amino compounds.
  • the amount of aldehydes used is preferably such that the effective aldehyde groups are 1.1 to 6.0 mol groups per 1 mol of the amino compound. It is particularly preferred that the amount of the substance is 1.2 to 4.0 mol.
  • Resin (D) The properties of the resin (D) are not particularly limited.
  • Resin (D) preferably has a viscosity of 100 mPa ⁇ s to 1,000,000 mPa ⁇ s at 25°C.
  • the viscosity of the resin (D) at 25° C. is more preferably 50,000 mPa ⁇ s or less, still more preferably 30,000 mPa ⁇ s or less, and particularly preferably 15,000 mPa ⁇ s or less.
  • the resin (D) has an advantage of excellent fluidity.
  • Resin (D) having a viscosity of 100 mPa ⁇ s to 1,000,000 mPa ⁇ s at 25° C. can also be said to be liquid.
  • the polymer fine particles (A) having the above-described structure are a resin ( D) It is possible to obtain a resin composition which is well dispersed in.
  • the viscosity of the resin (D) at 25° C. is more preferably 100 mPa ⁇ s or more, more preferably 500 mPa ⁇ s or more, even more preferably 1000 mPa ⁇ s or more, and even more preferably 1500 mPa ⁇ s. It is particularly preferable that it is above. According to this configuration, fusion between the polymer fine particles (A) can be prevented by the resin (D) entering the polymer fine particles (A).
  • the resin (D) may have a viscosity of greater than 1,000,000 mPa ⁇ s.
  • the resin (D) may be semi-solid (semi-liquid) or solid.
  • the obtained resin composition has the advantage of being less sticky and easier to handle.
  • the resin (D) preferably has an endothermic peak of 25°C or lower, more preferably 0°C or lower, in a thermogram of differential scanning calorimetry (DSC). According to the above configuration, the resin (D) has an advantage of excellent fluidity.
  • the mixing ratio of the fine polymer particles (A) in the dispersion and the resin (D) mixed with the dispersion is not particularly limited.
  • the polymer fine particles (A) are 10% by weight to 50% by weight
  • the resin (D ) is preferably 50% to 90% by weight, more preferably 25% to 40% by weight of the fine polymer particles (A), and 60% to 75% by weight of the resin (D).
  • the combined fine particles (A) are 30% by weight to 40% by weight, and the resin (D) is 60% by weight to 70% by weight.
  • the blending ratio of the fine polymer particles (A) and the resin (D) is in the above configuration, there is an advantage that the fluidity of the resin composition after evaporating the volatile components is good.
  • a device and method for mixing the dispersion and the resin (D) do not require a special device or method, and can be carried out with a general device having a stirring and mixing function.
  • the suitable temperature of the dispersion liquid and the resin (D) when subjected to the resin mixing step is not particularly limited.
  • the temperature of the dispersion and the resin (D) when subjected to the resin mixing step and/or the temperature of the resin composition obtained by the resin mixing step is preferably, for example, 10°C to 80°C. , 15°C to 80°C, more preferably 20°C to 80°C.
  • the temperature of the dispersion liquid and the resin (D) when subjected to the resin mixing step and/or the temperature of the resin composition obtained by the resin mixing step are within the above ranges, there is an advantage that mixing is facilitated.
  • a known method can be applied. For example, a method of charging the mixture into a tank and distilling it off under heating and reduced pressure, a method of contacting the dry gas and the mixture in a tank in countercurrent flow, a continuous method such as using a thin film evaporator, and devolatilization Examples include a method using an extruder equipped with a mechanism or a continuous stirring vessel. Conditions such as the temperature and required time for distilling off the volatile components can be appropriately selected within a range that does not impair the quality of the resin composition. In addition, the amount of volatile components remaining in the resin composition can be appropriately selected within a range that does not pose a problem depending on the intended use of the resin composition.
  • a method for producing a resin composition according to another embodiment of the present invention includes a resin mixing step of mixing the aggregates separated in the separation step or washing step with the resin (D).
  • the method for producing a resin composition according to another embodiment of the present invention which includes the resin mixing step of mixing the aggregates with the resin (D)
  • the The resulting aggregates are mixed directly with the resin (D) without redispersing the aggregates in the organic solvent (C).
  • the resin composition according to one embodiment of the present invention can also be obtained by such a production method.
  • the polymer fine particles (A) are uniformly dispersed in the state of primary particles in the resin (D), and , less impurities.
  • the resin composition obtained by the method for producing a resin composition according to one embodiment of the present invention may optionally contain other optional components other than the polymer fine particles (A) and the resin (D). good.
  • Other optional components include antiblocking agents, curing agents, colorants such as pigments and dyes, extender pigments, ultraviolet absorbers, antioxidants, heat stabilizers (anti-gelling agents), plasticizers, leveling agents, Antifoaming agents, silane coupling agents, antistatic agents, flame retardants, lubricants, viscosity reducers, low shrinkage agents, inorganic fillers, organic fillers, thermoplastic resins, desiccants, and dispersants.
  • the other optional components can be added as appropriate during any step in the method for producing the resin composition according to one embodiment of the present invention.
  • the additives can be added into the dispersion and/or resin (D) during the resin mixing step.
  • the resin composition obtained by the method for producing a resin composition according to one embodiment of the present invention may further contain a known thermosetting resin other than the resin (D), or may contain a known thermoplastic resin. It may contain further.
  • the cured product obtained by curing the resin composition obtained by the method for producing a resin composition according to one embodiment of the present invention has high dispersion stability of the polymer fine particles (A) and contains few impurities.
  • a cured product obtained by curing the resin composition obtained by the method for producing a resin composition according to one embodiment of the present invention is also one embodiment of the present invention.
  • the resin composition obtained by the method for producing a resin composition according to one embodiment of the present invention can be used for various purposes, and their uses are not particularly limited.
  • the resin composition includes, for example, adhesives, coating materials, reinforcing fiber binders, composite materials, molding materials for 3D printers, sealing agents, electronic substrates, ink binders, wood chip binders, rubber chip binders, foam chip binders, It is preferably used for applications such as binders for castings, bedrock consolidation materials for flooring and ceramics, and urethane foams. Examples of urethane foam include automobile seats, automobile interior parts, sound absorbing materials, vibration damping materials, shock absorbers (shock absorbing materials), heat insulating materials, construction floor material cushions, and the like.
  • the resin composition is more preferably used as an adhesive, a coating material, a binder for reinforcing fibers, a composite material, a molding material for 3D printers, a sealant, and an electronic substrate.
  • One embodiment of the present invention provides a novel method capable of efficiently producing aggregates of polymer microparticles (A) with reduced impurity content.
  • a method for producing purified polymer microparticles (A) includes an organic solvent mixing step of mixing a latex containing polymer microparticles (A) and an emulsifier with an organic solvent (B), A loose aggregation step of bringing the mixture obtained in the organic solvent mixing step into contact with water to form aggregates of the polymer fine particles (A) containing the organic solvent (B) in an aqueous phase, and a separation step of separating aggregates from said aqueous phase; After the separation step, the step of repeating one or more cycles selected from (i) and (ii) below is further included.
  • a first process comprising a second step of forming aggregates of polymer fine particles (A) contained in an aqueous phase, and a third step of separating the aggregates obtained in the second step from the aqueous phase.
  • a second step comprising a second step of forming aggregates of polymer fine particles (A) contained in an aqueous phase, and a third step of separating the aggregates obtained in the second step from the aqueous phase. cycle.
  • method for producing purified polymer microparticles (A) can also be said to be “purification method for polymer microparticles (A)". Further, the method for producing the purified polymer microparticles (A) according to one embodiment of the present invention may be hereinafter referred to as "second production method”.
  • a washing step that repeats one or more cycles selected from the first cycle and the second cycle is performed to remove impurities such as emulsifiers, more specifically, impurities derived from emulsifiers. Aggregates of fine polymer particles (A) in which the contents of elements P and S are reduced (that is, purified polymer fine particles (A)) can be efficiently produced.
  • the emulsifier contained in the latex may be a known emulsifier (dispersant).
  • Known emulsifiers include, for example, anionic emulsifiers, nonionic emulsifiers, polyvinyl alcohols, alkyl-substituted celluloses, polyvinylpyrrolidone, and polyacrylic acid derivatives.
  • anionic emulsifiers include sulfur-based emulsifiers, phosphorus-based emulsifiers, sarcosic acid-based emulsifiers, and carboxylic acid-based emulsifiers.
  • sulfur-based emulsifiers include sodium dodecylbenzenesulfonate (abbreviated as SDBS).
  • Phosphorus-based emulsifiers include sodium polyoxyethylene lauryl ether phosphate and the like.
  • the emulsifier contained in the latex preferably contains a lipophilic site and a hydrophilic site, and the hydrophilic site preferably has a polyoxyethylene group.
  • the emulsifier is more preferably a sulfur-based emulsifier in which the hydrophilic portion contains a sulfate ester portion.
  • the emulsifier is more preferably a phosphorous emulsifier containing a phosphate ester moiety.
  • the content of element S in the aggregate obtained by the second production method is preferably 500 ppm or less, more preferably 200 ppm or less, and further preferably 100 ppm or less relative to the weight of the aggregate. It is preferably 50 ppm or less, and particularly preferably 50 ppm or less.
  • the content of the element P in the aggregate obtained by the second production method is preferably 500 ppm or less, more preferably 200 ppm or less, and more preferably 100 ppm or less relative to the weight of the aggregate. It is preferably 50 ppm or less, and particularly preferably 50 ppm or less.
  • the aggregate obtained by the second production method preferably has a total content of the elements S and P of 1000 ppm or less, more preferably 400 ppm or less, and 200 ppm or less relative to the weight of the aggregate. is more preferably 100 ppm or less, more preferably 50 ppm or less, and particularly preferably 25 ppm or less.
  • the lower the content of element S and / or P in the aggregate obtained by the second production method the longer the long-term reliability (long-term stability) of the resin composition obtained by mixing the aggregate and the resin (D). It has the advantage of having little adverse effect on
  • the content of elements S and/or P in the aggregate obtained by the second production method can also be said to be the content of impurities (contaminants) in the aggregate.
  • the origin of these elements is not particularly limited.
  • the origin of the element S and/or P in the aggregate may be (i) the emulsifier used in the production of the polymer microparticles (A), or (i) the emulsifier used in the production of the polymer microparticles (A).
  • Water and monomers, and trace elements contained in the organic solvent (B) may also be used.
  • the content of element S and/or P in the aggregate obtained by the second production method can be measured using a fluorescent X-ray analyzer, liquid chromatography, ICP emission spectrometer, or the like.
  • An embodiment of the present invention may have the following configuration.
  • a second step comprising a second step of forming aggregates of polymer fine particles (A) contained in an aqueous phase, and a third step of separating the aggregates obtained in the second step from the aqueous phase. cycle.
  • an organic solvent mixing step of mixing a latex containing polymer fine particles (A) and an emulsifier with an organic solvent (B);
  • a loose aggregation step of bringing the mixture obtained in the organic solvent mixing step into contact with water to form aggregates of the polymer fine particles (A) containing the organic solvent (B) in an aqueous phase, and a separation step of separating aggregates from said aqueous phase;
  • a first process comprising a second step of forming aggregates of polymer fine particles (A) contained in an aqueous phase, and a third step of separating the aggregates obtained in the second step from the aqueous phase.
  • a second step comprising a second step of forming aggregates of polymer fine particles (A) contained in an aqueous phase, and a third step of separating the aggregates obtained in the second step from the aqueous phase. cycle.
  • the polymer fine particles (A) contain, as structural units, one or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers.
  • a method for producing a resin composition comprising, as one step, the method for producing the purified polymer fine particles (A) according to any one of [5] to [10], A redispersion step of redispersing the aggregates separated from the aqueous phase in an organic solvent (C), and a resin mixing step of mixing the dispersion obtained in the redispersion step and the resin (D),
  • a method for producing a resin composition comprising:
  • Example A Next, one embodiment of the present invention will be described based on Examples A1 to A6 and Comparative Examples A1 to A4, but the present invention is not limited to these Examples A.
  • Sodium polyoxyethylene lauryl ether phosphate is a phosphorus-based emulsifier in which the hydrophilic portion has a polyoxyethylene group and a phosphate ester portion.
  • SDBS is a sulfur-based emulsifier in which the hydrophilic portion does not have polyoxyethylene groups and phosphate ester moieties, but has linear alkylbenzene and sulfate ester moieties.
  • the gas in the glass reactor was replaced with nitrogen, and the charged raw materials were stirred at 60°C.
  • 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes.
  • a mixture of 12.5 parts by weight of methyl methacrylate (MMA), 0.5 parts by weight of styrene (St), and 0.035 parts by weight of t-butyl hydroperoxide (BHP) was placed in a glass reactor for 80 minutes. was added continuously over a period of time.
  • an aqueous latex (L1) containing polymer fine particles (A) and a phosphorus-based emulsifier (sodium polyoxyethylene lauryl ether phosphate) having a polyoxyethylene group was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 160 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L1) obtained was 34% by weight.
  • the amount of the polyoxyethylene group-containing phosphorus-based emulsifier in 100% by weight of the aqueous latex (L1) obtained was 0.80% by weight.
  • a mixture of 12.5 parts by weight of MMA, 0.5 parts by weight of St, and 0.035 parts by weight of BHP was then continuously added into the glass reactor over a period of 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and the mixture in the glass reactor was stirred for another hour to complete the polymerization.
  • an aqueous latex (L2) containing polymer fine particles (A) and a sulfur-based emulsifier (SDBS) having no polyoxyethylene group was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer microparticles (A) contained in the obtained aqueous latex was 181 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in the obtained aqueous latex (L2) was 34% by weight. Further, the amount of the sulfur-based emulsifier in the obtained aqueous latex (L2) was 0.90% by weight.
  • the temperature was raised to Next, 0.002 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added to initiate polymerization.
  • 78.5 parts by weight of MMA, 1.57 parts by weight of AMA and 0.03 parts by weight of QHP were continuously added over 180 minutes.
  • QHP and sodium polyoxyethylene lauryl ether phosphate were each added into the glass reactor at arbitrary amounts and at arbitrary times during the polymerization.
  • the volume average particle size of the elastic body contained in the aqueous latex obtained by the polymerization was 170 nm.
  • a mixture of 12.5 parts by weight of MMA, 0.5 parts by weight of St, and 0.035 parts by weight of BHP was then continuously added into the glass reactor over a period of 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and the mixture in the glass reactor was stirred for another hour to complete the polymerization.
  • an aqueous latex (L3) containing polymer fine particles (A) and a phosphorus-based emulsifier (sodium polyoxyethylene lauryl ether phosphate) having a polyoxyethylene group was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 180 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L3) obtained was 32% by weight.
  • the amount of the polyoxyethylene group-containing phosphorus-based emulsifier in 100% by weight of the resulting aqueous latex (L3) was 0.70% by weight.
  • a mixture of 12.5 parts by weight of MMA, 0.5 parts by weight of St, and 0.035 parts by weight of BHP was then continuously added into the glass reactor over a period of 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and the mixture in the glass reactor was stirred for another hour to complete the polymerization.
  • an aqueous latex (L4) containing polymer fine particles (A) and a phosphorus-based emulsifier (sodium polyoxyethylene lauryl ether phosphate) having a polyoxyethylene group was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 180 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L4) obtained was 32% by weight.
  • the amount of the polyoxyethylene group-containing phosphorus-based emulsifier in 100% by weight of the resulting aqueous latex (L4) was 0.70% by weight.
  • a mixture of 12.5 parts by weight of MMA, 0.5 parts by weight of St, and 0.035 parts by weight of BHP was then continuously added into the glass reactor over a period of 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and the mixture in the glass reactor was stirred for another hour to complete the polymerization.
  • an aqueous latex (L5) containing polymer fine particles (A) and a phosphorus-based emulsifier (sodium polyoxyethylene lauryl ether phosphate) having a polyoxyethylene group was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 180 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L5) obtained was 32% by weight.
  • the amount of the polyoxyethylene group-containing phosphorus-based emulsifier in 100% by weight of the resulting aqueous latex (L5) was 0.70% by weight.
  • a mixture of 12.5 parts by weight of MMA, 0.5 parts by weight of St, and 0.035 parts by weight of BHP was then continuously added into the glass reactor over a period of 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and the mixture in the glass reactor was stirred for another hour to complete the polymerization.
  • an aqueous latex (L6) containing polymer fine particles (A) and a sulfur-based emulsifier (sodium polyoxyethylene alkyl ether sulfate) having a polyoxyethylene group was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 180 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the obtained aqueous latex (L6) was 32% by weight.
  • the amount of the polyoxyethylene group-containing sulfur-based emulsifier in 100% by weight of the resulting aqueous latex (L6) was 0.70% by weight.
  • Example A1 Methyl ethyl ketone (MEK ) (solubility in water at 20° C., 10% by weight).
  • MEK Methyl ethyl ketone
  • Example A1 the mixture described above was stirred at 450 rpm for 60 minutes, so it can be said that the viscosity of the mixture is constant. That is, in the mixed state maintaining step of Example A1, the mixture was stirred until the viscosity of the mixture became constant.
  • MEK organic solvent
  • the obtained mixture was mixed for 30 minutes under stirring conditions of 500 rpm to obtain a dispersion liquid in which the polymer fine particles (A) were uniformly dispersed in MEK (redispersion step).
  • the dispersion was placed in a 1 L tank equipped with a jacket and a stirrer (the inner diameter of the tank was 100 mm, and the stirrer was a stirrer equipped with an anchor blade with a blade shape of 90 mm), and an epoxy resin ( 567 g of JER828 (trade name, manufactured by Mitsubishi Chemical) was added into the tank.
  • the mixture was mixed until the resulting mixture was homogeneous (resin mixing step).
  • the jacket temperature (the temperature of the hot water in the tank) was set to 60°C, and a vacuum pump (oil rotary vacuum pump, TSW-150 manufactured by Sato Vacuum Co., Ltd.) was used to reduce the volatile components in the mixture to a predetermined concentration. Distillation was performed under reduced pressure until reaching (5000 rpm) (distillation step). By such operation, a resin composition containing polymer fine particles (A) and an epoxy resin was obtained.
  • Example A2 The organic solvent mixing step, the mixed state maintaining step, the loose flocculation step, and the separation step were carried out by the same methods as in Example A1.
  • the separation step was followed by a washing step (steps 1 to 3 of the second cycle). Specifically, while stirring the mixture (aggregates of purified polymer fine particles (A) containing a part of the aqueous phase) in the tank at 500 rpm, 450 g of purified water was fed into the tank at a rate of 200 g/min. Added continuously (first step of second cycle). 120 g of MEK was then added into the tank. The mixture in the bath was then stirred at 450 rpm for 5 minutes.
  • a slurry liquid consisting of an aqueous phase partially containing floating aggregates and an organic solvent was obtained (second step of the second cycle).
  • 1000 g of the aqueous phase is discharged from the discharge port at the bottom of the tank so that aggregates containing a part of the aqueous phase remain in the tank, and are purified polymer fine particles (A) and include a part of the aqueous phase.
  • Aggregates were obtained (third step of the second cycle). Further, when the permeability of the discharged water phase was measured, the permeability of the water phase was 33%, and cloudiness of the water phase was not confirmed.
  • Example A2 Using the aggregates of the purified polymer fine particles (A) obtained in the third step of the second cycle, the redispersion step, the resin mixing step, and the distillation step were performed in the same manner as in Example A1, and A resin composition containing coalesced fine particles (A) and an epoxy resin was obtained. That is, in Example A2, one cycle (once) of the second cycle was performed as the washing step.
  • Example A3 Methyl ethyl ketone (MEK ) (solubility in water at 20° C., 10% by weight) 1000 g.
  • MEK Methyl ethyl ketone
  • the mixture was mixed until the resulting mixture was homogeneous (resin mixing step).
  • the jacket temperature (the temperature of the hot water in the tank) was set to 60°C, and a vacuum pump (oil rotary vacuum pump, TSW-150 manufactured by Sato Vacuum Co., Ltd.) was used to reduce the volatile components in the mixture to a predetermined concentration. Distillation was performed under reduced pressure until reaching (5000 rpm) (distillation step). By such operation, a resin composition containing polymer fine particles (A) and an epoxy resin was obtained. The amount of each element (phosphorus (P) and sulfur (S)) was measured for the obtained resin composition. The results are shown in Table 1 below.
  • Example A4 The organic solvent mixing step, the mixed state maintaining step, the slow flocculation step and the separation step were carried out in the same manner as in Example A3, except that the latex (L4) obtained in Production Example 2-4 was used instead of the latex (L3). to obtain aggregates which are purified polymer microparticles (A) and which partially contain an aqueous phase.
  • the permeability of the aqueous phase discharged in the separation step of Example A4 was measured, the permeability of the aqueous phase was 62%, and cloudiness of the aqueous phase was not confirmed.
  • Example A5 The organic solvent mixing step, the mixing state maintaining step, the slow flocculation step and the separation step were carried out in the same manner as in Example A3, except that the latex (L5) obtained in Production Example 2-5 was used instead of the latex (L3). to obtain aggregates which are purified polymer microparticles (A) and which partially contain an aqueous phase.
  • the permeability of the aqueous phase discharged in the separation step of Example A5 was measured, the permeability of the aqueous phase was 22%, and cloudiness of the aqueous phase was not confirmed.
  • Example A6 The organic solvent mixing step, the mixed state maintaining step, the slow flocculation step and the separation step were carried out in the same manner as in Example A3, except that the latex (L6) obtained in Production Example 2-6 was used instead of the latex (L3). to obtain aggregates which are purified polymer microparticles (A) and which partially contain an aqueous phase.
  • the permeability of the aqueous phase discharged in the separation step of Example A6 was measured, the permeability of the aqueous phase was 44%, and cloudiness of the aqueous phase was not confirmed.
  • Example A1 The organic solvent mixing step was performed under the same conditions as in Example A1. That is, a latex containing a phosphorus-based emulsifier having a polyoxyethylene group and MEK (organic solvent) were mixed to obtain a mixture.
  • the resulting mixture (latex (L1) and MEK) (referred to as “mixture containing phosphorus emulsifier” in FIG. 1) was stirred at 300 rpm. After 5 seconds, 5 minutes, 15 minutes, 30 minutes, 45 minutes, 60 minutes, and 90 minutes after the start of stirring of the mixture, the viscosity of the mixture was measured with a viscometer (BROOKFIELD digital viscometer DV-II + Pro type ). The results are indicated by black triangles in FIG.
  • the organic solvent mixing step was performed under the same conditions as in Example A1. That is, a latex containing a sulfur-based emulsifier having no polyoxyethylene group and MEK (organic solvent) were mixed to obtain a mixture.
  • the resulting mixture (latex (L2) and MEK) (referred to as “mixture containing sulfur emulsifier” in FIG. 1) was stirred at 300 rpm. After 5 seconds, 5 minutes, 15 minutes and 30 minutes from the start of stirring of the mixture, the viscosity of the mixture was measured with a viscometer (digital viscometer DV-II+Pro type manufactured by BROOKFIELD). The results are indicated by black circles in FIG.
  • the viscosity of the mixture was measured using CPE-52 with the spindle changed as necessary depending on the viscosity range, and the shear rate was changed as necessary at a measurement temperature of 25°C.
  • FIG. 1 is a graph showing changes over time in the viscosity of a mixture of a latex containing a phosphorus-based emulsifier having a polyoxyethylene group or a sulfur-based emulsifier having no polyoxyethylene group and an organic solvent.
  • the viscosity of the mixture (latex (L1) and MEK) increased sharply from the start of mixing until 20 minutes, became constant after 30 minutes, and stopped changing after 60 minutes.
  • the mixture (latex (L2) and MEK) had a constant viscosity from immediately after the start of mixing until the end of mixing, and did not change.
  • the mixture obtained through each organic solvent mixing step of Examples A2 to A6 was also stirred at 300 rpm, and after 5 seconds, 5 minutes, 15 minutes, 30 minutes, and 45 minutes from the start of the stirring. After 60 minutes and 90 minutes, the viscosity of the mixture was measured with a viscometer (digital viscometer DV-II+Pro type manufactured by BROOKFIELD). As a result, the viscosity of each mixture was constant after about 30 minutes, and the viscosity stopped changing after 60 minutes. Therefore, in Examples A2 to A6 as well, it can be said that the mixture obtained in the organic solvent mixing step was stirred until the viscosity of the mixture became constant as the mixed state maintaining step.
  • the aqueous phase discharged in the separation steps of Examples A1 to A6 and the aqueous phase discharged in the washing step of Example A2 hardly contained polymer microparticles (A) and had sufficient permeability.
  • the resin compositions obtained in Examples A1 to A6 contained very small amounts of emulsifier-derived elements (P and S).
  • the aqueous phase discharged in the separation steps of Comparative Examples A1 to A4 was cloudy and contained a large amount of fine polymer particles (A).
  • Example B Next, one embodiment of the present invention will be described based on Examples B1 to B3 and Comparative Examples B1 and B2, but the present invention is not limited to these Examples B.
  • Each evaluation in Examples B1-B3 and Comparative Examples B1-B2 was carried out by the method described in the section [Example A] above.
  • Example B1 Methyl ethyl ketone (MEK ) (solubility in water at 20° C., 10% by weight).
  • MEK Methyl ethyl ketone
  • Example B1 the mixture described above was stirred at 450 rpm for 60 minutes, so it can be said that the viscosity of the mixture was constant. That is, in the mixed state maintaining step of Example B1, the mixture was stirred until the viscosity of the mixture became constant.
  • the washing process (1st to 3rd processes of the second cycle) was performed. Specifically, while stirring the mixture (aggregates of purified polymer fine particles (A) containing a part of the aqueous phase) in the tank after the separation step at 500 rpm, 450 g of purified water was supplied at a rate of 200 g/min. was added continuously into the tank (first step of the second cycle). 120 g of MEK was then added into the tank. The mixture in the bath was then stirred at 450 rpm for 5 minutes. Through this operation, a slurry liquid consisting of an aqueous phase partially containing floating aggregates and an organic solvent was obtained (second step of the second cycle).
  • aqueous phase is discharged from the discharge port at the bottom of the tank so that aggregates containing a part of the aqueous phase remain in the tank, and are purified polymer fine particles (A) and include a part of the aqueous phase. Aggregates were obtained (third step of the second cycle). Further, when the permeability of the discharged water phase was measured, the permeability of the water phase was 33%, and cloudiness of the water phase was not confirmed.
  • MEK organic solvent
  • the obtained mixture was mixed for 30 minutes under stirring conditions of 500 rpm to obtain a dispersion liquid in which the polymer fine particles (A) were uniformly dispersed in MEK (redispersion step).
  • the dispersion was placed in a 1 L tank equipped with a jacket and a stirrer (the inner diameter of the tank was 100 mm, and the stirrer was a stirrer equipped with an anchor blade with a blade shape of 90 mm), and an epoxy resin ( 567 g of JER828 (trade name, manufactured by Mitsubishi Chemical) was added into the tank.
  • the mixture was mixed until the resulting mixture was homogeneous (resin mixing step).
  • the jacket temperature (the temperature of the hot water in the tank) was set to 60°C, and a vacuum pump (oil rotary vacuum pump, TSW-150 manufactured by Sato Vacuum Co., Ltd.) was used to reduce the volatile components in the mixture to a predetermined concentration. Distillation was performed under reduced pressure until reaching (5000 rpm) (distillation step). By such operation, a resin composition containing polymer fine particles (A) and an epoxy resin was obtained.
  • Example B2 An organic solvent mixing step, a mixed state maintaining step, a loose flocculation step, a separation step, and a and washing steps (first to third steps of the second cycle) were performed to obtain aggregates which were purified polymer microparticles (A) and partially contained an aqueous phase.
  • the permeability of the water phase discharged in the third step of the second cycle of Example B2 was measured, the permeability of the water phase was 53%, and cloudiness of the water phase was not confirmed.
  • Example B1 A resin composition containing polymer fine particles (A) and an epoxy resin was obtained.
  • the amount of each element (phosphorus (P) and sulfur (S)) was measured for the obtained resin composition. The results are shown in Table 2 below.
  • Example B3 An organic solvent mixing step, a mixed state maintaining step, a slow flocculation step, and a separation step were carried out in the same manner as in Example B1, except that the latex (L2) obtained in Production Example 2-2 was used instead of the latex (L1). did After the separation step, the first to third steps of the first cycle were performed as the washing step. Specifically, while stirring the mixture (aggregate containing a part of the aqueous phase) in the tank after the separation step at 500 rpm, 120 g of MEK was continuously added to the tank at a feed rate of 200 g / min ( first step of the first cycle). 450 g of purified water was then added into the tank at a feed rate of 200 g/min.
  • a slurry liquid consisting of an aqueous phase partially containing floating aggregates and an organic solvent was obtained (second step of the first cycle).
  • 1000 g of the aqueous phase is discharged from the discharge port at the bottom of the tank so that aggregates containing a part of the aqueous phase remain in the tank, and are purified polymer fine particles (A) and include a part of the aqueous phase. Aggregates were obtained (third step of the first cycle). Further, when the permeability of the discharged water phase was measured, the permeability of the water phase was 54%, and cloudiness of the water phase was not confirmed.
  • Example B1 A resin composition containing polymer fine particles (A) and an epoxy resin was obtained.
  • the amount of each element (phosphorus (P) and sulfur (S)) was measured for the obtained resin composition. The results are shown in Table 2 below.
  • Example B1 The organic solvent mixing step, the mixed state maintaining step, and the loose aggregation step were performed in the same manner as in Example B1, except that the washing step was not performed after the separation step and the aggregates obtained in the separation step were used in the subsequent redispersion step. , a separation step, a redispersion step, a resin mixing step and a distillation step were carried out to obtain a resin composition containing polymer fine particles (A) and an epoxy resin. The amount of each element (phosphorus (P) and sulfur (S)) was measured for the obtained resin composition. The results are shown in Table 2 below.
  • Example B2 The organic solvent mixing step, the mixed state maintaining step, and the loose aggregation step were performed in the same manner as in Example B2, except that the washing step was not performed after the separation step and the aggregates obtained in the separation step were used in the subsequent redispersion step. , a separation step, a redispersion step, a resin mixing step and a distillation step were carried out to obtain a resin composition containing polymer fine particles (A) and an epoxy resin. The amount of each element (phosphorus (P) and sulfur (S)) was measured for the obtained resin composition. The results are shown in Table 2 below.
  • the resin compositions obtained in Examples B1 to B3 each contained an emulsifier-derived element (P and S) and the total amount thereof was very small. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

