WO2022206687A1 - 一种显示面板、显示模组及电子设备 - Google Patents

一种显示面板、显示模组及电子设备 Download PDF

Info

Publication number
WO2022206687A1
WO2022206687A1 PCT/CN2022/083422 CN2022083422W WO2022206687A1 WO 2022206687 A1 WO2022206687 A1 WO 2022206687A1 CN 2022083422 W CN2022083422 W CN 2022083422W WO 2022206687 A1 WO2022206687 A1 WO 2022206687A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
light
doped region
display
Prior art date
Application number
PCT/CN2022/083422
Other languages
English (en)
French (fr)
Inventor
韩钢峰
秋教燮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237034996A priority Critical patent/KR20230156401A/ko
Priority to EP22778869.2A priority patent/EP4300584A1/en
Priority to JP2023560735A priority patent/JP2024513414A/ja
Publication of WO2022206687A1 publication Critical patent/WO2022206687A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a display module and an electronic device.
  • the light sensor uses the photoelectric conversion function of the photoelectric device to convert the light signal on the photosensitive surface into an electrical signal that is proportional to the light signal.
  • light sensors have been widely used in various electronic devices.
  • the light sensor can be used to detect the light conditions of the current environment, so as to adjust the brightness of the display screen, so that the human eye feels comfortable and not dazzling; at the same time, the light sensor can also detect a specific wavelength (red light/green light) /blue light/infrared/ultraviolet, etc.) to achieve more functions and applications, such as color temperature detection, proximity light detection, ultraviolet intensity detection, etc.
  • the independent light sensor is large in size because the sensor and the chip are set together, and cannot be placed in the edge area of the display screen. Therefore, it is generally used as shown in Figure 1.
  • the structure of placing the light sensor under the screen In this structure, the light transmittance will be greatly reduced due to screen occlusion, so a more sensitive light sensor is required.
  • a scheme of integrating a light sensor with a PIN structure into a display screen is proposed, so as to reduce the number of film layers above the light sensor and improve the transmittance of the light emitted by the light sensor.
  • the PIN structure integrated in the screen is shown in Figure 2.
  • a semiconductor material layer is arranged on the base substrate 1 of the display panel, and a P-type heavily doped region (P+) and an N-type heavily doped region are formed by doping the semiconductor material layer.
  • the P+ region and the N+ region are connected to the metal electrodes 2 and 3 respectively, and are used for signal readout and bias voltage input respectively;
  • the gate electrode 4 is located above the metal electrodes 2 and 3, because the external light needs to pass through the gate electrode 4 to irradiate to the In the I region, the gate electrode 4 is made of transparent conductive material.
  • the formation of the PIN structure requires four additional mask processes on the basis of the existing display panel manufacturing process, which are: forming the P+ region as one, forming the N+ region as one, forming the I region as one, forming the gate
  • the electrodes are in one line, so the integration of the PIN structure in the screen will significantly increase the cost of the display panel.
  • the present application provides a display panel, a display module and an electronic device for reducing the cost of the display panel.
  • an embodiment of the present application provides a display panel, including a display substrate and an opposite substrate disposed oppositely; wherein, the display substrate includes a base substrate and a display function film layer on the base substrate and At least one light sensor; the display function film layer at least includes a stacked semiconductor layer and a multi-layer metal electrode layer, and the semiconductor layer has a first P-type lightly doped region and a first P-type heavily doped region;
  • the photosensor includes an input electrode, an output electrode, a channel region, a first doped region and a second doped region provided in the same layer as the semiconductor layer; the first doped region and the second doped region They are respectively located on both sides of the channel region, the input electrode is electrically connected to the first doped region, and the output electrode is electrically connected to the second doped region.
  • the first doped region and the first P-type heavily doped region have the same material and the same doping concentration; or, the second doped region and the first P-type heavily doped region have the same material.
  • the material and doping concentration are the same; or, the first doping region and the second doping region are both of the same material and doping concentration as the first P-type heavily doped region; the input electrode and the output electrodes are arranged in the same layer as at least one metal electrode layer in the multi-layer metal electrode layers.
  • the light sensor includes an input electrode, an output electrode, a channel region, a first doped region and a second doped region provided in the same layer as the semiconductor layer.
  • Both the input electrode and the output electrode are arranged in the same layer as at least one metal electrode layer in the multi-layer metal electrode layer in the display function film layer, so that when the multi-layer metal electrode layer is formed, the multi-layer metal electrode layer can be formed at the same time.
  • the patterns of the input electrodes and the output electrodes only need to change the patterning pattern in the Mask process when forming the pattern of the metal electrode layer, and no additional Mask process needs to be added.
  • the two doped regions in the photosensor and at least one of the doped regions are of the same material and doping concentration as the first P-type heavily doped region in the display functional film layer, so that the first P-type heavily doped region in the display function film layer can be formed
  • the P-type heavily doped regions are formed at the same time as the doped regions in the photosensor, so as to avoid adding additional doping processes.
  • the display panel of the present application only needs to add 2 additional mask processes when forming the channel region and the doping region at most. Compared with the related art, it needs to add 4 additional mask processes, which can reduce at least 2 mask processes, so it can reduce the The cost of the display panel.
  • the multi-layer metal electrode layer in the display function film layer in this application generally includes the layer where the source electrode is located, the layer where the drain electrode is located, and the layer where the gate electrode is located, etc., which are not limited here.
  • the input electrodes in this application may be arranged in the same layer as one of the metal electrode layers in the multi-layer metal electrode layers, or the input electrodes may be arranged in multiple layers, each layer being one of the multi-layer metal electrode layers.
  • the multi-layer metal electrode layer is arranged in the same layer; similarly, the output electrode can be arranged in the same layer as one of the metal electrode layers in the multi-layer metal electrode layer, or the output electrode can be arranged in multiple layers, each layer being the same as the multi-layer metal electrode layer.
  • one of the metal electrode layers is provided in the same layer, which is not limited herein. As long as it is ensured that the input electrode and the output electrode in the light sensor in the present application and the metal electrode layer in the display function film layer are formed by the same Mask process.
  • the channel region of the photosensor can be made of the same material and doping concentration as the first P-type lightly doped region, so that the first P-type lightly doped region in the display functional film layer can be formed.
  • the channel region in the photosensor is formed at the same time as the doping region, so as to avoid adding an additional doping process, thereby reducing the cost.
  • the material of the channel region of the photosensor may also be an intrinsic semiconductor material, which is not limited herein.
  • the display function film layer can be formed during the The first P-type heavily doped region in the photo sensor is simultaneously formed with two doped regions, thereby avoiding adding additional doping processes.
  • the other doped region can be set as an N-type doped region, that is, when the first doped region and the first P-type heavily doped region have the same material and the same doping concentration, the second doped region The region is an N-type doped region; or when the second doped region and the first P-type heavily doped region have the same material and the same doping concentration, the first doped region is an N-type doped region .
  • a gate electrode may not be provided in the photosensor, or a gate electrode may be provided, which is not limited herein.
  • the photosensor may further include at least one gate electrode disposed in the same layer as one of the metal electrode layers in the multi-layer metal electrode layers, so that only the patterning in the Mask process can be changed when the metal electrode layer is formed.
  • the gate electrode can be formed at the same time by patterning, without adding an additional mask process.
  • the orthographic projection of the at least one gate electrode on the channel region partially overlaps with the channel region, so that light can be irradiated to the channel region of the photosensor.
  • the width of the channel region can be reduced, the resistance of the channel region can be reduced, the photosensitive current can be increased, and the photosensitive efficiency of the photosensor can be improved.
  • the present application when at least one gate electrode is provided in the photosensor, the present application does not limit the position of each gate electrode, as long as it is ensured that each gate electrode and the channel region have an overlapping area.
  • the present application can adjust the initial current output by the output electrode when the light sensor is not illuminated by changing the potential on the gate electrode, and adjust the induced current output by the output electrode when the light sensor is illuminated.
  • the gate electrode when the light sensor includes one of the gate electrodes, the gate electrode may be disposed on a side close to the output electrode.
  • the working principle of the light sensor (also called photodiode) provided by this application is: when there is no light, the reverse current in the channel region is very small (generally less than 0.1 microampere), which is called dark current.
  • the reverse current in the channel region is very small (generally less than 0.1 microampere), which is called dark current.
  • the reverse current is transferred to the bound electrons on the covalent bond, so that some electrons break away from the covalent bond, thereby generating electron-hole pairs, which are called photogenerated carriers. They drift under the action of the reverse voltage, so that the reverse current becomes significantly larger, and the greater the intensity of the light, the greater the reverse current.
  • electron-hole pairs are mainly formed in the unobstructed region (depletion region) of the channel region.
  • the absorbed light intensity is different, and the concentration of the formed electron-hole pairs is also different.
  • the stronger the illumination the higher the concentration of electron-hole pairs, the smaller the equivalent resistance of the depletion region, and the larger the output current signal.
  • the illumination intensity can be obtained by processing the output current signal.
  • the light sensor of the present application has the characteristics of high sensitivity due to the large resistance in the depletion region, especially when the dark current (leak current) is small when no light is irradiated. Moreover, the magnitude of the dark current can be further adjusted by adjusting the potential of the gate electrode and the voltage across the input electrode and the output electrode.
  • the light sensor in the display panel can be used to detect the intensity of ambient light, and can also be used to detect a certain wavelength (for example, red light/green light/blue light/infrared light/ultraviolet light) The intensity of light to achieve some specific functions.
  • the adjustment principle can be: the light sensor senses the light intensity of the surrounding environment, converts the light signal into an electrical signal for output, and the output electrical signal is processed by the IC to convert the current analog signal into a digital signal signal, and then report this digital signal. After the algorithm is multiplied by the corresponding coefficient, a brightness value will be obtained.
  • the brightness value corresponds to the dimming order of the screen. After judgment, it is determined whether the screen needs to be dimmed. If it needs to be dimmed , the driver chip outputs the corresponding driving current, so as to realize the adjustment of different brightness of the display screen.
  • the display panel may include a display area and a non-display area, wherein the display area is provided with pixels for display, and the non-display area is generally provided with driving circuits and wirings.
  • the light sensor may be arranged in the display area or in the non-display area, which is not limited here.
  • the display substrate may include a plurality of the light sensors; a plurality of the light sensors may all be located in the non-display area; or a plurality of the light sensors may also be located in the display area; of course It is also possible that a part of the optical sensors among the plurality of optical sensors is located in the non-display area, and another part of the optical sensors is located in the display area, which is not limited herein.
  • the present application can also implement a touch function by arranging a plurality of light sensors arranged in a matrix in the display area, and by detecting the light intensity of each light sensor.
  • the fingerprint identification function is realized by sensing the relative light intensity of the fingerprint valleys and ridges where the fingerprints touch.
  • at least one light sensor can also be provided on opposite sides of the display panel. Taking the left side and the right side as an example, the gesture recognition function can be realized by detecting the timing sequence of the output signals of the light sensors on both sides.
  • an embodiment of the present application further provides a display module, the display module may include a display panel, a polarizer and a cover layer that are stacked in sequence, and the display panel may be the display provided in the first aspect Since the display panel provided by the embodiment of the present application can reduce the cost compared with the related art, the display module provided by the embodiment of the present application can also reduce the cost.
  • the display panel has a display area and a non-display area; the non-display area of the display panel is provided with a plurality of the light sensors, and the display module further includes A light-shielding ink layer and at least one filter film are located between the display panel and the cover layer.
  • the front projection of the light-shielding ink layer on the display panel covers the non-display area, the front projection of each filter film on the display panel is located in the non-display area, and each filter film is located in the non-display area.
  • the light film corresponds to at least one of the light sensors.
