WO2022209079A1 - 被転写基板および転写装置 - Google Patents

被転写基板および転写装置 Download PDF

Info

Publication number
WO2022209079A1
WO2022209079A1 PCT/JP2021/048100 JP2021048100W WO2022209079A1 WO 2022209079 A1 WO2022209079 A1 WO 2022209079A1 JP 2021048100 W JP2021048100 W JP 2021048100W WO 2022209079 A1 WO2022209079 A1 WO 2022209079A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
transferred
substrate
transfer substrate
communication path
Prior art date
Application number
PCT/JP2021/048100
Other languages
English (en)
French (fr)
Inventor
浩一 風間
義之 新井
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021208360A external-priority patent/JP2022155471A/ja
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2022209079A1 publication Critical patent/WO2022209079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to a substrate to be transferred and a transfer device for transferring an element such as a semiconductor chip stably with high accuracy.
  • Efforts are being made to miniaturize semiconductor chips to reduce costs, and to mount the miniaturized semiconductor chips with high precision.
  • semiconductor chips of 50 ⁇ m ⁇ 50 ⁇ m or less called micro LEDs are required to be mounted at high speed with an accuracy of several ⁇ m.
  • Patent Document 1 a laser beam generated from a laser light source is reflected by a galvanomirror and selectively irradiated to a plurality of elements arranged on a transfer substrate, whereby the elements separated from the transfer substrate by the irradiation are transferred to the destination substrate.
  • a method of transferring the device by transferring to the substrate, ie by laser lift-off, is described. By this transfer method, it is possible to transfer a micro-sized element to a substrate to be transferred at high speed, and it is also possible to mount the element on a circuit board at high speed by using this transfer method.
  • An object of the present invention is to provide a substrate to be transferred and a transfer device capable of transferring elements with high positional accuracy in view of the above problems.
  • a transfer substrate of the present invention is a transfer substrate to which an element is transferred onto a transfer surface, and a transfer region in which a predetermined element is transferred on the transfer surface. , characterized in that a communication path communicating with the outside of the transferred region is provided.
  • the transfer-receiving substrate of the present invention since a communication path communicating with the outside of the transfer-receiving region is provided, the gas in the portion sandwiched between the element and the transfer-receiving surface when the element is approaching escapes from the communication path. It is possible to reduce the pressure increase in the portion sandwiched between the element and the surface to be transferred.
  • the transferred region is formed by the end faces of a plurality of arranged columnar bodies, and the communication path is a gap between the columnar bodies.
  • the communication path is a concave portion formed in the transferred surface so as to straddle the inside and outside of the transferred area.
  • the communication path is a hole-shaped channel bored in the surface to be transferred, and one opening of the channel is provided in the region to be transferred, and the other opening is provided outside the region to be transferred. It is good to be
  • the element is transferred by a process in which the element is not in contact with anything at the moment the element is transferred to the transfer surface.
  • the transfer apparatus of the present invention applies an active energy ray to a transfer substrate holding an element to cause ablation, and energizes the element so that the transfer substrate can be transferred from the transfer substrate.
  • the transfer area is provided with a communication path that communicates with the outside of the transfer area. It is possible to reduce the pressure increase of the gas in the portion sandwiched between the element and the surface to be transferred due to the approach of the element.
  • the transfer apparatus of the present invention applies an active energy ray to a transfer substrate that adhesively holds an element to cause ablation, thereby urging the element from the transfer substrate to the transfer substrate.
  • a transfer substrate holding unit that holds the transfer substrate; and a transfer substrate holder that holds the transfer substrate so that the surface of the transfer substrate that holds the element faces the transfer substrate.
  • an active energy ray imparting part that imparts an active energy ray to a part of the transfer substrate held by the transfer substrate holding part. , characterized in that a communication path communicating with the outside of the held surface is provided.
  • the gas in the portion sandwiched between the element and the substrate to be transferred can escape from the communication path when the element approaches. It is possible to reduce the increase in pressure in the portion sandwiched between the substrates.
  • FIG. 1 A mounting device including the transfer device of the present invention is shown in FIG.
  • the mounting apparatus 100 has a transfer section 10, an inspection section 20, and a mounting section 30.
  • the transfer section 10 transfers elements between boards, and the mounting section 30 mounts the elements on the circuit board.
  • the inspection of the elements is performed by the inspection section 20 .
  • the robot hand 40 transports substrates between the devices.
  • the transfer unit 10 is a transfer device according to the present invention, and includes a laser irradiation unit 12 that irradiates a laser beam 11, a transfer substrate holding unit 13 that holds the transfer substrate 4a and can move in at least the X-axis direction and the Y-axis direction, A transfer substrate holding portion 14 that holds the transfer substrate 4b so as to face the transfer substrate 4a with a gap therebetween below the substrate holding portion 13, and a control portion (not shown) are provided.
  • the laser irradiation unit 12 is an embodiment of the active energy ray imparting unit in the present invention, is a device that irradiates laser light 11 such as an excimer laser that is an active energy ray, and is fixed to the transfer unit 10 .
  • the laser irradiation unit 12 irradiates a spot-shaped laser beam 11, and the laser beam 11 passes through a galvanomirror 15 and an f ⁇ lens 16 whose angle is adjusted by the control unit, and passes in the X-axis direction and the Y-axis direction.
  • the irradiation position in the direction is controlled, and the plurality of elements 1 arranged on the transfer substrate 4 a held by the transfer substrate holding portion 13 are selectively irradiated.
  • the element 1 is a semiconductor chip such as an LED, and is also called a semiconductor chip 1 hereinafter. Also, in this embodiment, the size of the semiconductor chip 1 is 300 ⁇ m square.
  • the transfer substrate holding portion 13 has an opening and holds the transfer substrate 4a near its outer periphery by suction.
  • the transfer substrate 4a held by the transfer substrate holding portion 13 can be irradiated with the laser beam 11 emitted from the laser irradiation portion 12 through this opening.
  • the transfer substrate holding portion 13 is moved relative to the transferred substrate holding portion 14 at least in the X-axis direction and the Y-axis direction by a moving mechanism (not shown).
  • the controller controls this movement mechanism and adjusts the position of the transfer substrate holder 13, thereby adjusting the relative position of the semiconductor chip 1 held on the transfer substrate 4a with respect to the transfer substrate 4b.
  • the transferred substrate holding portion 14 has a flat upper surface, and holds the transferred substrate 4 b during the process of transferring the semiconductor chip 1 .
  • a plurality of suction holes are provided in the upper surface of the transferred substrate holding portion 14, and the rear surface of the transferred substrate 4b (the surface on which the semiconductor chip 1 is not transferred) is held by suction force.
