WO2022209517A1 - Multi-beam charged particle beam drawing device and multi-charged particle beam measurement method - Google Patents

Multi-beam charged particle beam drawing device and multi-charged particle beam measurement method Download PDF

Info

Publication number
WO2022209517A1
WO2022209517A1 PCT/JP2022/008350 JP2022008350W WO2022209517A1 WO 2022209517 A1 WO2022209517 A1 WO 2022209517A1 JP 2022008350 W JP2022008350 W JP 2022008350W WO 2022209517 A1 WO2022209517 A1 WO 2022209517A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperture
charged particle
beams
particle beam
deflector
Prior art date
Application number
PCT/JP2022/008350
Other languages
French (fr)
Japanese (ja)
Inventor
英太 藤崎
修 飯塚
翼 七尾
Original Assignee
株式会社ニューフレアテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニューフレアテクノロジー filed Critical 株式会社ニューフレアテクノロジー
Publication of WO2022209517A1 publication Critical patent/WO2022209517A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a multi-charged particle beam writing apparatus and a multi-charged particle beam measurement method.
  • a multi-beam drawing apparatus for example, electron beams emitted from an electron gun pass through a plurality of holes provided in a shaping aperture array substrate to form multi-beams. Each beam is blanking controlled with a blanking aperture array substrate. At this time, the unshielded beam is applied to the substrate placed on the stage.
  • the beam position may be measured before and after the lithography process of irradiating the substrate with the beams.
  • the multi-beams that have passed through the blanking aperture array substrate scan the apertures provided in the inspection aperture substrate.
  • the beam position can then be determined by analyzing the scanned image.
  • An object of the present invention is to provide a multi-charged particle beam drawing apparatus and a multi-charged particle beam measurement method that can shorten the beam position measurement time.
  • a multi-charged particle beam drawing apparatus includes a blanking mechanism that switches on and off each beam of the multi-charged particle beams, a deflector that deflects the multi-beams that have passed through the blanking mechanism, and a deflector. and a stage on which the object to be drawn is placed, and the beam size of each beam constituting the multi-beam provided on the stage is S, and the beam pitch is P, the diameter ⁇ 1 is S ⁇ 1 ⁇
  • An inspection aperture substrate having an aperture that satisfies PS, a current detector that detects the current of each beam that has passed through the aperture, and each beam of the multi-beam scans a previously provided scan area including the vicinity of the aperture. a control computer for controlling the deflector so as to do so.
  • a method for measuring a multi-charged particle beam comprises: An aperture provided in an inspection aperture substrate through which one beam can pass is sequentially scanned with each beam of the multi-charged particle beam, and a beam image is obtained based on the current amount of each beam of the multi-charged particle beam that has passed through the aperture. and performing beam measurements based on the beam image, comprising: setting a scan area including the vicinity of the aperture of the inspection aperture substrate in advance; The beam measurements are made for each of the beams by projecting the beams onto the scan area and scanning the aperture.
  • FIG. 1 is a schematic diagram of a multi-charged particle beam writing apparatus according to an embodiment of the present invention
  • FIG. FIG. 4 is a plan view of a shaped aperture array substrate
  • FIG. 4 is a diagram showing multiple beams irradiated onto an inspection aperture substrate; It is a figure which shows the beam image image when the whole surface of an inspection aperture board
  • FIG. 10 is a diagram showing a beam image when scanning is performed by providing a scanning area on the inspection aperture substrate; It is a figure which shows an example of a beam shape.
  • FIG. 1 is a schematic diagram of a multi-charged particle beam writing apparatus according to one embodiment of the present invention.
  • a configuration using an electron beam will be described as an example of a charged particle beam.
  • the charged particle beam is not limited to the electron beam, and may be another charged particle beam such as an ion beam.
  • the multi-charged particle beam writing apparatus shown in FIG. 1 includes a writing unit W and a control unit C.
  • the drawing unit W draws a desired pattern by irradiating the substrate 24, which is an example of a drawing object, with an electron beam.
  • the control unit C controls the operation of the drawing unit W.
  • the writing section W includes an electron beam lens barrel 2 and a writing chamber 20 .
  • the electron beam barrel 2 includes an electron gun 4, an illumination lens 6, a shaping aperture array substrate 8, a blanking aperture array substrate (blanking mechanism) 10, a reduction lens 12, a limiting aperture member 14, an objective lens 16, and a deflector 18. accommodate the
  • the writing chamber 20 accommodates the XY stage 22 .
  • a substrate 24 is placed on the XY stage 22 .
  • a wafer or an exposure mask can be applied.
  • a pattern is transferred onto the mask using a stepper using an excimer laser as a light source, a reduction projection type exposure apparatus such as a scanner, or an extreme ultraviolet exposure apparatus (EUV).
  • EUV extreme ultraviolet exposure apparatus
  • a mirror 26 for measuring the position of the XY stage 22 is also placed on the XY stage 22 .
  • an inspection aperture substrate 40 and a current detector 50 are arranged on the XY stage 22 at positions different from the position where the substrate 24 is placed.
  • the height of the inspection aperture substrate 40 can be adjusted by an adjustment mechanism (not shown).
  • the position of inspection aperture substrate 40 is preferably at the same height as substrate 24 .
  • the electron gun 4 (emission unit) emits an electron beam 30.
  • the emitted electron beam 30 illuminates the entire shaped aperture array substrate 8 substantially vertically through the illumination lens 6 .
  • FIG. 2 is a plan view of the shaping aperture array substrate 8.
  • FIG. 1 In the shaping aperture array substrate 8, holes 80 (openings) of m rows (y direction) ⁇ n rows (x direction) (m, n ⁇ 2) are formed in a matrix at a predetermined arrangement pitch. .
  • 512 rows by 512 rows of holes 80 are formed.
  • the holes 80 are rectangular with the same size and shape, but may be circular with the same diameter.
  • the shaped aperture array substrate 8 is illuminated by an electron beam 30 . As the electron beams 30 pass through each hole 80, multiple beams 30a to 30e as shown in FIG. 1 are formed.
  • FIG. 2 shows an example in which two or more rows of holes 80 are arranged vertically and horizontally (x, y directions), the arrangement is not limited to this.
  • one of the vertical and horizontal directions (x and y directions) may have multiple columns and the other may have only one column.
  • the blanking aperture array substrate 10 is formed with apertures corresponding to the arrangement positions of the holes 80 of the shaping aperture array substrate 8, and each aperture has a blanker consisting of two paired electrodes. , respectively.
  • the electron beams 30a-30e passing through each aperture are independently deflected by the voltage applied by the blanker. This deflection provides blanking control for each beam.
  • the beam that has passed through the limiting aperture member 14 from the time the beam is turned on until the beam is turned off becomes the electron beam for one shot.
  • the electron beams 30a to 30e that have passed through the limiting aperture member 14 are focused by the objective lens 16 to form a pattern image with a desired reduction ratio on the substrate 24.
  • FIG. Each electron beam (entire multi-beam) that has passed through the limiting aperture member 14 is collectively deflected in the same direction by the deflector 18 and irradiated onto the substrate 24 .
  • the deflector 18 has a two-stage structure consisting of a main deflector 18a (first deflector) and a sub-deflector 18b (second deflector).
  • the main deflector 18a is arranged in the lower stage, and the sub-deflector 18b is arranged in the upper stage.
