WO2022209414A1 - Fuel tank system - Google Patents

Fuel tank system Download PDF

Info

Publication number
WO2022209414A1
WO2022209414A1 PCT/JP2022/006754 JP2022006754W WO2022209414A1 WO 2022209414 A1 WO2022209414 A1 WO 2022209414A1 JP 2022006754 W JP2022006754 W JP 2022006754W WO 2022209414 A1 WO2022209414 A1 WO 2022209414A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel tank
collision
vehicle
sealing valve
control
Prior art date
Application number
PCT/JP2022/006754
Other languages
French (fr)
Japanese (ja)
Inventor
篤志 若松
大輔 千野
亨介 植松
洋史 矢倉
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2023510645A priority Critical patent/JPWO2022209414A1/ja
Publication of WO2022209414A1 publication Critical patent/WO2022209414A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines

Definitions

  • This disclosure relates to a fuel tank system.
  • Patent Document 1 a fuel tank system that seals the fuel tank in order to prevent the release of fuel evaporative gas generated in the fuel tank of a vehicle having an internal combustion engine into the atmosphere.
  • the fuel tank system of Patent Document 1 includes a sealing valve that controls electrical connection between the fuel tank and the canister.
  • Patent Document 1 does not disclose control for preventing leakage of fuel stored in the fuel tank in the event of a vehicle collision. Even in the fuel tank system of Patent Document 1, it is necessary to prevent fuel leakage when the vehicle collides.
  • An object of the present disclosure is to provide a fuel tank system that can prevent fuel leakage in the event of a vehicle collision.
  • a fuel tank system is a fuel tank system for a vehicle having an internal combustion engine and a fuel tank.
  • a fuel tank system includes a sealing valve and a controller.
  • the sealing valve seals the evaporative gas generated within the fuel tank within the fuel tank.
  • the control unit controls opening and closing of the sealing valve and detects a vehicle collision.
  • the control unit prohibits the closing valve from opening when a vehicle collision is detected.
  • FIG. 1 is a system diagram of a fuel tank system of the present disclosure
  • FIG. 4 is a flowchart showing processing performed by an engine ECU of the present disclosure
  • the fuel tank system 1 is for a vehicle 4 having an internal combustion engine 2 and a fuel tank 18 .
  • the vehicle 4 has a motor (not shown) and an internal combustion engine 2, and is a hybrid vehicle or a plug-in hybrid vehicle that runs using either one or both of the motor and the internal combustion engine 2. be.
  • the vehicle 4 has a hybrid ECU (Electronic Control Unit) 6, an airbag 8, an airbag ECU 10, a collision detection sensor 12, and an ignition switch 14.
  • ECU Electronic Control Unit
  • the vehicle 4 has a hybrid ECU (Electronic Control Unit) 6, an airbag 8, an airbag ECU 10, a collision detection sensor 12, and an ignition switch 14.
  • the hybrid ECU 6 is a control device that controls various devices of the vehicle 4 including the motor and the internal combustion engine 2 .
  • a hybrid ECU is actually configured by a microcomputer including an arithmetic unit, a memory, an input/output buffer, and the like.
  • the airbag ECU 10 and an engine ECU 16, which will be described later, are also configured by a microcomputer including an arithmetic unit, a memory, an input/output buffer, and the like, similarly to the hybrid ECU 6.
  • FIG. Hybrid ECU 6 is electrically connected to airbag ECU 10 and engine ECU 16 .
  • the hybrid ECU 6 adjusts the vehicle 4 to a desired operating state based on signals from these ECUs, signals from sensors and devices mounted on the vehicle 4, and maps and programs stored in memory. Control various devices. Various controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuits).
  • the ignition switch 14 is an operating device that is electrically connected to the hybrid ECU 6 and is operated by the user of the vehicle 4 to put the vehicle 4 into a running state.
  • the ignition switch 14 is a push-type button.
  • the hybrid ECU 6 can drive the vehicle 4. (ready-on state).
  • the engine ECU 16 also enters an ignition ON state (hereinafter referred to as IG ON in the specification and drawings) in which the internal combustion engine 2 can be operated.
  • IG ON ignition ON in the specification and drawings
  • the hybrid ECU 6 enters a sleep state and the operation of the internal combustion engine 2 is stopped. ) state.
  • the airbag ECU 10 is a control device for deploying the airbag 8 when the collision detection sensor 12 detects a collision.
  • the airbag 8 may be provided in a driver's seat, a passenger's seat, and sides of these seats of the vehicle 4 (not shown).
  • the collision detection sensors 12 may be provided in front, left and right sides, and rear of the vehicle 4, and may detect collisions from each direction.
  • the airbag ECU 10 determines whether or not to deploy the airbag 8 in the direction of the collision.
  • the airbag ECU 10 transmits a collision flag to the hybrid ECU 6 indicating that the vehicle 4 is in a collision state.
  • the hybrid ECU 6 stores the collision flag in the memory and also transmits the collision flag to the engine ECU 16, which will be described later.
  • the fuel tank system 1 includes an engine ECU (an example of a control unit) 16, a fuel tank 18, a sealing valve 20, a first tank pressure sensor 22, a second tank pressure sensor 24, a vapor passage 26, and a canister 28. , a purge passage 30 , a purge valve 32 , a bypass valve 34 and a leak monitor module 36 .
  • the fuel tank 18 includes a fuel filler port 18a, a fuel pump 18b, a fuel cutoff valve 18c, and a leveling valve 18d.
  • the fuel tank 18 is made of plate-shaped metal or resin and holds at least a fuel cutoff valve 18c and a leveling valve 18d.
  • the fuel filler port 18a is a fuel inlet to the fuel tank 18.
  • the fuel pump 18b supplies fuel from the fuel tank 18 to the fuel injection valve 2b through the fuel pipe 2c.
  • the fuel cutoff valve 18 c prevents fuel from flowing out of the fuel tank 18 to the vapor passage 26 .
  • the leveling valve 18d controls the liquid level in the fuel tank 18 during refueling. Also, the fuel evaporative gas generated in the fuel tank 18 is discharged to the canister 28 or the internal combustion engine 2 via the fuel cutoff valve 18c and the leveling valve 18d.
  • the sealing valve 20 closes the fuel tank 18 by opening and closing the vapor passage 26 .
  • the sealing valve 20 is a normally closed electromagnetic valve having an electromagnetic solenoid.
  • the sealing valve 20 is an electromagnetic valve that closes when the electromagnetic solenoid is not energized (OFF) and opens when the electromagnetic solenoid is supplied with a drive signal from the outside and energized (ON).
  • the vapor passage 26 communicates the fuel tank 18 and the sealing valve 20 .
  • the first tank pressure sensor 22 is arranged on the vapor passage 26 and detects the pressure of the fuel tank 18 via the vapor passage 26 .
  • the first tank pressure sensor 22 is an absolute pressure sensor and detects the pressure of the fuel tank 18 as an absolute pressure.
  • the second tank pressure sensor 24 is arranged at a position different from that of the first tank pressure sensor 22 .
  • the second tank pressure sensor 24 is arranged above the fuel tank 18 .
  • the second tank pressure sensor 24 is a differential pressure sensor that detects pressure based on the difference from the atmospheric pressure.
  • the first tank pressure sensor 22 is provided so that the pressure can be detected mainly even when the pressure inside the fuel tank 18 rises.
  • the second tank pressure sensor 24 is provided so as to be able to detect whether or not the pressure in the fuel tank 18 is near atmospheric pressure, mainly when refueling. Therefore, the first tank pressure sensor 22 can detect a wider pressure range than the second tank pressure sensor 24 .
  • the second tank pressure sensor 24 can detect pressure more accurately than the first tank pressure sensor 22 can.
  • the canister 28 absorbs fuel evaporative emissions from the fuel tank 18 .
  • the purge passage 30 communicates between the seal valve 20 and the intake passage 2 a of the internal combustion engine 2 .
  • the canister 28 has activated carbon inside, and adsorbs the fuel evaporation gas generated in the fuel tank 18 with the activated carbon.
  • the canister 28 is branched from the purge passage 30 and connected.
  • the canister 28 is provided to supply the adsorbed fuel evaporative gas to the intake passage 2a through the purge passage 30. As shown in FIG.
  • the purge valve 32 opens and closes between the intake passage 2 a and the purge passage 30 .
  • the purge valve 32 is an electromagnetic solenoid valve, which is opened by an instruction from the engine ECU 16 to supply fuel evaporative gas to the intake passage 2a during tank pressure abnormality control and purge control (release control), which will be described later. do.
  • the purge valve 32 is a normally closed type electromagnetic valve, which closes when the electromagnetic solenoid is not energized (OFF), and opens when the electromagnetic solenoid is supplied with a drive signal from the outside and energized (ON). state.
  • the bypass valve 34 opens and closes between the canister 28 and the purge passage 30 .
  • the bypass valve 34 is an electromagnetic solenoid valve, and is closed by an instruction from the engine ECU 16 to prevent fuel evaporative gas from being supplied to the canister 28 in the case of tank pressure abnormality control, which will be described later.
  • the bypass valve 34 is opened by an instruction from the engine ECU (an example of a control unit) 16 to supply fuel evaporative gas adsorbed in the canister 28 to the purge passage 30 .
  • the bypass valve 34 is a normally open type solenoid valve. The bypass valve 34 opens when the electromagnetic solenoid is not energized (OFF), and closes when the electromagnetic solenoid is supplied with a drive signal from the outside and energized (ON).
  • the leak monitor module 36 is a device for diagnosing failures in the fuel tank system 1 .
  • the leak monitor module 36 includes a negative pressure pump, a switching valve, and a canister pressure sensor (not shown).
  • a leak monitor module 36 is connected to the canister 28 .
  • the leak monitor module 36 uses the negative pressure pump, switching valve, and canister pressure sensor to diagnose the presence or absence of leakage of vaporized gas from the fuel tank system 1 in a predetermined failure detection cycle.
  • the engine ECU 16 receives a signal to start the internal combustion engine 2 from the hybrid ECU 6 and information on the output to be operated, and controls the internal combustion engine 2 and the fuel tank system 1 by software stored in the engine ECU 16.
  • the engine ECU 16 is electrically connected to each sensor and various devices mounted on the internal combustion engine 2, and based on the signals from each sensor and various devices and the map and program stored in the memory, the internal combustion engine 2 Various devices are controlled to achieve desired operating conditions. Various controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuits).
  • the engine ECU 16 detects a collision of the vehicle 4 by acquiring a collision flag indicating that the vehicle 4 is in a collision state from the airbag ECU 10 . In this embodiment, engine ECU16 acquires a collision flag via hybrid ECU6. However, the engine ECU 16 may directly acquire the collision flag from the airbag ECU 10 .
  • the engine ECU 16 acquires information from various devices included in the fuel tank system 1, transmits signals for controlling each valve to each valve, and controls the fuel tank system 1 to a desired operating state. Control.
  • the term "open control” indicates that the engine ECU 16 transmits a control signal for opening each valve and instructs each valve to open. Each valve receives a control signal for open control and actually opens if there is no failure.