ラテックスから重合体微粒子を効率的に精製し得る、環境負荷が低減された新規の方法を提供することを課題とする。重合体微粒子(A)およびポリエチレン基を有する乳化剤を含有するラテックスと、有機溶媒(B)とを混合する有機溶媒混合工程、並びに前記有機溶媒混合工程で得られる混合物を静置および/または撹拌する混合状態維持工程、を含む、精製重合体微粒子(A)の製造方法を提供する。

Description

精製重合体微粒子の製造方法および樹脂組成物の製造方法
 本発明は、精製重合体微粒子の製造方法および樹脂組成物の製造方法に関する。
 熱硬化性樹脂は高い耐熱性、機械的強度などの種々の優れた性質を持つため、様々な分野で使用されている。熱硬化性樹脂の中でもエポキシ樹脂は、例えば、電子回路封止剤、塗料、接着剤および繊維強化材料のマトリクス樹脂として幅広い用途に用いられている。エポキシ樹脂は耐熱性、耐薬品性、絶縁性などに優れているが、熱硬化性樹脂の特徴である耐衝撃性が不十分という問題を有している。熱硬化性樹脂の耐衝撃性を改善するために、熱硬化性樹脂にエラストマーを添加する方法が広く用いられている。
 前記エラストマーとしては、重合体微粒子(例えば架橋重合体微粒子)が挙げられる。重合体微粒子は、一般的に1μmより小さい粒子径を有し得る。ここで、1μmより小さい粒子径を有する重合体微粒子の1次粒子を幾つか集めて作製された重合体微粒子の粉粒体を2次粒子と称する。熱硬化性樹脂中に、重合体微粒子の2次粒子を分散させることは可能であるが、重合体微粒子の1次粒子を熱硬化性樹脂に分散させることは、工業レベルでは非常に難しい。
 重合体微粒子の1次粒子が熱硬化性樹脂に分散した樹脂混合物を製造する方法として、特許文献1には、重合体微粒子を含むラテックスから水および不純物(乳化剤など)を除いて得られる精製重合体微粒子と、熱硬化性樹脂とを混合する方法が開示されている。特許文献1の開示によると、重合体微粒子を含むラテックスと有機溶媒とを混合し、次いで、得られる混合物と水とを接触させることにより、重合体微粒子の凝集体が得られる。得られた凝集体を、不純物を含む水相から分離することにより、不純物が低減された精製重合体微粒子が得られる。
国際公開WO2005/028546号
 しかしながら、上述のような従来技術は、環境負荷の観点からは十分なものではなく、さらなる改善の余地があった。
 本発明の一実施形態は、前記問題に鑑みなされたものであり、その目的は、ラテックスから重合体微粒子を効率的に精製し得る、環境負荷が低減された新規の方法を提供することである。
 本発明者は、前記課題を解決するため鋭意検討した結果、本発明を完成させるに至った。
 すなわち本発明の一実施形態に係る精製重合体微粒子(A)の製造方法は、重合体微粒子(A)および乳化剤を含有するラテックスと、有機溶媒(B)とを混合する有機溶媒混合工程、並びに前記有機溶媒混合工程で得られる混合物の静置および撹拌の何れかまたは両方を行う混合状態維持工程、を含み、前記乳化剤は、親油性部位と親水性部位とを含有し、前記親水性部位は、ポリオキシエチレン基を有する。
 本発明の別の一実施形態に係る精製重合体微粒子(A)の製造方法は、重合体微粒子(A)および乳化剤を含有するラテックスと、有機溶媒(B)とを混合する有機溶媒混合工程、前記有機溶媒混合工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を、水相中に生成させる緩凝集工程、および前記凝集体を前記水相から分離する分離工程、を含み、前記分離工程の後に、以下(i)および(ii)から選択されるサイクルを1サイクル以上繰り返す工程をさらに含む。
 (i)前記分離工程で得られる前記凝集体に、前記有機溶媒(B)を添加する第1工程、前記第1工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第1のサイクル、並びに、
 (ii)前記分離工程で得られる前記凝集体に、水を添加する第1工程、前記第1工程で得られる混合物と前記有機溶媒(B)とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第2のサイクル。
 本発明の一態様によれば、ラテックスから重合体微粒子を効率的に精製し得る、環境負荷が低減された新規の方法を提供することができる。
ポリオキシエチレン基を有するリン系乳化剤またはポリオキシエチレン基を有しない硫黄系乳化剤を含むラテックスと有機溶媒との混合物の粘度の経時変化を示すグラフである。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
 [実施形態1]
 〔1-1.本発明の技術的思想〕
 近年、環境保全の観点から、環境負荷のより大きい材料から、環境負荷のより小さい材料への代替の試みがある。重合体微粒子製造の際に使用する乳化剤は、重合安定性、コスト、入手の容易性、pHが中性であること、などの観点から、直鎖アルキルベンゼンスルホン酸塩(LAS)が多用される。しかし、直鎖アルキルベンゼンを有する乳化剤は分解性が低く、環境負荷が大きい。そのため、生物により分解されやすいエーテル結合を有するポリオキシエチレン基を有する乳化剤を使用することが、環境保全の観点から好ましい。そこで、直鎖アルキルベンゼンを有する乳化剤の代わりにポリオキシエチレン基を有する乳化剤を用いて調製された重合体微粒子(A)を含むラテックスから、特許文献1に開示される方法にしたがって重合体微粒子(A)の精製を試みた。その結果、ラテックスと有機溶媒(B)との混合物を水と接触させて得られる水相(重合体微粒子(A)の凝集体を分離した後の排出液)が白濁するという問題が生じた。水相の白濁の原因を調べたところ、重合体微粒子(A)の未凝集物が水相中に混入していたことが分かった。
 そこで、本発明者が鋭意検討した結果、以下の知見を新たに見出し、本発明を完成するに至った:ラテックスと有機溶媒(B)とを混合する有機溶媒混合工程の後、混合物と水とを接触させて凝集体を生成させる緩凝集工程の前に、一定時間静置および/または撹拌する工程を設けることにより、排出液の白濁が解消されること。
 さらに、一定時間の静置および/または撹拌が排出液の白濁を解消した原因を本発明者が調べたところ、以下の知見を独自に見出した。
 (i)ラテックスでは、重合体微粒子(A)と乳化剤とが結合した状態で溶媒(ラテックス溶媒)中に存在している。当該ラテックスを有機溶媒(B)と混合すると、ラテックス溶媒と有機溶媒(B)との界面に乳化剤が移動すると共に、重合体微粒子(A)および乳化剤の結合の解離が生じる。その結果、重合体微粒子(A)は、ラテックス溶媒中から有機溶媒(B)中に移動する。このような混合物を水と接触させると、重合体微粒子(A)は凝集体を形成する。形成された凝集体は、任意の分離手段により水相から分離することができる。
 (ii)しかしながら、乳化剤としてポリオキシエチレン基を有する乳化剤を使用する場合、乳化剤として直鎖アルキルベンゼンを有する乳化剤を使用する場合と比較して、重合体微粒子(A)の有機溶媒(B)中への移動に、より長い時間がかかる。この理由は定かではないが、直鎖アルキルベンゼンを有する乳化剤と比較してポリオキシエチレン基を有する乳化剤は、(a)重合体微粒子(A)との親和性がより高いため、重合体微粒子(A)および乳化剤の結合の解離により長い時間がかかるためと推測される。なお、本発明の一実施形態はかかる推測に限定されない。重合体微粒子(A)の有機溶媒(B)中への移動が完了する前に、ラテックスと有機溶媒(B)との混合物を水と接触させると、一部の重合体微粒子(A)は凝集体を形成することができず、水相から分離できない。そのため、水相(排出液)が白濁する。
 (iii)ラテックスと有機溶媒(B)との混合物を静置および/または撹拌する工程(第1の製造方法における混合状態維持工程)により、重合体微粒子(A)および乳化剤の結合の解離および重合体微粒子(A)の有機溶媒(B)中への移動が促進される。その結果、混合物の粘度が上昇する。重合体微粒子(A)の有機溶媒(B)中への移動が十分になされた後、換言すれば混合物の粘度が一定になった後に、混合物と水とを接触させると、重合体微粒子(A)は十分に凝集することができる。それゆえ、未凝集の重合体微粒子(A)の混入による排出液の白濁を防ぐことができる。
 〔1-2.精製重合体微粒子(A)の製造方法(第1の製造方法)〕
 本発明の一実施形態に係る精製重合体微粒子(A)の製造方法は、重合体微粒子(A)および乳化剤を含有するラテックスと、有機溶媒(B)とを混合する有機溶媒混合工程、並びに、前記有機溶媒混合工程で得られる混合物の静置および撹拌の何れかまたは両方を行う混合状態維持工程、を含む。前記乳化剤は、親油性部位と親水性部位とを含有し、前記親水性部位は、ポリオキシエチレン基を有する。
 本明細書において、「精製重合体微粒子(A)の製造方法」は、「重合体微粒子(A)の精製方法」ともいえる。また、本発明の一実施形態に係る前記精製重合体微粒子(A)の製造方法を、以下「第1の製造方法」と称する場合もある。
 本明細書において、「静置」とは、振動等の衝撃を意図的に与えないことを意味し、換言すれば、「放置」ともいえる。また、本明細書において、「撹拌」とは、振動を含む任意の衝撃を意図的に与えることを意味し、衝撃の大きさは限定されない。
 すなわち、本明細書において、撹拌とは、静置以外の全ての場合を意味するため、混合物の状態は、「静置」または「撹拌」の何れかに該当する。本明細書において、「混合物の静置および撹拌の両方を行う」とは、(i)静置を実施した後に、撹拌を実施する、または、(ii)撹拌を実施した後に、静置を実施することのいずれかを意味する。なお、有機溶媒混合工程から、混合状態維持工程まで、連続的に撹拌を続けても良い。
 第1の製造方法では、ポリオキシエチレン基を有する乳化剤を使用する。そのため、直鎖アルキルベンゼンを有する乳化剤を使用する従来技術に対して、第1の製造方法は環境負荷が低減されているという利点を有する。また、第1の製造方法によれば、環境負荷の小さいポリオキシエチレン基を有する乳化剤を用いて調製された重合体微粒子(A)を含むラテックスから、精製重合体微粒子(A)を効率的に製造することができる。また、第1の製造方法により得られる精製重合体微粒子(A)は、乳化剤などの不純物、より具体的には乳化剤由来の元素PおよびSの含有量が少ないという利点を有する。さらに、第1の製造方法の実施により生じる排出液は重合体微粒子(A)の混入が非常に少なく、すなわち第1の製造方法は生産効率に優れるという利点を有する。
 まず、第1の製造方法で使用する原料(成分)について説明し、その後各工程について説明する。
 (1-2-1.ラテックス)
 本明細書において「ラテックス」とは、溶媒、重合体微粒子(A)および乳化剤を含み、重合体微粒子(A)および乳化剤が溶媒中で分散して存在する溶液を意図する。「ラテックス」は、「重合体微粒子(A)の懸濁液」ともいえる。ラテックスの溶媒としては特に限定されないが、例えば水が挙げられる。溶媒が水であるラテックスは、「水性ラテックス」と称される場合もあり、「重合体微粒子(A)の水性懸濁液」ともいえる。ラテックスの溶媒中、重合体微粒子(A)は、1次粒子の状態で分散していることが好ましい。
 重合体微粒子(A)および乳化剤を含有するラテックスは、公知の方法、例えば、重合体微粒子(A)の乳化重合法、および、溶媒中に重合体微粒子(A)および乳化剤を懸濁させる方法などにより製造することができる。重合体微粒子(A)の乳化重合法は、後述の(2-3.重合体微粒子(A)の製造方法)の項にて詳述される。
 (1-2-2.重合体微粒子(A))
 重合体微粒子(A)は、重合により得られる微粒子である限り、その他の態様としては特に限定されない。
 (グラフト部)
 重合体微粒子(A)は、グラフト部を有することが好ましい。本明細書において、「グラフト部」とは、任意の重合体に対してグラフト結合された重合体を意図する。グラフト部を有する重合体微粒子(A)は、グラフト共重合体ともいえる。すなわち、重合体微粒子(A)は、グラフト共重合体であることが好ましい。重合体微粒子(A)がグラフト共重合体である場合、第1の製造方法、および後述する樹脂組成物の製造方法において、重合体微粒子(A)が好適な挙動を示すことができるという利点を有する。
 グラフト部は、構成単位として、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含む重合体である(を含む)ことが好ましい。前記構成を有するグラフト部は、種々の役割を担うことができる。「種々の役割」とは、例えば、(i)重合体微粒子(A)と、樹脂組成物のマトリクス樹脂である樹脂(D)との相溶性を向上させること、(ii)樹脂(D)中における重合体微粒子(A)の分散性を向上させること、および(iii)樹脂組成物またはその硬化物において重合体微粒子(A)が1次粒子の状態で分散することを可能にすること、などである。
 芳香族ビニル単量体の具体例としては、スチレン、α-メチルスチレン、p-メチルスチレン、およびジビニルベンゼンなどが挙げられる。
 ビニルシアン単量体の具体例としては、アクリロニトリル、およびメタクリロニトリルなどが挙げられる。
 (メタ)アクリレート単量体の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、およびヒドロキシブチル(メタ)アクリレートなどが挙げられる。本明細書において(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意図する。
 上述した、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
 グラフト部は、構成単位として、芳香族ビニル単量体に由来する構成単位、ビニルシアン単量体に由来する構成単位および(メタ)アクリレート単量体に由来する構成単位を合計で、グラフト部100重量%中に、10~95重量%含むことが好ましく、30~92重量%含むことがより好ましく、50~90重量%含むことがさらに好ましく、60~87重量%含むことが特に好ましく、70~85重量%含むことが最も好ましい。
 グラフト部は、構成単位として、反応性基を有する単量体に由来する構成単位を含むことが好ましい。前記反応性基を有する単量体は、エポキシ基、オキセタン基、水酸基、アミノ基、イミド基、カルボン酸基、カルボン酸無水物基、環状エステル、環状アミド、ベンズオキサジン基、およびシアン酸エステル基からなる群から選択される1種以上の反応性基を有する単量体であることが好ましく、エポキシ基、水酸基、およびカルボン酸基からなる群から選択される1種以上の反応性基を有する単量体であることがより好ましく、エポキシ基を有する単量体であることが最も好ましい。前記構成によると、樹脂組成物中で重合体微粒子(A)のグラフト部と樹脂(D)(例えば熱硬化性樹脂)とを化学結合させることができる。これにより、樹脂組成物中またはその硬化物中で、重合体微粒子(A)を凝集させることなく、重合体微粒子(A)の良好な分散状態を維持することができる。
 エポキシ基を有する単量体の具体例としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、およびアリルグリシジルエーテルなどのグリシジル基含有ビニル単量体が挙げられる。
 水酸基を有する単量体の具体例としては、例えば、(i)2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシ直鎖アルキル(メタ)アクリレート(特に、ヒドロキシ直鎖C1-6アルキル(メタ)アクリレート);(ii)カプロラクトン変性ヒドロキシ(メタ)アクリレート;(iii)α-(ヒドロキシメチル)アクリル酸メチル、α-(ヒドロキシメチル)アクリル酸エチルなどのヒドロキシ分岐アルキル(メタ)アクリレート;(iv)二価カルボン酸(フタル酸など)と二価アルコール(プロピレングリコールなど)とから得られるポリエステルジオール(特に飽和ポリエステルジオール)のモノ(メタ)アクリレートなどのヒドロキシル基含有(メタ)アクリレート類、などが挙げられる。
 カルボン酸基を有する単量体の具体例としては、例えば、アクリル酸、メタクリル酸およびクロトン酸などのモノカルボン酸、並びに、マレイン酸、フマル酸、およびイタコン酸などのジカルボン酸などが挙げられる。カルボン酸基を有する単量体としては、前記モノカルボン酸が好適に用いられる。
 上述した反応性基を有する単量体は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
 グラフト部は、グラフト部100重量%中、反応性基を有する単量体に由来する構成単位を、0.5~90重量%含むことが好ましく、1~50重量%含むことがより好ましく、2~35重量%含むことがさらに好ましく、3~20重量%含むことが特に好ましい。グラフト部が、グラフト部100重量%中、反応性基を有する単量体に由来する構成単位を、(i)0.5重量%以上含む場合、得られる樹脂組成物は、十分な耐衝撃性を有する硬化物を提供することができ、(ii)90重量%以下含む場合、得られる樹脂組成物は、十分な耐衝撃性を有する硬化物を提供することができ、かつ、当該樹脂組成物の貯蔵安定性が良好となるという利点を有する。
 反応性基を有する単量体に由来する構成単位は、グラフト部に含まれることが好ましく、グラフト部にのみ含まれることがより好ましい。
 グラフト部は、構成単位として、多官能性単量体に由来する構成単位を含んでいてもよい。グラフト部が、多官能性単量体に由来する構成単位を含む場合、(i)樹脂組成物中において重合体微粒子(A)の膨潤を防止することができる、(ii)樹脂組成物の粘度が低くなるため、樹脂組成物の取扱い性が良好となる傾向がある、および(iii)樹脂(D)(例えば、熱硬化性樹脂)における重合体微粒子(A)の分散性が向上する、などの利点を有する。
 グラフト部が多官能性単量体に由来する構成単位を含まない場合、グラフト部が多官能性単量体に由来する構成単位を含む場合と比較して、得られる樹脂組成物は、靱性および耐衝撃性により優れる硬化物を提供することができる。
 多官能性単量体は、同一分子内にラジカル重合性反応基を2つ以上有する単量体ともいえる。前記ラジカル重合性反応基は、好ましくは炭素-炭素二重結合である。多官能性単量体としては、ブタジエンは含まれず、アリルアルキル(メタ)アクリレート類およびアリルオキシアルキル(メタ)アクリレート類のような、エチレン性不飽和二重結合を有する(メタ)アクリレートなどが例示される。(メタ)アクリル基を2つ有する単量体としては、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、およびポリエチレングリコールジ(メタ)アクリレート類が挙げられる。前記ポリエチレングリコールジ(メタ)アクリレート類としては、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(600)ジ(メタ)アクリレートなどが例示される。また、3つの(メタ)アクリル基を有する単量体として、アルコキシレーテッドトリメチロールプロパントリ(メタ)アクリレート類、グリセロールプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレートなどが例示される。アルコキシレーテッドトリメチロールプロパントリ(メタ)アクリレート類としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレートなどが挙げられる。さらに、4つの(メタ)アクリル基を有する単量体として、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、などが例示される。またさらに、5つの(メタ)アクリル基を有する単量体として、ジペンタエリスリトールペンタ(メタ)アクリレートなどが例示される。またさらに、6つの(メタ)アクリル基を有する単量体として、ジトリメチロールプロパンヘキサ(メタ)アクリレートなどが例示される。多官能性単量体としては、また、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼンなども挙げられる。
 上述の多官能性単量体の中でも、グラフト部の重合に好ましく用いられ得る多官能性単量体としては、アリルメタクリレート、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、およびポリエチレングリコールジ(メタ)アクリレート類が挙げられる。これら多官能性単量体は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
 グラフト部は、グラフト部100重量%中、多官能性単量体に由来する構成単位を、1~20重量%含むことが好ましく、5~15重量%含むことがより好ましい。
 グラフト部の重合において、上述した単量体は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。また、グラフト部は、構成単位として、上述した単量体に由来する構成単位の他に、他の単量体に由来する構成単位を含んでいてもよい。
 また、グラフト部は、後述する弾性体に対してグラフト結合された重合体であることが好ましい。
 (グラフト部のガラス転移温度)
 グラフト部のガラス転移温度は、190℃以下が好ましく、160℃以下がより好ましく、140℃以下がより好ましく、120℃以下がより好ましく、80℃以下が好ましく、70℃以下がより好ましく、60℃以下がより好ましく、50℃以下がより好ましく、40℃以下がより好ましく、30℃以下がより好ましく、20℃以下がより好ましく、10℃以下がより好ましく、0℃以下がより好ましく、-20℃以下がより好ましく、-40℃以下がより好ましく、-45℃以下がより好ましく、-50℃以下がより好ましく、-55℃以下がより好ましく、-60℃以下がより好ましく、-65℃以下がより好ましく、-70℃以下がより好ましく、-75℃以下がより好ましく、-80℃以下がより好ましく、-85℃以下がより好ましく、-90℃以下がより好ましく、-95℃以下がより好ましく、-100℃以下がより好ましく、-105℃以下がより好ましく、-110℃以下がより好ましく、-115℃以下がより好ましく、-120℃以下がさらに好ましく、-125℃以下が特に好ましい。
 グラフト部のガラス転移温度は、0℃以上が好ましく、30℃以上がより好ましく、50℃以上がより好ましく、70℃以上がより好ましく、90℃以上がさらに好ましく、110℃以下であることが特に好ましい。
 グラフト部のTgは、グラフト部に含まれる構成単位の組成などによって、決定され得る。換言すれば、グラフト部を製造(重合)するときに使用する単量体の組成を変化させることにより、得られるグラフト部のTgを調整することができる。
 グラフト部のTgは、重合体微粒子(A)からなる平面板を用いて、粘弾性測定を行うことによって得ることができる。具体的には、以下のようにしてTgを測定できる:(1)重合体微粒子(A)からなる平面板について、動的粘弾性測定装置(例えば、アイティー計測制御株式会社製、DVA-200)を用いて、引張条件で動的粘弾性測定を行い、tanδのグラフを得る;(2)得られたtanδのグラフについて、tanδのピーク温度をガラス転移温度とする。ここで、tanδのグラフにおいて、複数のピークが得られた場合には、最も高いピーク温度をグラフト部のガラス転移温度とする。
 (グラフト部のグラフト率)
 本発明の一実施形態において、重合体微粒子(A)は、グラフト部と同じ構成を有する重合体であり、かつ任意の重合体(例えば後述する弾性体)に対してグラフト結合されていない重合体を有していてもよい。本明細書において、「グラフト部と同じ構成を有する重合体であり、かつ任意の重合体に対してグラフト結合されていない重合体」を、非グラフト重合体とも称する。当該非グラフト重合体も、本発明の一実施形態に係る重合体微粒子(A)の一部を構成するものとする。前記非グラフト重合体は、グラフト部の重合において製造された重合体のうち、任意の重合体に対してグラフト結合していない重合体ともいえる。
 本明細書において、グラフト部の重合において製造された重合体のうち、任意の重合体に対してグラフト結合された重合体、すなわちグラフト部の割合を、グラフト率と称する。グラフト率は、(グラフト部の重量)/{(グラフト部の重量)+(非グラフト重合体の重量)}×100で表される値、ともいえる。
 グラフト部のグラフト率は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。グラフト率が70%以上である場合、樹脂組成物の粘度が高くなりすぎないという利点を有する。
 本明細書において、グラフト率の算出方法は下記の通りである。先ず、重合体微粒子(A)を含有する水性懸濁液を得、次に、当該水性懸濁液から、重合体微粒子(A)の粉粒体を得る。水性懸濁液から重合体微粒子(A)の粉粒体を得る方法としては、具体的には、(i)前記水性懸濁液中の重合体微粒子(A)を凝析し、(ii)得られる凝析物を脱水し、(iii)さらに凝析物を乾燥することにより、重合体微粒子(A)の粉粒体を得る方法が挙げられる。次いで、重合体微粒子(A)の粉粒体2gをメチルエチルケトン(以下、MEKとも称する。)50mLに溶解する。その後、得られたMEK溶解物を、MEKに可溶な成分(MEK可溶分)とMEKに不溶な成分(MEK不溶分)とに分離する。具体的には、以下(1)~(3)を行う:(1)遠心分離機(日立工機(株)社製、CP60E)を用い、回転数30000rpmにて1時間、得られたMEK溶解物を遠心分離に供し、当該溶解物を、MEK可溶分とMEK不溶分とに分離する;(2)得られたMEK可溶分とMEKとを混合し、得られたMEK混合物を上述の遠心分離機を用い、回転数30000rpmにて1時間、遠心分離に供し、当該MEK混合物をMEK可溶分とMEK不溶分とに分離する;(3)前記(2)の操作を1回繰り返す(すなわち遠心分離作業は合計3回実施する)。かかる操作により濃縮したMEK可溶分を得る。次に、濃縮したMEK可溶分20mlをメタノール200mlと混合する。塩化カルシウム0.01gを水に溶かした塩化カルシウム水溶液を得られた混合物に添加し、得られた混合物を1時間撹拌する。その後、得られた混合物をメタノール可溶分とメタノール不溶分とに分離し、メタノール不溶分の重量をフリー重合体(FP)量とする。
 次式よりグラフト率を算出する。
グラフト率(%)=100-[(FP量)/{(FP量)+(MEK不溶分の重量)}]/(グラフト部の重合体の重量)×10000。
 なお、グラフト部以外の重合体の重量は、グラフト部以外の重合体を構成する単量体の仕込み量である。グラフト部以外の重合体は、例えば弾性体である。また、重合体微粒子(A)が後述する表面架橋重合体を含む場合、グラフト部以外の重合体は、弾性体および表面架橋重合体の両方を含む。グラフト部の重合体の重量は、グラフト部の重合体を構成する単量体の仕込み量である。また、グラフト率の算出において、重合体微粒子(A)を凝析する方法は特に限定されず、溶剤を用いる方法、凝析剤を用いる方法、水性懸濁液を噴霧する方法などが用いられ得る。
 (グラフト部の変形例)
 本発明の一実施形態において、グラフト部は、同一の組成の構成単位を有する1種のグラフト部のみからなってもよい。本発明の一実施形態において、グラフト部は、それぞれ異なる組成の構成単位を有する複数種のグラフト部からなってもよい。
 本発明の一実施形態において、グラフト部が複数種のグラフト部からなる場合について説明する。この場合、複数種のグラフト部のそれぞれを、グラフト部、グラフト部、・・・、グラフト部とする(nは2以上の整数)。グラフト部は、それぞれ別々に重合されたグラフト部、グラフト部、・・・、およびグラフト部の複合体を含んでいてもよい。グラフト部は、グラフト部、グラフト部、・・・、およびグラフト部をそれぞれ順に重合して得られる1つの重合体を含んでいてもよい。このように、複数の重合部(グラフト部)をそれぞれ順に重合することを、多段重合とも称する。複数種のグラフト部を多段重合して得られる重合体を、多段重合グラフト部とも称する。多段重合グラフト部の製造方法については、後に詳述する。
 グラフト部が複数種のグラフト部からなる場合、これら複数種のグラフト部の全てが弾性体に対してグラフト結合されていなくてもよい。少なくとも1種のグラフト部の少なくとも一部が弾性体に対してグラフト結合されていればよく、その他の種(その他の複数種)のグラフト部は、弾性体に対してグラフト結合されているグラフト部にグラフト結合されていてもよい。また、グラフト部が複数種のグラフト部からなる場合、複数種のグラフト部と同じ構成を有する重合体であり、かつ弾性体に対してグラフト結合されていない複数種の重合体(複数種の非グラフト重合体)を有していてもよい。
 グラフト部、グラフト部、・・・、およびグラフト部からなる多段重合グラフト部について説明する。当該多段重合グラフト部において、グラフト部は、グラフト部n-1の少なくとも一部を被覆し得るか、またはグラフト部n-1の全体を被覆し得る。当該多段重合グラフト部において、グラフト部の一部はグラフト部n-1の内側に入り込んでいることもある。
 多段重合グラフト部において、複数のグラフト部のそれぞれが、層構造を形成していてもよい。例えば、多段重合グラフト部が、グラフト部、グラフト部、およびグラフト部からなる場合、グラフト部がグラフト部における最内層を形成し、グラフト部の外側にグラフト部の層が形成され、さらにグラフト部の層の外側にグラフト部の層が最外層として形成される態様も、本発明の一態様である。このように、複数のグラフト部のそれぞれが層構造を形成している多段重合グラフト部は、多層グラフト部ともいえる。すなわち、本発明の一実施形態において、グラフト部は、(i)複数種のグラフト部の複合体、(ii)多段重合グラフト部および/または(iii)多層グラフト部を含んでいてもよい。
 重合体微粒子(A)の製造において任意の重合体(例えば後述する弾性体)とグラフト部とがこの順で重合される場合、得られる重合体微粒子(A)において、グラフト部の少なくとも一部分は、任意の重合体の少なくとも一部分を被覆し得る。任意の重合体とグラフト部とがこの順で重合されるとは、換言すれば、任意の重合体とグラフト部とが多段重合されるともいえる。任意の重合体とグラフト部とを多段重合して得られる重合体微粒子(A)は、多段重合体ともいえる。
 重合体微粒子(A)が多段重合体である場合、グラフト部は任意の重合体(例えば後述する弾性体)の少なくとも一部を被覆し得るか、または任意の重合体の全体を被覆し得る。重合体微粒子(A)が多段重合体である場合、グラフト部の一部は任意の重合体の内側に入り込んでいることもある。グラフト部の少なくとも一部分は、弾性体の少なくとも一部分を被覆していることが好ましい。換言すれば、グラフト部の少なくとも一部分は、重合体微粒子(A)の最も外側に存在することが好ましい。
 重合体微粒子(A)が多段重合体である場合、任意の重合体(例えば後述する弾性体)およびグラフト部が、層構造を形成していてもよい。例えば、弾性体が最内層(コア層とも称する。)を形成し、弾性体の外側にグラフト部の層が最外層(シェル層とも称する。)として形成される態様も、本発明の一態様である。弾性体をコア層とし、グラフト部をシェル層とする構造はコアシェル構造ともいえる。このように、弾性体およびグラフト部が層構造(コアシェル構造)を形成している重合体微粒子(A)は、多層重合体またはコアシェル重合体ともいえる。すなわち、本発明の一実施形態において、重合体微粒子(A)は、多段重合体であってもよく、かつ/または、多層重合体もしくはコアシェル重合体であってもよい。ただし、グラフト部を有している限り、重合体微粒子(A)は前記構成に制限されるわけではない。
 (弾性体)
 重合体微粒子(A)は、さらに弾性体を有するものであることが好ましい。上述したグラフト部は、弾性体に対してグラフト結合された重合体であることが好ましい。すなわち、重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体であることがより好ましい。以下、重合体微粒子(A)がゴム含有グラフト共重合体である場合を例に挙げて、本発明の一実施形態を説明する。
 当該弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴムからなる群より選択される1種以上を含むことが好ましい。弾性体は、上述したゴム以外に、天然ゴムを含んでいてもよい。弾性体は、弾性部またはゴム粒子と言い換えることもできる。
 弾性体がジエン系ゴムを含む場合(場合A)について説明する。場合Aにおいて、得られる樹脂組成物は、靱性および耐衝撃性に優れる硬化物を提供することができる。靱性および/または耐衝撃性に優れる硬化物は、耐久性に優れる硬化物ともいえる。
 前記ジエン系ゴムは、構成単位として、ジエン系単量体に由来する構成単位を含む弾性体である。前記ジエン系単量体は、共役ジエン系単量体と言い換えることもできる。場合Aにおいて、ジエン系ゴムは、構成単位100重量%中、ジエン系単量体に由来する構成単位を50~100重量%、およびジエン系単量体と共重合可能なジエン系単量体以外のビニル系単量体に由来する構成単位を0~50重量%、含むものであってもよい。場合Aにおいて、ジエン系ゴムは、構成単位として、ジエン系単量体に由来する構成単位よりも少ない量において、(メタ)アクリレート系単量体に由来する構成単位を含んでいてもよい。
 ジエン系単量体としては、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2-クロロ-1,3-ブタジエンなどが挙げられる。これらのジエン系単量体は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 ジエン系単量体と共重合可能なジエン系単量体以外のビニル系単量体(以下、ビニル系単量体A、とも称する。)としては、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレンなどのビニルアレーン類;アクリル酸、メタクリル酸などのビニルカルボン酸類;アクリロニトリル、メタクリロニトリルなどのビニルシアン類;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、イソブチレンなどのアルケン類;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼンなどの多官能性単量体、などが挙げられる。上述した、ビニル系単量体Aは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。上述した、ビニル系単量体Aの中でも、特に好ましくはスチレンである。なお、場合Aにおけるジエン系ゴムにおいて、ビニル系単量体Aに由来する構成単位は任意成分である。場合Aにおいて、ジエン系ゴムは、ジエン系単量体に由来する構成単位のみから構成されてもよい。
 場合Aにおいて、ジエン系ゴムとしては、1,3-ブタジエンに由来する構成単位からなるブタジエンゴム(ポリブタジエンゴムとも称する。)、または、1,3-ブタジエンとスチレンとの共重合体であるブタジエン-スチレンゴム(ポリスチレン-ブタジエンとも称する。)が好ましく、ブタジエンゴムがより好ましい。前記構成によると、重合体微粒子(A)がジエン系ゴムを含むことによる所望の効果がより発揮され得る。また、ブタジエン-スチレンゴムは、屈折率の調整により、得られる硬化物の透明性を高めることができる点においても、より好ましい。
 弾性体が(メタ)アクリレート系ゴムを含む場合(場合B)について説明する。場合Bでは、多種の単量体の組合せにより、弾性体の幅広い重合体設計が可能となる。
 前記(メタ)アクリレート系ゴムは、構成単位として、(メタ)アクリレート系単量体に由来する構成単位を含む弾性体である。場合Bにおいて、(メタ)アクリレート系ゴムは、構成単位100重量%中、(メタ)アクリレート系単量体に由来する構成単位を50~100重量%、および(メタ)アクリレート系単量体と共重合可能な(メタ)アクリレート系単量体以外のビニル系単量体に由来する構成単位を0~50重量%、含むものであってもよい。場合Bにおいて、(メタ)アクリレート系ゴムは、構成単位として、(メタ)アクリレート系単量体に由来する構成単位よりも少ない量において、ジエン系単量体に由来する構成単位を含んでいてもよい。