  • the deflection area of the main deflector 18a is larger than that of the sub-deflector 18b. Therefore, the main deflector 18a can largely deflect the electron beam, while the sub deflector 18b can control (scan) the electron beam at high speed. By properly using the main deflector 18a and the sub-deflector 18b in this manner, efficient electron beam deflection is possible.
  • the beam drawing position (irradiation position) is track-controlled by the deflector 18 so as to follow the movement of the XY stage 22 .
  • the position of the XY stage 22 is measured by irradiating a laser from the stage position detector 36 toward the mirror 26 on the XY stage 22 and using the reflected light.
  • the multi-beams irradiated at once are ideally arranged at a pitch obtained by multiplying the arrangement pitch of the plurality of holes 80 of the shaping aperture array substrate 8 by the above-described desired reduction ratio.
  • This lithography apparatus performs a lithography operation by a raster scan method in which shot beams are successively emitted in sequence, and when a desired pattern is to be drawn, the necessary beams are turned on by blanking control according to the pattern. .
  • the control unit C has a control computer 32 and a control circuit 34.
  • the control computer 32 has a beam array recognition section 60 , a beam position detection section 62 , a beam shape measurement section 64 and a shot data generation section 66 .
  • Each part of the control computer 32 may be configured by hardware such as an electric circuit, or may be configured by software such as a program that executes all or part of these functions.
  • the program may be stored in a recording medium and read and executed by a computer including electric circuits and the like.
  • the shot data generation unit 66 performs, for example, multiple stages of data conversion processing on the drawing data to generate device-specific shot data, and outputs the generated shot data to the control circuit 34 .
  • the shot data defines the dose of each shot, the coordinates of the irradiation position, and the like.
  • the control circuit 34 divides the dose of each shot by the current density to obtain the irradiation time t, and when the corresponding shot is performed, the corresponding blanker of the blanking aperture array substrate 10 is turned on so that the beam is turned on for the irradiation time t. Apply a deflection voltage.
  • the control circuit 34 calculates the amount of deflection so that each beam is deflected to the position (coordinates) indicated by the shot data, and applies a deflection voltage to the deflector 18 . As a result, the multi-beams shot that time are collectively deflected.
  • the substrate 24 is irradiated at once with a large number of beams arranged at a pitch obtained by multiplying the arrangement pitch of the plurality of holes 80 of the shaping aperture array substrate 8 by a predetermined reduction ratio, and the beams are connected to form a beam.
  • a pitch obtained by multiplying the arrangement pitch of the plurality of holes 80 of the shaping aperture array substrate 8 by a predetermined reduction ratio
  • Beam position detection is performed using a beam inspection system having an inspection aperture substrate 40 and a current detector 50 .
  • FIG. 3 shows the configuration of the beam inspection device.
  • FIG. 3 is a diagram showing multi-beams irradiated to the inspection aperture substrate 40. As shown in FIG.
  • the inspection aperture substrate 40 has a scattering layer 41 and an absorbing layer 43.
  • the scattering layer 41 is provided on the absorbing layer 43 .
  • the inspection aperture substrate 40 has, for example, a circular planar shape.
  • An aperture 42 is formed along the central axis of this planar shape.
  • the inspection aperture substrate 40 is composed of an opening 44 formed in the center of the absorption layer 43 and an aperture 42 formed in the center of the scattering layer 41 and connected to the opening 44 .
  • the diameter ⁇ 1 of the aperture 42 satisfies S ⁇ 1 ⁇ P ⁇ S, so that the electron beam B1 is emitted to the aperture 42 one by one. can pass.
  • the electron beam B2 next to the electron beam B1 irradiates the scattering layer 41, part of which Although it is reflected on the surface of 41, most of it penetrates the scattering layer 41 and is scattered as indicated by the dashed line.
  • the scattered electrons pass through the scattering layer 41 , part of which travels straight through the vacuum, part of which is reflected by the surface of the absorption layer 43 and part of which enters the absorption layer 43 . (almost) not reached.
  • An electron beam B3 adjacent to the electron beam B1 by two or more is scattered by the scattering layer 41 .
  • the scattered electrons enter the absorption layer 43 and are absorbed.
  • the structure of the inspection aperture substrate 40 is not limited to the one described above, and it is possible to apply a structure that can limit the electron beam so that only one electron beam passes through the aperture 42 .
  • the electron beam B1 that has passed through the aperture 42 and the opening 44 is incident on the current detector 50, and the beam current is detected.
  • An SSD semiconductor detector: solid-state detector
  • the current detector 50 transfers the detected beam current value to the control computer 32 .
  • the beams to be measured are sequentially turned on to scan the apertures 42 provided in the inspection aperture substrate 40 .
  • the blanking aperture array substrate 10 may be divided into a plurality of preset measurement areas, and each measurement area may be scanned.
  • control circuit 34 sequentially turns on the electron beams to be measured, deflects them in the X direction by the deflector 18 , and scans the inspection aperture substrate 40 .
  • the beam array recognition unit 60 converts the beam current of the electron beam B11 scanning the inspection aperture substrate 40 into luminance, and creates a beam image 70 based on the deflection amount of the deflector 18.
  • the beam image 70 is an SEM (Scanning Electron Microscope) image.
  • FIG. 4A is a diagram showing a beam image when the entire surface of the inspection aperture substrate 40 is scanned.
  • FIG. 4B is a diagram showing a beam image when a scan area is provided on the inspection aperture substrate 40 and scanned.
  • the entire area including the apertures 42 on the inspection aperture substrate 40 may be beam-scanned, and the beam array recognition section 60 may store the irradiation position of each beam.
  • the shot data generation unit 66 of the control computer 32 sets the area R1 near the aperture 42 as the scan area based on the beam array scan position stored in the beam array recognition unit 60 . Therefore, as shown in FIG. 4B, only the scanning region R1 near the aperture 42 is beam-scanned, and the region R2 not including the aperture 42 is not beam-scanned.
  • a beam image is formed when the beam scan is completed by the method described above.
  • the beam shape measuring section 64 measures the beam shape based on the center coordinates of the beam array in each measurement area.
  • the beam shape measuring unit 64 fits the central coordinates of the beam array corresponding to n measurement regions with a third-order polynomial to obtain a polynomial representing the beam shape. Plotting this polynomial on a graph yields a slightly distorted beam shape, for example, as shown in FIG. In FIG. 5, an ideal grid is set to ⁇ 1 square, and deviations from the ideal grid are plotted so that the beam shape can be easily grasped visually.
  • the shot data generator 66 modulates the dose amount so as to correct the distortion of the beam shape, and generates shot data.
  • the region R1 including the aperture 42 and its vicinity is set as the scan region, and beam irradiation is restricted.
  • the number of shots of the electron beam is reduced, so the measurement time can be shortened.
  • the scanning time may be shortened by scanning the scanning region densely and the other regions coarsely by changing the scanning speed and scanning pitch instead of irradiating only the scanning region with the beam. .
  • the beam inspection time before and after the writing process and the beam shape distortion measurement time (distortion measurement time) shown in FIG. 5 can also be shortened.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the gist of the present invention at the implementation stage. Further, various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, components across different embodiments may be combined as appropriate.

