WO2022209851A1 - 基板及び配線基板の製造方法 - Google Patents

基板及び配線基板の製造方法 Download PDF

Info

Publication number
WO2022209851A1
WO2022209851A1 PCT/JP2022/011600 JP2022011600W WO2022209851A1 WO 2022209851 A1 WO2022209851 A1 WO 2022209851A1 JP 2022011600 W JP2022011600 W JP 2022011600W WO 2022209851 A1 WO2022209851 A1 WO 2022209851A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
substrate
layer
metal foil
ultra
Prior art date
Application number
PCT/JP2022/011600
Other languages
English (en)
French (fr)
Inventor
俊介 平野
智広 武藤
豪志 信國
洋一 中島
ミカ 佐竹
慎也 喜多村
Original Assignee
Mgcエレクトロテクノ株式会社
米沢ダイヤエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mgcエレクトロテクノ株式会社, 米沢ダイヤエレクトロニクス株式会社 filed Critical Mgcエレクトロテクノ株式会社
Priority to CN202280023716.6A priority Critical patent/CN117044410A/zh
Priority to KR1020237032878A priority patent/KR20230163408A/ko
Priority to JP2023510882A priority patent/JPWO2022209851A1/ja
Publication of WO2022209851A1 publication Critical patent/WO2022209851A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a substrate and a method for manufacturing a wiring substrate using this substrate.
  • a process of transporting the board is required.
  • the substrate is transported, for example, by moving it on a plurality of rollers.
  • the thin substrate described above is difficult to handle because of its low handling property, and the substrate may be damaged during transportation, resulting in a decrease in yield or contamination of the apparatus.
  • a guide plate having higher rigidity than the substrate is connected with a tape to the front side to which the substrate is conveyed, and the substrate is guided and conveyed by the guide plate.
  • a leading plate must be connected to each substrate, and the leading plate must be peeled off after the process is completed.
  • the circuit formation region has a thickness of 80 ⁇ m or less, wherein the carrier is removed from the ultra-thin metal foil layer with the carrier to expose the ultra-thin metal foil layer, At least part of the outer peripheral region is provided with a carrier remaining portion in which the carrier remains and the surface of the ultrathin metal foil layer is covered with the carrier. substrate.
  • a boundary portion between the outer peripheral region and the circuit formation region is provided in at least a part of the outer peripheral region so as to provide a carrier remaining portion in which carriers are left, or a carrier remaining portion is formed, and In at least one of the outer peripheral regions, the carrier is provided with cuts. Therefore, when manufacturing a wiring board using this substrate, the thickness of the substrate in the remaining portion of the carrier is made larger than the thickness of the substrate in the circuit forming region. It can be as thick as the carrier. Therefore, instead of the guide plate, the substrate can be easily transported using the remaining carrier portion as the guide portion. Therefore, there is no need to connect and separate the guide plate, and labor and costs can be reduced.
  • FIG. 4 is a diagram showing a process following FIG. 3; 1. It is a figure showing the process of manufacturing a wiring board using the board
  • FIG. 8 is a diagram showing a manufacturing process of the substrate shown in FIG. 7;
  • FIG. FIG. 8 is a diagram showing a process of manufacturing a wiring board using the substrate shown in FIG. 7; It is a figure showing the structure of the board
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as “this embodiment") will be described in detail, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention. is possible.
  • FIG. 1 shows a cross-sectional structure of a substrate 10 according to a first embodiment of the invention.
  • FIG. 2 shows a planar configuration viewed from one side of the substrate 10.
  • This substrate 10 has, on one side thereof, a carrier-attached ultra-thin metal foil layer 11 in which a carrier 11B and an ultra-thin metal foil layer 11A are laminated.
  • the substrate 10 includes, for example, a first metal layer 12, a first insulating resin layer 13, a second metal layer 14, a second insulating resin layer 15, and an ultra-thin metal layer with a carrier. It has a configuration in which foil layers 11 are laminated in order.
  • the ultra-thin metal foil layer 11 with a carrier is, for example, formed using an ultra-thin metal foil with a carrier in which a carrier 11B is provided on an ultra-thin metal foil layer 11A via a release layer (not shown). It is laminated with the ultra-thin metal foil layer 11A facing the second insulating resin layer 15 side.
  • the substrate 10 is a so-called coreless substrate.
  • a core resin layer 16 is provided with a first metal layer 12, a first insulating resin layer 13, a second metal layer 14, a second It can be produced by laminating the insulating resin layer 15 and the ultra-thin metal foil layer 11 with a carrier, and then peeling off from the interface between the core resin layer 16 and the first metal layer 12 .
  • the substrate 10 has, in the planar direction, a circuit forming area 10A in which a circuit is formed, and an outer peripheral area 10B provided around the outer circumference of the circuit forming area 10A.
  • the substrate 10 has, for example, a rectangular shape in plan view.
  • the outer peripheral region 10B is provided, for example, along each side, and the circuit forming region 10A is provided inside the outer peripheral region 10B.
  • the width (width in the planar direction) of the outer peripheral region 10B is, for example, within the range of 1 mm or more and 300 mm or less.
  • the carrier 11B of the carrier-attached ultrathin metal foil layer 11 is removed to expose the ultrathin metal foil layer 11A, and the thickness of the circuit formation region 10A is as thin as 80 ⁇ m or less. This is for thinning.
  • the thickness of the circuit formation region 10A is, for example, preferably 30 ⁇ m or more, more preferably 35 ⁇ m or more. This is because if the thickness is smaller than this, the reinforcement is insufficient and the risk of breakage increases.
  • the thickness is the thickness in the stacking direction (the same applies hereinafter).
  • the carrier 11B remains in at least a part of the outer peripheral region 10B, and a carrier remaining portion 10C in which the surface of the ultra-thin metal foil layer 11A is covered with the carrier 11B is provided.
  • the thickness of the substrate 10 in the carrier remaining portion 10C is thicker than the thickness of the substrate 10 in the circuit forming region 10A by the amount of the carrier 11B, and functions as a leading portion that guides the substrate 10 during transportation. It is designed to be able to In the outer peripheral region 10B, the carrier 11B is removed to expose the ultra-thin metal foil layer 11A in a region other than the carrier residual portion 10C, similarly to the circuit forming region 10A.
  • the carrier remaining portion 10C is preferably provided along at least one side, and may be provided along all sides. 1 and 2 show the case where the carrier remaining portion 10C is provided along one side of the substrate 10.
  • the width of the carrier remaining portion 10C may be the same as the width of the outer peripheral region 10B, but it does not have to be the same, and may be provided partially in the width direction. For example, it may be spaced apart from the side edge, or may be spaced apart from the circuit formation region 10A.
  • the carrier remaining portion 10C may be partially provided in the length direction of the side, but preferably provided continuously over the entire side.
  • the carrier 11B is for supporting the ultra-thin metal foil layer 11A and improving the handleability.
  • the material constituting the carrier 11B is not particularly limited.
  • Metal foil can be used.
  • Other examples include resin films such as PET films, PEN films, aramid films, polyimide films, nylon films, and liquid crystal polymers, metal coated resin films having a metal coating layer on a resin film, glass plates, ceramic plates, and the like.
  • metal foil is preferred from the viewpoint of preventing inclusion of foreign matter due to static electricity that may occur during handling, and copper foil is preferred from the viewpoint of thickness uniformity and corrosion resistance of the foil.
  • the thickness of the carrier 11B is thicker than the thickness of the ultra-thin metal foil layer 11A, and is preferably 250 ⁇ m or less, more preferably 12 ⁇ m or more and 200 ⁇ m or less.
  • the release layer is for allowing the carrier 11B to be easily separated from the ultra-thin metal foil layer 11A.
  • Materials for the release layer are not particularly limited, and various well-known materials can be used as appropriate.
  • the ultra-thin metal foil layer 11A can be made of, for example, various metal foils, but is preferably made of copper foil.
  • the thickness of the ultra-thin metal foil layer 11A is appropriately set as desired, and is not particularly limited.
  • the first metal layer 12 preferably has a thickness of, for example, 1 ⁇ m to 70 ⁇ m and is formed of a metal foil that can be peeled off from the core resin layer 16 as described later. If the thickness of the first metal layer 12 is less than 1 ⁇ m, the substrate 10 will be poorly formed, and if it exceeds 70 ⁇ m, the surface will be defective.
  • the thickness of the first metal layer 12 is preferably 1 ⁇ m to 12 ⁇ m, more preferably 2 ⁇ m to 5 ⁇ m, from the viewpoint of circuit formability.
  • the first metal layer 12 is preferably made of copper foil, for example.
  • a peelable type can be used as the copper foil.
  • a “peelable type” copper foil is an ultra-thin copper foil having a release layer, and the release layer is, for example, a peelable copper foil.
  • the first insulating resin layer 13 is not particularly limited. It can be composed of an insulating film material or the like. The thickness of the first insulating resin layer 13 is appropriately set as desired, and is not particularly limited. .
  • Prepreg is made by impregnating or coating a base material with an insulating material such as a resin composition.
  • the base material is not particularly limited, and well-known base materials used for various laminates for electrical insulating materials can be appropriately used.
  • Materials constituting the substrate include, for example, inorganic fibers such as E-glass, D-glass, S-glass, and Q-glass; organic fibers such as polyimide, polyester, or tetrafluoroerylene; and mixtures thereof.
  • the substrate is not particularly limited, and for example, those having a shape such as woven fabric, nonwoven fabric, roving, chopped strand mat, surfacing mat, etc. can be used as appropriate.
  • the material and shape of the base material are selected according to the intended use and performance of the molded article, and if necessary, it is possible to use one or more kinds of materials and shapes.
  • the thickness of the base material is not particularly limited as long as the thickness of the first insulating resin layer 13 is within the range described above.
  • the base material one surface-treated with a silane coupling agent or the like or one subjected to mechanical fiber opening treatment can be used, and these base materials are suitable in terms of heat resistance, moisture resistance, and workability. is.
  • the insulating material is not particularly limited, and a known resin composition used as an insulating material for printed wiring boards can be appropriately selected and used.
  • a thermosetting resin having good heat resistance and chemical resistance can be used as a base.
  • thermosetting resins include, but are not limited to, phenol resins, epoxy resins, cyanate resins, maleimide resins, isocyanate resins, benzocyclobutene resins, and vinyl resins.
  • One type of thermosetting resin may be used alone, or two or more types may be mixed and used.
  • epoxy resins are excellent in heat resistance, chemical resistance, and electrical properties, and are relatively inexpensive, so they can be suitably used as insulating materials.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, Bisphenol A novolac type epoxy resin, diglycidyl ether of biphenol, diglycidyl ether of naphthalenediol, diglycidyl ether of phenols, diglycidyl ether of alcohols, alkyl-substituted products thereof, halogen compounds, hydrogenated products, and the like.
  • Epoxy resins may be used singly or in combination of two or more.
  • the curing agent used with this epoxy resin can be used without limitation as long as it cures the epoxy resin.
  • There are phosphorus compounds and their halides. These epoxy resin curing agents may be used singly or in combination of two or more.
  • a cyanate resin is a resin that, when heated, produces a cured product with repeating units of triazine rings, and the cured product has excellent dielectric properties. For this reason, it is suitable especially when high-frequency characteristics are required.
  • the cyanate resin include, but are not limited to, 2,2-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)ethane, 2,2-bis(3,5dimethyl-4-cyanate), anatophenyl)methane, 2,2-(4-cyanatophenyl)-1,1,1,3,3,3-hexafluoropropane, ⁇ , ⁇ '-bis(4-cyanatophenyl)-m-diisopropyl
  • Examples include cyanate esters of benzene, phenol novolak and alkylphenol novolak.
  • cyanate resins such as cyanate ester compounds may be used singly or in combination of two or more. A part of the cyanate ester compound may be previously oligomerized into a trimer or a pentamer.
  • a curing catalyst or curing accelerator can be used in combination with the cyanate resin.
  • the curing catalyst for example, metals such as manganese, iron, cobalt, nickel, copper and zinc can be used.
  • organic metal salts such as 2-ethylhexanoate and octylate, and acetylacetone Mention may be made of organometallic complexes such as complexes.
  • Curing catalysts may be used singly or in combination of two or more.
  • Phenols are preferably used as the curing accelerator, and monofunctional phenols such as nonylphenol and paracumylphenol; bifunctional phenols such as bisphenol A, bisphenol F and bisphenol S; or phenol novolak and cresol novolak. can be used.
  • a hardening accelerator may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • the resin composition used as the insulating material can also be blended with a thermoplastic resin in consideration of dielectric properties, impact resistance, film processability, etc.
  • thermoplastic resins include, but are not limited to, fluorine resins, polyphenylene ethers, modified polyphenylene ethers, polyphenylene sulfides, polycarbonates, polyetherimides, polyetheretherketones, polyacrylates, polyamides, polyamideimides, and polybutadiene. etc. can be mentioned.
  • One type of thermoplastic resin may be used alone, or two or more types may be mixed and used.
  • polyphenylene ethers and modified polyphenylene ethers include poly(2,6-dimethyl-1,4-phenylene) ether, alloyed polymers of poly(2,6-dimethyl-1,4-phenylene) ether and polystyrene, Alloying polymer of poly(2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer, Alloying of poly(2,6-dimethyl-1,4-phenylene) ether and styrene-maleic anhydride copolymer Polymer, alloyed polymer of poly(3,6-dimethyl-1,4-phenylene) ether and polyamide, alloy of poly(2,6-dimethyl-1,4-phenylene) ether and styrene-but
  • polyamide-imide resins are useful from the viewpoint of excellent moisture resistance and good adhesion to metals.
  • the raw material for the polyamideimide resin is not particularly limited, but examples of the acidic component include trimellitic anhydride and trimellitic anhydride monochloride, and examples of the amine component include metaphenylenediamine, paraphenylenediamine, 4 ,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, bis[4-(aminophenoxy)phenyl]sulfone, 2,2'-bis[4-(4-aminophenoxy)phenyl]propane and the like.
  • the polyamide-imide resin may be modified with siloxane to improve drying properties, and in this case, siloxane diamine can be used as the amino component. Considering film processability, it is preferable to use a polyamide-imide resin having a molecular weight of 50,000 or more.
  • thermoplastic resins have been described as insulating materials mainly used for prepregs, these thermoplastic resins are not limited to use as prepregs.
  • a material (film material) processed into a film using the thermoplastic resin described above may be used as the insulating resin layer.
  • An inorganic filler may be mixed in the resin composition used as the insulating material.
  • inorganic fillers include, but are not limited to, alumina, aluminum hydroxide, magnesium hydroxide, clay, talc, antimony trioxide, antimony pentoxide, zinc oxide, fused silica, glass powder, quartz powder, and shirasu balloons. be done. These inorganic fillers may be used singly or in combination of two or more.
  • the resin composition used as an insulating material may contain an organic solvent.
  • the organic solvent is not particularly limited, and aromatic hydrocarbon solvents such as benzene, toluene, xylene and trimethylbenzene; ketone solvents such as acetone, methyl ethyl ketone and methylinobutyl ketone; and tetrahydrofuran.
  • Ether solvents aromatic hydrocarbon solvents such as benzene, toluene, xylene and trimethylbenzene