  • the light-shielding ink layer is used for shielding the non-display area of the display panel; the light-shielding ink layer has at least one first opening and at least one second opening corresponding to each of the filter films, and each of the first openings An opening corresponds to at least one of the light sensors.
  • the front projection of the filter film on the display panel covers the front projection of the at least one second opening corresponding to the filter film on the display panel, and the filter film is on the front side of the display panel. The projection does not overlap with the orthographic projection of the first opening on the display panel.
  • the at least one filter film may include at least one yellow filter film, at least one cyan filter film, and at least one magenta filter film.
  • the light-shielding ink layer specifically has at least one first opening and at least one second opening corresponding to each of the yellow filters, at least one second opening corresponding to each of the cyan filters, and each at least one second opening corresponding to the magenta filter film.
  • the orthographic projection of the yellow filter film on the display panel covers the orthographic projection of the at least one second opening corresponding to the yellow filter film on the display panel, and the cyan filter film is on the display panel.
  • the orthographic projection of the at least one second opening corresponding to the cyan filter film is covered on the display panel, and the orthographic projection of the magenta filter film on the display panel is covered with the magenta filter.
  • the orthographic projection of the at least one second opening corresponding to the film on the display panel, and the orthographic projections of the yellow filter film, the filter film and the magenta filter film on the display panel are all the same as those of the display panel.
  • the orthographic projections of the first opening on the display panel do not overlap.
  • the filter film and the light-shielding ink layer may be disposed in the same layer.
  • the filter film and the light-shielding ink layer may also be disposed in different layers, which is not limited herein.
  • every four light sensors may be used as a group of detection units, and at least one group of the detection units may be provided in the non-display area.
  • one light sensor corresponds to one first opening
  • Each of the light sensors corresponds to three second openings
  • the three second openings respectively correspond to a yellow filter film, a magenta filter film, and a cyan filter film.
  • the yellow filter can transmit yellow light
  • the magenta filter can transmit magenta light
  • the cyan filter can transmit cyan light.
  • B (blue light), G (green light), R in ambient light can be calculated by detecting the intensity of yellow light, cyan light, magenta light and white light (ie light transmitted from the first opening) in the ambient light (red light) and NIR (infrared light) intensity values.
  • the color temperature detection function of the environment can also be realized through the intensity values of B (blue light), G (green light) and R (red light).
  • This application calculates the intensity values of B (blue light), G (green light) and R (red light) in ambient light by detecting the intensity of yellow light, cyan light, magenta light and white light in ambient light, and directly Compared with detecting the intensity values of B (blue light), G (green light) and R (red light) in ambient light, the low-illuminance detection capability of the present application can be improved by more than 2 times. Therefore, in the present application, by using yellow, cyan and magenta instead of red, blue and green as the measurement channels of the ambient color temperature, the amount of incoming light can be increased by 2 times or more, thereby improving the sensing capability of the display module under low illumination.
  • the present application can also reduce the number of infrared light channels, thereby reducing the number of light sensors, the process of manufacturing infrared light filter films, and the number of chip analog-to-digital conversion channels, thereby reducing the manufacturing complexity and cost of the display module.
  • the display module may further include a first quarter-wave retardation layer and a second quarter-wave retardation layer on both sides of the polarizer, respectively.
  • a first quarter-wave retardation layer and a second quarter-wave retardation layer on both sides of the polarizer, respectively.
  • the direction is perpendicular to the polarization direction of the polarizer, so that the reflected linearly polarized light cannot pass through the polarizer, thereby reducing the reflectivity of the display module; similarly, after the light emitted by the display panel is converted into linearly polarized light by the polarizer, it passes through the object ( For example, the reflected light after the reflection of a human face also needs to pass through the first quarter-wavelength retardation layer twice, so that the polarization direction of the linearly polarized light is perpendicular to the polarization direction of the polarizer and cannot pass through the polarizer, thereby preventing the display panel from emitting light.
  • the light reflected by the object is irradiated on the light sensor, which will cause the measurement value to deviate from the real environment and cause measurement errors.
  • the display module may further include a touch layer between the display panel and the cover layer.
  • the touch layer may be disposed between the display panel and the polarizer, which is not limited herein.
  • an embodiment of the present application further provides an electronic device, which may include the display module provided in the second aspect. Since the principle of solving the problem of the electronic device is similar to that of the aforementioned display module, the implementation of the electronic device can refer to the implementation of the aforementioned display module, and the repetition will not be repeated.
  • the electronic device in the present application can use the light sensor integrated in the display panel to detect the lighting conditions of the current environment, so as to adjust the brightness of the screen of the display panel, so that the human eye feels comfortable and not dazzling, and at the same time Reduce display screen power consumption.
  • Examples of electronic devices are mobile phones, tablets, portable computers, monitors, and televisions.
  • the electronic device can also use the light sensor integrated in the display panel to detect a specific wavelength (such as red/green/blue/infrared/ultraviolet), so as to realize more functions and applications, such as color temperature Detection, proximity light detection, UV intensity detection, etc.
  • mobile phones, tablets, watches, computers, monitoring screens, TVs, etc. realize specific functions by sensing light of specific wavelengths (such as ultraviolet light/infrared light) in the external ambient light.
  • specific wavelengths such as ultraviolet light/infrared light
  • infrared sensing can be used for proximity sensing
  • ultraviolet sensing A UV index sensor can be implemented.
  • FIG. 1 is a schematic diagram of the position of a light sensor in a display panel provided by the related art
  • FIG. 2 is a schematic structural diagram of a light sensor in a display panel provided by the related art
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an LCD panel provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an AMOLED display panel according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a display panel provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a display panel according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of the working principle of the light sensor provided by the embodiment of the application.
  • FIG. 12 is a schematic diagram of an equivalent circuit of a light sensor provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a partial structure of a display panel according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a partial structure of a display panel provided by another embodiment of the present application.
  • FIG. 15 is a schematic diagram of a partial structure of a display panel according to another embodiment of the present application.
  • 16 is a schematic diagram of the working principle of the application for adjusting the display brightness of the display panel according to the light sensor;
  • FIG. 17 is a schematic structural diagram of a display panel provided by another embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a display panel according to another embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a display panel provided by another embodiment of the present application.
  • FIG. 20 is a timing diagram of an output signal of a light sensor in the display panel shown in FIG. 19;
  • 21 is a schematic cross-sectional structure diagram of a display module provided by an embodiment of the present application.
  • 22 is a schematic top-view structure diagram of a display module provided by an embodiment of the present application.
  • Figure 23 is a schematic cross-sectional structure diagram of the display module shown in Figure 22 along the AA' direction;
  • Fig. 24 is a kind of sectional structure schematic diagram of the display module shown in Fig. 22 along BB' direction;
  • Fig. 25 is another schematic cross-sectional structure diagram of the display module shown in Fig. 22 along the BB' direction;
  • 26 is a schematic diagram of a curve of light transmittance and wavelength of a filter film provided by an embodiment of the application.
  • FIG. 27 is a schematic structural diagram of a display module provided by an embodiment of the present application.
  • FIG. 28 is a schematic cross-sectional structure diagram of a display module provided by another embodiment of the present application.
  • the present application can be applied to any electronic device that combines a light sensor with a display panel.
  • electronic devices can use the light sensor integrated in the display panel to detect the lighting conditions of the current environment, so as to adjust the brightness of the screen of the display panel, so that the human eye feels comfortable and not dazzling, and at the same time reduce the display screen power consumption.
  • the electronic equipment is a mobile phone as shown in FIG. 3 , a tablet as shown in FIG. 4 , a portable computer, a monitor, a TV, and the like.
  • electronic devices can use the light sensor integrated in the display panel to detect a specific wavelength (such as red light/green light/blue light/infrared light/ultraviolet light), so as to realize more functions and applications, For example, color temperature detection, proximity light detection, ultraviolet intensity detection, etc.
  • a specific wavelength such as red light/green light/blue light/infrared light/ultraviolet light
  • mobile phones, tablets, watches, computers, monitoring screens, and TVs as shown in Figure 5 realize specific functions by sensing light of specific wavelengths (such as ultraviolet light/infrared light) in the external ambient light.
  • infrared sensing can be used for Proximity sensing
  • UV sensing can realize UV index sensor.
  • the photosensor is of a PIN structure, see FIG. 2 , and is formed by doping the semiconductor material layer on the base substrate 1 of the display panel during manufacture.
  • the P-type heavily doped region (P+), the N-type heavily doped region (N+) and the intrinsic photosensitive region (I) of the PIN structure are performed.
  • the P+ region and the N+ region are connected to the metal electrodes 2 and 3 respectively, and are used for signal readout and bias voltage input respectively;
  • the gate electrode 4 is located above the metal electrodes 2 and 3, because the external light needs to pass through the gate electrode 4 to irradiate to the In the I region, the gate electrode 4 is made of transparent conductive material.
  • the formation of the PIN structure requires four additional mask processes on the basis of the existing display panel manufacturing process, which are: forming the P+ region as one, forming the N+ region as one, forming the I region as one, forming the gate
  • the electrodes are in one line, so the integration of the PIN structure in the screen will significantly increase the cost of the display panel.
  • an embodiment of the present application provides a display panel with a light sensor integrated in the screen, which is used to reduce the manufacturing cost of the display panel by changing the structure of the light sensor in the screen.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • a conventional display panel mainly includes a display substrate and an opposite substrate, wherein the display substrate mainly includes a base substrate and a display function film layer disposed on the base substrate.
  • the display functional film layer is composed of many film layers. Different types of display panels with different functions have different display function film layers in them. The following description is given by taking a liquid crystal display (Liquid Crystal Display, LCD) panel or an Active Matrix Organic Light Emitting Diode (Active Matrix Organic Light Emitting Diode, AMOLED) display panel as an example for description.
  • LCD Liquid Crystal Display
  • AMOLED Active Matrix Organic Light Emitting Diode
  • FIG. 6 is a schematic structural diagram of an LCD panel according to an embodiment of the present application.
  • the LCD panel 10 mainly includes a substrate substrate 11, a circuit film layer 12, a pixel electrode layer 13, a lower alignment film layer 14, a liquid crystal layer 15, an upper alignment film layer 16, a common electrode layer 17, a color filter layer 18 and The opposite substrate 19 and the like.
  • the base substrate 11 and the opposite substrate 19 may be formed of a transparent material, such as glass or the like.
  • the circuit film layer 12 , the pixel electrode layer 13 , the lower alignment film layer 14 , the liquid crystal layer 15 , the upper alignment film layer 16 , the common electrode layer 17 and the color filter layer 18 may be collectively referred to as display functional film layers.
  • a point that needs to be explained here is that the structure of the display function film layer in different types of LCD panels may also be different, and FIG. 6 is only an example of one of the LCD panels.
  • the circuit film layer 12 is mainly provided with thin film field effect transistors (Thin Film Transistor, TFT) and various wirings.
  • TFT Thin Film Transistor
  • the circuit film layer 12 may include a semiconductor layer 121 , a first insulating layer 122 , a gate electrode 123 , a second insulating layer 124 , a source electrode 125 and a drain electrode 126 ; the material of the semiconductor layer 121 is It can be semiconductor materials such as amorphous silicon/polysilicon/oxide.
  • the electrode contact region and the channel region of the TFT can be formed by doping the semiconductor layer 121 with different materials and different concentrations, wherein the electrode contact region is generally a P-type heavily doped region (P+), and the channel region is generally a P-type lightly doped region. Doped region (P-).
  • the source electrode 125 and the drain electrode 126 of the TFT are electrically connected to the electrode contact regions, respectively.
  • FIG. 7 is a schematic structural diagram of an AMOLED display panel according to an embodiment of the present application.
  • the AMOLED display panel 20 mainly includes a base substrate 21 , a circuit film layer 22 , an anode layer 23 , a pixel defining layer 24 , a light-emitting layer 25 , a cathode layer 26 , an opposite substrate 27 and the like.