Abstract

The problem to be addressed by the present invention is to provide a multi-beam charged particle beam drawing device with which the time to measure a beam position can be shortened. This multi-beam charged particle beam drawing device comprises: a blanking mechanism (10) that can switch each of multi charged particle beams on and off; a deflector (18) that deflects a multi-beam that has passed through the blanking mechanism (10); a stage (22) that is disposed below the deflector (18) and on which a drawing subject is placed; a scan aperture substrate (40) that is disposed on the stage (22) and that has an aperture the diameter φ1 of which fulfills S < φ1 < P − S where the beam size of each beam constituting the multi-beam is S and the beam pitch is P; a current detector (50) that detects the current of the beams that have passed through the aperture; and a control computer (32) that controls the deflector so that each beam of the multi-beam scans a scan region that includes an aperture vicinity provided in advance.

Description

マルチ荷電粒子ビーム描画装置およびマルチ荷電粒子ビームの測定方法Multi-charged particle beam writing system and multi-charged particle beam measurement method
 本発明は、マルチ荷電粒子ビーム描画装置およびマルチ荷電粒子ビームの測定方法に関する。 The present invention relates to a multi-charged particle beam writing apparatus and a multi-charged particle beam measurement method.
 露光用マスクを形成する電子ビーム描画装置では、マルチビームを使った描画装置の開発が進められている。マルチビームを用いることで、1本の電子ビームで描画する場合に比べて多くのビームを照射できるので、スループットを大幅に向上させることができる。  In the electron beam lithography system that forms the exposure mask, development of a lithography system that uses multi-beams is underway. By using multi-beams, more beams can be emitted than in writing with a single electron beam, so throughput can be greatly improved.
 マルチビーム方式の描画装置では、例えば、電子銃から放出された電子ビームを成形アパーチャアレイ基板に設けられた複数の穴を通してマルチビームを形成する。各ビームは、ブランキングアパーチャアレイ基板でブランキング制御される。このとき、遮蔽されなかったビームが、ステージ上に載置された基板に照射される。 In a multi-beam drawing apparatus, for example, electron beams emitted from an electron gun pass through a plurality of holes provided in a shaping aperture array substrate to form multi-beams. Each beam is blanking controlled with a blanking aperture array substrate. At this time, the unshielded beam is applied to the substrate placed on the stage.
 上記のようなマルチビーム方式の描画装置では、基板にビームを照射する描画処理の前後で、ビーム位置の測定処理を行う場合がある。この測定処理では、まず、ブランキングアパーチャアレイ基板を通過したマルチビームで検査アパーチャ基板に設けられたアパーチャをスキャンする。次に、スキャン画像を解析することによって、ビーム位置を測定することができる。 In the above multi-beam lithography system, the beam position may be measured before and after the lithography process of irradiating the substrate with the beams. In this measurement process, first, the multi-beams that have passed through the blanking aperture array substrate scan the apertures provided in the inspection aperture substrate. The beam position can then be determined by analyzing the scanned image.
特開2018-26544号公報JP 2018-26544 A
 マルチビームで検査アパーチャ基板の全領域を一様にスキャンすると、ビームのショット数が多くなるため、測定時間が長くなってしまう。 If the entire area of the inspection aperture substrate is scanned uniformly with multiple beams, the number of beam shots increases, resulting in a longer measurement time.
 本発明は、ビーム位置の測定時間を短縮することが可能なマルチ荷電粒子ビーム描画装置およびマルチ荷電粒子ビームの測定方法を提供することを課題とする。 An object of the present invention is to provide a multi-charged particle beam drawing apparatus and a multi-charged particle beam measurement method that can shorten the beam position measurement time.
 本発明の一態様によるマルチ荷電粒子ビーム描画装置は、マルチ荷電粒子ビームの各ビームのオンおよびオフを、切り替えるブランキング機構と、ブランキング機構を通過したマルチビームを偏向する偏向器と、偏向器の下方に配置され、描画対象物を載置するステージと、ステージに設けられ、マルチビームを構成する各ビームのビームサイズをS、ビームピッチをPとした場合、径φ1が、S<φ1<P-Sを満たすアパーチャを有する検査アパーチャ基板と、アパーチャを通過した各ビームの電流を検出する電流検出器と、マルチビームの各ビームが、それぞれ予め設けられた前記アパーチャ近傍を含むスキャン領域をスキャンするように、偏向器を制御する制御計算機と、を備える。 A multi-charged particle beam drawing apparatus according to an aspect of the present invention includes a blanking mechanism that switches on and off each beam of the multi-charged particle beams, a deflector that deflects the multi-beams that have passed through the blanking mechanism, and a deflector. and a stage on which the object to be drawn is placed, and the beam size of each beam constituting the multi-beam provided on the stage is S, and the beam pitch is P, the diameter φ1 is S<φ1< An inspection aperture substrate having an aperture that satisfies PS, a current detector that detects the current of each beam that has passed through the aperture, and each beam of the multi-beam scans a previously provided scan area including the vicinity of the aperture. a control computer for controlling the deflector so as to do so.
 本発明の一態様によるマルチ荷電粒子ビームの測定方法は、
 マルチ荷電粒子ビームの各ビームで、検査アパーチャ基板に設けられた順次1本のビームが通過可能なアパーチャをスキャンし、前記アパーチャを通過した前記マルチ荷電粒子ビームの各ビームの電流量に基づきビーム画像を作成し、前記ビーム画像に基づきビーム測定を行う方法であって、
 予め前記検査アパーチャ基板の前記アパーチャ近傍を含むスキャン領域を設定し、
 前記各ビームを前記スキャン領域に照射して前記アパーチャをスキャンすることにより前記各ビームについて前記ビーム測定を行う。
A method for measuring a multi-charged particle beam according to one aspect of the present invention comprises:
An aperture provided in an inspection aperture substrate through which one beam can pass is sequentially scanned with each beam of the multi-charged particle beam, and a beam image is obtained based on the current amount of each beam of the multi-charged particle beam that has passed through the aperture. and performing beam measurements based on the beam image, comprising:
setting a scan area including the vicinity of the aperture of the inspection aperture substrate in advance;
The beam measurements are made for each of the beams by projecting the beams onto the scan area and scanning the aperture.
 本発明によれば、ビーム測定時間を短縮することが可能となる。 According to the present invention, it is possible to shorten the beam measurement time.
本発明の一実施形態に係るマルチ荷電粒子ビーム描画装置の概略図である。1 is a schematic diagram of a multi-charged particle beam writing apparatus according to an embodiment of the present invention; FIG. 成形アパーチャアレイ基板の平面図である。FIG. 4 is a plan view of a shaped aperture array substrate; 検査アパーチャ基板に照射されるマルチビームを示す図である。FIG. 4 is a diagram showing multiple beams irradiated onto an inspection aperture substrate; 検査アパーチャ基板の全面をスキャンした時のビーム画像イメージを示す図である。It is a figure which shows the beam image image when the whole surface of an inspection aperture board|substrate is scanned. 検査アパーチャ基板にスキャン領域を設けてスキャンしたときのビーム画像イメージを示す図である。FIG. 10 is a diagram showing a beam image when scanning is performed by providing a scanning area on the inspection aperture substrate; ビーム形状の一例を示す図である。It is a figure which shows an example of a beam shape.
 以下、図面を参照して本発明の実施形態を説明する。本実施形態は、本発明を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment does not limit the present invention.