  • the term "close control” indicates that the engine ECU 16 transmits a control signal to close each valve and instructs each valve to close. Each valve receives a control signal for closing control and closes if there is no failure.
  • the controls that the engine ECU 16 can execute include tank pressure abnormality control (an example of protection control), oil supply control, purge control, and failure diagnosis control.
  • the tank pressure abnormality control is a control for reducing the pressure in the fuel tank 18 to the atmospheric pressure at least when the pressure in the fuel tank 18 rises above the tolerable pressure.
  • the sealing valve 20 and the bypass valve 34 are controlled to open, the fuel tank 18 is opened to the atmosphere via the canister 28, and the pressure in the fuel tank 18 is lowered to atmospheric pressure.
  • Refueling control is a control that puts a refueling lid (not shown) in an openable state when a user presses a refueling switch (not shown).
  • the sealing valve 20 and the bypass valve 34 are controlled to open, and the pressure in the fuel tank 18 is lowered to near atmospheric pressure.
  • Purge control is control for causing fuel evaporative gas to be sucked into the operating internal combustion engine 2 .
  • the seal valve 20 and the purge valve 32 are controlled to be opened, and the bypass valve 34 is controlled to be closed so that the fuel evaporative gas is drawn into the running internal combustion engine 2 .
  • the failure diagnosis control is control in which the engine ECU 16 is activated when a predetermined failure detection cycle is reached, and a failure of the fuel tank system 1 is diagnosed using the leak monitor module 36 .
  • the engine ECU 16 controls the opening of the sealing valve 20 as necessary in the failure diagnosis control.
  • the engine ECU 16 determines whether or not the IG is on (step S1). When the engine ECU 16 determines that the IG is on (step S1 Yes), it determines whether or not the collision flag is established (step S2).
  • the state in which the collision flag is established means the state in which the engine ECU 16 acquires the collision flag via the hybrid ECU 6 .
  • the collision flag may be a flag that is established according to the collision mode. For example, the airbag ECU 10 identifies the direction in which the collision occurred, and sets the collision flag only when the fuel tank 18 is deformed and the fuel cutoff valve 18c or the leveling valve 18d falls off from the fuel tank 18. It may be established. More specifically, the airbag ECU 10 operates only when the fuel tank 18 is in a rearward or lateral collision with the vehicle 4 and when the airbag 8 deploys. , a collision flag may be established.
  • the airbag ECU 10 transmits information on the direction in which the collision occurred to the hybrid ECU 6 or the engine ECU 16, and the hybrid ECU 6 or the engine ECU 16 determines whether the collision is as described above and establishes a collision flag.
  • the engine ECU 16 records the collision flag in the memory when the collision flag is established while the IG is on.
  • step S3 the engine ECU 16 prohibits opening control of the sealing valve 20 during tank pressure abnormality control, refueling control, purge control, and failure diagnosis control.
  • the collision of the vehicle 4 may deform the fuel tank 18 .
  • the fuel cut-off valve 18c and the leveling valve 18d held in the fuel tank 18 drop out of the fuel tank 18 and are submerged in the fuel stored in the fuel tank 18.
  • the fuel cutoff valve 18c and the leveling valve 18d may lose their function of preventing fuel leakage during a collision.
  • the sealing valve 20 is closed, fuel leakage can be prevented. Since the sealing valve 20 is a normally closed type solenoid valve, the closed state of the sealing valve 20 can be maintained if the engine ECU 16 prohibits the opening control.
  • step S4 the engine ECU 16 determines whether or not the sealing valve 20 is open.
  • the open state of the sealing valve 20 means that, for example, when the vehicle 4 collides, at least one of the tank pressure abnormality control, the refueling control, the purge control, and the failure diagnosis control is performed, and the sealing valve 20 is opened. It is in a controlled state.
  • the engine ECU 16 prohibits opening control of the sealing valve 20 when the vehicle 4 collides.
  • step S5 the engine ECU 16 determines whether or not there is an engine start request from the hybrid ECU 6 to start the internal combustion engine 2 (step S5).
  • the hybrid ECU 6 may transmit an engine start request signal to the engine ECU 16 .
  • the engine ECU 16 may start the engine when receiving the engine start request signal.
  • step S5 No it continues to prohibit the opening control of the sealing valve 20 and determines whether the vehicle 4 is running (step S6).
  • the engine ECU 16 may determine whether or not the vehicle 4 is running from a vehicle speed sensor mounted on the vehicle 4, for example. When the engine ECU 16 determines that the vehicle 4 is not running (step S6 No), the process proceeds to step S7.
  • Step S7 shows the case where the IG is turned off.
  • the engine ECU 16 prohibits the seal valve 20 from opening based on the collision flag recorded during the IG ON period. More specifically, the engine ECU 16 refers to the collision flag recorded during the IG ON period, If the collision flag is not turned off, control to open the sealing valve 20 is prohibited.
  • tank pressure abnormality control and purge control are mainly performed during the IG ON period.
  • Failure diagnosis control is mainly performed during the IG off period. Since fueling control is started by the user pressing a fueling button (not shown), there is a possibility that the fueling control will be performed both during the IG ON period and during the IG OFF period. Therefore, the engine ECU 16 prohibits the opening control so that the sealing valve 20 does not open even when fuel supply control or failure diagnosis control is performed during the IG off period after the vehicle 4 collides.
  • step S8 the engine ECU 16 determines whether the IG has been turned on.
  • the engine ECU 16 determines whether or not a predetermined time has elapsed since the IG was turned on (step S9).
  • the engine ECU 16 determines whether or not the collision flag has disappeared (step S10).
  • the engine ECU 16 holds the collision flag recorded in step S2 until a predetermined time has passed.
  • the collision flag disappears step S10 Yes
  • the engine ECU 16 permits the opening of the sealing valve 20 by canceling the prohibition of opening control of the sealing valve 20 (step S11).
  • the engine ECU 16 deletes the record of the collision flag at this time. After deleting the record of the collision flag, the engine ECU 16 returns the process to before step S1. Note that the IG may be turned off during this period. In this case, the engine ECU 16 advances the process to step S1 with the collision flag cleared from the memory.
  • the collision flag of the engine ECU 16 can be erased by erasing the collision flag recorded in the memory of the hybrid ECU 6 when the vehicle 4 is repaired at a maintenance factory or the like.
  • the information indicating that the collision flag has been cleared may not be reflected in the engine ECU 16 due to a delay in communication between the hybrid ECU 6 and the engine ECU 16 .
  • information transmitted from the hybrid ECU 6 within a predetermined time after the ignition is turned on may be uncertain due to noise or the like. Therefore, the engine ECU 16 waits for a predetermined time to determine whether or not the collision flag has disappeared, and holds the collision flag during that time.
  • the engine ECU 16 can reliably acquire information indicating that the collision flag has been cleared from each ECU. As a result, it is possible to prevent the closing valve 20 from being controlled to open even in the collision state.
  • step S1 No If the IG is not turned on (step S1 No), the engine ECU 16 returns the process to before step S1. If the collision flag is not established (step S2 No), the engine ECU 16 returns the process to before step S1.
  • step S12 the engine ECU 16 forcibly closes the sealing valve 20 (step S12). More specifically, the engine ECU 16 controls at least one of tank pressure abnormality control (an example of protection control), fuel supply control, and purge control during the IG ON period, and closes the seal valve 20.
  • tank pressure abnormality control an example of protection control
  • fuel supply control fuel supply control
  • purge control purge control during the IG ON period
  • the engine ECU 16 determines that there is an engine start request from the hybrid ECU 6 (Yes in S5), the engine ECU 16 cancels the prohibition of opening control of the seal valve 20 during fuel supply control and tank pressure abnormality control to open the seal valve 20. You may permit (step S13).
  • the hybrid ECU 6 requests the engine ECU 16 to start the engine, the hybrid ECU 6 does not record the collision flag, and there is a possibility that the collision flag is recorded only in the engine ECU 16 . That is, the engine ECU 16 may erroneously detect and hold the collision flag.
  • the engine ECU 16 cancels the prohibition of opening control of the sealing valve 20 in the oil supply control necessary for running the vehicle 4 and the abnormal tank pressure control necessary to ensure the safety of the vehicle 4, and the vehicle 4 make it drivable. After that, the process of the engine ECU 16 proceeds to step S7.
  • step S13 When the engine ECU 16 determines that the vehicle 4 is running (S6 Yes), it permits the opening of the sealing valve 20 by canceling the prohibition of opening control of the sealing valve 20 during refueling control and tank pressure abnormality control. (step S13).
  • the engine ECU 16 may erroneously detect and hold the collision flag. In such a case, the engine ECU 16 cancels the prohibition of opening control of the sealing valve 20 in the oil supply control necessary for running the vehicle 4 and the abnormal tank pressure control for ensuring the safety of the vehicle 4, so that the vehicle 4 can run. state. After that, the process of the engine ECU 16 proceeds to step S7.
  • the engine ECU 16 does not perform the control in step S13 and prohibits the opening control of the sealing valve 20. You may continue. Thereby, when the vehicle 4 rolls over, the sealing valve 20 can be prohibited from opening.
  • step S8 No When the engine ECU 16 determines that the IG is not turned on in step S8 (step S8 No), the process returns to step S7 while retaining the collision flag in the memory. If the predetermined time has not passed in step S9 (step S9 No), the engine ECU 16 waits until the predetermined time passes. If the collision flag is not cleared in step S10, the engine ECU 16 returns the process to before step S5 while retaining the collision flag in the memory. As a result, the engine ECU 16 can prohibit the opening of the sealing valve 20 while the collision flag is established, regardless of whether the IG is on or the IG is off.
  • the fuel tank system 1 that can prevent fuel leakage when the vehicle 4 collides.
  • the engine ECU 16 detects the collision flag during the IG ON period, but the present disclosure is not limited to this.
  • the engine ECU 16 may detect the collision flag during the IG off period.
  • the vehicle 4 has a motor (not shown) and the internal combustion engine 2, and is a hybrid vehicle or plug-in vehicle that runs using either or both of the motor and the internal combustion engine 2.
  • a hybrid vehicle fuel tank system has been disclosed, the disclosure is not so limited.
  • the present invention can be applied to fuel tank systems of all vehicles equipped with internal combustion engines.
  • the present disclosure can be applied to a vehicle that has a charging-only internal combustion engine and is driven only by a motor and a vehicle that is driven only by the internal combustion engine.
  • Reference Signs List 1 fuel tank system 2: internal combustion engine 4: vehicle 16: engine ECU (an example of a control unit) 18: fuel tank 20: sealing valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