  • the base substrate 21 and the opposite substrate 27 can be formed of transparent materials, such as rigid substrates such as glass, or flexible substrates such as polyimide (PI), polycarbonate (PC), etc., which are not described here. limited.
  • the circuit film layer 22 , the anode layer 23 , the pixel defining layer 24 , the light-emitting layer 25 and the cathode layer 26 may be collectively referred to as a display function film layer. It should also be noted here that the structure of the display function film layer in different types of AMOLED display panels may also be different. Figure 7 is only an example of one of the AMOLED display panels with OLED spontaneous color light emission. For example, in some AMOLED display panels In the panel, if the light emitted by the light-emitting layer is white light, a color filter layer is generally provided above the light-emitting layer, which will not be repeated here.
  • the circuit film layer 22 is also mainly provided with TFTs and various wirings.
  • the circuit film layer 22 may include a semiconductor layer 221 , a first insulating layer 222 , a gate electrode 223 , a second insulating layer 224 , a source electrode 225 and a drain electrode 226 ;
  • the material of the semiconductor layer 221 is It can be semiconductor materials such as amorphous silicon/polysilicon/oxide.
  • the electrode contact region and the channel region of the TFT can be formed by doping the semiconductor layer 221 with different materials and different concentrations, wherein the electrode contact region is generally a P-type heavily doped region (P+), and the channel region is generally a P-type lightly doped region. Doped region (P-).
  • P+ P-type heavily doped region
  • P- P-type lightly doped region
  • P- P-type lightly doped region
  • the source electrode 225 and the drain electrode 226 of the TFT are electrically connected to the electrode contact regions, respectively.
  • the above-mentioned LCD panel and AMOLED display panel are provided with a circuit film layer with TFT. It is precisely because the above-mentioned display panel is provided with a semiconductor layer and different doped regions located in the semiconductor layer, the present application can be used in the display panel. When integrating the light sensor, the mask process of the existing display panel is used as much as possible to form, thereby reducing the number of increased mask processes.
  • FIG. 8 is a schematic structural diagram of a display panel with a light sensor integrated in the screen according to an embodiment of the present application.
  • the display panel 30 provided in the embodiment of the present application includes a display substrate 31 and an opposite substrate 32 arranged oppositely; wherein, the display substrate 31 includes a base substrate 310 and a display function film on the base substrate 310 layer (not shown in the figure) and at least one photosensor PD; the display function film layer may include at least a stacked semiconductor layer and a multi-layer metal electrode layer, and the semiconductor layer has a first P-type lightly doped region (P-) and the first P-type heavily doped region (P+); the photosensor PD may include an input electrode 01, an output electrode 02, and a channel region 03 provided in the same layer as the semiconductor layer, a first doping region 04 and second doping region 05; the first doping region 04 and the second doping region 05 are respectively located on both sides of the channel region 03, and the input electrode 01 and the first The doped region
  • the first doped region 04 and the first P-type heavily doped region (P+) have the same material and the same doping concentration; or, the second doped region 05 and the first P-type heavily doped region 05
  • the heavily doped region (P+) has the same material and the same doping concentration; or, both the first doped region 04 and the second doped region 05 are the same as the first P-type heavily doped region (P+)
  • the materials are the same and the doping concentration is the same;
  • the input electrode 01 and the output electrode 02 can be arranged in the same layer as at least one metal electrode layer in the multi-layer metal electrode layer. In FIG. 8, the input electrode 01 and the output electrode 02 are both arranged in the same layer as one of the metal electrode layers in the multi-layer metal electrode layers as an example for illustration.
  • the photosensor PD includes an input electrode 01, an output electrode 02, a channel region 03, a first doped region 04 and a second doped region provided in the same layer as the semiconductor layer. Miscellaneous area 05.
  • the input electrode 01 and the output electrode 02 are both arranged in the same layer as at least one metal electrode layer in the multi-layer metal electrode layer in the display function film layer, so that when forming the multi-layer metal electrode layer,
  • the patterns of the input electrode 01 and the output electrode 02 are formed at the same time, so that the patterning pattern in the Mask process only needs to be changed when the pattern of the metal electrode layer is formed, and no additional Mask process needs to be added.
  • At least one of the two doped regions 04 and 05 in the photosensor PD has the same material and the same doping concentration as the first P-type heavily doped region (P+) in the display functional film layer, In this way, the doped regions in the photosensor can be formed at the same time when the first P-type heavily doped region (P+) is formed, thereby avoiding adding additional doping processes.
  • the display panel of the present application only needs to add 2 additional mask processes when forming the channel region and the doping region at most. Compared with the related art, it needs to add 4 additional mask processes, which can reduce at least 2 mask processes, so it can reduce the The cost of the display panel.
  • the multi-layer metal electrode layer in the display functional film layer in this application may include the layer where the source electrode is located, the layer where the drain electrode is located, the layer where the gate electrode is located, etc., which are not limited herein.
  • the input electrodes in this application may be arranged in the same layer as one of the metal electrode layers in the multi-layer metal electrode layers, or the input electrodes may be arranged in multiple layers, each layer being one of the multi-layer metal electrode layers.
  • the multi-layer metal electrode layer is arranged in the same layer; similarly, the output electrode can be arranged in the same layer as one of the metal electrode layers in the multi-layer metal electrode layer, or the output electrode can be arranged in multiple layers, each layer being the same as the multi-layer metal electrode layer.
  • one of the metal electrode layers is provided in the same layer, which is not limited herein. As long as it is ensured that the input electrode and the output electrode in the light sensor in the present application and the metal electrode layer in the display function film layer are formed by the same Mask process.
  • the channel region of the photosensor can be made of the same material and doping concentration as the first P-type lightly doped region (P-), so that the first P-type lightly doped region (P-) can be formed in the display function film layer.
  • a P-type lightly doped region (P-) is formed at the same time as the channel region in the photosensor, so as to avoid adding additional doping processes, thereby reducing the cost.
  • the doping concentration of the channel region may be set below 1 ⁇ 10 13 /cm 3 , which is not limited herein.
  • the material of the channel region of the photosensor may also be an intrinsic semiconductor material (I), which is not limited herein.
  • the first doped region and the second doped region are made of the same material and the same doping concentration as the first P-type heavily doped region (P+), it is possible to form a display
  • the first P-type heavily doped region (P+) in the functional film layer is formed at the same time as two doped regions in the photosensor, thereby avoiding adding additional doping processes.
  • the doping concentration of the first doping region and the second doping region may be set to be more than 1 ⁇ 10 13 /cm 3 , which is not limited herein.
  • the first doping region and the second doping region has the same material and doping concentration as the first P-type heavily doped region (P+)
  • another doping region can be set as an N-type doping region, that is, when the first doping region and the first P-type heavily doped region (P+) have the same material and the same doping concentration
  • the second doped region is an N-type doped region (N+); or when the second doped region and the first P-type heavily doped region (P+) have the same material and the same doping concentration, the The first doped region is an N-type doped region (N+).
  • a gate electrode may not be provided in the photosensor, or a gate electrode may be provided, which is not limited herein.
  • the photosensor PD may further include at least one gate electrode 06 provided in the same layer as one of the metal electrode layers in the multi-layer metal electrode layers, for example, in FIG.
  • One gate electrode is used as an example for illustration, and two gate electrodes are used as an example for illustration in FIG. 10.
  • the gate electrode 06 can be formed at the same time by only changing the patterning pattern in the Mask process when forming the metal electrode layer, without adding additional Mask craft.
  • the orthographic projection of the at least one gate electrode 06 on the channel region 03 partially overlaps with the channel region 03 , so that light can be irradiated to the channel region 03 of the photosensor PD.
  • the width of the channel region can be reduced, the resistance of the channel region can be reduced, the photosensitive current can be increased, and the photosensitive efficiency of the photosensor can be improved.
  • the present application when at least one gate electrode is provided in the photosensor, the present application does not limit the position of each gate electrode, as long as it is ensured that each gate electrode and the channel region have an overlapping area.
  • the present application can adjust the initial current output by the output electrode when the light sensor is not illuminated by changing the potential on the gate electrode, and adjust the induced current output by the output electrode when the light sensor is illuminated.
  • the gate electrode 06 may be disposed on a side close to the output electrode 02 .
  • the display panel may further include an insulating layer between the semiconductor layer and the metal electrode layer and between different metal electrode layers, and the insulating layer may be made of silicon nitride (SiNx), silicon oxide (SiOx) or The combination of the two is not limited here.
  • the insulating layer 311 is located between the channel region 03 (the layer where the semiconductor layer is located) and the input electrode 01 (the layer where the metal electrode layer is located).
  • the insulating layer 11 is located in the channel area.
  • the channel region 03 (the layer where the semiconductor layer is located) and the gate electrode 06 (the layer where the metal electrode layer is located), and between the gate electrode 06 (the layer where the metal electrode layer is located) and the input electrode 01 (the layer where the other metal electrode layer is located) between the layers).
  • the multi-layer metal electrode layer in the display panel includes a first metal electrode layer and a second metal electrode layer. It should be noted that, the following examples are only for better explanation of the technical solutions of the present application, but do not limit the protection scope of the present application.
  • the second metal electrode layer is generally used to form the gate electrode of the TFT
  • the first metal electrode layer is used to form the source electrode and the drain electrode of the TFT
  • the second metal electrode layer can be disposed on the first metal electrode layer and the semiconductor
  • the second metal electrode layer may also be located above the first metal electrode layer, which is not limited in this application.
  • An insulating layer 311 is provided between the first metal electrode layer and the input electrode 01 and the channel region 03 .
  • the working principle of the light sensor (also called photodiode) provided by the present application is: when there is no light, the reverse current in the channel region is very small (generally less than 0.1 microampere), which is called dark current.
  • the reverse current in the channel region is very small (generally less than 0.1 microampere), which is called dark current.
  • the reverse current is transferred to the bound electrons on the covalent bond, so that some electrons break away from the covalent bond, thereby generating electron-hole pairs, which are called photogenerated carriers. They drift under the action of the reverse voltage, so that the reverse current becomes significantly larger, and the greater the intensity of the light, the greater the reverse current.
  • the light sensor of the present application has the characteristics of high sensitivity due to the large resistance in the depletion region, especially when the dark current (leak current) is small when no light is irradiated. Moreover, the magnitude of the dark current can be further adjusted by adjusting the potential of the gate electrode and the voltage across the input electrode and the output electrode.
  • the display panel provided by the present application will be described in detail below with reference to the manufacturing method.
  • the photosensor PD includes an input electrode 01 , an output electrode 02 , a channel region 03 , a first doped region 04 , a second doped region 05 and at least one gate disposed in the same layer as the semiconductor layer 312
  • the electrode 06 may not include the gate electrode 06 , wherein one gate electrode is used as an example for illustration in FIG. 13 .
  • the input electrode 01 and the output electrode 02 are both arranged in the same layer as the first metal electrode layer 313, at least one gate electrode 06 is arranged in the same layer as the second metal electrode layer 314, and the first doped region 04 can be of the same material and doping concentration as the first P-type heavily doped region (P+), the second doped region can be an N-type doped region (N+), and the channel region 03 can be The material and doping concentration of the first P-type lightly doped region (P-) are the same.
  • the preparation method of the photosensor PD may include the following steps:
  • step S101 a semiconductor layer 312 is formed on the base substrate 310 , and a P-type light doping is performed on the semiconductor layer 312 by a Mask process to form a channel region T03 of the TFT and a channel region 03 of the photosensor PD.
  • the material of the semiconductor layer may be semiconductor materials such as amorphous silicon, polysilicon, oxide, etc., which are not limited herein.