 図1は、本発明の一実施形態に係るマルチ荷電粒子ビーム描画装置の概略図である。本実施形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の他の荷電粒子ビームでもよい。 FIG. 1 is a schematic diagram of a multi-charged particle beam writing apparatus according to one embodiment of the present invention. In this embodiment, a configuration using an electron beam will be described as an example of a charged particle beam. However, the charged particle beam is not limited to the electron beam, and may be another charged particle beam such as an ion beam.
 図1に示すマルチ荷電粒子ビーム描画装置は、描画部Wおよび制御部Cを備える。描画部Wは、描画対象物の一例である基板24に電子ビームを照射して所望のパターンを描画する。一方、制御部Cは、描画部Wの動作を制御する。 The multi-charged particle beam writing apparatus shown in FIG. 1 includes a writing unit W and a control unit C. The drawing unit W draws a desired pattern by irradiating the substrate 24, which is an example of a drawing object, with an electron beam. On the other hand, the control unit C controls the operation of the drawing unit W. FIG.
 描画部Wは、電子ビーム鏡筒2および描画室20を含む。電子ビーム鏡筒2は、電子銃4、照明レンズ6、成形アパーチャアレイ基板8、ブランキングアパーチャアレイ基板(ブランキング機構)10、縮小レンズ12、制限アパーチャ部材14、対物レンズ16、および偏向器18を収容する。 The writing section W includes an electron beam lens barrel 2 and a writing chamber 20 . The electron beam barrel 2 includes an electron gun 4, an illumination lens 6, a shaping aperture array substrate 8, a blanking aperture array substrate (blanking mechanism) 10, a reduction lens 12, a limiting aperture member 14, an objective lens 16, and a deflector 18. accommodate the
 描画室20は、XYステージ22を収容する。XYステージ22上には、基板24が載置される。基板24には、例えば、ウェーハや、露光用のマスクを適用できる。マスクには、ウェーハにエキシマレーザを光源としたステッパや、スキャナ等の縮小投影型露光装置や極端紫外線露光装置(EUV)を用いてパターンが転写される。 The writing chamber 20 accommodates the XY stage 22 . A substrate 24 is placed on the XY stage 22 . For the substrate 24, for example, a wafer or an exposure mask can be applied. A pattern is transferred onto the mask using a stepper using an excimer laser as a light source, a reduction projection type exposure apparatus such as a scanner, or an extreme ultraviolet exposure apparatus (EUV).
 XYステージ22上には、XYステージ22の位置を測定するためのミラー26も載置されている。また、XYステージ22には、基板24が載置される位置とは異なる位置に、検査アパーチャ基板40および電流検出器50が配置されている。検査アパーチャ基板40は、調整機構(不図示)により高さが調整可能となっている。検査アパーチャ基板40の位置は、基板24の高さと同じ位置であることが望ましい。 A mirror 26 for measuring the position of the XY stage 22 is also placed on the XY stage 22 . Also, an inspection aperture substrate 40 and a current detector 50 are arranged on the XY stage 22 at positions different from the position where the substrate 24 is placed. The height of the inspection aperture substrate 40 can be adjusted by an adjustment mechanism (not shown). The position of inspection aperture substrate 40 is preferably at the same height as substrate 24 .
 描画部Wでは、電子銃4(放出部)が電子ビーム30を放出する。放出された電子ビーム30は、照明レンズ6によりほぼ垂直に成形アパーチャアレイ基板8の全体を照明する。 In the writing unit W, the electron gun 4 (emission unit) emits an electron beam 30. The emitted electron beam 30 illuminates the entire shaped aperture array substrate 8 substantially vertically through the illumination lens 6 .
 図2は、成形アパーチャアレイ基板8の平面図である。成形アパーチャアレイ基板8には、縦(y方向)m列×横(x方向)n列(m,n≧2)の穴80(開口部)が所定の配列ピッチでマトリクス状に形成されている。例えば、512列×512列の穴80が形成される。本実施形態では、各穴80は、共に同じ寸法形状の矩形で形成されているが、同じ径の円形であってもよい。 2 is a plan view of the shaping aperture array substrate 8. FIG. In the shaping aperture array substrate 8, holes 80 (openings) of m rows (y direction)×n rows (x direction) (m, n≧2) are formed in a matrix at a predetermined arrangement pitch. . For example, 512 rows by 512 rows of holes 80 are formed. In this embodiment, the holes 80 are rectangular with the same size and shape, but may be circular with the same diameter.
 成形アパーチャアレイ基板8は、電子ビーム30によって照明される。各穴80を電子ビーム30がそれぞれ通過することで、図1に示すようなマルチビーム30a~30eが形成される。 The shaped aperture array substrate 8 is illuminated by an electron beam 30 . As the electron beams 30 pass through each hole 80, multiple beams 30a to 30e as shown in FIG. 1 are formed.
 図2では、縦横(x,y方向)が共に2列以上の穴80が配置された例を示したが、これに限るものではない。例えば、縦横(x,y方向)どちらか一方が複数列で他方は1列だけであっても構わない。 Although FIG. 2 shows an example in which two or more rows of holes 80 are arranged vertically and horizontally (x, y directions), the arrangement is not limited to this. For example, one of the vertical and horizontal directions (x and y directions) may have multiple columns and the other may have only one column.
 図1に戻って、ブランキングアパーチャアレイ基板10には、成形アパーチャアレイ基板8の各穴80の配置位置に合わせてアパーチャが形成され、各アパーチャには、対となる2つの電極からなるブランカが、それぞれ配置される。各アパーチャを通過する電子ビーム30a~30eは、それぞれ独立に、ブランカが印加する電圧によって偏向される。この偏向によって、各ビームがブランキング制御される。 Returning to FIG. 1, the blanking aperture array substrate 10 is formed with apertures corresponding to the arrangement positions of the holes 80 of the shaping aperture array substrate 8, and each aperture has a blanker consisting of two paired electrodes. , respectively. The electron beams 30a-30e passing through each aperture are independently deflected by the voltage applied by the blanker. This deflection provides blanking control for each beam.
 そして、ビームオンになってからビームオフになるまでに制限アパーチャ部材14を通過したビームが、1回分のショットの電子ビームとなる。制限アパーチャ部材14を通過した電子ビーム30a~30eは、対物レンズ16により焦点が合わされ、基板24上で所望の縮小率のパターン像となる。制限アパーチャ部材14を通過した各電子ビーム(マルチビーム全体)は、偏向器18によって同じ方向にまとめて偏向され、基板24に照射される。 Then, the beam that has passed through the limiting aperture member 14 from the time the beam is turned on until the beam is turned off becomes the electron beam for one shot. The electron beams 30a to 30e that have passed through the limiting aperture member 14 are focused by the objective lens 16 to form a pattern image with a desired reduction ratio on the substrate 24. FIG. Each electron beam (entire multi-beam) that has passed through the limiting aperture member 14 is collectively deflected in the same direction by the deflector 18 and irradiated onto the substrate 24 .
 偏向器18は、主偏向器18a(第1偏向器)および副偏向器18b(第2偏向器)からなる二段構造を有する。主偏向器18aは下段に配置され、副偏向器18bが、上段に配置されている。主偏向器18aの偏向領域は、副偏向器18bの偏向領域よりも大きい。そのため、主偏向器18aは、電子ビームを大きく偏向させることができる一方で、副偏向器18bは、電子ビームを高速に制御(スキャン)することができる。このように主偏向器18aおよび副偏向器18bを使い分けることによって、効率的な電子ビームの偏向が可能となる。 The deflector 18 has a two-stage structure consisting of a main deflector 18a (first deflector) and a sub-deflector 18b (second deflector). The main deflector 18a is arranged in the lower stage, and the sub-deflector 18b is arranged in the upper stage. The deflection area of the main deflector 18a is larger than that of the sub-deflector 18b. Therefore, the main deflector 18a can largely deflect the electron beam, while the sub deflector 18b can control (scan) the electron beam at high speed. By properly using the main deflector 18a and the sub-deflector 18b in this manner, efficient electron beam deflection is possible.