 (メタ)アクリレート系単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどのアルキル(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香環含有(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;グリシジル(メタ)アクリレート、グリシジルアルキル(メタ)アクリレートなどのグリシジル(メタ)アクリレート類;アルコキシアルキル(メタ)アクリレート類;アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレートなどのアリルアルキル(メタ)アクリレート類;モノエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートなどの多官能性(メタ)アクリレート類などが挙げられる。これらの(メタ)アクリレート系単量体は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。これらの(メタ)アクリレート系単量体の中でも、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、および2-エチルヘキシル(メタ)アクリレートが好ましく、ブチル(メタ)アクリレートがより好ましい。
 場合Bにおいて、(メタ)アクリレート系ゴムとしては、エチル(メタ)アクリレートゴム、ブチル(メタ)アクリレートゴムおよび2-エチルヘキシル(メタ)アクリレートゴムからなる群より選択される1種以上であることが好ましく、ブチル(メタ)アクリレートゴムがより好ましい。エチル(メタ)アクリレートゴムはエチル(メタ)アクリレートに由来する構成単位からなるゴムであり、ブチル(メタ)アクリレートゴムはブチル(メタ)アクリレートに由来する構成単位からなるゴムであり、2-エチルヘキシル(メタ)アクリレートゴムは2-エチルヘキシル(メタ)アクリレートに由来する構成単位からなるゴムである。当該構成によると、弾性体のガラス転移温度(Tg)が低くなるためTgが低い重合体微粒子(A)および樹脂組成物が得られる。その結果、(i)得られる樹脂組成物は、優れた靱性を有する硬化物を提供でき、かつ(ii)当該樹脂組成物の粘度をより低くすることができる。
 (メタ)アクリレート系単量体と共重合可能な(メタ)アクリレート系単量体以外のビニル系単量体(以下、ビニル系単量体B、とも称する。)としては、前記ビニル系単量体Aにおいて列挙した単量体が挙げられる。ビニル系単量体Bは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。ビニル系単量体Bの中でも、特に好ましくはスチレンである。なお、場合Bにおける(メタ)アクリレート系ゴムにおいて、ビニル系単量体Bに由来する構成単位は任意成分である。場合Bにおいて、(メタ)アクリレート系ゴムは、(メタ)アクリレート系単量体に由来する構成単位のみから構成されてもよい。
 弾性体がオルガノシロキサン系ゴムを含む場合(場合C)について説明する。場合Cにおいて、得られる樹脂組成物は、十分な耐熱性を有し、かつ低温での耐衝撃性に優れる硬化物を提供することができる。
 オルガノシロキサン系ゴムとしては、例えば、(i)ジメチルシリルオキシ、ジエチルシリルオキシ、メチルフェニルシリルオキシ、ジフェニルシリルオキシ、ジメチルシリルオキシ-ジフェニルシリルオキシなどの、アルキルもしくはアリール2置換シリルオキシ単位から構成されるオルガノシロキサン系重合体、(ii)側鎖のアルキルの一部が水素原子に置換されたオルガノハイドロジェンシリルオキシなどの、アルキルもしくはアリール1置換シリルオキシ単位から構成されるオルガノシロキサン系重合体、が挙げられる。これらのオルガノシロキサン系重合体は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本明細書において、ジメチルシリルオキシ単位から構成される重合体をジメチルシリルオキシゴムと称し、メチルフェニルシリルオキシ単位から構成される重合体をメチルフェニルシリルオキシゴムと称し、ジメチルシリルオキシ単位とジフェニルシリルオキシ単位とから構成される重合体をジメチルシリルオキシ-ジフェニルシリルオキシゴムと称する。場合Cにおいて、オルガノシロキサン系ゴムとしては、(i)得られる粉粒体を含む樹脂組成物が耐熱性に優れる硬化物または成形体を提供することができることから、ジメチルシリルオキシゴム、メチルフェニルシリルオキシゴムおよびジメチルシリルオキシ-ジフェニルシリルオキシゴムからなる群より選択される1種以上であることが好ましく、(ii)容易に入手できて経済的でもあることから、ジメチルシリルオキシゴムであることがより好ましい。
 場合Cにおいて、重合体微粒子(A)は、重合体微粒子(A)に含まれる弾性体100重量%中、オルガノシロキサン系ゴムを80重量%以上含有していることが好ましく、90重量%以上含有していることがより好ましい。前記構成によると、得られる樹脂組成物は、耐熱性に優れる硬化物を提供することができる。
 弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴム以外の弾性体をさらに含んでいてもよい。ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴム以外の弾性体としては、例えば天然ゴムが挙げられる。
 本発明の一実施形態において、弾性体は、ブタジエンゴム、ブタジエン-スチレンゴム、ブタジエン-(メタ)アクリレートゴム、エチル(メタ)アクリレートゴム、ブチル(メタ)アクリレートゴム、2-エチルヘキシル(メタ)アクリレートゴム、ジメチルシリルオキシゴム、メチルフェニルシリルオキシゴム、およびジメチルシリルオキシ-ジフェニルシリルオキシゴムからなる群より選択される1種以上であることが好ましく、ブタジエンゴム、ブタジエン-スチレンゴム、ブチル(メタ)アクリレートゴム、およびジメチルシリルオキシゴムからなる群より選択される1種以上であることがより好ましい。
 (弾性体の架橋構造)
 重合体微粒子(A)の熱硬化性樹脂中での分散安定性を保持する観点から、弾性体には、架橋構造が導入されていることが好ましい。弾性体に対する架橋構造の導入方法としては、一般的に用いられる手法を採用することができ、例えば以下の方法が挙げられる。すなわち、弾性体の製造において、弾性体を構成し得る単量体に、多官能性単量体および/またはメルカプト基含有化合物などの架橋性単量体を混合し、次いで重合する方法が挙げられる。本明細書において、弾性体など重合体を製造することを、重合体を重合する、とも称する。
 また、オルガノシロキサン系ゴムに架橋構造を導入する方法としては、次のような方法も挙げられる:(A)オルガノシロキサン系ゴムを重合するときに、多官能性のアルコキシシラン化合物と他の材料とを併用する方法、(B)反応性基(例えば(i)メルカプト基および(ii)反応性を有するビニル基、など)をオルガノシロキサン系ゴムに導入し、その後、得られた反応生成物に、(i)有機過酸化物または(ii)重合性を有するビニル単量体などを添加してラジカル反応させる方法、または、(C)オルガノシロキサン系ゴムを重合するときに、多官能性単量体および/またはメルカプト基含有化合物などの架橋性単量体を他の材料と共に混合し、次いで重合を行う方法、など。
 多官能性単量体としては、上述した(グラフト部)の項で例示した多官能性単量体が挙げられる。
 メルカプト基含有化合物としては、アルキル基置換メルカプタン、アリル基置換メルカプタン、アリール基置換メルカプタン、ヒドロキシ基置換メルカプタン、アルコキシ基置換メルカプタン、シアノ基置換メルカプタン、アミノ基置換メルカプタン、シリル基置換メルカプタン、酸基置換メルカプタン、ハロ基置換メルカプタンおよびアシル基置換メルカプタンなどが挙げられる。アルキル基置換メルカプタンとしては、炭素数1~20のアルキル基置換メルカプタンが好ましく、炭素数1~10のアルキル基置換メルカプタンがより好ましい。アリール基置換メルカプタンとしては、フェニル基置換メルカプタンが好ましい。アルコキシ基置換メルカプタンとしては、炭素数1~20のアルコキシ基置換メルカプタンが好ましく、炭素数1~10のアルコキシ基置換メルカプタンがより好ましい。酸基置換メルカプタンとしては、好ましくは、カルボキシル基を有する炭素数1~10のアルキル基置換メルカプタン、または、カルボキシル基を有する炭素数1~12のアリール基置換メルカプタン、である。
 (弾性体のガラス転移温度)
 弾性体のガラス転移温度は、80℃以下が好ましく、70℃以下がより好ましく、60℃以下がより好ましく、50℃以下がより好ましく、40℃以下がより好ましく、30℃以下がより好ましく、20℃以下がより好ましく、10℃以下がより好ましく、0℃以下がより好ましく、-20℃以下がより好ましく、-40℃以下がより好ましく、-45℃以下がより好ましく、-50℃以下がより好ましく、-55℃以下がより好ましく、-60℃以下がより好ましく、-65℃以下がより好ましく、-70℃以下がより好ましく、-75℃以下がより好ましく、-80℃以下がより好ましく、-85℃以下がより好ましく、-90℃以下がより好ましく、-95℃以下がより好ましく、-100℃以下がより好ましく、-105℃以下がより好ましく、-110℃以下がより好ましく、-115℃以下がより好ましく、-120℃以下がさらに好ましく、-125℃以下が特に好ましい。本明細書において、「ガラス転移温度」を「Tg」と称する場合もある。当該構成によると、低いTgを有する重合体微粒子(A)、および、低いTgを有する樹脂組成物を得ることができる。その結果、得られる樹脂組成物は、優れた靱性を有する硬化物を提供できる。また、当該構成によると、得られる樹脂組成物の粘度を、より低くすることができる。弾性体のTgは、重合体微粒子(A)からなる平面板を用いて、粘弾性測定を行うことによって得ることができる。具体的には、以下のようにしてTgを測定できる:(1)重合体微粒子(A)からなる平面板について、動的粘弾性測定装置(例えば、アイティー計測制御株式会社製、DVA-200)を用いて、引張条件で動的粘弾性測定を行い、tanδのグラフを得る;(2)得られたtanδのグラフについて、tanδのピーク温度をガラス転移温度とする。ここで、tanδのグラフにおいて、複数のピークが得られた場合には、最も低いピーク温度を弾性体のガラス転移温度とする。
 一方、得られる硬化物の弾性率(剛性)の低下を抑制することができる、すなわち十分な弾性率(剛性)を有する硬化物が得られることから、弾性体のTgは、0℃よりも大きいことが好ましく、20℃以上であることがより好ましく、50℃以上であることがさらに好ましく、80℃以上であることが特に好ましく、120℃以上であることが最も好ましい。
 弾性体のTgは、弾性体に含まれる構成単位の組成などによって、決定され得る。換言すれば、弾性体を製造(重合)するときに使用する単量体の組成を変化させることにより、得られる弾性体のTgを調整することができる。
 ここで、1種類の単量体のみを重合させてなる単独重合体としたとき、0℃よりも大きいTgを有する単独重合体を提供する単量体の群を、単量体群aとする。また、1種類の単量体のみを重合させてなる単独重合体としたとき、0℃未満のTgを有する単独重合体を提供する単量体の群を、単量体群bとする。単量体群aから選択される少なくとも1種の単量体に由来する構成単位を50~100重量%(より好ましくは、65~99重量%)、および単量体群bから選択される少なくとも1種の単量体に由来する構成単位を0~50重量%(より好ましくは、1~35重量%)含む弾性体を、弾性体Gとする。弾性体Gは、Tgが0℃よりも大きい。また、弾性体が弾性体Gを含む場合、得られる樹脂組成物は、十分な剛性を有する硬化物を提供することができる。
 弾性体のTgが0℃よりも大きい場合も、弾性体に架橋構造が導入されていることが好ましい。架橋構造の導入方法としては、前記の方法が挙げられる。
 前記単量体群aに含まれ得る単量体としては、以下に限るものではないが、例えば、スチレン、2-ビニルナフタレンなどの無置換ビニル芳香族化合物類;α-メチルスチレンなどのビニル置換芳香族化合物類;3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2,4,6-トリメチルスチレンなどの環アルキル化ビニル芳香族化合物類;4-メトキシスチレン、4-エトキシスチレンなどの環アルコキシル化ビニル芳香族化合物類;2-クロロスチレン、3-クロロスチレンなどの環ハロゲン化ビニル芳香族化合物類;4-アセトキシスチレンなどの環エステル置換ビニル芳香族化合物類;4-ヒトロキシスチレンなどの環ヒドロキシル化ビニル芳香族化合物類;ビニルベンゾエート、ビニルシクロヘキサノエートなどのビニルエステル類;塩化ビニルなどのビニルハロゲン化物類;アセナフタレン、インデンなどの芳香族単量体類;メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレートなどのアルキルメタクリレート類;フェニルメタクリレートなどの芳香族メタクリレート;イソボルニルメタクリレート、トリメチルシリルメタクリレートなどのメタクリレート類;メタクリロニトリルなどのメタクリル酸誘導体を含むメタクリル単量体;イソボルニルアクリレート、tert-ブチルアクリレートなどのある種のアクリル酸エステル;アクリロニトリルなどのアクリル酸誘導体を含むアクリル単量体、などが挙げられる。さらに、前記単量体群aに含まれ得る単量体としては、アクリルアミド、イソプロピルアクリルアミド、N-ビニルピロリドン、イソボルニルメタクリレート、ジシクロペンタニルメタクリレート、2-メチル-2-アダマンチルメタクリレート、1-アダマンチルアクリレートおよび1-アダマンチルメタクリレート、など、単独重合体としたとき120℃以上のTgを有する単独重合体を提供し得る単量体が挙げられる。これらの単量体aは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 前記単量体bとしては、エチルアクリレート、ブチルアクリレート(別名:アクリル酸ブチル)、2-エチルヘキシルアクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレートなどが挙げられる。これらの単量体bは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。これらの単量体bの中でも、特に好ましくは、エチルアクリレート、ブチルアクリレート、および2-エチルヘキシルアクリレートである。
 (弾性体の体積平均粒子径)
 弾性体の体積平均粒子径は、0.03μm~50.00μmが好ましく、0.05μm~10.00μmがより好ましく、0.08μm~2.00μmがより好ましく、0.10μm~1.00μmがさらに好ましく、0.10μm~0.80μmがよりさらに好ましく、0.10μm~0.50μmが特に好ましい。弾性体の体積平均粒子径が(i)0.03μm以上である場合、所望の体積平均粒子径を有する弾性体を安定的に得ることができ、(ii)50.00μm以下である場合、得られる硬化物または成形体の耐熱性および耐衝撃性が良好となる。弾性体の体積平均粒子径は、弾性体を含む水性懸濁液を試料として、動的光散乱式粒子径分布測定装置などを用いて、測定することができる。弾性体の体積平均粒子径の測定方法については、下記実施例にて詳述する。
 (弾性体の割合)
 重合体微粒子(A)中に占める弾性体の割合は、重合体微粒子(A)全体を100重量%として、40~97重量%が好ましく、60~95重量%がより好ましく、70~93重量%がさらに好ましい。弾性体の前記割合が、(i)40重量%以上である場合、得られる樹脂組成物は、靱性および耐衝撃性に優れる硬化物を提供することができ、(ii)97重量%以下である場合、重合体微粒子(A)は容易には凝集しないため、樹脂組成物が高粘度となることがなく、その結果、得られる樹脂組成物は取り扱いに優れたものとなり得る。
 (弾性体のゲル含量)
 弾性体は、適切な溶媒に対して膨潤し得るが、実質的には溶解しないものであることが好ましい。弾性体は、使用する熱硬化性樹脂に対して、不溶であることが好ましい。
 弾性体は、ゲル含量が60重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることがさらに好ましく、95重量%以上であることが特に好ましい。弾性体のゲル含量が前記範囲内である場合、得られる樹脂組成物は、靱性に優れる硬化物を提供できる。
 本明細書においてゲル含量の算出方法は下記の通りである。先ず、重合体微粒子(A)を含有する水性懸濁液を得、次に、当該水性懸濁液から、重合体微粒子(A)の粉粒体を得る。水性懸濁液から重合体微粒子(A)の粉粒体を得る方法としては、特に限定されないが、例えば、(i)当該水性懸濁液中の重合体微粒子(A)を凝集させ、(ii)得られる凝集物を脱水し、(iii)さらに凝集物を乾燥することにより、重合体微粒子(A)の粉粒体を得る方法が挙げられる。次いで、重合体微粒子(A)の粉粒体2.0gをメチルエチルケトン(MEK)50mLに溶解する。その後、得られたMEK溶解物を、MEKに可溶な成分(MEK可溶分)とMEKに不溶な成分(MEK不溶分)とに分離する。具体的には、遠心分離機(日立工機(株)社製、CP60E)を用い、回転数30000rpmにて1時間、得られたMEK溶解物を遠心分離に供し、当該溶解物を、MEK可溶分とMEK不溶分とに分離する。ここで、遠心分離作業は合計3セット実施する。得られたMEK可溶分とMEK不溶分との重量を測定し、次式よりゲル含量を算出する。
ゲル含量(%)=(メチルエチルケトン不溶分の重量)/{(メチルエチルケトン不溶分の重量)+(メチルエチルケトン可溶分の重量)}×100
 (弾性体の変形例)
 本発明の一実施形態において、重合体微粒子(A)の「弾性体」は、構成単位の組成が同一である1種類の弾性体、のみからなってもよい。この場合、重合体微粒子(A)の「弾性体」は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴムからなる群より選択される1種類である。
 本発明の一実施形態において、重合体微粒子(A)の「弾性体」は、構成単位の組成がそれぞれ異なる複数種の弾性体からなってもよい。この場合、重合体微粒子(A)の「弾性体」は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴムからなる群より選択される2種類以上であってもよい。また、この場合、重合体微粒子(A)の「弾性体」は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴムからなる群より選択される1種類であってもよい。換言すれば、重合体微粒子(A)の「弾性体」は、構成単位の組成がそれぞれ異なる複数種のジエン系ゴム、(メタ)アクリレート系ゴムまたはオルガノシロキサン系ゴムであってもよい。
 本発明の一実施形態において、重合体微粒子(A)の「弾性体」が、構成単位の組成がそれぞれ異なる複数種の弾性体からなる場合について説明する。この場合、複数種の弾性体のそれぞれを、弾性体、弾性体、・・・、および弾性体とする。ここで、nは2以上の整数である。重合体微粒子(A)の「弾性体」は、それぞれ別々に重合された弾性体、弾性体、・・・、および弾性体の複合体を含んでいてもよい。重合体微粒子(A)の「弾性体」は、弾性体、弾性体、・・・、および弾性体をそれぞれ順に重合して得られる1つの弾性体を含んでいてもよい。このように、複数の弾性体(重合体)をそれぞれ順に重合することを、多段重合とも称する。複数種の弾性体を多段重合して得られる1つの弾性体を、多段重合弾性体とも称する。多段重合弾性体の製造方法については、後に詳述する。
 弾性体、弾性体、・・・、および弾性体からなる多段重合弾性体について説明する。当該多段重合弾性体において、弾性体は、弾性体n-1の少なくとも一部を被覆し得るか、または弾性体n-1の全体を被覆し得る。当該多段重合弾性体において、弾性体の一部は弾性体n-1の内側に入り込んでいることもある。
 多段重合弾性体において、複数の弾性体のそれぞれが、層構造を形成していてもよい。例えば、多段重合弾性体が、弾性体、弾性体、および弾性体からなる場合、弾性体が最内層を形成し、弾性体の外側に弾性体の層が形成され、さらに弾性体の層の外側に弾性体の層が弾性体における最外層として形成される態様も、本発明の一態様である。このように、複数の弾性体のそれぞれが層構造を形成している多段重合弾性体は、多層弾性体ともいえる。すなわち、本発明の一実施形態において、重合体微粒子(A)の「弾性体」は、(i)複数種の弾性体の複合体、(ii)多段重合弾性体および/または(iii)多層弾性体を含んでいてもよい。
 (表面架橋重合体)
 ゴム含有グラフト共重合体は、弾性体、および、当該弾性体に対してグラフト結合されたグラフト部以外に、表面架橋重合体をさらに有することが好ましい。換言すれば、重合体微粒子(A)は、弾性体、および、当該弾性体に対してグラフト結合されたグラフト部以外に、表面架橋重合体をさらに有することが好ましい。以下、重合体微粒子(A)(例えばゴム含有グラフト共重合体)が、表面架橋重合体をさらに有する場合を例に挙げて、本発明の一実施形態を説明する。この場合、(i)重合体微粒子(A)の製造において、耐ブロッキング性を改善することができるとともに、(ii)熱硬化性樹脂における重合体微粒子(A)の分散性がより良好となる。これらの理由としては、特に限定されないが、以下のように推測され得る:表面架橋重合体が弾性体の少なくとも一部を被覆することにより、重合体微粒子(A)の弾性体部分の露出が減り、その結果、弾性体同士が引っ付きにくくなるため、重合体微粒子(A)の分散性が向上する。
 重合体微粒子(A)が表面架橋重合体を有する場合、さらに以下の効果も有し得る:(i)後述する樹脂組成物の粘度を低下させる効果、(ii)弾性体における架橋密度を上げる効果、および(iii)グラフト部のグラフト効率を高める効果。弾性体における架橋密度とは、弾性体全体における架橋構造の数の程度を意図する。
 表面架橋重合体は、構成単位として、多官能性単量体に由来する構成単位を30~100重量%、およびその他のビニル系単量体に由来する構成単位を0~70重量%、合計100重量%含む重合体からなる。
 表面架橋重合体の重合に用いられ得る多官能性単量体としては、上述の多官能性単量体と同じ単量体が挙げられる。それら多官能性単量体の中でも、表面架橋重合体の重合に好ましく用いられ得る多官能性単量体としては、アリルメタクリレート、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート(例えばジメタクリル酸1,3-ブチレングリコールなど)、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、およびポリエチレングリコールジ(メタ)アクリレート類が挙げられる。これら多官能性単量体は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
 重合体微粒子(A)は、ゴム含有グラフト共重合体の重合とは独立して重合された表面架橋重合体を含んでいてもよく、または、ゴム含有グラフト共重合体と共に重合された表面架橋重合体を含んでいてもよい。重合体微粒子(A)は、弾性体と表面架橋重合体とグラフト部とをこの順に多段重合して得られる多段重合体であってもよい。これらいずれの態様においても、表面架橋重合体は弾性体の少なくとも一部を被覆し得る。
 表面架橋重合体は、弾性体の一部とみなすこともできる。換言すれば、表面架橋重合体は、ゴム含有グラフト共重合体の一部とみなすこともでき、表面架橋重合部ともいえる。重合体微粒子(A)が表面架橋重合体を含む場合、グラフト部は、(i)表面架橋重合体以外の弾性体に対してグラフト結合されていてもよく、(ii)表面架橋重合体に対してグラフト結合されていてもよく、(iii)表面架橋重合体以外の弾性体および表面架橋重合体の両方に対してグラフト結合されていてもよい。重合体微粒子(A)が表面架橋重合体を含む場合、上述した弾性体の体積平均粒子径とは、表面架橋重合体を含む弾性体の体積平均粒子径を意図する。
 重合体微粒子(A)が、弾性体と表面架橋重合体とグラフト部とをこの順に多段重合して得られる多段重合体である場合(場合D)について説明する。場合Dにおいて、表面架橋重合体は、弾性体の一部を被覆し得るか、または弾性体の全体を被覆し得る。場合Dにおいて、表面架橋重合体の一部は弾性体の内側に入り込んでいることもある。場合Dにおいて、グラフト部は、表面架橋重合体の一部を被覆し得るか、または表面架橋重合体の全体を被覆し得る。場合Dにおいて、グラフト部の一部は表面架橋重合体の内側に入り込んでいることもある。場合Dにおいて、弾性体、表面架橋重合体およびグラフト部が、層構造を有していてもよい。例えば、弾性体を最内層(コア層)とし、弾性体の外側に表面架橋重合体の層が中間層として存在し、表面架橋重合体の外側にグラフト部の層が最外層(シェル層)として存在する態様も、本発明の一態様である。
 (重合体微粒子(A)の体積平均粒子径(Mv))
 重合体微粒子(A)の体積平均粒子径(Mv)は、所望の粘度を有し、かつ高度に安定した樹脂組成物を得ることができることから、0.03μm~50.00μmが好ましく、0.05μm~10.00μmがより好ましく、0.08μm~2.00μmがより好ましく、0.10μm~1.00μmがさらに好ましく、0.10μm~0.80μmがよりさらに好ましく、0.10μm~0.50μmが特に好ましい。重合体微粒子(A)の体積平均粒子径(Mv)が前記範囲内である場合、樹脂(D)(例えば、熱硬化性樹脂)における重合体微粒子(A)の分散性が良好となるという利点も有する。なお、本明細書において、「重合体微粒子(A)の体積平均粒子径(Mv)」とは、特に言及する場合を除き、重合体微粒子(A)の1次粒子の体積平均粒子径を意図する。重合体微粒子(A)の体積平均粒子径は、重合体微粒子(A)を含む水性ラテックスを試料として、動的光散乱式粒子径分布測定装置などを用いて、測定することができる。
 (1-2-3.重合体微粒子(A)の製造方法)
 以下、重合体微粒子(A)が、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含む場合を例に挙げて、重合体微粒子(A)の製造方法の一例を説明する。重合体微粒子(A)は、例えば、弾性体を重合した後、当該弾性体の存在下にて当該弾性体に対してグラフト部を構成する重合体をグラフト重合することによって、製造できる。
 重合体微粒子(A)は、公知の方法、例えば、乳化重合法、懸濁重合法、マイクロサスペンジョン重合法などの方法により製造することができる。具体的には、重合体微粒子(A)における弾性体の重合、グラフト部の重合(グラフト重合)、および表面架橋重合体の重合は、公知の方法、例えば、乳化重合法、懸濁重合法、マイクロサスペンジョン重合法などの方法により実施することができる。これらの中でも特に、重合体微粒子(A)の製造方法としては、乳化重合法が好ましい。乳化重合法によると、(i)重合体微粒子(A)の組成設計が容易である、(ii)重合体微粒子(A)の工業生産が容易である、および(iii)第1の製造方法で使用するのに好適なラテックスが容易に得られる、という利点を有する。以下、重合体微粒子(A)に含まれ得る弾性体、グラフト部、および任意の構成である表面架橋重合体の製造方法について、説明する。
 (弾性体の製造方法)
 弾性体が、ジエン系ゴムおよび(メタ)アクリレート系ゴムからなる群より選択される少なくとも1種以上を含む場合を考える。この場合、弾性体は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などの方法により製造することができ、その製造方法としては、例えばWO2005/028546号公報に記載の方法を用いることができる。
 弾性体が、オルガノシロキサン系ゴムを含む場合を考える。この場合、弾性体は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などの方法により製造することができ、その製造方法としては、例えばWO2006/070664号公報に記載の方法を用いることができる。
 重合体微粒子(A)の「弾性体」が複数種の弾性体(例えば弾性体、弾性体、・・・、弾性体)からなる場合について説明する。この場合、弾性体、弾性体、・・・、弾性体は、それぞれ別々に上述の方法により重合され、その後混合されて複合化されることにより、複数種の弾性体からなる複合体が製造されてもよい。または、弾性体、弾性体、・・・、弾性体は、それぞれ順に多段重合され、複数種の弾性体からなる1つの弾性体が製造されてもよい。
 弾性体の多段重合について、具体的に説明する。例えば、以下、(1)~(4)の工程を順に行うことにより、多段重合弾性体を得ることができる:(1)弾性体を重合して弾性体を得る;(2)次いで弾性体の存在下にて弾性体を重合して2段弾性体1+2を得る;(3)次いで弾性体1+2の存在下にて弾性体を重合して3段弾性体1+2+3を得る;(4)以下、同様に行った後、弾性体1+2+・・・+(n-1)の存在下にて弾性体を重合して多段重合弾性体1+2+・・・+nを得る。
 (グラフト部の製造方法)
 グラフト部は、例えば、グラフト部の形成に用いる単量体を、任意の重合体(例えば弾性体)の存在下、公知のラジカル重合により重合することによって形成することができる。(i)弾性体、または(ii)弾性体および表面架橋重合体を含む重合体微粒子前駆体、を水性懸濁液として得た場合には、グラフト部の重合は乳化重合法により行うことが好ましい。グラフト部は、例えば、WO2005/028546号公報に記載の方法に従って製造することができる。
 グラフト部が複数種のグラフト部(例えばグラフト部、グラフト部、・・・、グラフト部)からなる場合の、グラフト部の製造方法について説明する。この場合、グラフト部、グラフト部、・・・、グラフト部は、それぞれ別々に上述の方法により重合され、その後混合されて複合化されることにより、複数種のグラフト部からなるグラフト部(複合体)が製造されてもよい。または、グラフト部、グラフト部、・・・、グラフト部は、それぞれ順に多段重合され、複数種のグラフト部からなる1つのグラフト部が製造されてもよい。
 グラフト部の多段重合について、具体的に説明する。例えば、以下、(1)~(4)の工程を順に行うことにより、多段重合グラフト部を得ることができる:(1)グラフト部を重合してグラフト部を得る;(2)次いでグラフト部の存在下にてグラフト部を重合して2段グラフト部1+2を得る;(3)次いでグラフト部1+2の存在下にてグラフト部を重合して3段グラフト部1+2+3を得る;(4)以下、同様に行った後、グラフト部1+2+・・・+(n-1)の存在下にてグラフト部を重合して多段重合グラフト部1+2+・・・+nを得る。
 グラフト部が複数種のグラフト部からなる場合、複数種のグラフト部を有するグラフト部を重合した後、弾性体にそれらグラフト部をグラフト重合して、重合体微粒子(A)を製造してもよい。弾性体の存在下にて、弾性体に対して、グラフト部を構成する複数種の重合体を順に多段グラフト重合して、重合体微粒子(A)を製造してもよい。
 (表面架橋重合体の製造方法)
 表面架橋重合体は、表面架橋重合体の形成に用いる単量体を、任意の重合体(例えば弾性体)の存在下、公知のラジカル重合により重合することによって形成することができる。弾性体を水性懸濁液として得た場合には、表面架橋重合体の重合は乳化重合法により行うことが好ましい。
 重合体微粒子(A)の製造方法として、乳化重合法を採用する場合、重合体微粒子(A)の製造には、乳化剤(分散剤)として、公知の乳化剤(分散剤)を用いることができる。乳化剤は、ポリオキシエチレン基を有する乳化剤であることが好ましい。ポリオキシエチレン基を有する乳化剤については、後述の(2-4.乳化剤)の項にて詳述する。重合体微粒子(A)の乳化重合法による製造において、乳化剤としてポリオキシエチレン基を有する乳化剤を用いることにより、(i)第1の製造方法で使用するのに好適なラテックスが容易に得られる、および(ii)環境負荷を低減することができる、という利点を有する。
 重合体微粒子(A)の製造方法として、乳化重合法を採用する場合、重合体微粒子(A)の製造には、熱分解型開始剤を用いることができる。前記熱分解型開始剤としては、例えば、(i)2,2’-アゾビスイソブチロニトリル、並びに(ii)有機過酸化物および無機過酸化物などの過酸化物、などの公知の開始剤を挙げることができる。前記有機過酸化物としては、t-ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、およびt-ヘキシルパーオキサイドなどが挙げられる。前記無機過酸化物としては、過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどが挙げられる。
 重合体微粒子(A)の製造には、レドックス型開始剤を使用することもできる。前記レドックス型開始剤は、(i)有機過酸化物および無機過酸化物などの過酸化物と、(ii)硫酸鉄(II)などの遷移金属塩、ナトリウムホルムアルデヒドスルホキシレート、およびグルコースなどの還元剤と、を併用した開始剤である。さらに必要に応じてエチレンジアミン四酢酸二ナトリウムなどのキレート剤、さらに必要に応じてピロリン酸ナトリウムなどのリン含有化合物などを併用してもよい。
 レドックス型開始剤を用いた場合には、前記過酸化物が実質的に熱分解しない低い温度でも重合を行うことができ、重合温度を広い範囲で設定することができるようになる。そのため、レドックス型開始剤を用いることが好ましい。レドックス型開始剤の中でも、クメンハイドロパーオキサイド、ジクミルパーオキサイド、パラメンタンハイドロパーオキサイド、およびt-ブチルハイドロパーオキサイドなどの有機過酸化物を過酸化物として使用したレドックス型開始剤が好ましい。前記開始剤の使用量、並びに、レドックス型開始剤を用いる場合には前記還元剤、遷移金属塩およびキレート剤などの使用量は、公知の範囲で用いることができる。
 弾性体、グラフト部または表面架橋重合体に架橋構造を導入する目的で、弾性体、グラフト部または表面架橋重合体の重合に多官能性単量体を使用する場合、公知の連鎖移動剤を公知の使用量の範囲で用いることができる。連鎖移動剤を使用することにより、得られる弾性体、グラフト部もしくは表面架橋重合体の分子量および/または架橋度を容易に調節することができる。
 重合体微粒子(A)の製造には、上述した成分に加えて、さらに界面活性剤を用いることができる。前記界面活性剤の種類および使用量は、公知の範囲である。
 重合体微粒子(A)の製造において、重合における重合温度、圧力、および脱酸素などの各条件は、公知の数値範囲の条件を適宜適用することができる。
 上述した重合体微粒子(A)の製造方法により、重合体微粒子(A)および乳化剤を含有するラテックスを得ることができる。すなわち、(2-3.重合体微粒子(A)の製造方法)の項の記載は、ラテックスの製造方法に関する記載として援用できる。
 (1-2-4.乳化剤)
 ラテックス中に含有される乳化剤は、親油性部位と親水性部位とを含有し、前記親水性部位はポリオキシエチレン基を有する。本明細書において、「親油性部位と親水性部位とを含有し、前記親水性部位はポリオキシエチレン基を有する乳化剤」を、単に「ポリオキシエチレン基を有する乳化剤」と称する場合もある。ラテックス中に含有されるポリオキシエチレン基を有する乳化剤の由来は、特に限定されない。ラテックスが、重合体微粒子(A)の乳化重合により得られるラテックスである場合、当該ラテックス中に含有されるポリオキシエチレン基を有する乳化剤は、重合体微粒子(A)の製造に使用された乳化剤に由来するものであってもよい。
 親油性部位は、有機溶媒などとの親和性が高い化学構造を有する部位である。重合体微粒子(A)の粒子表面は疎水性部分が多いため、親油性部位は、重合体微粒子(A)との親和性も高い。親油性部位としては、脂肪族基、芳香族基などを有する部位が挙げられる。これらの中でも、入手容易性の観点から、親油性部位は、脂肪族基を有する部位であることが好ましい。親油性部位を構成する脂肪族基は、鎖状または環状であってよく、飽和または不飽和であってもよい。脂肪族基が鎖状である場合、直鎖状であってよく、分岐鎖状であってもよい。鎖状の脂肪族基としては、炭素数2~20のアルキル基およびアルケニル基などが挙げられる。環状の脂肪族基としては、炭素数3~10のシクロアルキル基などが挙げられる。鎖状の脂肪族基に結合する水素原子は、1以上の置換基で置換されていてもよい。当該置換基としては、ハロゲン原子などが挙げられる。