  • the transfer substrate holding portion 13 moves in the X-axis direction and the Y-axis direction so that the transfer substrate holding portion 13 and the transferred substrate holding portion 14 move relative to each other. If the substrate to be transferred 4b is too large to position the entire surface of the substrate to be transferred 4b directly under the irradiation range of the laser beam 11, the substrate to be transferred holder 14 also has a moving mechanism in the X-axis direction and the Y-axis direction. It may be provided.
  • the inspection unit 20 has a camera 21, a substrate holding unit 22 to be inspected, and a control unit (not shown). Perform the visual inspection of 1.
  • the objects to be inspected are a plurality of semiconductor chips 1 transferred to the transfer substrate 4a.
  • Some of the semiconductor chips 1 on the transfer substrate 4a have insufficient performance during the process of forming the semiconductor chips 1 on the growth substrate, and some cracks occur during transfer to the transfer substrate 4a. Whether or not the performance of the semiconductor chip 1 is normal can be determined with high accuracy by confirming the color and shape of the semiconductor chip 1 .
  • the camera 21 is, for example, a CMOS camera in the present embodiment, and has an image pickup device. Triggered by a signal received from the outside, the camera 21 converts a light beam imaged on the image pickup device into an electric signal to create a digital image. .
  • the imaging direction of this camera 21 is vertically downward, and the semiconductor chip 1 is imaged from above.
  • the camera 21 is attached to a moving device (not shown), and the moving device is driven under the control of the control unit to move the camera 21 in the X-axis direction and the Y-axis direction.
  • the inspection unit 20 has an illumination unit (not shown).
  • the lighting unit is LED lighting, and emits light in synchronization with the movement of the camera 21 by the moving device.
  • the external appearance of a plurality of arranged semiconductor chips 1 is continuously imaged.
  • the mounting unit 30 includes a mounting table 31, a head 32, and a two-field optical system 33, and also includes a control unit (not shown). A plurality of semiconductor chips 1 are collectively mounted.
  • the mounting table 31 can hold the circuit board 6 thereon by vacuum suction so that it does not move, and is configured to be movable in the X and Y axis directions by means of an XY stage.
  • the mounting table 31 has a heater 34, and the temperature of the surface of the mounting table 31 ( ⁇ the temperature of the circuit board 6 mounted on the mounting table 31) can be controlled by the controller. . Further, the mounting table 31 is provided with a thermometer (not shown), and the temperature of the mounting table 31 measured by the thermometer can be fed back to control the temperature.
  • the tip of the head 32 has a substantially flat surface, has one or more suction holes, and suction-holds the surface of the transferred substrate 4b on which the semiconductor chip 1 is not transferred during the mounting process.
  • the head 32 is movable in the Z-axis direction, and brings the circuit board 6 held by the mounting table 31 into contact with the bumps of the semiconductor chip 1 transferred to the transfer substrate 4b held by the head 32. , pressurize.
  • the head 32 has a heater 35, and the temperature of the head 32, particularly the tip portion, can be controlled by the controller.
  • the head 32 is provided with a thermometer (not shown), and the temperature of the head 32 measured by the thermometer can be fed back to control the temperature.
  • the head 32 is configured to be movable in the ⁇ direction (center direction with the Z-axis direction as the center of rotation), so that the mounting table 31 can be moved in the X- and Y-axis directions and the head 32 can be moved in the Z-axis and ⁇ directions.
  • the semiconductor chip 1 can be thermally compressed and mounted on a predetermined position on the circuit board 6 .
  • the two-view optical system 33 can enter between the head 32 and the circuit board 6 when the circuit board 6 is mounted on the mounting table 31 to pick up images of both.
  • Each captured image is image-processed by the control unit to recognize each positional deviation.
  • the control unit controls each semiconductor chip 1 to contact and be bonded to a predetermined position on the circuit board 6, thereby moving the semiconductor chip 1 in the X and Y axis directions. to implement with high precision.
  • each semiconductor chip 1 on the transfer substrate 4a is inspected by the inspection unit 20, and the semiconductor chips 1 determined to have poor performance are removed from the transfer substrate 4a in advance.
  • the transfer substrate 4a and the substrate to be transferred 4b have an adhesive layer 3a and an adhesive layer 3b on one surface, respectively. holds 1.
  • the adhesive layer 3b is a portion having a surface to be transferred, which is the surface on which the element 1 is transferred from the transfer substrate 4a, it is also called a transferred portion 3b in this description.
  • the transfer substrate 4a is held by the transfer substrate holding part 13 (not shown) so that the adhesive layer 3a and the semiconductor chip 1 face downward.
  • the transfer-receiving substrate holder 14 holds the transfer-receiving substrate 4b so that the transfer-receiving substrate 4b having the transfer-receiving portion 3b is positioned below the transfer-receiving portion 4a.
  • the control section of the transfer section 10 adjusts the angle of the galvanomirror 15 so that the laser light 11c reaches the interface between the adhesive layer 3a and the predetermined semiconductor chip 1 through the transfer substrate 4a. 1 is laser lifted off. Specifically, when the laser beam 11 is applied to the interface between the adhesive layer 3a and the predetermined semiconductor chip 1, light energy is applied to the adhesive layer 3a, causing ablation and generating gas from the adhesive layer 3a. The generation of this gas energizes the semiconductor chip 1, which flies downward from the transfer substrate 4a and lands on the transferred substrate 4b.
  • FIG. 5(a) illustrates a form in which the adhesive layer 3a disappears due to ablation, a form in which the adhesive layer 3a swells due to gas generated inside (so-called blistering) may be used.
  • the semiconductor chips 1 on the transfer substrate 4a are not all transferred continuously, but are selectively transferred as shown in FIG. 5(b). It is assumed that the arrangement of the semiconductor chips 1 on the transfer substrate 4a is the same as the arrangement of the semiconductor chips 1 on the growth substrate. , the semiconductor chip 1 can be transferred to the substrate 4b to be transferred.
  • the arrangement of the semiconductor chips 1 on the transferred substrate 4b is arranged according to the positions where the semiconductor chips 1 are to be arranged on the circuit board 6 in preparation for the mounting process described later. More specifically, the semiconductor chips 1 are arranged on the substrate 4b to be transferred in a layout that is a mirror image of the layout of the semiconductor chips 1 in the area where the semiconductor chips 1 can be mounted on the circuit board 6 in one mounting step.
  • the transfer substrate 4a may not have a semiconductor chip 1 that can be transferred to a position to be transferred on the transfer substrate 4b.
  • the transfer substrate 4a and the transferred substrate 4b are moved relative to each other, and then the laser lift-off is performed.
  • FIGS. 6(a) and 6(b) the substrate to be transferred 4b in the first embodiment is shown in FIGS. 6(a) and 6(b).
  • FIG. 6(a) is a front sectional view
  • FIG. 6(b) is a top view.
  • the transferred portion 3b is provided on the side of the transferred substrate 4b to which the semiconductor chip 1 is transferred. It has become.
  • the adhesive force of this adhesive surface holds the transferred semiconductor chip 1 .
  • the transferred portion 3b of the transferred substrate 4b has a configuration in which a plurality of columnar bodies are arranged in a matrix at predetermined intervals.
  • the tip surface of each columnar body corresponds to the surface to be transferred.
  • the cross-sectional area of this columnar body is smaller than the area of the semiconductor chip 1, and one semiconductor chip 1 is held by a plurality of columnar bodies.