 XYステージ22が連続的に移動しているときに、ビームの描画位置(照射位置)がXYステージ22の移動に追従するように偏向器18によってトラッキング制御される。XYステージ22の位置は、ステージ位置検出器36からXYステージ22上のミラー26に向けてレーザを照射し、その反射光を用いて測定される。 While the XY stage 22 is continuously moving, the beam drawing position (irradiation position) is track-controlled by the deflector 18 so as to follow the movement of the XY stage 22 . The position of the XY stage 22 is measured by irradiating a laser from the stage position detector 36 toward the mirror 26 on the XY stage 22 and using the reflected light.
 一度に照射されるマルチビームは、理想的には成形アパーチャアレイ基板8の複数の穴80の配列ピッチに上述した所望の縮小率を乗じたピッチで並ぶことになる。この描画装置は、ショットビームを連続して順に照射していくラスタースキャン方式で描画動作を行い、所望のパターンを描画する際、パターンに応じて必要なビームがブランキング制御によりビームオンに制御される。 The multi-beams irradiated at once are ideally arranged at a pitch obtained by multiplying the arrangement pitch of the plurality of holes 80 of the shaping aperture array substrate 8 by the above-described desired reduction ratio. This lithography apparatus performs a lithography operation by a raster scan method in which shot beams are successively emitted in sequence, and when a desired pattern is to be drawn, the necessary beams are turned on by blanking control according to the pattern. .
 制御部Cは、制御計算機32および制御回路34を有する。制御計算機32は、ビームアレイ認識部60、ビーム位置検出部62、ビーム形状測定部64およびショットデータ生成部66を有する。制御計算機32の各部は、電気回路等のハードウェアで構成されてもよいし、これらの機能の全部または一部を実行するプログラム等のソフトウェアで構成されてもよい。ソフトウェアで構成する場合には、上記プログラムを記録媒体に収納し、電気回路等を含むコンピュータに読み込ませて実行させてもよい。 The control unit C has a control computer 32 and a control circuit 34. The control computer 32 has a beam array recognition section 60 , a beam position detection section 62 , a beam shape measurement section 64 and a shot data generation section 66 . Each part of the control computer 32 may be configured by hardware such as an electric circuit, or may be configured by software such as a program that executes all or part of these functions. When configured by software, the program may be stored in a recording medium and read and executed by a computer including electric circuits and the like.
 ショットデータ生成部66は、例えば描画データに対し複数段のデータ変換処理を行って装置固有のショットデータを生成し、制御回路34に出力する。ショットデータには、各ショットの照射量および照射位置座標等が定義される。制御回路34は、各ショットの照射量を電流密度で割って照射時間tを求め、対応するショットが行われる際、照射時間tだけビームオンするように、ブランキングアパーチャアレイ基板10の対応するブランカに偏向電圧を印加する。 The shot data generation unit 66 performs, for example, multiple stages of data conversion processing on the drawing data to generate device-specific shot data, and outputs the generated shot data to the control circuit 34 . The shot data defines the dose of each shot, the coordinates of the irradiation position, and the like. The control circuit 34 divides the dose of each shot by the current density to obtain the irradiation time t, and when the corresponding shot is performed, the corresponding blanker of the blanking aperture array substrate 10 is turned on so that the beam is turned on for the irradiation time t. Apply a deflection voltage.
 制御回路34は、ショットデータが示す位置(座標)に各ビームが偏向されるように偏向量を演算し、偏向器18に偏向電圧を印加する。これにより、その回にショットされるマルチビームがまとめて偏向される。 The control circuit 34 calculates the amount of deflection so that each beam is deflected to the position (coordinates) indicated by the shot data, and applies a deflection voltage to the deflector 18 . As a result, the multi-beams shot that time are collectively deflected.
 上述した描画装置では、基板24に、成形アパーチャアレイ基板8の複数の穴80の配列ピッチに所定の縮小率を乗じたピッチで並んだ多数のビームを一度に照射し、ビーム同士をつなげてビームピッチを埋めることで、所望の図形形状のパターンを描画する。そのため、描画処理の前後に、ビーム位置を検出し、ビーム形状を測定してビーム形状の歪みを補正することが求められる。ビーム位置の検出は、検査アパーチャ基板40および電流検出器50を有するビーム検査装置を用いて行われる。 In the above-described lithography apparatus, the substrate 24 is irradiated at once with a large number of beams arranged at a pitch obtained by multiplying the arrangement pitch of the plurality of holes 80 of the shaping aperture array substrate 8 by a predetermined reduction ratio, and the beams are connected to form a beam. By filling the pitch, a pattern of a desired figure shape is drawn. Therefore, it is required to detect the beam position, measure the beam shape, and correct the distortion of the beam shape before and after the writing process. Beam position detection is performed using a beam inspection system having an inspection aperture substrate 40 and a current detector 50 .
 図3にビーム検査装置の構成を示す。図3は、検査アパーチャ基板40に照射されるマルチビームを示す図である。 Figure 3 shows the configuration of the beam inspection device. FIG. 3 is a diagram showing multi-beams irradiated to the inspection aperture substrate 40. As shown in FIG.
 図3に示すように、検査アパーチャ基板40は、散乱層41および吸収層43を有する。散乱層41は、吸収層43上に設けられている。検査アパーチャ基板40は、例えば円形の平面形状を有する。この平面形状の中心軸に沿ってアパーチャ42が形成されている。この検査アパーチャ基板40は、吸収層43の中心部に形成された開口部44と、散乱層41の中心部に形成され、開口部44に連なるアパーチャ42とで構成される。マルチビームを構成する各ビームのビームサイズをS、ビームピッチをPとした場合、アパーチャ42の径φ1は、S<φ1<P-Sを満たすことで、アパーチャ42に1本ずつ電子ビームB1を通過させることができる。 As shown in FIG. 3, the inspection aperture substrate 40 has a scattering layer 41 and an absorbing layer 43. The scattering layer 41 is provided on the absorbing layer 43 . The inspection aperture substrate 40 has, for example, a circular planar shape. An aperture 42 is formed along the central axis of this planar shape. The inspection aperture substrate 40 is composed of an opening 44 formed in the center of the absorption layer 43 and an aperture 42 formed in the center of the scattering layer 41 and connected to the opening 44 . When the beam size of each beam constituting the multi-beam is S, and the beam pitch is P, the diameter φ1 of the aperture 42 satisfies S<φ1<P−S, so that the electron beam B1 is emitted to the aperture 42 one by one. can pass.
 電子ビームB1がアパーチャ42を通過する際、電子ビームB1の1つ隣の電子ビームB2(電子ビームB1の周辺の8本の電子ビームB2)は、散乱層41に照射され、一部は散乱層41の表面で反射するが、そのほとんどは破線で示すように散乱層41に侵入して散乱される。散乱した電子は、散乱層41を貫通し、その一部はそのまま真空中を直進し、一部は吸収層43の表面で反射され一部は吸収層43に入射し、電流検出器50には(殆ど)到達しない。電子ビームB1の2つ以上隣の電子ビームB3は、散乱層41で散乱される。散乱した電子は吸収層43に侵入し、吸収される。 When the electron beam B1 passes through the aperture 42, the electron beam B2 next to the electron beam B1 (eight electron beams B2 around the electron beam B1) irradiates the scattering layer 41, part of which Although it is reflected on the surface of 41, most of it penetrates the scattering layer 41 and is scattered as indicated by the dashed line. The scattered electrons pass through the scattering layer 41 , part of which travels straight through the vacuum, part of which is reflected by the surface of the absorption layer 43 and part of which enters the absorption layer 43 . (almost) not reached. An electron beam B3 adjacent to the electron beam B1 by two or more is scattered by the scattering layer 41 . The scattered electrons enter the absorption layer 43 and are absorbed.