A fuel tank system according to the present disclosure is for a vehicle having an internal combustion engine and a fuel tank. The fuel tank system comprises a sealing valve and a control unit. The sealing valve seals, in the fuel tank, evaporated gas generated in the fuel tank. The control unit controls the opening/closing of the sealing valve and detects a collision of the vehicle. Upon detection of a collision of the vehicle, the control unit inhibits the sealing valve from opening.

Description

燃料タンクシステムfuel tank system
 本開示は、燃料タンクシステムに関する。 This disclosure relates to a fuel tank system.
 従来、内燃機関を有する車両の燃料タンク内で発生した燃料蒸発ガスの大気への放出を防止するために、燃料タンクを密閉する燃料タンクシステムが知られている(例えば、特許文献1)。特許文献1の燃料タンクシステムでは、燃料タンクとキャニスタとの導通状態を制御する密閉弁を備える。 Conventionally, there has been known a fuel tank system that seals the fuel tank in order to prevent the release of fuel evaporative gas generated in the fuel tank of a vehicle having an internal combustion engine into the atmosphere (for example, Patent Document 1). The fuel tank system of Patent Document 1 includes a sealing valve that controls electrical connection between the fuel tank and the canister.
日本国特開2015-45263号公報Japanese Patent Application Laid-Open No. 2015-45263
 特許文献1には、車両が衝突した場合、燃料タンクに貯蔵された燃料の漏れを防止する制御については開示されていない。特許文献1の燃料タンクシステムにおいても、車両が衝突した場合、燃料漏れを防止する必要がある。 Patent Document 1 does not disclose control for preventing leakage of fuel stored in the fuel tank in the event of a vehicle collision. Even in the fuel tank system of Patent Document 1, it is necessary to prevent fuel leakage when the vehicle collides.
 本開示の課題は、車両が衝突した場合、燃料漏れを防止できる燃料タンクシステムを提供することにある。 An object of the present disclosure is to provide a fuel tank system that can prevent fuel leakage in the event of a vehicle collision.
 本開示に係る燃料タンクシステムは、内燃機関と燃料タンクを有する車両の燃料タンクシステムである。燃料タンクシステムは、密閉弁と、制御部と、を備える。密閉弁は、燃料タンク内で発生する蒸散ガスを燃料タンク内に密閉する。制御部は、密閉弁の開閉を制御するとともに、車両の衝突を検知する。制御部は、車両の衝突を検知した場合、密閉弁が開くことを禁止する。 A fuel tank system according to the present disclosure is a fuel tank system for a vehicle having an internal combustion engine and a fuel tank. A fuel tank system includes a sealing valve and a controller. The sealing valve seals the evaporative gas generated within the fuel tank within the fuel tank. The control unit controls opening and closing of the sealing valve and detects a vehicle collision. The control unit prohibits the closing valve from opening when a vehicle collision is detected.
 本開示によれば、車両が衝突した場合、燃料漏れを防止できる燃料タンクシステムを提供できる。 According to the present disclosure, it is possible to provide a fuel tank system that can prevent fuel leakage in the event of a vehicle collision.
本開示の燃料タンクシステムのシステム図。1 is a system diagram of a fuel tank system of the present disclosure; FIG. 本開示のエンジンECUが行う処理を示したフローチャート。4 is a flowchart showing processing performed by an engine ECU of the present disclosure;
 以下、本開示の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 図1に示すように、燃料タンクシステム1は、内燃機関2と燃料タンク18とを有する車両4の燃料タンクシステム1である。本実施形態では、車両4は、モータ(図示せず)と内燃機関2とを有し、モータおよび内燃機関2のどちらか一方、または、両方を用いて走行するハイブリット車やプラグインハイブリッド車である。 As shown in FIG. 1 , the fuel tank system 1 is for a vehicle 4 having an internal combustion engine 2 and a fuel tank 18 . In this embodiment, the vehicle 4 has a motor (not shown) and an internal combustion engine 2, and is a hybrid vehicle or a plug-in hybrid vehicle that runs using either one or both of the motor and the internal combustion engine 2. be.
 また、本実施形態では、車両4は、ハイブリッドECU(Electrоnic Control Unit)6と、エアバッグ8と、エアバッグECU10と、衝突検知センサ12と、イグニッションスイッチ14と、を有する。 In addition, in this embodiment, the vehicle 4 has a hybrid ECU (Electronic Control Unit) 6, an airbag 8, an airbag ECU 10, a collision detection sensor 12, and an ignition switch 14.
 ハイブリッドECU6は、モータおよび内燃機関2を含む車両4の各種装置を制御する制御装置である。ハイブリッドECUは、実際には、演算装置と、メモリと、入出力バッファ等とを含むマイクロコンピュータによって構成される。なお、エアバッグECU10、および後述するエンジンECU16についてもハイブリッドECU6と同様に、演算装置と、メモリと、入出力バッファ等とを含むマイクロコンピュータによって構成される。ハイブリッドECU6は、エアバッグECU10、およびエンジンECU16と電気的に接続される。 The hybrid ECU 6 is a control device that controls various devices of the vehicle 4 including the motor and the internal combustion engine 2 . A hybrid ECU is actually configured by a microcomputer including an arithmetic unit, a memory, an input/output buffer, and the like. The airbag ECU 10 and an engine ECU 16, which will be described later, are also configured by a microcomputer including an arithmetic unit, a memory, an input/output buffer, and the like, similarly to the hybrid ECU 6. FIG. Hybrid ECU 6 is electrically connected to airbag ECU 10 and engine ECU 16 .
 ハイブリッドECU6は、これらECUからの信号、車両4に搭載された各センサおよび各種装置からの信号、およびメモリに格納されたマップおよびプログラムに基づいて、車両4が、所望の運転状態となるように各種装置を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。 The hybrid ECU 6 adjusts the vehicle 4 to a desired operating state based on signals from these ECUs, signals from sensors and devices mounted on the vehicle 4, and maps and programs stored in memory. Control various devices. Various controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuits).
 イグニッションスイッチ14は、ハイブリッドECU6と電気的に接続され、車両4のユーザが操作することによって、車両4を走行可能な状態にする操作装置である。本実施形態ではイグニッションスイッチ14は、プッシュ式のボタンであり、例えば、車両4のユーザがブレーキ(図示せず)を踏みながらイグニッションスイッチ14を押すことによって、ハイブリッドECU6が車両4を走行可能な状態(レディーオン状態)にする。ハイブリッドECU6が車両4を走行可能な状態にすると、エンジンECU16も内燃機関2が運転可能なイグニッションオン(以下明細書および図面においてIGオンと記す)状態となる。一方、車両4のユーザが車両4の停止中にイグニッションスイッチ14を押すことによって、ハイブリッドECU6がスリープ状態になり、内燃機関2の運転が停止しているイグニッションオフ(以下明細書および図面においてIGオフと記す)状態となる。 The ignition switch 14 is an operating device that is electrically connected to the hybrid ECU 6 and is operated by the user of the vehicle 4 to put the vehicle 4 into a running state. In this embodiment, the ignition switch 14 is a push-type button. For example, when the user of the vehicle 4 presses the ignition switch 14 while stepping on the brake (not shown), the hybrid ECU 6 can drive the vehicle 4. (ready-on state). When the hybrid ECU 6 enables the vehicle 4 to run, the engine ECU 16 also enters an ignition ON state (hereinafter referred to as IG ON in the specification and drawings) in which the internal combustion engine 2 can be operated. On the other hand, when the user of the vehicle 4 presses the ignition switch 14 while the vehicle 4 is stopped, the hybrid ECU 6 enters a sleep state and the operation of the internal combustion engine 2 is stopped. ) state.
 エアバッグECU10は、衝突検知センサ12が衝突を検知するとエアバッグ8を展開するための制御装置である。エアバッグ8は、図示しない車両4の運転席、助手席、およびこれら座席の側方に設けられてもよい。衝突検知センサ12は、車両4の前方、左右側方、および後方に設けられてもよく、各方向からの衝突を検知してもよい。エアバッグECU10は、衝突を検知すると、衝突を受けた方向のエアバッグ8を展開するか否か判断する。エアバッグECU10は、エアバッグ8を展開すると判断した場合、ハイブリッドECU6に車両4が衝突状態である旨の衝突フラグを送信する。本実施形態では、ハイブリッドECU6は、エアバッグECU10から衝突フラグを取得すると、衝突フラグをメモリに記録するとともに、後述するエンジンECU16に衝突フラグを送信する。 The airbag ECU 10 is a control device for deploying the airbag 8 when the collision detection sensor 12 detects a collision. The airbag 8 may be provided in a driver's seat, a passenger's seat, and sides of these seats of the vehicle 4 (not shown). The collision detection sensors 12 may be provided in front, left and right sides, and rear of the vehicle 4, and may detect collisions from each direction. When detecting a collision, the airbag ECU 10 determines whether or not to deploy the airbag 8 in the direction of the collision. When determining to deploy the airbag 8, the airbag ECU 10 transmits a collision flag to the hybrid ECU 6 indicating that the vehicle 4 is in a collision state. In this embodiment, when the hybrid ECU 6 acquires the collision flag from the airbag ECU 10, the hybrid ECU 6 stores the collision flag in the memory and also transmits the collision flag to the engine ECU 16, which will be described later.
 燃料タンクシステム1は、エンジンECU(制御部の一例)16と、燃料タンク18と、密閉弁20と、第1タンク圧センサ22と、第2タンク圧センサ24と、ベーパ通路26と、キャニスタ28と、パージ通路30と、パージ弁32と、バイパス弁34と、リークモニタモジュール36と、を備える。 The fuel tank system 1 includes an engine ECU (an example of a control unit) 16, a fuel tank 18, a sealing valve 20, a first tank pressure sensor 22, a second tank pressure sensor 24, a vapor passage 26, and a canister 28. , a purge passage 30 , a purge valve 32 , a bypass valve 34 and a leak monitor module 36 .
 燃料タンク18は、燃料給油口18aと、燃料ポンプ18bと、燃料カットオフバルブ18cと、レベリングバルブ18dと、を含む。燃料タンク18は、板状の金属または樹脂によって形成され、少なくとも燃料カットオフバルブ18cと、レベリングバルブ18dと、を保持する。 The fuel tank 18 includes a fuel filler port 18a, a fuel pump 18b, a fuel cutoff valve 18c, and a leveling valve 18d. The fuel tank 18 is made of plate-shaped metal or resin and holds at least a fuel cutoff valve 18c and a leveling valve 18d.
 燃料給油口18aは、燃料タンク18への燃料注入口である。燃料ポンプ18bは、燃料を燃料タンク18から燃料配管2cを経由して燃料噴射弁2bに供給する。燃料カットオフバルブ18cは、燃料タンク18からベーパ通路26への燃料の流出を防止する。レベリングバルブ18dは、給油時に燃料タンク18内の液面を制御する。また、燃料タンク18内で発生した燃料蒸発ガスは、燃料カットオフバルブ18cおよびレベリングバルブ18dを経由して、キャニスタ28または、内燃機関2に排出される。 The fuel filler port 18a is a fuel inlet to the fuel tank 18. The fuel pump 18b supplies fuel from the fuel tank 18 to the fuel injection valve 2b through the fuel pipe 2c. The fuel cutoff valve 18 c prevents fuel from flowing out of the fuel tank 18 to the vapor passage 26 . The leveling valve 18d controls the liquid level in the fuel tank 18 during refueling. Also, the fuel evaporative gas generated in the fuel tank 18 is discharged to the canister 28 or the internal combustion engine 2 via the fuel cutoff valve 18c and the leveling valve 18d.