  • a transferred region R indicated by a two-dot chain line in FIG. 6A indicates a region to which one predetermined semiconductor chip 1 is to be transferred.
  • each cylindrical body has a diameter of 4 um, a height of 3 um, and an arrangement interval of each cylindrical body of 10 to 15 um. Therefore, gaps exist between the adjacent columnar bodies. Gas can flow through this gap, and the inside and outside of the transfer area R are in communication. In addition, in this embodiment, this gap is called a communication path 3c.
  • FIG. 7 shows the effect of the transferred surface having a communication path like the transferred substrate 4b of this embodiment.
  • the irradiation of the laser beam 11c causes ablation of the adhesive layer 3a of the transfer substrate 4a, and the semiconductor chip 1 is urged toward the transferred substrate 4b. Along with this, the gas layer formed between the semiconductor chip 1 and the transferred surface of the transferred substrate 4b is compressed.
  • the transferred portion 3b of the transferred substrate 4b has a communication path 3c, and through this communication path 3c, the transferred region R to which the predetermined semiconductor chip 1 is to be transferred and the transferred region R are connected. communicates with the outside of the Therefore, when the gas layer formed between the semiconductor chip 1 and the transfer surface of the transfer substrate 4b is compressed and a pressure difference is generated between the transfer region R and the outside thereof, as indicated by the arrow in FIG. Then, the communication path 3c serves as an escape path for the gas, causing the gas to flow from the transfer region R to the outside of the transfer region R, thereby reducing the pressure difference. Therefore, the gas pressure (pressure P1 shown in FIG. 7) between the semiconductor chip 1 and the transferred surface of the transferred substrate 4b becomes lower than the pressure P0 shown in FIG.
  • the communication path 3c functions as an escape route for gas from the region R to which the predetermined semiconductor chip 1 is transferred to the outside of the region R to be transferred, thereby allowing the semiconductor chip 1 to fly to the substrate 4b to be transferred.
  • the resistance to the transfer substrate 4b is reduced, and the deviation of the landing position of the semiconductor chip 1 onto the transferred substrate 4b is reduced. Therefore, the semiconductor chip 1 is transferred onto the transferred substrate 4b with good positional accuracy.
  • the effect of improving the transfer position accuracy obtained by having the transferred portion 3b having the communication path 3c as in the present invention becomes greater as the element 1 has a larger area and is thinner.
  • FIG. 8 shows a transferred substrate 4b according to the second embodiment of the present invention.
  • FIG. 8(a) is a front sectional view
  • FIG. 8(b) is a top view.
  • the communication path 3c is a groove-shaped concave portion, and the dimension of the groove in the longitudinal direction (the Y-axis direction in FIG. 8B) is larger than the dimension of the surface of the semiconductor chip 1 facing the transferred surface. is also big. Therefore, the groove-shaped communication path 3c protrudes from the transferred region R to which one semiconductor chip 1 is transferred, and straddles the inside and outside of the transferred region R. As shown in FIG.
  • the groove-shaped communication path 3c may extend to both ends of the transferred substrate 4b (both ends in the Y-axis direction in FIG. 8(b)).
  • groove-shaped communication path 3c may be provided so as to extend only in one direction (Y-axis direction) as shown in FIG. may also be provided.
  • the groove-shaped communication path 3c may be in a form that straddles at least the inside and outside of the transferred area. can be shorter.
  • FIG. 9 shows a transferred substrate 4b according to the third embodiment of the present invention.
  • FIG. 9(a) is a front sectional view
  • FIG. 9(b) is a top view.
  • the communication path 3c is a hole-shaped flow path bored in the transferred portion 3b, and one opening is provided on the transferred surface.
  • a hollow portion 3d is provided between the portion to be transferred 3b and the main body of the substrate to be transferred, and the other opening of each communicating path 3c communicates with the hollow portion 3d.
  • the hole-shaped communication path 3c is in a state in which one opening of the hole is provided in the transferred area R and the other opening is provided outside the R transferred area.
  • the communication path 3c may take the form of a so-called flow path, which is closed except for the inlet and the outlet, like a hole, and does not necessarily have a closed shape like the above-described groove shape. Also good.
  • all the communication paths 3c may be collectively communicated, but it is not limited to this, and at least two communication paths 3c may be communicated.
  • the gas can be released during the laser lift-off. can be done.
  • FIG. 10 shows a transferred substrate 4b in the fourth embodiment of the present invention.
  • FIG. 10(a) is a front sectional view
  • FIG. 10(b) is a top view.
  • the communication path 3c is a hole that is bored in the transferred portion 3b and has one opening on the transferred surface.
  • Each communication path 3c provided in the transferred portion 3b passes through the transferred portion 3b, the transfer-receiving substrate main body, and penetrates to the rear surface of the transfer-receiving substrate 4b. That is, in this embodiment as well, the hole-shaped communication path 3c is in a state in which one opening of the hole is provided in the transferred area R and the other opening is provided outside the R transferred area.
  • the transfer substrate holding portion 14 in the transfer device 10 as shown in FIG. It is preferable that the back surface of the substrate 4b (the surface opposite to the surface to be transferred) does not close the openings of the communication paths 3c.
  • the substrate to be transferred and the transfer device of the present invention are not limited to the forms described above, and may be of other forms within the scope of the present invention.
  • the form of the communication path provided in the transferred portion of the transferred substrate is not limited to the form explicitly described in the above embodiment, and gas is generated when the element is urged toward the transferred substrate by ablation. Any form that provides an escape route may be used, and for example, an embodiment that combines the above-described embodiments may be used.
  • a communication path is provided to communicate the inside and outside of the transfer area by making the transfer surface have a predetermined surface roughness such as a satin finish.
  • the element may be provided with the communication path described above.
  • the transfer process is performed under atmospheric pressure, but it may be performed in a reduced pressure environment by providing a decompression unit (not shown) in the transfer device.
  • a decompression unit not shown
  • it is not limited to an air environment, and may be carried out in an environment such as another gas such as nitrogen.
  • the use of the substrate to be transferred according to the present invention is not limited to the form in which the element is energized as in laser lift-off, but also the form in which the element freely falls, for example. That is, the effect of the present invention is obtained when the element is transferred by a process in which the element is not in contact with anything at the moment the element is transferred to the surface to be transferred.
  • the laser irradiation position in the transfer device is controlled by the galvanomirror.
  • the laser irradiation position may be controlled only by the relative movement of the transfer substrate and the transferred substrate without using the reflection of the mirror.
  • the inspection of the semiconductor chip by the inspection unit is not limited to visual inspection by image analysis, and may be inspection using X-rays, for example. Alternatively, the inspection may be performed using a photoluminescence phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