 親水性部位は、水との親和性が高い化学構造を有する部位であり、ポリオキシエチレン基(-CH-CH-O-)を有する。ポリオキシエチレン基は、乳化重合の安定性の観点から、酸化エチレンの付加モル数(以下に示す構造式のn)が1~15であることが好ましく、1~10であることがより好ましく、2~10であることがさらに好ましく、4~10であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000001
 前記ポリオキシエチレン基を有する乳化剤としては、親水性部位が硫酸エステル部位を含む乳化剤(以下、親水性部位が硫酸エステル部位を含む乳化剤を「硫黄系乳化剤」とも称する)、または親水性部位がリン酸エステル部位を含む乳化剤(以下、親水性部位がリン酸エステル部位を含む乳化剤を「リン系乳化剤」とも称する)が好ましい。重合体微粒子(A)の精製のしやすさの観点から、乳化剤は、親水性部位が硫酸エステル部位を含む硫黄系乳化剤がより好ましい。また、環境負荷が小さいという観点から、乳化剤は、リン酸エステル部位を含むリン乳化剤がより好ましい。親水性部位がポリオキシエチレン基およびリン酸エステル部位を有するリン系乳化剤の具体例としては、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルエーテルリン酸ナトリウム、およびポリオキシエチレンアルキルエーテルリン酸カリウムなどが挙げられる。これらポリオキシエチレン基を有する乳化剤は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 (1-2-5.重合体微粒子(A)の量および乳化剤の量)
 ラテックスにおける重合体微粒子(A)の量は、特に限定されず、ラテックス中で重合体微粒子(A)が安定して分散し得、かつ、後述の緩凝集工程において、水相中で凝集体を形成し得る量であればよい。精製重合体微粒子(A)を効率的に製造する観点からは、ラテックスにおける重合体微粒子(A)の量は、当該ラテックス100重量%に対して、10重量%~50重量%であることが好ましく、15重量%~50重量%であることがより好ましく、25重量%~50重量%であることがさらに好ましく、30重量%~50重量%であることが特に好ましい。ラテックスにおける重合体微粒子(A)の量が前記範囲内である場合、精製重合体微粒子(A)を効率的に製造することができる。
 ラテックスにおける乳化剤の量は、特に限定されないが、重合体微粒子(A)の乳化安定性に支障を来さない範囲でできる限り少量を使用することが好ましい。
 (1-2-6.有機溶媒(B))
 有機溶媒(B)としては、特に限定されないが、水に対し部分溶解性を示す有機溶媒であることが好ましい。本明細書において、「水に対し部分溶解性を示す有機溶媒」とは、20℃における水に対する20℃の有機溶媒の溶解度が5重量%~40重量%である有機溶媒を意図する。20℃における水に対する20℃の有機溶媒(B)の溶解度は、5重量%~40重量%であることが好ましく、5重量%~30重量%であることがより好ましい。20℃における水に対する20℃の有機溶媒(B)の溶解度が40重量%以下である場合、重合体微粒子(A)および乳化剤を含有するラテックスと有機溶媒(B)とを混合するとき、有機溶媒(B)中で重合体微粒子(A)が実質的に凝固析出することがない。そのため、混合操作を円滑に行うことができるという利点を有する。20℃における水に対する20℃の有機溶媒(B)の溶解度が5重量%以上である場合、当該有機溶媒(B)は、重合体微粒子(A)および乳化剤を含有するラテックスとの十分な混合性を有する。そのため、混合操作を円滑に行うことができるという利点を有する。すなわち、有機溶媒(B)が水に対し部分溶解性を示す有機溶媒である場合、重合体微粒子(A)および乳化剤を含有するラテックスと有機溶媒(B)との混合操作を円滑に行うことができるという利点を有する。
 有機溶媒(B)は、当該有機溶媒(B)と重合体微粒子(A)および乳化剤を含有するラテックスとを混合するとき、有機溶媒(B)中で重合体微粒子(A)が実質的に凝固析出することなく混合が達成され得る有機溶媒であることが好ましい。当該構成によると、重合体微粒子(A)および乳化剤を含有するラテックスと有機溶媒(B)との混合操作を円滑に行うことができるという利点を有する。
 有機溶媒(B)の具体例としては、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなど)、ケトン類(例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンなど)、アルコール類(エタノール、プロパノール、イソプロパノール、ブタノールなど)、エーテル類(例えば、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチルエーテルなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレンなど)、およびハロゲン化炭化水素類(例えば、塩化メチレン、クロロホルムなど)などからなる群から選ばれる1種以上の有機溶媒、またはそれらの混合物が挙げられる。メチルエチルケトンは、後述の有機溶媒(C)および樹脂(D)との親和性が高く、かつ入手がし易い。そのため、有機溶媒(B)は、メチルエチルケトンを50重量%以上含むものが好ましく、75重量%以上含むものがより好ましく、85重量%以上含むものが特に好ましい。
 (1-2-7.有機溶媒混合工程)
 有機溶媒混合工程は、重合体微粒子(A)および乳化剤を含有するラテックスと、有機溶媒(B)とを混合する工程である。有機溶媒混合工程は、重合体微粒子(A)および乳化剤を含有するラテックスと有機溶媒(B)とを、単に合わせる工程ともいえる。なお、本明細書において、有機溶媒混合工程は、ラテックスと有機溶媒(B)とを合わせて得られる混合物を5分以上静置する工程は含まず、当該混合物を5分以上撹拌する工程も含まない。換言すれば、本明細書において、有機溶媒混合工程は、ラテックスと有機溶媒(B)とを合わせて得られる混合物を5分未満静置する工程、および/または、当該混合物を5分未満撹拌する工程、を含んでいてもよい。
 ラテックスと有機溶媒(B)とを混合する装置および方法としては、特別な装置または方法は必要ではなく、良好な混合状態が得られる装置または方法であれば、公知のものが使用可能である。有機溶媒混合工程の後に静置を行う場合、一般的な装置としては、撹拌翼つきの撹拌槽などが挙げられる。有機溶媒混合工程の後に撹拌を行う場合、一般的な装置としては、撹拌翼つきの撹拌槽、スタティックミキサ(静止混合器)およびラインミキサ(配管の一部に撹拌装置を組み込む方式)などが挙げられる。
 有機溶媒混合工程において撹拌翼つきの撹拌槽を使用する場合、(i)撹拌槽にラテックスを入れた後、当該ラテックスを撹拌しつつ、ラテックスに対して有機溶媒(B)を添加してもよく、(ii)撹拌槽に有機溶媒(B)を入れた後、当該有機溶媒(B)を撹拌しつつ、有機溶媒(B)に対してラテックスを添加してもよく、(iii)ラテックスと有機溶媒(B)とを一緒に(同時に)空の撹拌槽に添加しつつ、槽中の混合物を攪拌してもよい。
 有機溶媒混合工程において使用する有機溶媒(B)の好適な量は、ラテックス中の重合体微粒子(A)の量、および重合体微粒子(A)の種類などによって異なり、特に限定されない。一実施形態において、有機溶媒混合工程において使用する有機溶媒(B)の量は、ラテックス100重量部に対し、50重量部~400重量部であることが好ましく、70重量部~300重量部であることがより好ましく、70重量部~200重量部であることがより好ましく、70重量部~150重量部であることがより好ましく、70重量部~140重量部であることがより好ましく70重量部~130重量部であることがより好ましく70重量部~120重量部であることがさらに好ましく、70重量部~110重量部であることが特に好ましい。有機溶媒混合工程において使用する有機溶媒(B)の量が50重量部以上である場合、(i)重合体微粒子(A)が有機溶媒(B)中に安定して分散することができる、(ii)ラテックスと有機溶媒(B)との混合物が低粘度となり、取り扱いが容易になる傾向がある、という利点を有する。また、有機溶媒混合工程において使用する有機溶媒(B)の量が400重量部以下である場合、後述の樹脂組成物の製造において、有機溶媒(B)を効率的に除去することができる、という利点を有する。
 有機溶媒混合工程に供するラテックスおよび有機溶媒(B)の温度は、ラテックスと有機溶媒(B)とを均一に混合し得る温度であればよく、特に限定されない。
 (1-2-8.混合状態維持工程)
 混合状態維持工程は、有機溶媒混合工程で得られる混合物の静置および撹拌の何れかまたは両方を行う工程である。混合状態維持工程は、ラテックスと有機溶媒(B)との混合物を静置するか、撹拌するか、またはその両方を行うことにより、重合体微粒子(A)からポリオキシエチレン基を有する乳化剤を解離させて、重合体微粒子(A)を有機溶媒(B)中に移動させる工程ともいえる。
 混合状態維持工程では、有機溶媒混合工程で得られる混合物の粘度が一定になるまで、当該混合物の静置および撹拌の何れかまたは両方を行うことが好ましい。
 本発明者は、ラテックスと有機溶媒(B)との混合物の粘度について、以下の知見を新たに見出した。重合体微粒子(A)および直鎖アルキルベンゼンを含有するラテックスと有機溶媒(B)とを混合すると、混合物の粘度は、混合直後から一定時間経過後も一定であり、変化しない。これは、ラテックスが直鎖アルキルベンゼンを含有する場合、ラテックスと有機溶媒(B)との混合直後に、ラテックス中の重合体微粒子(A)のほぼ全量が有機溶媒(B)中へ移動するためと推測されるが、本発明の一実施形態はこの推測に限定されない。一方、重合体微粒子(A)およびポリオキシエチレン基を有するリン系乳化剤を含有するラテックスと有機溶媒(B)とを混合すると、混合物の粘度は、混合直後から時間経過と共に上昇し、静置および/または撹拌を所定時間行った後、一定になり、やがて完全に変化しなくなる(飽和する)。
 なお、本明細書において、「粘度が一定になる」とは、ある時点の混合物粘度(Vt1)と、Vt1の時点から5分間静置および/または撹拌した後の混合物の粘度(Vt2)との差(Vt2-Vt1)の絶対値を、混合開始時点(0分)の粘度(V)と、粘度が完全に変化しなくなった飽和時点の粘度(V)との差(V-V)で除して100を乗じた値(%)(|(Vt2-Vt1)|/(V-V)×100)が10%以下であることを意図する。すなわち、粘度差が厳密に一定(0)であることを意味するものではない。それ故、混合状態維持工程において、「混合物の粘度が一定になるまで、混合物の静置および撹拌の何れかまたは両方を行う」ことは、有機溶媒混合工程で得られる混合物の粘度が略一定になるまで、混合物を静置および/または撹拌すること、ともいえる。
 混合物の粘度が一定になるまで、当該混合物を静置および/または撹拌することにより、重合体微粒子(A)からポリオキシエチレン基を有する乳化剤を十分に解離させることができ、重合体微粒子(A)を有機溶媒(B)中に十分に移動させることができる。その結果、後述する分離工程において分離除去した水相(排出液)中に混入する重合体微粒子(A)の量を著しく少なくすることができる。ポリオキシエチレン基を有する乳化剤を含有する場合の混合物の粘度変化は、重合体微粒子(A)とポリオキシエチレン基を有する乳化剤との解離速度が遅いことに起因すると推測されるが、本発明の一実施形態はこの推測に限定されない。
 混合状態維持工程では、ラテックスと有機溶媒(B)との混合物を静置および/または撹拌しながら、当該混合物の粘度変化をモニタリングしてもよい。混合物の粘度変化をモニタリングする方法は、種々の方法が利用でき、特に限定されないが、例えば、静置および/または撹拌中の混合物を適時にサンプリングし、得られたサンプルの粘度を粘度計により測定することができる。粘度計による混合物の粘度の測定方法は、下記実施例にて詳述する。
 一実施形態として、ラテックス(ラテックス100重量%中の重合体微粒子(A)の固形分濃度:10~50重量%)100重量部と、有機溶媒(B)50重量部~400重量部との混合物を、槽内で30分間以上静置することにより、混合物の粘度が一定になる。
 別の一実施形態として、ラテックス(ラテックス100重量%中の重合体微粒子(A)の固形分濃度:10~50重量%)100重量部と、有機溶媒(B)50重量部~400重量部との混合物を、撹拌翼つきの撹拌槽内で、撹拌速度10rpm~5000rpmで、撹拌時間10分間以上撹拌することにより、混合物の粘度が一定になる。
 混合状態維持工程において、混合物の静置に要する時間は、重合体微粒子(A)、ポリオキシエチレン基を有する乳化剤および有機溶媒(B)の種類、重合体微粒子(A)の混合物中での量(濃度)、およびポリオキシエチレン基を有する乳化剤の混合物中の濃度などによって異なり、特に限定されない。一実施形態において、混合状態維持工程において混合物の静置に要する時間は、例えば30分間以上であることが好ましく、45分間以上であることがより好ましく、60分間以上であることがさらに好ましく、120分間以上であることが特に好ましい。混合物を30分間以上静置することにより、重合体微粒子(A)からポリオキシエチレン基を有する乳化剤を十分に解離させることができ、重合体微粒子(A)を有機溶媒(B)中に十分に移動させることができる。その結果、後述する分離工程において分離除去した水相(排出液)中に混入する重合体微粒子(A)の量を著しく少なくすることができる。混合状態維持工程において混合物の静置に要する時間の上限は特に限定されないが、効率の観点からは、例えば、5時間以下であることが好ましく、2時間以下であることがより好ましい。
 混合状態維持工程において、混合物の好適な温度は、重合体微粒子(A)、ポリオキシエチレン基を有する乳化剤および有機溶媒(B)の種類、重合体微粒子(A)の混合物中での固形分濃度、ポリオキシエチレン基を有する乳化剤の混合物中の濃度などによって異なり、特に限定されない。一実施形態において、混合状態維持工程に供するときの混合物の温度は、例えば10℃~50℃であることが好ましく、15℃~40℃であることがより好ましく、20℃~40℃であることがさらに好ましい。混合状態維持工程に供するときの混合物の温度および/または混合状態維持工程により得られた混合物の温度が前記の範囲である場合、重合体微粒子(A)からポリオキシエチレン基を有する乳化剤を十分に解離させることができるという利点を有する。なお、「混合状態維持工程により得られた混合物の温度」は「混合状態維持工程後の混合物の温度」ともいえる。
 混合状態維持工程は、有機溶媒混合工程を行った装置(例えば撹拌槽、スタティックミキサ、ラインミキサなど)内でそのまま行ってもよく、有機溶媒混合工程を行った装置とは異なる装置内で行ってもよい。
 (1-2-9.緩凝集工程)
 第1の製造方法は、混合状態維持工程の後に、緩凝集工程をさらに含んでもよい。緩凝集工程は、混合状態維持工程を経た混合物と水とを接触させて、有機溶媒(B)を含有する重合体微粒子(A)の凝集体を、水相中に生成させる工程である。緩凝集工程は、ラテックスと有機溶媒(B)との混合物から、水および乳化剤などの不純物を水相中に移行させる工程ともいえる。
 混合状態維持工程を経た混合物と水とを接触させる操作により、前記混合物に含まれる有機溶媒(B)の一部が水にも溶解し、水相となる。同時に、前記混合物に含まれるラテックス由来の水分および乳化剤などの不純物も水相へ排除される。このため、前記混合物は水を含んだ有機溶媒(B)中に重合体微粒子(A)を濃縮した形となり、結果として凝集体を生成する。
 緩凝集工程は、未凝集の重合体微粒子(A)が部分的に発生するのを防止する観点から、撹拌下または撹拌と同等の流動性を付与させることができる流動条件下で実施することが望ましい。緩凝集工程は、例えば、撹拌機を備えた撹拌槽での回分操作または連続操作により実施することができる。
 前記混合物と水とを接触させる方法は、混合物と水とが接触する限り特に限定されない。例えば、(i)前記混合物に対して水を、(i-1)一定量ずつ連続的に添加する方法、(i-2)一定量ずつ分割して添加する方法、および(i-3)一括して添加する方法、並びに(ii)水に対して前記混合物を、(ii-1)一定量ずつ連続的に添加する方法、(ii-2)一定量ずつ分割して添加する方法、および(ii-3)一括して添加する方法、などを適用することができる。
 凝集体を効率的に生成させる観点からは、前記混合物と水とを、撹拌機能を設けた装置に連続供給して接触させ、凝集体と水相とを連続的に得ることが好ましい。撹拌のための撹拌翼および装置の形状は、特に限定されない。一実施形態において、凝集体は水相に対し一般に浮上性があるため、混合物と水とを撹拌槽の底部より供給し、凝集体と水相とを撹拌槽の上部より抜き出す方法が好ましい。ここで、装置の底部とは装置の底面より液面までの高さに対して底より1/3以下の位置であることを意味し、また装置の上部とは装置の底面より液面までの高さに対して底部より2/3以上であることを意味する。緩凝集工程を連続化することにより、装置の小型化による設備コストの抑制、および生産性の向上を図ることができる。
 緩凝集工程において前記混合物と接触させる水の量は、重合体微粒子(A)の種類、重合体微粒子(A)のラテックス中での固形分濃度、有機溶媒(B)の種類および量によっても変化し得るが、前記水の量は、有機溶媒混合工程において使用した有機溶媒(B)100重量部に対し、40重量部~350重量部であることが好ましく、60重量部~250重量部であることがより好ましい。前記水の量が40重量部以上である場合、重合体微粒子(A)の凝集体が生成し易くなる、という利点を有する。また、前記水の量が350重量部以下である場合、生成した凝集体中の有機溶媒(B)の濃度が好適な範囲となり、後述の再分散工程において凝集体を有機溶媒(C)に再分散させ易いという利点を有する。
 緩凝集工程に供するときの混合物および水の好適な温度は、重合体微粒子(A)、乳化剤および有機溶媒(B)の種類、重合体微粒子(A)および乳化剤の混合物中の濃度などによって異なり、特に限定されない。一実施形態において、緩凝集工程に供するときの混合物および水の温度、並びに/または、緩凝集工程により得られた凝集体および水相の温度は、例えば10℃~50℃であることが好ましく、15℃~40℃であることがより好ましく、20℃~40℃であることがさらに好ましい。緩凝集工程に供するときの混合物および水の温度、並びに/または、緩凝集工程により得られた凝集体および水相の温度が前記の範囲である場合、凝集状態が良好となり、かつ、使用する有機溶剤が揮発しにくいという利点を有する。
 (1-2-10.分離工程)
 第1の製造方法は、緩凝集工程の後に、緩凝集工程で生成された凝集体を水相から分離する分離工程をさらに含んでいてもよい。緩凝集工程で生成された凝集体を水相から分離することにより、凝集体に同伴する有機溶剤(B)に含まれる水分を除き、ラテックス由来の不純物(乳化剤および電解質など)の大部分を水相とともに重合体微粒子(A)から分離除去することができる。これにより、不純物の大部分が分離除去された重合体微粒子(A)(すなわち、精製重合体微粒子(A))の凝集体を得ることができる。
 凝集体を水相から分離する方法としては、特に限定されない。例えば、濾紙、濾布、または比較的開き目の粗い金属製スクリーンを使った濾過操作など一般的な濾過方法が挙げられる。
 分離工程において分離除去した水相中に含まれる重合体微粒子(A)の量は、水相100重量%中、5重量%以下であることが好ましく、3重量%以下であることがより好ましく、2重量%以下であることがさらに好ましく、1重量%以下であることが特に好ましく、重合体微粒子(A)が水相中に実質的に含まれないことが最も好ましい。
 また、分離工程において分離除去した水相の透過度は、5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましく、20%以上であることがよりさらに好ましく、30%以上であることが特に好ましい。水相の透過度が5%以上であれば、水相は良好な透過性を有するといえる。また、透過度が30%以上である水相は、目視による白濁が確認されない場合が多い。水相の透過度の測定方法については、下記実施例にて詳述する。
 分離工程に供するときの凝集体および水相の好適な温度は、前記(1-2-9.緩凝集工程)の項の記載される、緩凝集工程により得られた凝集体および水相の好適な温度と同じである。
 (1-2-11.洗浄工程)
 第1の製造方法は、分離工程の後に、以下(i)および(ii)から選択されるサイクルを1サイクル以上繰り返す工程(洗浄工程とも称する)をさらに含んでいてもよい。
 (i)前記分離工程で得られる前記凝集体に、前記有機溶媒(B)を添加する第1工程、前記第1工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第1のサイクル、並びに、
 (ii)前記分離工程で得られる前記凝集体に、水を添加する第1工程、前記第1工程で得られる混合物と前記有機溶媒(B)とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第2のサイクル。
 第1の製造方法は、重合体微粒子(A)を含有するラテックスから精製重合体微粒子(A)を得るために、有機溶媒(B)を使用する方法である。第1の製造方法において、分離工程で得られる重合体微粒子(A)の凝集体は、粒子の合一分散に関して可逆性を有する緩凝集体である。なお、「緩凝集体」については、後述の〔1-3.重合体微粒子(A)の凝集体〕の項に詳説する。分離工程で得られる凝集体(すなわち、緩凝集体)は、例えば数センチ以上のサイズを有する塊である。分離工程で得られる凝集体(すなわち、緩凝集体)は、(i)水中でより細かいサイズの塊(ただし、目視できる程度のサイズの塊)になりやすいという性質、並びに(ii)有機溶媒中で、非常に細かいサイズの塊(目視できない程度のサイズの塊)になりやすい、および/または、凝集体に含まれている重合体微粒子(A)が1次粒子として再び分散しやすいという性質を備える。そのため、当該凝集体に水または有機溶媒を添加する前記洗浄工程を行うことにより、凝集体内部の不純物を効率的に洗浄および除去することができるという利点を有する。
 具体的には、前記洗浄工程の第1のサイクルでは、凝集体に有機溶媒(B)を添加することにより、例えば数センチ以上のサイズを有する凝集体が非常に細かい塊(目視できない程度のサイズの塊)になるか、および/または、当該凝集体に含まれている重合体微粒子(A)の少なくとも一部が1次粒子として再び分散する。この時、凝集体内部の不純物が有機溶媒(B)中に放出される(第1のサイクルの第1工程)。その後、第1のサイクルの第1工程で得られた混合物と水とを接触させることにより、重合体微粒子(A)が凝集して、例えば数センチ以上のサイズを有する凝集体が再生する(第1のサイクルの第2工程)。第1のサイクルの第1工程および第2工程の実施前後で、凝集体内部の不純物量を低減することができる。
 また、前記洗浄工程の第2のサイクルでは、凝集体に水を添加することにより、例えば数センチ以上のサイズを有する凝集体がより細かい塊(ただし、目視できる程度のサイズの塊)になる。この時、凝集体内部の不純物が水中に放出される(第2のサイクルの第1工程)。その後、第2のサイクルの第1工程で混合物と有機溶媒(B)とを接触させることにより、細かい塊が凝集して、より大きなサイズ(例えば数センチ以上のサイズ)を有する凝集体が再生する(第2のサイクルの第2工程)。第2のサイクルの第1工程および第2工程の実施前後で、凝集体内部の不純物量を低減することができる。
 上述したように、前記洗浄工程後に得られる凝集体は、洗浄工程前の凝集体に比べて、不純物の含有量が低減されている。また、前記洗浄工程後に得られる凝集体は、緩凝集体であるため、(i)重合体微粒子(A)の1次粒子へと戻るかまたはより細かい塊になることと、凝集するかまたはより大きな塊になることと、を可逆的に行うことができる。したがって、前記洗浄工程を繰り返すことにより、凝集体の不純物の含有量を一層低減することができる。
 なお、有機溶媒を使用せずに重合体微粒子(A)を凝集させる一般的な方法(例えば、凝固剤を使用する方法)により得られる凝集体は、重合体微粒子の合一分散に関して不可逆的である。それゆえ、凝集により得られた重合体微粒子の凝集体を、その後の操作(例えば水または有機溶媒の添加)によって小さくするまたは大きくすることが困難である。そのため、当該凝集体に水または有機溶媒を添加しても、凝集体の表面が洗浄されるだけであり、凝集体内部の不純物を洗浄・除去することは容易ではない。
 洗浄工程において、第1のサイクルおよび第2のサイクルから選択されるサイクルを1サイクル以上繰り返すことにより、生産性を上げることができる。例えば、最終的に得られる精製重合体微粒子(A)中の乳化剤などの不純物量(例えば乳化剤由来の元素PおよびSの含有量)を減らすためには、前記有機溶媒混合工程で使用する有機溶媒(B)の量、および前記緩凝集工程で使用する水の量を増量する方法も考えられる。しかしながら、そのような方法では、容器の容量の制限のため、重合体微粒子(A)の製造で使用する単量体の量を減らすなど、重合体微粒子(A)の生産量を減らす必要がある。一方で、上述した洗浄工程を行う場合、前記有機溶媒混合工程で使用する有機溶媒(B)の量、および前記緩凝集工程で使用する水の量を増やすことなく、すなわち重合体微粒子(A)の生産量を減らすことなく、最終的に得られる精製重合体微粒子(A)中の乳化剤などの不純物量を減らすことができる。すなわち、洗浄工程の実施により、乳化剤などの不純物、より具体的には乳化剤由来の元素PおよびSの含有量がより一層低減された重合体微粒子(A)(すなわち、精製重合体微粒子(A))の凝集体を効率的に製造することができる。
 第1のサイクルおよび第2のサイクルから選択されるサイクルを繰り返すサイクル数は、特に限定されず、サイクル数が多いほど、凝集体に含まれる不純物の量を低減することができる。不純物の含有量が極めて少ない凝集体を得る観点からは、洗浄工程において、第1のサイクルおよび第2のサイクルから選択されるサイクルを2サイクル以上繰り返すことがより好ましく、3サイクル以上繰り返すことがさらに好ましく、4サイクル以上繰り返すことが特に好ましい。洗浄工程において、第1のサイクルおよび第2のサイクルから選択されるサイクルを2サイクル以上繰り返す場合、(i)第1のサイクルを2回以上行い、第2のサイクルを行わない態様であってもよく、(ii)第2のサイクルを2回以上行い、第1のサイクルを行わない態様であってもよく、(iii)第1のサイクルと第2のサイクルとを、それぞれ、1回以上ずつ行う態様であってもよい。
 (第1のサイクルの第1工程)
 第1のサイクルの第1工程は、水相から分離した凝集体に、有機溶媒(B)を添加する工程である。当該工程により、凝集体が非常に細かい塊(目視できない程度のサイズの塊)になるか、および/または、当該凝集体に含まれている重合体微粒子(A)の少なくとも一部が1次粒子として再び分散するとともに、凝集体内部の不純物が有機溶媒(B)中に放出される。水相から分離した凝集体に有機溶媒(B)を添加する装置および方法としては、前記(1-2-7.有機溶媒混合工程)の項に記載される装置および方法が挙げられる。
 第1のサイクルの第1工程において凝集体に添加する有機溶媒(B)の好適な量は、凝集体中の重合体微粒子(A)の量、および重合体微粒子(A)の種類などによって異なり、特に限定されない。一実施形態において、第1のサイクルの第1工程において凝集体に添加する有機溶媒(B)の量は、凝集体100重量部に対し、1重量部~400重量部であることが好ましく、1重量部~300重量部であることがより好ましく、10重量部~100重量部であることがさらに好ましい。第1のサイクルの第1工程において凝集体に添加する有機溶媒(B)の量が1重量部以上である場合、(i)重合体微粒子(A)が有機溶媒(B)中に安定して分散することができる、(ii)凝集体と有機溶媒(B)との混合物が低粘度となり、取り扱いが容易になる傾向がある、という利点を有する。また、第1のサイクルの第1工程において凝集体に添加する有機溶媒(B)の量が400重量部以下である場合、第1のサイクルの第2工程で加える水の量を少なくすることができる、という利点を有する。
 第1のサイクルの第1工程に供する凝集体および有機溶媒(B)の温度は、凝集体と有機溶媒(B)とを均一に混合し得る温度であればよく、特に限定されない。
 (第1のサイクルの第2工程)
 第1のサイクルの第2工程は、第1のサイクルの第1工程で得られる混合物と水とを接触させる工程である。当該工程により、新たに生じた水相中に、有機溶媒(B)を含有する重合体微粒子(A)の凝集体(例えば数センチ以上のサイズを有する凝集体)が再生する。当該工程は、凝集体と有機溶媒(B)との混合物から、水および乳化剤などの不純物を水相中に移行させる工程ともいえる。
 第1のサイクルの第2工程において凝集体に添加する水の好適な量は、凝集体中の重合体微粒子(A)の量、および重合体微粒子(A)の種類などによって異なり、特に限定されない。一実施形態において、第1のサイクルの第2工程において凝集体に添加する水の量は、凝集体100重量部に対し、50重量部~500重量部であることが好ましく、50重量部~400重量部であることがより好ましく、50重量部~300重量部であることがさらに好ましい。第1のサイクルの第2工程において凝集体に添加する水の量が50重量部以上である場合、最終的に得られる精製重合体微粒子(A)中の乳化剤などの不純物量(例えば乳化剤由来の元素PおよびSの含有量)を減らすことができる、という利点を有する。また、第1のサイクルの第2工程において凝集体に添加する水の量が500重量部以下である場合、第1のサイクルの第1工程で加える有機溶媒(B)の量を少なくできる、という利点を有する。第1のサイクルの第2工程に供する凝集体および水の温度は、特に限定されない。
 (第1のサイクルの第3工程)
 第1のサイクルの第3工程は、第1のサイクルの第2工程で得られる凝集体を水相から分離する工程である。当該工程は、分離工程と同様に行うことができる。当該工程を実施する装置および方法、並びに当該工程を実施するのに好ましい条件は、前記(1-2-10.分離工程)の項の記載を援用する。
 (第2のサイクルの第1工程)
 第2のサイクルの第1工程は、水相から分離した凝集体に、水を添加する工程である。当該工程により、凝集体がより細かい塊(ただし、目視できる程度のサイズの塊)になるとともに、凝集体内部の不純物が水中に放出される。
 凝集体に水を添加する方法は、特に限定されない。例えば、凝集体に対して連続的に水を添加する方法、および、一括して水を添加する方法などを適用することができる。
 凝集体に水を添加する装置は、特に限定されない。例えば、撹拌翼つきの撹拌槽などが挙げられる。
 第2のサイクルの第1工程において撹拌翼つきの撹拌槽を使用する場合、(i)撹拌槽に凝集体を入れた後、当該凝集体を撹拌しつつ、凝集体に対して水を添加してもよく、(ii)撹拌槽に水を入れた後、当該水を撹拌しつつ、水に対して凝集体を添加してもよく、(iii)凝集体と水とを一緒に(同時に)空の撹拌槽に添加しつつ、槽中の混合物を攪拌してもよい。
 第2のサイクルの第1工程において凝集体に添加する水の好適な量は、凝集体中の重合体微粒子(A)の量、および重合体微粒子(A)の種類などによって異なり、特に限定されない。一実施形態において、第2のサイクルの第1工程において凝集体に添加する水の量は、凝集体100重量部に対し、50重量部~500重量部であることが好ましく、50重量部~400重量部であることがより好ましく、50重量部~300重量部であることがさらに好ましい。第2のサイクルの第1工程において凝集体に添加する水の量が50重量部以上である場合、最終的に得られる精製重合体微粒子(A)中の乳化剤などの不純物量(例えば乳化剤由来の元素PおよびSの含有量)を減らすことができる、という利点を有する。また、第2のサイクルの第1工程において凝集体に添加する水の量が500重量部以下である場合、第2のサイクルの第2工程で加える有機溶媒の量を少なくすることができる、という利点を有する。第2のサイクルの第1工程に供する凝集体および水の温度は、特に限定されない。
 (第2のサイクルの第2工程)
 第2のサイクルの第2工程は、第2のサイクルの第1工程で得られる混合物と有機溶媒(B)とを接触させる工程である。当該工程により、混合物中の細かい塊が凝集して、より大きなサイズ(例えば数センチ以上のサイズ)を有する凝集体が再生する。
 混合物と有機溶媒(B)とを接触させる方法は、特に限定されない。例えば、混合物に対して連続的に有機溶媒(B)を添加する方法、および、一括して有機溶媒(B)を添加する方法などを適用することができる。
 混合物に有機溶媒(B)を添加する装置は、特に限定されない。例えば、第2のサイクルの第1工程において使用した装置(例えば、撹拌翼つきの撹拌槽)をそのまま使用することができる。
 第2のサイクルの第2工程において混合物に添加する有機溶媒(B)の好適な量は、重合体微粒子(A)の種類、混合物中の重合体微粒子(A)の量、および混合物中の水の量などなどによって異なり、特に限定されない。一実施形態において、第2のサイクルの第2工程において混合物に添加する有機溶媒(B)の量は、第2のサイクルの第1工程において添加した水100重量部に対し、1重量部~400重量部であることが好ましく、1重量部~300重量部であることがより好ましく、1重量部~10重量部であることがさらに好ましい。前記有機溶媒(B)の量が1重量部以上である場合、重合体微粒子(A)の凝集体が生成し易くなる、という利点を有する。また、前記有機溶媒(B)の量が400重量部以下である場合、生成した凝集体中の有機溶媒(B)の濃度が好適な範囲となり、後述の再分散工程において凝集体を有機溶媒(C)に再分散させ易いという利点を有する。
 第2のサイクルの第2工程に供するときの混合物および有機溶媒(B)の好適な温度は、重合体微粒子(A)、乳化剤および有機溶媒(B)の種類、重合体微粒子(A)および乳化剤の混合物中の濃度などによって異なり、特に限定されない。一実施形態において、第2のサイクルの第2工程に供するときの混合物および有機溶媒(B)の温度、並びに/または、第2のサイクルの第2工程により得られた凝集体および水相の温度は、例えば10℃~50℃であることが好ましく、15℃~40℃であることがより好ましく、20℃~40℃であることがさらに好ましい。第2のサイクルの第2工程に供するときの混合物および有機溶媒(B)の温度、並びに/または、第2のサイクルの第2工程により得られた凝集体および水相の温度が前記の範囲である場合、凝集状態が良好となり、かつ、使用する有機溶剤が揮発しにくいという利点を有する。
 (第2のサイクルの第3工程)
 第2のサイクルの第3工程は、第2のサイクルの第2工程で得られる凝集体を水相から分離する工程である。当該工程は、分離工程と同様に行うことができる。当該工程を実施する装置および方法、並びに当該工程を実施するのに好ましい条件は、前記(1-2-10.分離工程)の項の記載を援用する。
 〔1-3.重合体微粒子(A)の凝集体〕
 第1の製造方法により得られる重合体微粒子(A)の凝集体は、以下のような特徴を有するものである。
 (i)重合体微粒子(A)の一般的な凝集方法、例えば、凝固剤を使用する方法、またはラテックスを加熱する方法を方法Aとする。方法Aでは、ラテックスの製造および重合体微粒子(A)の凝集操作に由来する不純物(乳化剤および電解質など)の大部分が、凝集体表面に吸着されるか、凝集体内部に包含されている場合が多い。それ故、方法Aでは、凝集体を水洗する場合であっても、これらの不純物を凝集体から除去することは容易ではない。これに対し、第1の製造方法では、ラテックスの製造および重合体微粒子(A)の凝集操作に由来する不純物は、全てまたはその大部分が凝集体から遊離して水相に移行する。そのため、第1の製造方法では、これらの不純物を凝集体から容易に除去することができる。
 (ii)方法Aにより得られる凝集体は、機械的剪断によっても凝集体から重合体微粒子(A)の1次粒子の状態まで再分散させることが困難であるような強固な凝集体である。これに対し、第1の製造方法により得られる凝集体は、例えば重合体微粒子(A)と親和性を示す有機溶媒(C)と撹拌下で混合することにより、凝集体に含まれている重合体微粒子(A)の大部分が1次粒子として再び分散することができる。すなわち、第1の製造方法により得られる凝集体は、粒子の合一分散に関して有機溶媒中において可逆性を有する。本明細書において、このような「可逆性を有する凝集体」を、「緩凝集体」という。