 なお、検査アパーチャ基板40の構造は、上述したものに限定されるものではなく、アパーチャ42を電子ビームが一本だけ通過するように制限できるものを適用することができる。 It should be noted that the structure of the inspection aperture substrate 40 is not limited to the one described above, and it is possible to apply a structure that can limit the electron beam so that only one electron beam passes through the aperture 42 .
 アパーチャ42および開口部44を通過した電子ビームB1は、電流検出器50に入射し、ビーム電流が検出される。電流検出器50には、例えばSSD(半導体検出器:solid-state detector)を用いることができる。電流検出器50は、検出したビーム電流値を制御計算機32に転送する。 The electron beam B1 that has passed through the aperture 42 and the opening 44 is incident on the current detector 50, and the beam current is detected. An SSD (semiconductor detector: solid-state detector), for example, can be used for the current detector 50 . The current detector 50 transfers the detected beam current value to the control computer 32 .
 本実施形態では、測定対象となるビームを順次オンにして検査アパーチャ基板40に設けられたアパーチャ42をスキャンする。ブランキングアパーチャアレイ基板10を、予め設定された複数の測定領域に分割し、測定領域毎にスキャンしてもよい。 In this embodiment, the beams to be measured are sequentially turned on to scan the apertures 42 provided in the inspection aperture substrate 40 . The blanking aperture array substrate 10 may be divided into a plurality of preset measurement areas, and each measurement area may be scanned.
 例えば、制御回路34が、測定対象となる電子ビームを順次オンにして偏向器18でX方向に偏向させ、検査アパーチャ基板40をスキャンする。 For example, the control circuit 34 sequentially turns on the electron beams to be measured, deflects them in the X direction by the deflector 18 , and scans the inspection aperture substrate 40 .
 制御計算機32では、ビームアレイ認識部60が、検査アパーチャ基板40をスキャンした電子ビームB11のビーム電流を輝度に変換し、偏向器18の偏向量に基づいてビーム画像70を作成する。ビーム画像70は、SEM(Scanning Electron Microscope)画像である。 In the control computer 32, the beam array recognition unit 60 converts the beam current of the electron beam B11 scanning the inspection aperture substrate 40 into luminance, and creates a beam image 70 based on the deflection amount of the deflector 18. The beam image 70 is an SEM (Scanning Electron Microscope) image.
 図4Aは、検査アパーチャ基板40の全面をスキャンした時のビーム画像イメージを示す図である。図4Bは、検査アパーチャ基板40にスキャン領域を設けてスキャンしたときのビーム画像イメージを示す図である。 FIG. 4A is a diagram showing a beam image when the entire surface of the inspection aperture substrate 40 is scanned. FIG. 4B is a diagram showing a beam image when a scan area is provided on the inspection aperture substrate 40 and scanned.
 最初の測定時には、図4Aに示すように、検査アパーチャ基板40におけるアパーチャ42を含む全領域をビームスキャンし、ビームアレイ認識部60が、各ビームの照射位置を記憶してもよい。 At the time of the first measurement, as shown in FIG. 4A, the entire area including the apertures 42 on the inspection aperture substrate 40 may be beam-scanned, and the beam array recognition section 60 may store the irradiation position of each beam.
 この場合、制御計算機32のショットデータ生成部66は、ビームアレイ認識部60に記憶されたビームアレイのスキャン位置に基づいて、アパーチャ42近傍の領域R1をスキャン領域として設定する。そのため、図4Bに示すように、アパーチャ42近傍のスキャン領域R1のみビームスキャンされ、アパーチャ42を含まない領域R2はビームスキャンされない。 In this case, the shot data generation unit 66 of the control computer 32 sets the area R1 near the aperture 42 as the scan area based on the beam array scan position stored in the beam array recognition unit 60 . Therefore, as shown in FIG. 4B, only the scanning region R1 near the aperture 42 is beam-scanned, and the region R2 not including the aperture 42 is not beam-scanned.
 上記のような方法でビームスキャンが終了すると、ビーム画像が形成される。例えば、ビーム形状測定部64が、各測定領域のビームアレイの中心座標に基づいて、ビーム形状を測定する。 A beam image is formed when the beam scan is completed by the method described above. For example, the beam shape measuring section 64 measures the beam shape based on the center coordinates of the beam array in each measurement area.
 例えば、ビーム形状測定部64は、n個の測定領域に対応するビームアレイの中心座標を3次多項式でフィッティングし、ビーム形状を表す多項式を求める。この多項式をグラフにプロットすると、例えば図5に示すような多少の歪みが生じたビーム形状が得られる。図5は、±1□に理想格子を設定し、そこからのズレ分をプロットしてビーム形状を視覚的に捉えやすく示したものである。その後、ショットデータ生成部66が、ビーム形状の歪みを補正するようにドーズ量を変調し、ショットデータを生成する。 For example, the beam shape measuring unit 64 fits the central coordinates of the beam array corresponding to n measurement regions with a third-order polynomial to obtain a polynomial representing the beam shape. Plotting this polynomial on a graph yields a slightly distorted beam shape, for example, as shown in FIG. In FIG. 5, an ideal grid is set to ±1 square, and deviations from the ideal grid are plotted so that the beam shape can be easily grasped visually. After that, the shot data generator 66 modulates the dose amount so as to correct the distortion of the beam shape, and generates shot data.
 以上説明した本実施形態によれば、電子ビームで検査アパーチャ基板40をスキャンする際、アパーチャ42及びその近傍を含む領域R1をスキャン領域として設定し、ビーム照射を制限する。これにより、電子ビームのショット数が削減されるため、測定時間を短縮することができる。例えば、従来は512列×512列のショットが必要なスキャン領域が、256列×256列のショットのスキャン領域分に制限されると、スキャンに関する時間が、約1/4に短縮される。なお、このとき、スキャン領域のみにビーム照射するのではなく、スキャン領域を密に、それ以外の領域を粗く、スキャンスピード、スキャンピッチを変えてスキャンすることで、スキャン時間を短縮してもよい。また、必ずしも全てのビームをスキャンする必要はなく、所定の領域内の代表ビームを測定するなど、飛び飛びに一部のビームを測定してもよい。 According to the present embodiment described above, when scanning the inspection aperture substrate 40 with the electron beam, the region R1 including the aperture 42 and its vicinity is set as the scan region, and beam irradiation is restricted. As a result, the number of shots of the electron beam is reduced, so the measurement time can be shortened. For example, if a scan area that conventionally requires shots of 512 rows×512 rows is limited to a scan area of shots of 256 rows×256 rows, the time for scanning can be shortened to about 1/4. At this time, the scanning time may be shortened by scanning the scanning region densely and the other regions coarsely by changing the scanning speed and scanning pitch instead of irradiating only the scanning region with the beam. . Moreover, it is not always necessary to scan all the beams, and some beams may be measured intermittently, such as measuring a representative beam within a predetermined area.
 上記のようにスキャン時間が短縮されると、描画処理の前後で行われるビーム検査の時間や、図5に示すビーム形状の歪みの測定時間(ディストーション測定時間)も短縮することができる。 When the scanning time is shortened as described above, the beam inspection time before and after the writing process and the beam shape distortion measurement time (distortion measurement time) shown in FIG. 5 can also be shortened.
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 It should be noted that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the gist of the present invention at the implementation stage. Further, various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, components across different embodiments may be combined as appropriate.
4:電子銃(放出部)、8:成形アパーチャアレイ基板、10:ブランキングアパーチャアレイ基板、18:偏向器、18a:第1偏向器、18b:第2偏向器、22:XYステージ、32:制御計算機、40:検査アパーチャ基板、42:アパーチャ、50:電流検出器 4: electron gun (emission part), 8: shaping aperture array substrate, 10: blanking aperture array substrate, 18: deflector, 18a: first deflector, 18b: second deflector, 22: XY stage, 32: Control computer, 40: inspection aperture board, 42: aperture, 50: current detector