位置精度良く素子を転写することができる被転写基板および転写装置を提供する。具体的には、被転写面に素子1が転写される被転写基板4bであり、被転写面における所定の素子1が転写される領域である被転写領域Rには、被転写領域Rの外部と連通する連通経路3cが設けられている。

Description

被転写基板および転写装置
 本発明は、半導体チップなどの素子を高精度に安定して転写するための被転写基板および転写装置に関するものである。
 半導体チップは、コスト低減のために小型化し、小型化した半導体チップを高精度に実装するための取組みが行われている。特に、ディスプレイに用いられるLEDはマイクロLEDと呼ばれる50um×50um以下の半導体チップを数umの精度で高速に実装することが求められている。
 特許文献1には、レーザ光源から発生したレーザビームをガルバノミラーで反射させ、転写基板に複数配列された素子に選択的に照射することにより、照射によって転写基板から剥離した素子を被転写先基板に転写する、すなわちレーザリフトオフによる素子の転写方法が記載されている。この転写方法によって、微小な大きさの素子を高速で被転写基板に転写することが可能であり、これを用いて回路基板に素子を高速で実装することも可能である。
特開2006-41500号公報
 しかしながら、特許文献1記載の転写方法では、素子の転写位置精度が低くなるおそれがあった。具体的には、図11に示すようにレーザリフトオフによって素子91が転写基板92から被転写基板93へ飛行する際、素子91の移動速度は音速まで及ぶため、圧力P0で示すように、素子91と被転写基板93との間にある気体層(空気層)が圧縮されて素子91の飛行に対する抵抗となる。この抵抗によって素子91の飛行方向が曲げられ、図11に2点鎖線で示すように素子91が被転写基板93上で横方向(図11におけるXY方向)にずれた位置に転写されてしまう、すなわち、素子91の転写位置精度が低くなってしまうという問題があった。
 本発明は、上記問題点を鑑み、位置精度良く素子を転写することができる被転写基板および転写装置を提供することを目的としている。
 上記課題を解決するために本発明の被転写基板は、被転写面に素子が転写される被転写基板であり、前記被転写面における所定の素子が転写される領域である被転写領域には、当該被転写領域の外部と連通する連通経路が設けられていることを特徴としている。
 本発明の被転写基板では、被転写領域の外部と連通する連通経路が設けられていることにより、素子の接近時に素子と被転写面とで挟まれた部分の気体がその連通経路から逃げることができ、素子と被転写面とで挟まれた部分の圧力の増加を軽減することができる。
 また、前記被転写領域は、複数配列される柱状体の先端面により形成され、前記柱状体の隙間が前記連通経路であると良い。
 こうすることにより、比較的容易に連通経路を作成することが可能である。
 また、前記連通経路は前記被転写領域の内外をまたぐよう前記被転写面に形成された凹部であると良い。
 こうすることにより、素子の接近時に凹部を通じて空気が横方向に逃げることができる。
 また、前記連通経路は前記被転写面に穿たれた孔状の流路であり、当該流路の一方の開口は前記被転写領域に設けられ、他方の開口は前記被転写領域の外部に設けられていると良い。
 こうすることにより、素子の接近時にこの流路を介して被転写領域内から被転写領域外へ空気が逃げることができる。
 また、素子が前記被転写面に転写される瞬間において素子は何とも非接触となるプロセスにより、素子の転写がなされると良い。
 このような転写形態である場合に、本発明の効果が大きく得られる。
 また、上記課題を解決するために本発明の転写装置は、素子を保持する転写基板へ活性エネルギー線を付与することによりアブレーションを生じさせ、素子を付勢して前記転写基板から請求項1から5のいずれかに記載の被転写基板へ転写させる転写装置であり、前記転写基板を保持する転写基板保持部と、前記転写基板の素子を保持する面と前記被転写基板が対向するように前記被転写基板を保持する被転写基板保持部と、前記転写基板保持部に保持された前記転写基板の一部へ活性エネルギー線を付与する活性エネルギー線付与部と、を備えることを特徴としている。
 本発明の転写装置では、被転写領域には被転写領域の外部と連通する連通経路が設けられていることにより、素子の接近時に素子と被転写面とで挟まれた部分の気体が連通経路から逃げることができ、素子の接近による素子と被転写面とで挟まれた部分の気体の圧力の増加を軽減することができる。
 また、上記課題を解決するために本発明の転写装置は、素子を粘着保持する転写基板へ活性エネルギー線を付与することによりアブレーションを生じさせ、素子を付勢して前記転写基板から被転写基板へ転写させる転写装置であり、前記転写基板を保持する転写基板保持部と、前記転写基板の素子を保持する面と前記被転写基板が対向するように前記被転写基板を保持する被転写基板保持部と、前記転写基板保持部に保持された前記転写基板の一部へ活性エネルギー線を付与する活性エネルギー線付与部と、を備え、素子における前記被転写基板に保持される被保持面には、当該被保持面の外部と連通する連通経路が設けられていることを特徴としている。
 本発明の転写装置では、素子に連通経路が設けられていることにより、素子の接近時に素子と被転写基板とで挟まれた部分の気体がその連通経路から逃げることができ、素子と被転写基板とで挟まれた部分の圧力の増加を軽減することができる。
 本発明の被転写基板および転写装置により、位置精度良く素子を転写することができる。
本発明における実装装置を説明する図である。 本発明における実装装置のうち、転写部を説明する図である。 本発明における実装装置のうち、検査部を説明する図である。 本発明における実装装置のうち、実装部を説明する図である。 本発明の転写装置による転写工程を説明する図である。 本発明の第1の実施形態における被転写基板を説明する図である。 本発明の被転写基板による効果を説明する図である。 本発明の第2の実施形態における被転写基板を説明する図である。 本発明の第3の実施形態における被転写基板を説明する図である。 本発明の第4の実施形態における被転写基板を説明する図である。 従来の転写装置による転写工程を示す図である。
 本発明の転写装置を含む実装装置を図1に示す。