 分離工程または洗浄工程により得られた凝集体を、後述の再分散工程および樹脂混合工程に供する場合、当該凝集体に含まれる有機溶媒(B)の量は、凝集体100重量%中、30重量%以上であることが好ましく、35重量%以上であることがより好ましい。凝集体が有機溶媒(B)を含有することにより、再分散工程および樹脂混合工程を良好に実施することができる。凝集体中の有機溶媒(B)の含有量が、凝集体100重量%中30重量%以上である場合、(i)再分散工程および樹脂混合工程に要する時間を短くすることができる、(ii)不可逆な凝集体の残存を防ぐことができる、および、(iii)前記(i)および(ii)の結果として重合体微粒子(A)の樹脂(D)中での良好な分散性が得られやすい、という利点を有する。
 一方、凝集体を脱水および/または脱溶媒に供し、その後さらに凝集体を乾燥することにより、精製重合体微粒子(A)を乾燥粉体として得ることもできる。凝集体を乾燥させる前に、有機溶媒(B)を含まない水で凝集体を洗浄することにより、乾燥途中で粒子同士が合一することを防ぐことができる。かかる操作により、不純物の極めて少ない精製重合体微粒子(A)の乾燥粉体を得ることができる。
 (1-3-1.元素量)
 第1の製造方法により得られる凝集体は、元素Sの含有量が、凝集体の重量に対して1000ppm以下であることが好ましく、500ppm以下であることがより好ましく、200ppm以下であることがさらに好ましく、100ppm以下であることが特に好ましい。第1の製造方法により得られる凝集体は、元素Pの含有量が、凝集体の重量に対して1000ppm以下であることが好ましく、500ppm以下であることがより好ましく、200ppm以下であることがさらに好ましく、100ppm以下であることが特に好ましい。第1の製造方法により得られる凝集体は、元素SおよびPの合計含有量が、凝集体の重量に対して2000ppm以下であることが好ましく、1000ppm以下であることがより好ましく、400ppm以下であることがより好ましく、200ppm以下であることがさらに好ましく、100ppm以下であることが特に好ましい。第1の製造方法により得られる凝集体における元素Sおよび/またはPの含有量が少ないほど、樹脂(D)と混合した樹脂組成物の長期信頼性に与える悪影響が少ないという利点を有する。第1の製造方法により得られる凝集体における元素Sおよび/またはPの含有量は、当該凝集体における不純物(夾雑物)の含有量ともいえる。
 第1の製造方法により得られる凝集体が、元素Sおよび/またはPを含有する場合、これら元素の由来は特に限定されない。当該凝集体における元素Sおよび/またはPの由来としては、(i)重合体微粒子(A)の製造に用いた乳化剤であってもよく、(i)重合体微粒子(A)の製造に用いた水および単量体、並びに有機溶媒(B)に含まれている微量元素であってもよい。第1の製造方法により得られる凝集体における元素Sおよび/またはPの含有量は蛍光X線分析装置、液体クロマトグラフィーまたはICP発光分析装置などを用いて測定することができる。
 〔1-4.樹脂組成物の製造方法〕
 本発明の一実施形態に係る樹脂組成物の製造方法は、前記水相から分離した前記凝集体(例えば前記分離工程または洗浄工程で分離した凝集体)を、有機溶媒(C)に再分散させる再分散工程、および、再分散工程で得られる分散液と樹脂(D)とを混合する樹脂混合工程、を含む。
 本発明の一実施形態に係る樹脂組成物の製造方法は、本発明の一実施形態に係る精製重合体微粒子(A)の製造方法(第1の製造方法)を一工程として含むともいえる。本発明の一実施形態に係る樹脂組成物の製造方法では、中間生成物として、精製重合体微粒子(A)の凝集体が生じる。
 本発明の一実施形態に係る樹脂組成物の製造方法では、精製重合体微粒子(A)の凝集体を使用して、再分散工程および樹脂混合工程を経て樹脂組成物を得る。そのため、不純物が少なく重合体微粒子(A)の分散性に優れる樹脂組成物を、効率的に、かつ小さな環境負荷で提供できる、という利点を有する。なお、「樹脂組成物を効率的に提供できる」ことを「生産性が向上する」とも称する。また、本発明の一実施形態に係る樹脂組成物の製造方法は、有機溶媒混合工程、混合状態維持工程、緩凝集工程、分離工程、再分散工程、および樹脂混合工程を連続的に実施することができる(なお、分離工程と再分散工程との間にて任意で洗浄工程を実施してもよい)ため、多量少品種の製造に好適な連続製造方式とすることが可能である。
 以下、本発明の一実施形態に係る樹脂組成物の製造方法に関する各工程について説明するが、以下に詳説した事項以外は、適宜、〔1-2.精製重合体微粒子(A)の製造方法〕および〔1-3.凝集体〕の項の記載を援用する。
 (1-4-1.再分散工程)
 再分散工程は、分離工程または洗浄工程で分離した凝集体を、有機溶媒(C)に再分散させる工程である。再分散工程は、分離工程または洗浄工程で分離した凝集体に有機溶媒(C)を添加して、得られた混合物を混ぜ合わせる工程ともいえる。再分散工程により、凝集体中の精製重合体微粒子(A)が有機溶媒(C)中に実質的に1次粒子の状態で分散された分散液を得ることができる。
 有機溶媒(C)としては、特に限定されず、重合体微粒子(A)を再分散可能な任意の有機溶媒を使用することができる。有機溶媒(C)は、1種類のみの有機溶媒からなるものであっても、2種類以上の有機溶媒の混合物であってもよい。
 有機溶媒(C)の具体例としては、例えば、有機溶媒(B)で例示した溶媒、および脂肪族炭化水素類(例えば、ヘキサン、ヘプタン、オクタン、シクロヘキサン、エチルシクロヘキサンなど)、並びにこれら溶媒の混合物を例示することができる。また、凝集体の再分散性をより確実にするという観点からは、有機溶媒混合工程で用いた有機溶媒(B)と同一種の有機溶媒を用いることが好ましい。
 再分散工程において使用する有機溶媒(C)の量は、特に限定されず、凝集体中に含まれる重合体微粒子(A)の種類および量、凝集体中に含まれる有機溶媒(B)の種類および量、並びに有機溶媒(C)の種類などに依存して適宜設定すればよい。一実施形態において、再分散工程において使用する有機溶媒(C)の量は、凝集体100重量部に対して、100重量部~500重量部であることが好ましく、150重量部~400重量部であることがより好ましく、200重量部~350重量部であることがさらに好ましく、250重量部~300重量部であることが特に好ましい。再分散工程において使用する有機溶媒(C)の量が凝集体100重量部に対して100重量部以上である場合、(i)有機溶媒(C)中に重合体微粒子(A)が均一に分散しやすくなる、(ii)凝集体の塊の残存を防ぐ、および(iii)分散液が低粘度となり、取り扱いが容易になる傾向がある、という利点を有する。また、再分散工程において使用する有機溶媒(C)の量が500重量部以下である場合、最終的な揮発分の蒸発留去を効率的に行うことができる、という利点を有する。
 凝集体と有機溶媒(C)とを混合する装置および方法としては、特別な装置または方法は必要ではなく、一般的な撹拌混合機能をもった装置で実施することができる。
 再分散工程に供するときの凝集体および有機溶媒(C)の好適な温度は、特に限定されない。一実施形態において、再分散工程に供するときの凝集体および有機溶媒(C)の温度、並びに/または、再分散工程で得られる分散液の温度は、例えば10℃~50℃であることが好ましく、15℃~40℃であることがより好ましく、20℃~40℃であることがさらに好ましい。再分散工程に供するときの凝集体および有機溶媒(C)の温度、並びに/または、再分散工程で得られる分散液の温度が前記の範囲である場合、得られる分散液において、重合体微粒子(A)が有機溶媒(C)中に良好に分散しており、かつ、使用する有機溶剤が揮発しにくいという利点を有する。
 (1-4-2.樹脂混合工程)
 樹脂混合工程は、再分散工程で得られる分散液と樹脂(D)とを混合する工程である。樹脂混合工程により、重合体微粒子(A)が樹脂(D)中に実質的に1次粒子の状態で分散されており、かつ、ラテックスに由来する不純物(乳化剤および電解質など)をほとんど含まない樹脂組成物を得ることができる。
 (1-4-3.樹脂(D))
 樹脂(D)としては、特に限定されないが、熱硬化性樹脂であることが好ましい。熱硬化性樹脂は、エチレン性不飽和単量体を重合させてなる重合体を含む樹脂、エポキシ樹脂、フェノール樹脂、ポリオール樹脂およびアミノ-ホルムアルデヒド樹脂(メラミン樹脂)からなる群より選択される少なくとも1種を含むことが好ましい。また、熱硬化性樹脂としては、芳香族ポリエステル原料を重合させてなる重合体を含む樹脂も挙げられる。芳香族ポリエステル原料としては、芳香族ビニル化合物、(メタ)アクリル酸誘導体、シアン化ビニル化合物、マレイミド化合物などのラジカル重合性単量体、ジメチルテレフタレート、アルキレングリコールなどが挙げられる。これら熱硬化性樹脂は1種類のみを用いてもよく、2種以上を併用して用いてもよい。
 (エチレン性不飽和単量体)
 エチレン性不飽和単量体としては、分子中にエチレン性不飽和結合を少なくとも1個有するものであれば特に限定されない。
 エチレン性不飽和単量体としては、アクリル酸、α-アルキルアクリル酸、α-アルキルアクリル酸エステル、β-アルキルアクリル酸、β-アルキルアクリル酸エステル、メタクリル酸、アクリル酸のエステル、メタクリル酸のエステル、酢酸ビニル、ビニルエステル、不飽和エステル、多不飽和カルボン酸、多不飽和エステル、マレイン酸、マレイン酸エステル、無水マレイン酸およびアセトキシスチレンが挙げられる。これらは1種類のみを用いてもよく、2種以上を併用して用いてもよい。
 (エポキシ樹脂)
 エポキシ樹脂としては、分子中にエポキシ結合を少なくとも1個有するものであれば特に限定されない。
 エポキシ樹脂の具体例としては例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、水添ビスフェノールA(もしくはF)型エポキシ樹脂、フッ素化エポキシ樹脂、ポリブタジエンもしくはNBRを含有するゴム変性エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、p-オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m-アミノフェノール型エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、ウレタン結合を有するウレタン変性エポキシ樹脂、各種脂環式エポキシ樹脂、多価アルコールのグリシジルエーテル、ヒダントイン型エポキシ樹脂、石油樹脂などのような不飽和重合体のエポキシ化物、および含アミノグリシジルエーテル樹脂、などが挙げられる。前記多価アルコールとしては、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、およびグリセリンなどが挙げられる。エポキシ樹脂としては、前記のエポキシ樹脂にビスフェノールA(もしくはF)類、または多塩基酸類などを付加反応させて得られるエポキシ化合物も挙げられる。エポキシ樹脂は、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用され得る。これらのエポキシ樹脂は、1種類のみを用いてもよく、2種以上を併用してもよい。
 上述したエポキシ樹脂の中でもエポキシ基を一分子中に少なくとも2個有するものが、樹脂組成物の硬化において、反応性が高く、かつ得られた硬化物が3次元的網目を作りやすいなどの点から好ましい。また、エポキシ樹脂としては、経済性および入手のし易さに優れることから、エポキシ基を一分子中に少なくとも2個有するエポキシ樹脂の中でもビスフェノール型エポキシ樹脂を主成分とするものが好ましい。
 (フェノール樹脂)
 フェノール樹脂は、フェノール類とアルデヒド類とを反応させて得られる化合物であれば特に限定されない。フェノール類としては特に限定されないが、例えば、フェノール、オルソクレゾール、メタクレゾール、パラクレゾール、キシレノール、パラターシャリーブチルフェノール、パラオクチルフェノール、パラフェニルフェノール、ビスフェノールA、ビスフェノールF、およびレゾルシンなどのフェノール類が挙げられる。特に好ましいフェノール類としては、フェノール、およびクレゾールが挙げられる。
 アルデヒド類としては特に限定されないが、例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、およびアクロレインなど、並びにこれらの混合物が挙げられる。アルデヒド類としては、上述したアルデヒド類の発生源となる物質、またはこれらのアルデヒド類の溶液を使用することもできる。アルデヒド類としては、フェノール類とアルデヒド類とを反応させるときの操作が容易であることから、ホルムアルデヒドが好ましい。
 フェノール類とアルデヒド類とを反応させるときの、フェノール類(P)とアルデヒド類(F)とのモル比(F/P)(以下、反応モル比とも称する)は特に限定されない。反応において酸触媒を使用する場合、前記反応モル比(F/P)は0.4~1.0であることが好ましく、0.5~0.8であることがより好ましい。反応においてアルカリ触媒を使用する場合、前記反応モル比(F/P)は0.4~4.0であることが好ましく、0.8~2.5であることがより好ましい。反応モル比が前記下限値以上である場合、歩留まりが低くなりすぎず、また、得られるフェノール樹脂の分子量が小さくなる虞がない。一方、反応モル比が前記上限値以下である場合、フェノール樹脂の分子量が大きくなりすぎずかつ軟化点が高くなりすぎないため、加熱時に充分な流動性を得られる。また、反応モル比が前記上限値以下である場合、分子量のコントロールが容易であり、反応条件に起因したゲル化、もしくは部分的なゲル化物が生じる虞がない。
 (ポリオール樹脂)
 ポリオール樹脂は、末端に活性水素を2個以上有する化合物であり、分子量50~20,000程度の2官能以上のポリオールである。ポリオール樹脂としては、脂肪族アルコール類、芳香族アルコール類、ポリエーテル型ポリオール類、ポリエステル型ポリオール類、ポリオレフィンポリオール類、およびアクリルポリオール類などを挙げることができる。
 脂肪族アルコールは、二価アルコール、または三価以上のアルコール(三価アルコール、四価アルコールなど)のいずれであってもよい。二価アルコールとしては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコールなどのアルキレングリコール類(特に炭素数が1~6程度のアルキレングリコール類)、当該アルキレングリコール類の2分子以上(例えば、2~6分子程度)の脱水縮合物(ジエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなど)などが挙げられる。三価アルコールとしては、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,2,6-ヘキサントリオールなど(特に炭素数が3~10程度の三価アルコール)が挙げられる。四価アルコールとしては、ペンタエリスリトール、ジグリセリンなどが挙げられる。また、単糖、オリゴ糖、多糖などの糖類が挙げられる。
 芳香族アルコールとしては、ビスフェノールA、ビスフェノールFなどのビスフェノール類;ジヒドロキシビフェニルなどのビフェニル類;ハイドロキノン、フェノールホルムアルデヒド縮合物などの多価フェノール類;ナフタレンジオールなどが挙げられる。
 ポリエーテル型ポリオールとしては、例えば、活性水素を含有する開始剤の1種類または2種以上の存在下、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイドなどを開環重合して得られるランダム共重合体またはブロック共重合体など、およびこれら共重合体の混合物などが挙げられる。ポリエーテル型ポリオールの開環重合に用いられる、活性水素を含有する開始剤としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ビスフェノールAなどのジオール類;トリメチロールエタン、トリメチロールプロパン、グリセリンなどのトリオール類;単糖、オリゴ糖、多糖などの糖類;ソルビトール;アンモニア、エチレンジアミン、尿素、モノメチルジエタノールアミン、モノエチルジエタノールアミンなどのアミン類;などが挙げられる。
 ポリエステル型ポリオールとしては、例えば(i)マレイン酸、フマル酸、アジピン酸、セバシン酸、フタル酸、ドデカン二酸、イソフタル酸、アゼライン酸などの多塩基酸および/またはその酸無水物と、(ii)エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-へキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオールなどの多価アルコールとを、エステル化触媒の存在下、150~270℃の温度範囲で重縮合させて得られる重合体が挙げられる。さらに、(i)ポリエステル型ポリオールとしては、ε-カプロラクトンおよびバレロラクトンなど、の開環重合物、並びに、(ii)ポリカーボネートジオールおよびヒマシ油など、の活性水素を2個以上有する活性水素化合物、などが挙げられる。
 ポリオレフィン型ポリオールとしては、ポリブタジエンポリオール、ポリイソプレンポリオール、およびそれらの水添物などが挙げられる。
 アクリルポリオールとしては、例えば、(i)ヒドロキシエチル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、およびビニルフェノールなどの水酸基含有単量体と、(ii)n-ブチル(メタ)アクリレートおよび2-エチルヘキシル(メタ)アクリレートなどの汎用単量体との共重合体、並びにそれら共重合体の混合物などが挙げられる。
 これらポリオール樹脂の中でも、得られる樹脂組成物の粘度が低く作業性に優れ、当該樹脂組成物が硬度と靱性とのバランスに優れた硬化物を提供できることから、ポリエーテル型ポリオールが好ましい。また、これらポリオール樹脂の中でも、得られる樹脂組成物が接着性に優れる硬化物を提供できることから、ポリエステル型ポリオールが好ましい。
 (アミノ-ホルムアルデヒド樹脂)
 アミノ-ホルムアルデヒド樹脂は、アミノ化合物とアルデヒド類とをアルカリ性触媒下で反応させて得られる化合物であれば特に限定されない。前記アミノ化合物としては、メラミン;グアナミン、アセトグアナミン、ベンゾグアナミンなどの6-置換グアナミン類;CTUグアナミン(3,9-ビス[2-(3,5-ジアミノ-2,4,6-トリアザフェニル)エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン)、CMTUグアナミン(3,9-ビス[(3,5-ジアミノ-2,4,6-卜リアザフェニル)メチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン)などのアミン置換トリアジン化合物;尿素、チオ尿素、エチレン尿素などの尿素類を挙げることができる。また前記アミノ化合物としては、メラミンのアミノ基の水素をアルキル基、アルケニル基、および/またはフェニル基で置換した置換メラミン化合物(米国特許第5,998,573号明細書(対応日本公開公報:特開平9-143238号)に記載されている。)、並びに、メラミンのアミノ基の水素をヒドロキシアルキル基、ヒドロキシアルキルオキシアルキル基、および/またはアミノアルキル基で置換した置換メラミン化合物(米国特許第5,322,915号明細書(対応日本公開公報:特開平5-202157号)に記載されている。)なども使用することができる。前記アミノ化合物としては、上述した化合物中でも、工業的に生産されており安価であることから、多官能性アミノ化合物である、メラミン、グアナミン、アセトグアナミン、およびベンゾグアナミンが好ましく、メラミンが特に好ましい。上述したアミノ化合物は、1種類のみを用いてもよく、2種以上を併用してもよい。またこれらアミノ化合物に加えて、(i)フェノール、クレゾール、アルキルフェノール、レゾルシン、ハイドロキノン、およびピロガロールなどのフェノール類、並びに(ii)アニリン、などを追加して用いても良い。
 前記アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、およびフルフラールなどが挙げられる。前記アルデヒド類としては、安価であり、先に挙げたアミノ化合物との反応性が良いことから、ホルムアルデヒド、およびパラホルムアルデヒドが好ましい。アミノ-ホルムアルデヒド樹脂の製造において、アルデヒド類の使用量は、アミノ化合物1モルに対して、有効アルデヒド基が1.1~6.0モル基となる物質量を使用することが好ましく、有効アルデヒド基が1.2~4.0モルとなる物質量であることが特に好ましい。
 (1-4-4.樹脂(D)の物性)
 樹脂(D)の性状は特に限定されない。樹脂(D)は、25℃において100mPa・s~1,000,000mPa・sの粘度を有することが好ましい。樹脂(D)の粘度は、25℃において、50,000mPa・s以下であることがより好ましく、30,000mPa・s以下であることがさらに好ましく、15,000mPa・s以下であることが特に好ましい。前記構成によると、樹脂(D)は流動性に優れるという利点を有する。25℃において100mPa・s~1,000,000mPa・sの粘度を有する樹脂(D)は、液体であるともいえる。
 樹脂(D)の流動性が大きくなるほど、換言すれば粘度が小さくなるほど、樹脂(D)中に、重合体微粒子(A)を1次粒子の状態で分散させることが困難となる。従来、25℃において1,000,000mPa・s以下の粘度を有する樹脂(D)中に、重合体微粒子(A)を1次粒子の状態で分散させることは非常に困難であった。しかし、本発明の一実施形態に係る樹脂組成物の製造方法によれば、上述した構成を有する重合体微粒子(A)が、25℃において1,000,000mPa・s以下の粘度を有する樹脂(D)中で良好に分散している樹脂組成物を得ることができる。
 また樹脂(D)の粘度は、25℃において、100mPa・s以上であることがより好ましく、500mPa・s以上であることがさらに好ましく、1000mPa・s以上であることがよりさらに好ましく、1500mPa・s以上であることが特に好ましい。当該構成によれば、重合体微粒子(A)中に樹脂(D)が入り込むことにより重合体微粒子(A)同士の融着を防ぐことができる。
 樹脂(D)は、1,000,000mPa・sより大きい粘度を有していてもよい。樹脂(D)は、半固体(半液体)であってもよく、固体であってもよい。樹脂(D)が1,000,000mPa・sより大きい粘度を有する場合、得られる樹脂組成物が、べたつきが少なく取り扱いやすいという利点を有する。
 樹脂(D)は、示差熱走査熱量測定(DSC)のサーモグラムにて25℃以下の吸熱ピークを有することが好ましく、0℃以下の吸熱ピークを有することがより好ましい。前記構成によると、樹脂(D)は流動性に優れるという利点を有する。
 (1-4-5.重合体微粒子(A)と樹脂(D)との配合比率)
 樹脂混合工程において、分散液中の重合体微粒子(A)と、分散液と混合する樹脂(D)との配合比率は、特に限定されない。一実施形態において、分散液中の重合体微粒子(A)と樹脂(D)との合計を100重量%とした場合に、重合体微粒子(A)が10重量%~50重量%、樹脂(D)が50重量%~90重量%であることが好ましく、重合体微粒子(A)が25重量%~40重量%、樹脂(D)が60重量%~75重量%であることがより好ましく、重合体微粒子(A)が30重量%~40重量%、樹脂(D)が60重量%~70重量%であることがさらに好ましい。重合体微粒子(A)と樹脂(D)との配合比率が前記構成である場合、揮発成分を留去したのちの樹脂組成物の流動性が良いという利点を有する。
 分散液と樹脂(D)とを混合する装置および方法としては、特別な装置または方法は必要ではなく、一般的な撹拌混合機能をもった装置で実施することができる。
 樹脂混合工程に供するときの分散液および樹脂(D)の好適な温度は、特に限定されない。一実施形態において、樹脂混合工程に供するときの分散液および樹脂(D)の温度、並びに/または、樹脂混合工程により得られる樹脂組成物の温度は、例えば10℃~80℃であることが好ましく、15℃~80℃であることがより好ましく、20℃~80℃であることがさらに好ましい。樹脂混合工程に供するときの分散液および樹脂(D)の温度、並びに/または、樹脂混合工程により得られる樹脂組成物の温度が前記の範囲である場合、混合が容易となるという利点を有する。
 (1-4-6.留去工程)
 本発明の一実施形態に係る樹脂組成物の製造方法は、樹脂混合工程の後、分散液と樹脂(D)とを混合して得られる混合物(樹脂組成物)から、有機溶媒(B)、有機溶媒(C)および水などの揮発成分を留去する留去工程をさらに含んでいてもよい。
 揮発成分を留去する方法としては、公知の方法が適用できる。例えば、槽内に前記混合物を仕込み、加熱減圧下で留去する方法、槽内で乾燥ガスと前記混合物とを向流接触させる方法、薄膜式蒸発機を用いるような連続式の方法、脱揮機構を備えた押出機あるいは連続式撹拌槽を用いる方法などが挙げられる。揮発成分を留去する際の温度、および所要時間などの条件は、樹脂組成物の品質を損なわない範囲で適宜選択することができる。また、樹脂組成物に残存する揮発成分の量は、樹脂組成物の使用目的に応じ、問題のない範囲で適宜選択できる。
 本発明の別の一実施形態に係る樹脂組成物の製造方法は、前記分離工程または洗浄工程で分離した凝集体を樹脂(D)と混合する樹脂混合工程、を含む。凝集体を樹脂(D)と混合する樹脂混合工程を含む、本発明の別の一実施形態に係る樹脂組成物の製造方法では、再分散工程を経ることなく、すなわち分離工程または洗浄工程で得られた凝集体を有機溶媒(C)に再分散させることなく、凝集体を、直接、樹脂(D)と混合する。かかる製造方法によっても、本発明の一実施形態に係る樹脂組成物を得ることができる。
 〔1-5.樹脂組成物〕
 本発明の一実施形態に係る樹脂組成物の製造方法により得られる樹脂組成物は、樹脂(D)中に、重合体微粒子(A)が1次粒子の状態で均一に分散されており、さらに、不純物が少ない。
 本発明の一実施形態に係る樹脂組成物の製造方法により得られる樹脂組成物は、必要に応じて、重合体微粒子(A)および樹脂(D)以外の、その他の任意成分を含有してもよい。その他の任意成分としては、ブロッキング防止剤、硬化剤、顔料および染料などの着色剤、体質顔料、紫外線吸収剤、酸化防止剤、熱安定化剤(ゲル化防止剤)、可塑剤、レベリング剤、消泡剤、シランカップリング剤、帯電防止剤、難燃剤、滑剤、減粘剤、低収縮剤、無機質充填剤、有機質充填剤、熱可塑性樹脂、乾燥剤、並びに分散剤などが挙げられる。
 前記その他の任意成分は、本発明の一実施形態に係る樹脂組成物の製造方法における任意の工程中で適宜添加することができる。例えば、前記添加剤は、樹脂混合工程において分散液および/または樹脂(D)中へ添加することができる。
 本発明の一実施形態に係る樹脂組成物の製造方法により得られる樹脂組成物は、樹脂(D)以外の、公知の熱硬化性樹脂をさらに含んでいてもよいし、公知の熱可塑性樹脂をさらに含んでいてもよい。
 本発明の一実施形態に係る樹脂組成物の製造方法により得られる樹脂組成物を硬化させて得られる硬化物は、重合体微粒子(A)の分散安定性が高く、かつ不純物が少ない。本発明の一実施形態に係る樹脂組成物の製造方法により得られる樹脂組成物を硬化させて得られる硬化物もまた、本発明の一実施形態である。
 本発明の一実施形態に係る樹脂組成物の製造方法により得られる樹脂組成物は、様々な用途に使用することができ、それらの用途は特に限定されない。当該樹脂組成物は、例えば、接着剤、コーティング材、強化繊維のバインダー、複合材料、3Dプリンターの造形材料、封止剤、電子基板、インキバインダー、木材チップバインダー、ゴムチップ用バインダー、フォームチップバインダー、鋳物用バインダー、床材用およびセラミック用の岩盤固結材、ウレタンフォームなどの用途に好ましく用いられる。ウレタンフォームとしては、自動車シート、自動車内装部品、吸音材、制振材、ショックアブソーバー(衝撃吸収材)、断熱材、および工事用床材クッションなどが挙げられる。当該樹脂組成物は、上述した用途の中でも、接着剤、コーティング材、強化繊維のバインダー、複合材料、3Dプリンターの造形材料、封止剤、および電子基板として用いられることがより好ましい。
 [実施形態2]
 〔2.精製重合体微粒子(A)の製造方法(第2の製造方法)〕
 本発明の一実施形態は、不純物の含有量が低減された重合体微粒子(A)の凝集体を効率的に製造し得る、新規の方法を提供する。
 本発明の一実施形態に係る精製重合体微粒子(A)の製造方法は、重合体微粒子(A)および乳化剤を含有するラテックスと、有機溶媒(B)とを混合する有機溶媒混合工程、
 前記有機溶媒混合工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を、水相中に生成させる緩凝集工程、および
 前記凝集体を前記水相から分離する分離工程、を含み、
 前記分離工程の後に、以下(i)および(ii)から選択されるサイクルを1サイクル以上繰り返す工程をさらに含む。
 (i)前記分離工程で得られる前記凝集体に、前記有機溶媒(B)を添加する第1工程、前記第1工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第1のサイクル、並びに、
 (ii)前記分離工程で得られる前記凝集体に、水を添加する第1工程、前記第1工程で得られる混合物と前記有機溶媒(B)とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第2のサイクル。
 本明細書において、「精製重合体微粒子(A)の製造方法」は、「重合体微粒子(A)の精製方法」ともいえる。また、本発明の一実施形態に係る前記精製重合体微粒子(A)の製造方法を、以下「第2の製造方法」と称する場合もある。
 第2の製造方法では、分離工程の後に第1のサイクルおよび第2のサイクルから選択されるサイクルを1サイクル以上繰り返す洗浄工程を行うことにより、乳化剤などの不純物、より具体的には乳化剤由来の元素PおよびSの含有量が低減された重合体微粒子(A)(すなわち、精製重合体微粒子(A))の凝集体を効率的に製造することができる。
 以下、第2の製造方法で使用する乳化剤、および、得られる凝集体の元素量について説明するが、以下に詳説した事項以外は、適宜、実施形態1の原料(成分)および各工程に関する記載を援用する。
 (乳化剤)
 第2の製造方法において、ラテックス中に含有される乳化剤は、公知の乳化剤(分散剤)であってよい。公知の乳化剤としては、例えば、アニオン性乳化剤、非イオン性乳化剤、ポリビニルアルコール、アルキル置換セルロース、ポリビニルピロリドン、およびポリアクリル酸誘導体などが挙げられる。アニオン性乳化剤としては、硫黄系乳化剤、リン系乳化剤、ザルコシン酸系乳化剤、およびカルボン酸系乳化剤などが挙げられる。硫黄系乳化剤としては、ドデシルベンゼンスルホン酸ナトリウム(略称;SDBS)等が挙げられる。リン系乳化剤としては、ポリオキシエチレンラウリルエーテルリン酸ナトリウムなどが挙げられる。
 環境負荷の観点からは、第2の製造方法において、ラテックス中に含有される乳化剤は、親油性部位と親水性部位とを含有し、前記親水性部位は、ポリオキシエチレン基を有することが好ましい。重合体微粒子(A)の精製のしやすさの観点から、乳化剤は、親水性部位が硫酸エステル部位を含む硫黄系乳化剤がより好ましい。また、環境負荷が小さいという観点から、乳化剤は、リン酸エステル部位を含むリン乳化剤がより好ましい。親油性部位と親水性部位とを含有し、前記親水性部位は、ポリオキシエチレン基を有する乳化剤の説明は、(1-2-4.乳化剤)の項の記載を援用する。
 (凝集体の元素量)
 第2の製造方法により得られる凝集体は、元素Sの含有量が、凝集体の重量に対して500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることがさらに好ましく、50ppm以下であることが特に好ましい。第2の製造方法により得られる凝集体は、元素Pの含有量が、凝集体の重量に対して500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることがさらに好ましく、50ppm以下であることが特に好ましい。第2の製造方法により得られる凝集体は、元素SおよびPの合計含有量が、凝集体の重量に対して1000ppm以下であることが好ましく、400ppm以下であることがより好ましく、200ppm以下であることがより好ましく、100ppm以下であることがより好ましく、50ppm以下であることがさらに好ましく、25ppm以下であることが特に好ましい。第2の製造方法により得られる凝集体における元素Sおよび/またはPの含有量が少ないほど、凝集体と樹脂(D)とを混合して得られる樹脂組成物の長期信頼性(長期安定性)に与える悪影響が少ないという利点を有する。第2の製造方法により得られる凝集体における元素Sおよび/またはPの含有量は、当該凝集体における不純物(夾雑物)の含有量ともいえる。
 第2の製造方法により得られる凝集体が、元素Sおよび/またはPを含有する場合、これら元素の由来は特に限定されない。当該凝集体における元素Sおよび/またはPの由来としては、(i)重合体微粒子(A)の製造に用いた乳化剤であってもよく、(i)重合体微粒子(A)の製造に用いた水および単量体、並びに有機溶媒(B)に含まれている微量元素であってもよい。第2の製造方法により得られる凝集体における元素Sおよび/またはPの含有量は蛍光X線分析装置、液体クロマトグラフィーまたはICP発光分析装置などを用いて測定することができる。
 本発明の一実施形態は、以下の様な構成であってもよい。
 〔1〕重合体微粒子(A)および乳化剤を含有するラテックスと、有機溶媒(B)とを混合する有機溶媒混合工程、並びに
 前記有機溶媒混合工程で得られる混合物の静置および撹拌の何れかまたは両方を行う混合状態維持工程、を含み、
 前記乳化剤は、親油性部位と親水性部位とを含有し、前記親水性部位は、ポリオキシエチレン基を有する、精製重合体微粒子(A)の製造方法。
 〔2〕前記親水性部位は、リン酸エステル部位を含有する、〔1〕に記載の精製重合体微粒子(A)の製造方法。
 〔3〕前記混合状態維持工程では、前記混合物の粘度が一定になるまで、前記混合物の静置および撹拌の何れかまたは両方を行う、〔1〕または〔2〕に記載の精製重合体微粒子(A)の製造方法。
 〔4〕前記混合状態維持工程では、前記混合物を30分間以上静置する、〔1〕~〔3〕の何れか1つに記載の精製重合体微粒子(A)の製造方法。
 〔5〕前記混合状態維持工程を経た混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を、水相中に生成させる緩凝集工程、および
 前記凝集体を前記水相から分離する分離工程、
をさらに含む、〔1〕~〔4〕の何れか1つに記載の精製重合体微粒子(A)の製造方法。
 〔6〕前記分離工程の後に、以下(i)および(ii)から選択されるサイクルを1サイクル以上繰り返す工程をさらに含む、〔5〕に記載の精製重合体微粒子(A)の製造方法:
 (i)前記分離工程で得られる前記凝集体に、前記有機溶媒(B)を添加する第1工程、前記第1工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第1のサイクル、並びに、
 (ii)前記分離工程で得られる前記凝集体に、水を添加する第1工程、前記第1工程で得られる混合物と前記有機溶媒(B)とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第2のサイクル。
 〔7〕重合体微粒子(A)および乳化剤を含有するラテックスと、有機溶媒(B)とを混合する有機溶媒混合工程、
 前記有機溶媒混合工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を、水相中に生成させる緩凝集工程、および
 前記凝集体を前記水相から分離する分離工程、を含み、
 前記分離工程の後に、以下(i)および(ii)から選択されるサイクルを1サイクル以上繰り返す工程をさらに含む、精製重合体微粒子(A)の製造方法。
 (i)前記分離工程で得られる前記凝集体に、前記有機溶媒(B)を添加する第1工程、前記第1工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第1のサイクル、並びに、
