WO2022209940A1 - Pellet - Google Patents

Pellet Download PDF

Info

Publication number
WO2022209940A1
WO2022209940A1 PCT/JP2022/012191 JP2022012191W WO2022209940A1 WO 2022209940 A1 WO2022209940 A1 WO 2022209940A1 JP 2022012191 W JP2022012191 W JP 2022012191W WO 2022209940 A1 WO2022209940 A1 WO 2022209940A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellets
pellet
injection molding
injection
less
Prior art date
Application number
PCT/JP2022/012191
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 愛敬
大雅 坂井
啓介 山西
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022209940A1 publication Critical patent/WO2022209940A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Definitions

  • the present invention relates to pellets containing thermoplastic resins.
  • This application claims priority based on Japanese Patent Application No. 2021-063511 filed in Japan on April 2, 2021, the content of which is incorporated herein.
  • Thermoplastic resins are resins that soften when they reach the glass transition temperature or melting point, and are broadly divided into general-purpose plastics and engineering plastics.
  • engineering plastics are widely used as molding materials for various parts such as machine parts, home appliance parts, communication equipment parts, OA parts, automobile parts, leisure goods, etc., due to their excellent mechanical properties and heat resistance.
  • amorphous thermoplastic resins are used in various applications, taking advantage of their features such as transparency and impact resistance.
  • a resin composition containing a thermoplastic resin is used as a molding material.
  • the resin composition is, for example, melt-kneaded using an extruder and extruded through a strand die to form strands, which are then cut into a predetermined shape with a pelletizer to be processed into pellets.
  • Patent Document 1 proposes a method of using polysulfone as a thermoplastic resin, melt extruding the polysulfone with a vented twin-screw extruder, and cutting the formed strands to produce pellets.
  • pellets of a resin composition containing a thermoplastic resin are put into an injection molding machine and a molding operation is performed to produce an injection molded product.
  • FIG. 5 is a schematic diagram showing an example of an injection molding machine capable of melt-molding pellets of a resin composition.
  • the injection molding machine 200 includes a mold clamping unit and an injection unit.
  • the injection unit has a hopper 22 , a cylinder 24 and a screw 26 .
  • a screw 26 is arranged within the cylinder 24 .
  • a hopper 22 is loaded with pellets 1 .
  • a mold 28 is arranged between the mold clamping unit and the injection unit.
  • the pellets 1 are put into the cylinder 24 from the hopper 22 attached to the injection molding machine 200 .
  • the screw 26 rotates, the pellets 1 introduced into the cylinder 24 are extruded in the forward direction A within the cylinder 24 (upper diagram in FIG. 5).
  • the inside of the cylinder 24 is set to a temperature higher than the melting temperature of the thermoplastic resin contained in the pellet 1 .
  • the pellet 1 is gradually melted while being extruded within the cylinder 24 .
  • the screw 26 is gradually lowered rearward (in the direction opposite to the tip end direction A of the cylinder), and the molten resin composition is accumulated at the tip end T of the cylinder 24 and injected into the mold 28.
  • a predetermined amount of pellets 1 is plasticized (weighed) (lower diagram in FIG. 5). After that, the weighed pellets 1 are injected into the mold 28, cooled and solidified to obtain an injection molded product.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide pellets capable of suppressing noise generated during weighing in a molding machine.
  • the present invention includes the following aspects.
  • a pellet containing an amorphous thermoplastic resin the pellet having an average volume of 10 mm 3 or more and 55 mm 3 or less.
  • FIG. 1 is a schematic diagram showing an example of an injection molding machine capable of melt-molding pellets of a resin composition.
  • pellets of the present embodiment are pellets containing an amorphous thermoplastic resin, and have an average volume of 10 mm 3 or more and 55 mm 3 or less.
  • a columnar body can be exemplified as the shape of the pellet of the present embodiment.
  • the shape of both end faces (first end face and second end face) of this columnar body is not particularly limited, but a polygonal columnar body with a polygonal end face shape, a cylindrical body with a circular end face shape and the like, and a columnar body is preferred.
  • the columnar body referred to here also includes one having an elliptical or substantially circular end surface. It should be noted that the end faces of the columnar bodies do not necessarily have to be parallel to each other.
  • the pellets of the present embodiment are obtained by, for example, extruding a resin composition containing an amorphous thermoplastic resin, cutting the strands while drawing them, and pelletizing the strands, as will be described later. Since the strands are pelletized while an external force is applied in this way, the shape of the cut surface of the pellets in this embodiment can be elliptical or substantially circular.
  • the elliptical shape includes a curve shape defined as a locus of points where the sum of the distances from two fixed points is constant, as well as a substantially elliptical shape close to the curve defined above. do.
  • the average length of pellets, the average major diameter of pellets, the average minor diameter of pellets, and the average volume of pellets are obtained as follows.
  • FIG. 1 is a schematic diagram showing an example of a pellet.
  • a pellet 1P shown in FIG. 1 is a cylindrical body with an elliptical end surface.
  • the end face of the columnar body in the pellet 1P corresponds to the cut surface of the pellet in the above pelletization.
  • the axial direction connecting the two end faces of the cylindrical bodies in the pellet 1P at the shortest distance corresponds to the discharge direction of the resin composition in the preparation of the strand.
  • the length (L) of the pellet 1P is the shortest length along the axial direction in the projected image of the pellet projected from the direction perpendicular to the axial direction.
  • the diameter of the pellet 1P is the length of each side of the rectangle circumscribing this end face.
  • the circumscribing rectangle is set so that the area of the rectangle is minimized.
  • the length of the long side of the rectangle circumscribing the end face corresponds to the major axis (a) of the ellipse, and the length of the short side of the rectangle corresponds to the minor axis (b) of the ellipse.
  • the volume of the pellet 1P is the end face of the pellet in the above pelletization, the bottom of which is an ellipse having a major axis (a) and a minor axis (b), and the length (L) of the pellet. and
  • Each length measurement is performed on at least 20 randomly selected pellets, and the length (L), major axis (a), minor axis (b) and number-based arithmetic of the pellet volume.
  • the average values are defined as the average length of pellets, the average major diameter of pellets, the average minor diameter of pellets, and the average volume of pellets, respectively.
  • the average volume of the pellets 1P is 10 mm 3 or more and 55 mm 3 or less, preferably 15 mm 3 or more and 55 mm 3 or less, more preferably 18 mm 3 or more and 50 mm 3 or less, and even more preferably 18 mm 3 or more and 40 mm 3 or less. If the average volume of the pellets 1P is within the above range, the pellets put into the cylinder of the molding machine are easily extruded by the rotation of the screw, and the noise level generated during weighing in the molding machine is reduced. In particular, when the average volume of the pellets 1P is equal to or higher than the lower limit of the above range, the effect of suppressing noise generated during weighing in the molding machine is remarkably improved.
  • the average length of the pellet 1P is preferably 2.5 mm or more and 7.5 mm or less, more preferably 3.0 mm or more and 7.0 mm or less, further preferably 3.0 mm or more and 6.0 mm or less, and 3.0 mm or more and 5.0 mm Most preferred are: When the average length of the pellets 1P is within the preferred range, the pellets put into the cylinder of the molding machine are easily extruded by the rotation of the screw, and the noise level generated during weighing in the molding machine is further reduced. planned.
  • the average length of the pellet 1P is preferably 2.0 mm or more and 4.0 mm or less, more preferably 2.5 mm or more and 3.8 mm or less, and even more preferably 2.7 mm or more and 3.7 mm or less.
  • the average short diameter of the pellet 1P is preferably 2.0 mm or more and 3.8 mm or less, more preferably 2.1 mm or more and 3.7 mm or less, and still more preferably 2.5 mm or more and 3.5 mm or less.
  • the value of the ratio represented by the average length/average length is preferably 0.7 or more and 2.5 or less, more preferably 0.8 or more and 2.4 or less, and 0.9 or more and 2.0 The following are more preferable, and 0.9 or more and 1.5 or less are most preferable.
  • the average length/average length of the pellets 1P is within the preferred range, the pellets put into the cylinder of the molding machine are easily extruded by the rotation of the screw, and the noise level generated during weighing in the molding machine is reduced. Further reduction is achieved.
  • the value of the ratio represented by the average major axis/average minor axis is preferably 1 to 1.3, more preferably 1 to 1.2, and even more preferably 1 to 1.1.
  • the pellet 1P has an average volume of 10 mm 3 or more and 55 mm 3 or less, and as long as the average volume is within this range, the average length, average major diameter, average minor diameter, and average length / average major diameter of the pellets are shown above. Each preferred value can be freely combined.
  • the pellet 1P of one embodiment has an average volume of 10 mm 3 or more and 55 mm 3 or less, an average length of 2.5 mm or more and 7.5 mm or less, an average major axis of 2.0 mm or more and 4.0 mm or less, and an average
  • the minor axis may be 2.0 mm or more and 3.8 mm or less, and the ratio represented by the average length/average major axis may be 0.7 or more and 2.5 or less.
  • the pellet 1P of another embodiment has an average volume of 15 mm 3 or more and 55 mm 3 or less, an average length of 3.0 mm or more and 7.0 mm or less, and an average major axis of 2.5 mm or more and 3.8 mm or less,
  • the average minor axis may be 2.1 mm or more and 3.7 mm or less, and the ratio represented by the average length/average major axis may be 0.8 or more and 2.4 or less.
  • the pellet 1P of another embodiment has an average volume of 18 mm 3 or more and 50 mm 3 or less, an average length of 3.0 mm or more and 6.0 mm or less, and an average major axis of 2.7 mm or more and 3.7 mm or less,
  • the average minor axis may be 2.5 mm or more and 3.5 mm or less, and the ratio represented by the average length/average major axis may be 0.9 or more and 2.0 or less.
  • the pellet 1P of another embodiment has an average volume of 18 mm 3 or more and 40 mm 3 or less, an average length of 3.0 mm or more and 5.0 mm or less, and an average major axis of 2.7 mm or more and 3.7 mm or less,
  • the average minor axis may be 2.5 mm or more and 3.5 mm or less, and the ratio represented by the average length/average major axis may be 0.9 or more and 1.5 or less.
  • the pellets of this embodiment contain an amorphous thermoplastic resin.
  • the aggregation state of polymer chains can be broadly divided into a state in which the polymer chains are regularly arranged and a state in which the polymers are stringy or entangled.
  • the former is called the crystalline state and the latter is called the amorphous or amorphous state.
  • a resin in which a crystalline region exists is called a crystalline resin, and a resin in which a crystalline region does not exist is called an amorphous resin.
  • amorphous thermoplastic resins in the present embodiment include vinyl-based resins, styrene-based resins, methacrylic resins, acrylic resins, sulfone-based resins, and imide-based resins.
  • preferred amorphous thermoplastic resins include polyvinyl chloride, polystyrene, polymethyl methacrylate, polymethyl acrylate, acrylonitrile-butadiene-styrene (ABS), modified polyphenylene ether, polyethersulfone, polycarbonate, poly Phenylsulfone, polyetherimide, and polyamideimide are included.
  • the pellets of the present embodiment are particularly useful for pellets containing at least one thermoplastic resin selected from the group consisting of polyethersulfone, polycarbonate and polyphenylsulfone, Most useful for pellets containing polyethersulfone.
  • Polyethersulfone typically comprises a divalent aromatic group (a residue formed by removing two hydrogen atoms bonded to the aromatic ring from an aromatic compound), a sulfonyl group (—SO 2 —) and an oxygen It is a resin having a repeating unit containing an atom (--O--).
  • polyethersulfone preferably has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as "repeating unit (1)").
  • a repeating unit represented by the formula (2) hereinafter sometimes referred to as “repeating unit (2)"
  • a repeating unit represented by the following formula (3) hereinafter referred to as "repeating unit (3)
  • Ph 1 and Ph 2 each independently represent a phenylene group.
  • Each hydrogen atom in the phenylene group may be independently substituted with an alkyl group, an aryl group or a halogen atom.
  • Ph 3 and Ph 4 each independently represent a phenylene group.
  • Each hydrogen atom in the phenylene group may be independently substituted with an alkyl group, an aryl group or a halogen atom.
  • R represents an alkylidene group, an oxygen atom or a sulfur atom.
  • Ph 5 represents a phenylene group. Each hydrogen atom in the phenylene group may be independently substituted with an alkyl group, an aryl group or a halogen atom. n represents an integer of 1 to 3; When n is 2 or more, multiple Ph 5s may be the same or different.
  • the phenylene group represented by any one of Ph 1 to Ph 5 may be a p-phenylene group, an m-phenylene group, or an o-phenylene group.
  • - is preferably a phenylene group.
  • alkyl group which may substitute the hydrogen atom in the phenylene group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t- A butyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group, and n-decyl group can be mentioned, and the number of carbon atoms thereof is, for example, 1-10.
  • Examples of the aryl group optionally substituting the hydrogen atom in the phenylene group include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2-naphthyl group. and its carbon number is, for example, 6-20.
  • Examples of the halogen atom which may substitute the hydrogen atom in the phenylene group include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. When hydrogen atoms in the phenylene groups are substituted with these groups or halogen atoms, the number of such groups is, for example, 2 or less, preferably 1 or less, for each phenylene group.
  • alkylidene group for R examples include a methylene group, an ethylidene group, an isopropylidene group, and a 1-butylidene group, each having 1 to 5 carbon atoms, for example.
  • the polyether sulfone preferably has 50 mol% or more, more preferably 80 mol% or more, of the repeating unit (1) based on the total of all repeating units, and substantially contains the repeating unit (1 ) only.
  • the term "substantially” as used herein means that the repeating unit (1) contains 98 mol% or more and 100 mol% or less with respect to the total of all repeating units, and is caused by impurities contained in the raw material monomer. It means that it may contain a small amount of structure.
  • the polyethersulfone may have two or more types of repeating units (1) to (3) independently.
  • Polyethersulfone can be produced by polycondensing a dihalogenosulfone compound corresponding to the repeating unit constituting it and a dihydroxy compound.
  • the resin having the repeating unit (1) uses a compound represented by the following formula (4) as a dihalogenosulfone compound (hereinafter sometimes referred to as "compound (4)”), and a dihydroxy compound represented by the following formula ( It can be produced by using the compound represented by 5).
  • a resin having repeating units (1) and (2) is produced by using compound (4) as a dihalogenosulfone compound and a compound represented by the following formula (6) as a dihydroxy compound. be able to.
  • a resin having repeating units (1) and (3) is produced by using compound (4) as a dihalogenosulfone compound and a compound represented by the following formula (7) as a dihydroxy compound. be able to.
  • X 1 and X 2 each independently represent a halogen atom.
  • Ph 1 and Ph 2 are as defined above.
  • Ph 1 and Ph 2 are as defined above.
  • Ph 3 , Ph 4 and R are as defined above.
  • Ph 5 and n are as defined above.
  • the polycondensation of the dihalogenosulfone compound and the dihydroxy compound is preferably carried out in a solvent using an alkali metal salt of carbonic acid.
  • the alkali metal salt of carbonic acid may be a normal salt of alkali carbonate, an acid salt of alkali bicarbonate (alkali hydrogen carbonate), or a mixture of both.
  • Sodium carbonate and potassium carbonate are preferably used as the alkali carbonate.
  • Sodium bicarbonate and potassium bicarbonate are preferably used as alkali bicarbonate.
  • Solvents include dimethylsulfoxide, 1-methyl-2-pyrrolidone, sulfolane (1,1-dioxothylan), 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, dimethylsulfone , diethylsulfone, diisopropylsulfone, and diphenylsulfone are preferably used.
  • Polyethersulfone has a reduced viscosity of, for example, 0.3 dL/g or more, preferably 0.33 dL/g or more and 0.45 dL/g or less, more preferably 0.36 dL/g or more and 0.41 dL/g or less. .
  • the reduced viscosity of the polyethersulfone is 0.3 dL/g or more, heat resistance, strength and rigidity are likely to be improved.
  • the reduced viscosity is 0.45 dL/g or less, the molding temperature and melt viscosity do not become too high, and it is easy to mold a molded article having a predetermined shape.
  • the molar ratio of the dihalogenosulfone compound and the dihydroxy compound, the amount of the alkali metal salt of carbonate used, and the polycondensation ratio are adjusted so as to obtain a polyethersulfone having a desired reduced viscosity. It is preferable to adjust the temperature and polycondensation time.
  • the pellets of this embodiment are particularly useful for pellets in which the content of the amorphous thermoplastic resin is 85% by mass or more with respect to the total mass (100% by mass) of the pellets, and is 100% by mass. It is most useful for pellets, ie pellets made of amorphous thermoplastic resin.
  • the pellets of the present embodiment may contain other components as long as the effects of the present invention are exhibited.
  • Other components include inorganic fillers, organic fillers, additives, and resins other than amorphous thermoplastic resins.
  • the inorganic filler that may be used in this embodiment may be a fibrous filler, a plate-like filler, or a granular filler.
  • fibrous fillers examples include glass fibers; carbon fibers such as bread-based carbon fibers and pitch-based carbon fibers; ceramic fibers such as silica fibers, alumina fibers and silica-alumina fibers; and metal fibers such as stainless steel fibers.
  • glass fibers include chopped glass fibers and milled glass fibers.
  • fibrous fillers also include whiskers such as potassium titanate whiskers, barium titanate whiskers, wollastonite whiskers, aluminum borate whiskers, silicon nitride whiskers, and silicon carbide whiskers.
  • the chopped glass fiber referred to here is a fiber bundle (glass strand) obtained by directly aligning and bundling a plurality of glass single fibers pulled out from a spinning nozzle, and cutting the fiber bundle length to 1.5 to 25 mm. (glass chopped strands).
  • Milled glass fiber refers to a strand (milled fiber) that has been pulverized or cut into very short lengths (about less than 1 mm).
  • Plate-like inorganic fillers include talc, mica, graphite, wollastonite, glass flakes, barium sulfate, calcium carbonate, and the like.
  • the mica may be muscovite, phlogopite, fluorine phlogopite, or tetrasilicon mica.
  • Granular inorganic fillers include silica, alumina, titanium oxide, glass beads, glass balloons, boron nitride, silicon carbide, and calcium carbonate.
  • the pellet of the present embodiment is more useful than a pellet having an inorganic filler content of 0% by mass or more and 15% by mass or less with respect to the total mass of the pellet (100% by mass), and 0% by mass or more and 10% by mass. % or less, and particularly useful for pellets of 0 mass % or more and 5 mass % or less.
  • organic fillers examples include polyester fibers, aramid fibers, and cellulose fibers.
  • additives examples include additives that are usually used in resin compositions that are molding materials. Such additives include stabilizers, ultraviolet absorbers, colorants, lubricants, release agents, plasticizers, flame retardants, flame retardant aids, antistatic agents, surfactants, and the like.
  • Stabilizers include hindered phenols, hydroquinones, phosphites and substituted products thereof.
  • UV absorbers include resorcinol, salicylate, benzotriazole, benzophenone, and the like.
  • Colorants include materials including dyes such as nitrosine, or pigments such as cadmium sulfide, phthalocyanine, carbon black, and the like.
  • lubricants include fatty acids such as stearic acid and montanic acid, their amides, their esters, their half esters with polyhydric alcohols, stearyl alcohol, stearamide, and polyethylene wax.
  • the content of the lubricant is preferably 0.001 parts by mass or more and 1.0 parts by mass or less, more preferably 0.002 parts by mass, with respect to 100 parts by mass of the amorphous thermoplastic resin. It is from 0.8 part by mass to 0.8 part by mass, more preferably from 0.002 part by mass to 0.1 part by mass, and particularly preferably from 0.005 part by mass to 0.05 part by mass. Further, in the pellets of the present embodiment, the lubricant content is preferably 0.001% by mass or more and 0.5% by mass or less, more preferably 0.5% by mass or less, relative to the total mass (100% by mass) of the pellets. 002% by mass or more and 0.1% by mass or less.
  • the content of the lubricant When the content of the lubricant is equal to or less than the upper limit of the preferred range, the effect of suppressing noise due to the specific shape of the pellets tends to be exhibited more effectively. On the other hand, when the content of the lubricant is equal to or higher than the lower limit of the preferable range, the effect of suppressing noise can be easily obtained by reducing friction between pellets.
  • Examples of the release agent include fatty acids such as montanic acid, salts thereof, esters thereof, half esters thereof with polyhydric alcohols, stearyl alcohol, stearamide, polyethylene wax, and the like, preferably fatty acid esters of pentaerythritol. .
  • the pellets of the present embodiment are produced by, for example, melt-kneading and extruding a resin composition containing an amorphous thermoplastic resin and optionally other components to form strands and cutting the strands. be done.
  • a resin composition containing an amorphous thermoplastic resin and optionally other components to form strands and cutting the strands.
  • by appropriately adjusting at least one of the strand diameter and the cut width of the strand it is possible to produce pellets having a desired average volume, average length, average major axis, and average minor axis.
  • amorphous thermoplastic resin and other components examples include those exemplified in the above ⁇ amorphous thermoplastic resin> and ⁇ other components>.
  • the pellets of this embodiment can be produced, for example, by using a production method including the following steps (i) to (iii).
  • FIG. 2 is a schematic diagram showing an example of a manufacturing apparatus capable of manufacturing pellets of the present embodiment.
  • the terms “upstream side” and “downstream side” may be used depending on the direction in which the strands are transported.
  • the manufacturing apparatus 100 shown in FIG. 2 includes an extruder 11 having a nozzle, a belt cooler 12 provided below the extruder 11, and downstream of the extruder 11 and above the belt cooler 12.
  • a spray nozzle device 13 an air nozzle device 16 provided downstream of the spray nozzle device 13 and above the belt cooler 12, and downstream of the air nozzle device 16 and provided at the end of the belt cooler 12 in the conveying direction.
  • a pelletizer 15 provided downstream of the take-up roll 14 and having a fixed blade and a rotary blade.
  • the strand 10 is conveyed on the belt cooler 12 from the upstream side to the downstream side.
  • the extruder 11 preferably has a cylinder, one or more screws arranged in the cylinder, and one or more feed ports provided in the cylinder, and one or more feed ports provided in the cylinder. It is more preferable to have a vent portion. Moreover, it is preferable that the cylinder is provided with a main feed port and a side feed port downstream of the main feed port in the extrusion direction.
  • the cylinder When the cylinder has a vent part, it may be an open vent system that is open to the atmosphere, or a vacuum vent that is connected to a water ring pump, rotary pump, oil diffusion pump, turbo pump, etc. to maintain a vacuum. It may be a method.
  • the melt-kneading temperature of the extruder 11 is determined according to the glass transition temperature or melting point of the amorphous thermoplastic resin. Usually, the temperature is 20 to 40° C. higher than the glass transition temperature or melting point of the amorphous thermoplastic resin.
  • the melt-kneading temperature of the extruder 11 can be adjusted by the cylinder temperature of the extruder 11 .
  • the number of discharge ports that the nozzle of the extruder 11 has is not particularly limited, and may be one or plural.
  • the diameter and the number of discharges of the strand 10 can be adjusted by the diameter of the discharge port of the nozzle of the extruder 11 and the number of discharge ports.
  • the average major diameter of the pellets is preferably 2.0 mm or more and 4.0 mm or less, and the average minor diameter is 2 so that the average volume of the pellets is 10 mm 3 or more and 55 mm 3 or less.
  • the diameter of the discharge port of the nozzle of the extruder 11 is set to be 0 mm or more and 3.8 mm or less.
  • the diameter of the discharge port of the nozzle of the extruder 11 is set to, for example, 1.5 mm or more and 10 mm or less, preferably 2 mm or more and 8 mm or less.
  • Step (ii) can be performed, for example, by the following operations (ii-1) and (ii-2).
  • Operation (ii-1) An operation in which the strand 10 is conveyed by the belt cooler 12 and cooled by spraying water with the spray nozzle device 13 in the strand conveying direction to solidify the strand 10 .
  • a conventionally known conveyor can be used as the belt cooler 12, and examples thereof include a mesh conveyor, a net conveyor, a belt conveyor, and a vibrating conveyor.
  • mesh conveyors and net conveyors are preferred because they have good drainage on the conveying surface and can reduce the amount of moisture adhering to the surface of the strand 10 .
  • Operation (ii-1) In operation (ii-1), water is sprayed by the spray nozzle device 13 toward the strand 10 on the belt cooler 12 extruded from the nozzle of the extruder 11, water is attached to the surface of the strand 10, and the strand 10 and the water The strand 10 is cooled and solidified by heat exchange with and heat of vaporization of water.
  • the spray nozzle device 13 is composed of a pipe having a large number of holes in a row at appropriate intervals, and the large number of holes are provided across the entire width of the strand 10 extruded from the nozzle of the extruder 11.
  • one to ten spray nozzle devices 13 are appropriately arranged at regular intervals.
  • a more preferable number of machines is 2 to 4.
  • a plurality of spray nozzle devices 13 may be provided for each of the plurality of strands 10, or may be configured such that some strands 10 form a group and are provided for each group. In either case, by making the spray nozzle device 13 independently adjustable, the optimal water spray cooling corresponding to each strand 10 can be implemented.
  • the manufacturing apparatus 100 shown in FIG. 2 is provided with three spray nozzle devices 13 .
  • each strand 10 When a plurality of strands 10 are conveyed, it is preferable to spray water so that the surface temperature of each strand 10 is uniform by adjusting the amount of water sprayed onto each strand 10 . This is because if there is too much difference in surface temperature between the strands 10, uniform pellets cannot be obtained, and strand breakage, or defects or whiskers on the cut surfaces of the pellets tend to occur.
  • the temperature of the water sprayed from the spray nozzle device 13 is preferably room temperature (range of 15 to 23° C.). However, when adjusting the temperature of the water to be sprayed, it is also possible to use a combination of different temperatures in the range of 1 to 50° C. relative to room temperature.
  • the spray nozzle device 13 has a mechanism for adjusting the amount of water to be sprayed or the water temperature (water cooling adjustment mechanism).
  • a mechanism for adjusting the amount of water sprayed in the spray nozzle device 13 known mechanisms such as valves and valves for adjusting the flow rate and pressure of water flowing through a pipe communicating with the spray nozzle of the spray nozzle device 13 can be used.
  • Operation (ii-2) In operation (ii-2), air is blown from the air nozzle device 16 toward the strands 10 on the belt cooler 12 to remove water adhering to the surface of the strands 10 and further cool the strands 10 .
  • the air nozzle device 16 is a device fixed with bolts or the like at a position where air can be blown onto the strands 10 on the belt cooler 12 .
  • the air nozzle device 16 is a device for removing water adhering to the strand 10 from the surface of the strand 10 and cooling the strand 10, and a known air blow device or dryer device can be used.
  • the number of air nozzle devices 16 be appropriately adjusted within a range of 1 to 10 at regular intervals.
  • a more preferable number of machines is 2 to 4.
  • a plurality of air nozzle devices 16 When a plurality of air nozzle devices 16 are arranged, they may be provided corresponding to each of the plurality of strands 10, or a group may be formed by a part of the strands 10 and provided for each group. In either case, by independently adjusting the amount of air blown from the outlet of the air nozzle device 16, the amount of air blown from each device corresponding to each strand 10 can be adjusted. In the manufacturing apparatus 100 shown in FIG. 2, three air nozzle devices 16 are provided.
  • the air to be blown may be air, or air in the presence of an inert gas such as nitrogen or argon. Air is preferable from the viewpoint of productivity.
  • the air nozzle device 16 can also use a known air nozzle device capable of adjusting the temperature, which incorporates an air volume adjustment mechanism, a heater or a cooling device so that the amount of air to be blown or the temperature of the air can be changed.
  • the wind speed and air volume of the air blown by the air nozzle device 16 are not particularly limited as long as the temperature of the strand 10 can be adjusted within a predetermined range and water adhering to the surface of the strand 10 can be removed. It is preferable that the air velocity and air volume be such that they do not meander on 12 .
  • the pelletizer 15 cuts the strand 10 with a fixed blade and a rotary blade, that is, the strand 10 is sandwiched between the fixed blade and the rotary blade to cut it to a predetermined length and form pellets.
  • the fixed blade and rotary blade For the fixed blade and rotary blade, the fixed blade and rotary blade provided in conventionally known pelletizers can be appropriately adopted.
  • the number of blades included in the rotary blade is not particularly limited as long as it has a plurality of blades. That is, the number of blades can be the same as the number of rotary blades of a conventionally known strand cutter.
  • the material of the blades of the fixed blade and the rotary blade is not particularly limited, and examples thereof include WC--Co alloys, TiN--Ni alloys, and TiC--Ni alloys.
  • the average volume of the pellets is 10 mm 3 or more and 55 mm 3
  • the take-up speed of the take-up roll 14 and the rotation speed of the rotary blade can be controlled so that the average length of the pellets is preferably 2.5 mm or more and 7.5 mm or less.
  • the take-up speed of the take-up roll 14 and the rotation speed of the rotary blade are preferably set to 10 rpm or more and 80 rpm or less, and more preferably set to 20 rpm or more and 60 rpm or less.
  • the above [method for producing pellets] may include a step of mixing the pellets obtained in step (iii) with a tumbler mixer to remove fine powder generated from the pellets.
  • a method for removing fine powder is not particularly limited, and a known method can be adopted.
  • the pellet of the present embodiment is preferably used as a raw material (molding material) for a molded article, and more preferably used as a molding material for producing an injection molded article.
  • the injection-molded article can be produced by a production method including a step of using the pellets of the present embodiment as a molding material, melting the pellets in an injection molding machine, and injecting the pellets into a mold to obtain an injection-molded article.
  • a known injection molding machine can be used for the method of manufacturing the injection molded article.
  • injection molding machines having the following screw diameters, injection volumes, or maximum clamping forces are exemplified as “large” injection molding machines. Also, an injection molding machine with a screw diameter, injection volume or maximum clamping force smaller than the screw diameter, injection volume or maximum clamping force of this "large” injection molding machine is defined as a “small” injection molding machine. Illustrate.
  • “Large” injection molding machines include those with a maximum clamping force of 980kN or more.
  • the maximum clamping force in a "large” injection molding machine may be between 1300 kN and 25000 kN, or between 1500 kN and 10000 kN.
  • “Large” injection molding machines include those with a screw diameter of 30 mm or more.
  • the screw diameter in a "large” injection molding machine may be 30 mm or more and 180 mm or less, or 40 mm or more and 150 mm or less.
  • “Large” injection molding machines include those with an injection volume (maximum volume of an injection product that can be injected in one injection) of 100 cm 3 or more.
  • the injection volume in a “large” injection molding machine may be 120 cm 3 or more and 20000 cm 3 or less, 150 cm 3 or more and 5000 cm 3 or less, 160 cm 3 or more and 3500 cm 3 or less, or 170 cm 3 or more and 1000 cm 3 or less. .
  • Examples of "large” injection molding machines include SE180EV manufactured by Sumitomo Heavy Industries, Ltd., J450AD manufactured by JSW, and FNX3602-100A/FVX860III manufactured by Nissei Plastic Industry.
  • Examples of "small” injection molding machines include PNX40-5A manufactured by Nissei Plastic Industry Co., Ltd., ROBOSHOT S-2000i 30B manufactured by FUNUC, and the like.
  • the injection molded body is manufactured using an injection molding machine equipped with a screw inside the cylinder, and the pellets of the present embodiment are put into the cylinder, melted while rotating the screw in the cylinder, and melted in the direction of the tip of the cylinder ( The tip of the cylinder on the side of the injection part where the mold is arranged) is extruded, and the molten kneaded material accumulated at the tip of the cylinder is injected into the mold, where it is cooled and solidified. can do.
  • the pellets of the present embodiment are put into the cylinder of the injection molding machine, it has occurred until now when weighing a predetermined amount of pellets to be injected into the mold. Noise can be suppressed.
  • the cylinder temperature of the injection molding machine is appropriately determined according to the type of amorphous thermoplastic resin, and may be higher than the glass transition temperature or melting point of the amorphous thermoplastic resin to be used. It is preferable to set the temperature to 10 to 80°C higher than that.
  • the screw rotation speed of the injection molding machine may be appropriately determined, and is preferably 50 to 200 rpm, for example.
  • the temperature of the mold is preferably set in the range of room temperature (for example, 23° C.) to 180° C. in terms of the cooling rate of the amorphous thermoplastic resin and productivity.
  • the weighing time required to weigh the pellets injected into the mold varies depending on the size or type of the injection molding machine. For example, it is 5 to 30 seconds, and for a large injection molding machine it is 5 to 45 seconds.
  • the weighing time for weighing the pellets injected into the mold can be measured by a measuring instrument attached to the injection molding machine.
  • the "metering time” here means, in injection molding using an injection molding machine, from the time the screw starts rotating (metering) in a state in which the previous injection is completed and the screw is advanced toward the tip of the cylinder. It refers to the time until the desired amount of pellets corresponding to the volume of the injection-molded body is collected at the tip of the cylinder.
  • the mass of one injection molded article manufactured by the method for manufacturing an injection molded article is, for example, 100 to 5000 g when using a "large" injection molding machine, and may be 500 to 4000 g. 1000 to 3500 g may be used.
  • the injection volume of the injection molded body (the volume of the injection molded in one injection) manufactured by the above injection molded body manufacturing method is, for example, 50 cm 3 or more when using a “large” injection molding machine. and may be 50 cm 3 or more and 20000 cm 3 or less, 80 cm 3 or more and 10000 cm 3 or less, or 100 cm 3 or more and 5000 cm 3 or less.
  • FIG. 3 is a schematic diagram showing an example of how the pellet 1 in the cylinder 24s is pushed out in the tip direction A of the cylinder 24s by the screw 26s in a small injection molding machine.
  • Pellets 1 are conventional. As shown in FIG. 3, in a small injection molding machine, it is considered that noise is generated by rubbing between the pellet 1 and the cylinder 24s or by rubbing between the pellets 1.
  • FIG. 3 in a small injection molding machine, it is considered that noise is generated by rubbing between the pellet 1 and the cylinder 24s or by rubbing between the pellets 1.
  • FIG. 4 is a schematic diagram showing an example of how the pellet 1 in the cylinder 24b is pushed out in the direction A toward the tip of the cylinder 24b by the screw 26b in a large injection molding machine.
  • Pellets 1 are conventional. As shown in FIG. 4, in a large injection molding machine, a larger amount of pellets 1 are fed to a screw 26b having a larger diameter and wider groove intervals than in a small injection molding machine. Pellets 1 are pushed out with greater force by screw 26b. Furthermore, in the case of a large injection molding machine, the groove of the screw 26b and the gap between the screw 26b and the cylinder 24b are designed to be wider than in the case of a small injection molding machine. A backflow B of the pellets 1 in the direction is likely to occur.
  • the pellet 1 and the cylinder 24b are likely to rub against each other, or the pellets 1 are likely to rub against each other.
  • the noise level (dB) generated by the injection molding machine is measured using a sound level meter such as an ordinary sound level meter LA-1210 (manufactured by Ono Sokki Co., Ltd.) at a location 5 cm away from the bottom of the hopper of the injection molding machine. This can be done by evaluating the sound pressure during weighing.
  • Pellets with a higher content of amorphous thermoplastic resin are more likely to generate noise during weighing in a molding machine, especially when pellets made of amorphous thermoplastic resin (neat pellets) are used as molding materials. becomes a problem.
  • the pellets of this embodiment described above are particularly useful when neat pellets are used as a molding material. Conventionally, when using a large-sized injection molding machine to manufacture a large-sized molded product, noise was generated at a higher level. It is possible to improve the improvement of
  • An injection molded article molded by an injection molding method using the pellets of the present embodiment described above as a molding material is generally applicable to all applications to which amorphous thermoplastic resins can be applied, especially in the automotive field. It is particularly suitable for use.
  • injection-molded articles for automobile interior materials injection-molded articles for ceiling materials, injection-molded articles for wheelhouse covers, injection-molded articles for trunk room linings, injection-molded articles for instrument panel skin materials, and steering wheels.
  • Injection molding for covers injection molding for armrests, injection molding for headrests, injection molding for seat belt covers, injection molding for shift lever boots, injection molding for console boxes, injection molding for horn pads, knobs Injection molded products, injection molded products for airbag covers, injection molded products for various trims, injection molded products for various pillars, injection molded products for door lock bezels, injection molded products for glove boxes, injection molded products for defroster nozzles, scuff plates
  • Examples include injection molded articles, injection molded articles for steering wheels, and injection molded articles for steering column covers.
  • injection molded products for automobile exterior materials injection molded products for bumpers, injection molded spoilers, injection molded products for mudguards, injection molded products for side moldings, and injection molded products for radiator grills.
  • body injection molded products for automobile exterior materials
  • injection molded products for bumpers injection molded spoilers
  • injection molded products for mudguards injection molded products for side moldings
  • body wheel cover injection molding, wheel cap injection molding, cowl belt/grill injection molding, air outlet/louver injection molding, air scoop injection molding, hood bulge injection molding, fender Injection molded articles, injection molded articles for back doors, and the like can be mentioned.
  • Injection moldings for cylinder head covers injection moldings for engine mounts, injection moldings for air intake manifolds, injection moldings for throttle bodies, injection moldings for air intake pipes, and radiator tanks for automotive engine compartment parts
  • Injection molding for radiator support Injection molding for water pump inlet, Injection molding for water pump outlet, Injection molding for thermostat housing, Injection molding for cooling fan, Injection molding for fan shroud body, oil pan injection molding, oil filter housing injection molding, oil filler cap injection molding, oil level gauge injection molding, timing belt injection molding, timing belt cover injection molding Examples include molded articles, injection molded articles for engine covers, and the like.
  • Automotive fuel parts include fuel caps, fuel filler tubes, automotive fuel tanks, fuel sender modules, fuel cut-off valves, quick connectors, canisters, fuel delivery pipes, fuel filler necks and the like.
  • Automobile drive system parts include shift levers, housings, propeller shafts, and the like.
  • Automotive chassis components include stabilizers, linkage rods, and the like.
  • injection molded products for automobile parts include hoses such as automobile headlamp injection molded products, glass run channel injection molded products, weather strip injection molded products, drain hose injection molded products, and window washer tube injection molded products.
  • the injection-molded article herein can be preferably used for a member requiring rigidity.
  • the injection molded products here include sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable condenser cases, optical pickups, oscillators, various terminal boards, and transformers. , plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, semiconductors, liquid crystal displays, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer parts, microwave oven parts, It can also be applied to applications such as audio/speech equipment parts, lighting parts, air conditioner parts, office computer parts, telephone/fax parts, and copying machine parts.
  • Resin composition (1) Polyethersulfone (PES) (100% by mass) (trade name: Sumika Excel 4100G, manufactured by Sumitomo Chemical Co., Ltd.).
  • Resin composition (2) containing 70% by mass of polyethersulfone (PES) and 30% by mass of glass fiber (trade name: Sumika Excel 4101GL30, manufactured by Sumitomo Chemical Co., Ltd.).
  • pellets of each example were manufactured as follows.
  • a nozzle was installed at the tip of a twin-screw extruder ("PCM-30” manufactured by Ikegai Iron Works Co., Ltd.) so that one strand was extruded.
  • a belt cooler (“SWA-200-3” manufactured by Isuzu Kakoki Co., Ltd.) whose contact surface with the strand is a stainless steel mesh for conveying the strand extruded from the nozzle to the twin-screw extruder.
  • a take-off roll and the like
  • a spray nozzle device and an air nozzle device were installed above the conveying surface of the belt cooler for cooling the strand conveyed by the belt cooler. Furthermore, a pelletizer (“HSC-200” manufactured by Isuzu Machine Co., Ltd.) was installed to pelletize the strand conveyed by the belt cooler.
  • Resin composition (1) is degassed at a cylinder temperature of 340° C. using a water ring vacuum pump ("SW-25" manufactured by Shinko Seiki Co., Ltd.) with a vacuum vent provided in the twin-screw extruder.
  • the mixture was melt-kneaded and extruded through a nozzle to obtain a strand of resin composition (1).
  • the strand extruded from the nozzle was solidified on a belt cooler while being taken up by a take-up roll, and then the solidified strand was cut by a pelletizer and pelletized. 1 to 3 pellets were obtained. The pellets obtained were cylindrical in all cases.
  • the shape of the cut surface of the pellet was elliptical or substantially circular.
  • the shape of each pellet was changed by appropriately setting the hole diameter of the nozzle and the rotation speed of the take-up roll, and adjusting the thickness of the strand, the diameter of the strand, the cutting position of the strand, and the cutting width of the strand.
  • Example 9 Pellets of Example 9 were obtained in the same manner as in (Examples 1 to 8 and Comparative Examples 1 to 3) except that the resin composition (2) was used instead of the resin composition (1).
  • the pellets obtained were cylindrical.
  • the shape of the cut surface of the pellet was elliptical.
  • Example 10 A resin composition (3) containing polycarbonate (PC) was used as a raw material. Pellets containing polycarbonate (PC) (trade name: SD Polyca 301-22, manufactured by Sumika Polycarbonate Co., Ltd.) were used as pellets of Example 10. This pellet was cylindrical. The shape of the cut surface of the pellet was elliptical.
  • Example 11 The pellets of Example 11 were obtained by mixing 100 parts by mass of the pellets of Example 6 and 0.02 parts by mass of an external additive (Bestzint 2070 Natural, manufactured by Daicel-Evonik). The pellets obtained were cylindrical. The shape of the cut surface of the pellet was elliptical.
  • the length of the long side of the rectangle circumscribing the cut surface of the pellet in pelletization was defined as the major axis (a) of the ellipse, and the length of the short side of the rectangle was defined as the minor axis (b) of the ellipse.
  • the volume of the pellet was defined as the volume of a cylinder whose cut surface was an elliptical bottom surface having a major axis (a) and a minor axis (b) and whose height was the length (L) of the pellet.
  • the number-based arithmetic average of the volumes measured from each pellet in this way was obtained to determine the average volume of the pellets.
  • the weighing time (s) when weighing the pellets injected into the mold was measured with a measuring instrument attached to the injection molding machine.
  • the “metering time” means the time from the time when the screw starts rotating (metering) after the previous injection is completed and the screw advances toward the tip of the cylinder. It refers to the time until the desired amount of pellets corresponding to the volume is collected at the tip of the cylinder.
  • the noise level (dB) generated during weighing in the injection molding machine (p) the maximum value (MAX) of the noise level within the weighing time and the average value of the noise level within the weighing time were measured.
  • the noise level (dB) generated during weighing in the injection molding machine was measured using an ordinary sound level meter LA-1210 (manufactured by Ono Sokki Co., Ltd.) at a location 5 cm away from the bottom of the hopper of the injection molding machine during weighing. It was carried out by evaluating the sound pressure (same below). Table 1 shows the measurement results of the measurement time (s) and the maximum and average values of the noise level (dB).
  • the weighing time (s) for weighing the pellets injected into the mold was measured using a measuring instrument attached to the injection molding machine. Further, regarding the noise level (dB) generated during weighing in the injection molding machine (q), the maximum value (MAX) of the noise level within the weighing time and the average value of the noise level within the weighing time were measured. Table 2 shows the measurement results of the measurement time (s) and the maximum and average values of the noise level (dB).
  • the weighing time (s) for weighing the pellets injected into the mold was measured using a measuring instrument attached to the injection molding machine. Further, regarding the noise level (dB) generated during weighing in the injection molding machine (r), the maximum value (MAX) of the noise level within the weighing time and the average value of the noise level within the weighing time were measured. Table 3 shows the measurement results of the measurement time (s) and the maximum and average values of the noise level (dB).