Claims (7)

  1.  マルチ荷電粒子ビームの各ビームのオンおよびオフを、切り替えるブランキング機構と、
     前記ブランキング機構を通過したマルチビームを偏向する偏向器と、
     前記偏向器の下方に配置され、描画対象物を載置するステージと、
     前記ステージに設けられ、前記マルチビームを構成する各ビームのビームサイズをS、ビームピッチをPとした場合、径φ1が、S<φ1<P-Sを満たすアパーチャを有する検査アパーチャ基板と、
     前記アパーチャを通過した前記各ビームの電流を検出する電流検出器と、
     前記マルチビームの少なくとも一部の各ビームが、それぞれ予め設けられた前記アパーチャ近傍を含むスキャン領域をスキャンするように、前記偏向器を制御する制御計算機と、
    を備える、マルチ荷電粒子ビーム描画装置。
    a blanking mechanism for switching on and off each beam of the multi-charged particle beam;
    a deflector that deflects the multi-beams that have passed through the blanking mechanism;
    a stage disposed below the deflector for placing an object to be drawn;
    an inspection aperture substrate provided on the stage and having an aperture whose diameter φ1 satisfies S<φ1<P−S, where S is the beam size of each beam constituting the multi-beam, and P is the beam pitch;
    a current detector that detects the current of each beam that has passed through the aperture;
    a control computer that controls the deflector so that each beam of at least a part of the multi-beams scans a scanning area including the vicinity of the aperture that is provided in advance;
    A multi-charged particle beam writer.
  2.  前記制御計算機は、前記スキャン領域より、前記スキャン領域以外の領域を粗くスキャンするように制御する、請求項1に記載のマルチ荷電粒子ビーム描画装置。 3. The multi-charged particle beam writing apparatus according to claim 1, wherein said control computer performs control such that areas other than said scanning area are scanned more roughly than said scanning area.
  3.  前記制御計算機は、前記複数の領域の中で先に前記アパーチャをスキャンしたときの前記電流検出器の検出結果に基づいて、前記スキャン領域を設定する、請求項1に記載のマルチ荷電粒子ビーム描画装置。 2. The multi-charged particle beam drawing according to claim 1, wherein said control computer sets said scan area based on a detection result of said current detector when said aperture is first scanned among said plurality of areas. Device.
  4.  前記制御計算機は、前記電流検出器の検出結果に基づいてビーム画像を作成する、請求項1に記載のマルチ荷電粒子ビーム描画装置。 The multi-charged particle beam drawing apparatus according to claim 1, wherein said control computer creates a beam image based on the detection result of said current detector.
  5.  マルチ荷電粒子ビームの少なくとも一部の各ビームで、検査アパーチャ基板に設けられた順次1本のビームが通過可能なアパーチャをスキャンし、前記アパーチャを通過した前記マルチ荷電粒子ビームの各ビームの電流量に基づきビーム画像を作成し、前記ビーム画像に基づきビーム測定を行う方法であって、
     予め前記検査アパーチャ基板の前記アパーチャ近傍を含むスキャン領域を設定し、
     前記各ビームで前記スキャン領域をスキャンすることにより前記各ビームについて前記ビーム測定を行う、
    マルチ荷電粒子ビームの測定方法。
    scanning an aperture provided in an inspection aperture substrate through which one beam can pass sequentially with each beam of at least a portion of the multi-charged particle beam, and the current amount of each beam of the multi-charged particle beam that has passed through the aperture; A method of creating a beam image based on and performing a beam measurement based on the beam image,
    setting a scan area including the vicinity of the aperture of the inspection aperture substrate in advance;
    making the beam measurements for each of the beams by scanning the scan area with each of the beams;
    Measurement method for multi-charged particle beams.
  6.  前記スキャン領域より、前記スキャン領域以外の領域を粗くスキャンする、請求項5に記載のマルチ荷電粒子ビームの測定方法。 The multi-charged particle beam measurement method according to claim 5, wherein an area other than the scan area is scanned more roughly than the scan area.
  7.  前記複数の領域の中で先に前記アパーチャをスキャンしたときの前記電流量に基づいて、前記スキャン領域を設定する、請求項5に記載のマルチ荷電粒子ビームの測定方法。 The method of measuring a multi-charged particle beam according to claim 5, wherein the scanning area is set based on the amount of current when the aperture is first scanned among the plurality of areas.
PCT/JP2022/008350 2021-03-31 2022-02-28 Multi-beam charged particle beam drawing device and multi-charged particle beam measurement method WO2022209517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061721 2021-03-31
JP2021061721 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209517A1 true WO2022209517A1 (en) 2022-10-06