  • step S102 the first insulating layer 311a and the second metal electrode layer 314 are formed in sequence, and the second metal electrode layer 314 is patterned by a Mask process to form the gate electrode T06 and the channel shielding layer of the TFT, and the gate electrode T06 and the channel shielding layer of the TFT are formed.
  • the channel shielding layer serves as shielding to perform P-type heavy doping on the semiconductor layer 312 to form the electrode contact regions T04 and T05 of the TFT and the first doped region 04 of the photosensor PD.
  • step S103 a mask process is used to pattern the channel blocking layer to form the gate electrode 06 of the photosensor PD.
  • step S104 a mask process is used to perform N-type doping on the semiconductor layer 312 to form the second doping region 05 of the photosensor PD.
  • step S105 the second insulating layer 311b and the first metal electrode layer 313 are formed in sequence, and a mask process is used to pattern the first metal electrode layer 313 to form the source electrode T01 and drain electrode T02 of the TFT and the input electrodes 01 and 01 of the photosensor PD.
  • steps S103 and S104 need to be additionally added on the basis of the original display panel process to form the photosensitive device PD, so two mask processes need to be added. Compared with the need to add 4 additional mask processes in the related art, the present application can reduce 2 mask processes, thereby reducing the production cost.
  • the photosensor PD includes an input electrode 01 , an output electrode 02 , a channel region 03 , a first doped region 04 , a second doped region 05 and at least one gate disposed in the same layer as the semiconductor layer 312
  • the electrode 06 may not include the gate electrode 06 , wherein one gate electrode is used as an example for illustration in FIG. 14 .
  • the input electrode 01 and the output electrode 02 are both arranged in the same layer as the first metal electrode layer 313, at least one gate electrode 06 is arranged in the same layer as the second metal electrode layer 314, and the first doped region 04 and the second doping region 05 can be made of the same material and doping concentration as the first P-type heavily doped region (P+), and the material of the channel region 03 can be a semiconductor intrinsic material.
  • the preparation method of the photosensor PD may include the following steps:
  • step S201 a semiconductor layer 312 is formed on the base substrate 310, a P-type light doping of the semiconductor layer 312 is used to form the channel region T03 of the TFT, and another Mask process is used to form the semiconductor intrinsic material, that is, the light.
  • the channel region 03 of the sensor PD is formed on the base substrate 310, a P-type light doping of the semiconductor layer 312 is used to form the channel region T03 of the TFT, and another Mask process is used to form the semiconductor intrinsic material, that is, the light.
  • the material of the semiconductor layer may be semiconductor materials such as amorphous silicon, polysilicon, oxide, etc., which are not limited herein.
  • step S202 the first insulating layer 311a and the second metal electrode layer 314 are formed in sequence, and the second metal electrode layer 314 is patterned by a Mask process to form the gate electrode T06 and the channel shielding layer of the TFT.
  • the channel shielding layer serves as shielding to perform P-type heavy doping on the semiconductor layer 312 to form the electrode contact regions T04 and T05 of the TFT and the first doped region 04 and the second doped region 05 of the photosensor PD.
  • step S203 a mask process is used to pattern the channel blocking layer to form the gate electrode 06 of the photosensor PD.
  • step S204 the second insulating layer 311b and the first metal electrode layer 313 are sequentially formed, and the first metal electrode layer 313 is patterned by a Mask process to form the source electrode T01 and drain electrode T02 of the TFT and the input electrodes 01 and 01 of the photosensor PD.
  • forming the photosensitive device PD requires an additional mask process of forming the channel region 03 of the photosensor PD in step S201 and a mask process in step S204 on the basis of the original display panel process. Compared with the need to add 4 additional mask processes in the related art, 2 mask processes can be reduced, thereby reducing the production cost.
  • the photosensor PD includes an input electrode 01 , an output electrode 02 , a channel region 03 , a first doped region 04 , a second doped region 05 and at least one gate disposed in the same layer as the semiconductor layer 312 .
  • the electrode 06 may not include the gate electrode 06 , wherein one gate electrode is used as an example for illustration in FIG. 15 .
  • the input electrode 01 and the output electrode 02 are both arranged in the same layer as the first metal electrode layer 313, at least one gate electrode 06 is arranged in the same layer as the second metal electrode layer 314, and the first doped region 04 and the second doping region 05 can be made of the same material and doping concentration as the first P-type heavily doped region (P+), and the channel region 03 can be lightly doped with the first P-type region.
  • the material of the doping region (P-) is the same and the doping concentration is the same.
  • the preparation method of the photosensor PD may include the following steps:
  • step S301 a semiconductor layer 312 is formed on the base substrate 310 , and a P-type light doping is performed on the semiconductor layer 312 by a Mask process to form the channel region T03 of the TFT and the channel region 03 of the photosensor PD.
  • the material of the semiconductor layer may be semiconductor materials such as amorphous silicon, polysilicon, oxide, etc., which are not limited herein.
  • step S302 the first insulating layer 311a and the second metal electrode layer 314 are formed in sequence, and the second metal electrode layer 314 is patterned by a Mask process to form the gate electrode T06 and the channel shielding layer of the TFT.
  • the channel shielding layer serves as shielding to perform P-type heavy doping on the semiconductor layer 312 to form the electrode contact regions T04 and T05 of the TFT and the first doped region 04 and the second doped region 05 of the photosensor PD.
  • step S303 a mask process is used to pattern the channel blocking layer to form the gate electrode 06 of the photosensor PD.
  • step S304 the second insulating layer 311b and the first metal electrode layer 313 are formed in sequence, and a mask process is used to pattern the first metal electrode layer 312 to form the source electrode T01 and drain electrode T02 of the TFT and the input electrodes 01 and 01 of the photosensor PD.
  • the formation of the photosensitive device PD only needs to add an additional step S303 on the basis of the original display panel process, so a mask process needs to be added.
  • 3 mask processes can be reduced, thereby greatly reducing the production cost.
  • the channel region in the photosensor is a P-type lightly doped region, compared with the channel region being a semiconductor intrinsic material, the impedance of the channel region can be reduced, thereby increasing the photosensitive current, thereby improving the photosensitive efficiency of the photosensor.
  • EQE External Quantum Efficiency
  • the EQE of the photosensor in the embodiment of the present application is generally higher than that of the photosensor in the related art, and the photosensor of Example 3 can increase the EQE to more than 20% by adjusting the potential of the gate electrode.
  • the light sensor in the display panel can be used to detect the intensity of ambient light, and can also be used to detect a certain wavelength (for example, red light/green light/blue light/infrared light/ultraviolet light) The intensity of light to achieve some specific functions.
  • the adjustment principle is shown in Figure 16: the light sensor senses the light intensity of the surrounding environment, converts the light signal into electrical signal output, and the output electrical signal is processed by IC to convert the current analog signal Convert it into a digital signal, and then report the digital signal. After the algorithm is multiplied by the corresponding coefficient, a brightness value will be obtained. The brightness value corresponds to the dimming order of the screen. After judgment, it is determined whether the screen needs to be dimmed. If When dimming is required, the driver chip outputs the corresponding driving current, so as to realize the adjustment of different brightness of the display screen.
  • the display panel 30 may include a display area A1 and a non-display area A2, wherein the display area A1 is provided with pixels for display (not shown in the figures), and the non-display area A2 is generally provided with Drive circuit and traces (not shown in the figure).
  • the photosensor PD may be provided in the display area A1 or in the non-display area A2, which is not limited here. When the photosensor PD is located in the non-display area A2, it may be disposed at a position where there is no driving circuit in the non-display area A2, which is not limited herein.
  • the display substrate may include a plurality of the light sensors PD; the plurality of the light sensors PD may all be located in the non-display area A2 ; or as shown in FIG. 18 , a plurality of the light sensors PD All of the photosensors PD may also be located in the display area A1; of course, some of the photosensors PD may be located in the non-display area A2, and another part of the photosensors PD may be located in the non-display area A2.
  • the display area A1 is not limited here.
  • the present application can also implement a touch function by arranging a plurality of light sensors arranged in a matrix in the display area, and by detecting the light intensity of each light sensor.
  • the fingerprint identification function is realized by sensing the relative light intensity of the fingerprint valleys and ridges where the fingerprints touch.
  • at least one photosensor PD may be disposed on the opposite sides of the display panel 30 respectively. Taking the left side L and the right side R as examples in the figure, by detecting the output signal of the photosensor PD on both sides The timing sequence can realize the gesture recognition function.
  • L represents the output signal of the left photo sensor PD
  • R represents the output signal of the right photo sensor PD
  • the left photo sensor PD The output signal of the light sensor PD becomes smaller first, and the output signal of the right light sensor PD becomes smaller later, indicating that the left side is blocked first, and the right side is blocked later, so the gesture is from left to right.
  • FIG. 21 is a schematic cross-sectional structure diagram of a display module provided by an embodiment of the present application.
  • the display module 100 provided by this embodiment of the present application may include a display panel 30 , a polarizer 110 and a cover layer 120 that are stacked in sequence, and the display panel 30 may be any of the above-mentioned embodiments provided by the present application.
  • the display panel since the display panel 30 provided by the embodiment of the present application can reduce the cost compared with the related art, the display module provided by the embodiment of the present application can also reduce the cost.
  • the cover layer 120 may be bonded to the polarizer 110 through an optically transparent adhesive 130 , which is not limited herein.
  • FIG. 22 is a schematic top-view structure diagram of a display module provided by an embodiment of the application
  • FIG. 23 is a schematic cross-sectional structure diagram of the display module shown in FIG. 22 along the AA' direction
  • FIG. 24 is a diagram 22 is a schematic cross-sectional structure diagram of the display module shown in FIG. 22 along the BB' direction
  • FIG. 25 is another cross-sectional structure schematic diagram of the display module shown in FIG. 22 along the BB' direction.
  • the display panel 30 has a display area A1 and a non-display area A2; the non-display area A2 of the display panel 30 is provided with a plurality of the light sensors PD, and the display module
  • the group 100 further includes a light-shielding ink layer 140 and at least one filter film between the display panel 30 and the cover layer 120 .
  • the at least one filter film may include at least one yellow filter film Y, at least one cyan filter film C, and at least one magenta filter film M.
  • the orthographic projection of the light-shielding ink layer 140 on the display panel 30 covers the non-display area A2, and the orthographic projections of each of the filter films Y, C and M on the display panel 30 are located in the non-display area. in area A2.
  • Each of the filter films may correspond to at least one of the photosensor PD, for example, in FIG. 24 and FIG. 25 , each of the yellow filter films Y may correspond to at least one of the photosensor PD, and each of the cyan filters
  • the optical film C can correspond to at least one of the optical sensors PD, and each of the magenta filter films M can correspond to at least one of the optical sensors PD.
  • one optical filter film corresponds to one of the optical sensors.
  • a light sensor is used as an example for illustration.
  • the light-shielding ink layer 140 is used for shielding the non-display area A2 of the display panel 30; the light-shielding ink layer 140 has at least one first opening V1 and at least one second opening corresponding to each of the filter films, for example, with each filter film. at least one second opening V2 corresponding to the yellow filter film Y, at least one second opening V2 corresponding to each of the cyan filter films C, and at least one second opening V2 corresponding to each of the magenta filter films M A second opening V2.
  • Each of the first openings V1 may correspond to at least one of the photosensors PD.
  • the orthographic projections of the filter films Y, C and M on the display panel 30 cover the at least one second opening V2 corresponding to the filter film on the display panel 30 .
  • orthographic projection for example, the orthographic projection of the yellow filter film Y on the display panel 30 covers the orthographic projection of the at least one second opening V2 corresponding to the yellow filter film Y on the display panel 30, the The orthographic projection of the cyan filter film C on the display panel 30 covers the orthographic projection of the at least one second opening V2 corresponding to the cyan filter film C on the display panel 30, and the magenta filter film M
  • the orthographic projection of the display panel 30 covers the orthographic projection of the at least one second opening V2 corresponding to the magenta filter M on the display panel 30, and the filters Y, C and M are in The orthographic projection of the display panel 30 does not overlap with the orthographic projection of the first opening V1 on the display panel 30 .