Abstract

Used is a pellet (1P) containing an amorphous thermoplastic resin. The average volume of the pellet (1P) is 10 mm3-55 mm3. The pellet (1P) is an elliptically-shaped columnar body in which the shape of the end faces has a long diameter (a) and a short diameter (b). The average length (L) of the pellet (1P) is 2.5-7.5 mm. The content of the amorphous thermoplastic resin, in relation to the total amount of the pellet (1P), is 85 mass% or more. The content of an inorganic filling material, in relation to the total amount of the pellet (1P), is 0-15 mass%.

Description

ペレットpellet
 本発明は、熱可塑性樹脂を含むペレットに関する。
 本願は、2021年4月2日に、日本に出願された特願2021-063511号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to pellets containing thermoplastic resins.
This application claims priority based on Japanese Patent Application No. 2021-063511 filed in Japan on April 2, 2021, the content of which is incorporated herein.
 熱可塑性樹脂は、ガラス転移温度又は融点に達すると軟化する樹脂であり、汎用プラスチックとエンジニアリングプラスチックとに大別される。
 なかでもエンジニアリングプラスチックは、機械的性質や耐熱性に優れることから、機械部品、家電部品、通信機器部品、OA部品、自動車部品、レジャー用品などの各種部品の成形材料として幅広く使用されている。そのなかでも非晶性の熱可塑性樹脂は、透明性や耐衝撃性などの特長を活かして、様々な用途に使用されている。
Thermoplastic resins are resins that soften when they reach the glass transition temperature or melting point, and are broadly divided into general-purpose plastics and engineering plastics.
Among them, engineering plastics are widely used as molding materials for various parts such as machine parts, home appliance parts, communication equipment parts, OA parts, automobile parts, leisure goods, etc., due to their excellent mechanical properties and heat resistance. Among them, amorphous thermoplastic resins are used in various applications, taking advantage of their features such as transparency and impact resistance.
 成形材料としては、熱可塑性樹脂を含有する樹脂組成物が用いられている。この樹脂組成物は、例えば、押出機を用いて溶融混練し、ストランドダイから押し出すことでストランドを形成した後、該ストランドをペレタイザーで所定形状に切断することにより、ペレットに成形加工される。
 特許文献1には、熱可塑性樹脂としてポリスルホンを用い、ベント式の二軸押出機によりポリスルホンを溶融押出し、形成されるストランドを切断してペレットを製造する方法が提案されている。
A resin composition containing a thermoplastic resin is used as a molding material. The resin composition is, for example, melt-kneaded using an extruder and extruded through a strand die to form strands, which are then cut into a predetermined shape with a pelletizer to be processed into pellets.
Patent Document 1 proposes a method of using polysulfone as a thermoplastic resin, melt extruding the polysulfone with a vented twin-screw extruder, and cutting the formed strands to produce pellets.
 そして、熱可塑性樹脂を含有する樹脂組成物のペレットを、射出成形機に投入して成形操作を行うことにより、射出成形体が製造される。 Then, pellets of a resin composition containing a thermoplastic resin are put into an injection molding machine and a molding operation is performed to produce an injection molded product.
 図5は、樹脂組成物のペレットを溶融成形可能な射出成形機の一例を示す模式図である。
 射出成形機200は、型締ユニット及び射出ユニットを備える。射出ユニットは、ホッパー22とシリンダー24とスクリュー26とを有する。スクリュー26は、シリンダー24内に配置されている。
 図5において、ホッパー22にはペレット1が投入されている。型締ユニットと射出ユニットとの間に、金型28が配置されている。
FIG. 5 is a schematic diagram showing an example of an injection molding machine capable of melt-molding pellets of a resin composition.
The injection molding machine 200 includes a mold clamping unit and an injection unit. The injection unit has a hopper 22 , a cylinder 24 and a screw 26 . A screw 26 is arranged within the cylinder 24 .
In FIG. 5, a hopper 22 is loaded with pellets 1 . A mold 28 is arranged between the mold clamping unit and the injection unit.
 まず、射出成形機200の付属のホッパー22から、シリンダー24内にペレット1が投入される。スクリュー26が回転することで、シリンダー24内に投入されたペレット1がシリンダー24内の先端方向Aへと押し出されていく(図5上段の図)。
 シリンダー24内は、ペレット1に含まれる熱可塑性樹脂の溶融温度よりも高い温度に設定されている。ペレット1は、シリンダー24内で押し出されながら次第に溶融されていく。また、それとともに、スクリュー26が後方(シリンダーの先端方向Aと反対方向)へ徐々に下がっていき、溶融状態となった樹脂組成物がシリンダー24の先端部Tに溜められ、金型28へ射出される所定量のペレット1が可塑化(計量)される(図5下段の図)。その後、計量されたペレット1が金型28へ射出注入され、冷却、固化させることによって射出成形体が得られる。
First, the pellets 1 are put into the cylinder 24 from the hopper 22 attached to the injection molding machine 200 . As the screw 26 rotates, the pellets 1 introduced into the cylinder 24 are extruded in the forward direction A within the cylinder 24 (upper diagram in FIG. 5).
The inside of the cylinder 24 is set to a temperature higher than the melting temperature of the thermoplastic resin contained in the pellet 1 . The pellet 1 is gradually melted while being extruded within the cylinder 24 . At the same time, the screw 26 is gradually lowered rearward (in the direction opposite to the tip end direction A of the cylinder), and the molten resin composition is accumulated at the tip end T of the cylinder 24 and injected into the mold 28. A predetermined amount of pellets 1 is plasticized (weighed) (lower diagram in FIG. 5). After that, the weighed pellets 1 are injected into the mold 28, cooled and solidified to obtain an injection molded product.
国際公開第2012/124762号WO2012/124762
 しかしながら、従来、射出成形機200のシリンダー24内にペレット1を投入し、金型28へ射出される所定量のペレット1を計量する際、金属音のような甲高い騒音が発生することがある。
 大きい形状の成形品を製造するため、大型の射出成形機を使用した場合には、前記騒音がさらに大きくなり、作業環境が著しく損なわれる。
However, conventionally, when the pellets 1 are put into the cylinder 24 of the injection molding machine 200 and a predetermined amount of the pellets 1 to be injected into the mold 28 is weighed, a high-pitched noise such as a metallic sound may be generated.
When a large-sized injection molding machine is used to manufacture a large-sized molded product, the noise becomes even louder, and the work environment is significantly impaired.
 本発明はこのような事情に鑑みてなされたものであって、成形機における計量時に発生する騒音を抑えられるペレットを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide pellets capable of suppressing noise generated during weighing in a molding machine.
 熱可塑性樹脂を含有する樹脂組成物のペレットを、射出成形機に投入して成形操作を行う際、特に、成形材料として熱可塑性樹脂からなるペレットを用いた場合の計量時に、金属音のような甲高い騒音の発生が顕著である。そして、本発明者らは、前記騒音の課題を解決すべく検討した結果、ペレットの体積を特定の範囲に制御することで、前記騒音を抑えられることを見出し、本発明を完成するに至った。
 上記の課題を解決するため、本発明は以下の態様を包含する。
When pellets of a resin composition containing a thermoplastic resin are put into an injection molding machine and subjected to a molding operation, especially when pellets made of a thermoplastic resin are used as a molding material, a metallic sound may be heard during weighing. A high-pitched noise is noticeable. As a result of studies to solve the problem of noise, the present inventors found that the noise can be suppressed by controlling the volume of the pellets within a specific range, and completed the present invention. .
In order to solve the above problems, the present invention includes the following aspects.
[1]非晶性の熱可塑性樹脂を含むペレットであって、前記ペレットの平均体積が10mm以上55mm以下である、ペレット。 [1] A pellet containing an amorphous thermoplastic resin, the pellet having an average volume of 10 mm 3 or more and 55 mm 3 or less.
[2]前記ペレットは円柱状体であり、その平均長さが2.5mm以上7.5mm以下である、[1]に記載のペレット。
[3]非晶性の熱可塑性樹脂の含有量が、ペレットの総質量に対して、85質量%以上である、[1]又は[2]に記載のペレット。
[4]無機充填材の含有量が、ペレットの総質量に対して、0質量%以上15質量%以下である、[3]に記載のペレット。
[5]非晶性の熱可塑性樹脂からなるペレットである、[3]又は[4]に記載のペレット。
[6]非晶性の熱可塑性樹脂が、ポリエーテルスルホン、ポリカーボネート及びポリフェニルスルホンからなる群より選択される少なくとも一種の熱可塑性樹脂である、[1]~[5]のいずれか一項に記載のペレット。
[2] The pellet according to [1], wherein the pellet is cylindrical and has an average length of 2.5 mm or more and 7.5 mm or less.
[3] The pellet according to [1] or [2], wherein the content of the amorphous thermoplastic resin is 85% by mass or more with respect to the total mass of the pellet.
[4] The pellet according to [3], wherein the content of the inorganic filler is 0% by mass or more and 15% by mass or less with respect to the total mass of the pellet.
[5] The pellet according to [3] or [4], which is made of an amorphous thermoplastic resin.
[6] Any one of [1] to [5], wherein the amorphous thermoplastic resin is at least one thermoplastic resin selected from the group consisting of polyethersulfone, polycarbonate and polyphenylsulfone. Pellets as described.
[7]前記ペレットにおける、平均長さ/平均長径、で表される比の値が0.7以上2.5以下である、[2]~[6]のいずれか一項に記載のペレット。 [7] The pellet according to any one of [2] to [6], wherein the pellet has a ratio of average length/average length of 0.7 to 2.5.
 本発明によれば、成形機における計量時に発生する騒音を抑えられるペレットを提供することができる。 According to the present invention, it is possible to provide pellets capable of suppressing noise generated during weighing in a molding machine.
ペレットの一例を示す模式図である。It is a schematic diagram which shows an example of a pellet. 本実施形態のペレットを製造可能な製造装置の一例を示す模式図である。It is a mimetic diagram showing an example of the manufacturing equipment which can manufacture the pellet of this embodiment. 小型の射出成形機において、シリンダー内のペレットがスクリューによってシリンダーの先端方向Aへ押し出される様子の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of how pellets in a cylinder are extruded toward the tip A of the cylinder by a screw in a small injection molding machine. 大型の射出成形機において、シリンダー内のペレットがスクリューによってシリンダーの先端方向Aへ押し出される様子の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of how pellets in a cylinder are extruded toward the tip A of the cylinder by a screw in a large-sized injection molding machine. 樹脂組成物のペレットを溶融成形可能な射出成形機の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of an injection molding machine capable of melt-molding pellets of a resin composition.
(ペレット)
 本実施形態のペレットは、非晶性の熱可塑性樹脂を含むペレットであって、前記ペレットの平均体積が10mm以上55mm以下である。
(pellet)
The pellets of the present embodiment are pellets containing an amorphous thermoplastic resin, and have an average volume of 10 mm 3 or more and 55 mm 3 or less.
 <ペレットの形状>
 本実施形態のペレットの形状としては、柱状体を例示できる。
 この柱状体としては、その両端面(第1端面および第2端面)の形状は特に限定されるものではないが、端面の形状が多角形状の多角柱状体、端面の形状が円形状の円柱状体などが挙げられ、円柱状体が好ましい。
 ここでいう円柱状体には、端面の形状が楕円形状又は略円形状であるものも含まれる。
 尚、柱状体における端面は、必ずしも互いに平行でなくてもよい。
 本実施形態のペレットは、後述のように、例えば、非晶性の熱可塑性樹脂を含有する樹脂組成物を、押出して作製されるストランドを引き取りながら切断してペレット化することにより得られる。このように、ストランドに外力が加えられつつペレット化がされることから、本実施形態のペレットの切断面の形状は、楕円形状又は略円形状であり得る。
 本明細書において、楕円形状とは、二つの定点からの距離の和が一定となる点の軌跡として定義される曲線の形状に加え、前記の定義される曲線に近い略楕円の形状までを包含する。
<Pellet shape>
A columnar body can be exemplified as the shape of the pellet of the present embodiment.
The shape of both end faces (first end face and second end face) of this columnar body is not particularly limited, but a polygonal columnar body with a polygonal end face shape, a cylindrical body with a circular end face shape and the like, and a columnar body is preferred.
The columnar body referred to here also includes one having an elliptical or substantially circular end surface.
It should be noted that the end faces of the columnar bodies do not necessarily have to be parallel to each other.
The pellets of the present embodiment are obtained by, for example, extruding a resin composition containing an amorphous thermoplastic resin, cutting the strands while drawing them, and pelletizing the strands, as will be described later. Since the strands are pelletized while an external force is applied in this way, the shape of the cut surface of the pellets in this embodiment can be elliptical or substantially circular.
In this specification, the elliptical shape includes a curve shape defined as a locus of points where the sum of the distances from two fixed points is constant, as well as a substantially elliptical shape close to the curve defined above. do.
 本実施形態のペレットにおいて、ペレットの平均長さ、ペレットの平均長径、ペレットの平均短径及びペレットの平均体積は、以下により求められる。 In the pellets of this embodiment, the average length of pellets, the average major diameter of pellets, the average minor diameter of pellets, and the average volume of pellets are obtained as follows.
 図1は、ペレットの一例を示す模式図である。
 図1に示すペレット1Pは、端面の形状が楕円形状の円柱状体である。ペレット1Pにおける円柱状体の端面は、上記ペレット化におけるペレットの切断面に対応する。
 ペレット1Pにおける円柱状体の両端面を最短で結ぶ軸方向は、上記ストランドの作製における樹脂組成物の吐出方向に対応している。ペレット1Pの長さ(L)は、軸方向と垂直の方向から投影されたペレットの投影像において、軸方向に沿う最短の長さとする。
 ペレット1Pの径は、この端面に外接する長方形の各辺の長さとする。外接する長方形は、当該長方形の面積が最小になるように設定される。この端面に外接する長方形の長辺の長さは、楕円形状の長径(a)に相当し、当該長方形の短辺の長さは、楕円形状の短径(b)に相当する。
FIG. 1 is a schematic diagram showing an example of a pellet.
A pellet 1P shown in FIG. 1 is a cylindrical body with an elliptical end surface. The end face of the columnar body in the pellet 1P corresponds to the cut surface of the pellet in the above pelletization.
The axial direction connecting the two end faces of the cylindrical bodies in the pellet 1P at the shortest distance corresponds to the discharge direction of the resin composition in the preparation of the strand. The length (L) of the pellet 1P is the shortest length along the axial direction in the projected image of the pellet projected from the direction perpendicular to the axial direction.
The diameter of the pellet 1P is the length of each side of the rectangle circumscribing this end face. The circumscribing rectangle is set so that the area of the rectangle is minimized. The length of the long side of the rectangle circumscribing the end face corresponds to the major axis (a) of the ellipse, and the length of the short side of the rectangle corresponds to the minor axis (b) of the ellipse.
 ペレット1Pの体積は、上記ペレット化におけるペレットの端面を、長径(a)及び短径(b)を持つ楕円形状である底面とし、ペレットの長さ(L)を高さとする円柱状体の体積とする。ペレット1Pの体積は下式より算出される。
  ペレット1Pの体積=π×(a/2)×(b/2)×L
The volume of the pellet 1P is the end face of the pellet in the above pelletization, the bottom of which is an ellipse having a major axis (a) and a minor axis (b), and the length (L) of the pellet. and The volume of the pellet 1P is calculated from the following formula.
Volume of pellet 1P = π x (a/2) x (b/2) x L
 各長さの計測を、無作為に選出した少なくとも20個のペレットに対して行い、それらペレットの長さ(L)、長径(a)、短径(b)及びペレットの体積の個数基準の算術平均値を、それぞれ、ペレットの平均長さ、ペレットの平均長径、ペレットの平均短径及びペレットの平均体積とする。 Each length measurement is performed on at least 20 randomly selected pellets, and the length (L), major axis (a), minor axis (b) and number-based arithmetic of the pellet volume. The average values are defined as the average length of pellets, the average major diameter of pellets, the average minor diameter of pellets, and the average volume of pellets, respectively.
 ペレット1Pの平均体積は、10mm以上55mm以下であり、15mm以上55mm以下が好ましく、18mm以上50mm以下がより好ましく、18mm以上40mm以下がさらに好ましい。
 ペレット1Pの平均体積が前記範囲内であれば、成形機のシリンダー内に投入されたペレットが、スクリューの回転によって押し出されやすくなり、成形機における計量時に発生する騒音レベルの低減が図られる。特に、ペレット1Pの平均体積が、前記範囲の下限値以上であれば、成形機における計量時に発生する騒音を抑える効果が著しく向上する。
The average volume of the pellets 1P is 10 mm 3 or more and 55 mm 3 or less, preferably 15 mm 3 or more and 55 mm 3 or less, more preferably 18 mm 3 or more and 50 mm 3 or less, and even more preferably 18 mm 3 or more and 40 mm 3 or less.
If the average volume of the pellets 1P is within the above range, the pellets put into the cylinder of the molding machine are easily extruded by the rotation of the screw, and the noise level generated during weighing in the molding machine is reduced. In particular, when the average volume of the pellets 1P is equal to or higher than the lower limit of the above range, the effect of suppressing noise generated during weighing in the molding machine is remarkably improved.
 ペレット1Pの平均長さは、2.5mm以上7.5mm以下が好ましく、3.0mm以上7.0mm以下がより好ましく、3.0mm以上6.0mm以下がさらに好ましく、3.0mm以上5.0mm以下が最も好ましい。
 ペレット1Pの平均長さが前記の好ましい範囲内であると、成形機のシリンダー内に投入されたペレットが、スクリューの回転によって押し出されやすくなり、成形機における計量時に発生する騒音レベルの低減がより図られる。
The average length of the pellet 1P is preferably 2.5 mm or more and 7.5 mm or less, more preferably 3.0 mm or more and 7.0 mm or less, further preferably 3.0 mm or more and 6.0 mm or less, and 3.0 mm or more and 5.0 mm Most preferred are:
When the average length of the pellets 1P is within the preferred range, the pellets put into the cylinder of the molding machine are easily extruded by the rotation of the screw, and the noise level generated during weighing in the molding machine is further reduced. planned.
 ペレット1Pの平均長径は、2.0mm以上4.0mm以下が好ましく、2.5mm以上3.8mm以下がより好ましく、2.7mm以上3.7mm以下がさらに好ましい。
 ペレット1Pの平均短径は、2.0mm以上3.8mm以下が好ましく、2.1mm以上3.7mm以下がより好ましく、2.5mm以上3.5mm以下がさらに好ましい。
 ペレット1Pの平均長径、平均短径がそれぞれ前記の好ましい範囲内であると、成形機のシリンダー内に投入されたペレットが、スクリューの回転によって押し出されやすくなり、成形機における計量時に発生する騒音レベルの低減がより図られる。
The average length of the pellet 1P is preferably 2.0 mm or more and 4.0 mm or less, more preferably 2.5 mm or more and 3.8 mm or less, and even more preferably 2.7 mm or more and 3.7 mm or less.
The average short diameter of the pellet 1P is preferably 2.0 mm or more and 3.8 mm or less, more preferably 2.1 mm or more and 3.7 mm or less, and still more preferably 2.5 mm or more and 3.5 mm or less.
When the average major diameter and average minor diameter of the pellets 1P are within the above preferable ranges, the pellets put into the cylinder of the molding machine are easily extruded by the rotation of the screw, and the noise level generated during weighing in the molding machine. is further reduced.
 ペレット1Pにおいて、平均長さ/平均長径、で表される比の値は、0.7以上2.5以下が好ましく、0.8以上2.4以下がより好ましく、0.9以上2.0以下がさらに好ましく、0.9以上1.5以下が最も好ましい。
 ペレット1Pの平均長さ/平均長径が前記の好ましい範囲内であると、成形機のシリンダー内に投入されたペレットが、スクリューの回転によって押し出されやすくなり、成形機における計量時に発生する騒音レベルの低減がより図られる。
In the pellet 1P, the value of the ratio represented by the average length/average length is preferably 0.7 or more and 2.5 or less, more preferably 0.8 or more and 2.4 or less, and 0.9 or more and 2.0 The following are more preferable, and 0.9 or more and 1.5 or less are most preferable.
When the average length/average length of the pellets 1P is within the preferred range, the pellets put into the cylinder of the molding machine are easily extruded by the rotation of the screw, and the noise level generated during weighing in the molding machine is reduced. Further reduction is achieved.
 ペレット1Pの切断面において、平均長径/平均短径、で表される比の値は、1~1.3が好ましく、1~1.2がより好ましく、1~1.1がさらに好ましい。 On the cut surface of the pellet 1P, the value of the ratio represented by the average major axis/average minor axis is preferably 1 to 1.3, more preferably 1 to 1.2, and even more preferably 1 to 1.1.