 実装装置100は、転写部10、検査部20、および実装部30を有しており、転写部10により基板間の素子の転写が行われ、実装部30により回路基板へ素子が実装される。また、転写部による素子の転写に先立ち、検査部20による素子の検査が行われる。また、各装置間の基板の搬送は、ロボットハンド40により実施される。
 転写部10の詳細を図2に示す。
 転写部10は、本発明における転写装置であり、レーザ光11を照射するレーザ照射部12、転写基板4aを保持して少なくともX軸方向、Y軸方向に移動可能な転写基板保持部13、転写基板保持部13の下側にあって転写基板4aに隙間を有して対向するように被転写基板4bを保持する被転写基板保持部14、および図示しない制御部を備えている。
 レーザ照射部12は、本発明における活性エネルギー線付与部の一実施形態であり、活性エネルギー線であるエキシマレーザなどのレーザ光11を照射する装置であり、転写部10に固定して設けられる。本実施形態においては、レーザ照射部12はスポット状のレーザ光11を照射し、レーザ光11は、制御部により角度が調節されるガルバノミラー15およびfθレンズ16を介してX軸方向およびY軸方向の照射位置が制御され、転写基板保持部13に保持された転写基板4aに複数配置されている素子1に選択的に照射する。レーザ光11が転写基板4aの素子1に入射することによって、転写基板4aと素子1との間で光エネルギーの付与によるアブレーション生じ、転写基板4aから被転写基板4bへ素子1が転写される。なお、本説明では素子1はLEDなどの半導体チップであり、以降、半導体チップ1とも呼ぶ。また、本実施形態では半導体チップ1の寸法は300um□である。
 転写基板保持部13は開口を有し、転写基板4aの外周部近傍を吸着保持する。転写基板保持部13に保持された転写基板4aへこの開口を介してレーザ照射部12から発せられたレーザ光11を当てることができる。
 また、転写基板保持部13は図示しない移動機構により、少なくともX軸方向、Y軸方向に関して被転写基板保持部14に対して相対移動する。制御部がこの移動機構を制御し、転写基板保持部13の位置を調節することにより、転写基板4aに保持された半導体チップ1の被転写基板4bに対する相対位置を調節することができる。
 被転写基板保持部14は、上面に平坦面を有し、半導体チップ1の転写工程中、被転写基板4bを保持する。この被転写基板保持部14の上面には複数の吸引孔が設けられており、吸引力により被転写基板4bの裏面(半導体チップ1が転写されない方の面)を保持する。
 なお、本実施形態では、転写基板保持部13のみがX軸方向およびY軸方向に移動することにより転写基板保持部13と被転写基板保持部14とが相対移動する形態をとっているが、被転写基板4bの寸法が大きく、レーザ光11の照射範囲の直下に被転写基板4bの全面が位置できない場合には、被転写基板保持部14にもX軸方向およびY軸方向の移動機構が設けられていても良い。
 次に、検査部20の詳細を図3に示す。
 検査部20は、カメラ21と被検査基板保持部22、および図示しない制御部を有しており、被検査基板保持部22に保持された検査対象をカメラ21で撮像し、画像解析による半導体チップ1の外観検査を行う。本実施形態では、検査対象は転写基板4aに転写された複数の半導体チップ1である。
 転写基板4a上の半導体チップ1は、成長基板における半導体チップ1の形成過程で性能が未達となるものや、転写基板4aへの転写時に割れなどが生じるものがある。半導体チップ1の性能が正常か否かは、半導体チップ1の色や形状を確認することで確度高く判別することができる。
 カメラ21は、本実施形態ではたとえばCMOSカメラであって、撮像素子を有し、外部から受け取る信号をトリガとして、この撮像素子に結像された光線を電気信号に変換し、デジタル画像を作成する。このカメラ21の撮像方向は鉛直下方向であり、半導体チップ1を上方から撮像する。また、カメラ21は図示しない移動装置に取り付けられており、制御部による制御により移動装置が駆動し、カメラ21がX軸方向およびY軸方向に移動する。
 また、検査部20は図示しない照明部を有している。本実施形態では照明部はLED照明であり、移動装置によるカメラ21の移動に同期して発光し、照明部が発光する際にカメラ21が撮像を行うことにより、X軸方向およびY軸方向に複数配列された半導体チップ1の外観を連続して撮像する。
 次に、実装部30の詳細を図4に示す。
 実装部30は、載置台31、ヘッド32、および2視野光学系33を備え、また、図示しない制御部を備えているおり、本実施形態では、被転写基板4bごと回路基板6へ対向させ、複数の半導体チップ1をまとめて実装する。
 載置台31は、回路基板6を載置して真空吸着により動かないように保持することができ、XYステージによりX、Y軸方向に移動可能に構成されている。
 また、本実施形態では載置台31はヒータ34を有し、制御部によって載置台31の表面の温度(≒載置台31に載置された回路基板6の温度)を制御することが可能である。また、載置台31には図示しない温度計が設けられ、この温度計により計測された載置台31の温度をフィードバックして温度制御を行うことが可能である。
 ヘッド32は先端部が略平坦面であり、1以上の吸着穴を有し、実装工程時に被転写基板4bの半導体チップ1が転写されていない側の面を吸着保持する。また、ヘッド32はZ軸方向に移動可能であり、載置台31に保持された回路基板6とヘッド32が保持している被転写基板4bに転写されている半導体チップ1のバンプとを接触させ、加圧する。また、ヘッド32はヒータ35を有し、制御部によってヘッド32、特に先端部の温度を制御することが可能である。また、ヘッド32には図示しない温度計が設けられ、この温度計により計測されたヘッド32の温度をフィードバックして温度制御を行うことが可能である。
 また、ヘッド32はθ方向(Z軸方向を回転の中心とする中心方向)に移動可能に構成され、載置台31のX、Y軸方向への移動とヘッド32のZ軸、θ方向の移動と連動させることによって、回路基板6上の所定位置に半導体チップ1を熱圧着し、実装することができる。
 2視野光学系33は、載置台31に回路基板6が載置されている際にヘッド32と回路基板6との間に進入して双方の画像を撮像することができる。撮像された各画像は、制御部で画像処理されてそれぞれの位置ずれを認識する。そして、制御部は、この位置ずれを考慮して、各半導体チップ1が回路基板6上の所定の位置に接触して接合されるように制御することにより、半導体チップ1をX、Y軸方向に高精度に実装する。