  • “Non-overlapping" here means that the two regions do not have any overlapping regions.
  • the filter films Y, C and M and the light-shielding ink layer 140 may be arranged in the same layer.
  • the filter films Y, C and C may be arranged in the same layer.
  • He M and the light-shielding ink layer 140 are provided in different layers, which are not limited herein.
  • every four photosensors PD may be used as a group of detection units P100, and at least one group of detection units P100 may be provided in the non-display area A2.
  • One of the photosensors PD corresponds to a first opening V1
  • the other three photosensors PD correspond to three second openings V2
  • the three second openings V2 respectively correspond to a yellow filter film Y, a magenta filter film M and a Cyan filter film C.
  • the yellow filter Y can transmit the yellow light
  • the magenta filter M can transmit the magenta light
  • the cyan filter C can transmit the cyan light
  • the three filters can transmit the light.
  • a graph of light rate versus wavelength can be seen in Figure 26.
  • B blue light
  • G green light
  • B green light
  • G green light
  • B blue light
  • G green light
  • B blue light
  • G green light
  • G green light
  • R red light
  • NIR infrared light
  • B in the above formulas (1) to (4) represents the intensity of blue light
  • G represents the intensity of green light
  • R represents the intensity of red light
  • W represents the intensity of white light
  • Y represents the intensity of yellow light
  • M represents the intensity of light
  • C represents the intensity of cyan light
  • I represents the intensity of infrared light.
  • the color temperature detection function of the environment can also be realized through the intensity values of B (blue light), G (green light) and R (red light).
  • B blue light
  • G green light
  • R red light
  • the calculation formulas of the chromaticity values x and y of the ambient light can conform to the following formulas:
  • L1( ⁇ ) in formula (7) represents the intensity value of red light
  • R( ⁇ ) represents the wavelength of red light
  • EQE1( ⁇ ) represents the EQE of red light
  • L2( ⁇ ) in formula (8) represents green light
  • L3( ⁇ ) represents the intensity value of blue light
  • B( ⁇ ) represents the wavelength of blue light
  • EQE3( ⁇ ) represents the EQE of blue light.
  • This application calculates the intensity values of B (blue light), G (green light) and R (red light) in ambient light by detecting the intensity of yellow light, cyan light, magenta light and white light in ambient light, and directly Compared with the intensity values of B (blue light), G (green light) and R (red light) in the detection of ambient light, the ratio of low illumination detection capability is shown in Table 2 below:
  • CMY indicates data without infrared filter film
  • RGB* indicates data with infrared filter film in the prior art. It can be seen from the above table that the low illumination detection capability of the present application can be increased by more than 2 times. Therefore, in the present application, by using C/M/Y instead of R/G/B as the measurement channel of the ambient color temperature, the amount of incoming light can be increased by 2 times or more, thereby improving the sensing capability of the display module under low illumination.
  • the production of infrared light channels can be reduced, thereby reducing the number of light sensors, reducing the process of making infrared light filter films and saving chips.
  • the number of analog-to-digital conversion channels thereby reducing the manufacturing complexity and cost of the display module.
  • the display module 100 may further include a first quarter-wave retardation layer 150 and a second quarter-wave retardation layer 160 respectively located on both sides of the polarizer 110 .
  • the external ambient light OP1 passes through the polarizer 110 and becomes linearly polarized light, and the linearly polarized light is reflected by the back plate of the display panel 30 and then irradiated to the polarizer 110, it needs to pass through the second quarter-wavelength retardation layer 160 twice, so that the The polarization direction of the linearly polarized light is perpendicular to the polarization direction of the polarizer 110 , so that the reflected linearly polarized light cannot pass through the polarizer 110 , thereby reducing the reflectivity of the display module; similarly, the light OP2 emitted by the display panel 30 passes through the polarizer 110 After being converted into linearly polarized light, the reflected light OP3 reflected by an object (such as a human face) also needs to pass through the first quarter-wave retardation layer 150 and
  • the direction is vertical and cannot pass through the polarizer 110, so as to prevent the light emitted by the display panel 30 from being reflected by the object and irradiating on the light sensor PD, thereby causing the measurement value to deviate from the real environment and causing measurement errors.
  • the display module can detect low illuminance.
  • Ability increased to 0.2lx.
  • the display module may further include a touch layer 170 located between the display panel 30 and the cover layer 120 .
  • the touch layer 170 may be disposed between the display panel 30 and the polarizer 110 , which is not limited herein.
  • the present application also provides an electronic device including any of the above-mentioned display modules provided in the embodiments of the present application. Since the principle of solving the problem of the electronic device is similar to that of the aforementioned display module, the implementation of the electronic device can refer to the implementation of the aforementioned display module, and the repetition will not be repeated.