 密閉弁20は、ベーパ通路26を開閉することで、燃料タンク18を密閉する。本実施形態では、密閉弁20は、電磁ソレノイドを有するノーマルクローズタイプの電磁弁である。密閉弁20は、電磁ソレノイドが無通電の状態(OFF)で閉弁状態となり、電磁ソレノイドに外部から駆動信号が供給され通電の状態(ON)となると開弁状態となる電磁弁である。ベーパ通路26は、燃料タンク18と密閉弁20とを連通する。 The sealing valve 20 closes the fuel tank 18 by opening and closing the vapor passage 26 . In this embodiment, the sealing valve 20 is a normally closed electromagnetic valve having an electromagnetic solenoid. The sealing valve 20 is an electromagnetic valve that closes when the electromagnetic solenoid is not energized (OFF) and opens when the electromagnetic solenoid is supplied with a drive signal from the outside and energized (ON). The vapor passage 26 communicates the fuel tank 18 and the sealing valve 20 .
 第1タンク圧センサ22は、ベーパ通路26上に配置され、ベーパ通路26を介して燃料タンク18の圧力を検知する。第1タンク圧センサ22は、絶対圧センサであり、燃料タンク18の圧力を絶対圧として検知する。 The first tank pressure sensor 22 is arranged on the vapor passage 26 and detects the pressure of the fuel tank 18 via the vapor passage 26 . The first tank pressure sensor 22 is an absolute pressure sensor and detects the pressure of the fuel tank 18 as an absolute pressure.
 第2タンク圧センサ24は、第1タンク圧センサ22と異なる位置に配置される。本実施形態では、第2タンク圧センサ24は、燃料タンク18の上部に配置される。第2タンク圧センサ24は、大気圧との差によって圧力を検知する差圧式のセンサである。 The second tank pressure sensor 24 is arranged at a position different from that of the first tank pressure sensor 22 . In this embodiment, the second tank pressure sensor 24 is arranged above the fuel tank 18 . The second tank pressure sensor 24 is a differential pressure sensor that detects pressure based on the difference from the atmospheric pressure.
 第1タンク圧センサ22は、主として燃料タンク18内の圧力が上昇した場合であっても圧力が検知できるように設けられる。一方、第2タンク圧センサ24は、主として給油する際に燃料タンク18内の圧力が大気圧近傍にあるか否かを検知できるように設けられる。このため、第1タンク圧センサ22は、第2タンク圧センサ24よりも検知できる圧力の幅が広い。一方、第2タンク圧センサ24は、第1タンク圧センサ22よりも圧力を精度よく検知できる。 The first tank pressure sensor 22 is provided so that the pressure can be detected mainly even when the pressure inside the fuel tank 18 rises. On the other hand, the second tank pressure sensor 24 is provided so as to be able to detect whether or not the pressure in the fuel tank 18 is near atmospheric pressure, mainly when refueling. Therefore, the first tank pressure sensor 22 can detect a wider pressure range than the second tank pressure sensor 24 . On the other hand, the second tank pressure sensor 24 can detect pressure more accurately than the first tank pressure sensor 22 can.
 キャニスタ28は、燃料タンク18の燃料蒸発ガスを吸着する。パージ通路30は、密閉弁20と内燃機関2の吸気通路2aとを連通する。キャニスタ28は、内部に活性炭を具備し、燃料タンク18で発生した燃料蒸発ガスを活性炭によって吸着する。キャニスタ28は、パージ通路30から分岐して接続される。キャニスタ28は、吸着した燃料蒸発ガスを、パージ通路30を介して吸気通路2aに供給するために設けられる。 The canister 28 absorbs fuel evaporative emissions from the fuel tank 18 . The purge passage 30 communicates between the seal valve 20 and the intake passage 2 a of the internal combustion engine 2 . The canister 28 has activated carbon inside, and adsorbs the fuel evaporation gas generated in the fuel tank 18 with the activated carbon. The canister 28 is branched from the purge passage 30 and connected. The canister 28 is provided to supply the adsorbed fuel evaporative gas to the intake passage 2a through the purge passage 30. As shown in FIG.
 パージ弁32は、吸気通路2aとパージ通路30との間を開閉する。本実施形態では、パージ弁32は、電磁ソレノイドバルブであり、後述するタンク圧異常制御、パージ制御(放出制御)の際に、エンジンECU16からの指示によって開いて燃料蒸発ガスを吸気通路2aに供給する。パージ弁32は、ノーマルクローズタイプの電磁弁であり、電磁ソレノイドが無通電の状態(OFF)で閉弁状態となり、電磁ソレノイドに外部から駆動信号が供給され通電の状態(ON)となると開弁状態となる。 The purge valve 32 opens and closes between the intake passage 2 a and the purge passage 30 . In this embodiment, the purge valve 32 is an electromagnetic solenoid valve, which is opened by an instruction from the engine ECU 16 to supply fuel evaporative gas to the intake passage 2a during tank pressure abnormality control and purge control (release control), which will be described later. do. The purge valve 32 is a normally closed type electromagnetic valve, which closes when the electromagnetic solenoid is not energized (OFF), and opens when the electromagnetic solenoid is supplied with a drive signal from the outside and energized (ON). state.
 バイパス弁34は、キャニスタ28とパージ通路30の間を開閉する。本実施形態では、バイパス弁34は、電磁ソレノイドバルブであり、後述するタンク圧異常制御の場合に、エンジンECU16からの指示によって閉じてキャニスタ28に燃料蒸発ガスが供給されないようにする。一方、バイパス弁34は、パージ制御(放出制御)の場合に、エンジンECU(制御部の一例)16からの指示によって開いてキャニスタ28に吸着された燃料蒸発ガスをパージ通路30に供給する。バイパス弁34は、ノーマルオープンタイプの電磁弁である。バイパス弁34は、電磁ソレノイドが無通電の状態(OFF)で開弁状態となり、電磁ソレノイドに外部から駆動信号が供給され通電の状態(ON)となると閉弁状態となる。 The bypass valve 34 opens and closes between the canister 28 and the purge passage 30 . In the present embodiment, the bypass valve 34 is an electromagnetic solenoid valve, and is closed by an instruction from the engine ECU 16 to prevent fuel evaporative gas from being supplied to the canister 28 in the case of tank pressure abnormality control, which will be described later. On the other hand, in the case of purge control (release control), the bypass valve 34 is opened by an instruction from the engine ECU (an example of a control unit) 16 to supply fuel evaporative gas adsorbed in the canister 28 to the purge passage 30 . The bypass valve 34 is a normally open type solenoid valve. The bypass valve 34 opens when the electromagnetic solenoid is not energized (OFF), and closes when the electromagnetic solenoid is supplied with a drive signal from the outside and energized (ON).
 リークモニタモジュール36は、燃料タンクシステム1の故障を診断するための装置である。リークモニタモジュール36は、図示しない負圧ポンプ、切替弁、および、キャニスタ圧センサを含む。リークモニタモジュール36は、キャニスタ28に接続される。リークモニタモジュール36は、所定の故障検知サイクルになると負圧ポンプ、切替弁、および、キャニスタ圧センサを使用し、燃料タンクシステム1からの蒸散ガスの漏れの有無を診断する。 The leak monitor module 36 is a device for diagnosing failures in the fuel tank system 1 . The leak monitor module 36 includes a negative pressure pump, a switching valve, and a canister pressure sensor (not shown). A leak monitor module 36 is connected to the canister 28 . The leak monitor module 36 uses the negative pressure pump, switching valve, and canister pressure sensor to diagnose the presence or absence of leakage of vaporized gas from the fuel tank system 1 in a predetermined failure detection cycle.
 エンジンECU16は、ハイブリッドECU6からの内燃機関2を始動する信号、および運転すべき出力の情報を受信し、エンジンECU16に記憶されるソフトウェアによって、内燃機関2および燃料タンクシステム1を制御する。エンジンECU16は、内燃機関2に搭載される各センサおよび各種装置と電気的に接続され、各センサおよび各種装置からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、内燃機関2が、所望の運転状態となるように各種装置を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。エンジンECU16は、エアバッグECU10から車両4が衝突状態である旨の衝突フラグを取得することによって、車両4の衝突を検知する。本実施形態では、エンジンECU16は、衝突フラグをハイブリッドECU6経由によって取得する。しかし、エンジンECU16は、衝突フラグをエアバッグECU10から直接取得してもよい。 The engine ECU 16 receives a signal to start the internal combustion engine 2 from the hybrid ECU 6 and information on the output to be operated, and controls the internal combustion engine 2 and the fuel tank system 1 by software stored in the engine ECU 16. The engine ECU 16 is electrically connected to each sensor and various devices mounted on the internal combustion engine 2, and based on the signals from each sensor and various devices and the map and program stored in the memory, the internal combustion engine 2 Various devices are controlled to achieve desired operating conditions. Various controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuits). The engine ECU 16 detects a collision of the vehicle 4 by acquiring a collision flag indicating that the vehicle 4 is in a collision state from the airbag ECU 10 . In this embodiment, engine ECU16 acquires a collision flag via hybrid ECU6. However, the engine ECU 16 may directly acquire the collision flag from the airbag ECU 10 .
 また、エンジンECU16は、燃料タンクシステム1に含まれる各種装置からの情報を取得し、各弁を制御するための信号を各弁に送信し、燃料タンクシステム1が所望の運転状態となるように制御する。なお、本実施形態において、「開制御」と記す場合は、エンジンECU16が各弁を開く状態にするための制御信号を送信し、各弁が開くように指示をすることを示す。各弁は、開制御の制御信号をうけて、故障がなければ実際に開く。また、「閉制御」と記す場合も同様に、エンジンECU16が各弁を閉じる状態にするための制御信号を送信し、各弁が閉じるように指示をすることを示す。各弁は、閉制御の制御信号をうけて、故障がなければ閉じる。 In addition, the engine ECU 16 acquires information from various devices included in the fuel tank system 1, transmits signals for controlling each valve to each valve, and controls the fuel tank system 1 to a desired operating state. Control. In the present embodiment, the term "open control" indicates that the engine ECU 16 transmits a control signal for opening each valve and instructs each valve to open. Each valve receives a control signal for open control and actually opens if there is no failure. Similarly, the term "close control" indicates that the engine ECU 16 transmits a control signal to close each valve and instructs each valve to close. Each valve receives a control signal for closing control and closes if there is no failure.
 エンジンECU16が実行可能な制御は、タンク圧異常制御(保護制御の一例)と、給油制御と、パージ制御と、故障診断制御と、を含む。タンク圧異常制御は、少なくとも燃料タンク18の耐用圧力以上に上昇した場合に、燃料タンク18内の圧力を大気圧まで下げる制御である。具体的には、密閉弁20およびバイパス弁34を開制御し、キャニスタ28を介して燃料タンク18を大気開放して燃料タンク18内の圧力を大気圧まで下げる。給油制御は、ユーザが給油スイッチ(図示せず)を押した場合、図示しない給油リッドを開放可能な状態にする制御である。具体的には、密閉弁20およびバイパス弁34を開制御して、燃料タンク18の圧力を大気圧付近まで降下させる。パージ制御は、燃料蒸発ガスを運転中の内燃機関2に吸わせる制御である。具体的には、燃料タンク18が所定圧力以上になると、密閉弁20およびパージ弁32を開制御し、バイパス弁34を閉制御して、燃料蒸発ガスを運転中の内燃機関2に吸わせる。故障診断制御は、所定の故障検知サイクルとなるとエンジンECU16が起動し、リークモニタモジュール36を用いて燃料タンクシステム1の故障を診断する制御である。エンジンECU16は、故障診断制御では、必要に応じて密閉弁20を開制御する。 The controls that the engine ECU 16 can execute include tank pressure abnormality control (an example of protection control), oil supply control, purge control, and failure diagnosis control. The tank pressure abnormality control is a control for reducing the pressure in the fuel tank 18 to the atmospheric pressure at least when the pressure in the fuel tank 18 rises above the tolerable pressure. Specifically, the sealing valve 20 and the bypass valve 34 are controlled to open, the fuel tank 18 is opened to the atmosphere via the canister 28, and the pressure in the fuel tank 18 is lowered to atmospheric pressure. Refueling control is a control that puts a refueling lid (not shown) in an openable state when a user presses a refueling switch (not shown). Specifically, the sealing valve 20 and the bypass valve 34 are controlled to open, and the pressure in the fuel tank 18 is lowered to near atmospheric pressure. Purge control is control for causing fuel evaporative gas to be sucked into the operating internal combustion engine 2 . Specifically, when the pressure in the fuel tank 18 exceeds a predetermined pressure, the seal valve 20 and the purge valve 32 are controlled to be opened, and the bypass valve 34 is controlled to be closed so that the fuel evaporative gas is drawn into the running internal combustion engine 2 . The failure diagnosis control is control in which the engine ECU 16 is activated when a predetermined failure detection cycle is reached, and a failure of the fuel tank system 1 is diagnosed using the leak monitor module 36 . The engine ECU 16 controls the opening of the sealing valve 20 as necessary in the failure diagnosis control.