 ペレット1Pは、平均体積が10mm以上55mm以下であり、平均体積がこの範囲である限り、ペレットの平均長さ、平均長径、平均短径、平均長さ/平均長径についての上記で示した好ましい各値は自由に組み合わせることができる。 The pellet 1P has an average volume of 10 mm 3 or more and 55 mm 3 or less, and as long as the average volume is within this range, the average length, average major diameter, average minor diameter, and average length / average major diameter of the pellets are shown above. Each preferred value can be freely combined.
 一実施形態のペレット1Pは、平均体積が10mm以上55mm以下であり、平均長さが2.5mm以上7.5mm以下であり、平均長径が2.0mm以上4.0mm以下であり、平均短径が2.0mm以上3.8mm以下であり、平均長さ/平均長径で表される比の値が0.7以上2.5以下であってよい。
 他の実施形態のペレット1Pは、平均体積が15mm以上55mm以下であり、平均長さが3.0mm以上7.0mm以下であり、平均長径が2.5mm以上3.8mm以下であり、平均短径が2.1mm以上3.7mm以下であり、平均長さ/平均長径で表される比の値が0.8以上2.4以下であってよい。
 他の実施形態のペレット1Pは、平均体積が18mm以上50mm以下であり、平均長さが3.0mm以上6.0mm以下であり、平均長径が2.7mm以上3.7mm以下であり、平均短径が2.5mm以上3.5mm以下であり、平均長さ/平均長径で表される比の値が0.9以上2.0以下であってよい。
 他の実施形態のペレット1Pは、平均体積が18mm以上40mm以下であり、平均長さが3.0mm以上5.0mm以下であり、平均長径が2.7mm以上3.7mm以下であり、平均短径が2.5mm以上3.5mm以下であり、平均長さ/平均長径で表される比の値が0.9以上1.5以下であってよい。
The pellet 1P of one embodiment has an average volume of 10 mm 3 or more and 55 mm 3 or less, an average length of 2.5 mm or more and 7.5 mm or less, an average major axis of 2.0 mm or more and 4.0 mm or less, and an average The minor axis may be 2.0 mm or more and 3.8 mm or less, and the ratio represented by the average length/average major axis may be 0.7 or more and 2.5 or less.
The pellet 1P of another embodiment has an average volume of 15 mm 3 or more and 55 mm 3 or less, an average length of 3.0 mm or more and 7.0 mm or less, and an average major axis of 2.5 mm or more and 3.8 mm or less, The average minor axis may be 2.1 mm or more and 3.7 mm or less, and the ratio represented by the average length/average major axis may be 0.8 or more and 2.4 or less.
The pellet 1P of another embodiment has an average volume of 18 mm 3 or more and 50 mm 3 or less, an average length of 3.0 mm or more and 6.0 mm or less, and an average major axis of 2.7 mm or more and 3.7 mm or less, The average minor axis may be 2.5 mm or more and 3.5 mm or less, and the ratio represented by the average length/average major axis may be 0.9 or more and 2.0 or less.
The pellet 1P of another embodiment has an average volume of 18 mm 3 or more and 40 mm 3 or less, an average length of 3.0 mm or more and 5.0 mm or less, and an average major axis of 2.7 mm or more and 3.7 mm or less, The average minor axis may be 2.5 mm or more and 3.5 mm or less, and the ratio represented by the average length/average major axis may be 0.9 or more and 1.5 or less.
 <非晶性の熱可塑性樹脂>
 本実施形態のペレットは、非晶性の熱可塑性樹脂を含む。
<Amorphous thermoplastic resin>
The pellets of this embodiment contain an amorphous thermoplastic resin.
 高分子鎖の集合状態は、高分子鎖が規則正しく配列している状態と、高分子が糸まり状になったり絡まったりしている状態と、に大別することができる。前者は結晶状態、後者は無定形又は非晶状態と呼ばれる。結晶状態の領域が存在する樹脂を結晶性樹脂、結晶状態の領域が存在しない樹脂を非晶性樹脂という。 The aggregation state of polymer chains can be broadly divided into a state in which the polymer chains are regularly arranged and a state in which the polymers are stringy or entangled. The former is called the crystalline state and the latter is called the amorphous or amorphous state. A resin in which a crystalline region exists is called a crystalline resin, and a resin in which a crystalline region does not exist is called an amorphous resin.
 本実施形態における、非晶性の熱可塑性樹脂としては、例えば、ビニル系樹脂、スチレン系樹脂、メタクリル樹脂、アクリル樹脂、スルホン系樹脂、イミド系樹脂などが挙げられる。
 好ましい非晶性の熱可塑性樹脂として具体的には、ポリ塩化ビニル、ポリスチレン、ポリメタクリル酸メチル、ポリアクリル酸メチル、アクリロニトリル・ブタジエン・スチレン(ABS)、変性ポリフェニレンエーテル、ポリエーテルスルホン、ポリカーボネート、ポリフェニルスルホン、ポリエーテルイミド、ポリアミドイミドが挙げられる。
 本実施形態のペレットは、これらの非晶性の熱可塑性樹脂の中でも、ポリエーテルスルホン、ポリカーボネート及びポリフェニルスルホンからなる群より選択される少なくとも一種の熱可塑性樹脂を含むペレットに特に有用であり、ポリエーテルスルホンを含むペレットに最も有用である。
Examples of amorphous thermoplastic resins in the present embodiment include vinyl-based resins, styrene-based resins, methacrylic resins, acrylic resins, sulfone-based resins, and imide-based resins.
Specific examples of preferred amorphous thermoplastic resins include polyvinyl chloride, polystyrene, polymethyl methacrylate, polymethyl acrylate, acrylonitrile-butadiene-styrene (ABS), modified polyphenylene ether, polyethersulfone, polycarbonate, poly Phenylsulfone, polyetherimide, and polyamideimide are included.
Among these amorphous thermoplastic resins, the pellets of the present embodiment are particularly useful for pellets containing at least one thermoplastic resin selected from the group consisting of polyethersulfone, polycarbonate and polyphenylsulfone, Most useful for pellets containing polyethersulfone.
 ポリエーテルスルホンについて:
 ポリエーテルスルホンは、典型的には、2価の芳香族基(芳香族化合物から、その芳香環に結合した水素原子2個を除いてなる残基)とスルホニル基(-SO-)と酸素原子(-O-)とを含む繰返し単位を有する樹脂である。
 ポリエーテルスルホンは、耐熱性や耐薬品性の点から、下記式(1)で表される繰返し単位(以下「繰返し単位(1)」ということがある。)を有することが好ましく、さらに、下記式(2)で表される繰返し単位(以下「繰返し単位(2)」ということがある。)や、下記式(3)で表される繰返し単位(以下「繰返し単位(3)」ということがある。)などの他の繰返し単位を1種以上有していてもよい。
About Polyethersulfone:
Polyethersulfone typically comprises a divalent aromatic group (a residue formed by removing two hydrogen atoms bonded to the aromatic ring from an aromatic compound), a sulfonyl group (—SO 2 —) and an oxygen It is a resin having a repeating unit containing an atom (--O--).
From the viewpoint of heat resistance and chemical resistance, polyethersulfone preferably has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as "repeating unit (1)"). A repeating unit represented by the formula (2) (hereinafter sometimes referred to as "repeating unit (2)") and a repeating unit represented by the following formula (3) (hereinafter referred to as "repeating unit (3)") may have one or more other repeating units such as
(1)-Ph-SO-Ph-O- (1) —Ph 1 —SO 2 —Ph 2 —O—
 PhおよびPhは、それぞれ独立に、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。 Ph 1 and Ph 2 each independently represent a phenylene group. Each hydrogen atom in the phenylene group may be independently substituted with an alkyl group, an aryl group or a halogen atom.
(2)-Ph-R-Ph-O- (2) -Ph 3 -R-Ph 4 -O-
 PhおよびPhは、それぞれ独立に、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。Rは、アルキリデン基、酸素原子または硫黄原子を表す。 Ph 3 and Ph 4 each independently represent a phenylene group. Each hydrogen atom in the phenylene group may be independently substituted with an alkyl group, an aryl group or a halogen atom. R represents an alkylidene group, an oxygen atom or a sulfur atom.
(3)-(Ph-O- ( 3 )-(Ph5) n -O-
 Phは、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。nは、1~3の整数を表す。nが2以上である場合、複数存在するPhは、互いに同一であっても異なっていてもよい。 Ph 5 represents a phenylene group. Each hydrogen atom in the phenylene group may be independently substituted with an alkyl group, an aryl group or a halogen atom. n represents an integer of 1 to 3; When n is 2 or more, multiple Ph 5s may be the same or different.
 Ph~Phのいずれかで表されるフェニレン基は、p-フェニレン基であってもよいし、m-フェニレン基であってもよいし、o-フェニレン基であってもよいが、p-フェニレン基であることが好ましい。 The phenylene group represented by any one of Ph 1 to Ph 5 may be a p-phenylene group, an m-phenylene group, or an o-phenylene group. - is preferably a phenylene group.
 前記フェニレン基にある水素原子を置換していてもよいアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基、n-デシル基が挙げられ、その炭素数は、例えば1~10である。
 前記フェニレン基にある水素原子を置換していてもよいアリール基の例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基、2-ナフチル基が挙げられ、その炭素数は、例えば6~20である。
 前記フェニレン基にある水素原子を置換していてもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 前記フェニレン基にある水素原子がこれらの基又はハロゲン原子で置換されている場合、その数は、前記フェニレン基毎に、それぞれ独立に、例えば2個以下であり、好ましくは1個以下である。
Examples of the alkyl group which may substitute the hydrogen atom in the phenylene group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t- A butyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group, and n-decyl group can be mentioned, and the number of carbon atoms thereof is, for example, 1-10.
Examples of the aryl group optionally substituting the hydrogen atom in the phenylene group include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2-naphthyl group. and its carbon number is, for example, 6-20.
Examples of the halogen atom which may substitute the hydrogen atom in the phenylene group include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
When hydrogen atoms in the phenylene groups are substituted with these groups or halogen atoms, the number of such groups is, for example, 2 or less, preferably 1 or less, for each phenylene group.
 Rであるアルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、1-ブチリデン基が挙げられ、その炭素数は、例えば1~5である。 Examples of the alkylidene group for R include a methylene group, an ethylidene group, an isopropylidene group, and a 1-butylidene group, each having 1 to 5 carbon atoms, for example.
 ポリエーテルスルホンは、繰返し単位(1)を、全繰返し単位の合計に対して、50モル%以上有することが好ましく、80モル%以上有することがより好ましく、繰返し単位として実質的に繰返し単位(1)のみを有することがさらに好ましい。ここでいう「実質的に」とは、繰返し単位(1)を、全繰返し単位の合計に対して98モル%以上100モル%以下含むことを意味し、原料モノマーに含まれる不純物等に起因する構造をわずかに含んでいてもよいことを意味する。
 なお、ポリエーテルスルホンは、繰返し単位(1)~(3)を、それぞれ独立に、2種以上有してもよい。
The polyether sulfone preferably has 50 mol% or more, more preferably 80 mol% or more, of the repeating unit (1) based on the total of all repeating units, and substantially contains the repeating unit (1 ) only. The term "substantially" as used herein means that the repeating unit (1) contains 98 mol% or more and 100 mol% or less with respect to the total of all repeating units, and is caused by impurities contained in the raw material monomer. It means that it may contain a small amount of structure.
The polyethersulfone may have two or more types of repeating units (1) to (3) independently.
 ポリエーテルスルホンは、それを構成する繰返し単位に対応するジハロゲノスルホン化合物とジヒドロキシ化合物とを重縮合させることにより製造することができる。 Polyethersulfone can be produced by polycondensing a dihalogenosulfone compound corresponding to the repeating unit constituting it and a dihydroxy compound.
 例えば、繰返し単位(1)を有する樹脂は、ジハロゲノスルホン化合物として下記式(4)で表される化合物(以下「化合物(4)」ということがある。)を用い、ジヒドロキシ化合物として下記式(5)で表される化合物を用いることにより製造することができる。 For example, the resin having the repeating unit (1) uses a compound represented by the following formula (4) as a dihalogenosulfone compound (hereinafter sometimes referred to as "compound (4)"), and a dihydroxy compound represented by the following formula ( It can be produced by using the compound represented by 5).
 また、繰返し単位(1)と繰返し単位(2)とを有する樹脂は、ジハロゲノスルホン化合物として化合物(4)を用い、ジヒドロキシ化合物として下記式(6)で表される化合物を用いることにより製造することができる。 A resin having repeating units (1) and (2) is produced by using compound (4) as a dihalogenosulfone compound and a compound represented by the following formula (6) as a dihydroxy compound. be able to.
 また、繰返し単位(1)と繰返し単位(3)とを有する樹脂は、ジハロゲノスルホン化合物として化合物(4)を用い、ジヒドロキシ化合物として下記式(7)で表される化合物を用いることにより製造することができる。 A resin having repeating units (1) and (3) is produced by using compound (4) as a dihalogenosulfone compound and a compound represented by the following formula (7) as a dihydroxy compound. be able to.
(4)X-Ph-SO-Ph-X (4) X 1 -Ph 1 -SO 2 -Ph 2 -X 2
 XおよびXは、それぞれ独立に、ハロゲン原子を表す。PhおよびPhは、前記と同義である。 X 1 and X 2 each independently represent a halogen atom. Ph 1 and Ph 2 are as defined above.
(5)HO-Ph-SO-Ph-OH (5) HO—Ph 1 —SO 2 —Ph 2 —OH
 PhおよびPhは、前記と同義である。 Ph 1 and Ph 2 are as defined above.
(6)HO-Ph-R-Ph-OH (6) HO-Ph3 - R-Ph4 - OH
 Ph、PhおよびRは、前記と同義である。 Ph 3 , Ph 4 and R are as defined above.
(7)HO-(Ph-OH (7) HO—(Ph 5 ) n —OH
 Phおよびnは、前記と同義である。 Ph 5 and n are as defined above.
 前記のジハロゲノスルホン化合物とジヒドロキシ化合物との重縮合は、炭酸のアルカリ金属塩を用いて、溶媒中で行うことが好ましい。炭酸のアルカリ金属塩は、正塩である炭酸アルカリであってもよいし、酸性塩である重炭酸アルカリ(炭酸水素アルカリ)であってもよいし、両者の混合物であってもよい。 The polycondensation of the dihalogenosulfone compound and the dihydroxy compound is preferably carried out in a solvent using an alkali metal salt of carbonic acid. The alkali metal salt of carbonic acid may be a normal salt of alkali carbonate, an acid salt of alkali bicarbonate (alkali hydrogen carbonate), or a mixture of both.
 炭酸アルカリとしては、炭酸ナトリウムや炭酸カリウムが好ましく用いられる。
 重炭酸アルカリとしては、重炭酸ナトリウムや重炭酸カリウムが好ましく用いられる。
Sodium carbonate and potassium carbonate are preferably used as the alkali carbonate.
Sodium bicarbonate and potassium bicarbonate are preferably used as alkali bicarbonate.
 溶媒としては、ジメチルスルホキシド、1-メチル-2-ピロリドン、スルホラン(1,1-ジオキソチラン)、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホンなどの有機極性溶媒が好ましく用いられる。 Solvents include dimethylsulfoxide, 1-methyl-2-pyrrolidone, sulfolane (1,1-dioxothylan), 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, dimethylsulfone , diethylsulfone, diisopropylsulfone, and diphenylsulfone are preferably used.
 ポリエーテルスルホンは、その還元粘度が、例えば0.3dL/g以上、好ましくは0.33dL/g以上0.45dL/g以下、より好ましくは0.36dL/g以上0.41dL/g以下である。
 ポリエーテルスルホンの還元粘度が0.3dL/g以上であると、耐熱性や強度・剛性が向上しやすい。一方、還元粘度が0.45dL/g以下であると、成形温度や溶融粘度が高くなりすぎず、所定の形状の成形体を成形しやすい。
Polyethersulfone has a reduced viscosity of, for example, 0.3 dL/g or more, preferably 0.33 dL/g or more and 0.45 dL/g or less, more preferably 0.36 dL/g or more and 0.41 dL/g or less. .
When the reduced viscosity of the polyethersulfone is 0.3 dL/g or more, heat resistance, strength and rigidity are likely to be improved. On the other hand, when the reduced viscosity is 0.45 dL/g or less, the molding temperature and melt viscosity do not become too high, and it is easy to mold a molded article having a predetermined shape.
 前記重縮合において、仮に副反応が生じなければ、ジハロゲノスルホン化合物とジヒドロキシ化合物とのモル比が1:1に近いほど、炭酸のアルカリ金属塩の使用量が多いほど、重縮合温度が高いほど、又は重縮合時間が長いほど、得られるポリエーテルスルホンの重合度が高くなりやすく、還元粘度が高くなりやすい。
 しかし、実際は、副生する水酸化アルカリなどにより、ハロゲノ基のヒドロキシル基への置換反応や解重合などの副反応を伴う。そのため、この副反応の度合いも考慮して、所望の還元粘度を有するポリエーテルスルホンが得られるように、ジハロゲノスルホン化合物とジヒドロキシ化合物とのモル比、炭酸のアルカリ金属塩の使用量、重縮合温度および重縮合時間を調整することが好ましい。
In the polycondensation, if no side reactions occur, the closer the molar ratio of the dihalogenosulfone compound and the dihydroxy compound to 1:1, the greater the amount of the alkali metal salt of carbonate used, and the higher the polycondensation temperature, the more Alternatively, the longer the polycondensation time, the higher the degree of polymerization of the resulting polyethersulfone, and the higher the reduced viscosity.
However, in practice, side reactions such as a substitution reaction of a halogeno group with a hydroxyl group and depolymerization are accompanied by by-products such as alkali hydroxide. Therefore, in consideration of the degree of this side reaction, the molar ratio of the dihalogenosulfone compound and the dihydroxy compound, the amount of the alkali metal salt of carbonate used, and the polycondensation ratio are adjusted so as to obtain a polyethersulfone having a desired reduced viscosity. It is preferable to adjust the temperature and polycondensation time.
 本実施形態のペレットは、非晶性の熱可塑性樹脂の含有量が、ペレットの総質量(100質量%)に対して、85質量%以上であるペレットに特に有用であり、100質量%であるペレット、すなわち、非晶性の熱可塑性樹脂からなるペレットに最も有用である。 The pellets of this embodiment are particularly useful for pellets in which the content of the amorphous thermoplastic resin is 85% by mass or more with respect to the total mass (100% by mass) of the pellets, and is 100% by mass. It is most useful for pellets, ie pellets made of amorphous thermoplastic resin.
 <その他成分>
 本実施形態のペレットは、非晶性の熱可塑性樹脂に加え、本発明の効果を奏する範囲で、その他成分を含んでいてもよい。
 その他成分としては、無機充填材、有機充填材、添加剤、非晶性の熱可塑性樹脂以外の樹脂などが挙げられる。
<Other ingredients>
In addition to the amorphous thermoplastic resin, the pellets of the present embodiment may contain other components as long as the effects of the present invention are exhibited.
Other components include inorganic fillers, organic fillers, additives, and resins other than amorphous thermoplastic resins.
 無機充填材について:
 本実施形態で用いてもよい無機充填材は、繊維状充填材であってもよいし、板状充填材であってもよいし、粒状充填材であってもよい。
About inorganic fillers:
The inorganic filler that may be used in this embodiment may be a fibrous filler, a plate-like filler, or a granular filler.
 繊維状充填材としては、ガラス繊維;パン系炭素繊維、ピッチ系炭素繊維等の炭素繊維;シリカ繊維、アルミナ繊維、シリカアルミナ繊維等のセラミック繊維;ステンレス繊維等の金属繊維などが挙げられる。ガラス繊維としては、チョップドガラス繊維、ミルドガラス繊維などが挙げられる。
 繊維状充填材の例としては、チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ウォラストナイトウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、炭化ケイ素ウイスカー等のウイスカーも挙げられる。
Examples of fibrous fillers include glass fibers; carbon fibers such as bread-based carbon fibers and pitch-based carbon fibers; ceramic fibers such as silica fibers, alumina fibers and silica-alumina fibers; and metal fibers such as stainless steel fibers. Examples of glass fibers include chopped glass fibers and milled glass fibers.
Examples of fibrous fillers also include whiskers such as potassium titanate whiskers, barium titanate whiskers, wollastonite whiskers, aluminum borate whiskers, silicon nitride whiskers, and silicon carbide whiskers.
 ここでいうチョップドガラス繊維は、紡糸ノズルから引き出された複数のガラス単繊維を直接引きそろえて集束した繊維束(ガラスストランド)を、繊維束長が1.5~25mmとなるように切断したもの(ガラスチョップドストランド)をいう。
 ミルドガラス繊維は、ストランドを極く短い長さ(1mm未満程)に粉砕又は切断したもの(ミルドファイバ)をいう。
The chopped glass fiber referred to here is a fiber bundle (glass strand) obtained by directly aligning and bundling a plurality of glass single fibers pulled out from a spinning nozzle, and cutting the fiber bundle length to 1.5 to 25 mm. (glass chopped strands).
Milled glass fiber refers to a strand (milled fiber) that has been pulverized or cut into very short lengths (about less than 1 mm).
 板状無機充填材としては、タルク、マイカ、グラファイト、ウォラストナイト、ガラスフレーク、硫酸バリウム、炭酸カルシウムなどが挙げられる。
 マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、四ケイ素雲母であってもよい。
Plate-like inorganic fillers include talc, mica, graphite, wollastonite, glass flakes, barium sulfate, calcium carbonate, and the like.
The mica may be muscovite, phlogopite, fluorine phlogopite, or tetrasilicon mica.
 粒状無機充填材としては、シリカ、アルミナ、酸化チタン、ガラスビーズ、ガラスバルーン、窒化ホウ素、炭化ケイ素、炭酸カルシウムなどが挙げられる。 Granular inorganic fillers include silica, alumina, titanium oxide, glass beads, glass balloons, boron nitride, silicon carbide, and calcium carbonate.