 次に、図2に示す転写部10において実施される転写工程について、図5を参照して説明する。
 なお、この転写工程の前に、検査部20によって転写基板4a上の各半導体チップ1の検査が行われ、性能不良と判断された半導体チップ1は予め転写基板4aから除去されている。
 転写基板4aおよび被転写基板4bは一方の面にそれぞれ粘着層3a、粘着層3bを有しており、これら粘着層3a、粘着層3bの表面が粘着面となっており、粘着力により半導体チップ1を保持している。
 ここで、粘着層3bは、転写基板4aから素子1が転写される面である被転写面を有する部位であることから、本説明では被転写部3bとも呼ぶ。
 本説明の転写工程では、図5(a)に示すように粘着層3aおよび半導体チップ1が下を向くように転写基板4aを転写基板保持部13(不図示)が保持し、また、転写基板4aの下方に、被転写部3bを有する被転写基板4bが位置するよう、被転写基板保持部14が被転写基板4bを保持する。
 そして、転写部10の制御部がガルバノミラー15の角度を調節することによってレーザ光11cを粘着層3aと所定の半導体チップ1との界面に転写基板4aを透過して到達させることにより、半導体チップ1がレーザリフトオフされる。具体的には、レーザ光11の照射により粘着層3aと所定の半導体チップ1との界面に光エネルギーが付与されることによって、アブレーションが生じて粘着層3aからガスが発生する。このガスの発生によって半導体チップ1が付勢され、転写基板4aから下方へ飛行し、被転写基板4bに着弾する。なお、図5(a)ではアブレーションによって粘着層3aが消失する形態が図示されているが、内部でガスが発生して粘着層3aが膨らむ形態(いわゆる、ブリスタリング)であっても良い。
 また、この転写工程では転写基板4aにある半導体チップ1を全て連続で転写するのではなく、図5(b)に示すように選択的に半導体チップ1を転写する。転写基板4a上の半導体チップ1の配列は、成長基板上の半導体チップ1の配列と同等であることを想定しているが、この転写工程で半導体チップ1を選択的に転写することにより、任意の配列で被転写基板4bへ半導体チップ1を転写することができる。
 ここで、本実施形態では、後述の実装工程に備え、被転写基板4bにおける半導体チップ1の配列は回路基板6に半導体チップ1が配置されるべき位置に応じた配列となっている。さらに具体的には、一度の実装工程で回路基板6に半導体チップ1を実装できる領域内における半導体チップ1のレイアウトと鏡像の関係となるレイアウトで被転写基板4bには半導体チップ1が配列されている。
 一方、図5(b)にて被転写基板4b上に破線で示すように、被転写基板4b上の転写すべき位置に転写可能な半導体チップ1が転写基板4aに存在しない場合がある。その場合は、図5(c)に示すように転写基板4aと被転写基板4bとを相対移動させ、その後レーザリフトオフを実施すると良い。
 次に、本発明の転写装置10で用いる被転写基板4bについて、第1の実施形態における被転写基板4bを図6(a)および図6(b)に示す。図6(a)は正面断面図、図6(b)は上面図である。
 前述の通り、被転写基板4bの半導体チップ1が転写される側には、被転写部3bが設けられており、本説明でいう半導体チップ1が転写される面である被転写面は粘着面となっている。この粘着面の粘着力により、転写された半導体チップ1を保持する。
 この被転写基板4bの被転写部3bは、図6(a)および図6(b)に示すように複数の円柱状体が所定の間隔でマトリクス状に配列された形態を有しており、各円柱状体の先端面が被転写面に相当する。この円柱状体の断面積は半導体チップ1の面積よりも小さく、複数の円柱状体で1つの半導体チップ1を保持する。なお、被転写面において図6(a)に二点鎖線で示す被転写領域Rは、所定の1つの半導体チップ1が転写されるべき領域を示している。
 ここで、本実施形態では、各円柱状体の直径は4um、高さは3umであり、各円柱状体の配置間隔は10~15umである。そのため、隣接する円柱状体の間には隙間が存在する。この隙間を通じて気体の往来が可能であり、被転写領域Rの内部と外部とが連通している。なお、本実施形態ではこの隙間を連通経路3cと呼ぶ。
 次に、本実施形態の被転写基板4bのように被転写面が連通経路を有する効果を図7に示す。
 レーザ光11cの照射によって転写基板4aの粘着層3aにアブレーションが生じ、半導体チップ1が被転写基板4bに向かって付勢される。これにともなって半導体チップ1と被転写基板4bの被転写面との間に形成される気体層が圧縮される。
 ここで、本発明では被転写基板4bの被転写部3bが連通経路3cを有しており、この連通経路3cを通じて所定の半導体チップ1が転写されるべき被転写領域Rとこの被転写領域Rの外部とが連通している。そのため、半導体チップ1と被転写基板4bの被転写面との間に形成される気体層が圧縮されて被転写領域Rとその外部とで圧力差が生じたときには、図7に矢印で示すように連通経路3cが気体の逃げ道となって被転写領域Rから被転写領域Rの外部への気体の流れが生じ、当該圧力差が減少する。そのため、半導体チップ1と被転写基板4bの被転写面との間の気体の圧力(図7に示す圧力P1)は、図11に示す圧力P0よりも小さくなる。
 このように連通経路3cが所定の半導体チップ1が転写される被転写領域Rからこの被転写領域Rの外部への気体の逃げ道として機能することにより、半導体チップ1の被転写基板4bへの飛行に対する抵抗が軽減され、被転写基板4bへの半導体チップ1の着弾位置のずれが軽減される。そのため、位置精度良く半導体チップ1が被転写基板4bに転写される。
 また、本発明のように被転写部3bが連通経路3cを有することにより得られる転写位置精度の向上という効果は、素子1が大面積であるほど、また、薄いほどより大きくなる。
 図8に、本発明の第2の実施形態における被転写基板4bを示す。図8(a)は正面断面図、図8(b)は上面図である。
 本実施形態では、連通経路3cは溝形状の凹部であり、この溝の長手方向(図8(b)におけるY軸方向)の寸法は、半導体チップ1の被転写面と対向する面の寸法よりも大きい。そのため、この溝形状の連通経路3cは1つの半導体チップ1が転写される被転写領域Rからはみ出て、被転写領域Rの内外をまたぐ形態となる。