  • ketone solvents such as acetone, methyl ethyl ketone and methylinobutyl ketone
  • tetrahydrofuran Ether solvents
  • alcohol solvents such as isopropanol and butanol
  • ether alcohol solvents such as 2-methoxyethanol and 2-butoxyethanol
  • N-methylpyrrolidone N,N-dimethylformamide and N,N-dimethylacetamide
  • the amount of the solvent in the varnish when producing the prepreg is preferably in the range of 40% by mass to 80% by mass with respect to the entire resin composition. Further, the viscosity of the varnish is desirably in the range of 20 cP to 100 cP (20 mPa ⁇ s to 100 mPa ⁇ s).
  • the resin composition used as an insulating material may contain a flame retardant.
  • flame retardants include, but are not limited to, bromine compounds such as decabromodiphenyl ether, tetrabromobisphenol A, tetrabromophthalic anhydride, and tribromophenol, triphenyl phosphate, trixylyl phosphate, and clay.
  • Phosphorus compounds such as diphenyl phosphate, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, red phosphorus and its modified products, antimony compounds such as antimony trioxide and antimony pentoxide, melamine, cyanuric acid, melamine cyanurate
  • antimony compounds such as antimony trioxide and antimony pentoxide
  • melamine cyanuric acid
  • Known customary flame retardants such as triazine compounds such as can be used.
  • additives such as the above-mentioned curing agent, curing accelerator, thermoplastic particles, coloring agents, ultraviolet opaque agents, antioxidants, reducing agents, etc. Additives and fillers can be added.
  • the prepreg is, for example, a resin composition (including varnish) so that the amount of the resin composition attached to the base material described above is 20% by mass to 90% by mass in terms of the resin content in the prepreg after drying. ) is impregnated or coated on the substrate, and then dried by heating at a temperature of 100° C. to 200° C. for 1 minute to 30 minutes to obtain a prepreg in a semi-cured state (B stage state).
  • GHPL-830NS series product name
  • GHPL-830NSF series product name
  • the second metal layer 14 can be made of, for example, various metal foils, but is preferably made of copper foil.
  • the thickness of the second metal layer 14 is not particularly limited because it is appropriately set as desired.
  • a circuit pattern is formed on the second metal layer 14 as necessary.
  • the second insulating resin layer 15 is not particularly limited, but can be made of the same material as the first insulating resin layer 13 (for example, prepreg).
  • the thickness of the second insulating resin layer 15 is appropriately set as desired, and is not particularly limited. .
  • FIG. 10 can be manufactured, for example, as follows.
  • First laminate forming step First, for example, as shown in FIG. After arranging the first insulating resin layer 13 and the second metal layer 14 in this order, they are collectively heated and pressurized to form the first layer by crimping each layer, for example, as shown in FIG. 3(B). A laminate 17 is formed.
  • the core resin layer 16 is not particularly limited, for example, it can be made of the same material as the first insulating resin layer 13 (for example, prepreg).
  • the thickness of the core resin layer 16 is preferably 1 ⁇ m to 80 ⁇ m, for example. If the thickness of the core resin layer 16 is less than 1 ⁇ m, the molding of the resin will be defective.
  • the thickness of the core resin layer 16 is preferably 3 ⁇ m to 40 ⁇ m, more preferably 10 ⁇ m to 25 ⁇ m, from the viewpoint of lamination moldability.
  • the first metal layer 12 is preferably formed using a metal foil that can be peeled off from the core resin layer 16, such as a peelable copper foil.
  • a peelable copper foil is used, the first metal layer 12 is laminated so that the release layer is in contact with the core resin layer 16 .
  • the release layer includes, for example, a layer containing at least a silicon compound, and can be formed, for example, by applying a silicon compound consisting of a single silane compound or a combination of multiple silane compounds on a copper foil.
  • the means for applying the silicon compound is not particularly limited, and for example, known means such as coating can be used.
  • An antirust treatment can be applied to the surface of the copper foil to be adhered to the release layer (to form an antirust treatment layer).
  • Rust prevention treatment can be performed using any one of nickel, tin, zinc, chromium, molybdenum, cobalt, or alloys thereof.
  • the thickness of the release layer is not particularly limited, but is preferably 5 nm to 100 nm, more preferably 10 nm to 80 nm, particularly preferably 20 nm to 60 nm, from the viewpoint of removability and peelability.
  • the second metal layer 14 can be formed, for example, by using an ultra-thin metal foil with a carrier and removing the carrier from the ultra-thin metal foil.
  • the second metal layer 14 is formed by arranging the ultra-thin metal foil of the ultra-thin metal foil with a carrier on the side of the first insulating resin layer 13 and heating and pressurizing to form the first laminate 17 . After that, it is formed by peeling off the carrier.
  • the heating and pressurizing conditions in the first laminate forming step are not particularly limited, but for example, a vacuum press is performed under the conditions of a temperature of 220 ⁇ 2° C., a pressure of 5 ⁇ 0.2 MPa, and a holding time of 60 minutes.
  • a vacuum press is performed under the conditions of a temperature of 220 ⁇ 2° C., a pressure of 5 ⁇ 0.2 MPa, and a holding time of 60 minutes.
  • the 1st laminated body 17 can be formed.
  • the first The surface of the metal layer 12 or the second metal layer 14 may be roughened.
  • the roughening treatment is not particularly limited, and known means can be used as appropriate.
  • the first metal layer 12 or the second metal layer 14 is a copper foil, for example, a copper surface roughening liquid is used. means.
  • a pattern is formed in the second metal layer 14 .
  • the pattern forming means is not particularly limited, but the pattern can be formed, for example, by the following steps. After the surface of the second metal layer 14 is smoothed, a dry film resist or the like is laminated, and a negative mask is attached, the circuit pattern is printed with an exposure machine, and the dry film resist is developed with a developer. , an etching resist can be formed. After that, an etching process is performed, and after removing the second metal layer 14 in a portion without the etching resist with a ferric chloride aqueous solution or the like, the resist is removed to form a pattern in the second metal layer 14. can be done.
  • the resist at that time is not particularly limited, and for example, a known one such as a commercially available dry film resist can be appropriately selected and used.
  • Photolithography including exposure, development, and removal of resist
  • the pattern width of the second metal layer 14 is not particularly limited, and the width can be appropriately selected according to the application. can be done.
  • the second insulating resin layer 15 and the carrier-attached ultra-thin metal foil layer 11 are formed on the surface of the second metal layer 14 of the first laminate 17 . are arranged in this order and then heated and pressurized to form the second laminate 18 .
  • the ultra-thin metal foil layer 11 with a carrier is arranged so that the ultra-thin metal foil layer 11A of the ultra-thin metal foil with a carrier faces the second insulating resin layer 15 side.
  • the method and conditions for laminating the second insulating resin layer 15 and the ultra-thin metal foil layer 11 with a carrier are not particularly limited.
  • a second laminate 18 is obtained by performing a vacuum press under conditions of a temperature of 220 ⁇ 2 ° C., a pressure of 5 ⁇ 0.2 MPa, and a holding time of 60 minutes. can be formed.
  • the surface of the ultra-thin metal foil layer 11A may be roughened.
  • the carrier 11B is removed in the circuit formation region 10A and the carrier 11B is left in at least part of the outer peripheral region 10B.
  • An ultra-thin metal foil layer 11A is applied to the carrier 11B from the surface layer of the carrier 11B in at least one of the boundary between the outer peripheral region 10B and the circuit forming region 10A and the outer peripheral region 10B so as to form the carrier remaining portion 10C.
  • the notch 11C can be made with a cutter or the like. The cut 11C separates the carrier 11B into a remaining carrier portion 10C and other portions.
  • the carrier 11B having the cut 11C is peeled off except for the remaining carrier portion 10C.
  • a cut 11C is made in the outer peripheral region 10B, or in the boundary between the outer peripheral region 10B and the circuit forming region 10A and in the outer peripheral region 10B, and along one side of the substrate.
  • a case where the carrier 11B is left and other portions are peeled off to form a carrier remaining portion 10C is shown.
  • the second laminate 18 is separated by peeling at the interface between the core resin layer 16 and the first metal layers 12 arranged on both sides thereof.
  • the first metal layer 12, the first insulating resin layer 13, the second metal layer 14, the second insulating resin layer 15, and the carrier-attached ultrathin metal foil layer 11 were sequentially laminated.
  • a substrate 10 can be obtained (see FIG. 1).
  • peeling the core resin layer 16 it is preferable to peel the core resin layer 16 and the first metal layer 12 at the interface. A part of it may be peeled off together with the core resin layer 16 .
  • the core resin layer 16 is peeled off together with the release layer at the interface between the release layer of the first metal layer 12 and the metal foil is also included.
  • the release layer can be removed using, for example, a sulfuric acid-based or hydrogen peroxide-based etchant.
  • the sulfuric acid-based or hydrogen peroxide-based etchant is not particularly limited, and those used in the industry can be used.
  • the cutting step, the carrier peeling step, and the core resin layer separating step are performed in order after the second laminate forming step.
  • the layer separation step, the cutting step, and the carrier peeling step may be performed in this order, and after the second laminate forming step, the cutting step, the core resin layer forming step, and the carrier peeling step are performed. You may make it perform in order.
  • FIG. 5 shows an example of the process of manufacturing the wiring substrate 20 using the substrate 10.
  • the substrate 10 can be used, for example, to manufacture a wiring substrate 20 having wiring conductors 22 formed on both sides of an insulating layer 21 .
  • the insulating layer 21 is composed of the first insulating resin layer 13 and the second insulating resin layer 15, and the wiring conductors 22 are formed by patterning the first metal layer 12 and the second metal layer 14, respectively.
  • the ultra-thin metal foil layer 11A is formed by interlayer connection by electrolytic copper plating and/or electroless copper plating. Specifically, for example, it can be produced as follows.
  • non-through holes 23 reaching the surface of the second metal layer 14 are formed in the surface of the substrate 10 .
  • the non-through holes 23 are provided on both surfaces of the substrate 10 .
  • the non-through holes 23 are formed in the second insulating resin layer 15 through the ultra-thin metal foil layer 11A.
  • non-through holes 23 are formed in the first insulating resin layer 13 through the first metal layer 12 from the lower side of the paper surface of FIG. 5(A).
  • a means for forming the non-through hole 23 is not particularly limited, and for example, a known means such as a carbon dioxide laser can be used.
  • the number and size of the non-through holes 23 can be appropriately selected as desired.
  • desmear treatment can be performed using an aqueous solution of sodium permanganate or the like.
  • electrolytic copper plating and/or electroless copper plating is applied to form a copper plating film on the inner walls of the non-through holes 23, and the patterned first metal The layer 12, the second metal layer 14 and the ultra-thin metal foil layer 11A are electrically connected. Furthermore, by increasing the thickness of the first metal layer 12 and the ultra-thin metal foil layer 11A on both sides of the substrate 10 by the electrolytic copper plating and/or the electroless copper plating, the third metal layer 24 is formed. be.
  • the method of applying electrolytic copper plating and/or electroless copper plating is not particularly limited, and known methods can be employed.
  • the copper plating may be either electrolytic copper plating or electroless copper plating, but it is preferable to apply both electrolytic copper plating and electroless copper plating.
  • etching treatment for example, as shown in FIG. 5(C), after the electrolytic/electroless copper plating treatment, a known etching treatment or the like is performed as necessary so that the third metal layer 24 has a desired thickness. can be applied to adjust the film thickness of the third metal layer 24 .
  • the thickness of the substrate 10 after adjustment is appropriately set as desired, and is not particularly limited.
  • etching resist can be formed by developing the dry film resist with a developer.
  • the substrate 10 is moved on a plurality of rollers with the remaining carrier portion 10C facing the front side, for example, by a horizontal etching line, and subjected to an etching process.
  • the metal layer 24 is removed with a ferric chloride aqueous solution or the like.
  • carrier remaining portion 10C having a large thickness is provided in at least part of outer peripheral region 10B of substrate 10, substrate 10 can be easily transported using carrier remaining portion 10C as a leading portion. . After that, by removing the resist, the wiring substrate 20 having the wiring conductors 22 formed on both surfaces of the insulating layer 21 can be obtained as shown in FIG. 5(D).
  • an interlayer connection method that can be applied in the present embodiment, a known method of applying chemical copper plating to a blind via portion formed by laser (a wiring circuit is formed by laser processing, and then chemical copper plating is applied).
  • metal paste containing metal fillers such as solder, silver, and copper in insulating resin is bump-printed on predetermined locations by screen printing or the like, and the paste is cured by drying, and electrical conduction between the inner and outer layers is established by heating and pressurizing. Items to be secured can be applied.
  • the wiring substrate 20 is a package substrate for mounting a semiconductor element having a three-layer structure, but the present invention is not limited to this, and may have a five-layer structure or the like.
  • a package substrate for mounting a semiconductor device having a further build-up structure can be formed. For example, after the wiring conductors 22 are formed as described above, the carrier 11B is peeled off, an insulating resin layer and a metal layer are laminated, patterning and interlayer connection are repeated, and a buildup structure is obtained. It becomes possible to manufacture a package substrate for mounting a semiconductor element.
  • a semiconductor element such as a bare chip can be mounted on the wiring board 20 as desired.
  • the semiconductor element to be mounted is not particularly limited, and a desired element can be used as appropriate.
  • a bare chip having gold bumps formed on aluminum electrodes by ball bonding of gold wires can be used.
  • the semiconductor element can be mounted on the wiring conductors 22 of the wiring board 20 via a bonding material.
  • the bonding material is not particularly limited as long as it has a conductive means, but for example, solder (solder ball, solder paste, etc.) can be used.
  • solder solder ball, solder paste, etc.
  • a semiconductor element can be mounted via a bonding material.
  • the surface treatment is not particularly limited, examples thereof include formation of a nickel layer and a gold plating layer.
  • the reflow temperature is appropriately selected depending on the melting point of the bonding material and the like, and can be set to 260° C. or higher, for example.
  • the carrier remaining portion 10C in which the carrier 11B is left is provided in at least a portion of the outer peripheral region 10B.
  • the thickness of the substrate 10 in the carrier remaining portion 10C can be made thicker by the carrier 11B than the thickness of the substrate 10 in the circuit forming region 10A. Therefore, the substrate 10 can be transported using the remaining carrier portion 10C as a leading portion instead of the leading plate. Therefore, there is no need to connect and separate the guide plate, and labor and costs can be reduced.
  • FIG. 6A and 6B show configurations of substrates 30A and 30B according to the second embodiment of the present invention, FIG. 6A showing the substrate 30A and FIG. 6B showing the substrate 30B.