 (ii)前記分離工程で得られる前記凝集体に、水を添加する第1工程、前記第1工程で得られる混合物と前記有機溶媒(B)とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第2のサイクル。
 〔8〕前記有機溶媒混合工程で得られる混合物の静置および撹拌の何れかまたは両方を行う混合状態維持工程を含む、〔7〕に記載の精製重合体微粒子(A)の製造方法。
 〔9〕前記混合状態維持工程では、前記混合物の粘度が一定になるまで、前記混合物の静置および撹拌の何れかまたは両方を行う〔8〕に記載の精製重合体微粒子(A)の製造方法。
 〔10〕前記混合状態維持工程では、前記混合物を30分間以上静置する、〔8〕または〔9〕に記載の精製重合体微粒子(A)の製造方法。
 〔11〕前記重合体微粒子(A)は、構成単位として、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含む重合体からなるグラフト部を有するものである、〔1〕~〔10〕の何れか1つに記載の精製重合体微粒子(A)の製造方法。
 〔12〕〔5〕~〔10〕の何れか1つに記載の精製重合体微粒子(A)の製造方法を一工程として含む、樹脂組成物の製造方法であって、
 前記水相から分離した前記凝集体を、有機溶媒(C)に再分散させる再分散工程、および
 前記再分散工程で得られる分散液と樹脂(D)とを混合する樹脂混合工程、
を含む、樹脂組成物の製造方法。
 〔13〕前記樹脂(D)は、熱硬化性樹脂である、〔12〕に記載の樹脂組成物の製造方法。
 〔実施例A〕
 次に本発明の一実施形態を実施例A1~A6および比較例A1~A4に基づき説明するが、本発明はこれら実施例Aに限定されるものではない。
 [評価方法]
 先ず、実施例A1~A6および比較例A1~A4によって製造した樹脂組成物の評価方法について、説明する。
 <元素量測定>
 樹脂組成物を120℃で60分間乾燥したのちに、樹脂組成物中の各元素PおよびSの含有量を、蛍光X線分析装置JSX-1000S(日本電子社製)により測定した。各元素量は、樹脂組成物の重量部に対する濃度(ppm)で示した。
 <水相の透過度の測定>
 分離工程において排出された水相の透過度を、分光光度計HITACHI製U-3310スペクトロフォトメーターにより測定した。
 [製造例]
 <1.弾性体の重合>
 (製造例1-1;ポリブタジエンゴムラテックス(R-1)の調製)
 耐圧重合器中に、脱イオン水185重量部、エチレンジアミン四酢酸二ナトリウム(EDTA)0.002重量部、硫酸第一鉄・7水和塩0.001重量部、および乳化剤としてポリオキシエチレンラウリルエーテルリン酸ナトリウム(疎水性基:C12/ポリオキシエチレン数:n=4)0.065重量部を投入した。ポリオキシエチレンラウリルエーテルリン酸ナトリウムは、親水性部位がポリオキシエチレン基およびリン酸エステル部位を有するリン系乳化剤である。次に、投入した原料を撹拌しつつ、耐圧重合器内部の気体を窒素置換することにより、耐圧重合器内部から酸素を十分に除いた。その後、ブタジエン(Bd)100重量部を耐圧重合器内に投入し、耐圧重合器内の温度を45℃に昇温した。その後、パラメンタンハイドロパーオキサイド(PHP)0.03重量部を耐圧重合器内に投入し、続いてナトリウムホルムアルデヒドスルホキシレート(SFS)0.05重量部を耐圧重合器内に投入し、重合を開始した。重合開始から20時間目に、減圧下にて脱揮して、重合に使用されずに残存した単量体を脱揮除去することにより、重合を終了した。重合中、PHP、ポリオキシエチレンラウリルエーテルリン酸ナトリウムを、任意の量および任意の時宜で耐圧重合器内に添加した。当該重合により、ポリブタジエンゴムを主成分とする弾性体を含む水性ラテックス(R-1)を得た。得られた水性ラテックスに含まれる弾性体の体積平均粒子径は150nmであった。
 (製造例1-2;ポリブタジエンゴムラテックス(R-2)の調製)
 耐圧重合器中に、脱イオン水185重量部、リン酸三カリウム0.03重量部、EDTA0.002重量部、硫酸第一鉄・7水和塩0.001重量部、および乳化剤としてドデシルベンゼンスルホン酸ナトリウム(SDBS)0.065重量部を投入した。SDBSは、親水性部位がポリオキシエチレン基およびリン酸エステル部位を有さず、直鎖アルキルベンゼンおよび硫酸エステル部位を有する硫黄系乳化剤である。次に、投入した原料を撹拌しつつ、耐圧重合器内部の気体を窒素置換することにより、耐圧重合器内部から酸素を十分に除いた。その後、Bd100重量部を耐圧重合器内に投入し、耐圧重合器内の温度を45℃に昇温した。その後、PHP0.03重量部を耐圧重合器内に投入し、続いてSFS0.05重量部を耐圧重合器内に投入し、重合を開始した。重合開始から20時間目に、減圧下にて脱揮して、重合に使用されずに残存した単量体を脱揮除去することにより、重合を終了した。重合中、PHP、およびSDBSのそれぞれを、任意の量および任意の時宜で耐圧重合器内に添加した。当該重合により、ポリブタジエンゴムを主成分とする弾性体を含む水性ラテックス(R-2)を得た。得られた水性ラテックスに含まれる弾性体の体積平均粒子径は170nmであった。
 <2.重合体微粒子(A)の調製(グラフト部の重合)>
 (製造例2-1;重合体微粒子ラテックス(L1)の調製)
 ガラス製反応器に、前記ポリブタジエンゴムラテックス(R-1)250重量部(ポリブタジエンゴムを主成分とする弾性体87重量部を含む)、および、脱イオン水30重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。以下の製造例2-2以降においても、ガラス製反応器としては、製造例2-1で使用したガラス製反応器と同じガラス製反応器を使用した。
 ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、メチルメタクリレート(MMA)12.5重量部、スチレン(St)0.5重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、重合体微粒子(A)およびポリオキシエチレン基を有するリン系乳化剤(ポリオキシエチレンラウリルエーテルリン酸ナトリウム)を含む水性ラテックス(L1)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は160nmであった。得られた水性ラテックス(L1)100重量%における固形分濃度(重合体微粒子(A)の濃度)は34重量%であった。また、得られた水性ラテックス(L1)100重量%におけるポリオキシエチレン基を有するリン系乳化剤の量は0.80重量%であった。
 (製造例2-2;重合体微粒子ラテックス(L2)の調製)
 ガラス製反応器に、前記ポリブタジエンゴムラテックス(R-2)250重量部(ポリブタジエンゴムを主成分とする弾性体87重量部を含む)、および、脱イオン水30重量部を投入した。ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、MMA12.5重量部、St0.5重量部、およびBHP0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、重合体微粒子(A)およびポリオキシエチレン基を有しない硫黄系乳化剤(SDBS)を含む水性ラテックス(L2)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は181nmであった。得られた水性ラテックス(L2)における固形分濃度(重合体微粒子(A)の濃度)は34重量%であった。また、得られた水性ラテックス(L2)における硫黄系乳化剤の量は0.90重量%であった。
 (製造例2-3;重合体微粒子ラテックス(L3)の調製)
 ガラス製反応器に、脱イオン水182重量部、および、乳化剤としてポリオキシエチレンラウリルエーテルリン酸ナトリウム(疎水性基:C12/ポリオキシエチレン数:n=4)0.01重量部を投入した。次に、投入した原料を撹拌しつつ、ガラス製反応器内部の気体を窒素置換することにより、ガラス製反応器内部から酸素を十分に除いた。その後、MMA8.5重量部、アリルメタクリレート(AMA)0.17重量部、クメンハイドロパーオキサイド(QHP)0.003重量部ガラス製反応器内に投入し、ガラス製反応器内の温度を60℃に昇温した。次に、EDTA0.002重量部、硫酸第一鉄・7水和塩0.001重量部、SFS0.2重量部を投入し、重合を開始した。次に、MMA78.5重量部、AMA1.57重量部、QHP0.03重量部を180分間かけて連続的に添加した。重合中、QHP、およびポリオキシエチレンラウリルエーテルリン酸ナトリウムのそれぞれを、任意の量および任意の時宜でガラス製反応器内に添加した。
 当該重合により、得られた水性ラテックスに含まれる弾性体の体積平均粒子径は170nmであった。その後、MMA12.5重量部、St0.5重量部、およびBHP0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、重合体微粒子(A)およびポリオキシエチレン基を有するリン系乳化剤(ポリオキシエチレンラウリルエーテルリン酸ナトリウム)を含む水性ラテックス(L3)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は180nmであった。得られた水性ラテックス(L3)100重量%における固形分濃度(重合体微粒子(A)の濃度)は32重量%であった。また、得られた水性ラテックス(L3)100重量%におけるポリオキシエチレン基を有するリン系乳化剤の量は0.70重量%であった。
 (製造例2-4;重合体微粒子ラテックス(L4)の調製)
 ガラス製反応器に、脱イオン水182重量部、および、乳化剤としてポリオキシエチレンラウリルエーテルリン酸ナトリウム(疎水性基:C13分岐/ポリオキシエチレン数:n=6)0.01重量部を投入した。次に、投入した原料を撹拌しつつ、ガラス製反応器内部の気体を窒素置換することにより、ガラス製反応器内部から酸素を十分に除いた。その後、MMA8.5重量部、AMA0.17重量部、QHP0.003重量部をガラス製反応器内に投入し、ガラス製反応器内の温度を60℃に昇温した。次に、EDTA0.002重量部、硫酸第一鉄・7水和塩0.001重量部、SFS0.2重量部を投入し、重合を開始した。次に、MMA78.5重量部、AMA1.57重量部、QHP0.03重量部を180分間かけて連続的に添加した。重合中、QHP、およびポリオキシエチレンラウリルエーテルリン酸ナトリウムのそれぞれを、任意の量および任意の時宜でガラス製反応器内に添加した。当該重合により、得られた水性ラテックスに含まれる弾性体の体積平均粒子径は170nmであった。その後、MMA12.5重量部、St0.5重量部、およびBHP0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、重合体微粒子(A)およびポリオキシエチレン基を有するリン系乳化剤(ポリオキシエチレンラウリルエーテルリン酸ナトリウム)を含む水性ラテックス(L4)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は180nmであった。得られた水性ラテックス(L4)100重量%における固形分濃度(重合体微粒子(A)の濃度)は32重量%であった。また、得られた水性ラテックス(L4)100重量%におけるポリオキシエチレン基を有するリン系乳化剤の量は0.70重量%であった。
 (製造例2-5;重合体微粒子ラテックス(L5)の調製)
 ガラス製反応器に、脱イオン水182重量部、および、乳化剤としてポリオキシエチレンラウリルエーテルリン酸ナトリウム(疎水性基:C13分岐/ポリオキシエチレン数:n=10)0.01重量部を投入した。次に、投入した原料を撹拌しつつ、ガラス製反応器内部の気体を窒素置換することにより、ガラス製反応器内部から酸素を十分に除いた。その後、MMA8.5重量部、AMA0.17重量部、QHP0.003重量部を投入し、ガラス製反応器内の温度を60℃に昇温した。次に、EDTA0.002重量部、硫酸第一鉄・7水和塩0.001重量部、SFS0.2重量部を投入し、重合を開始した。次に、MMA78.5重量部、AMA1.57重量部、QHP0.03重量部を180分間かけて連続的に添加した。重合中、QHP、およびポリオキシエチレンラウリルエーテルリン酸ナトリウムのそれぞれを、任意の量および任意の時宜でガラス製反応器内に添加した。当該重合により、得られた水性ラテックスに含まれる弾性体の体積平均粒子径は170nmであった。その後、MMA12.5重量部、St0.5重量部、およびBHP0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、重合体微粒子(A)およびポリオキシエチレン基を有するリン系乳化剤(ポリオキシエチレンラウリルエーテルリン酸ナトリウム)を含む水性ラテックス(L5)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は180nmであった。得られた水性ラテックス(L5)100重量%における固形分濃度(重合体微粒子(A)の濃度)は32重量%であった。また、得られた水性ラテックス(L5)100重量%におけるポリオキシエチレン基を有するリン系乳化剤の量は0.70重量%であった。
 (製造例2-6;重合体微粒子ラテックス(L6)の調製)
 ガラス製反応器に、脱イオン水182重量部、および、乳化剤としてポリオキシエチレンアルキルエーテル硫酸ナトリウム(ポリオキシエチレン基を含む硫黄系乳化剤)0.01重量部を投入した。次に、投入した原料を撹拌しつつ、ガラス製反応器内部の気体を窒素置換することにより、ガラス製反応器内部から酸素を十分に除いた。その後、MMA8.5重量部、AMA0.17重量部、QHP0.003重量部を投入し、ガラス製反応器内の温度を60℃に昇温した。次に、EDTA0.002重量部、硫酸第一鉄・7水和塩0.001重量部、SFS0.2重量部を投入し、重合を開始した。次に、MMA78.5重量部、AMA1.57重量部、QHP0.03重量部を180分間かけて連続的に添加した。重合中、QHP、およびポリオキシエチレンラウリルエーテルリン酸ナトリウムのそれぞれを、任意の量および任意の時宜でガラス製反応器内に添加した。当該重合により、得られた水性ラテックスに含まれる弾性体の体積平均粒子径は170nmであった。その後、MMA12.5重量部、St0.5重量部、およびBHP0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、重合体微粒子(A)およびポリオキシエチレン基を有する硫黄系乳化剤(ポリオキシエチレンアルキルエーテル硫酸ナトリウム)を含む水性ラテックス(L6)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は180nmであった。得られた水性ラテックス(L6)100重量%における固形分濃度(重合体微粒子(A)の濃度)は32重量%であった。また、得られた水性ラテックス(L6)100重量%におけるポリオキシエチレン基を有する硫黄系乳化剤の量は0.70重量%であった。
 [実施例A1]
 撹拌機付き4L槽(槽の内径100mmであり、撹拌機は翼径75mmの4枚平パドル翼を軸方向に3段設置した撹拌機であった。)に有機溶媒(B)としてメチルエチルケトン(MEK)(20℃での水の溶解度、10重量%)756gを入れた。次いで、槽中の原料(MEK)を450rpmにて撹拌しつつ、製造例2-1で得られた重合体微粒子(A)を含むラテックス(L1)1000gを槽中に入れて、5秒間撹拌した(有機溶媒混合工程)。次いで、槽中の混合物(ラテックス(L1)およびMEK)を450rpmにてさらに60分間撹拌した(混合状態維持工程)。図1からも明らかであるように、上述した混合物を300rpmで60分間撹拌することにより、混合物の粘度は一定になることが分かる。実施例A1では、上述した混合物を450rpmで60分間撹拌しているため、混合物の粘度は一定になっているといえる。すなわち、実施例A1の混合状態維持工程では、混合物の粘度が一定になるまで、混合物の撹拌を行った。
 混合状態維持工程の後、槽中の混合物(ラテックス(L1)およびMEK)を500rpmにて撹拌しつつ、精製水800gを200g/分の供給速度で槽中に連続的に添加した。精製水の供給終了後、混合物の撹拌を速やかに停止した。かかる操作により、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た(緩凝集工程)。次に、一部の水相を含む凝集体が槽中に残るよう、水相を槽下部の払い出し口から1200g排出し、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た(分離工程)。また、排出された水相の透過度を測定したところ、水相の透過度は21%であり、水相の白濁は確認されなかった。
 分離工程により得られた精製重合体微粒子(A)の凝集体に、有機溶媒(C)としてMEK660gを加えた。得られた混合物を500rpmの撹拌条件で30分間混合し、MEK中に重合体微粒子(A)が均一に分散した分散液を得た(再分散工程)。当該分散液を、ジャケットおよび撹拌機付き1L槽(槽の内径100mmであり、撹拌機は翼型90mmのアンカー翼を設置した撹拌機であった。)に入れ、樹脂(D)としてエポキシ樹脂(三菱ケミカル製、商品名JER828)567gを槽中に添加した。得られた混合物が均一になるまで混合物を混合した(樹脂混合工程)。その後、ジャケット温度(槽中の温水の温度)を60℃に設定し、真空ポンプ(油回転式真空ポンプ、佐藤真空(株)製TSW-150)を用い、混合物中の揮発成分が所定の濃度(5000rpm)に達するまで減圧下で留去を行った(留去工程)。かかる操作により、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。
 得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表1に示す。
 [実施例A2]
 実施例A1と同じ方法により、有機溶媒混合工程、混合状態維持工程、緩凝集工程、および分離工程を行った。分離工程の後に、洗浄工程(第2のサイクルの第1工程~第3工程)を行った。具体的には、槽中の混合物(一部の水相を含む精製重合体微粒子(A)の凝集体)を500rpmにて撹拌しつつ、精製水450gを200g/分の供給速度で槽中に連続的に添加した(第2のサイクルの第1工程)。その後、MEK120gを槽中に添加した。次いで、槽中の混合物を450rpmにて5分間撹拌した。かかる操作により、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た(第2のサイクルの第2工程)。次に、一部の水相を含む凝集体が槽中に残るよう、水相を槽下部の払い出し口から1000g排出し、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た(第2のサイクルの第3工程)。また、排出された水相の透過度を測定したところ、水相の透過度は33%であり、水相の白濁は確認されなかった。
 第2のサイクルの第3工程により得られた精製重合体微粒子(A)の凝集体を用いて、実施例A1と同じ方法により、再分散工程、樹脂混合工程、および留去工程を行い、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。すなわち、実施例A2では、洗浄工程として第2のサイクルを1サイクル(1回)行った。
 得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表1に示す。
 [実施例A3]
 撹拌機付き4L槽(槽の内径100mmであり、撹拌機は翼径75mmの4枚平パドル翼を軸方向に3段設置した撹拌機であった。)に有機溶媒(B)としてメチルエチルケトン(MEK)(20℃での水の溶解度、10重量%)1000gを入れた。次いで、槽中の原料(MEK)を450rpmにて撹拌しつつ、製造例2-3で得られた重合体微粒子(A)を含むラテックス(L3)1000gを槽中に入れて、5秒間撹拌した(有機溶媒混合工程)。次いで、槽中の混合物(ラテックス(L3)およびMEK)を450rpmにてさらに60分間撹拌し、混合物の粘度が一定になるまで、混合物の撹拌を行った(混合状態維持工程)。
 混合状態維持工程の後、槽中の混合物(ラテックス(L3)およびMEK)を500rpmにて撹拌しつつ、精製水500gを200g/分の供給速度で槽中に連続的に添加した。精製水の供給終了後、混合物の撹拌を速やかに停止した。かかる操作により、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た(緩凝集工程(1段目))。次に、一部の水相を含む凝集体が槽中に残るよう、水相を槽下部の払い出し口から1320g排出し、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た(分離工程)。また、排出された水相の透過度を測定したところ、水相の透過度は27%であり、水相の白濁は確認されなかった。
 分離工程により得られた精製重合体微粒子(A)の凝集体に、有機溶媒(C)としてMEK600gを加えた。得られた混合物を500rpmの撹拌条件で30分間混合し、MEK中に重合体微粒子(A)が均一に分散した分散液を得た(再分散工程)。当該分散液を、ジャケットおよび撹拌機付き1L槽(槽の内径100mmであり、撹拌機は翼型90mmのアンカー翼を設置した撹拌機であった。)に入れ、樹脂(D)としてエポキシ樹脂(三菱ケミカル製、商品名JER828)1813gを槽中に添加した。得られた混合物が均一になるまで混合物を混合した(樹脂混合工程)。その後、ジャケット温度(槽中の温水の温度)を60℃に設定し、真空ポンプ(油回転式真空ポンプ、佐藤真空(株)製TSW-150)を用い、混合物中の揮発成分が所定の濃度(5000rpm)に達するまで減圧下で留去を行った(留去工程)。かかる操作により、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表1に示す。
 [実施例A4]
 ラテックス(L3)の代わりに製造例2-4で得られたラテックス(L4)を使用した以外は、実施例A3と同じ方法により有機溶媒混合工程、混合状態維持工程、緩凝集工程および分離工程を行い、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た。実施例A4の分離工程において排出された水相の透過度を測定したところ、水相の透過度は62%であり、水相の白濁は確認されなかった。
 次いで、分離工程により得られた精製重合体微粒子(A)の凝集体を用いて、実施例A3と同じ方法により、再分散工程、樹脂混合工程および留去工程を行い、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表1に示す。
 [実施例A5]
 ラテックス(L3)の代わりに製造例2-5で得られたラテックス(L5)を使用した以外は、実施例A3と同じ方法により有機溶媒混合工程、混合状態維持工程、緩凝集工程および分離工程を行い、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た。実施例A5の分離工程において排出された水相の透過度を測定したところ、水相の透過度は22%であり、水相の白濁は確認されなかった。
 次いで、分離工程により得られた精製重合体微粒子(A)の凝集体を用いて、実施例A3と同じ方法により、再分散工程、樹脂混合工程および留去工程を行い、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表1に示す。
 [実施例A6]
 ラテックス(L3)の代わりに製造例2-6で得られたラテックス(L6)を使用した以外は、実施例A3と同じ方法により有機溶媒混合工程、混合状態維持工程、緩凝集工程および分離工程を行い、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た。実施例A6の分離工程において排出された水相の透過度を測定したところ、水相の透過度は44%であり、水相の白濁は確認されなかった。
 次いで、分離工程により得られた精製重合体微粒子(A)の凝集体を用いて、実施例A3と同じ方法により、再分散工程、樹脂混合工程および留去工程を行い、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表1に示す。
 [比較例A1]
 有機溶媒混合工程の後、混合状態維持工程を行わず、すぐに緩凝集工程を行った以外は、実施例A1と同じ方法により有機溶媒混合工程、緩凝集工程および分離工程を行い、一部の水相を含む凝集体を得た。比較例A1の分離工程において排出された水相の透過度を測定したところ、水相の透過度は0.05%であり、白濁していた。
 [比較例A2]
 有機溶媒混合工程の後、混合状態維持工程を行わず、すぐに緩凝集工程を行った以外は、実施例A3と同じ方法により有機溶媒混合工程、緩凝集工程および分離工程を行い、一部の水相を含む凝集体を得た。比較例A2の分離工程において排出された水相の透過度を測定したところ、水相の透過度は0.11%であり、白濁していた。
 [比較例A3]
 有機溶媒混合工程の後、混合状態維持工程を行わず、すぐに緩凝集工程を行った以外は、実施例A4と同じ方法により有機溶媒混合工程、緩凝集工程および分離工程を行い、一部の水相を含む凝集体を得た。比較例A3の分離工程において排出された水相の透過度を測定したところ、水相の透過度は0.12%であり、白濁していた。
 [比較例A4]
 有機溶媒混合工程の後、混合状態維持工程を行わず、すぐに緩凝集工程を行った以外は、実施例A5と同じ方法により有機溶媒混合工程、緩凝集工程および分離工程を行い、一部の水相を含む凝集体を得た。比較例A4の分離工程において排出された水相の透過度を測定したところ、水相の透過度は0.02%であり、白濁していた。
 [混合物の粘度測定]
 実施例A1と同じ条件下で有機溶媒混合工程を行った。すなわち、ポリオキシエチレン基を有するリン系乳化剤を含むラテックスとMEK(有機溶媒)とを混合し、混合物を得た。得られた混合物(ラテックス(L1)およびMEK)(図1では、「リン系乳化剤を含む混合物」と表記する。)を、300rpmで撹拌した。混合物の撹拌開始から5秒後、5分後、15分後、30分後、45分後、60分後、および90分後に混合物の粘度を粘度計(BROOKFIELD社製デジタル粘度計DV-II+Pro型)により測定した。結果を図1中に黒色の三角で示す。
 実施例A1と同じ条件下で有機溶媒混合工程を行った。すなわち、ポリオキシエチレン基を有しない硫黄系乳化剤を含むラテックスとMEK(有機溶媒)とを混合し、混合物を得た。得られた混合物(ラテックス(L2)およびMEK)(図1では、「硫黄系乳化剤を含む混合物」と表記する。)を、300rpmで撹拌した。混合物の撹拌開始から5秒後、5分後、15分後、および30分後に混合物の粘度を粘度計(BROOKFIELD社製デジタル粘度計DV-II+Pro型)により測定した。結果を図1中に黒色の丸で示す。
 なお、混合物の粘度測定は、粘度領域によってスピンドルを必要に応じ変更しCPE-52を用い、測定温度25℃にてShear Rate(ずり速度)を必要に応じ変化させて行った。
 図1は、ポリオキシエチレン基を有するリン系乳化剤またはポリオキシエチレン基を有しない硫黄系乳化剤を含むラテックスと有機溶媒との混合物の粘度の経時変化を示すグラフである。図1において、混合物(ラテックス(L1)およびMEK)は、混合開始から20分後まで、粘度が急激に上昇し、30分後に一定となり、60分後に粘度は変化しなくなった。これに対し、混合物(ラテックス(L2)およびMEK)は、混合開始直後から混合終了まで、粘度は一定であり、変化しなかった。
 ここで、実施例A2~A6の各有機溶媒混合工程を経て得られた混合物についても、300rpmで撹拌し、当該撹拌開始から5秒後、5分後、15分後、30分後、45分後、60分後、および90分後に混合物の粘度を粘度計(BROOKFIELD社製デジタル粘度計DV-II+Pro型)により測定した。その結果、各混合物の粘度は、約30分後に一定となり、60分後に粘度は変化しなくなった。それ故、実施例A2~A6においても、混合状態維持工程として、有機溶媒混合工程により得られた混合物について混合物の粘度が一定になるまで撹拌を行った、といえる。
Figure JPOXMLDOC01-appb-T000002
 実施例A1~A6の分離工程において排出された水相、および実施例A2の洗浄工程において排出された水相は、重合体微粒子(A)をほとんど含まず、十分な透過度を有していた。また、実施例A1~A6で得られた樹脂組成物は、乳化剤由来元素(PおよびS)の量が非常に少なかった。これに対し、比較例A1~A4の分離工程において排出された水相は白濁しており、重合体微粒子(A)を多く含むものであった。
 〔実施例B〕
 次に本発明の一実施形態を実施例B1~B3、および比較例B1~B2に基づき説明するが、本発明はこれら実施例Bに限定されるものではない。実施例B1~B3、および比較例B1~B2における各評価は、それぞれ、前記〔実施例A〕の項に記載の方法で行った。
 [実施例B1]
 撹拌機付き4L槽(槽の内径100mmであり、撹拌機は翼径75mmの4枚平パドル翼を軸方向に3段設置した撹拌機であった。)に有機溶媒(B)としてメチルエチルケトン(MEK)(20℃での水の溶解度、10重量%)756gを入れた。次いで、槽中の原料(MEK)を450rpmにて撹拌しつつ、製造例2-1で得られた重合体微粒子(A)を含むラテックス(L1)1000gを槽中に入れて、5秒間撹拌した(有機溶媒混合工程)。次いで、槽中の混合物(ラテックス(L1)およびMEK)を450rpmにてさらに60分間撹拌した(混合状態維持工程)。図1からも明らかであるように、上述した混合物を300rpmで60分間撹拌することにより、混合物の粘度は一定になることが分かる。実施例B1では、上述した混合物を450rpmで60分間撹拌しているため、混合物の粘度は一定になっているといえる。すなわち、実施例B1の混合状態維持工程では、混合物の粘度が一定になるまで、混合物の撹拌を行った。
 混合状態維持工程の後、槽中の混合物(ラテックス(L1)およびMEK)を500rpmにて撹拌しつつ、精製水800gを200g/分の供給速度で槽中に連続的に添加した。精製水の供給終了後、混合物の撹拌を速やかに停止した。かかる操作により、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た(緩凝集工程)。次に、一部の水相を含む凝集体が槽中に残るよう、水相を槽下部の払い出し口から1200g排出し、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た(分離工程)。また、排出された水相の透過度を測定したところ、水相の透過度は21%であり、水相の白濁は確認されなかった。
 分離工程の後に、洗浄工程(第2のサイクルの第1工程~第3工程)を行った。具体的には、分離工程後の槽中の混合物(一部の水相を含む精製重合体微粒子(A)の凝集体)を500rpmにて撹拌しつつ、精製水450gを200g/分の供給速度で槽中に連続的に添加した(第2のサイクルの第1工程)。その後、MEK120gを槽中に添加した。次いで、槽中の混合物を450rpmにて5分間撹拌した。かかる操作により、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た(第2のサイクルの第2工程)。次に、一部の水相を含む凝集体が槽中に残るよう、水相を槽下部の払い出し口から1000g排出し、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た(第2のサイクルの第3工程)。また、排出された水相の透過度を測定したところ、水相の透過度は33%であり、水相の白濁は確認されなかった。
 第2のサイクルの第3工程により得られた精製重合体微粒子(A)の凝集体に、有機溶媒(C)としてMEK660gを加えた。得られた混合物を500rpmの撹拌条件で30分間混合し、MEK中に重合体微粒子(A)が均一に分散した分散液を得た(再分散工程)。当該分散液を、ジャケットおよび撹拌機付き1L槽(槽の内径100mmであり、撹拌機は翼型90mmのアンカー翼を設置した撹拌機であった。)に入れ、樹脂(D)としてエポキシ樹脂(三菱ケミカル製、商品名JER828)567gを槽中に添加した。得られた混合物が均一になるまで混合物を混合した(樹脂混合工程)。その後、ジャケット温度(槽中の温水の温度)を60℃に設定し、真空ポンプ(油回転式真空ポンプ、佐藤真空(株)製TSW-150)を用い、混合物中の揮発成分が所定の濃度(5000rpm)に達するまで減圧下で留去を行った(留去工程)。かかる操作により、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。
 得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表2に示す。
 [実施例B2]
 ラテックス(L1)の代わりに製造例2-2で得られたラテックス(L2)を使用した以外は、実施例B1と同じ方法により有機溶媒混合工程、混合状態維持工程、緩凝集工程、分離工程、および洗浄工程(第2のサイクルの第1工程~第3工程)を行い、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た。実施例B2の第2のサイクルの第3工程において排出された水相の透過度を測定したところ、水相の透過度は53%であり、水相の白濁は確認されなかった。
 次いで、第2のサイクルの第3工程により得られた精製重合体微粒子(A)の凝集体を用いて、実施例B1と同じ方法により、再分散工程、樹脂混合工程および留去工程を行い、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表2に示す。
 [実施例B3]
 ラテックス(L1)の代わりに製造例2-2で得られたラテックス(L2)を使用した以外は、実施例B1と同じ方法により有機溶媒混合工程、混合状態維持工程、緩凝集工程、および分離工程を行った。次いで、分離工程の後に、洗浄工程として、第1のサイクルの第1工程~第3工程を行った。具体的には、分離工程後の槽中の混合物(一部の水相を含む凝集体)を500rpmにて撹拌しつつ、MEK120gを200g/分の供給速度で槽中に連続的に添加した(第1のサイクルの第1工程)。その後、精製水450gを200g/分の供給速度で槽中に添加した。次いで、槽中の混合物を450rpmにて5分間撹拌した。かかる操作により、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た(第1のサイクルの第2工程)。次に、一部の水相を含む凝集体が槽中に残るよう、水相を槽下部の払い出し口から1000g排出し、精製重合体微粒子(A)であり、かつ一部の水相を含む凝集体を得た(第1のサイクルの第3工程)。また、排出された水相の透過度を測定したところ、水相の透過度は54%であり、水相の白濁は確認されなかった。
 次いで、第1のサイクルの第3工程により得られた精製重合体微粒子(A)の凝集体を用いて、実施例B1と同じ方法により、再分散工程、樹脂混合工程および留去工程を行い、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表2に示す。
 [比較例B1]
 分離工程の後に洗浄工程を行わず、分離工程により得られた凝集体を続く再分散工程に用いた以外は、実施例B1と同じ方法により、有機溶媒混合工程、混合状態維持工程、緩凝集工程、分離工程、再分散工程、樹脂混合工程および留去工程を行い、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表2に示す。
 [比較例B2]
 分離工程の後に洗浄工程を行わず、分離工程により得られた凝集体を続く再分散工程に用いた以外は、実施例B2と同じ方法により、有機溶媒混合工程、混合状態維持工程、緩凝集工程、分離工程、再分散工程、樹脂混合工程および留去工程を行い、重合体微粒子(A)およびエポキシ樹脂を含む樹脂組成物を得た。得られた樹脂組成物について、各元素量(リン(P)および硫黄(S))を測定した。結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例B1~B3で得られた樹脂組成物は、比較例B1およびB2で得られた樹脂組成物と比較して、乳化剤由来元素(PおよびS)の各量およびその合計量が非常に少なかった。