 このような溝形状の連通経路3cが被転写部3bに設けられた被転写基板4bに向かって半導体チップ1がアブレーションにより付勢された場合、半導体チップ1と被転写面との間の気体層が圧縮されるとともに図8(b)に矢印で示すように溝形状の連通経路3cを通じて気体が被転写領域Rから横方向に逃げることが可能であるため、レーザリフトオフによる半導体チップ1と被転写基板4bの被転写面との間に形成される気体層の圧力の増加を軽減することが可能である。
 ここで、溝形状の連通経路3cは、被転写基板4bの両端部(図8(b)におけるY軸方向両端部)まで延びていても良い。
 また、溝形状の連通経路3cは、図8(b)のように一方向(Y軸方向)のみに延びるように設けられても良いが、これに限らずY軸方向に加えたとえばX軸方向にも設けられても良い。
 また、溝形状の連通経路3cは、少なくとも被転写領域の内外をまたぐ形態となっていれば良く、そのような形態となっていれば、仮に連通経路3cの長さが半導体チップ1の長さよりも短くても構わない。
 図9に、本発明の第3の実施形態における被転写基板4bを示す。図9(a)は正面断面図、図9(b)は上面図である。
 本実施形態では、図9(a)に示すように、連通経路3cは被転写部3bに穿たれた孔状の流路であり、一方の開口が被転写面に設けられている。そして、被転写部3bと被転写基板本体との間に空洞部3dが設けられており、各連通経路3cの他方の開口はこの空洞部3dと連通している。これにより、孔状の連通経路3cは、孔の一方の開口は被転写領域Rに設けられ、他方の開口はR被転写領域の外部に設けられた状態となっている。
 このように一方の開口は被転写領域Rに設けられ、他方の開口はR被転写領域の外部に設けられた孔形状の連通経路3cを有する被転写基板4bに向かって半導体チップ1がアブレーションにより付勢された場合、半導体チップ1と被転写面との間の気体層が圧縮されるとともに図9(a)に矢印で示すように空洞部3dを通じて気体が被転写領域R外の他の連通経路3cに逃げることが可能であるため、レーザリフトオフによる半導体チップ1と被転写基板4bの被転写面との間に形成される気体層の圧力の増加を軽減することが可能である。このように、連通経路3cは、孔のように入口と出口以外は閉じた形状である、いわゆる流路の形態をとっていても良く、前述の溝形状のように必ずしも閉じた形状でなくても良い。
 ここで、図9(a)のように全ての連通経路3cがまとまって連通していても良いが、これに限らず、少なくとも2つの連通経路3cが連通していれば良い。その場合、1つの半導体チップ1が転写される被転写領域Rの内部にある連通経路3cと被転写領域Rの外部にある連通経路3cとが連通していれば、レーザリフトオフ時に気体を逃がすことができる。
 図10に、本発明の第4の実施形態における被転写基板4bを示す。図10(a)は正面断面図、図10(b)は上面図である。
 本実施形態では、図10(a)に示すように、連通経路3cは被転写部3bに穿たれて被転写面に一方の開口を有する孔である。そして、被転写部3bに設けられた各連通経路3cは、被転写部3b、被転写基板本体を通って、被転写基板4bの裏面まで貫通している。すなわち、この実施形態でも、孔状の連通経路3cは、孔の一方の開口は被転写領域Rに設けられ、他方の開口はR被転写領域の外部に設けられた状態となっている。
 このように被転写基板4bの裏面まで貫通した連通経路3cが設けられた被転写基板4bに向かって半導体チップ1がアブレーションにより付勢された場合、半導体チップ1と被転写面との間の気体層が圧縮されるとともに図10(a)に矢印で示すように連通経路3cを通じて気体が被転写領域Rから被転写基板4bの反対側に逃げることが可能であるため、レーザリフトオフによる半導体チップ1と被転写基板4bの被転写面との間に形成される気体層の圧力の増加を大きく軽減することが可能である。
 ここで、本実施形態のように被転写基板4bを貫通する孔状の連通経路3cを有する被転写基板4bである場合、図2のような転写装置10では被転写基板保持部14は被転写基板4bの裏面(被転写面の反対面)において各連通経路3cの開口を塞ぐことが無い形態であることが好ましい。
 以上の被転写基板および転写装置により、位置精度良く素子を転写することが可能である。
 ここで、本発明の被転写基板および転写装置は、以上で説明した形態に限らず本発明の範囲内において他の形態のものであってもよい。たとえば、被転写基板の被転写部に設けられた連通経路の形態は、上記の実施形態に明示された形態に限らず、被転写基板に向かって素子がアブレーションにより付勢された場合に気体の逃げ道となる形態であれば良く、たとえば上記の実施形態を組み合わせたような実施形態であっても構わない。
 また、被転写面が梨地のように所定の表面粗さを有することにより被転写領域の内外が連通する連通経路が設けられる形態であっても良い。
 また、被転写部に代わって素子の方に以上の説明の連通経路が設けられていても良い。
 また、上記の説明では、転写工程は大気圧下で実施されているが、転写装置が図示しない減圧部を備えることにより、減圧環境で実施されても良い。また、空気環境下に限らずその他の気体である窒素などの環境下で実施されても良い。
 また、本発明の被転写基板の利用は、レーザリフトオフのように素子が付勢される形態に限らず、たとえば素子が自由落下する形態でも効果を発する。すなわち、素子が被転写面に転写される瞬間において素子は何とも非接触となるプロセスにより、素子の転写がなされる場合に、本発明の効果は発せられる。
 また、上記の説明では転写装置においてレーザの照射位置をガルバノミラーで制御しているが、これに限らず、たとえばポリゴンミラーなど他の公知技術で制御しても構わない。また、ミラーの反射は利用せず、転写基板と被転写基板の相対移動だけでレーザの照射位置を制御しても良い。
 また、検査部による半導体チップの検査は画像解析による外観検査に限らず、たとえばX線を用いた検査であっても構わない。また、フォトルミネッセンス現象を用いた検査であっても構わない。
 1 半導体チップ
 3a 粘着層
 3b 粘着層(被転写部)
 3c 連通経路
 3d 空洞部
 4a 転写基板
 4b 被転写基板
 6 回路基板
 10 転写部
 11 レーザ光
 11c レーザ光
 12 レーザ照射部
 13 転写基板保持部
 14 被転写基板保持部
 15 ガルバノミラー
 16 fθレンズ
 20 検査部
 21 カメラ
 22 被検査基板保持部
 30 実装部
 31 載置台
 32 ヘッド
 33 2視野光学系
 34 ヒータ
 35 ヒータ
 40 ロボットハンド
 91 素子
 92 転写基板
 93 被転写基板
 100 実装装置