 本実施形態のペレットは、無機充填材の含有量が、ペレットの総質量(100質量%)に対して、0質量%以上15質量%以下であるペレットにより有用であり、0質量%以上10質量%以下であるペレットにさらに有用であり、0質量%以上5質量%以下であるペレットに特に有用である。 The pellet of the present embodiment is more useful than a pellet having an inorganic filler content of 0% by mass or more and 15% by mass or less with respect to the total mass of the pellet (100% by mass), and 0% by mass or more and 10% by mass. % or less, and particularly useful for pellets of 0 mass % or more and 5 mass % or less.
 有機充填材について:
 有機充填材としては、ポリエステル繊維、アラミド繊維、セルロース繊維などが挙げられる。
About organic fillers:
Examples of organic fillers include polyester fibers, aramid fibers, and cellulose fibers.
 添加剤について:
 添加剤としては、通常、成形材料である樹脂組成物に用いられている添加剤が挙げられる。このような添加剤としては、安定剤、紫外線吸収剤、着色剤、滑剤、離型剤、可塑剤、難燃剤、難燃助剤、帯電防止剤、界面活性剤などが挙げられる。
About additives:
Examples of additives include additives that are usually used in resin compositions that are molding materials. Such additives include stabilizers, ultraviolet absorbers, colorants, lubricants, release agents, plasticizers, flame retardants, flame retardant aids, antistatic agents, surfactants, and the like.
 安定剤としては、ヒンダードフェノール、ヒドロキノン、ホスファイト類又はこれらの置換体などが挙げられる。
 紫外線吸収剤としては、レゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなどが挙げられる。
 着色剤としては、ニトロシンなどの染料、又は硫化カドミウム、フタロシアニン、カーボンブラックなどの顔料を含む材料が挙げられる。
Stabilizers include hindered phenols, hydroquinones, phosphites and substituted products thereof.
UV absorbers include resorcinol, salicylate, benzotriazole, benzophenone, and the like.
Colorants include materials including dyes such as nitrosine, or pigments such as cadmium sulfide, phthalocyanine, carbon black, and the like.
 滑剤としては、ステアリン酸、モンタン酸等の脂肪酸、又はそのアミド、そのエステル、その多価アルコールとのハーフエステル、ステアリルアルコール、ステアラミド、ポリエチレンワックスなどが挙げられる。 Examples of lubricants include fatty acids such as stearic acid and montanic acid, their amides, their esters, their half esters with polyhydric alcohols, stearyl alcohol, stearamide, and polyethylene wax.
 本実施形態のペレットにおいて、滑剤の含有量は、非晶性の熱可塑性樹脂100質量部に対して、好ましくは0.001質量部以上1.0質量部以下であり、より好ましくは0.002質量部以上0.8質量部以下であり、さらに好ましくは0.002質量部以上0.1質量部以下であり、特に好ましくは0.005質量部以上0.05質量部以下である。
 また、本実施形態のペレットは、滑剤の含有量が、ペレットの総質量(100質量%)に対して、好ましくは0.001質量%以上0.5質量%以下であり、より好ましくは0.002質量%以上0.1質量%以下である。
 滑剤の含有量が、前記の好ましい範囲の上限値以下であると、ペレットが特定の形状を有することによる騒音の抑制の効果がより効果的に発揮される傾向がある。一方、滑剤の含有量が、前記の好ましい範囲の下限値以上であると、ペレット同士の摩擦などを低減することで騒音の抑制の効果が得られやすくなる。
In the pellets of the present embodiment, the content of the lubricant is preferably 0.001 parts by mass or more and 1.0 parts by mass or less, more preferably 0.002 parts by mass, with respect to 100 parts by mass of the amorphous thermoplastic resin. It is from 0.8 part by mass to 0.8 part by mass, more preferably from 0.002 part by mass to 0.1 part by mass, and particularly preferably from 0.005 part by mass to 0.05 part by mass.
Further, in the pellets of the present embodiment, the lubricant content is preferably 0.001% by mass or more and 0.5% by mass or less, more preferably 0.5% by mass or less, relative to the total mass (100% by mass) of the pellets. 002% by mass or more and 0.1% by mass or less.
When the content of the lubricant is equal to or less than the upper limit of the preferred range, the effect of suppressing noise due to the specific shape of the pellets tends to be exhibited more effectively. On the other hand, when the content of the lubricant is equal to or higher than the lower limit of the preferable range, the effect of suppressing noise can be easily obtained by reducing friction between pellets.
 離型剤としては、モンタン酸等の脂肪酸、又はその塩、そのエステル、その多価アルコールとのハーフエステル、ステアリルアルコール、ステアラミド、ポリエチレンワックスなどが挙げられ、好ましくはペンタエリスリトールの脂肪酸エステルが挙げられる。 Examples of the release agent include fatty acids such as montanic acid, salts thereof, esters thereof, half esters thereof with polyhydric alcohols, stearyl alcohol, stearamide, polyethylene wax, and the like, preferably fatty acid esters of pentaerythritol. .
 [ペレットの製造方法]
 本実施形態のペレットは、例えば、非晶性の熱可塑性樹脂と必要に応じてその他成分とを含有する樹脂組成物を、溶融混練し押出してストランドを成形し、このストランドを切断することにより製造される。
 ここで、前記ストランドの径、及び前記ストランドの切断の幅の少なくとも一方を適宜調節することにより、所望の平均体積、平均長さ、平均長径、平均短径を有するペレットを製造可能である。
[Manufacturing method of pellet]
The pellets of the present embodiment are produced by, for example, melt-kneading and extruding a resin composition containing an amorphous thermoplastic resin and optionally other components to form strands and cutting the strands. be done.
Here, by appropriately adjusting at least one of the strand diameter and the cut width of the strand, it is possible to produce pellets having a desired average volume, average length, average major axis, and average minor axis.
 前記の、非晶性の熱可塑性樹脂及びその他成分については、上述した<非晶性の熱可塑性樹脂>及び<その他成分>において例示したものが挙げられる。 Examples of the amorphous thermoplastic resin and other components include those exemplified in the above <amorphous thermoplastic resin> and <other components>.
 本実施形態のペレットは、一例として、以下の工程(i)~(iii)を含む製造方法を用いることにより製造することができる。
 工程(i):前記樹脂組成物を、押出機により溶融混練して溶融混練物を得て、押出機のノズルから溶融混練物を押出して、ストランドを得る工程
 工程(ii):押出機のノズルから押し出されたストランドをベルトクーラーで搬送し、固化させる工程
 工程(iii):固化させたストランドを引取ロールで引き取りながら、ペレタイザーに備えられた固定刃及び回転刃により切断して、非晶性の熱可塑性樹脂を含むペレットを得る工程
The pellets of this embodiment can be produced, for example, by using a production method including the following steps (i) to (iii).
Step (i): The resin composition is melt-kneaded by an extruder to obtain a melt-kneaded product, and the melt-kneaded product is extruded from the nozzle of the extruder to obtain a strand. Step (ii): The nozzle of the extruder. A step of conveying and solidifying the strand extruded from the belt cooler Step (iii): While taking the solidified strand with a take-up roll, cut it with a fixed blade and a rotary blade provided in the pelletizer to form an amorphous Step of obtaining pellets containing thermoplastic resin
 図2は、本実施形態のペレットを製造可能な製造装置の一例を示す模式図である。
 なお、以下の説明では、ストランドの搬送方向に従い、「上流側」、「下流側」ということがある。
FIG. 2 is a schematic diagram showing an example of a manufacturing apparatus capable of manufacturing pellets of the present embodiment.
In the following description, the terms "upstream side" and "downstream side" may be used depending on the direction in which the strands are transported.
 図2に示す製造装置100は、ノズルを備えた押出機11と、押出機11の下方に設けられたベルトクーラー12と、押出機11の下流側、かつ、ベルトクーラー12の上方に設けられたスプレーノズル装置13と、スプレーノズル装置13の下流側、かつ、ベルトクーラー12の上方に設けられたエアーノズル装置16と、エアーノズル装置16の下流側、かつ、ベルトクーラー12の搬送方向末端に設けられた一対の引取ロール14と、引取ロール14の下流側に設けられた固定刃及び回転刃を有するペレタイザー15と、を備えている。 The manufacturing apparatus 100 shown in FIG. 2 includes an extruder 11 having a nozzle, a belt cooler 12 provided below the extruder 11, and downstream of the extruder 11 and above the belt cooler 12. A spray nozzle device 13, an air nozzle device 16 provided downstream of the spray nozzle device 13 and above the belt cooler 12, and downstream of the air nozzle device 16 and provided at the end of the belt cooler 12 in the conveying direction. and a pelletizer 15 provided downstream of the take-up roll 14 and having a fixed blade and a rotary blade.
 工程(i):
 工程(i)では、押出機11により、非晶性の熱可塑性樹脂と必要に応じてその他成分とを含有する樹脂組成物を溶融混練した溶融混練物を、押出機11のノズルから押出し、ストランド10を得る。ストランド10は、ベルトクーラー12上を上流側から下流側へ搬送される。
Step (i):
In step (i), a melt-kneaded product obtained by melt-kneading a resin composition containing an amorphous thermoplastic resin and optionally other components is extruded from the nozzle of the extruder 11 to form a strand. get 10. The strand 10 is conveyed on the belt cooler 12 from the upstream side to the downstream side.
 押出機11は、シリンダーと、シリンダー内に配置された1本以上のスクリューと、シリンダーに設けられた1箇所以上のフィード口と、を有することが好ましく、さらにシリンダーに設けられた1箇所以上のベント部を有することがより好ましい。また、前記シリンダーは、メインフィード口と、このメインフィード口よりも押出方向下流側にサイドフィード口と、が設けられたものが好ましい。 The extruder 11 preferably has a cylinder, one or more screws arranged in the cylinder, and one or more feed ports provided in the cylinder, and one or more feed ports provided in the cylinder. It is more preferable to have a vent portion. Moreover, it is preferable that the cylinder is provided with a main feed port and a side feed port downstream of the main feed port in the extrusion direction.
 前記シリンダーがベント部を有する場合は、大気に開放されたオープンベント方式であってもよいし、水封式ポンプ、ロータリーポンプ、油拡散ポンプ、ターボポンプ等に接続して真空に保持する真空ベント方式であってもよい。 When the cylinder has a vent part, it may be an open vent system that is open to the atmosphere, or a vacuum vent that is connected to a water ring pump, rotary pump, oil diffusion pump, turbo pump, etc. to maintain a vacuum. It may be a method.
 押出機11の溶融混練温度は、非晶性の熱可塑性樹脂のガラス転移温度又は融点に応じて決定される。通常、非晶性の熱可塑性樹脂のガラス転移温度又は融点より20~40℃高い温度である。押出機11の溶融混練温度は、押出機11のシリンダー温度にて調整できる。 The melt-kneading temperature of the extruder 11 is determined according to the glass transition temperature or melting point of the amorphous thermoplastic resin. Usually, the temperature is 20 to 40° C. higher than the glass transition temperature or melting point of the amorphous thermoplastic resin. The melt-kneading temperature of the extruder 11 can be adjusted by the cylinder temperature of the extruder 11 .
 押出機11のノズルが有する吐出口の数は、特に制限はなく、1つであってもよいし、複数であってもよい。ストランド10の径及び吐出数は、押出機11のノズルの吐出口の口径及び吐出口の数で調整することができる。
 本実施形態のペレットを製造する際には、ペレットの平均体積が10mm以上55mm以下となるように、好ましくはペレットの平均長径が2.0mm以上4.0mm以下、及び平均短径が2.0mm以上3.8mm以下となるように、押出機11のノズルの吐出口の径を設定する。押出機11のノズルの吐出口の径は、例えば、1.5mm以上10mm以下、好ましくは2mm以上8mm以下に設定する。
The number of discharge ports that the nozzle of the extruder 11 has is not particularly limited, and may be one or plural. The diameter and the number of discharges of the strand 10 can be adjusted by the diameter of the discharge port of the nozzle of the extruder 11 and the number of discharge ports.
When producing the pellets of the present embodiment, the average major diameter of the pellets is preferably 2.0 mm or more and 4.0 mm or less, and the average minor diameter is 2 so that the average volume of the pellets is 10 mm 3 or more and 55 mm 3 or less. The diameter of the discharge port of the nozzle of the extruder 11 is set to be 0 mm or more and 3.8 mm or less. The diameter of the discharge port of the nozzle of the extruder 11 is set to, for example, 1.5 mm or more and 10 mm or less, preferably 2 mm or more and 8 mm or less.
 工程(ii):
 工程(ii)では、押出機11のノズルから押し出されたストランド10を、ベルトクーラー12にて上流側から下流側にあるペレタイザー15まで搬送する。
Step (ii):
In step (ii), the strand 10 extruded from the nozzle of the extruder 11 is conveyed by the belt cooler 12 from the upstream side to the pelletizer 15 on the downstream side.
 工程(ii)は、例えば、以下の操作(ii-1)及び操作(ii-2)により行うことができる。
 操作(ii-1):ストランド10をベルトクーラー12で搬送し、ストランド搬送方向に向かって、スプレーノズル装置13により、水を噴霧し冷却して、ストランド10を固化させる操作。
 操作(ii-2):ストランド10をベルトクーラー12で搬送し、ストランド搬送方向に向かって、エアーノズル装置16より、空気を吹き付けて、ストランド10表面に付着した水を除去し、さらにストランド10を冷却する操作。
Step (ii) can be performed, for example, by the following operations (ii-1) and (ii-2).
Operation (ii-1): An operation in which the strand 10 is conveyed by the belt cooler 12 and cooled by spraying water with the spray nozzle device 13 in the strand conveying direction to solidify the strand 10 .
Operation (ii-2): The strand 10 is conveyed by the belt cooler 12, air is blown from the air nozzle device 16 in the strand conveying direction to remove water adhering to the surface of the strand 10, and the strand 10 is further removed. Cooling operation.
 ベルトクーラー12としては、従来公知のコンベアを用いることができ、例えば、メッシュコンベア、ネットコンベア、ベルトコンベア、振動コンベアなどを挙げることができる。これらの中でも、搬送面上の水はけが良く、ストランド10表面に付着する水分の量を少なくすることができるため、メッシュコンベア、ネットコンベア(同じもので、名称が異なるのみ)が好ましい。 A conventionally known conveyor can be used as the belt cooler 12, and examples thereof include a mesh conveyor, a net conveyor, a belt conveyor, and a vibrating conveyor. Among these, mesh conveyors and net conveyors (same but with different names) are preferred because they have good drainage on the conveying surface and can reduce the amount of moisture adhering to the surface of the strand 10 .
 操作(ii-1):
 操作(ii-1)では、押出機11のノズルから押し出されたベルトクーラー12上のストランド10に向けて、スプレーノズル装置13により水を吹き付け、ストランド10表面に水を付着させ、ストランド10と水との熱交換及び水の気化熱により、ストランド10を冷却して固化させる。
Operation (ii-1):
In operation (ii-1), water is sprayed by the spray nozzle device 13 toward the strand 10 on the belt cooler 12 extruded from the nozzle of the extruder 11, water is attached to the surface of the strand 10, and the strand 10 and the water The strand 10 is cooled and solidified by heat exchange with and heat of vaporization of water.
 スプレーノズル装置13は、適当間隔で一条に多数の孔を有するパイプにて構成され、多数の孔は、押出機11のノズルから押し出されるストランド10の全幅に跨がって設けられている。 The spray nozzle device 13 is composed of a pipe having a large number of holes in a row at appropriate intervals, and the large number of holes are provided across the entire width of the strand 10 extruded from the nozzle of the extruder 11.
 スプレーノズル装置13は、一定間隔で1~10台の範囲で適宜配置することが好ましい。より好ましい機台数は2~4台である。スプレーノズル装置13を複数配置する場合には、複数のストランド10のそれぞれに対応して設けてもよいし、一部のストランド10によって群を形成し、群毎に設ける構成としてもよい。いずれの場合もスプレーノズル装置13を独立して調整可能とすることにより、各ストランド10に応じた最適な水の噴霧冷却を実施することができる。
 図2に示す製造装置100では、3台のスプレーノズル装置13が設けられている。
It is preferable that one to ten spray nozzle devices 13 are appropriately arranged at regular intervals. A more preferable number of machines is 2 to 4. When a plurality of spray nozzle devices 13 are arranged, they may be provided for each of the plurality of strands 10, or may be configured such that some strands 10 form a group and are provided for each group. In either case, by making the spray nozzle device 13 independently adjustable, the optimal water spray cooling corresponding to each strand 10 can be implemented.
The manufacturing apparatus 100 shown in FIG. 2 is provided with three spray nozzle devices 13 .
 複数のストランド10が搬送される場合、各ストランド10に吹き付ける水の噴霧量を調整することで、各ストランド10の表面温度が均一になるように水を噴霧することが好ましい。各ストランド10の間で表面温度に差がありすぎると、均一なペレットが得られず、ストランド切れ、又は、ペレット切断面の欠損もしくはヒゲが発生する傾向となるためである。 When a plurality of strands 10 are conveyed, it is preferable to spray water so that the surface temperature of each strand 10 is uniform by adjusting the amount of water sprayed onto each strand 10 . This is because if there is too much difference in surface temperature between the strands 10, uniform pellets cannot be obtained, and strand breakage, or defects or whiskers on the cut surfaces of the pellets tend to occur.
 スプレーノズル装置13から噴霧される水としては、水、純水、イオン交換水、工業用水、冷却塔で循環している冷却水等を使用してもよい。また、スプレーノズル装置13から噴霧される水の温度は、室温(15~23℃の範囲)であることが好ましい。
 ただし、噴霧する水の温度を調整する場合は、室温に対して、1~50℃の範囲で異なる温度のものを組み合わせて用いることもできる。
As the water sprayed from the spray nozzle device 13, water, pure water, ion-exchanged water, industrial water, cooling water circulating in a cooling tower, or the like may be used. Moreover, the temperature of the water sprayed from the spray nozzle device 13 is preferably room temperature (range of 15 to 23° C.).
However, when adjusting the temperature of the water to be sprayed, it is also possible to use a combination of different temperatures in the range of 1 to 50° C. relative to room temperature.
 スプレーノズル装置13は、噴霧する水量又は水温度の調整機構(水冷調整機構)を有する。スプレーノズル装置13において噴霧する水量の調整機構としては、スプレーノズル装置13の噴霧ノズルに連通する配管に流す水の流量や圧力を調節するバルブや弁など公知のものが挙げられる。 The spray nozzle device 13 has a mechanism for adjusting the amount of water to be sprayed or the water temperature (water cooling adjustment mechanism). As a mechanism for adjusting the amount of water sprayed in the spray nozzle device 13, known mechanisms such as valves and valves for adjusting the flow rate and pressure of water flowing through a pipe communicating with the spray nozzle of the spray nozzle device 13 can be used.
 操作(ii-2):
 操作(ii-2)では、ベルトクーラー12上のストランド10に向けて、エアーノズル装置16より空気を吹き付け、ストランド10表面に付着した水を除去し、さらにストランド10を冷却する。
Operation (ii-2):
In operation (ii-2), air is blown from the air nozzle device 16 toward the strands 10 on the belt cooler 12 to remove water adhering to the surface of the strands 10 and further cool the strands 10 .
 エアーノズル装置16は、ベルトクーラー12上のストランド10に空気を吹付け可能な位置にボルト等で固定した装置である。エアーノズル装置16は、ストランド10に付着した水をストランド10表面から取り除くと共に、ストランド10を冷却するための装置であり、公知のエアブロー装置やドライヤー装置を用いることができる。 The air nozzle device 16 is a device fixed with bolts or the like at a position where air can be blown onto the strands 10 on the belt cooler 12 . The air nozzle device 16 is a device for removing water adhering to the strand 10 from the surface of the strand 10 and cooling the strand 10, and a known air blow device or dryer device can be used.
 エアーノズル装置16の機台数は、一定間隔で1~10台の範囲で適宜調整することが好ましい。より好ましい機台数は2~4台である。エアーノズル装置16を複数配置する場合には、複数のストランド10のそれぞれに対応して設けてもよいし、一部のストランド10によって群を形成し、群毎に設ける構成としてもよい。いずれの場合もエアーノズル装置16の吹出し口から吹きつけられる空気量を独立して調整可能とすることにより、各ストランド10に応じた各装置から吹きつけられる空気量を調整することができる。
 図2に示す製造装置100では、3台のエアーノズル装置16が設けられている。
It is preferable that the number of air nozzle devices 16 be appropriately adjusted within a range of 1 to 10 at regular intervals. A more preferable number of machines is 2 to 4. When a plurality of air nozzle devices 16 are arranged, they may be provided corresponding to each of the plurality of strands 10, or a group may be formed by a part of the strands 10 and provided for each group. In either case, by independently adjusting the amount of air blown from the outlet of the air nozzle device 16, the amount of air blown from each device corresponding to each strand 10 can be adjusted.
In the manufacturing apparatus 100 shown in FIG. 2, three air nozzle devices 16 are provided.
 複数のストランド10が搬送される場合、吹付け面を調整することで、各ストランド10の表面温度がより均一になるように吹き付けながら、ストランド10表面に付着している水を除くことが好ましい。各ストランド10の表面温度に差がありすぎると、均質なペレットが得られず、ストランド切れ、又は、ペレット切断面の欠損もしくは切粉が発生する傾向となるためである。 When a plurality of strands 10 are transported, it is preferable to remove water adhering to the surface of the strands 10 while adjusting the spraying surface so that the surface temperature of each strand 10 is more uniform. This is because if the surface temperatures of the strands 10 differ too much, a homogeneous pellet cannot be obtained, and strand breakage, chipping of the pellet cut surface, or chips tend to occur.
 吹き付ける空気としては、空気(エアー)、窒素、アルゴンなどの不活性ガス存在下の空気であってもよい。生産性の観点から、空気(エアー)であることが好ましい。 The air to be blown may be air, or air in the presence of an inert gas such as nitrogen or argon. Air is preferable from the viewpoint of productivity.