 次に、図2のフローチャートを用いて、本開示のエンジンECU16が行う制御手順について説明する。なお、エンジンECU16は出荷直後から制御手順を開始する。 Next, the control procedure performed by the engine ECU 16 of the present disclosure will be described using the flowchart of FIG. It should be noted that the engine ECU 16 starts the control procedure immediately after shipment.
 エンジンECU16は、IGオン状態か否か判断する(ステップS1)。エンジンECU16は、IGオン状態と判断した場合(ステップS1 Yes)、衝突フラグが成立しているか否か判断する(ステップS2)。 The engine ECU 16 determines whether or not the IG is on (step S1). When the engine ECU 16 determines that the IG is on (step S1 Yes), it determines whether or not the collision flag is established (step S2).
 ここで、衝突フラグが成立した状態とは、エンジンECU16が、ハイブリッドECU6経由で衝突フラグを取得した状態である。衝突フラグは、衝突形態に応じて成立するフラグであってもよい。例えば、エアバッグECU10は、衝突が発生した方向を特定し、燃料タンク18が変形し燃料カットオフバルブ18c、またはレベリングバルブ18dが燃料タンク18から脱落するような衝突形態の場合のみ、衝突フラグが成立するようにしてもよい。より具体的には、エアバッグECU10は、燃料タンク18が上記のような変形をする可能性がある車両4の後方および側方に衝突が発生した場合、かつエアバッグ8が展開した場合にのみ、衝突フラグが成立するようにしてもよい。あるいは、エアバッグECU10が、衝突の発生した方向の情報をハイブリッドECU6、またはエンジンECU16に送信し、ハイブリッドECU6、またはエンジンECU16が上記のような衝突であるか否かを判断し衝突フラグを成立させてもよい。エンジンECU16は、IGオン中に衝突フラグが成立すると、衝突フラグをメモリに記録する。 Here, the state in which the collision flag is established means the state in which the engine ECU 16 acquires the collision flag via the hybrid ECU 6 . The collision flag may be a flag that is established according to the collision mode. For example, the airbag ECU 10 identifies the direction in which the collision occurred, and sets the collision flag only when the fuel tank 18 is deformed and the fuel cutoff valve 18c or the leveling valve 18d falls off from the fuel tank 18. It may be established. More specifically, the airbag ECU 10 operates only when the fuel tank 18 is in a rearward or lateral collision with the vehicle 4 and when the airbag 8 deploys. , a collision flag may be established. Alternatively, the airbag ECU 10 transmits information on the direction in which the collision occurred to the hybrid ECU 6 or the engine ECU 16, and the hybrid ECU 6 or the engine ECU 16 determines whether the collision is as described above and establishes a collision flag. may The engine ECU 16 records the collision flag in the memory when the collision flag is established while the IG is on.
 エンジンECU16は、衝突フラグが成立していると判断した場合(ステップS2 Yes)、密閉弁20が開くことを禁止する(ステップS3)。より具体的には、エンジンECU16は、タンク圧異常制御中、給油制御中、パージ制御中、および故障診断制御中において、密閉弁20の開制御を禁止する。 When the engine ECU 16 determines that the collision flag is established (step S2 Yes), it prohibits the sealing valve 20 from opening (step S3). More specifically, the engine ECU 16 prohibits opening control of the sealing valve 20 during tank pressure abnormality control, refueling control, purge control, and failure diagnosis control.
 これによって、車両4が衝突した場合であっても、燃料漏れを防止できる。より具体的には、車両4の衝突によって燃料タンク18が変形する場合もある。燃料タンク18が変形すると、燃料タンク18に保持された燃料カットオフバルブ18cおよびレベリングバルブ18dが燃料タンク18から脱落し、燃料タンク18の貯蔵された燃料内に浸かる。この結果、燃料カットオフバルブ18cおよびレベリングバルブ18dが衝突時に燃料漏れを防止する機能を失うこともある。このような場合であっても、密閉弁20が閉状態であれば、燃料漏れを防止することができる。密閉弁20はノーマルクローズタイプの電磁弁であるため、エンジンECU16が開制御を禁止すれば、密閉弁20の閉状態を維持できる。 As a result, even if the vehicle 4 collides, fuel leakage can be prevented. More specifically, the collision of the vehicle 4 may deform the fuel tank 18 . When the fuel tank 18 is deformed, the fuel cut-off valve 18c and the leveling valve 18d held in the fuel tank 18 drop out of the fuel tank 18 and are submerged in the fuel stored in the fuel tank 18. As a result, the fuel cutoff valve 18c and the leveling valve 18d may lose their function of preventing fuel leakage during a collision. Even in such a case, if the sealing valve 20 is closed, fuel leakage can be prevented. Since the sealing valve 20 is a normally closed type solenoid valve, the closed state of the sealing valve 20 can be maintained if the engine ECU 16 prohibits the opening control.
 ステップS4では、エンジンECU16は、密閉弁20が開状態か否か判断する。密閉弁20が開状態とは、例えば、車両4が衝突したときに、タンク圧異常制御、給油制御、パージ制御、および故障診断制御のうち、少なくとも一つの制御が行われ、密閉弁20が開制御されている状態である。エンジンECU16は、車両4が衝突した場合、密閉弁20の開制御を禁止する。 In step S4, the engine ECU 16 determines whether or not the sealing valve 20 is open. The open state of the sealing valve 20 means that, for example, when the vehicle 4 collides, at least one of the tank pressure abnormality control, the refueling control, the purge control, and the failure diagnosis control is performed, and the sealing valve 20 is opened. It is in a controlled state. The engine ECU 16 prohibits opening control of the sealing valve 20 when the vehicle 4 collides.
 エンジンECU16は、密閉弁20が開状態ではない場合(ステップS4 No)、ハイブリッドECU6から内燃機関2を始動させるエンジン始動要求があるか否か判断する(ステップS5)。ハイブリッドECU6は、内燃機関2を始動させたい場合、例えば、エンジン始動要求信号をエンジンECU16に送信してもよい。エンジンECU16は、エンジン始動要求信号を取得すると、エンジンを始動させてもよい。エンジンECU16は、エンジン始動要求がないと判断した場合(ステップS5 No)、密閉弁20の開制御の禁止を継続し、車両4が走行しているか否か判断する(ステップS6)。エンジンECU16は、例えば車両4に搭載された車速センサから車両4が走行しているか否か判断してもよい。エンジンECU16は、車両4が走行していないと判断した場合(ステップS6 No)、ステップS7に処理を進める。 If the seal valve 20 is not open (step S4 No), the engine ECU 16 determines whether or not there is an engine start request from the hybrid ECU 6 to start the internal combustion engine 2 (step S5). When the hybrid ECU 6 wants to start the internal combustion engine 2 , for example, the hybrid ECU 6 may transmit an engine start request signal to the engine ECU 16 . The engine ECU 16 may start the engine when receiving the engine start request signal. When the engine ECU 16 determines that there is no request to start the engine (step S5 No), it continues to prohibit the opening control of the sealing valve 20 and determines whether the vehicle 4 is running (step S6). The engine ECU 16 may determine whether or not the vehicle 4 is running from a vehicle speed sensor mounted on the vehicle 4, for example. When the engine ECU 16 determines that the vehicle 4 is not running (step S6 No), the process proceeds to step S7.
 ステップS7は、IGオフされた場合を示す。エンジンECU16は、IGオン期間中に記録した衝突フラグに基づいて密閉弁20が開くことを禁止する、より具体的には、IGオン期間中に記録された衝突フラグを参照し、IGオフ期間中も衝突フラグが消えていない場合は、密閉弁20の開制御を禁止する。 Step S7 shows the case where the IG is turned off. The engine ECU 16 prohibits the seal valve 20 from opening based on the collision flag recorded during the IG ON period. More specifically, the engine ECU 16 refers to the collision flag recorded during the IG ON period, If the collision flag is not turned off, control to open the sealing valve 20 is prohibited.
 本実施形態では、タンク圧異常制御およびパージ制御は、主としてIGオン期間中に行われる。故障診断制御は、主としてIGオフ期間中に行われる。給油制御は、図示しない給油ボタンがユーザに押されることによって開始されるため、IGオン期間中およびIGオフ期間中のいずれにおいても行われる可能性がある。したがって、エンジンECU16は、車両4が衝突後、IGオフ期間中に給油制御または故障診断制御が行われる場合であっても密閉弁20が開状態とならないように開制御を禁止する。 In this embodiment, tank pressure abnormality control and purge control are mainly performed during the IG ON period. Failure diagnosis control is mainly performed during the IG off period. Since fueling control is started by the user pressing a fueling button (not shown), there is a possibility that the fueling control will be performed both during the IG ON period and during the IG OFF period. Therefore, the engine ECU 16 prohibits the opening control so that the sealing valve 20 does not open even when fuel supply control or failure diagnosis control is performed during the IG off period after the vehicle 4 collides.
 ステップS8では、エンジンECU16は、IGオンされたか否か判断する。エンジンECU16は、IGオンされた場合(ステップS8 Yes)、IGオンから所定時間経過したか否か判断する(ステップS9)。エンジンECU16は、所定時間経過した場合(ステップS9 Yes)、衝突フラグが消えたか否か判断する(ステップS10)。エンジンECU16は、所定時間経過するまでは、ステップS2で記録した衝突フラグを保持する。エンジンECU16は、衝突フラグが消えた場合(ステップS10 Yes)、密閉弁20の開制御禁止を解除することによって、密閉弁20が開くことを許可する(ステップS11)。また、エンジンECU16は、このとき衝突フラグの記録を削除する。エンジンECU16は、衝突フラグの記録を削除すると処理をステップS1の前に戻す。なお、この間にIGオフとなってもよい。この場合、エンジンECU16は、衝突フラグがメモリから消えた状態でステップS1に処理を進める。 In step S8, the engine ECU 16 determines whether the IG has been turned on. When the IG is turned on (Yes at step S8), the engine ECU 16 determines whether or not a predetermined time has elapsed since the IG was turned on (step S9). When the predetermined time has passed (step S9 Yes), the engine ECU 16 determines whether or not the collision flag has disappeared (step S10). The engine ECU 16 holds the collision flag recorded in step S2 until a predetermined time has passed. When the collision flag disappears (step S10 Yes), the engine ECU 16 permits the opening of the sealing valve 20 by canceling the prohibition of opening control of the sealing valve 20 (step S11). Also, the engine ECU 16 deletes the record of the collision flag at this time. After deleting the record of the collision flag, the engine ECU 16 returns the process to before step S1. Note that the IG may be turned off during this period. In this case, the engine ECU 16 advances the process to step S1 with the collision flag cleared from the memory.