Claims (13)

  1.  重合体微粒子(A)および乳化剤を含有するラテックスと、有機溶媒(B)とを混合する有機溶媒混合工程、並びに
     前記有機溶媒混合工程で得られる混合物の静置および撹拌の何れかまたは両方を行う混合状態維持工程を含み、
     前記乳化剤は、親油性部位と親水性部位とを含有し、前記親水性部位は、ポリオキシエチレン基を有する、精製重合体微粒子(A)の製造方法。
  2.  前記親水性部位は、リン酸エステル部位を含有する、請求項1に記載の精製重合体微粒子(A)の製造方法。
  3.  前記混合状態維持工程では、前記混合物の粘度が一定になるまで、前記混合物の静置および撹拌の何れかまたは両方を行う、請求項1または2に記載の精製重合体微粒子(A)の製造方法。
  4.  前記混合状態維持工程では、前記混合物を30分間以上静置する、請求項1~3の何れか1項に記載の精製重合体微粒子(A)の製造方法。
  5.  前記混合状態維持工程を経た混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる緩凝集工程、および
     前記凝集体を前記水相から分離する分離工程、
    をさらに含む、請求項1~4の何れか1項に記載の精製重合体微粒子(A)の製造方法。
  6.  前記分離工程の後に、以下(i)および(ii)から選択されるサイクルを1サイクル以上繰り返す工程をさらに含む、請求項5に記載の精製重合体微粒子(A)の製造方法:
     (i)前記分離工程で得られる前記凝集体に、前記有機溶媒(B)を添加する第1工程、前記第1工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第1のサイクル、並びに、
     (ii)前記分離工程で得られる前記凝集体に、水を添加する第1工程、前記第1工程で得られる混合物と前記有機溶媒(B)とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第2のサイクル。
  7.  重合体微粒子(A)および乳化剤を含有するラテックスと、有機溶媒(B)とを混合する有機溶媒混合工程、
     前記有機溶媒混合工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる緩凝集工程、および
     前記凝集体を前記水相から分離する分離工程、を含み、
     前記分離工程の後に、以下(i)および(ii)から選択されるサイクルを1サイクル以上繰り返す工程をさらに含む、精製重合体微粒子(A)の製造方法:
     (i)前記分離工程で得られる前記凝集体に、前記有機溶媒(B)を添加する第1工程、前記第1工程で得られる混合物と水とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第1のサイクル、並びに、
     (ii)前記分離工程で得られる前記凝集体に、水を添加する第1工程、前記第1工程で得られる混合物と前記有機溶媒(B)とを接触させて、前記有機溶媒(B)を含有する重合体微粒子(A)の凝集体を水相中に生成させる第2工程、および、前記第2工程で得られる前記凝集体を前記水相から分離する第3工程、からなる第2のサイクル。
  8.  前記有機溶媒混合工程で得られる混合物の静置および撹拌の何れかまたは両方を行う混合状態維持工程を含む、請求項7に記載の精製重合体微粒子(A)の製造方法。
  9.  前記混合状態維持工程では、前記混合物の粘度が一定になるまで、前記混合物の静置および撹拌の何れかまたは両方を行う、請求項8に記載の精製重合体微粒子(A)の製造方法。
  10.  前記混合状態維持工程では、前記混合物を30分間以上静置する、請求項8または9に記載の精製重合体微粒子(A)の製造方法。
  11.  前記重合体微粒子(A)は、構成単位として、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含む重合体からなるグラフト部を有するものである、請求項1~10の何れか1項に記載の精製重合体微粒子(A)の製造方法。
  12.  請求項5~10の何れか1項に記載の精製重合体微粒子(A)の製造方法を一工程として含む、樹脂組成物の製造方法であって、
     前記水相から分離した前記凝集体を、有機溶媒(C)に再分散させる再分散工程、および
     前記再分散工程で得られる分散液と樹脂(D)とを混合する樹脂混合工程、
    を含む、樹脂組成物の製造方法。
  13.  前記樹脂(D)は、熱硬化性樹脂である、請求項12に記載の樹脂組成物の製造方法。
PCT/JP2022/015432 2021-03-31 2022-03-29 精製重合体微粒子の製造方法および樹脂組成物の製造方法 WO2022210706A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023511376A JPWO2022210706A1 (ja) 2021-03-31 2022-03-29
US18/374,971 US20240026092A1 (en) 2021-03-31 2023-09-29 Method for producing purified polymer fine particles and method for producing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061526 2021-03-31
JP2021-061526 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/374,971 Continuation US20240026092A1 (en) 2021-03-31 2023-09-29 Method for producing purified polymer fine particles and method for producing resin composition