 エアーノズル装置16は、吹き付ける空気量又は空気温度を変更できるように、風量調節機構や、ヒーターや冷却装置が組み込まれた温度調節が可能な公知のエアーノズル装置を用いることもできる。 The air nozzle device 16 can also use a known air nozzle device capable of adjusting the temperature, which incorporates an air volume adjustment mechanism, a heater or a cooling device so that the amount of air to be blown or the temperature of the air can be changed.
 エアーノズル装置16の吹き付ける空気の風速、風量は、ストランド10の温度を所定範囲内に調整可能であり、ストランド10表面に付着した水を除去可能であれば特に限定されず、ストランド10がベルトクーラー12上で蛇行しない風速、風量であることが好ましい。 The wind speed and air volume of the air blown by the air nozzle device 16 are not particularly limited as long as the temperature of the strand 10 can be adjusted within a predetermined range and water adhering to the surface of the strand 10 can be removed. It is preferable that the air velocity and air volume be such that they do not meander on 12 .
 工程(iii):
 工程(iii)では、固化させたストランド10を引取ロール14で引き取りながら、ペレタイザー15に備えられた固定刃及び回転刃により切断して、非晶性の熱可塑性樹脂を含むペレットを得る。
Step (iii):
In step (iii), the solidified strand 10 is cut by a fixed blade and a rotary blade provided in a pelletizer 15 while being taken up by a take-up roll 14 to obtain pellets containing an amorphous thermoplastic resin.
 ペレタイザー15は、固定刃及び回転刃によりストランド10を切断する、つまり、ストランド10が固定刃と回転刃とに挟まれることで所定の長さに切断され、ペレットが成形される。 The pelletizer 15 cuts the strand 10 with a fixed blade and a rotary blade, that is, the strand 10 is sandwiched between the fixed blade and the rotary blade to cut it to a predetermined length and form pellets.
 固定刃及び回転刃は、従来公知のペレタイザーが備える固定刃及び回転刃を適宜採用することができる。回転刃が備える刃の数は、複数の刃を有するものであれば特に制限はない。即ち、従来公知のストランドカッターの回転刃が備える刃の数と同じ数とすることができる。 For the fixed blade and rotary blade, the fixed blade and rotary blade provided in conventionally known pelletizers can be appropriately adopted. The number of blades included in the rotary blade is not particularly limited as long as it has a plurality of blades. That is, the number of blades can be the same as the number of rotary blades of a conventionally known strand cutter.
 固定刃及び回転刃が備える刃の材質としては、特に限定されるものではなく、例えば、WC-Co系合金、TiN-Ni系合金、TiC-Ni系合金などが挙げられる。 The material of the blades of the fixed blade and the rotary blade is not particularly limited, and examples thereof include WC--Co alloys, TiN--Ni alloys, and TiC--Ni alloys.
 上述の[ペレットの製造方法]においては、ペレットの長さ(L)と、引取ロール14の引取速度及び回転刃の回転速度と、の関係に基づいて、ペレットの平均体積が10mm以上55mm以下となるように、また、ペレットの好ましい平均長さが2.5mm以上7.5mm以下となるように、引取ロール14の引取速度及び回転刃の回転速度を制御することができる。一例として、引取ロール14の引取速度及び回転刃の回転速度は、10rpm以上80rpm以下に設定することが好ましく、20rpm以上60rpm以下に設定することがより好ましい。 In the above-described [Pellet manufacturing method], based on the relationship between the length (L) of the pellets, the take-up speed of the take-up roll 14, and the rotation speed of the rotary blade, the average volume of the pellets is 10 mm 3 or more and 55 mm 3 The take-up speed of the take-up roll 14 and the rotation speed of the rotary blade can be controlled so that the average length of the pellets is preferably 2.5 mm or more and 7.5 mm or less. As an example, the take-up speed of the take-up roll 14 and the rotation speed of the rotary blade are preferably set to 10 rpm or more and 80 rpm or less, and more preferably set to 20 rpm or more and 60 rpm or less.
 上述の[ペレットの製造方法]は、工程(iii)で得られたペレットを、タンブラー混合機により混合して、ペレットから発生した微粉を除去する工程を含んでいてもよい。
 微粉を除去する方法は、特に限定されず、公知の方法を採用することができる。
The above [method for producing pellets] may include a step of mixing the pellets obtained in step (iii) with a tumbler mixer to remove fine powder generated from the pellets.
A method for removing fine powder is not particularly limited, and a known method can be adopted.
 [用途]
 本実施形態のペレットは、成形体の原料(成形材料)として使用されることが好ましく、射出成形体の製造用の成形材料として使用されることがより好ましい。
[Use]
The pellet of the present embodiment is preferably used as a raw material (molding material) for a molded article, and more preferably used as a molding material for producing an injection molded article.
 前記射出成形体は、本実施形態のペレットを成形材料として用い、射出成形機で、このペレットを溶融させ、金型へ射出して射出成形体を得る工程、を含む製造方法により製造することができる。
 前記射出成形体の製造方法には、公知の射出成形機を用いることができる。
The injection-molded article can be produced by a production method including a step of using the pellets of the present embodiment as a molding material, melting the pellets in an injection molding machine, and injecting the pellets into a mold to obtain an injection-molded article. can.
A known injection molding machine can be used for the method of manufacturing the injection molded article.
 射出成形機について、本明細書では、下記のスクリュー径、射出体積又は最大型締力を有する射出成形機を“大型の”射出成形機として例示する。
 また、この“大型の”射出成形機におけるスクリュー径、射出体積又は最大型締力よりも小さい値のスクリュー径、射出体積又は最大型締力を有する射出成形機を“小型の”射出成形機として例示する。
With regard to injection molding machines, in this specification, injection molding machines having the following screw diameters, injection volumes, or maximum clamping forces are exemplified as "large" injection molding machines.
Also, an injection molding machine with a screw diameter, injection volume or maximum clamping force smaller than the screw diameter, injection volume or maximum clamping force of this "large" injection molding machine is defined as a "small" injection molding machine. Illustrate.
 “大型の”射出成形機は、最大型締力が980kN以上であるものが挙げられる。“大型の”射出成形機における最大型締力は、1300kN以上25000kN以下でもよいし、1500kN以上10000kN以下でもよい。 "Large" injection molding machines include those with a maximum clamping force of 980kN or more. The maximum clamping force in a "large" injection molding machine may be between 1300 kN and 25000 kN, or between 1500 kN and 10000 kN.
 “大型の”射出成形機は、スクリュー径(スクリュー直径)が30mm以上であるものが挙げられる。“大型の”射出成形機におけるスクリュー径は、30mm以上180mm以下でもよいし、40mm以上150mm以下でもよい。 "Large" injection molding machines include those with a screw diameter of 30 mm or more. The screw diameter in a "large" injection molding machine may be 30 mm or more and 180 mm or less, or 40 mm or more and 150 mm or less.
 “大型の”射出成形機は、射出体積(一度の射出で射出可能な射出物の最大体積)が100cm以上であるものが挙げられる。“大型の”射出成形機における射出体積は、120cm以上20000cm以下でもよいし、150cm以上5000cm以下でもよいし、160cm以上3500cm以下でもよいし、170cm以上1000cm以下でもよい。 "Large" injection molding machines include those with an injection volume (maximum volume of an injection product that can be injected in one injection) of 100 cm 3 or more. The injection volume in a “large” injection molding machine may be 120 cm 3 or more and 20000 cm 3 or less, 150 cm 3 or more and 5000 cm 3 or less, 160 cm 3 or more and 3500 cm 3 or less, or 170 cm 3 or more and 1000 cm 3 or less. .
 “大型の”射出成形機としては、例えば、住友重機械工業社製SE180EV、JSW社製J450AD、日精樹脂工業社製FNX3602―100A/FVX860IIIなどが挙げられる。
 “小型の”射出成形機としては、例えば、日精樹脂工業社製PNX40-5A、FUNUC社製ROBOSHOT S-2000i 30Bなどが挙げられる。
Examples of "large" injection molding machines include SE180EV manufactured by Sumitomo Heavy Industries, Ltd., J450AD manufactured by JSW, and FNX3602-100A/FVX860III manufactured by Nissei Plastic Industry.
Examples of "small" injection molding machines include PNX40-5A manufactured by Nissei Plastic Industry Co., Ltd., ROBOSHOT S-2000i 30B manufactured by FUNUC, and the like.
 前記射出成形体の製造は、シリンダー内部にスクリューを備えた射出成形機を用い、本実施形態のペレットを、シリンダー内に投入し、シリンダー内でスクリューを回転させながら溶融させ、シリンダーの先端方向(金型が配置された射出部側のシリンダー内の先端部)へ押出し、シリンダー内の先端部に溜められた溶融混練物を、金型内へ射出し、金型内で冷却固化させることにより実施することができる。
 かかる射出成形体の製造においては、射出成形機のシリンダー内に、本実施形態のペレットを投入しているため、金型へ射出される所定量のペレットを計量する際にこれまで発生していた騒音が抑えられる。
The injection molded body is manufactured using an injection molding machine equipped with a screw inside the cylinder, and the pellets of the present embodiment are put into the cylinder, melted while rotating the screw in the cylinder, and melted in the direction of the tip of the cylinder ( The tip of the cylinder on the side of the injection part where the mold is arranged) is extruded, and the molten kneaded material accumulated at the tip of the cylinder is injected into the mold, where it is cooled and solidified. can do.
In the production of such an injection-molded product, since the pellets of the present embodiment are put into the cylinder of the injection molding machine, it has occurred until now when weighing a predetermined amount of pellets to be injected into the mold. Noise can be suppressed.
 射出成形機のシリンダー温度は、非晶性の熱可塑性樹脂の種類に応じて適宜決定され、用いる非晶性の熱可塑性樹脂のガラス転移温度又は融点以上であればよく、かかるガラス転移温度又は融点より10~80℃高い温度に設定することが好ましい。 The cylinder temperature of the injection molding machine is appropriately determined according to the type of amorphous thermoplastic resin, and may be higher than the glass transition temperature or melting point of the amorphous thermoplastic resin to be used. It is preferable to set the temperature to 10 to 80°C higher than that.
 射出成形機のスクリュー回転数は、適宜決定すればよく、一例として50~200rpmが好ましい。
 金型の温度は、非晶性の熱可塑性樹脂の冷却速度及び生産性の点から、室温(例えば23℃)から180℃の範囲に設定することが好ましい。
The screw rotation speed of the injection molding machine may be appropriately determined, and is preferably 50 to 200 rpm, for example.
The temperature of the mold is preferably set in the range of room temperature (for example, 23° C.) to 180° C. in terms of the cooling rate of the amorphous thermoplastic resin and productivity.
 かかる射出成形体の製造において、金型へ射出されるペレットを計量するのに要する計量時間は、射出成形機のサイズ又は種類等に応じて異なるが、例えば、小型の射出成形機の場合であれば5~30秒間であり、大型の射出成形機の場合であれば5~45秒間である。 In the production of such an injection molded product, the weighing time required to weigh the pellets injected into the mold varies depending on the size or type of the injection molding machine. For example, it is 5 to 30 seconds, and for a large injection molding machine it is 5 to 45 seconds.
 金型へ射出されるペレットを計量する際の計量時間は、射出成形機付属の計測器により計測することができる。
 ここでの「計量時間」とは、射出成形機を用いる射出成形において、直前の射出が完了し、スクリューがシリンダーの先端方向に前進した状態で、スクリューの回転(計量)を開始した時点から、射出成形体の体積に相当する所望量のペレットがシリンダー内の先端部に溜められる時点までの時間をいう。
The weighing time for weighing the pellets injected into the mold can be measured by a measuring instrument attached to the injection molding machine.
The "metering time" here means, in injection molding using an injection molding machine, from the time the screw starts rotating (metering) in a state in which the previous injection is completed and the screw is advanced toward the tip of the cylinder. It refers to the time until the desired amount of pellets corresponding to the volume of the injection-molded body is collected at the tip of the cylinder.
 前記射出成形体の製造方法で製造される、射出成形体の1個当たりの質量は、“大型の”射出成形機を用いた場合、一例として100~5000gであり、500~4000gでもよいし、1000~3500gでもよい。 The mass of one injection molded article manufactured by the method for manufacturing an injection molded article is, for example, 100 to 5000 g when using a "large" injection molding machine, and may be 500 to 4000 g. 1000 to 3500 g may be used.
 前記射出成形体の製造方法で製造される、射出成形体の射出体積(一度の射出で成形される射出物の体積)は、“大型の”射出成形機を用いた場合、一例として50cm以上であり、50cm以上20000cm以下でもよいし、80cm以上10000cm以下でもよいし、100cm以上5000cm以下でもよい。 The injection volume of the injection molded body (the volume of the injection molded in one injection) manufactured by the above injection molded body manufacturing method is, for example, 50 cm 3 or more when using a “large” injection molding machine. and may be 50 cm 3 or more and 20000 cm 3 or less, 80 cm 3 or more and 10000 cm 3 or less, or 100 cm 3 or more and 5000 cm 3 or less.
 [作用効果]
 以上説明した本実施形態のペレットによれば、射出成形機で成形作業を行う際に、成形機における計量時に発生する騒音を抑えることができる。
[Effect]
According to the pellets of the present embodiment described above, it is possible to suppress noise generated during weighing in the injection molding machine when molding is performed by the injection molding machine.
 図3は、小型の射出成形機において、シリンダー24s内のペレット1がスクリュー26sによってシリンダー24sの先端方向Aへ押し出される様子の一例を示す模式図である。ペレット1は、従来のものである。
 図3に示すように、小型の射出成形機では、ペレット1とシリンダー24sとが擦れたり、又はペレット1同士が擦れたりし合うことで、騒音が発生する、と考えられる。
FIG. 3 is a schematic diagram showing an example of how the pellet 1 in the cylinder 24s is pushed out in the tip direction A of the cylinder 24s by the screw 26s in a small injection molding machine. Pellets 1 are conventional.
As shown in FIG. 3, in a small injection molding machine, it is considered that noise is generated by rubbing between the pellet 1 and the cylinder 24s or by rubbing between the pellets 1. FIG.
 図4は、大型の射出成形機において、シリンダー24b内のペレット1がスクリュー26bによってシリンダー24bの先端方向Aへ押し出される様子の一例を示す模式図である。ペレット1は、従来のものである。
 図4に示すように、大型の射出成形機では、小型の射出成形機に比べ、径が大きくかつ溝の間隔が広いスクリュー26bに対して、より多量のペレット1が投入され、また、これらのペレット1がスクリュー26bによって、より大きな力で押し出されている。さらに、大型の射出成形機の場合、スクリュー26bの溝や、スクリュー26bとシリンダー24bとの間の隙間が、小型の射出成形機の場合よりも広く設計されているため、先端方向Aとは反対方向へのペレット1のバックフローBが生じやすくなっている。このような状態であるため、ペレット1とシリンダー24bとが擦れやすくなり、又はペレット1同士が擦れやすくなり、加えて、より大きな押出しの力が加えられていることで、大型の射出成形機では、小型の射出成形機で発生する騒音レベルに比べて大きなレベルの騒音が発生する、と考えられる。
 射出成形機で発生する騒音レベル(dB)の測定は、例えば普通騒音計LA-1210(小野測器社製)等の騒音計を用いて、射出成形機のホッパー下から5cm離れた場所における、計量中の音圧を評価することで行うことができる。
FIG. 4 is a schematic diagram showing an example of how the pellet 1 in the cylinder 24b is pushed out in the direction A toward the tip of the cylinder 24b by the screw 26b in a large injection molding machine. Pellets 1 are conventional.
As shown in FIG. 4, in a large injection molding machine, a larger amount of pellets 1 are fed to a screw 26b having a larger diameter and wider groove intervals than in a small injection molding machine. Pellets 1 are pushed out with greater force by screw 26b. Furthermore, in the case of a large injection molding machine, the groove of the screw 26b and the gap between the screw 26b and the cylinder 24b are designed to be wider than in the case of a small injection molding machine. A backflow B of the pellets 1 in the direction is likely to occur. In such a state, the pellet 1 and the cylinder 24b are likely to rub against each other, or the pellets 1 are likely to rub against each other. , it is considered that a large level of noise is generated compared to the noise level generated by a small injection molding machine.
The noise level (dB) generated by the injection molding machine is measured using a sound level meter such as an ordinary sound level meter LA-1210 (manufactured by Ono Sokki Co., Ltd.) at a location 5 cm away from the bottom of the hopper of the injection molding machine. This can be done by evaluating the sound pressure during weighing.
 これに対し、非晶性の熱可塑性樹脂を含むペレットであって、その体積を特定の範囲に制御したペレットを採用することにより、成形機における計量時に発生する騒音を抑えることができる。かかる効果が、ペレットの平均体積10~55mmの範囲で顕著性を有している、ということは、本発明者らが初めて見出した知見である。 On the other hand, by using pellets containing an amorphous thermoplastic resin whose volume is controlled within a specific range, the noise generated during weighing in the molding machine can be suppressed. The present inventors have found for the first time that such an effect is significant in the range of the average volume of pellets of 10 to 55 mm 3 .
 成形機における計量時に発生する騒音は、非晶性の熱可塑性樹脂の含有量が多いペレットほど起こりやすく、特に、非晶性の熱可塑性樹脂からなるペレット(ニートペレット)を成形材料として使用する場合に問題となる。上述した本実施形態のペレットは、ニートペレットを成形材料として使用する場合に特に有用である。
 また、従来、大きい形状の成形品を製造するため、大型の射出成形機を使用した場合には、さらに大きなレベルで騒音が発生していたことから、本実施形態のペレットの採用によって、作業環境の改善向上を図ることが可能となる。
Pellets with a higher content of amorphous thermoplastic resin are more likely to generate noise during weighing in a molding machine, especially when pellets made of amorphous thermoplastic resin (neat pellets) are used as molding materials. becomes a problem. The pellets of this embodiment described above are particularly useful when neat pellets are used as a molding material.
Conventionally, when using a large-sized injection molding machine to manufacture a large-sized molded product, noise was generated at a higher level. It is possible to improve the improvement of
(射出成形体)
 上述した本実施形態のペレットを成形材料として用い、射出成形法により成形された射出成形体は、一般に、非晶性の熱可塑性樹脂が適用し得るあらゆる用途に適用可能であり、中でも自動車分野の用途に特に好適なものである。
(Injection molding)
An injection molded article molded by an injection molding method using the pellets of the present embodiment described above as a molding material is generally applicable to all applications to which amorphous thermoplastic resins can be applied, especially in the automotive field. It is particularly suitable for use.
 自動車分野の用途としては、例えば、自動車内装材用射出成形体として、天井材用射出成形体、ホイールハウスカバー用射出成形体、トランクルーム内張用射出成形体、インパネ表皮材用射出成形体、ハンドルカバー用射出成形体、アームレスト用射出成形体、ヘッドレスト用射出成形体、シートベルトカバー用射出成形体、シフトレバーブーツ用射出成形体、コンソールボックス用射出成形体、ホーンパッド用射出成形体、ノブ用射出成形体、エアバッグカバー用射出成形体、各種トリム用射出成形体、各種ピラー用射出成形体、ドアロックベゼル用射出成形体、グラブボックス用射出成形体、デフロスタノズル用射出成形体、スカッフプレート用射出成形体、ステアリングホイール用射出成形体、ステアリングコラムカバー用射出成形体などが挙げられる。 Applications in the automotive field include, for example, injection-molded articles for automobile interior materials, injection-molded articles for ceiling materials, injection-molded articles for wheelhouse covers, injection-molded articles for trunk room linings, injection-molded articles for instrument panel skin materials, and steering wheels. Injection molding for covers, injection molding for armrests, injection molding for headrests, injection molding for seat belt covers, injection molding for shift lever boots, injection molding for console boxes, injection molding for horn pads, knobs Injection molded products, injection molded products for airbag covers, injection molded products for various trims, injection molded products for various pillars, injection molded products for door lock bezels, injection molded products for glove boxes, injection molded products for defroster nozzles, scuff plates Examples include injection molded articles, injection molded articles for steering wheels, and injection molded articles for steering column covers.
 また、自動車分野の用途としては、例えば、自動車外装材用射出成形体として、バンパー用射出成形体、スポイラー用射出成形体、マッドガード用射出成形体、サイドモール用射出成形体、ラジエーターグリル用射出成形体、ホイールカバー用射出成形体、ホイールキャップ用射出成形体、カウルベルト・グリル用射出成形体、エアアウトレット・ルーバー用射出成形体、エアスクープ用射出成形体、フードバルジ用射出成形体、フェンダー用射出成形体、バックドア用射出成形体などが挙げられる。