 本実施形態では、衝突フラグはメンテナンス工場などで車両4が修復された場合、ハイブリッドECU6のメモリに記録された衝突フラグを消すことによって、エンジンECU16の衝突フラグを消すことができる。しかし、IGオン直後は、ハイブリッドECU6とエンジンECU16との通信遅れによって、エンジンECU16に衝突フラグが消された旨の情報が反映されない場合もある。また、IGオンから所定時間内にハイブリッドECU6から送信されてくる情報は、ノイズなどにより不確かな可能性もある。このため、エンジンECU16は、衝突フラグが消えたか否かの判断を所定時間待ち、その間衝突フラグを保持する。これによって、各ECU間(本実施形態では、ハイブリッドECU6とエンジンECU16間)の通信遅れやノイズによって生じる不確実な情報の取得を防止できる。すなわち、エンジンECU16は、衝突フラグが消された旨の情報を、各ECUから確実に取得できる。この結果、衝突状態であるにも関わらず、密閉弁20が開制御されることを防止できる。 In this embodiment, the collision flag of the engine ECU 16 can be erased by erasing the collision flag recorded in the memory of the hybrid ECU 6 when the vehicle 4 is repaired at a maintenance factory or the like. However, immediately after the ignition is turned on, the information indicating that the collision flag has been cleared may not be reflected in the engine ECU 16 due to a delay in communication between the hybrid ECU 6 and the engine ECU 16 . Also, information transmitted from the hybrid ECU 6 within a predetermined time after the ignition is turned on may be uncertain due to noise or the like. Therefore, the engine ECU 16 waits for a predetermined time to determine whether or not the collision flag has disappeared, and holds the collision flag during that time. As a result, it is possible to prevent the acquisition of uncertain information caused by communication delays and noise between the ECUs (in this embodiment, between the hybrid ECU 6 and the engine ECU 16). That is, the engine ECU 16 can reliably acquire information indicating that the collision flag has been cleared from each ECU. As a result, it is possible to prevent the closing valve 20 from being controlled to open even in the collision state.
 エンジンECU16は、IGオンされていない場合(ステップS1 No)、処理をステップS1の前に戻す。エンジンECU16は、衝突フラグが成立していない場合(ステップS2 No)、処理をステップS1の前に戻す。 If the IG is not turned on (step S1 No), the engine ECU 16 returns the process to before step S1. If the collision flag is not established (step S2 No), the engine ECU 16 returns the process to before step S1.
 エンジンECU16は、密閉弁20が開状態の場合(ステップS4 Yes)、密閉弁20を強制的に閉じる(ステップS12)。より具体的には、エンジンECU16は、IGオン期間中にタンク圧異常制御(保護制御の一例)、給油制御、およびパージ制御、のうち少なくともいずれかひとつの制御を行っており、密閉弁20を開制御している期間中に衝突フラグを取得した場合、密閉弁20の閉制御をする。これによって、密閉弁20が衝突フラグを取得するとともに即座に閉じる。この結果、密閉弁20を介して燃料タンク18の燃料が漏れることを防止できる。その後、エンジンECU16の処理は、ステップS5へ進む。 When the sealing valve 20 is open (step S4 Yes), the engine ECU 16 forcibly closes the sealing valve 20 (step S12). More specifically, the engine ECU 16 controls at least one of tank pressure abnormality control (an example of protection control), fuel supply control, and purge control during the IG ON period, and closes the seal valve 20. When the collision flag is acquired during the period of open control, the closing control of the sealing valve 20 is performed. As a result, the sealing valve 20 acquires the collision flag and immediately closes. As a result, leakage of fuel from the fuel tank 18 through the sealing valve 20 can be prevented. After that, the processing of the engine ECU 16 proceeds to step S5.
 エンジンECU16は、ハイブリッドECU6からエンジン始動要求が有ったと判断した場合(S5 Yes)、給油制御およびタンク圧異常制御中の密閉弁20の開制御禁止を解除することによって密閉弁20を開くことを許可してもよい(ステップS13)。ハイブリッドECU6がエンジンECU16にエンジン始動要求をした場合、ハイブリッドECU6は、衝突フラグを記録しておらず、エンジンECU16にのみ衝突フラグが記録されている可能性がある。すなわち、エンジンECU16は、衝突フラグを誤って検知し保持している可能性がある。このような場合、エンジンECU16は、車両4の走行に必要な給油制御と、車両4の安全を確保するために必要なタンク圧異常制御における密閉弁20の開制御禁止を解除し、車両4が走行可能な状態にする。その後、エンジンECU16の処理は、ステップS7へ進む。 When the engine ECU 16 determines that there is an engine start request from the hybrid ECU 6 (Yes in S5), the engine ECU 16 cancels the prohibition of opening control of the seal valve 20 during fuel supply control and tank pressure abnormality control to open the seal valve 20. You may permit (step S13). When the hybrid ECU 6 requests the engine ECU 16 to start the engine, the hybrid ECU 6 does not record the collision flag, and there is a possibility that the collision flag is recorded only in the engine ECU 16 . That is, the engine ECU 16 may erroneously detect and hold the collision flag. In such a case, the engine ECU 16 cancels the prohibition of opening control of the sealing valve 20 in the oil supply control necessary for running the vehicle 4 and the abnormal tank pressure control necessary to ensure the safety of the vehicle 4, and the vehicle 4 make it drivable. After that, the process of the engine ECU 16 proceeds to step S7.
 エンジンECU16は、車両4が走行していると判断した場合(S6 Yes)、給油制御およびタンク圧異常制御中の密閉弁20の開制御禁止を解除することによって密閉弁20を開くことを許可してもよい(ステップS13)。車両4が走行した場合、ハイブリッドECU6は、衝突フラグを記録しておらず、エンジンECU16にのみ衝突フラグが記録されている可能性がある。すなわち、エンジンECU16は、衝突フラグを誤って検知し保持している可能性がある。このような場合、エンジンECU16は、車両4の走行に必要な給油制御と、車両4の安全を確保するためのタンク圧異常制御における密閉弁20の開制御禁止を解除し、車両4が走行可能な状態にする。その後、エンジンECU16の処理は、ステップS7へ進む。 When the engine ECU 16 determines that the vehicle 4 is running (S6 Yes), it permits the opening of the sealing valve 20 by canceling the prohibition of opening control of the sealing valve 20 during refueling control and tank pressure abnormality control. (step S13). When the vehicle 4 runs, there is a possibility that the hybrid ECU 6 does not record the collision flag and only the engine ECU 16 records the collision flag. That is, the engine ECU 16 may erroneously detect and hold the collision flag. In such a case, the engine ECU 16 cancels the prohibition of opening control of the sealing valve 20 in the oil supply control necessary for running the vehicle 4 and the abnormal tank pressure control for ensuring the safety of the vehicle 4, so that the vehicle 4 can run. state. After that, the process of the engine ECU 16 proceeds to step S7.
 なお、車両4が横転センサ(ロールオーバーセンサ)を有し、横転センサによって車両4の横転状態を検知できる場合、エンジンECU16は、ステップS13の制御を行わず、密閉弁20の開制御の禁止を継続してもよい。これによって、車両4が横転状態の場合、密閉弁20が開くことを禁止できる。 If the vehicle 4 has a rollover sensor (rollover sensor) and the rollover state of the vehicle 4 can be detected by the rollover sensor, the engine ECU 16 does not perform the control in step S13 and prohibits the opening control of the sealing valve 20. You may continue. Thereby, when the vehicle 4 rolls over, the sealing valve 20 can be prohibited from opening.
 エンジンECU16は、ステップS8においてIGオンでないと判断した場合(ステップS8 No)、衝突フラグをメモリに保持した状態でステップS7の前に処理を戻す。エンジンECU16は、ステップS9において所定時間経過していない場合(ステップS9 No)、所定時間経過するまで処理を待つ。エンジンECU16は、ステップS10において衝突フラグが消えていない場合、衝突フラグをメモリに保持した状態で処理をステップS5の前に戻す。これによって、衝突フラグが成立している間、IGオン期間中、およびIGオフ期間中にかかわらずエンジンECU16は密閉弁20が開くことを禁止できる。 When the engine ECU 16 determines that the IG is not turned on in step S8 (step S8 No), the process returns to step S7 while retaining the collision flag in the memory. If the predetermined time has not passed in step S9 (step S9 No), the engine ECU 16 waits until the predetermined time passes. If the collision flag is not cleared in step S10, the engine ECU 16 returns the process to before step S5 while retaining the collision flag in the memory. As a result, the engine ECU 16 can prohibit the opening of the sealing valve 20 while the collision flag is established, regardless of whether the IG is on or the IG is off.
 以上説明した通り、本開示によれば、車両4が衝突した場合、燃料漏れを防止できる燃料タンクシステム1を提供できる。 As described above, according to the present disclosure, it is possible to provide the fuel tank system 1 that can prevent fuel leakage when the vehicle 4 collides.
 <他の実施形態>
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
<Other embodiments>
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various modifications are possible without departing from the scope of the invention. In particular, multiple modifications described herein can be arbitrarily combined as required.
 (a)上記実施形態では、エンジンECU16によって燃料タンクシステム1を制御する例を用いて説明したが、本開示はこれに限定されない。エンジンECU16とハイブリッドECU6は、一つのECUであってもよく、上記実施形態による制御をハイブリッドECU6によって実行してもよい。 (a) In the above embodiment, an example in which the engine ECU 16 controls the fuel tank system 1 was used, but the present disclosure is not limited to this. One ECU may be sufficient as engine ECU16 and hybrid ECU6, and hybrid ECU6 may perform the control by the said embodiment.
 (b)上記実施形態では、エンジンECU16が衝突フラグをIGオン期間中に検知する例を用いて説明したが、本開示はこれに限定されない。エンジンECU16は、衝突フラグをIGオフ期間中に検知してもよい。 (b) In the above embodiment, the engine ECU 16 detects the collision flag during the IG ON period, but the present disclosure is not limited to this. The engine ECU 16 may detect the collision flag during the IG off period.
 (c)上記実施形態では、車両4は、モータ(図示せず)と内燃機関2とを有し、モータおよび内燃機関2のどちらか一方、または、両方を用いて走行するハイブリット車やプラグインハイブリッド車の燃料タンクシステムを開示したが、本開示はこれに限定されない。内燃機関を搭載したすべての車両の燃料タンクシステムに本発明を適用できる。例えば、充電専用の内燃機関を有し、モータだけで車両を駆動する車両及び内燃機関だけで車両を駆動する車両にも本開示を適用できる。 (c) In the above embodiment, the vehicle 4 has a motor (not shown) and the internal combustion engine 2, and is a hybrid vehicle or plug-in vehicle that runs using either or both of the motor and the internal combustion engine 2. Although a hybrid vehicle fuel tank system has been disclosed, the disclosure is not so limited. The present invention can be applied to fuel tank systems of all vehicles equipped with internal combustion engines. For example, the present disclosure can be applied to a vehicle that has a charging-only internal combustion engine and is driven only by a motor and a vehicle that is driven only by the internal combustion engine.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年3月31日出願の日本特許出願(特願2021-059635)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-059635) filed on March 31, 2021, the contents of which are incorporated herein by reference.
1   :燃料タンクシステム
2   :内燃機関
4   :車両
16  :エンジンECU(制御部の一例)
18  :燃料タンク
20  :密閉弁
Reference Signs List 1: fuel tank system 2: internal combustion engine 4: vehicle 16: engine ECU (an example of a control unit)
18: fuel tank 20: sealing valve