Publications (1)

Publication Number Publication Date
WO2022210706A1 true WO2022210706A1 (ja) 2022-10-06

Family

ID=83456320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015432 WO2022210706A1 (ja) 2021-03-31 2022-03-29 精製重合体微粒子の製造方法および樹脂組成物の製造方法

Country Status (3)

Country Link
US (1) US20240026092A1 (ja)
JP (1) JPWO2022210706A1 (ja)
WO (1) WO2022210706A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12004561B2 (en) * 2018-07-10 2024-06-11 Philip Morris Products, S.A. Shisha cartridge with gel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028546A1 (ja) * 2003-09-18 2005-03-31 Kaneka Corporation ゴム状重合体粒子の製造方法およびこれを含有する樹脂組成物の製造方法
WO2013118697A1 (ja) * 2012-02-07 2013-08-15 株式会社カネカ 硬化性樹脂用靭性改質剤および硬化性樹脂組成物
WO2020110521A1 (ja) * 2018-11-30 2020-06-04 Toyo Tire株式会社 変性ジエン系ポリマー及びその製造方法
WO2020138263A1 (ja) * 2018-12-27 2020-07-02 株式会社カネカ 樹脂組成物およびその利用
WO2020196920A1 (ja) * 2019-03-28 2020-10-01 株式会社カネカ 樹脂組成物の製造方法および樹脂組成物
WO2020196921A1 (ja) * 2019-03-28 2020-10-01 株式会社カネカ 樹脂組成物の製造方法および樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028546A1 (ja) * 2003-09-18 2005-03-31 Kaneka Corporation ゴム状重合体粒子の製造方法およびこれを含有する樹脂組成物の製造方法
WO2013118697A1 (ja) * 2012-02-07 2013-08-15 株式会社カネカ 硬化性樹脂用靭性改質剤および硬化性樹脂組成物
WO2020110521A1 (ja) * 2018-11-30 2020-06-04 Toyo Tire株式会社 変性ジエン系ポリマー及びその製造方法
WO2020138263A1 (ja) * 2018-12-27 2020-07-02 株式会社カネカ 樹脂組成物およびその利用
WO2020196920A1 (ja) * 2019-03-28 2020-10-01 株式会社カネカ 樹脂組成物の製造方法および樹脂組成物
WO2020196921A1 (ja) * 2019-03-28 2020-10-01 株式会社カネカ 樹脂組成物の製造方法および樹脂組成物

Also Published As

Publication number Publication date
US20240026092A1 (en) 2024-01-25
JPWO2022210706A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
CN101802105B (zh) 液态树脂组合物、及使用该液态树脂组合物的固化物
EP2275489B1 (en) Rubbery polymer-containing resin composition, cured product thereof, and production method thereof
KR102086537B1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
KR102044364B1 (ko) 열가소성 수지 및 열가소성 수지 조성물
JP7391043B2 (ja) 樹脂組成物およびその利用
JP2010150301A (ja) 樹脂ブレンド用芳香族ビニル系グラフト共重合体及びそれを用いた熱可塑性樹脂組成物
WO2019021879A1 (ja) エポキシ樹脂組成物
WO2013118697A1 (ja) 硬化性樹脂用靭性改質剤および硬化性樹脂組成物
US20240026092A1 (en) Method for producing purified polymer fine particles and method for producing resin composition
JP2019172895A (ja) 塗料用エポキシ樹脂組成物
JPS63146960A (ja) 熱可塑性樹脂組成物
CN1205240C (zh) 热塑性树脂及其制备方法
JP7451498B2 (ja) 樹脂組成物の製造方法および樹脂組成物
WO2020196920A1 (ja) 樹脂組成物の製造方法および樹脂組成物
JP2022135756A (ja) 樹脂組成物の製造方法
WO2022071406A1 (ja) ラテックスおよび樹脂組成物、並びにそれらの製造方法
JP2022135758A (ja) 分離方法および樹脂組成物の製造方法
JP2022135757A (ja) 分離方法および樹脂組成物の製造方法
US20230331982A1 (en) Resin composition
CN116783226A (zh) 树脂组合物
WO2022186248A1 (ja) 樹脂組成物、重合体微粒子の製造方法および樹脂組成物の製造方法
WO2023032605A1 (ja) 組成物、および組成物の製造方法
JP7377793B2 (ja) 熱硬化性マトリクス樹脂に対する分散性が改善された粉粒体
WO2021060486A1 (ja) 接着剤、および接着剤の製造方法
JP7249845B2 (ja) 粉粒体の製造方法および粉粒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511376

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780917

Country of ref document: EP

Kind code of ref document: A1