  • the electronic device in the present application can use the light sensor integrated in the display panel to detect the lighting condition of the current environment, so as to adjust the brightness of the screen of the display panel, so that the human eye feels comfortable and not dazzling, and at the same time Reduce display screen power consumption.
  • the electronic equipment is a mobile phone as shown in FIG. 3 , a tablet as shown in FIG. 4 , a portable computer, a monitor, a TV, and the like.
  • the electronic device can also use the light sensor integrated in the display panel to detect a certain wavelength (such as red light/green light/blue light/infrared light/ultraviolet light), so as to realize more functions and applications, such as color temperature Detection, proximity light detection, UV intensity detection, etc.
  • mobile phones, tablets, watches, computers, monitoring screens, and TVs as shown in Figure 5 realize specific functions by sensing light of specific wavelengths (such as ultraviolet light/infrared light) in the external ambient light.
  • specific wavelengths such as ultraviolet light/infrared light
  • infrared sensing can be used for Proximity sensing
  • UV sensing can realize UV index sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请提供了一种显示面板、显示模组及电子设备。其中显示面板包括衬底基板以及位于衬底基板上的显示功能膜层和至少一个光传感器;显示功能膜层至少包括层叠设置的半导体层和多层金属电极层,且半导体层具有第一P型轻掺杂区和第一P型重掺杂区;光传感器的第一掺杂区和/或第二掺杂区与第一P型重掺杂区的材质相同、掺杂浓度相同;这样可以在形成第一P型重掺杂区时通同时形成光传感器中的掺杂区,从而避免增加额外的掺杂工艺;光传感器的输入电极和输出电极均与多层金属电极层中的至少一层金属电极层同层设置,这样可以在形成金属电极层时,同时形成输入电极和输出电极的图形,不需要增加额外的Mask工艺。因此可以降低显示面板的成本。

Description

一种显示面板、显示模组及电子设备
相关申请的交叉引用
本申请要求在2021年03月30日提交中国专利局、申请号为202110342330.9、申请名称为“一种显示面板、显示模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板、显示模组及电子设备。
背景技术
光传感器是利用光电器件的光电转换功能,将感光面上的光信号转换为与光信号成相应比例关系的电信号。目前,光传感器已经被广泛应用于各种电子设备。例如在手机中,利用光传感器可以检测当前环境的光照条件,以此来调节显示屏幕的亮度,使人眼感觉舒适而不刺眼;同时光传感器也可以检测某一特定波长(红光/绿光/蓝光/红外/紫外等)的光,以此来实现更多的功能及应用,譬如色温检测、接近光检测、紫外线强度检测等。
目前,在全面屏的超高屏占比的趋势下,独立的光传感器由于传感器和芯片是设置在一起的,体积较大,无法放置于显示屏幕的边缘区域,因此一般采用如图1所示的屏下放置光传感器的结构。但是在该结构中,由于屏幕遮挡会极大降低光透过率,因此需要更灵敏的光传感器。
为此,相关技术中提出了将PIN结构的光传感器集成在显示屏内的方案,以此来降低光传感器上方膜层数量,以提升光传感器出光的透过率。其中,屏内集成的PIN结构如图2所示,显示面板的衬底基板1上设置半导体材料层,通过对半导体材料层进行掺杂形成P型重掺杂区(P+)、N型重掺杂区(N+)以及本征感光区(I)。其中P+区和N+区分别与金属电极2和3相连,分别用作信号读出以及偏置电压输入;栅电极4位于金属电极2和3的上方,由于外部光线需要透过栅电极4照射至I区,因此栅电极4采用透明导电材料制备。但是在该相关技术中,形成PIN结构需要在现有显示面板制作工艺的基础上增加4道Mask工艺,分别为:形成P+区为一道,形成N+区为一道,形成I区为一道,形成栅电极为一道,因此屏内集成PIN结构会使显示面板成本显著提高。
发明内容
本申请提供一种显示面板、显示模组及电子设备,用于降低显示面板的成本。
第一方面,本申请实施例提供了一种显示面板,包括相对设置的显示基板和对向基板;其中,所述显示基板包括衬底基板以及位于所述衬底基板上的显示功能膜层和至少一个光传感器;所述显示功能膜层至少包括层叠设置的半导体层和多层金属电极层,且所述半导体层具有第一P型轻掺杂区和第一P型重掺杂区;所述光传感器包括输入电极、输出电极以及与所述半导体层同层设置的沟道区、第一掺杂区和第二掺杂区;所述第一掺杂区和所述第二掺杂区分别位于所述沟道区的两侧,且所述输入电极与所述第一掺杂区电连接,所 述输出电极与所述第二掺杂区电连接。其中,所述第一掺杂区与所述第一P型重掺杂区的材质相同、掺杂浓度相同;或者,所述第二掺杂区与所述第一P型重掺杂区的材质相同、掺杂浓度相同;或者,所述第一掺杂区和所述第二掺杂区均与所述第一P型重掺杂区的材质相同、掺杂浓度相同;所述输入电极和所述输出电极均与所述多层金属电极层中的至少一层金属电极层同层设置。
在本申请实施例提供的上述显示面板中,所述光传感器包括输入电极、输出电极以及与所述半导体层同层设置的沟道区、第一掺杂区和第二掺杂区。所述输入电极和所述输出电极均与显示功能膜层中所述多层金属电极层中的至少一层金属电极层同层设置,这样可以在形成所述多层金属电极层时,同时形成所述输入电极和所述输出电极的图形,这样只需要在形成金属电极层的图形时改变一下Mask工艺中的构图图案,不需要增加额外的Mask工艺。另外,所述光传感器中的两个掺杂区和中至少一个掺杂区与显示功能膜层中的第一P型重掺杂区的材质相同、掺杂浓度相同,这样可以在形成第一P型重掺杂区时通同时形成所述光传感器中的掺杂区,从而避免增加额外的掺杂工艺。这样本申请的显示面板最多只有在形成沟道区和掺杂区时需要额外增加2道Mask工艺,相比相关技术中需要额外增加4道Mask工艺,可以减少至少2道Mask工艺,因此可以降低显示面板的成本。
需要说明的是,本申请中显示功能膜层中的所述多层金属电极层一般包括源电极所在的层、漏电极所在的层、栅电极所在层等,在此不作限定。本申请中的输入电极可以是与该多层金属电极层中其中一层金属电极层同层设置,也可以是输入电极设置为多层,每一层均与该多层金属电极层中其中一层金属电极层同层设置;同理,输出电极可以是与该多层金属电极层中其中一层金属电极层同层设置,也可以是输出电极设置为多层,每一层均与该多层金属电极层中其中一层金属电极层同层设置,在此不作限定。只要保证本申请中光传感器中输入电极和输出电极与显示功能膜层中的金属电极层采用同一Mask工艺形成即可。
为了进一步降低成本,可以将所述光传感器的沟道区与所述第一P型轻掺杂区的材质相同、掺杂浓度相同,这样可以在形成显示功能膜层中的第一P型轻掺杂区时同时形成所述光传感器中的沟道区,从而避免增加额外的掺杂工艺,从而降低成本。
当然在具体实施时,所述光传感器的沟道区的材质也可以为本征半导体材料,在此不作限定。
在本申请中,当所述第一掺杂区和所述第二掺杂区均与所述第一P型重掺杂区的材质相同、掺杂浓度相同时,可以在形成显示功能膜层中的第一P型重掺杂区时同时形成的光传感器中的两个掺杂区,从而避免增加额外的掺杂工艺。
当然,在具体实施时,当所述第一掺杂区和所述第二掺杂区中只有一个掺杂区与所述第一P型重掺杂区的材质相同、掺杂浓度相同时,另一掺杂区可以设置为N型掺杂区,即当所述第一掺杂区与所述第一P型重掺杂区的材质相同、掺杂浓度相同时,所述第二掺杂区为N型掺杂区;或当所述第二掺杂区与所述第一P型重掺杂区的材质相同、掺杂浓度相同,所述第一掺杂区为N型掺杂区。
需要说明的是,在本申请中,所述光传感器中可以不设置栅电极,也可以设置栅电极,在此不作限定。
示例性的,所述光传感器还可以包括与所述多层金属电极层中其中一层金属电极层同层设置的至少一个栅电极,这样可以在形成金属电极层时仅改变Mask工艺中的构图图案 就能同时形成栅电极,不需要增加额外的Mask工艺。并且所述至少一个栅电极在所述沟道区的正投影与所述沟道区部分重叠,这样可以保证光线可以照射至所述光传感器的沟道区。
在本申请中,光传感器中设置栅电极相比不设置栅电极,可以减小沟道区的宽度,降低沟道区的电阻,从而增大感光电流,进而提高光传感器的感光效率。
在具体实施,当光传感器中设置有至少一个栅电极时,本申请对各栅电极的位置不作限定,只要保证各栅电极与沟道区存在重叠区域即可。本申请可以通过改变栅电极上的电位调节输出电极在光传感器不受光照时输出的初始电流,以及调整输出电极在光传感器受到光照时输出的感应电流。
可选地,在本申请中,当所述光传感器中包括一个所述栅电极时,所述栅电极可以设置于靠近所述输出电极的一侧。
本申请提供的光传感器(也称光敏二极管)的工作原理为:当没有光照时,沟道区的反向电流很小(一般小于0.1微安),称为暗电流。当有光照时,携带能量的光子进入沟道区后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子-空穴对,称为光生载流子。它们在反向电压作用下进行漂移运动,从而使反向电流明显变大,光的强度越大,反向电流也越大。当光传感器工作时,主要是沟道区无遮挡的区域(耗尽区)处形成电子-空穴对,吸收的光强不同,形成的电子-空穴对的浓度也不同。光照越强,电子-空穴对的浓度越高,耗尽区等效电阻越小,输出的电流信号越大,通过对输出的电流信号进行处理即可获得光照强度。
本申请的光传感器由于耗尽区电阻较大,尤其在不照射光时暗电流(漏电流)小,因此具有高灵敏度特点。并且,通过调节栅电极的电位以及输入电极和输出电极两端的跨压大小可以进一步调整暗电流的大小。
在实际应用中,本申请实施例提供的显示面板中的光传感器可以用于检测环境光的强度,也可以用于检测某一特定波长(例如红光/绿光/蓝光/红外光/紫外线)的光的强度,以此来实现一些特定的功能。以通过检测环境光来实现调节屏幕亮度为例,调节原理可以是:光传感器感应周围环境的光强,将光信号转换为电信号输出,输出的电信号经IC处理将电流模拟信号转换为数字信号,而后将这个数字信号上报,经过算法乘以对应的系数,会得到一个亮度值,亮度值与屏幕的调光阶数是对应的,经过判断确定屏幕是否需要进行调光,如果需要调光,驱动芯片输出相应的驱动电流,从而实现显示屏不同亮度的调节。
在具体实施,显示面板可以包括显示区域和非显示区域,其中显示区域设置有显示用的像素,非显示区域一般设置有驱动电路和走线。光传感器可以设置在显示区域,也可以设置于非显示区域,在此不作限定。
在具体实施时,所述显示基板可以包括多个所述光传感器;多个所述光传感器可以均位于所述非显示区域;或多个所述光传感器也可均位于所述显示区域;当然也可以是多个所述光传感器中一部分所述光传感器位于所述非显示区域,另一部分所述光传感器位于所述显示区域,在此不作限定。
在实际应用中,本申请也可以通过在显示区域内设置呈矩阵排列的多个光传感器,通过检测各光传感器的光强,可以实现触控功能。或者,通过在指纹识别区设置多个光传感器,通过感测指纹触碰处指纹谷和脊的相对光强来实现指纹识别功能。或者,也可以在显示面板的相对的两侧分别设置至少一个光传感器,以左侧和右侧为例,通过检测两侧光传 感器输出信号的时序先后可以实现手势识别功能。
第二方面,本申请实施例还提供了一种显示模组,所述显示模组可以包括依次层叠设置的显示面板、偏光片和盖板层,所述显示面板可以为第一方面提供的显示面板,由于本申请实施例提供的显示面板相比相关技术可以降低成本,因此本申请实施例提供的显示模组同样可以降低成本。
可选地,在所述显示模组中,所述显示面板具有显示区域和非显示区域;所述显示面板的所述非显示区域设置有多个所述光传感器,所述显示模组还包括位于所述显示面板和所述盖板层之间的遮光油墨层和至少一个滤光膜。所述遮光油墨层在所述显示面板的正投影覆盖所述非显示区域,每一所述滤光膜在所述显示面板的正投影均位于所述非显示区域内,且每一所述滤光膜对应至少一个所述光传感器。
所述遮光油墨层用于遮挡显示面板的非显示区域;所述遮光油墨层具有至少一个第一开口以及与每一所述滤光膜分别对应的至少一个第二开口,且每一所述第一开口对应至少一个所述光传感器。所述滤光膜在所述显示面板的正投影覆盖与该滤光膜对应的所述至少一个第二开口在所述显示面板的正投影,且所述滤光膜在所述显示面板的正投影与所述第一开口在所述显示面板的正投影不重叠。