 自動車用エンジンルーム内部品として、シリンダー・ヘッドカバー用射出成形体、エンジンマウント用射出成形体、エアインテーク・マニホールド用射出成形体、スロットルボディ用射出成形体、エアインテーク・パイプ用射出成形体、ラジエータータンク用射出成形体、ラジエーターサポート用射出成形体、ウォーターポンプ・イントレット用射出成形体、ウォーターポンプ・アウトレット用射出成形体、サーモスタットハウジング用射出成形体、クーリングファン用射出成形体、ファンシュラウド用射出成形体、オイルパン用射出成形体、オイルフィルター・ハウジング用射出成形体、オイルフィラー・キャップ用射出成形体、オイルレベル・ゲージ用射出成形体、タイミング・ベルト用射出成形体、タイミング・ベルトカバー用射出成形体、エンジン・カバー用射出成形体などが挙げられる。
 自動車用燃料部品として、フューエルキャップ、フューエルフィラー・チューブ、自動車用燃料タンク、フューエルセンダー・モジュール、フューエルカットオフバルブ、クイックコネクター、キャニスター、フューエルデリバリー・パイプ、フューエルフィラーネックなどが挙げられる。
 自動車用駆動系部品として、シフトレバー・ハウジング、プロペラシャフトなどが挙げられる。
 自動車用シャーシ部品として、スタビライザー、リンケージロッドなどが挙げられる。
In addition, for applications in the automotive field, for example, as injection molded products for automobile exterior materials, injection molded products for bumpers, injection molded spoilers, injection molded products for mudguards, injection molded products for side moldings, and injection molded products for radiator grills. body, wheel cover injection molding, wheel cap injection molding, cowl belt/grill injection molding, air outlet/louver injection molding, air scoop injection molding, hood bulge injection molding, fender Injection molded articles, injection molded articles for back doors, and the like can be mentioned.
Injection moldings for cylinder head covers, injection moldings for engine mounts, injection moldings for air intake manifolds, injection moldings for throttle bodies, injection moldings for air intake pipes, and radiator tanks for automotive engine compartment parts Injection molding for radiator support, Injection molding for water pump inlet, Injection molding for water pump outlet, Injection molding for thermostat housing, Injection molding for cooling fan, Injection molding for fan shroud body, oil pan injection molding, oil filter housing injection molding, oil filler cap injection molding, oil level gauge injection molding, timing belt injection molding, timing belt cover injection molding Examples include molded articles, injection molded articles for engine covers, and the like.
Automotive fuel parts include fuel caps, fuel filler tubes, automotive fuel tanks, fuel sender modules, fuel cut-off valves, quick connectors, canisters, fuel delivery pipes, fuel filler necks and the like.
Automobile drive system parts include shift levers, housings, propeller shafts, and the like.
Automotive chassis components include stabilizers, linkage rods, and the like.
 その他の自動車部品用射出成形体としては、自動車ヘッドランプ用射出成形体、グラスランチャンネル用射出成形体、ウェザーストリップ用射出成形体、ドレーンホース用射出成形体、ウィンドウォッシャーチューブ用射出成形体などのホース用射出成形体、チューブ類用射出成形体、ラックアンドピニオンブーツ用射出成形体、ガスケット用射出成形体などが挙げられる。中でも、ここでの射出成形体は、剛性が要求される部材へ好ましく用いることができる。 Other injection molded products for automobile parts include hoses such as automobile headlamp injection molded products, glass run channel injection molded products, weather strip injection molded products, drain hose injection molded products, and window washer tube injection molded products. injection-molded products, injection-molded products for tubes, injection-molded products for rack and pinion boots, injection-molded products for gaskets, and the like. Among others, the injection-molded article herein can be preferably used for a member requiring rigidity.
 また、ここでの射出成形体は、上述の他、センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶ディスプレイ、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品、電子レンジ部品、音響・音声機器部品、照明部品、エアコン部品、オフィスコンピューター関連部品、電話・FAX関連部品、複写機関連部品などの用途にも適用可能である。 In addition to the above, the injection molded products here include sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable condenser cases, optical pickups, oscillators, various terminal boards, and transformers. , plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, semiconductors, liquid crystal displays, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer parts, microwave oven parts, It can also be applied to applications such as audio/speech equipment parts, lighting parts, air conditioner parts, office computer parts, telephone/fax parts, and copying machine parts.
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
<ペレットの製造>
 各例のペレットの製造においては、原料として下記の樹脂組成物を用いた。
 樹脂組成物(1):ポリエーテルサルホン(PES)からなるもの(100質量%)(商品名:スミカエクセル4100G、住友化学社製)。
 樹脂組成物(2):ポリエーテルサルホン(PES)70質量%と、ガラス繊維30質量%とを含有するもの(商品名:スミカエクセル4101GL30、住友化学社製)。
<Production of pellets>
In producing the pellets of each example, the following resin compositions were used as raw materials.
Resin composition (1): Polyethersulfone (PES) (100% by mass) (trade name: Sumika Excel 4100G, manufactured by Sumitomo Chemical Co., Ltd.).
Resin composition (2): containing 70% by mass of polyethersulfone (PES) and 30% by mass of glass fiber (trade name: Sumika Excel 4101GL30, manufactured by Sumitomo Chemical Co., Ltd.).
 図2に示す製造装置と同一の形態を有する製造装置を用い、以下のようにして各例のペレットを製造した。
 二軸押出機(池貝鉄工株式会社製の「PCM-30」)の先端に、ストランド1本が押し出されるようにノズルを設置した。続いて、この二軸押出機に、ノズルから押し出されたストランドを搬送するための、ストランドとの接触面がステンレス鋼製メッシュであるベルトクーラー(いすず化工機製の「SWA-200-3」)と、引取ロールとを設置した。ベルトクーラーの搬送面の上部に、ベルトクーラーで搬送されるストランドを冷却するための、スプレーノズル装置及びエアーノズル装置を設置した。さらに、ベルトクーラーで搬送されたストランドをペレット化するためのペレタイザー(いすず加工機製の「HSC-200」)を設置した。
Using a manufacturing apparatus having the same configuration as the manufacturing apparatus shown in FIG. 2, pellets of each example were manufactured as follows.
A nozzle was installed at the tip of a twin-screw extruder ("PCM-30" manufactured by Ikegai Iron Works Co., Ltd.) so that one strand was extruded. Subsequently, a belt cooler (“SWA-200-3” manufactured by Isuzu Kakoki Co., Ltd.) whose contact surface with the strand is a stainless steel mesh for conveying the strand extruded from the nozzle to the twin-screw extruder. , a take-off roll and the like. A spray nozzle device and an air nozzle device were installed above the conveying surface of the belt cooler for cooling the strand conveyed by the belt cooler. Furthermore, a pelletizer (“HSC-200” manufactured by Isuzu Machine Co., Ltd.) was installed to pelletize the strand conveyed by the belt cooler.
 (実施例1~8、比較例1~3)
 樹脂組成物(1)を、340℃のシリンダー温度で、水封式真空ポンプ(神港精機株式会社製の「SW-25」)を用い、前記二軸押出機に備えた真空ベントで脱気しながら、溶融混練し、ノズルから押出して、樹脂組成物(1)のストランドを得た。
 そして、ノズルから押し出されたストランドを、引取ロールで引き取りながら、ベルトクーラー上で固化させ、次いで、固化させたストランドを、ペレタイザーにより切断してペレット化することにより、実施例1~8及び比較例1~3の各ペレットを得た。
 得られたペレットは、いずれの例についても円柱状体であった。ペレットの切断面の形状は、楕円形状又は略円形状であった。
 各ペレットの形状は、ノズルの孔径、及び引取ロールの回転速度を適宜設定して、ストランドの太さ、ストランドの径、ストランドの切断位置及びストランドの切断の幅を調整することで変更した。
(Examples 1 to 8, Comparative Examples 1 to 3)
Resin composition (1) is degassed at a cylinder temperature of 340° C. using a water ring vacuum pump ("SW-25" manufactured by Shinko Seiki Co., Ltd.) with a vacuum vent provided in the twin-screw extruder. The mixture was melt-kneaded and extruded through a nozzle to obtain a strand of resin composition (1).
Then, the strand extruded from the nozzle was solidified on a belt cooler while being taken up by a take-up roll, and then the solidified strand was cut by a pelletizer and pelletized. 1 to 3 pellets were obtained.
The pellets obtained were cylindrical in all cases. The shape of the cut surface of the pellet was elliptical or substantially circular.
The shape of each pellet was changed by appropriately setting the hole diameter of the nozzle and the rotation speed of the take-up roll, and adjusting the thickness of the strand, the diameter of the strand, the cutting position of the strand, and the cutting width of the strand.
 (実施例9)
 樹脂組成物(1)に代えて樹脂組成物(2)を用いたこと以外は、(実施例1~8、比較例1~3)と同様の操作により、実施例9のペレットを得た。得られたペレットは、円柱状体であった。ペレットの切断面の形状は、楕円形状であった。
(Example 9)
Pellets of Example 9 were obtained in the same manner as in (Examples 1 to 8 and Comparative Examples 1 to 3) except that the resin composition (2) was used instead of the resin composition (1). The pellets obtained were cylindrical. The shape of the cut surface of the pellet was elliptical.
 (実施例10)
 原料として、ポリカーボネート(PC)を含有する樹脂組成物(3)を用いた。
 ポリカーボネート(PC)を含有するペレット(商品名:SDポリカ301-22、住化ポリカーボネート社製)を、実施例10のペレットとした。このペレットは、円柱状体であった。ペレットの切断面の形状は、楕円形状であった。
(Example 10)
A resin composition (3) containing polycarbonate (PC) was used as a raw material.
Pellets containing polycarbonate (PC) (trade name: SD Polyca 301-22, manufactured by Sumika Polycarbonate Co., Ltd.) were used as pellets of Example 10. This pellet was cylindrical. The shape of the cut surface of the pellet was elliptical.
 (実施例11)
 実施例6のペレット100質量部と、外添剤(ベストジント 2070 Natural、ダイセル・エボニック社製)0.02質量部とを混合することにより、実施例11のペレットを得た。得られたペレットは、円柱状体であった。ペレットの切断面の形状は、楕円形状であった。
(Example 11)
The pellets of Example 11 were obtained by mixing 100 parts by mass of the pellets of Example 6 and 0.02 parts by mass of an external additive (Bestzint 2070 Natural, manufactured by Daicel-Evonik). The pellets obtained were cylindrical. The shape of the cut surface of the pellet was elliptical.
<ペレットの長さ(L)、長径(a)、短径(b)及びペレットの体積の測定>
 得られた各例のペレットから、無作為に選出した20個のペレットに対し、マイクロスコープ(株式会社キーエンス社製の「VHX-1000」)を使用して、ペレットの長さ(L)と、ペレット化におけるペレットの切断面に外接する長方形の各辺の長さとを計測した。
 ペレットの長さ(L)は、ペレットの両端の切断面を最短で結ぶ軸方向と垂直の方向から投影されたペレットの投影像において、軸方向に沿う最短の長さとした。
 ペレット化におけるペレットの切断面に外接する長方形の長辺の長さを、楕円形状の長径(a)とし、当該長方形の短辺の長さを、楕円形状の短径(b)とした。
 各ペレットから計測された長さ(L)、長径(a)、短径(b)の個数基準の算術平均値を求めることで、ペレットの平均長さ、ペレットの平均長径、ペレットの平均短径とした。
 ペレットの体積は、切断面を、長径(a)及び短径(b)を持つ楕円形状である底面とし、ペレットの長さ(L)を高さとする円柱状体の体積とした。このようにして各ペレットから計測された体積の個数基準の算術平均値を求めることで、ペレットの平均体積とした。
<Measurement of pellet length (L), major diameter (a), minor diameter (b) and pellet volume>
From the obtained pellets of each example, 20 pellets were randomly selected, using a microscope ("VHX-1000" manufactured by Keyence Corporation), the length of the pellet (L), The length of each side of a rectangle circumscribing the cut surface of the pellet during pelletization was measured.
The length (L) of the pellet was the shortest length along the axial direction in the projected image of the pellet projected from the direction perpendicular to the axial direction connecting the cut surfaces at both ends of the pellet at the shortest distance.
The length of the long side of the rectangle circumscribing the cut surface of the pellet in pelletization was defined as the major axis (a) of the ellipse, and the length of the short side of the rectangle was defined as the minor axis (b) of the ellipse.
By calculating the number-based arithmetic mean of the length (L), major diameter (a), and minor diameter (b) measured from each pellet, the average length of pellets, the average major diameter of pellets, and the average minor diameter of pellets and
The volume of the pellet was defined as the volume of a cylinder whose cut surface was an elliptical bottom surface having a major axis (a) and a minor axis (b) and whose height was the length (L) of the pellet. The number-based arithmetic average of the volumes measured from each pellet in this way was obtained to determine the average volume of the pellets.
<評価>
 各例のペレットを、以下に示す射出成形機に投入して成形操作を行うことにより、射出成形体の製造を行った。
 射出成形機(p):型締力40t、シリンダー外径φ22、機器名PNX40-5A(日精樹脂工業社製)
 射出成形機(q):型締力180t、シリンダー外径φ40、機器名SE180EV(住友重機械工業社製)
 射出成形機(r):型締力450t、シリンダー外径φ66、機器名J450AD(JSW社製)
<Evaluation>
An injection-molded article was produced by putting the pellets of each example into an injection molding machine described below and carrying out a molding operation.
Injection molding machine (p): mold clamping force 40t, cylinder outer diameter φ22, machine name PNX40-5A (manufactured by Nissei Plastic Industry Co., Ltd.)
Injection molding machine (q): mold clamping force 180t, cylinder outer diameter φ40, machine name SE180EV (manufactured by Sumitomo Heavy Industries, Ltd.)
Injection molding machine (r): mold clamping force 450t, cylinder outer diameter φ66, machine name J450AD (manufactured by JSW)
 ≪射出成形体の製造(1)≫
 実施例1~6、9~11及び比較例1~2の各ペレットを、シリンダー温度360℃の射出成形機(p)に投入して、スクリュー回転数70rpmにて混練し、金型温度150℃の金型内へ、射出速度40mm/s、保圧150MPa、背圧10MPaにて射出することにより射出成形体(体積12cm)を作製した。
≪Manufacturing of injection molded body (1)≫
The pellets of Examples 1 to 6, 9 to 11 and Comparative Examples 1 to 2 were put into an injection molding machine (p) with a cylinder temperature of 360°C, kneaded at a screw rotation speed of 70 rpm, and a mold temperature of 150°C. was injected into the mold at an injection speed of 40 mm/s, a holding pressure of 150 MPa, and a back pressure of 10 MPa to prepare an injection molded product (volume: 12 cm 3 ).
 かかる製造(1)において、金型へ射出されるペレットを計量する際の計量時間(s)を、射出成形機付属の計測器により計測した。
 本実施例において「計量時間」とは、射出成形において、直前の射出が完了し、スクリューがシリンダーの先端方向に前進した状態で、スクリューの回転(計量)を開始した時点から、射出成形体の体積に相当する所望量のペレットがシリンダー内の先端部に溜められる時点までの時間をいう。
In such production (1), the weighing time (s) when weighing the pellets injected into the mold was measured with a measuring instrument attached to the injection molding machine.
In this embodiment, the “metering time” means the time from the time when the screw starts rotating (metering) after the previous injection is completed and the screw advances toward the tip of the cylinder. It refers to the time until the desired amount of pellets corresponding to the volume is collected at the tip of the cylinder.
 また、射出成形機(p)における計量時に発生する騒音レベル(dB)について、計量時間内の騒音レベルの最大値(MAX)、及び計量時間内の騒音レベルの平均値をそれぞれ測定した。
 射出成形機における計量時に発生する騒音レベル(dB)の測定は、普通騒音計LA-1210(小野測器社製)を用いて、射出成形機のホッパー下から5cm離れた場所における、計量中の音圧を評価することで行った(以下同じ)。
 計量時間(s)、並びに、騒音レベル(dB)の最大値及び平均値の測定結果を表1に示した。
Further, regarding the noise level (dB) generated during weighing in the injection molding machine (p), the maximum value (MAX) of the noise level within the weighing time and the average value of the noise level within the weighing time were measured.
The noise level (dB) generated during weighing in the injection molding machine was measured using an ordinary sound level meter LA-1210 (manufactured by Ono Sokki Co., Ltd.) at a location 5 cm away from the bottom of the hopper of the injection molding machine during weighing. It was carried out by evaluating the sound pressure (same below).
Table 1 shows the measurement results of the measurement time (s) and the maximum and average values of the noise level (dB).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ≪射出成形体の製造(2)≫
 実施例6~9及び比較例1、3の各ペレットを、シリンダー温度360℃の射出成形機(q)に投入して、スクリュー回転数80rpmにて混練し、金型温度150℃の金型内へ、射出速度30mm/s、保圧100MPa、背圧10MPaにて射出することにより射出成形体(体積120cm)を作製した。
≪Production of injection molded body (2)≫
The pellets of Examples 6 to 9 and Comparative Examples 1 and 3 are put into an injection molding machine (q) with a cylinder temperature of 360°C, kneaded at a screw rotation speed of 80 rpm, and molded in a mold with a mold temperature of 150°C. An injection molded product (volume: 120 cm 3 ) was produced by injecting at an injection speed of 30 mm/s, a holding pressure of 100 MPa, and a back pressure of 10 MPa.
 かかる製造(2)において、金型へ射出されるペレットを計量する際の計量時間(s)を、射出成形機付属の計測器により計測した。
 また、射出成形機(q)における計量時に発生する騒音レベル(dB)について、計量時間内の騒音レベルの最大値(MAX)、及び計量時間内の騒音レベルの平均値をそれぞれ測定した。
 計量時間(s)、並びに、騒音レベル(dB)の最大値及び平均値の測定結果を表2に示した。
In the production (2), the weighing time (s) for weighing the pellets injected into the mold was measured using a measuring instrument attached to the injection molding machine.
Further, regarding the noise level (dB) generated during weighing in the injection molding machine (q), the maximum value (MAX) of the noise level within the weighing time and the average value of the noise level within the weighing time were measured.
Table 2 shows the measurement results of the measurement time (s) and the maximum and average values of the noise level (dB).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ≪射出成形体の製造(3)≫
 実施例6~9及び比較例1、3の各ペレットを、シリンダー温度360℃の射出成形機(r)に投入して、スクリュー回転数80rpmにて混練し、金型温度150℃の金型内へ、射出速度30mm/s、保圧100MPa、背圧10MPaにて射出することにより射出成形体(体積600cm)を作製した。
≪Manufacturing of injection molded body (3)≫
The pellets of Examples 6 to 9 and Comparative Examples 1 and 3 are put into an injection molding machine (r) with a cylinder temperature of 360 ° C., kneaded at a screw rotation speed of 80 rpm, and molded in a mold with a mold temperature of 150 ° C. An injection molded product (volume: 600 cm 3 ) was produced by injecting at an injection speed of 30 mm/s, a holding pressure of 100 MPa, and a back pressure of 10 MPa.
 かかる製造(3)において、金型へ射出されるペレットを計量する際の計量時間(s)を、射出成形機付属の計測器により計測した。
 また、射出成形機(r)における計量時に発生する騒音レベル(dB)について、計量時間内の騒音レベルの最大値(MAX)、及び計量時間内の騒音レベルの平均値をそれぞれ測定した。
 計量時間(s)、並びに、騒音レベル(dB)の最大値及び平均値の測定結果を表3に示した。
In the production (3), the weighing time (s) for weighing the pellets injected into the mold was measured using a measuring instrument attached to the injection molding machine.
Further, regarding the noise level (dB) generated during weighing in the injection molding machine (r), the maximum value (MAX) of the noise level within the weighing time and the average value of the noise level within the weighing time were measured.
Table 3 shows the measurement results of the measurement time (s) and the maximum and average values of the noise level (dB).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3に示す測定結果から、実施例のペレットを用いた場合、比較例のペレットを用いた場合に比べて、成形機における計量時に発生する騒音が抑えられていることが確認できる。 From the measurement results shown in Tables 1 to 3, it can be confirmed that the noise generated during weighing in the molding machine is suppressed when using the pellets of the example compared to when using the pellets of the comparative example.
 本発明によれば、成形機における計量時に発生する騒音を抑えられるペレットを提供することができる。 According to the present invention, it is possible to provide pellets capable of suppressing noise generated during weighing in a molding machine.
 1 ペレット
 1P ペレット
 10 ストランド
 11 押出機
 12 ベルトクーラー
 13 スプレーノズル装置
 14 引取ロール
 15 ペレタイザー
 16 エアーノズル装置
 22 ホッパー
 24 シリンダー
 26 スクリュー
 28 金型
 100 製造装置
 200 射出成形機
1 pellet 1P pellet 10 strand 11 extruder 12 belt cooler 13 spray nozzle device 14 take-up roll 15 pelletizer 16 air nozzle device 22 hopper 24 cylinder 26 screw 28 mold 100 manufacturing device 200 injection molding machine