  • the substrate 30A is obtained by forming a cut 11C in the carrier 11B of the second laminate 18 in the first embodiment, extending from the surface layer of the carrier 11B to the ultra-thin metal foil layer 11A.
  • the carrier 11B of the second laminate 18 in the first embodiment is provided with a cut 11C extending from the surface layer of the carrier 11B to the ultra-thin metal foil layer 11A.
  • 16 is separated, or the core resin layer 16 is separated from the second laminate 18 and the carrier 11B is provided with a cut 11C extending from the surface layer of the carrier 11B to the ultra-thin metal foil layer 11A.
  • the substrates 30A and 30B have a structure similar to that of the first embodiment except that the carrier 11B is provided with a cut 11C for forming the carrier remaining portion 10C and the carrier 11B is not removed. and can be manufactured in the same way. Further, after removing the carrier 11B from the portion other than the remaining carrier portion 10C and further separating the core resin layer 16 from the substrate 30A, the substrate 30A may be used for manufacturing the wiring substrate 20 in the same manner as in the first embodiment. It is possible to obtain the same effect as in the first embodiment. Therefore, the same reference numerals are assigned to the same components as in the first embodiment, and detailed description thereof will be omitted.
  • the substrate 30A has the carrier-attached ultra-thin metal foil layer 11 on both sides, and the substrate 30B has the carrier-attached ultra-thin metal foil layer 11 on one side.
  • FIG. 7 shows the configuration of a substrate 40 according to a third embodiment of the invention.
  • This substrate 40 has, on at least one side thereof, a carrier-attached ultra-thin metal foil layer 41 in which a carrier 41B and an ultra-thin metal foil layer 41A are laminated.
  • the substrate 40 has, for example, a structure in which ultra-thin metal foil layers 41 with carriers are laminated on both sides of a resin layer 42, and is, for example, a so-called copper-clad laminate.
  • the carrier-attached ultra-thin metal foil layer 41 has the same configuration as the carrier-attached ultra-thin metal foil layer 11 in the first embodiment. corresponds to the ultra-thin metal foil layer 11A.
  • the resin layer 42 has the same configuration as the core resin layer 16 in the first embodiment.
  • the carrier-attached ultra-thin metal foil layer 41 is laminated with the ultra-thin metal foil layer 41A facing the resin layer 42 side.
  • the substrate 40 has a circuit forming area 40A and an outer peripheral area 40B in the plane direction, similarly to the first embodiment, except that the laminated structure is different. is provided with a carrier remaining portion 40C.
  • the circuit forming region 40A, the peripheral region 40B, and the carrier remaining portion 40C are the same as the circuit forming region 10A, the peripheral region 10B, and the carrier remaining portion 10C in the first embodiment. That is, in the circuit formation region 40A, the carrier 41B of the carrier-attached ultrathin metal foil layer 41 is removed to expose the ultrathin metal foil layer 41A, and the thickness of the circuit formation region 40A is as thin as 80 ⁇ m or less. .
  • FIG. 7 shows a case where carrier remaining portions 40C are formed on both sides along one side of the substrate.
  • FIG. 8 shows the manufacturing process of the substrate 40.
  • FIG. 8A the carrier-attached ultra-thin metal foil layers 41 are placed on both sides of the resin layer 42 and then heated and pressurized to form a third laminate 43. do.
  • the ultra-thin metal foil layer 41 with a carrier is formed using an ultra-thin metal foil with a carrier, and the ultra-thin metal foil layer 41A is arranged on the resin layer 42 side.
  • FIGS. 8B and 8C in the same manner as in the first embodiment, the carriers 41B on both sides of the third laminate 43 are subjected to a cutting step (FIG. 8B). ), and a carrier peeling step (FIG. 8C). Thereby, the substrate 40 shown in FIG. 7 is obtained.
  • FIG. 9 shows an example of a process for manufacturing a wiring substrate 50 using the substrate 40.
  • the substrate 40 can be used, for example, to manufacture a wiring substrate 50 having wiring conductors 52 formed on both sides of an insulating layer 51 .
  • the insulating layer 51 is composed of the resin layer 42, and the wiring conductor 52 is formed by connecting the patterned ultra-thin metal foil layer 41A between layers by electrolytic copper plating and/or electroless copper plating. Specifically, for example, it can be produced as follows.
  • through holes 53 are formed in the substrate 40 .
  • the means for forming the through holes 53 is not particularly limited, and for example, known means such as a laser such as a carbon dioxide laser or a drill can be used.
  • the number and size of the through-holes 53 can be appropriately selected as desired.
  • desmear treatment can be performed using an aqueous solution of sodium permanganate or the like.
  • electrolytic copper plating and/or electroless copper plating is applied to form a copper plating film on the inner wall of the through hole 53, and the patterned double-sided ultra-thin metal foil is formed.
  • Layer 41A is electrically connected.
  • the conductor layer 54 is formed by increasing the thickness of the ultra-thin metal foil layers 41A on both sides by the electrolytic copper plating and/or the electroless copper plating.
  • the method of applying electrolytic copper plating and/or electroless copper plating is not particularly limited, and known methods can be employed.
  • the copper plating may be either electrolytic copper plating or electroless copper plating, but it is preferable to apply both electrolytic copper plating and electroless copper plating.
  • etching treatment a known treatment such as an etching treatment is performed so that the conductor layer 54 has a desired thickness, and the thickness of the conductor layer 54 is adjusted. can do.
  • a dry film resist or the like is laminated, and a negative mask is pasted. can be used to develop the dry film resist to form an etching resist.
  • the substrate 40 is moved on a plurality of rollers with the remaining carrier portion 40C on the leading side by a horizontal etching line, and the substrate 40 is etched. is removed with an aqueous solution of ferric chloride or the like.
  • the thick carrier remaining portion 40C is provided in at least a portion of the outer peripheral region 40B of the substrate 40, the substrate 40 can be easily transported using the carrier remaining portion 40C as a leading portion. .
  • a wiring substrate 50 having wiring conductors 52 formed on both surfaces of the insulating layer 51 can be obtained, as shown in FIG. 9(C).
  • the wiring board 50 is not limited to the two-layer semiconductor device mounting package board, but may have a further build-up structure such as a 4, 5, 6 or more layer structure. It is possible to form a package substrate for mounting a semiconductor element. Further, the wiring substrate 50 can be mounted with a semiconductor element such as a bare chip as desired, as in the first embodiment.
  • the remaining carrier portion 40C in which the carrier 41B is left is provided in at least a part of the outer peripheral region 40B.
  • the substrate 40 can be transported using 40C as a leading portion. Therefore, there is no need to connect and separate the guide plate, and labor and costs can be reduced.
  • FIG. 10 shows the configuration of a substrate 60 according to the fourth embodiment of the invention.
  • the substrate 60 is obtained by forming a cut 41C in the carrier 41B of the third laminate 43 in the third embodiment from the surface layer of the carrier 41B to reach the ultra-thin metal foil layer 41A. That is, the substrate 60 has a cut 41C for forming the carrier remaining portion 40C, and has the same configuration as that of the third embodiment except that the carrier 41B is provided with the cutout 41C and the carrier 41B is not peeled off. and can be manufactured in a similar manner.
  • a substrate 10 was formed as follows, and a wiring substrate 40 was formed using the substrate 10 .
  • a prepreg (thickness 25 ⁇ m: GHPL-830NS SF74 manufactured by Mitsubishi Gas Chemical Co., Ltd.) was prepared as a B-stage by impregnating a glass cloth (glass fiber) with a bismaleimide triazine resin (BT resin).
  • a copper foil with a release layer (first metal layer 12) coated with a release layer (manufactured by JX Nikko Nisseki Metals Co., Ltd., trade name: PCS) with a copper foil thickness of 2 ⁇ m is peeled off.
  • a prepreg (first insulating resin layer) was formed by impregnating a glass cloth (glass fiber) with a bismaleimide triazine resin (BT resin) on the mold layer so that the mold layer surface was in contact with the core resin layer 16 to form a B stage.
  • the surface of the patterned second metal layer 14 is roughened using a copper surface roughening liquid (manufactured by MEC Co., Ltd., product name: CZ-8101), and the surface of the second metal layer 14 is
  • a prepreg second insulating resin layer 15; thickness 15 ⁇ m: GHPL-830NS SP68 manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • BT resin bismaleimide triazine resin
  • a 2 ⁇ m copper foil with a 18 ⁇ m carrier copper foil (ultra-thin metal foil layer 11 with a carrier; manufactured by Mitsui Kinzoku Mining Co., Ltd., trade name: MTFL) is placed through a vacuum press at a pressure of 2.5 ⁇ 0. Lamination was carried out under the conditions of 2 MPa, temperature of 220 ⁇ 2° C., and holding time of 60 minutes to produce the second laminate 18 (see FIG. 3(D)).
  • the outer peripheral region 10B of the carrier 11B, or the outer peripheral region 10B and the circuit formation region 10A are formed so as to form the carrier remaining portion 10C in the outer peripheral region 10B.
  • a notch 11C was made with a cutter in the boundary between and the outer peripheral region 10B (see FIG. 4(E)). The cut 11C was placed at a position 40 mm away from the side edge.
  • the second laminate 18 is separated by applying a physical force to the boundary between the release layer-attached copper foil (first metal layer 12) and the prepreg (core resin layer 16), and the circuit formation region is formed.
  • a substrate 10 having a thickness of 10 A and a thickness of 39 ⁇ m was obtained (see FIG. 1).
  • the surface of the third metal layer 24 was smoothed, and a dry film resist (manufactured by Nichigo-Morton Co., Ltd., trade name: NIT225) was applied at a temperature of 110 ⁇ 10° C. and a pressure of 0.50 ⁇ 0.02 MPa. ) was laminated.
  • a dry film resist manufactured by Nichigo-Morton Co., Ltd., trade name: NIT225
  • the circuit pattern is printed with a parallel exposure machine, the dry film resist is developed with a 1% sodium carbonate aqueous solution to form an etching resist, and the remaining carrier portion 10C is etched with a horizontal etching line.
  • the substrate 10 is moved on a plurality of rollers with the side on which the . After that, the dry film resist was removed with an aqueous sodium hydroxide solution to produce a wiring substrate 20 (see FIG. 5(D)).
  • the resulting wiring board 20 was subjected to a solder resist forming process and a gold plating finish, and then cut into a package size.
  • the manufactured wiring board 20 was not damaged, and the wiring board 20 could be manufactured easily and satisfactorily using the substrate 10 .
  • a substrate 40 was formed as follows, and a wiring substrate 50 was formed using the substrate 40 .
  • ⁇ Manufacturing of substrate 40> A copper-clad laminate (HL832NS manufactured by Mitsubishi Gas Chemical Co., Ltd., 2 ⁇ m copper foil with 18 ⁇ m carrier copper foil) using a 40 ⁇ m thick carrier-attached copper foil is prepared (see FIG. 8), and a carrier remaining portion 40C is formed in the outer peripheral region 40B.
  • a cut 41C was made with a cutter along one short side of the carrier 41B, or in the boundary between the outer peripheral region 40B and the circuit forming region 40A and in the outer peripheral region 40B. The cut 41C was placed at a position 40 mm away from the side edge.
  • a through-hole 53 is formed in the substrate 40 with a carbon dioxide laser processing machine (manufactured by Hitachi Via Mechanics Co., Ltd., product name: LC-1C/21) under the conditions of a beam irradiation diameter of ⁇ 0.21 mm, a frequency of 500 Hz, and a pulse width of 10 ⁇ s. (see FIG. 9(A)). Thereafter, desmear treatment was performed using a sodium permanganate aqueous solution having a temperature of 80 ⁇ 5° C. and a concentration of 55 ⁇ 10 g/L.
  • the surface of the conductor layer 54 was smoothed, and a dry film resist (manufactured by Nichigo-Morton, trade name: NIT225) was laminated at a temperature of 110 ⁇ 10° C. and a pressure of 0.50 ⁇ 0.02 MPa.
  • the circuit pattern is printed with a parallel exposure machine, the dry film resist is developed with a 1% sodium carbonate aqueous solution to form an etching resist, and the remaining carrier portion 40C is etched with a horizontal etching line.
  • the substrate 40 was moved on a plurality of rollers with the side on which the . After that, the dry film resist was removed with an aqueous sodium hydroxide solution to produce a wiring board 50 (see FIG. 9C).
  • the obtained wiring board 50 was subjected to a solder resist forming process and a gold plating finish, and then cut into a package size.
  • the manufactured wiring board 50 was not damaged, and the wiring board 50 could be manufactured easily and satisfactorily using the substrate 40 .
  • Example 1 A substrate was produced in the same process as in Example 1, except that the carrier with a thickness of 18 ⁇ m was completely peeled off in the carrier peeling process. In the same manner as in Example 1, through-holes were formed in the produced substrate using a carbon dioxide laser processing machine, desmear treatment was performed, and then electroless copper plating and electrolytic copper plating were applied to a thickness of 8 ⁇ m. Subsequently, in the same manner as in Example 1, a dry film resist was laminated and the dry film resist was developed.
  • Example 2 In the same manner as in Example 1, through-holes were formed in the produced substrate using a carbon dioxide laser processing machine, desmear treatment was performed, and then electroless copper plating and electrolytic copper plating were applied to a thickness of 8 ⁇ m. Subsequently, in the same manner as in Example 1, a dry film resist was laminated and the dry film resist was developed. After that, using a horizontal etching line, the copper foil was moved on a plurality of rollers to remove the copper foil from the portions where there was no etching resist with an aqueous solution of ferric chloride. After that, the dry film resist was removed with an aqueous sodium hydroxide solution to produce a wiring board.
  • the resulting wiring board was subjected to a solder resist forming process and a gold plating finish, and then cut to the package size. There was no damage to the manufactured wiring board, and the wiring board could be manufactured satisfactorily.
  • Example 3 A copper clad laminate (HL832NS manufactured by Mitsubishi Gas Chemical Co., Ltd., 2 ⁇ m copper foil with 18 ⁇ m carrier copper foil) using a 40 ⁇ m thick copper foil with a carrier similar to that of Example 2 was prepared, all the 18 ⁇ m carrier was peeled off, and the substrate was got Next, in the same manner as in Example 2, through holes were formed by a carbon dioxide laser processing machine, and after desmear treatment, electroless copper plating and electrolytic copper plating were applied to a thickness of 8 ⁇ m. Subsequently, in the same manner as in Example 2, a dry film resist was laminated and the dry film resist was developed.
  • Example 4 A copper clad laminate (HL832NS manufactured by Mitsubishi Gas Chemical Co., Ltd., 2 ⁇ m copper foil with 18 ⁇ m carrier copper foil) using a 40 ⁇ m thick copper foil with a carrier similar to that of Example 2 was prepared, all the 18 ⁇ m carrier was peeled off, and the substrate was got Next, in the same manner as in Example 2, through holes were formed by a carbon dioxide laser processing machine, and after desmear treatment, electroless copper plating and electrolytic copper plating were applied to a thickness of 8 ⁇ m. Subsequently, in the same manner as in Example 2, a dry film resist was laminated and the dry film resist was developed.
  • a lead plate with a thickness of 0.10 mm was attached to one side of the substrate with an adhesive tape in order to remove the copper foil from the portion without the etching resist with an aqueous solution of ferric chloride.
  • the copper foil on the portion without etching resist was removed with an aqueous solution of ferric chloride in a horizontal etching line.
  • the dry film resist was removed with an aqueous sodium hydroxide solution to produce a wiring board.
  • It can be used for wiring substrates in semiconductor packages.
  • Ultra-thin metal foil layer with carrier 41A... Ultra-thin metal foil layer, 41B... Carrier, 41C... Notch, 42... Resin layer, 43... Third laminate, DESCRIPTION OF SYMBOLS 50... Wiring board, 51... Insulating layer, 52... Wiring conductor, 53... Through hole, 54... Conductor layer, 60... Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