Claims (7)

  1.  内燃機関と燃料タンクとを有する車両の燃料タンクシステムであって、
     前記燃料タンク内で発生する蒸散ガスを前記燃料タンク内に密閉する密閉弁と、
     前記密閉弁の開閉を制御するとともに、前記車両の衝突を検知する制御部と、
    を備え、
     前記制御部は、前記車両の衝突を検知した場合、前記密閉弁が開くことを禁止する、
    燃料タンクシステム。
    A fuel tank system for a vehicle having an internal combustion engine and a fuel tank,
    a sealing valve that seals in the fuel tank an evaporative gas generated in the fuel tank;
    a control unit that controls opening and closing of the sealing valve and detects a collision of the vehicle;
    with
    The control unit prohibits opening of the sealing valve when a collision of the vehicle is detected.
    fuel tank system.
  2.  前記制御部は、前記車両の衝突を検知した際に前記密閉弁が開状態の場合、前記密閉弁を強制的に閉じる、
    請求項1に記載の燃料タンクシステム。
    The control unit forcibly closes the sealing valve if the sealing valve is in an open state when the collision of the vehicle is detected.
    The fuel tank system according to claim 1.
  3.  前記制御部は、前記内燃機関が運転可能な状態であるイグニッションオンの期間中に前記車両の衝突を検知した際に衝突フラグを記録し、前記内燃機関の運転が停止しているイグニッションオフの期間中は、前記イグニッションオンの期間中に記録した前記衝突フラグに基づいて前記密閉弁が開くことを禁止する、
    請求項1または2に記載の燃料タンクシステム。
    The control unit records a collision flag when a collision of the vehicle is detected during an ignition-on period in which the internal combustion engine is operable, and records a collision flag during an ignition-off period in which the internal combustion engine is stopped. while prohibiting the closing valve from opening based on the collision flag recorded during the ignition on period;
    3. A fuel tank system according to claim 1 or 2.
  4.  前記制御部は、前記イグニッションオンとなった場合、所定時間が経過するまで前記衝突フラグを保持し、前記所定時間が経過したのち前記衝突フラグが消えているか否か判断し、前記衝突フラグが消えている場合、前記密閉弁が開くことを許可する、
    請求項3に記載の燃料タンクシステム。
    When the ignition is turned on, the control unit holds the collision flag until a predetermined time elapses, determines whether or not the collision flag is extinguished after the elapse of the predetermined time, and extinguishes the collision flag. allowing said sealing valve to open if
    4. A fuel tank system according to claim 3.
  5.  前記制御部は、前記密閉弁を開き前記車両の給油リッドを開放可能な状態にする給油制御と、前記燃料タンクの耐用圧力以上の場合に前記密閉弁を開く保護制御と、を実行可能であり、
     前記制御部は、前記衝突を検知後に前記内燃機関の始動要求があった場合、前記保護制御および前記給油制御のいずれか一方、または両方の制御中に前記密閉弁が開くことを許可する、
    請求項1から4のいずれか1項に記載の燃料タンクシステム。
    The control unit is capable of executing refueling control that opens the sealing valve so that the fuel lid of the vehicle can be opened, and protection control that opens the sealing valve when the pressure exceeds the tolerable pressure of the fuel tank. ,
    The control unit permits opening of the sealing valve during one or both of the protection control and the fuel supply control when there is a request to start the internal combustion engine after the collision is detected.
    A fuel tank system according to any one of claims 1 to 4.
  6.  前記制御部は、前記密閉弁を開き前記車両の給油リッドを開放可能な状態にする給油制御と、前記燃料タンクの耐用圧力以上の場合に前記密閉弁を開く保護制御と、を実行可能であり、
     前記制御部は、前記衝突を検知した後に前記車両の走行を検知した場合、前記保護制御および前記給油制御のいずれか一方、または両方の制御中に前記密閉弁が開くことを許可する、
    請求項1から5のいずれか1項に記載の燃料タンクシステム。
    The control unit is capable of executing refueling control that opens the sealing valve so that the fuel lid of the vehicle can be opened, and protection control that opens the sealing valve when the pressure exceeds the tolerable pressure of the fuel tank. ,
    When the control unit detects that the vehicle is running after detecting the collision, the control unit permits the opening of the sealing valve during one or both of the protection control and the fuel supply control.
    A fuel tank system according to any one of claims 1 to 5.
  7.  前記制御部は、前記車両の衝突形態を判断し、前記衝突形態に応じて前記密閉弁が開くことを禁止する、
    請求項1から6のいずれか1項に記載の燃料タンクシステム。
    The control unit determines a collision type of the vehicle and prohibits opening of the sealing valve according to the collision type.
    A fuel tank system according to any one of claims 1 to 6.
PCT/JP2022/006754 2021-03-31 2022-02-18 Fuel tank system WO2022209414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023510645A JPWO2022209414A1 (en) 2021-03-31 2022-02-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021059635 2021-03-31
JP2021-059635 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209414A1 true WO2022209414A1 (en) 2022-10-06