可选地,所述至少一个滤光膜可以包括至少一个黄色滤光膜、至少一个青色滤光膜以及至少一个品红色滤光膜。所述遮光油墨层具体具有至少一个第一开口以及与每一所述黄色滤光膜对应的至少一个第二开口,与每一所述青色滤光膜对应的至少一个第二开口,与每一所述品红色滤光膜对应的至少一个第二开口。所述黄色滤光膜在所述显示面板的正投影覆盖与该黄色滤光膜对应的所述至少一个第二开口在所述显示面板的正投影,所述青色滤光膜在所述显示面板的正投影覆盖与该青色滤光膜对应的所述至少一个第二开口在所述显示面板的正投影,所述品红色滤光膜在所述显示面板的正投影覆盖与该品红色滤光膜对应的所述至少一个第二开口在所述显示面板的正投影,且所述黄色滤光膜、所述滤光膜以及所述品红色滤光膜在所述显示面板的正投影均与所述第一开口在所述显示面板的正投影不重叠。在具体实施时,所述滤光膜和所述遮光油墨层可以同层设置,当然,所述滤光膜和所述遮光油墨层也可以设置在不同层,在此不作限定。
示例性的,可以以每4个光传感器为一组检测单元,非显示区域可以设置至少一组所述检测单元,针对每一所述检测单元,其中一个光传感器对应一个第一开口,另外三个光传感器对应三个第二开口,三个第二开口分别对应一个黄色滤光膜、一个品红色滤光膜和一个青色滤光膜。其中,黄色滤光膜可以使黄色的光透过,品红色滤光膜可以使品红色的光透光,青色滤光膜可以使青色的光透过。从而可以通过检测环境光中黄色光、青色光、品红色光以及白色光(即从第一开口透过的光)的强度来计算环境光中的B(蓝光)、G(绿光)、R(红光)以及NIR(红外光)的强度值。
进一步地,还可以通过B(蓝光)、G(绿光)和R(红光)的强度值实现环境的色温检测功能。
将本申请通过检测环境光中黄色光、青色光、品红色光以及白色光的强度来计算环境光中的B(蓝光)、G(绿光)和R(红光)的强度值,与直接检测环境光中的B(蓝光)、G(绿光)和R(红光)的强度值相比,本申请的低照度检测能力能提升至2倍以上。因此,本申请通过采用黄色、青色和品红色替代红色、蓝色和绿色作为环境色温的测量通道,可以实现进光量提升2倍及以上,进而提高显示模组在低照度下的感应能力。
另外,本申请还可以减少制作红外光通道,从而减小光传感器数量、减少制作红外光滤光膜的工序、节省芯片模数转换通道数量,进而降低显示模组的制作复杂度和成本。
可选地,所述显示模组还可以包括分别位于所述偏光片两侧的第一四分之一波长延迟层和第二四分之一波长延迟层。当外部环境光经过偏光片之后成为线性偏振光,而线性偏振光经显示面板背板反射后再照射至偏光片需要2次经过第二四分之一波长延迟层,从而使线性偏振光的偏振方向与偏光片的偏振方向垂直,从而反射回来的线性偏振光不能通过偏振片,进而降低显示模组的反射率;同理显示面板发出的光经偏光片转换为线性偏振光之后,经物体(如人脸)反射后的反射光同样需要2次经过第一四分之一波长延迟层,从而使线性偏振光的偏振方向与偏光片的偏振方向垂直,不能通过偏振片,从而避免显示面板发的光经物体反射后照射在至光传感器上,从而导致测量值偏离真实环境造成测量误差。
示例性的,所述显示模组还可以包括位于所述显示面板与盖板层之间的触摸层。在具体实施时,触摸层可以设置在显示面板和偏光片之间,在此不作限定。
第三方面,本申请实施例还提供了一种电子设备,可以包括第二方面提供的显示模组。由于该电子设备解决问题的原理与前述一种显示模组相似,因此该电子设备的实施可以参见前述显示模组的实施,重复之处不再赘述。
在具体实施时,本申请中的电子设备可以利用集成在显示面板内的光传感器来检测当前环境的光照条件,以此来调节显示面板的屏幕的亮度,使人眼感觉舒适而不刺眼,同时降低显示屏幕功耗。例如电子设备为手机,平板,便携式电脑,显示器和电视等。该电子设备还可以利用集成在显示面板内的光传感器来检测某一特定波长(例如红光/绿光/蓝光/红外光/紫外线),以此来实现更多的功能及应用,例如,色温检测、接近光检测、紫外线强度检测等。例如手机、平板、手表、电脑、监控屏、电视等通过感测外界环境光中特定波长的光(例如紫外光/红外光)从而实现特定功能,例如红外感测可用于接近感应,紫外感测可以实现UV指数传感器。
附图说明
图1为相关技术提供的显示面板中光传感器的位置示意图;
图2为相关技术提供的显示面板中光传感器的结构示意图;
图3为本申请实施例提供的一种应用场景的示意图;
图4为本申请实施例提供的另一应用场景的示意图;
图5为本申请实施例提供的又一应用场景的示意图;
图6为本申请一种实施例提供的LCD面板的结构示意图;
图7为本申请一种实施例提供的AMOLED显示面板的结构示意图;
图8为本申请一种实施例提供的显示面板的结构示意图;
图9为本申请另一实施例提供的显示面板的结构示意图;
图10为本申请又一实施例提供的显示面板的结构示意图;
图11为本申请实施例提供的光传感器的工作原理示意图;
图12为本申请实施例提供的光传感器的等效电路示意图;
图13为本申请一种实施例提供的显示面板的局部结构示意图;
图14为本申请另一种实施例提供的显示面板的局部结构示意图;
图15为本申请又一种实施例提供的显示面板的局部结构示意图;
图16为本申请根据光传感器调节显示面板显示亮度的工作原理示意图;
图17为本申请又一种实施例提供的显示面板的结构示意图;
图18为本申请又一种实施例提供的显示面板的结构示意图;
图19为本申请又一种实施例提供的显示面板的结构示意图;
图20为图19所示显示面板中光传感器的输出信号的时序图;
图21为本申请一种实施例提供的显示模组的剖面结构示意图;
图22为本申请实施例提供的一种显示模组的俯视结构示意图;
图23为图22所示的显示模组沿AA’方向的剖面结构示意图;
图24为图22所示的显示模组沿BB’方向的一种剖面结构示意图;
图25为图22所示的显示模组沿BB’方向的另一种剖面结构示意图;
图26为本申请实施例提供的滤光膜的透光率与波长的曲线示意图;
图27为本申请一种实施例提供的显示模组的结构示意图;
图28为本申请又一种实施例提供的显示模组的剖面结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的显示面板,下面首先介绍一下其应用场景。
本申请可以应用于将光传感器与显示面板相结合的任意电子设备。其中一种应用场景:电子设备可以利用集成在显示面板内的光传感器来检测当前环境的光照条件,以此来调节显示面板的屏幕的亮度,使人眼感觉舒适而不刺眼,同时降低显示屏幕功耗。例如电子设备为如图3所示的手机,图4所示的平板,便携式电脑,显示器和电视等。另一方应用场景:电子设备可以利用集成在显示面板内的光传感器来检测某一特定波长(例如红光/绿光/蓝光/红外光/紫外线),以此来实现更多的功能及应用,例如,色温检测、接近光检测、紫外线强度检测等。例如手机、平板、如图5所示的手表、电脑、监控屏、电视等通过感测外界环境光中特定波长的光(例如紫外光/红外光)从而实现特定功能,例如红外感测可用于接近感应,紫外感测可以实现UV指数传感器。
但是,在相关技术中提出的将光传感器集成在屏内的显示面板中,光传感器为PIN结构,参见图2,在制作时,通过对显示面板的衬底基板1上半导体材料层掺杂形成进行PIN结构的P型重掺杂区(P+)、N型重掺杂区(N+)以及本征感光区(I)。其中P+区和N+区分别与金属电极2和3相连,分别用作信号读出以及偏置电压输入;栅电极4位于金属电极2和3的上方,由于外部光线需要透过栅电极4照射至I区,因此栅电极4采用透明导电材料制备。但是在该相关技术中,形成PIN结构需要在现有显示面板制作工艺的基础上增加4道Mask工艺,分别为:形成P+区为一道,形成N+区为一道,形成I区为一道,形成栅电极为一道,因此屏内集成PIN结构会使显示面板成本显著提高。
为此,本申请实施例提供了一种屏内集成有光传感器的显示面板,通过改变屏内光传感器的结构来用于降低显示面板的制作成本。
为了便于理解本申请技术方案,下面将结合附图和具体实施方式对本申请所提供的柔性屏进行具体说明。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申 请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了便于理解本申请提供的屏内集成有光传感器的显示面板,下面首先介绍一下传统的显示面板的结构。
在传统的显示面板中,主要包括显示基板和对向基板,其中显示基板主要包括衬底基板和设置在衬底基板上的显示功能膜层。其中显示功能膜层是由好多膜层组成的。不同类型、不同功能的显示面板,其内显示功能膜层不相同。下面以显示面板为液晶显示(Liquid Crystal Display,LCD)面板或有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,AMOLED)显示面板为例进行说明。
参见图6,图6为本申请一种实施例提供的LCD面板的结构示意图。在LCD面板10中,主要包括衬底基板11、电路膜层12、像素电极层13、下配向膜层14、液晶层15、上配向膜层16、公共电极层17、彩色滤光层18和对向基板19等。衬底基板11和对向基板19可以采用透明材质形成,例如玻璃等。其中,电路膜层12、像素电极层13、下配向膜层14、液晶层15、上配向膜层16、公共电极层17和彩色滤光层18可以统称为显示功能膜层。这里需要说明的一点是不同类型的LCD面板中显示功能膜层的结构也是有可能不相同的,图6只是其中一种LCD面板的示例。
在LCD面板中,电路膜层12中主要设置有薄膜场效应晶体管(Thin Film Transistor,TFT)和各种走线。示例性的,如图6所示,电路膜层12可以包括半导体层121、第一绝缘层122、栅电极123、第二绝缘层124、源电极125和漏电极126;其中半导体层121的材质可以是非晶硅/多晶硅/氧化物等半导体材料。通过对半导体层121进行不同材料、不同浓度的掺杂可以形成TFT的电极接触区和沟道区,其中电极接触区一般为P型重掺杂区(P+),沟道区一般为P型轻掺杂区(P-)。TFT的源电极125和漏电极126分别与电极接触区电连接。
参见图7,图7为本申请一种实施例提供的AMOLED显示面板的结构示意图。在AMOLED显示面板20中,主要包括衬底基板21、电路膜层22、阳极层23、像素限定层24、发光层25、阴极层26和对向基板27等。衬底基板21和对向基板27可以采用透明材质形成,可以是例如玻璃等的刚性基板,也可以是诸如聚酰亚胺(PI)、聚碳酸酯(PC)等的柔性基板,在此不作限定。其中,电路膜层22、阳极层23、像素限定层24、发光层25和阴极层26可以统称为显示功能膜层。这里同样需要说明的一点是不同类型的AMOLED显示 面板中显示功能膜层的结构也是有可能不相同的,图7只是其中一种OLED自发彩色光的AMOLED显示面板的示例,例如,在有些AMOLED显示面板中,如果发光层发的光是白光,一般在发光层上方还设置有彩色滤光层,在此不作赘述。
在AMOLED显示面板中,电路膜层22中同样主要设置有TFT和各种走线。示例性的,如图7所示,电路膜层22可以包括半导体层221、第一绝缘层222、栅电极223、第二绝缘层224、源电极225和漏电极226;其中半导体层221的材质可以是非晶硅/多晶硅/氧化物等半导体材料。通过对半导体层221进行不同材料、不同浓度的掺杂可以形成TFT的电极接触区和沟道区,其中电极接触区一般为P型重掺杂区(P+),沟道区一般为P型轻掺杂区(P-)。TFT的源电极225和漏电极226分别与电极接触区电连接。
在上述LCD面板和AMOLED显示面板中都设置有具有TFT的电路膜层,正是基于上述显示面板中均设置有半导体层以及位于半导体层中的不同的掺杂区,本申请可以在显示面板中集成光传感器时尽可能的采用现有显示面板的Mask工艺来形成,从而减少增加的Mask工艺数量。下面以显示面板为LCD面板或AMOLED显示面板为例,说明本申请提供的屏内集成有光传感器的显示面板。
参见图8,图8为本申请一种实施例提供的屏内集成有光传感器的显示面板的结构示意图。在本申请实施例提供的显示面板30中,包括相对设置的显示基板31和对向基板32;其中,所述显示基板31包括衬底基板310以及位于所述衬底基板310上的显示功能膜层(图中未示出)和至少一个光传感器PD;所述显示功能膜层可以至少包括层叠设置的半导体层和多层金属电极层,且所述半导体层具有第一P型轻掺杂区(P-)和第一P型重掺杂区(P+);所述光传感器PD可以包括输入电极01、输出电极02以及与所述半导体层同层设置的沟道区03、第一掺杂区04和第二掺杂区05;所述第一掺杂区04和所述第二掺杂区05分别位于所述沟道区03的两侧,且所述输入电极01与所述第一掺杂区04电连接,所述输出电极02与所述第二掺杂区05电连接。其中,所述第一掺杂区04与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同;或者,所述第二掺杂区05与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同;或者,所述第一掺杂区04和所述第二掺杂区05均与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同;所述输入电极01和所述输出电极02可以均与所述多层金属电极层中的至少一层金属电极层同层设置,图8中以所述输入电极01和所述输出电极02均与所述多层金属电极层中的其中一层金属电极层同层设置为例进行示意。
在本申请实施例提供的上述显示面板中,所述光传感器PD包括输入电极01、输出电极02以及与所述半导体层同层设置的沟道区03、第一掺杂区04和第二掺杂区05。所述输入电极01和所述输出电极02均与显示功能膜层中所述多层金属电极层中的至少一层金属电极层同层设置,这样可以在形成所述多层金属电极层时,同时形成所述输入电极01和所述输出电极02的图形,这样只需要在形成金属电极层的图形时改变一下Mask工艺中的构图图案,不需要增加额外的Mask工艺。另外,所述光传感器PD中的两个掺杂区04和05中至少一个掺杂区与显示功能膜层中的第一P型重掺杂区(P+)的材质相同、掺杂浓度相同,这样可以在形成第一P型重掺杂区(P+)时通同时形成所述光传感器中的掺杂区,从而避免增加额外的掺杂工艺。这样本申请的显示面板最多只有在形成沟道区和掺杂区时需要额外增加2道Mask工艺,相比相关技术中需要额外增加4道Mask工艺,可以减少至少2道Mask工艺,因此可以降低显示面板的成本。