厚みが薄くても容易に搬送することができる基板,及び,この基板を用いた配線基板の製造方法を提供する。基板(10)は,第1の金属層(12),第1の絶縁性樹脂層(13),第2の金属層(14),第2の絶縁性樹脂層(15),及び,キャリア付き極薄金属箔層(11)が順に積層され,平面方向において,回路形成領域(10A)と,その外周に設けられた外周領域(10B)とを有している。回路形成領域(10A)は,キャリア付き極薄金属箔層(11)のうちキャリア(11B)が除去されて極薄金属箔層(11A)が露出し,厚みが80μm以下である。外周領域(10B)の少なくとも一部には,キャリア(11B)が残存し,極薄金属箔層(11A)の表面がキャリア(11B)で覆われたキャリア残存部(10C)が設けられている。

Description

基板及び配線基板の製造方法
 本発明は、基板、及び、この基板を用いた配線基板の製造方法に関する。
 電子機器、通信機器、及び、パーソナルコンピューター等に広く用いられる半導体パッケージの高機能化及び小型化は、近年、益々加速しており、半導体パッケージにおける配線基板の薄型化が要求されている。それに伴い、配線基板のベースとなる基板も薄型化しており、例えば、コア樹脂層に極薄金属箔を積層した極薄銅張積層板や、コア樹脂層に金属層及び絶縁層を積層したのち、コア樹脂層から金属層及び絶縁層を剥離したコアレス基板が知られている(例えば、特許文献1参照)。
国際公開WO2020/121651号公報
 これらの基板を用いて配線基板を製造する際には、例えば、基板を搬送する工程が必要となる。基板の搬送は、例えば、複数のローラ上を移動させて行う。その際、上述した薄型の基板はハンドリング性が低いので搬送が難しく、搬送中に基板が破損して歩留まりが低下したり、装置の汚染が発生する場合があった。また、厚みによって搬送できない場合もあった。そこで、例えば、基板が搬送される先側に、基板よりも剛性が高い先導板をテープで接続し、先導板により基板を誘導して搬送することが行われている。しかしながら、この方法では、基板毎に先導板を接続し、工程が終了したら先導板を剥離しなければならないので、手間がかかると共に、製造コストが高くなってしまうという問題があった。
 本発明は、このような問題に基づきなされたものであり、厚みが薄くても容易に搬送することができる基板、及び、この基板を用いた配線基板の製造方法を提供することを目的とする。
 本発明は以下の通りである。
[1]
 少なくとも一方の面側に、キャリアと極薄金属箔層とを積層したキャリア付き極薄金属箔層を有する基板であって、
 回路形成領域と、この回路形成領域の外周に設けられた外周領域とを有し、
 前記回路形成領域は、前記キャリア付き極薄金属箔層のうち前記キャリアが除去されて前記極薄金属箔層が露出し、厚みが80μm以下であり、
 前記外周領域の少なくとも一部には、前記キャリアが残存し、前記極薄金属箔層の表面が前記キャリアで覆われたキャリア残存部が設けられた、
 基板。
[2]
 少なくとも一方の面側に、キャリアと極薄金属箔層とを積層したキャリア付き極薄金属箔層を有する基板であって、
 回路形成領域と、この回路形成領域の外周に設けられた外周領域とを有し、
 前記回路形成領域において前記キャリアを除去し、かつ、前記外周領域の少なくとも一部において前記キャリアを残存させてキャリア残存部を形成するように、前記外周領域と前記回路形成領域との境界部、及び、前記外周領域のうちの少なくとも一方において、前記キャリアに前記キャリア表層から前記極薄金属箔層に達する切り込みが設けられた、基板。
[3]
 前記外周領域の幅は、1mm以上300mm以下の範囲内である、[1]又は[2]に記載の基板。
[4]
 [1]又は[2]に記載の基板を用いた配線基板の製造方法であって、
 前記キャリア残存部を先頭側にして、前記基板を、複数のローラ上を移動させて搬送する搬送工程を含む、配線基板の製造方法。
[5]
 前記搬送工程においてエッチングを行う、[4]に記載の配線基板の製造方法。
 本発明によれば、外周領域の少なくとも一部に、キャリアを残存させたキャリア残存部を設けるように、又は、キャリア残存部を形成するように、外周領域と回路形成領域との境界部、及び、外周領域のうちの少なくとも一方において、キャリアに切り込みを設けるようにしたので、この基板を用いて配線基板を製造する際に、キャリア残存部における基板の厚みを回路形成領域における基板の厚みよりもキャリアの分だけ厚くすることができる。よって、先導板に変えて、キャリア残存部を先導部として基板を容易に搬送することができる。従って、先導板の接続及び剥離を行う必要がなく、手間及び費用を削減することができる。
本発明の第1の実施の形態に係る基板の断面構成を表す図である。 図1に示した基板の平面構成を表す図である。 図1に示した基板の製造工程を表す図である。 図3に続く工程を表す図である。 図1に示した基板を用いて配線基板を製造する工程を表す図である。 本発明の第2の実施の形態に係る基板の構成を表す図である。 本発明の第3の実施の形態に係る基板の構成を表す図である。 図7に示した基板の製造工程を表す図である。 図7に示した基板を用いて配線基板を製造する工程を表す図である。 本発明の第4の実施の形態に係る基板の構成を表す図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
[第1の実施の形態]
 図1は本発明の第1の実施の形態に係る基板10の断面構成を表すものである。図2は基板10の一方の面側から見た平面構成を表すものである。この基板10は、一方の面側に、キャリア11Bと極薄金属箔層11Aとを積層したキャリア付き極薄金属箔層11を有するものである。具体的には、基板10は、例えば、第1の金属層12、第1の絶縁性樹脂層13、第2の金属層14、第2の絶縁性樹脂層15、及び、キャリア付き極薄金属箔層11が順に積層された構成を有している。キャリア付き極薄金属箔層11は、例えば、極薄金属箔層11Aに剥離層(図示せず)を介してキャリア11Bを設けたキャリア付き極薄金属箔を用いて形成されたものであり、極薄金属箔層11Aを第2の絶縁性樹脂層15の側にして積層されている。なお、基板10は、いわゆるコアレス基板であり、例えば、後述するように、コア樹脂層16に第1の金属層12、第1の絶縁性樹脂層13、第2の金属層14、第2の絶縁性樹脂層15、及び、キャリア付き極薄金属箔層11を積層したのち、コア樹脂層16と第1の金属層12との界面から剥離することにより製造することができる。
 基板10は、平面方向において、回路が形成される回路形成領域10Aと、この回路形成領域10Aの外周に設けられた外周領域10Bとを有している。基板10は、例えば、平面視した形状が四辺形である。外周領域10Bは、例えば、各辺に沿って設けられており、回路形成領域10Aは外周領域10Bに囲まれた中に設けられている。外周領域10Bの幅(平面方向の幅)は、例えば、1mm以上300mm以下の範囲内である。
 回路形成領域10Aは、キャリア付き極薄金属箔層11のうちキャリア11Bが除去されて極薄金属箔層11Aが露出されており、回路形成領域10Aの厚みは80μm以下と薄くなっている。薄型化するためである。回路形成領域10Aの厚みは、例えば、30μm以上であることが好ましく、35μm以上であればより好ましい。これよりも薄い場合は、補強が不足し、破損するリスクが高まるからである。なお、厚みというのは積層方向における厚みである(以下,同様である)。
 一方、外周領域10Bの少なくとも一部には、キャリア11Bが残存し、極薄金属箔層11Aの表面がキャリア11Bで覆われたキャリア残存部10Cが設けられている。これにより、キャリア残存部10Cにおける基板10の厚みは、回路形成領域10Aにおける基板10の厚みよりも、キャリア11Bの分だけ厚くなり、搬送の際に基板10を先導する先導部としての機能を持たせることができるようになっている。なお、外周領域10Bのうちキャリア残存部10C以外の領域は、回路形成領域10Aと同様に、キャリア11Bが除去されて極薄金属箔層11Aが露出されている。
 キャリア残存部10Cは、例えば、少なくとも一辺に沿って設けられていることが好ましく、全辺に沿って設けられていてもよい。なお、図1及び図2では、キャリア残存部10Cを基板10の一辺に沿って設けた場合について示している。また、キャリア残存部10Cの幅は、外周領域10Bの幅と同一でもよいが、同一である必要はなく、幅方向の一部において設けられていてもよい。例えば、側辺から間隔をあけて設けられていてもよく、回路形成領域10Aとの間に間隔を開けて設けられていてもよい。また、キャリア残存部10Cは、辺の長さ方向において一部に設けられていてもよいが、全体にわたり連続して設けることが好ましい。
(キャリア11B)
 キャリア11Bは、極薄金属箔層11Aを支持し、取り扱い性を向上させるためのものである。キャリア11Bを構成する材料に特に限定はないが、例えば、銅箔、銅合金箔、アルミニウム箔、アルミニウム箔の表面に銅あるいは亜鉛等の金属めっき層が設けられた複合金属箔、ステンレス箔等の金属箔を用いることができる。その他には、PETフィルム、PENフィルム、アラミドフィルム、ポリイミドフィルム、ナイロンフィルム、液晶ポリマー等の樹脂フィルム、樹脂フィルム上に金属コート層を備える金属コート樹脂フィルム、ガラス板、セラミック板等が挙げられる。それらの中でも、ハンドリング中に生じることのある静電気による異物の巻込みを防ぐ点から、金属箔が好ましく、厚さの均一性及び箔の耐食性などの点から銅箔が好ましい。キャリア11Bの厚みは、極薄金属箔層11Aの厚みよりも厚く、また、例えば、250μm以下とすることが好ましく、12μm以上200μm以下とすればより好ましい。
(剥離層)
 剥離層は、キャリア11Bを極薄金属箔層11Aから容易に剥離できるようにするためのものである。剥離層の材料は、特に限定されず、各種の周知のものを適宜使用することができる。
(極薄金属箔層11A)
 極薄金属箔層11Aは、例えば、各種金属箔により構成することができるが、銅箔により構成することが好ましい。極薄金属箔層11Aの厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、2μm~70μmとすることができ、2μm~18μmが好ましく、2μm~5μmが更に好ましい。
(第1の金属層12)
 第1の金属層12は、例えば、厚みが1μm~70μmであり、かつ、後述するようにコア樹脂層16から剥離可能な金属箔により形成されることが好ましい。第1の金属層12の厚みが1μm未満であると基板10が成形不良となり、70μmを超えると、表面不良となってしまう。第1の金属層12の厚みは、回路形成性の観点から、1μm~12μmが好ましく、2μm~5μmがさらに好ましい。
 第1の金属層12は、例えば、銅箔により構成することが好ましい。銅箔としては、例えば、ピーラブルタイプのものを用いることができる。“ピーラブルタイプ”の銅箔とは、剥型層を有する極薄銅箔であり、剥型層が、例えば引き剥がし可能な銅箔であるものをいう。
(第1の絶縁性樹脂層13)
 第1の絶縁性樹脂層13は、特に限定されるものではないが、例えば、ガラスクロス等の基材に熱硬化性樹脂等の絶縁性の樹脂材料(絶縁材料)を含浸させたプリプレグや、絶縁性のフィルム材等により構成することができる。
 第1の絶縁性樹脂層13の厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、10μm~100μmとすることができ、10μm~50μmが好ましく、10μm~30μmが更に好ましい。
 “プリプレグ”は樹脂組成物等の絶縁材料を基材に含浸又は塗工してなるものである。基材としては、特に限定されず、各種の電気絶縁材料用積層板に用いられる周知のものを適宜使用することが出来る。基材を構成する材料としては、例えば、Eガラス、Dガラス、Sガラス又はQガラス等の無機繊維;ポリイミド、ポリエステル又はテトラフルオロエリレン等の有機繊維;及びそれらの混合物等が挙げられる。基材は、特に限定されるものではないが、例えば、織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有するものを適宜用いることができる。基材の材質及び形状は、目的とする成形物の用途や性能により選択され、必要により単独もしくは2種類以上の材質及び形状の使用も可能である。
 基材の厚みは、第1の絶縁性樹脂層13の厚みが上述した範囲になれば特に制限はない。また、基材としては、シランカップリング剤等で表面処理したものや機械的に開繊処理を施したものを用いることができ、これら基材は耐熱性や耐湿性、加工性の面から好適である。
 絶縁材料としては、特に限定されず、プリント配線板の絶縁材料として用いられる公知の樹脂組成物を適宜選定して用いることが出来る。樹脂組成物としては、耐熱性、耐薬品性の良好な熱硬化性樹脂をベースとして用いることができる。熱硬化性樹脂としては、特に限定されるものではないが、フェノール樹脂、エポキシ樹脂、シアネート樹脂、マレイミド樹脂、イソシアネート樹脂、ベンゾシクロブテン樹脂、ビニル樹脂などを例示することができる。熱硬化性樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 熱硬化性樹脂の中でも、エポキシ樹脂は耐熱性、耐薬品性、電気特性に優れ、比較的安価であることから、絶縁材料として好適に用いることができる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェノールのジグリシジルエテール化物、ナフタレンジオールのジグリシジルエテール化物、フェノール類のジグリシジルエテール化物、アルコール類のジグリシジルエテール化物、及びこれらのアルキル置換体、ハロゲン化物、水素添加物などを挙げることができる。エポキシ樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。また、このエポキシ樹脂とともに用いる硬化剤はエポキシ樹脂を硬化させるものであれば、限定することなく使用でき、例えば、多官能フェノール類、多官能アルコール類、アミン類、イミダゾール化合物、酸無水物、有機リン化合物及びこれらのハロゲン化物などがある。これらのエポキシ樹脂硬化剤は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 シアネート樹脂は、加熱によりトリアジン環を繰り返し単位とする硬化物を生成する樹脂であり、硬化物は誘電特性に優れる。このため、特に高周波特性が要求される場合などに好適である。シアネート樹脂としては、特に限定されないが、例えば、2,2-ビス(4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エタン、2,2-ビス(3,5ジメチル-4-シアナトフェニル)メタン、2,2-(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、α,α’-ビス(4-シアナトフェニル)-m-ジイソプロピルベンゼン、フェノールノボラック及びアルキルフェノールノボラックのシアネートエステル化物等が挙げられる。その中でも、2,2-ビス(4-シアナトフェニル)プロパンは、硬化物の誘電特性と硬化性とのバランスが特に良好であり、コスト的にも安価であるため好ましい。これらシアネートエステル化合物等のシアネート樹脂は、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。また、前記シアネートエステル化合物は予め一部が三量体や五量体にオリゴマー化されていてもよい。