Claims (6)

  1.  非晶性の熱可塑性樹脂を含むペレットであって、
     前記ペレットの平均体積が10mm以上55mm以下である、ペレット。
    A pellet containing an amorphous thermoplastic resin,
    The pellet, wherein the pellet has an average volume of 10 mm 3 or more and 55 mm 3 or less.
  2.  前記ペレットは円柱状体であり、その平均長さが2.5mm以上7.5mm以下である、請求項1に記載のペレット。 The pellet according to claim 1, wherein the pellet is cylindrical and has an average length of 2.5 mm or more and 7.5 mm or less.
  3.  非晶性の熱可塑性樹脂の含有量が、ペレットの総質量に対して、85質量%以上である、請求項1又は2に記載のペレット。 The pellet according to claim 1 or 2, wherein the content of the amorphous thermoplastic resin is 85% by mass or more with respect to the total mass of the pellet.
  4.  無機充填材の含有量が、ペレットの総質量に対して、0質量%以上15質量%以下である、請求項3に記載のペレット。 The pellet according to claim 3, wherein the content of the inorganic filler is 0% by mass or more and 15% by mass or less with respect to the total mass of the pellet.
  5.  非晶性の熱可塑性樹脂からなるペレットである、請求項3又は4に記載のペレット。 The pellet according to claim 3 or 4, which is a pellet made of an amorphous thermoplastic resin.
  6.  非晶性の熱可塑性樹脂が、ポリエーテルスルホン、ポリカーボネート及びポリフェニルスルホンからなる群より選択される少なくとも一種の熱可塑性樹脂である、請求項1~5のいずれか一項に記載のペレット。 The pellet according to any one of claims 1 to 5, wherein the amorphous thermoplastic resin is at least one thermoplastic resin selected from the group consisting of polyethersulfone, polycarbonate and polyphenylsulfone.
PCT/JP2022/012191 2021-04-02 2022-03-17 Pellet WO2022209940A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063511 2021-04-02
JP2021-063511 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022209940A1 true WO2022209940A1 (en) 2022-10-06