Family

ID=83458485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008350 WO2022209517A1 (en) 2021-03-31 2022-02-28 Multi-beam charged particle beam drawing device and multi-charged particle beam measurement method

Country Status (2)

Country Link
TW (1) TW202240641A (en)
WO (1) WO2022209517A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160428A (en) * 1979-05-31 1980-12-13 Jeol Ltd Position detecting method for exposed material in electron beam exposure
JPS56107184A (en) * 1980-01-31 1981-08-25 Jeol Ltd Beam measurement
JPS57121228A (en) * 1981-01-22 1982-07-28 Nippon Telegr & Teleph Corp <Ntt> Detection of mark at electron beam exposure
JPS62274540A (en) * 1986-05-23 1987-11-28 Toshiba Corp Beam alignment method in charged-particle beam device
JPH0766097A (en) * 1993-08-26 1995-03-10 Hitachi Ltd Method for detecting alignment mark of electron beam lithography
JP2018078251A (en) * 2016-11-11 2018-05-17 株式会社ニューフレアテクノロジー Multi-charged particle beam lithography device
JP2018082120A (en) * 2016-11-18 2018-05-24 株式会社ニューフレアテクノロジー Multi-charged particle beam lithography apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160428A (en) * 1979-05-31 1980-12-13 Jeol Ltd Position detecting method for exposed material in electron beam exposure
JPS56107184A (en) * 1980-01-31 1981-08-25 Jeol Ltd Beam measurement
JPS57121228A (en) * 1981-01-22 1982-07-28 Nippon Telegr & Teleph Corp <Ntt> Detection of mark at electron beam exposure
JPS62274540A (en) * 1986-05-23 1987-11-28 Toshiba Corp Beam alignment method in charged-particle beam device
JPH0766097A (en) * 1993-08-26 1995-03-10 Hitachi Ltd Method for detecting alignment mark of electron beam lithography
JP2018078251A (en) * 2016-11-11 2018-05-17 株式会社ニューフレアテクノロジー Multi-charged particle beam lithography device
JP2018082120A (en) * 2016-11-18 2018-05-24 株式会社ニューフレアテクノロジー Multi-charged particle beam lithography apparatus

Also Published As

Publication number Publication date
TW202240641A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
US10120284B2 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
US10483088B2 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
JP5484808B2 (en) Drawing apparatus and drawing method
KR102026648B1 (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
KR20130070530A (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP6653125B2 (en) Multi charged particle beam writing method and multi charged particle beam writing apparatus
KR102115923B1 (en) Multi-charged particle beam writing apparatus and adjusting method thereof
KR102057929B1 (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP2016115946A (en) Multi-charged particle beam drawing method
CN115113490A (en) Multi-charged particle beam writing apparatus and adjusting method thereof
US10283316B2 (en) Aperture for inspecting multi beam, beam inspection apparatus for multi beam, and multi charged particle beam writing apparatus
WO2022209517A1 (en) Multi-beam charged particle beam drawing device and multi-charged particle beam measurement method
TWI713074B (en) Multi-charged particle beam drawing device and particle beam evaluation method
TWI818407B (en) Multi-beam image acquisition apparatus and multi-beam image acquisition method
JP7176480B2 (en) Multi-charged particle beam writing method and multi-charged particle beam writing apparatus
JP6449940B2 (en) Multi-charged particle beam writing method
JP6376014B2 (en) Charged particle beam writing apparatus, charged particle beam beam resolution measuring method, and charged particle beam writing apparatus adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779742

Country of ref document: EP

Kind code of ref document: A1