 さらに、シアネート樹脂に対して硬化触媒や硬化促進剤を併用することもできる。硬化触媒としては、例えば、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等の金属類を用いることができ、具体的には、2-エチルヘキサン酸塩、オクチル酸塩等の有機金属塩やアセチルアセトン錯体などの有機金属錯体を挙げることができる。硬化触媒は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。
 また、硬化促進剤としてはフェノール類を使用することが好ましく、ノニルフェノール、パラクミルフェノールなどの単官能フェノールや、ビスフェノールA、ビスフェノールF、ビスフェノールSなどの二官能フェノール、又は、フェノールノボラック、クレゾールノボラックなどの多官能フェノールなどを用いることができる。硬化促進剤は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。
 絶縁材料として用いられる樹脂組成物には、誘電特性、耐衝撃性、フィルム加工性などを考慮して、熱可塑性樹脂をブレンドすることもできる。熱可塑性樹脂としては、特に限定されるものではないが、例えば、フッ素樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリアクリレート、ポリアミド、ポリアミドイミド、ポリブタジエンなどを挙げることができる。熱可塑性樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 熱可塑性樹脂の中でも、硬化物の誘電特性を向上させることができるという観点から、ポリフェニレンエーテル及び変性ポリフェニレンエーテルを配合して用いることが有用である。ポリフェニレンエーテル及び変性ポリフェニレンエーテルとしては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルとポリスチレンとのアロイ化ポリマー、ポリ(2,6ジメチル-1,4-フェニレン)エーテルとスチレンーブタジエンコポリマーとのアロイ化ポリマー、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルとスチレン-無水マレイン酸コポリマのアロイ化ポリマー、ポリ(3,6-ジメチル-1,4-フェニレン)エーテルとポリアミドとのアロイ化ポリマー、ポリ(2,6-ジメチル-1、4-フェニレン)エーテルとスチレンーブタジエン-アクリロニトリルコポリマーとのアロイ化ポリマーなどが挙げられる。また、ポリフェニレンエーテルに反応性や重合性を付与するために、ポリマー鎖末端にアミン基、エポキシ基、カルボン基、スチリル基などの官能基を導入したり、ポリマー鎖側鎖にアミン基、エポキシ基、カルボキシル基、スチリル基、メタクリル基などの官能基を導入してもよい。
 熱可塑性樹脂の中でも、耐湿性に優れ、更に金属に対する接着剤が良好な観点から、ポリアミドイミド樹脂が有用である。ポリアミドイミド樹脂の原料は、特に限定されるものではないが、酸性分としては、無水トリメリット酸、無水トリメリット酸モノクロライドが挙げられ、アミン成分としては、メタフェニレンジアミン、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、ビス[4-(アミノフェノキシ)フェニル]スルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンなどが挙げられる。ポリアミドイミド樹脂は、乾燥性を向上させるためにシロキサン変性としてもよく、この場合、アミノ成分としてシロキサンジアミンを用いることができる。ポリアミドイミド樹脂は、フィルム加工性を考慮すると、分子量が5万以上のものを用いるのが好ましい。
 上述の熱可塑性樹脂については、主としてプリプレグに用いられる絶縁材料として説明をしたが、これら熱可塑性樹脂はプリプレグとしての使用に限定されない。例えば、上述の熱可塑性樹脂を用いてフィルムに加工したもの(フィルム材)を、前記絶縁性樹脂層として用いてもよい。
 絶縁材料として用いられる樹脂組成物には、無機フィラーが混合されていてもよい。無機フィラーは、特に限定されないが、例えば、アルミナ、水酸化アルミニウム、水酸化マグネシウム、クレー、タルク、三酸化アンチモン、五酸化アンチモン、酸化亜鉛、溶融シリカ、ガラス粉、石英粉、シラスバルーンなどが挙げられる。これら無機フィラーは、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。
 絶縁材料として用いられる樹脂組成物は、有機溶媒を含有していてもよい。有機溶媒としては、特に限定されるものではなく、ベンゼン、トルエン、キシレン、トリメチルベンゼンのような芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイノブチルケトンのようなケトン系溶媒;テトラヒドロフランのようなエーテル系溶媒;イソプロパノール、ブタノールのようなアルコール系溶媒;2-メトキシエタノール、2-ブトキシエタノールのようなエーテルアルコール溶媒;N-メチルピロリドン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミドのようなアミド系溶媒などを、所望に応じて併用することができる。尚、プリプレグを作製する場合におけるワニス中の溶媒量は、樹脂組成物全体に対して40質量%~80質量%の範囲とすることが好ましい。また、前記ワニスの粘度は20cP~100cP(20mPa・s~100mPa・s)の範囲が望ましい。
 絶縁材料として用いられる樹脂組成物は、難燃剤を含有していてもよい。難燃剤としては、特に限定されるものではないが、例えば、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、テトラブロモ無水フタル酸、トリブロモフェノールなどの臭素化合物、トリフェニルフォスフェート、トリキシレルフォスフェート、クレジルジフェニルフォスフェートなどのリン化合物、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物、赤リン及びその変性物、三酸化アンチモン、五酸化アンチモンなどのアンチモン化合物、メラミン、シアヌール酸、シアヌール酸メラミンなどのトリアジン化合物など公知慣例の難燃剤を用いることができる。
 絶縁材料として用いられる樹脂組成物に対して、さらに必要に応じて上述の硬化剤、硬化促進剤や、その他、熱可塑性粒子、着色剤、紫外線不透過剤、酸化防止剤、還元剤などの各種添加剤や充填材を加えることができる。
 本実施形態においてプリプレグは、例えば、上述した基材に対する樹脂組成物の付着量が、乾燥後のプリプレグにおける樹脂含有率で20質量%~90質量%となるように、樹脂組成物(ワニスを含む)を基材に含浸又は塗工した後、100℃~200℃の温度で1分~30分間加熱乾燥することで、半硬化状態(Bステージ状態)のプリプレグとして得ることができる。そのようなプリプレグとしては、例えば、三菱ガス化学製の、GHPL-830NSシリーズ(製品名)、GHPL-830NSFシリーズ(製品名)を使用することができる。
(第2の金属層14)
 第2の金属層14は、例えば、各種金属箔により構成することができるが、銅箔により構成することが好ましい。第2の金属層14の厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、2μm~70μmとすることができ、2μm~18μmが好ましく、2μm~12μmが更に好ましい。なお、第2の金属層14には、必要に応じて回路パターンが形成されている。
(第2の絶縁性樹脂層15)
 第2の絶縁性樹脂層15は、特に限定されるものではないが、第1の絶縁性樹脂層13と同様の材料(例えば、プリプレグ)により構成することができる。第2の絶縁性樹脂層15の厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、10μm~100μmとすることができ、10μm~50μmが好ましく、10μm~30μmが更に好ましい。
<基板10の製造>
 図3及び図4は基板10の製造工程を表すものである。基板10は、例えば、次のようにして製造することができる。
(第1の積層体形成工程)
まず、例えば、図3(A)に示したように、基板10を形成する際の基材となるコア樹脂層16を用意し、コア樹脂層16の両面に、第1の金属層12、第1の絶縁性樹脂層13及び第2の金属層14をこの順に配置したのち、これを一括で加熱加圧して、例えば、図3(B)に示したように、各層を圧着した第1の積層体17を形成する。
 コア樹脂層16は、特に限定されるものではないが、例えば、第1の絶縁性樹脂層13と同様の材料(例えば、プリプレグ)により形成することができる。コア樹脂層16の厚みは、例えば、1μm~80μmが好ましい。コア樹脂層16の厚みが1μm未満であると樹脂の成形不良となり、80μmを超えると、コア樹脂層16から剥離した第1の金属層12の表面に皺や凹凸が発生してしまう。コア樹脂層16の厚みは、積層成形性の観点から、3μm~40μmが好ましく、10μm~25μmがさらに好ましい。
 第1の金属層12は、上述したように、コア樹脂層16から剥離可能な金属箔、例えば、ピーラブルタイプの銅箔を用いて形成することが好ましい。ピーラブルタイプの銅箔を用いる場合、剥型層がコア樹脂層16と接するように第1の金属層12を積層する。剥型層としては、例えば、ケイ素化合物を少なくとも含む層が挙げられ、例えば、銅箔上に、シラン化合物を単独又は複数組合せてなるケイ素化合物を付与することで、形成することができる。尚、ケイ素化合物を付与する手段は特に限定されるものではなく、例えば、塗布等の公知の手段を用いることができる。銅箔の剥型層との接着面には防錆処理を施す(防錆処理層を形成する)ことができる。防錆処理は、ニッケル、錫、亜鉛、クロム、モリブデン、コバルトのいずれか、若しくはそれらの合金を用いて行うことができる。剥型層の厚みは、特に限定されるものではないが、除去性及び剥離性の観点から、5nm~100nmが好ましく、10nm~80nmが更に好ましく、20nm~60nmが特に好ましい。
 第2の金属層14は、例えば、キャリア付き極薄金属箔を用い、キャリアを剥離した極薄金属箔により形成することができる。この場合、第2の金属層14は、キャリア付き極薄金属箔の極薄金属箔を第1の絶縁性樹脂層13の側として配置し、加熱加圧して第1の積層体17を形成した後、キャリアを剥離することにより形成される。
 第1の積層体形成工程における加熱加圧の条件は、特に限定されるものではないが、例えば、温度220±2℃、圧力5±0.2MPa、保持時間60分間の条件にて真空プレスを実施することで、第1の積層体17を形成することができる。また、第1の金属層12とコア樹脂層16、又は、第1の金属層12あるいは第2の金属層14と第1の絶縁性樹脂層13との密着力を得るために、第1の金属層12あるいは第2の金属層14の表面に粗化処理を施してもよい。粗化処理は、特に限定されるものではなく、公知の手段を適宜使用でき、第1の金属層12あるいは第2の金属層14が銅箔の場合は、例えば、銅表面粗化液を用いる手段が挙げられる。
(パターニング工程)
 次いで、例えば、図3(C)に示したように、第2の金属層14にパターンを形成する。パターンの形成手段は、特に限定されるものではないが、例えば、以下の工程によって形成することができる。第2の金属層14の整面を実施し、ドライフィルムレジスト等をラミネートし、更に、ネガ型マスクを張り合わせた後、露光機にて回路パターンを焼付け、現像液にてドライフィルムレジストを現像し、エッチングレジストを形成することができる。その後、エッチング処理を施し、エッチングレジストのない部分の第2の金属層14を塩化第二鉄水溶液等で除去した後、レジストを除去することで、第2の金属層14にパターンを形成することができる。
 その際のレジストは、特に限定されず、例えば、市販のドライフィルムレジスト等公知のものを適宜選定して用いることができる。また、第2の金属層14にパターンを形成する際のフォトリソグラフィー(露光、現像、レジストの除去を含む)は、特に限定されず、公知の手段及び装置を用いて実施することができる。第2の金属層14のパターン幅は、特に限定されず、用途に応じて適宜その幅を選定することができるが、例えば、5μm~100μmとすることができ、好ましくは10μm~30μmとすることができる。
(第2の積層体形成工程)
 続いて、例えば、図3(D)に示したように、第1の積層体17の第2の金属層14の表面に、第2の絶縁性樹脂層15及びキャリア付き極薄金属箔層11をこの順で配置したのち加熱加圧して第2の積層体18を形成する。キャリア付き極薄金属箔層11は、キャリア付き極薄金属箔の、極薄金属箔層11Aを第2の絶縁性樹脂層15の側として配置する。第2の絶縁性樹脂層15及びキャリア付き極薄金属箔層11を積層する方法や条件は、特に限定されるものではないが、例えば、第1の積層体17に第2の絶縁性樹脂層15及びキャリア付き極薄金属箔層11を積層した後、温度220±2℃、圧力5±0.2MPa、保持時間60分間の条件にて真空プレスを実施することで、第2の積層体18を形成することができる。また、極薄金属箔層11Aと第2の絶縁性樹脂層15との密着力を得るために、極薄金属箔層11Aの表面に粗化処理を施してもよい。
(切り込み工程)
 次いで、例えば、図4(E)に示したように、第2の積層体18について、回路形成領域10Aにおいてキャリア11Bを除去し、かつ、外周領域10Bの少なくとも一部においてキャリア11Bを残存させてキャリア残存部10Cを形成するように、外周領域10Bと回路形成領域10Aとの境界部、及び、外周領域10Bのうちの少なくとも一方において、キャリア11Bに、キャリア11Bの表層から極薄金属箔層11Aに達する切り込み11Cを入れる。切り込み11Cはカッター等により入れることができる。この切り込み11Cにより、キャリア11Bは、キャリア残存部10Cと、それ以外の部分とに分離される。
(キャリア剥離工程)
 次に、例えば、図4(F)に示したように、切り込み11Cを入れたキャリア11Bについて、キャリア残存部10Cの部分を残し、それ以外の部分を剥離する。なお、図4(F)では、基板10の一辺に沿って、外周領域10B、又は、外周領域10Bと回路形成領域10Aとの境界部及び外周領域10Bに切り込み11Cを入れ、基板の一辺に沿ってキャリア11Bを残存させて他の部分を剥がし、キャリア残存部10Cを形成した場合について示している。