Family

ID=83459137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012191 WO2022209940A1 (en) 2021-04-02 2022-03-17 Pellet

Country Status (1)

Country Link
WO (1) WO2022209940A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402865B1 (en) * 1999-07-12 2002-06-11 National Research Council Of Canada Multilayered polymers and foams with variable sized interlayer gaps
JP2005158681A (en) * 2003-10-28 2005-06-16 Nec Schott Components Corp Temperature-sensitive pellet type thermal fuse and manufacturing method of temperature-sensitive pellet
WO2006062075A1 (en) * 2004-12-09 2006-06-15 Toyo Boseki Kabushiki Kaisha Process for producing polyester resin composition and molding
WO2010106870A1 (en) * 2009-03-18 2010-09-23 Jsr株式会社 Method of shaping by layer superposition with sintering using specific resin powder
WO2017002852A1 (en) * 2015-06-30 2017-01-05 株式会社クラレ Crystal polyester pellet, application thereof and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402865B1 (en) * 1999-07-12 2002-06-11 National Research Council Of Canada Multilayered polymers and foams with variable sized interlayer gaps
JP2005158681A (en) * 2003-10-28 2005-06-16 Nec Schott Components Corp Temperature-sensitive pellet type thermal fuse and manufacturing method of temperature-sensitive pellet
WO2006062075A1 (en) * 2004-12-09 2006-06-15 Toyo Boseki Kabushiki Kaisha Process for producing polyester resin composition and molding
WO2010106870A1 (en) * 2009-03-18 2010-09-23 Jsr株式会社 Method of shaping by layer superposition with sintering using specific resin powder
WO2017002852A1 (en) * 2015-06-30 2017-01-05 株式会社クラレ Crystal polyester pellet, application thereof and production method therefor

Similar Documents

Publication Publication Date Title
KR20160026805A (en) Composite having improved mechanical property and molded articles comprising same
WO2021029110A1 (en) Liquid-crystal polyester resin composition and molded object
US8920695B2 (en) Method of producing liquid crystal polyester composition
WO2021029275A1 (en) Liquid crystal polyester resin pellet, and production method therefor, and production method for molded article
CN113727823B (en) Process for producing pellets
WO2022209940A1 (en) Pellet
WO2021029109A1 (en) Resin composition and molded body
JP2016525608A (en) Composite material with improved conductivity and molded product containing the same
KR101672089B1 (en) Processing method for resin composite and plastic goods obtained from same
JP6495679B2 (en) Polyarylene sulfide resin composition
EP4011949A1 (en) Liquid crystal polyester resin molded body
JP6741835B1 (en) Liquid crystal polyester resin pellets and liquid crystal polyester resin moldings
WO2021029271A1 (en) Liquid crystal polyester resin pellet, and liquid crystal polyester resin molded article and method for manufacturing liquid crystal polyester resin molded article
CN113853285B (en) Process for producing pellets
JP6526988B2 (en) Polyarylene sulfide resin composition
JP7291612B2 (en) Method for producing polycarbonate resin composition
WO2022113845A1 (en) Pellets, method for producing pellets, and method for producing injection-molded article
JP5228568B2 (en) Thermoplastic resin composition and method for producing the same
JP2020147006A (en) Method for making a side feeder, extruder, and thermoplastic resin composition
JP6741832B1 (en) Injection-molded article and manufacturing method thereof
KR101741869B1 (en) Processing method for thermoplastic resin composition and plastic goods obtained from same
KR101741300B1 (en) Composite having improved mechanical propery and plastics comprising same
JP2022027581A (en) Method for producing polycarbonate resin composition pellet
JP2022027579A (en) Method for producing polycarbonate resin composition pellet
JP2022027580A (en) Method for producing polycarbonate resin composition pellet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780160

Country of ref document: EP

Kind code of ref document: A1