Claims (7)

  1.  被転写面に素子が転写される被転写基板であり、
     前記被転写面における所定の素子が転写される領域である被転写領域には、当該被転写領域の外部と連通する連通経路が設けられていることを特徴とする、被転写基板。
  2.  前記被転写領域は、複数配列される柱状体の先端面により形成され、前記柱状体の隙間が前記連通経路であることを特徴とする、請求項1に記載の被転写基板。
  3.  前記連通経路は前記被転写領域の内外をまたぐよう前記被転写面に形成された凹部であることを特徴とする、請求項1に記載の被転写基板。
  4.  前記連通経路は前記被転写面に穿たれた孔状の流路であり、当該流路の一方の開口は前記被転写領域に設けられ、他方の開口は前記被転写領域の外部に設けられていることを特徴とする、請求項1に記載の被転写基板。
  5.  素子が前記被転写面に転写される瞬間において素子は何とも非接触となるプロセスにより、素子の転写がなされることを特徴とする、請求項1から4のいずれかに記載の被転写基板。
  6.  素子を保持する転写基板へ活性エネルギー線を付与することによりアブレーションを生じさせ、素子を付勢して前記転写基板から請求項1から5のいずれかに記載の被転写基板へ転写させる転写装置であり、
     前記転写基板を保持する転写基板保持部と、
     前記転写基板の素子を保持する面と前記被転写基板が対向するように前記被転写基板を保持する被転写基板保持部と、
     前記転写基板保持部に保持された前記転写基板の一部へ活性エネルギー線を付与する活性エネルギー線付与部と、
     を備えることを特徴とする、転写装置。
  7.  素子を粘着保持する転写基板へ活性エネルギー線を付与することによりアブレーションを生じさせ、素子を付勢して前記転写基板から被転写基板へ転写させる転写装置であり、
     前記転写基板を保持する転写基板保持部と、
     前記転写基板の素子を保持する面と前記被転写基板が対向するように前記被転写基板を保持する被転写基板保持部と、
     前記転写基板保持部に保持された前記転写基板の一部へ活性エネルギー線を付与する活性エネルギー線付与部と、
     を備え、
     素子における前記被転写基板に保持される被保持面には、当該被保持面の外部と連通する連通経路が設けられていることを特徴とする、転写装置。
PCT/JP2021/048100 2021-03-30 2021-12-24 被転写基板および転写装置 WO2022209079A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021057868 2021-03-30
JP2021-057868 2021-03-30
JP2021208360A JP2022155471A (ja) 2021-03-30 2021-12-22 被転写基板および転写装置
JP2021-208360 2021-12-22

Publications (1)

Publication Number Publication Date
WO2022209079A1 true WO2022209079A1 (ja) 2022-10-06

Family

ID=83455743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048100 WO2022209079A1 (ja) 2021-03-30 2021-12-24 被転写基板および転写装置

Country Status (1)

Country Link
WO (1) WO2022209079A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061896A1 (ja) * 2016-09-29 2018-04-05 東レエンジニアリング株式会社 転写方法、実装方法、転写装置、及び実装装置
JP2019114660A (ja) * 2017-12-22 2019-07-11 東レエンジニアリング株式会社 実装方法および実装装置
JP2020136337A (ja) * 2019-02-14 2020-08-31 東レエンジニアリング株式会社 保持装置、転写装置および転写方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061896A1 (ja) * 2016-09-29 2018-04-05 東レエンジニアリング株式会社 転写方法、実装方法、転写装置、及び実装装置
JP2019114660A (ja) * 2017-12-22 2019-07-11 東レエンジニアリング株式会社 実装方法および実装装置
JP2020136337A (ja) * 2019-02-14 2020-08-31 東レエンジニアリング株式会社 保持装置、転写装置および転写方法

Similar Documents

Publication Publication Date Title
TWI797190B (zh) 選取及放置半導體裝置的方法、製造系統及電子顯示器
WO2019123901A1 (ja) 実装方法および実装装置
JP7173228B2 (ja) 素子アレイの製造方法と特定素子の除去方法
JP2005537681A (ja) 複数の光学素子を1つの単一基板上へ同時精密ダイ接着を行うためのシステムおよび方法
JP2011086698A (ja) ボンディング装置
US10998286B1 (en) Laser-induced selective heating for microLED placement and bonding
WO2022209079A1 (ja) 被転写基板および転写装置
JP2022536418A (ja) ディスクリート部品の組み立てにおける位置誤差の補償のための材料
JP2006088192A (ja) 半田ボールの接合方法および接合装置
JP2022155471A (ja) 被転写基板および転写装置
JP7463153B2 (ja) 実装方法および実装装置
JP7152330B2 (ja) 保持装置、転写装置および転写方法
US20230360936A1 (en) Transfer device and transfer substrate
EP1378932A2 (en) Semiconductor chip mounting apparatus and mounting method
US20230107245A1 (en) Methods of transferring a die from a carrier to a receive substrate, and related systems and materials
JP2019114659A (ja) 実装方法および実装装置
KR20220158219A (ko) 실장 방법, 실장 장치, 및 전사 장치
JP2019186472A (ja) 光学装置の製造装置および光学装置の製造方法
JP2007163609A (ja) パターン形成方法及び液滴吐出装置
JP2023147767A (ja) 転写方法、及び転写装置
KR20210019785A (ko) 불량 전자부품 검사방법 및 이를 이용한 레이저 리웍 장치
WO2024154645A1 (ja) 転写基板保持装置、転写装置、および転写方法
JP2007296425A (ja) パターン形成方法、液滴吐出装置及び回路モジュール
TW202409718A (zh) 轉印裝置及轉印方法
JP2023144225A (ja) 転写装置および転写方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935226

Country of ref document: EP

Kind code of ref document: A1