(コア樹脂層分離工程)
 その後、例えば、第2の積層体18について、コア樹脂層16と、その両面に配置された第1の金属層12との界面で剥離して分離する。これにより、第1の金属層12、第1の絶縁性樹脂層13、第2の金属層14、第2の絶縁性樹脂層15、及び、キャリア付き極薄金属箔層11が順に積層された基板10を得ることができる(図1参照)。なお、コア樹脂層16の剥離においては、コア樹脂層16と第1の金属層12との界面で剥離されることが好ましいが、例えば、第1の金属層12が剥型層を有する場合、その一部がコア樹脂層16とともに剥離されてもよい。また、第1の金属層12の剥型層と金属箔との界面において、剥型層と共にコア樹脂層16が剥離される態様も含まれる。第1の金属層12の上に剥型層が残存する場合には、例えば、硫酸系又は過酸化水素系エッチング液を用いて剥型層を除去することができる。硫酸系又は過酸化水素系エッチング液は、特に限定されるものではなく、当業界で使用されているものを使用することができる。
(切り込み工程、キャリア剥離工程、コア樹脂層分離工程の順番の変形)
 なお、上述では、第2の積層体形成工程の後、切り込み工程、キャリア剥離工程、及び、コア樹脂層分離工程を順に行う場合について説明したが、第2の積層体形成工程の後、コア樹脂層分離工程、切り込み工程、及び、キャリア剥離工程をこの順で行うようにしてもよく、また、第2の積層体形成工程の後、切り込み工程、コア樹脂層形成工程、及び、キャリア剥離工程の順で行うようにしてもよい。
<基板10を用いた配線基板20の製造>
 図5は基板10を用いて配線基板20を製造する工程の一例を表すものである。基板10は、例えば、絶縁層21の両面に配線導体22が形成された配線基板20の製造に用いることができる。なお、絶縁層21は、第1の絶縁性樹脂層13及び第2の絶縁性樹脂層15から構成され、配線導体22は、各々パターニングされた第1の金属層12、第2の金属層14及び極薄金属箔層11Aを電解銅めっき及び/又は無電解銅めっきによって層間接続することで形成される。具体的には、例えば、次のようにして製造することができる。
(非貫通孔の形成)
 例えば、まず、図5(A)に示したように、基板10の表面に、第2の金属層14の表面に達する非貫通孔23を形成する。非貫通孔23は、基板10の両面に設けられる。すなわち、図5(A)における紙面上側からは、極薄金属箔層11Aを介して非貫通孔23が第2の絶縁性樹脂層15に形成される。同様に、図5(A)における紙面下側からは、第1の金属層12を介して非貫通孔23が第1の絶縁性樹脂層13に形成される。非貫通孔23の形成手段は、特に限定されず、例えば、炭酸ガスレーザー等公知の手段を用いることができる。非貫通孔23の数やサイズは、所望に応じて適宜選定することができる。また、非貫通孔23を形成した後に、過マンガン酸ナトリウム水溶液等を用いてデスミア処理を施すことができる。
(層間接続及び第3の金属層の形成)
 次いで、例えば、図5(B)に示したように、電解銅めっき及び/又は無電解銅めっきを施して非貫通孔23の内壁に銅めっき膜を形成し、各々パターニングされた第1の金属層12、第2の金属層14及び極薄金属箔層11Aを電気的に接続する。さらに、当該電解銅めっき及び/又は無電解銅めっきによって、基板10の両面の第1の金属層12及び極薄金属箔層11Aの厚みを増加させることで、第3の金属層24が形成される。電解銅めっき及び/無電解銅めっきを施す方法は、特に限定されるものではなく、公知の方法を採用することができる。当該銅めっきは、電解銅めっき及び無電解銅めっきのどちらか一方のみでもよいが、電解銅めっき及び無電解銅めっきの両方を施すことが好ましい。
(膜厚調整)
 続いて、例えば、図5(C)に示したように、電解/無電解銅めっき処理の後、必要に応じて、第3の金属層24が所望の厚みになるようにエッチング処理等の公知の処理を施して、第3の金属層24の膜厚を調整することができる。調整後の基板10の厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、5μm~30μmとすることができ、5μm~20μmが好ましく、5μm~12μmが更に好ましい。
(パターニング)
 次に、例えば、必要に応じて第3の金属層24の整面を実施した後、ドライフィルムレジスト等をラミネートし、更に、ネガ型マスクを張り合わせた後、露光機にて回路パターンを焼付け、現像液にてドライフィルムレジストを現像し、エッチングレジストを形成することができる。エッチングレジストを形成した後、例えば、横型エッチングラインにより、キャリア残存部10Cを先頭側にして、基板10を、複数のローラ上を移動させてエッチング処理を施し、エッチングレジストのない部分の第3の金属層24を塩化第二鉄水溶液等で除去する。本実施の形態では、基板10の外周領域10Bの少なくとも一部に、厚みが厚いキャリア残存部10Cが設けられているので、キャリア残存部10Cを先導部として容易に基板10を搬送することができる。その後、レジストを除去することで、図5(D)に示すように、絶縁層21の両面に配線導体22を形成した配線基板20とすることができる。
 なお、その他、本実施形態において適用可能な層間接続方法としては、公知のレーザー形成されたブラインドビア部に化学銅めっきをして適用した方法(レーザー加工により配線回路を形成し、その後化学銅めっきによりパターニング、層間接続を行う方法)や、予め接続部となる部分にめっきや金属箔をエッチングすることなどにより形成した金属バンプ(好ましくは銅バンプ)により絶縁層ごと突き刺し、層間接続を行う方法、更にははんだや銀及び銅などの金属フィラーを絶縁樹脂に含有した金属ペーストをスクリーン印刷などにより所定箇所にバンプ印刷後、乾燥によってペーストを硬化させ、加熱加圧により内外層間での電気的導通を確保するものなどが適用できる。
 本実施形態を例示的に説明した図5においては、配線基板20は、3層構造の半導体素子搭載用パッケージ基板となるが、本発明はこれに限定されるものではなく、5層構造などの更なるビルドアップ構造を有する半導体素子搭載用パッケージ基板を形成することができる。例えば、上述したようにして配線導体22を形成した後に、キャリア11Bを剥離し、更に、絶縁性樹脂層と金属層とを積層し、パターニング及び層間接続を繰り返し行うことで、ビルドアップ構造を有する半導体素子搭載用パッケージ基板を製造することが可能となる。
 この配線基板20は、所望に応じ、例えばベアチップ等の半導体素子を搭載させることができる。搭載する半導体素子は特に限定されるものではなく所望の素子を適宜用いることができるが、例えば、アルミ電極部に金ワイヤのボールボンディング法によって金バンプを形成したベアチップ等を用いることができる。半導体素子は、接合材を介して配線基板20の配線導体22の上に搭載することができる。接合材は導電手段を有するものであれば特に限定されるものではないが、例えば、はんだ等(はんだボール、はんだペースト等)を用いることができる。また、配線基板20の配線導体22に表面処理を施した後に、接合材を介して半導体素子を搭載させることができる。表面処理は特に限定されるものではないが、例えば、ニッケル層や金めっき層の形成が挙げられる。接合材としてはんだを用いた場合等、半導体素子を配線導体22の上に搭載した後に、リフロー等の処理を施すことができる。この際、リフローの温度は接合材の融点等によって適宜選定されるものであるが、例えば、260℃以上とすることができる。
 このように本実施の形態によれば、外周領域10Bの少なくとも一部に、キャリア11Bを残存させたキャリア残存部10Cを設けるようにしたので、この基板10を用いて配線基板20を製造する際に、キャリア残存部10Cにおける基板10の厚みを回路形成領域10Aにおける基板10の厚みよりもキャリア11Bの分だけ厚くすることができる。よって、先導板に変えて、キャリア残存部10Cを先導部として基板10を搬送することができる。従って、先導板の接続及び剥離を行う必要がなく、手間及び費用を削減することができる。
[第2の実施の形態]
 図6は本発明の第2の実施の形態に係る基板30A,30Bの構成を表すものであり、図6(A)は基板30Aを表し、図6(B)は基板30Bを表している。基板30Aは、第1の実施の形態における第2の積層体18のキャリア11Bにキャリア11Bの表層から極薄金属箔層11Aに達する切り込み11Cを入れたものである。基板30Bは、第1の実施の形態における第2の積層体18のキャリア11Bにキャリア11Bの表層から極薄金属箔層11Aに達する切り込み11Cを入れ、キャリア11Bを剥離せずに、コア樹脂層16を分離したもの、又は、第2の積層体18からコア樹脂層16を分離し、キャリア11Bにキャリア11Bの表層から極薄金属箔層11Aに達する切り込み11Cを入れたものである。
 すなわち、基板30A,30Bは、キャリア残存部10Cを形成するための切り込み11Cをキャリア11Bに設け、キャリア11Bを剥離する前のものであり、他は第1の実施の形態と同様の構成を有しており、同様にして製造することができる。また、キャリア残存部10C以外の部分のキャリア11Bを剥離し、基板30Aにおいては、更に、コア樹脂層16を分離した後に、第1の実施の形態と同様にして配線基板20の製造に用いることができ、第1の実施の形態と同様の効果を得ることができる。よって、第1の実施の形態と同一の構成要素には同一の符号を付し、その詳細な説明は省略する。なお、基板30Aは、両方の面側にキャリア付き極薄金属箔層11を有しており、基板30Bは、一方の面側にキャリア付き極薄金属箔層11を有している。
[第3の実施の形態]
 図7は本発明の第3の実施の形態に係る基板40の構成を表すものである。この基板40は、少なくとも一方の面側に、キャリア41Bと極薄金属箔層41Aとを積層したキャリア付き極薄金属箔層41を有するものである。具体的には、基板40は、例えば、樹脂層42の両面にキャリア付き極薄金属箔層41を積層した構成を有しており、例えば、いわゆる銅張積層板である。
 キャリア付き極薄金属箔層41は、第1の実施の形態におけるキャリア付き極薄金属箔層11と同様の構成を有しており、キャリア41Bはキャリア11Bに対応し、極薄金属箔層41Aは極薄金属箔層11Aに対応している。樹脂層42は、第1の実施の形態におけるコア樹脂層16と同様の構成を有している。キャリア付き極薄金属箔層41は、極薄金属箔層41Aを樹脂層42の側にして積層されている。
 基板40は、積層構造が異なることを除き、第1の実施の形態と同様に、平面方向において、回路形成領域40Aと、外周領域40Bとを有しており、外周領域40Bの少なくとも一部には、キャリア残存部40Cが設けられている。回路形成領域40A、外周領域40B、及び、キャリア残存部40Cは、第1の実施の形態における回路形成領域10A、外周領域10B、及び、キャリア残存部10Cと同様である。すなわち、回路形成領域40Aは、キャリア付き極薄金属箔層41のうちキャリア41Bが除去されて極薄金属箔層41Aが露出されており、回路形成領域40Aの厚みは80μm以下と薄くなっている。一方、外周領域40Bの少なくとも一部には、キャリア41Bが残存し、極薄金属箔層41Aの表面がキャリア41Bで覆われたキャリア残存部40Cが設けられている。なお、図7では、基板の一辺に沿って両面にキャリア残存部40Cを形成した場合について示している。
<基板40の製造>
 図8は基板40の製造工程を表すものである。基板40は、まず、例えば、図8(A)に示したように、樹脂層42の両面に、キャリア付き極薄金属箔層41を配置して加熱加圧し、第3の積層体43を形成する。キャリア付き極薄金属箔層41は、キャリア付き極薄金属箔を用いて形成し、極薄金属箔層41Aを樹脂層42の側として配置する。次いで、例えば、図8(B)(C)に示したように、第1の実施の形態と同様にして、第3の積層体43の両面のキャリア41Bについて、切り込み工程(図8(B))、及び、キャリア剥離工程(図8(C))を行う。これにより、図7に示した基板40が得られる。
<基板40を用いた配線基板50の製造>
 図9は基板40を用いて配線基板50を製造する工程の一例を表すものである。基板40は、例えば、絶縁層51の両面に配線導体52が形成された配線基板50の製造に用いることができる。なお、絶縁層51は、樹脂層42から構成され、配線導体52は、パターニングされた極薄金属箔層41Aを電解銅めっき及び/又は無電解銅めっきによって層間接続することで形成される。具体的には、例えば、次のようにして製造することができる。
(貫通孔の形成)
 例えば、まず、図9(A)に示したように、基板40に貫通孔53を形成する。貫通孔53の形成手段は、特に限定されず、例えば、炭酸ガスレーザー等のレーザーやドリル等の公知の手段を用いることができる。貫通孔53の数やサイズは、所望に応じて適宜選定することができる。また、貫通孔53を形成した後に、過マンガン酸ナトリウム水溶液等を用いてデスミア処理を施すことができる。
(層間接続及び導体層の形成)
 次いで、例えば、図9(B)に示したように、電解銅めっき及び/又は無電解銅めっきを施して貫通孔53の内壁に銅めっき膜を形成し、パターニングされた両面の極薄金属箔層41Aを電気的に接続する。さらに、当該電解銅めっき及び/又は無電解銅めっきによって、両面の極薄金属箔層41Aの厚みを増加させることで、導体層54が形成される。電解銅めっき及び/無電解銅めっきを施す方法は、特に限定されるものではなく、公知の方法を採用することができる。当該銅めっきは、電解銅めっき及び無電解銅めっきはどちらか一方のみでもよいが、電解銅めっき及び無電解銅めっきの両方を施すことが好ましい。
(膜厚調整)
 続いて、例えば、電解/無電解銅めっき処理の後、必要に応じて、導体層54が所望の厚みになるようにエッチング処理等の公知の処理を施して、導体層54の膜厚を調整することができる。
(パターニング)
 次に、例えば、必要に応じて導体層54の整面を実施した後、ドライフィルムレジスト等をラミネートし、更に、ネガ型マスクを張り合わせた後、露光機にて回路パターンを焼付け、現像液にてドライフィルムレジストを現像し、エッチングレジストを形成することができる。エッチングレジストを形成した後、例えば、横型エッチングラインにより、キャリア残存部40Cを先頭側にして、基板40を、複数のローラ上を移動させてエッチング処理を施し、エッチングレジストのない部分の導体層54を塩化第二鉄水溶液等で除去する。本実施の形態では、基板40の外周領域40Bの少なくとも一部に、厚みが厚いキャリア残存部40Cが設けられているので、キャリア残存部40Cを先導部として容易に基板40を搬送することができる。その後、レジストを除去することで、図9(C)に示すように、絶縁層51の両面に配線導体52を形成した配線基板50とすることができる。