Family

ID=83456008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006754 WO2022209414A1 (en) 2021-03-31 2022-02-18 Fuel tank system

Country Status (2)

Country Link
JP (1) JPWO2022209414A1 (en)
WO (1) WO2022209414A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130219U (en) * 1973-03-09 1974-11-08
JPS63119420U (en) * 1987-01-30 1988-08-02
JP2003009304A (en) * 2001-06-19 2003-01-10 Mitsubishi Motors Corp High-voltage system breaker for car
US20030221675A1 (en) * 2002-05-29 2003-12-04 John Washeleski Vehicle fuel management system
JP2004156495A (en) * 2002-11-05 2004-06-03 Toyota Motor Corp Evaporated fuel treatment device of internal combustion engine
JP2011001858A (en) * 2009-06-18 2011-01-06 Hitachi Automotive Systems Ltd Control method of automobile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130219U (en) * 1973-03-09 1974-11-08
JPS63119420U (en) * 1987-01-30 1988-08-02
JP2003009304A (en) * 2001-06-19 2003-01-10 Mitsubishi Motors Corp High-voltage system breaker for car
US20030221675A1 (en) * 2002-05-29 2003-12-04 John Washeleski Vehicle fuel management system
JP2004156495A (en) * 2002-11-05 2004-06-03 Toyota Motor Corp Evaporated fuel treatment device of internal combustion engine
JP2011001858A (en) * 2009-06-18 2011-01-06 Hitachi Automotive Systems Ltd Control method of automobile

Also Published As

Publication number Publication date
JPWO2022209414A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US8478489B2 (en) Fuel vapor treatment apparatus
US8869777B2 (en) Method and apparatus for evaporative emissions control
EP2864146B1 (en) Method for releasing the pressure in a fuel system in a crash
JPH04300727A (en) Tank ventilator and driving method thereof
JPH0932659A (en) Failure diagnostic device of fuel evaporated gas exhaust restraining system
US20170030303A1 (en) Fuel evaporative emission processing system
US9689349B2 (en) Fuel evaporative emission control apparatus
KR101567981B1 (en) Method and Apparatus for Detecting Leakage of Fuel Evaporative Gas
JP2005307930A (en) Fuel supply device for vehicular engine
JP5538184B2 (en) Fuel tank evaporative fuel treatment device
US6679111B2 (en) Malfunction diagnostic apparatus for evaporated fuel purge system
US20220252024A1 (en) Fuel tank system
JP5473877B2 (en) Evaporative fuel processor failure detection device
JP6315187B2 (en) Fuel evaporative emission control device
US10927795B2 (en) Fuel evaporative gas emission suppressing device
JP2004300997A (en) Leakage diagnostic device for evaporated gas purging system
US20070079650A1 (en) Method and apparatus for checking the tightness of a tank system, in particular of a motor vehicle
WO2022209414A1 (en) Fuel tank system
JPH10103169A (en) Failure diagnostic device for evaporation purge system
US10549629B2 (en) Method for controlling depressurisation in a motor vehicle fuel tank
JP2003002399A (en) Lid opener control device of fuel tank
JP6233591B2 (en) Fuel evaporative emission control device
JP3937511B2 (en) Fault diagnosis method and apparatus for fuel vapor supply system
JP2002256988A (en) Failure diagnostic device for evaporative purging system
JP3826797B2 (en) Evaporative fuel processing device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779641

Country of ref document: EP

Kind code of ref document: A1