 なお、本実施の形態についても、第1の実施の形態において説明したように、他層間接続方法を適用することができる。また、第1の実施の形態で説明したように、配線基板50は、2層構造の半導体素子搭載用パッケージ基板に限らず、4、5、6以上の層構造などの更なるビルドアップ構造を有する半導体素子搭載用パッケージ基板を形成することができる。更に、配線基板50は、第1の実施の形態と同様に、所望に応じ、例えばベアチップ等の半導体素子を搭載させることができる。
 このように本実施の形態によれば、外周領域40Bの少なくとも一部に、キャリア41Bを残存させたキャリア残存部40Cを設けるようにしたので、第1の実施の形態と同様に、キャリア残存部40Cを先導部として基板40を搬送することができる。従って、先導板の接続及び剥離を行う必要がなく、手間及び費用を削減することができる。
[第4の実施の形態]
 図10は本発明の第4の実施の形態に係る基板60の構成を表すものである。基板60は、第3の実施の形態における第3の積層体43のキャリア41Bにキャリア41Bの表層から極薄金属箔層41Aに達する切り込み41Cを入れたものである。すなわち、基板60は、キャリア残存部40Cを形成するための切り込み41Cをキャリア41Bに設け、キャリア41Bを剥離する前のものであり、他は第3の実施の形態と同様の構成を有しており、同様にして製造することができる。また、キャリア残存部40C以外の部分のキャリア41Bを剥離した後に、第3の実施の形態と同様にして配線基板50の製造に用いることができ、第3の実施の形態と同様の効果を得ることができる。よって、第3の実施の形態と同一の構成要素には同一の符号を付し、その詳細な説明は省略する。
[実施例1]
 次のようにして基板10を形成し、その基板10を用いて配線基板40を形成した。
<基板10の製造>
(第1の積層体形成工程)
 コア樹脂層16として、ビスマレイミドトリアジン樹脂(BT樹脂)をガラスクロス(ガラス繊維)に含浸させてBステージとしたプリプレグ(厚さ25μm:三菱ガス化学製GHPL-830NS SF74)を用意し、コア樹脂層16の両面に、銅箔厚2μmに剥離層(JX日鉱日石金属(株)製、商品名:PCS)が塗布された剥型層付銅箔(第1の金属層12)を、剥型層面がコア樹脂層16と接するように配置し、さらにその上にビスマレイミドトリアジン樹脂(BT樹脂)をガラスクロス(ガラス繊維)に含浸させてBステージとしたプリプレグ(第1の絶縁性樹脂層13;厚さ13μm:三菱ガス化学製GHPL-830NS SP64)を介して、12μmの銅箔(第2の金属層14;三井金属鉱業(株)製、商品名:3EC-M2S-VLP)を配置し、真空プレスにて圧力2.5±0.2MPa、温度220±2℃、保持時間60分間の条件にて積層し、第1の積層体17を作製した(図3(A)(B)参照)。
(パターニング工程)
 次いで、第1の積層体17の表面の整面を実施し、温度110±10℃、圧力0.50±0.02MPaにて第2の金属層14の表面にドライフィルムレジスト(ニチゴー・モートン(株)製、商品名:NIT225)をラミネートした。その後、ネガ型マスクを張り合わせ、平行露光機にて回路パターンを焼付け、1%炭酸ナトリウム水溶液にてドライフィルムレジストを現像してエッチングレジストを形成し、エッチングレジストのない部分の第2の金属層14を塩化第二鉄水溶液で除去した後、水酸化ナトリウム水溶液にてドライフィルムレジストを除去し、第2の金属層14にパターンを形成した(図3(C)参照)。
(第2の積層体形成工程)
 続いて、パターニングされた第2の金属層14の表面を、銅表面粗化液(メック(株)製、製品名:CZ-8101)を用いて粗化し、第2の金属層14の表面に対し、ビスマレイミドトリアジン樹脂(BT樹脂)をガラスクロス(ガラス繊維)に含浸させてBステージとしたプリプレグ(第2の絶縁性樹脂層15;厚さ15μm:三菱ガス化学製GHPL-830NS SP68)を介して、18μmのキャリア銅箔付2μm銅箔(キャリア付き極薄金属箔層11;三井金属鉱業(株)製、商品名:MTFL)を配置し、真空プレスにて、圧力2.5±0.2MPa、温度220±2℃、保持時間60分間の条件にて積層し、第2の積層体18を作製した(図3(D)参照)。
(切り込み工程)
 次いで、第2の積層体18について、外周領域10Bにキャリア残存部10Cを形成するように、短辺の1辺に沿って、キャリア11Bの外周領域10B、又は、外周領域10Bと回路形成領域10Aとの境界部及び外周領域10Bに、カッターにより切り込み11Cを入れた(図4(E)参照)。切り込み11Cは、側辺から40mm離れた位置に入れた。
(キャリア剥離工程)
 次に、切り込み11Cを入れたキャリア11Bについて、短辺の1辺に沿ったキャリア残存部10Cの部分を残し、それ以外の部分を剥離した。これにより、短辺の1辺に沿って、幅40mmのキャリア残存部10Cを形成した(図4(F)参照)。
(コア樹脂層分離工程)
 その後、第2の積層体18について、剥型層付銅箔(第1の金属層12)とプリプレグ(コア樹脂層16)との境界部に物理的な力を加えて剥離し、回路形成領域10Aの厚みが39μmの基板10を得た(図1参照)。
<基板10を用いた配線基板20の製造>
(非貫通孔の形成)
 基板10の両面に、炭酸ガスレーザー加工機(日立ビアメカニクス(株)製、商品名:LC-1C/21)によりビーム照射径Φ0.21mm、周波数500Hz、パルス幅10μsの条件で、1穴ずつ加工し、第2の金属層14の表面に達する非貫通孔23を形成した(図5(A)参照)。その後、温度80±5℃、濃度55±10g/Lの過マンガン酸ナトリウム水溶液を用いてデスミア処理を施した。
(層間接続及び第3の金属層の形成)
 次いで、無電解銅めっきにて0.4μm~0.8μmの厚みとなるようにめっき処理を施した後、電解銅めっきにて8μmの厚みのめっきを実施し、第3の金属層24を形成した(図5(B)参照)。これにより、第1の金属層12及び極薄金属箔層11Aが第2の金属層14を介して、非貫通孔23によって電気的に接続されたことになる。
(パターニング)
 続いて、第3の金属層24の表面の整面を実施し、温度110±10℃、圧力0.50±0.02MPaにてドライフィルムレジスト(ニチゴー・モートン(株)製、商品名:NIT225)をラミネートした。次いで、ネガ型マスクを張り合わせた後、平行露光機にて回路パターンを焼付け、1%炭酸ナトリウム水溶液にてドライフィルムレジストを現像してエッチングレジストを形成し、横型エッチングラインにて、キャリア残存部10Cを形成した辺の側を先頭にして、基板10を、複数のローラ上を移動させてエッチング処理を施し、エッチングレジストのない部分の第3の金属層24を塩化第二鉄水溶液で除去した。その後、水酸化ナトリウム水溶液にてドライフィルムレジストを除去し、配線基板20を作製した(図5(D)参照)。
 得られた配線基板20に、ソルダーレジスト形成処理及び金めっき仕上げを行い、パッケージサイズに切断加工を施した。作製した配線基板20には破損がなく、基板10を用いて容易かつ良好に配線基板を製造20することができた。
[実施例2]
 次のようにして基板40を形成し、その基板40を用いて配線基板50を形成した。
<基板40の製造>
 厚み40μmのキャリア付き銅箔を使用した銅張積層板(三菱ガス化学製HL832NS、18μmのキャリア銅箔付2μm銅箔)を用意し(図8参照)、外周領域40Bにキャリア残存部40Cを形成するように、短辺の1辺に沿って、キャリア41Bの外周領域40B、又は、外周領域40Bと回路形成領域40Aとの境界部及び外周領域40Bに、カッターにより切り込み41Cを入れた。切り込み41Cは、側辺から40mm離れた位置に入れた。次に、切り込み41Cを入れたキャリア41Bについて、短辺の1辺に沿ったキャリア残存部40Cの部分を残し、それ以外の部分を剥離した。これにより、短辺の1辺に沿って、幅40mmのキャリア残存部40Cを形成した基板40を作製した(図7参照)。
<基板40を用いた配線基板50の製造>
(貫通孔の形成)
 基板40に、炭酸ガスレーザー加工機(日立ビアメカニクス(株)製、商品名:LC-1C/21)によりビーム照射径Φ0.21mm、周波数500Hz、パルス幅10μsの条件で、貫通孔53を形成した(図9(A)参照)。その後、温度80±5℃、濃度55±10g/Lの過マンガン酸ナトリウム水溶液を用いてデスミア処理を施した。
(層間接続及び導体層の形成)
 次いで、無電解銅めっきにて0.4μm~0.8μmの厚みとなるようにめっき処理を施した後、電解銅めっきにて8μmの厚みのめっきを実施し、導体層54を形成した(図9(B)参照)。これにより、極薄金属箔層41Aが電気的に接続されたことになる。
(パターニング)
 続いて、導体層54の整面を実施し、温度110±10℃、圧力0.50±0.02MPaにてドライフィルムレジスト(ニチゴー・モートン(株)製、商品名:NIT225)をラミネートした。次いで、ネガ型マスクを張り合わせた後、平行露光機にて回路パターンを焼付け、1%炭酸ナトリウム水溶液にてドライフィルムレジストを現像してエッチングレジストを形成し、横型エッチングラインにて、キャリア残存部40Cを形成した辺の側を先頭にして、基板40を、複数のローラ上を移動させてエッチング処理を施し、エッチングレジストのない部分の導体層54を塩化第二鉄水溶液で除去した。その後、水酸化ナトリウム水溶液にてドライフィルムレジストを除去し、配線基板50を作製した(図9(C)参照)。
 得られた配線基板50に、ソルダーレジスト形成処理及び金めっき仕上げを行い、パッケージサイズに切断加工を施した。作製した配線基板50には破損がなく、基板40を用いて容易かつ良好に配線基板50を製造することができた。
[比較例1]
 キャリア剥離工程において、厚み18μmのキャリアを全て剥離した以外は実施例1と同様の工程にて基板を作製した。作製した基板について、実施例1と同様にして、炭酸ガスレーザー加工機により貫通孔を形成し、デスミア処理をしたのち、無電解銅めっき、電解銅めっきにて8μmの厚みのめっきを実施した。続いて、実施例1と同様にして、ドライフィルムレジストをラミネートし、ドライフィルムレジストの現像を行った。その後、横型エッチングラインを用い、複数のローラ上を移動させて、エッチングレジストのない部分の銅箔を塩化第二鉄水溶液にて除去を試みたが、基板が横型エッチングラインの搬送ロールに引っ掛かり、基板が変形して破損してしまった。
[比較例2] 
 第1の絶縁性樹脂層に厚さ41μmのプリプレグ(三菱ガス化学製GHPL-830NS SI72)、第2の絶縁性樹脂層に厚さ45μmのプリプレグ(三菱ガス化学製GHPL-830NS SI74)を用い、キャリア剥離工程において、厚み18μmのキャリアを全て剥離した以外は実施例1と同様の工程にて基板を作製した。基板の厚み(回路形成領域の厚み)は97μmである。すなわち、比較例2は、キャリアを全て剥離し、基板(回路形成領域)の厚みが厚いものである。作製した基板について、実施例1と同様にして、炭酸ガスレーザー加工機により貫通孔を形成し、デスミア処理をしたのち、無電解銅めっき、電解銅めっきにて8μmの厚みのめっきを実施した。続いて、実施例1と同様にして、ドライフィルムレジストをラミネートし、ドライフィルムレジストの現像を行った。その後、横型エッチングラインを用い、複数のローラ上を移動させて、エッチングレジストのない部分の銅箔を塩化第二鉄水溶液にて除去した。その後、水酸化ナトリウム水溶液にてドライフィルムレジストを除去し、配線基板を作製した。
 得られた配線基板に、ソルダーレジスト形成処理及び金めっき仕上げを行い、パッケージサイズに切断加工を施した。作製した配線基板には破損がなく、良好に配線基板を製造することができたが、厚みが厚く、薄型化に対応することが難しい。
[比較例3]
 実施例2と同様の厚み40μmのキャリア付き銅箔を使用した銅張積層板(三菱ガス化学製HL832NS、18μmのキャリア銅箔付2μm銅箔)を用意し、18μmのキャリアを全て剥離し、基板を得た。次いで、実施例2と同様にして、炭酸ガスレーザー加工機により貫通孔を形成し、デスミア処理をしたのち、無電解銅めっき、電解銅めっきにて8μmの厚みのめっきを実施した。続いて、実施例2と同様にして、ドライフィルムレジストをラミネートし、ドライフィルムレジストの現像を行った。その後、横型エッチングラインを用い、複数のローラ上を移動させて、エッチングレジストのない部分の銅箔を塩化第二鉄水溶液にて除去を試みたが、基板が横型エッチングラインの搬送ロールに引っ掛かり、基板が変形して破損してしまった。
[比較例4]
 実施例2と同様の厚み40μmのキャリア付き銅箔を使用した銅張積層板(三菱ガス化学製HL832NS、18μmのキャリア銅箔付2μm銅箔)を用意し、18μmのキャリアを全て剥離し、基板を得た。次いで、実施例2と同様にして、炭酸ガスレーザー加工機により貫通孔を形成し、デスミア処理をしたのち、無電解銅めっき、電解銅めっきにて8μmの厚みのめっきを実施した。続いて、実施例2と同様にして、ドライフィルムレジストをラミネートし、ドライフィルムレジストの現像を行った。次に、横型エッチングラインを用いて、エッチングレジストのない部分の銅箔を塩化第二鉄水溶液にて除去を行うため、基板の1辺に厚み0.10mmの先導板を接着テープで貼り付けた。張り付けた先導板を先頭にして、横型エッチングラインにて、エッチングレジストのない部分の銅箔を塩化第二鉄水溶液で除去した。その後、水酸化ナトリウム水溶液にてドライフィルムレジストを除去し、配線基板を作製した。
 得られた配線基板に、ソルダーレジスト形成処理を行うため、先導板を取り外し、ソルダーレジストの塗布を行った。次いで、ソルダーレジストの現像を横型ラインで行うため、再度、基板に先導板を張り付けた。続いて、金めっき仕上げを行い、パッケージサイズに切断加工を施すため、再々度、先導板を取り外し、パッケージサイズに切断加工を施した。比較例2によれば、配線基板の作製は可能であるが、先導板の取り付け、取り外しが多数回あり、非常に手間がかかった。また、先導板の取り付け不良により、基板破損リスクがあると共に、取り外し作業の際に基板に応力がかかり、基板を破損してしまう可能性もある。更に、先導板のテープの界面で薬液を次工程に持ち込むリスクもある。
 半導体パッケージにおける配線基板に用いることができる。
 10…基板、10A…回路形成領域、10B…外周領域、10C…キャリア残存部、11…キャリア付き極薄金属箔層、11A…極薄金属箔層、11B…キャリア、11C…切り込み、12…第1の金属層、13…第1の絶縁性樹脂層、14…第2の金属層、15…第2の絶縁性樹脂層、16…コア樹脂層、17…第1の積層体、18…第2の積層体、20…配線基板、21…絶縁層、22…配線導体、23…非貫通孔、24…第3の金属層、30A,30B…基板、40…基板、40A…回路形成領域、40B…外周領域、40C…キャリア残存部、41…キャリア付き極薄金属箔層、41A…極薄金属箔層、41B…キャリア、41C…切り込み、42…樹脂層、43…第3の積層体、50…配線基板、51…絶縁層、52…配線導体、53…貫通孔、54…導体層、60…基板

Claims (5)

  1.  少なくとも一方の面側に、キャリアと極薄金属箔層とを積層したキャリア付き極薄金属箔層を有する基板であって、
     回路形成領域と、この回路形成領域の外周に設けられた外周領域とを有し、
     前記回路形成領域は、前記キャリア付き極薄金属箔層のうち前記キャリアが除去されて前記極薄金属箔層が露出し、厚みが80μm以下であり、
     前記外周領域の少なくとも一部には、前記キャリアが残存し、前記極薄金属箔層の表面が前記キャリアで覆われたキャリア残存部が設けられた、基板。
  2.  少なくとも一方の面側に、キャリアと極薄金属箔層とを積層したキャリア付き極薄金属箔層を有する基板であって、
     回路形成領域と、この回路形成領域の外周に設けられた外周領域とを有し、
     前記回路形成領域において前記キャリアを除去し、かつ、前記外周領域の少なくとも一部において前記キャリアを残存させてキャリア残存部を形成するように、前記外周領域と前記回路形成領域との境界部、及び、前記外周領域のうちの少なくとも一方において、前記キャリアに前記キャリア表層から前記極薄金属箔層に達する切り込みが設けられた、基板。
  3.  前記外周領域の幅は、1mm以上300mm以下の範囲内である、請求項1又は請求項2に記載の基板。
  4.  請求項1又は請求項2に記載の基板を用いた配線基板の製造方法であって、
     前記キャリア残存部を先頭側にして、前記基板を、複数のローラ上を移動させて搬送する搬送工程を含む、配線基板の製造方法。
  5.  前記搬送工程においてエッチングを行う、請求項4に記載の配線基板の製造方法。
PCT/JP2022/011600 2021-03-29 2022-03-15 基板及び配線基板の製造方法 WO2022209851A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280023716.6A CN117044410A (zh) 2021-03-29 2022-03-15 基板及配线基板的制造方法
KR1020237032878A KR20230163408A (ko) 2021-03-29 2022-03-15 기판 및 배선기판의 제조방법
JP2023510882A JPWO2022209851A1 (ja) 2021-03-29 2022-03-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054770 2021-03-29
JP2021-054770 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209851A1 true WO2022209851A1 (ja) 2022-10-06

Family

ID=83458974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011600 WO2022209851A1 (ja) 2021-03-29 2022-03-15 基板及び配線基板の製造方法

Country Status (5)

Country Link
JP (1) JPWO2022209851A1 (ja)
KR (1) KR20230163408A (ja)
CN (1) CN117044410A (ja)
TW (1) TW202239288A (ja)
WO (1) WO2022209851A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751994B1 (ko) * 2006-06-30 2007-08-28 삼성전기주식회사 동박적층판 및 이의 제조 방법
WO2020121652A1 (ja) * 2018-12-14 2020-06-18 三菱瓦斯化学株式会社 半導体素子搭載用パッケージ基板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210100589A (ko) 2018-12-14 2021-08-17 미츠비시 가스 가가쿠 가부시키가이샤 반도체 소자 탑재용 패키지 기판의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751994B1 (ko) * 2006-06-30 2007-08-28 삼성전기주식회사 동박적층판 및 이의 제조 방법
WO2020121652A1 (ja) * 2018-12-14 2020-06-18 三菱瓦斯化学株式会社 半導体素子搭載用パッケージ基板の製造方法

Also Published As

Publication number Publication date
CN117044410A (zh) 2023-11-10
JPWO2022209851A1 (ja) 2022-10-06
KR20230163408A (ko) 2023-11-30
TW202239288A (zh) 2022-10-01

Similar Documents

Publication Publication Date Title
JP7172597B2 (ja) 支持基板、支持基板付積層体及び半導体素子搭載用パッケージ基板の製造方法
US10727081B2 (en) Method for manufacturing package substrate for mounting a semiconductor device, and method for manufacturing semiconductor device mounting substrate
TWI830797B (zh) 半導體元件搭載用封裝基板之製造方法
JP7164839B2 (ja) 積層体、金属箔張積層板、パターニングされた金属箔付き積層体、ビルドアップ構造を有する積層体、プリント配線板、多層コアレス基板、及びその製造方法
JP7145403B2 (ja) 支持体及びそれを用いた半導体素子実装基板の製造方法
WO2022209851A1 (ja) 基板及び配線基板の製造方法
US11990349B2 (en) Method for producing package substrate for loading semiconductor device
WO2023054517A1 (ja) 半導体素子搭載用パッケージ基板の製造方法
WO2023106208A1 (ja) 支持体付き配線基板、支持体付き配線基板の製造方法、及び、電子部品実装基板の製造方法
WO2023054516A1 (ja) 半導体素子搭載用パッケージ基板の製造方法及び支持基板付積層体
KR20240110820A (ko) 지지체 부착 배선기판, 지지체 부착 배선기판의 제조방법 및 전자부품 실장기판의 제조방법
CN118020150A (zh) 半导体元件搭载用封装基板的制造方法
CN118339932A (zh) 带支撑体的布线基板、带支撑体的布线基板的制造方法和电子部件安装基板的制造方法
CN118043958A (zh) 半导体元件搭载用封装基板的制造方法和带支撑基板的层叠体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510882

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280023716.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780072

Country of ref document: EP

Kind code of ref document: A1