需要说明的是,本申请中显示功能膜层中的所述多层金属电极层可以包括源电极所在的层、漏电极所在的层、栅电极所在层等,在此不作限定。本申请中的输入电极可以是与该多层金属电极层中其中一层金属电极层同层设置,也可以是输入电极设置为多层,每一层均与该多层金属电极层中其中一层金属电极层同层设置;同理,输出电极可以是与该多层金属电极层中其中一层金属电极层同层设置,也可以是输出电极设置为多层,每一层均与该多层金属电极层中其中一层金属电极层同层设置,在此不作限定。只要保证本申请中光传感器中输入电极和输出电极与显示功能膜层中的金属电极层采用同一Mask工艺形成即可。
为了进一步降低成本,可以将所述光传感器的沟道区与所述第一P型轻掺杂区(P-)的材质相同、掺杂浓度相同,这样可以在形成显示功能膜层中的第一P型轻掺杂区(P-)时同时形成所述光传感器中的沟道区,从而避免增加额外的掺杂工艺,从而降低成本。在具体实施时,沟道区的掺杂浓度可以设置在1x10 13个/cm 3以下,在此不作限定。
当然在具体实施时,所述光传感器的沟道区的材质也可以为本征半导体材料(I),在此不作限定。
在本申请中,当所述第一掺杂区和所述第二掺杂区均与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同时,可以在形成显示功能膜层中的第一P型重掺杂区(P+)时同时形成的光传感器中的两个掺杂区,从而避免增加额外的掺杂工艺。在具体实施时,第一掺杂区和第二掺杂区的掺杂浓度可以设置在1x10 13个/cm 3以上,在此不作限定。
当然,在具体实施时,当所述第一掺杂区和所述第二掺杂区中只有一个掺杂区与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同时,另一掺杂区可以设置为N型掺杂区,即当所述第一掺杂区与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同时,所述第二掺杂区为N型掺杂区(N+);或当所述第二掺杂区与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同,所述第一掺杂区为N型掺杂区(N+)。
需要说明的是,在本申请中,所述光传感器中可以不设置栅电极,也可以设置栅电极,在此不作限定。
示例性的,参见图9和图10,所述光传感器PD还可以包括与所述多层金属电极层中其中一层金属电极层同层设置的至少一个栅电极06,例如图9中以1个栅电极为例进行示意,图10中以两个栅电极为例进行示意,这样可以在形成金属电极层时仅改变Mask工艺中的构图图案就能同时形成栅电极06,不需要增加额外的Mask工艺。并且所述至少一个栅电极06在所述沟道区03的正投影与所述沟道区03部分重叠,这样可以保证光线可以照射至所述光传感器PD的沟道区03。
在本申请中,光传感器中设置栅电极相比不设置栅电极,可以减小沟道区的宽度,降低沟道区的电阻,从而增大感光电流,进而提高光传感器的感光效率。
在具体实施,当光传感器中设置有至少一个栅电极时,本申请对各栅电极的位置不作限定,只要保证各栅电极与沟道区存在重叠区域即可。本申请可以通过改变栅电极上的电位调节输出电极在光传感器不受光照时输出的初始电流,以及调整输出电极在光传感器受到光照时输出的感应电流。
可选地,在本申请中,参见图9,当所述光传感器PD中包括一个所述栅电极06时,所述栅电极06可以设置于靠近所述输出电极02的一侧。
在具体实施时,显示面板中还可以包括位于半导体层和金属电极层之间以及不同金属 电极层之间的绝缘层,绝缘层的材质可以为氮化硅(SiNx)、氧化硅(SiOx)或者二者的组合,在此不作限定。例如,在图8中,绝缘层311位于沟道区03(半导体层所在层)和输入电极01(一层金属电极层所在层)之间,在图9和图10中,绝缘层11位于沟道区03(半导体层所在层)和栅电极06(一层金属电极层所在层)之间,以及位于栅电极06(一层金属电极层所在层)和输入电极01(另一层金属电极层所在层)之间。
下面以显示面板中的多层金属电极层包括第一金属电极层和第二金属电极层为例,对本申请进行详细说明。需要说明的是,下述实施例中仅是为了更好的解释本申请技术方案,但不限制本申请的保护范围。
在具体实施时,第二金属电极层一般用于形成TFT的栅电极,第一金属电极层用于形成TFT的源电极和漏电极,第二金属电极层可以设置在第一金属电极层和半导体层之间,当然,在有些实施例中,也可以是第二金属电极层位于第一金属电极层上方,本申请对此不作限定。
示例性,以第二金属电极层位于第一金属电极层和半导体层之间为例,继续参见图9和图10,在栅电极06(即第二金属电极层所在层)和输入电极01(及第一金属电极层所在之间以及在输入电极01和沟道区03之间均设置有绝缘层311。
参见图11,本申请提供的光传感器(也称光敏二极管)的工作原理为:当没有光照时,沟道区的反向电流很小(一般小于0.1微安),称为暗电流。当有光照时,携带能量的光子进入沟道区后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子-空穴对,称为光生载流子。它们在反向电压作用下进行漂移运动,从而使反向电流明显变大,光的强度越大,反向电流也越大。当光传感器工作时,主要是沟道区无遮挡的区域(耗尽区)处形成电子-空穴对,吸收的光强不同,形成的电子-空穴对的浓度也不同,等效电路图如图12所示,当光照射时,光照越强,电子-空穴对的浓度越高,耗尽区等效电阻越小,输出的电流信号越大,通过对输出的电流信号进行处理即可获得光照强度。
本申请的光传感器由于耗尽区电阻较大,尤其在不照射光时暗电流(漏电流)小,因此具有高灵敏度特点。并且,通过调节栅电极的电位以及输入电极和输出电极两端的跨压大小可以进一步调整暗电流的大小。
下面结合制作方法详细说明本申请提供的显示面板。
示例一、
参加图13,所述光传感器PD包括输入电极01、输出电极02以及与所述半导体层312同层设置的沟道区03、第一掺杂区04、第二掺杂区05以及至少一个栅电极06,当然也可以不包括栅电极06,其中图13中以1个栅电极为例进行示意。所述输入电极01和所述输出电极02均与所述第一金属电极层313同层设置,至少一个栅电极06与所述第二金属电极层314同层设置,所述第一掺杂区04可与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同,所述第二掺杂区可为N型掺杂区(N+),所述沟道区03可与所述第一P型轻掺杂区(P-)的材质相同、掺杂浓度相同。
以图13所示的光传感器PD为例,所述光传感器PD的制备方法可以包括以下步骤:
步骤S101、在衬底基板上310形成半导体层312,采用一道Mask工艺对半导体层312进行P型轻掺杂,形成TFT的沟道区T03以及所述光传感器PD的沟道区03。
其中,半导体层的材质可以是非晶硅、多晶硅、氧化物等半导体材料,在此不作限定。
步骤S102、依次形成第一绝缘层311a和第二金属电极层314,采用一道Mask工艺对 第二金属电极层314进行构图形成TFT的栅电极T06和沟道遮挡层,以TFT的栅电极T06和沟道遮挡层作为遮挡对半导体层312进行P型重掺杂,形成TFT的电极接触区T04和T05以及光传感器PD的第一掺杂区04。
步骤S103、采用一道Mask工艺对沟道遮挡层进行构图形成光传感器PD的栅电极06。
步骤S104、采用一道Mask工艺对半导体层312进行N型掺杂,形成光传感器PD的第二掺杂区05。
步骤S105、依次形成第二绝缘层311b和第一金属电极层313,采用一道Mask工艺对第一金属电极层313进行构图形成TFT的源电极T01和漏电极T02以及光传感器PD的输入电极01和输出电极02。
在该显示面板中,形成感光器件PD需要在原有显示面板工艺的基础上额外增加步骤S103和步骤S104,因此需要增加2道Mask工艺。相比相关技术中需要额外增加4道Mask工艺相比,本申请可以减少2道Mask工艺,从而可以降低生产成本。
示例二、
参加图14,所述光传感器PD包括输入电极01、输出电极02以及与所述半导体层312同层设置的沟道区03、第一掺杂区04、第二掺杂区05以及至少一个栅电极06,当然也可以不包括栅电极06,其中图14中以1个栅电极为例进行示意。所述输入电极01和所述输出电极02均与所述第一金属电极层313同层设置,至少一个栅电极06与所述第二金属电极层314同层设置,所述第一掺杂区04和所述第二掺杂区05均可与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同,所述沟道区03的材料可为半导体本征材料。
以图14所示的光传感器PD为例,所述光传感器PD的制备方法可以包括以下步骤:
步骤S201、在衬底基板上310形成半导体层312,采用一道Mask工艺对半导体层312进行P型轻掺杂形成TFT的沟道区T03,采用另一道Mask工艺形成半导体本征材料即所述光传感器PD的沟道区03。
其中,半导体层的材质可以是非晶硅、多晶硅、氧化物等半导体材料,在此不作限定。
步骤S202、依次形成第一绝缘层311a和第二金属电极层314,采用一道Mask工艺对第二金属电极层314进行构图形成TFT的栅电极T06和沟道遮挡层,以TFT的栅电极T06和沟道遮挡层作为遮挡对半导体层312进行P型重掺杂,形成TFT的电极接触区T04和T05以及光传感器PD的第一掺杂区04和第二掺杂区05。
步骤S203、采用一道Mask工艺对沟道遮挡层进行构图形成光传感器PD的栅电极06。
步骤S204、依次形成第二绝缘层311b和第一金属电极层313,采用一道Mask工艺对第一金属电极层313进行构图形成TFT的源电极T01和漏电极T02以及光传感器PD的输入电极01和输出电极02。
在该显示面板中,形成感光器件PD需要在原有显示面板工艺的基础上额外增加步骤S201中形成所述光传感器PD的沟道区03的一道Mask工艺,以及步骤S204中的一道Mask工艺。相比相关技术中需要额外增加4道Mask工艺相比,可以减少2道Mask工艺,从而降低生产成本。
示例三、
参加图15,所述光传感器PD包括输入电极01、输出电极02以及与所述半导体层312同层设置的沟道区03、第一掺杂区04、第二掺杂区05以及至少一个栅电极06,当然也可以不包括栅电极06,其中图15中以1个栅电极为例进行示意。所述输入电极01和所述输 出电极02均与所述第一金属电极层313同层设置,至少一个栅电极06与所述第二金属电极层314同层设置,所述第一掺杂区04和所述第二掺杂区05均可与所述第一P型重掺杂区(P+)的材质相同、掺杂浓度相同,所述沟道区03可与所述第一P型轻掺杂区(P-)的材质相同、掺杂浓度相同。
以图15所示的光传感器PD为例,所述光传感器PD的制备方法可以包括以下步骤:
步骤S301、在衬底基板上310形成半导体层312,采用一道Mask工艺对半导体层312进行P型轻掺杂,形成TFT的沟道区T03以及所述光传感器PD的沟道区03。
其中,半导体层的材质可以是非晶硅、多晶硅、氧化物等半导体材料,在此不作限定。
步骤S302、依次形成第一绝缘层311a和第二金属电极层314,采用一道Mask工艺对第二金属电极层314进行构图形成TFT的栅电极T06和沟道遮挡层,以TFT的栅电极T06和沟道遮挡层作为遮挡对半导体层312进行P型重掺杂,形成TFT的电极接触区T04和T05以及光传感器PD的第一掺杂区04和第二掺杂区05。
步骤S303、采用一道Mask工艺对沟道遮挡层进行构图形成光传感器PD的栅电极06。
步骤S304、依次形成第二绝缘层311b和第一金属电极层313,采用一道Mask工艺对第一金属电极层312进行构图形成TFT的源电极T01和漏电极T02以及光传感器PD的输入电极01和输出电极02。
在该显示面板中,形成感光器件PD仅需要在原有显示面板工艺的基础上额外增加步骤S303,因此需要增加一道Mask工艺。相比相关技术中需要额外增加4道Mask工艺相比,可以减少3道Mask工艺,从而极大的降低生产成本。另外,由于该光传感器中沟道区为P型轻掺杂区,相比沟道区为半导体本征材料,可以降低沟道区的阻抗,从而提高感光电流,进而提高光传感器的感光效率。
分别检测上述三个实施例的显示面板中光传感器的量子效率(External Quantum Efficiency,EQE)和相关技术提供的PIN结构的光传感器的EQE,EQE是指器件对光敏感性的精确测量,检测结果如下表1所示:
Figure PCTCN2022083422-appb-000001
表1
由表1可知,本申请实施例中光传感器的EQE普遍比相关技术中的光传感器高,且示例三的光传感器,通过调节栅电极的电位,EQE可以提升至20%以上。
在实际应用中,本申请实施例提供的显示面板中的光传感器可以用于检测环境光的强度,也可以用于检测某一特定波长(例如红光/绿光/蓝光/红外光/紫外线)的光的强度,以此来实现一些特定的功能。以通过检测环境光来实现调节屏幕亮度为例,调节原理如图16所示:光传感器感应周围环境的光强,将光信号转换为电信号输出,输出的电信号经IC 处理将电流模拟信号转换为数字信号,而后将这个数字信号上报,经过算法乘以对应的系数,会得到一个亮度值,亮度值与屏幕的调光阶数是对应的,经过判断确定屏幕是否需要进行调光,如果需要调光,驱动芯片输出相应的驱动电流,从而实现显示屏不同亮度的调节。
在具体实施,参见图17和图18,显示面板30可以包括显示区域A1和非显示区域A2,其中显示区域A1设置有显示用的像素(图中未视出),非显示区域A2一般设置有驱动电路和走线(图中未视出)。光传感器PD可以设置在显示区域A1,也可以设置于非显示区域A2,在此不作限定。当光传感器PD位于非显示区域A2时,可以设置在非显示区域A2内没有驱动电路的位置,在此不作限定。
在具体实施时,如图17所示,所述显示基板可以包括多个所述光传感器PD;多个所述光传感器PD可以均位于所述非显示区域A2;或如图18所示,多个所述光传感器PD也可均位于所述显示区域A1;当然也可以是多个所述光传感器PD中一部分所述光传感器PD位于所述非显示区域A2,另一部分所述光传感器PD位于所述显示区域A1,在此不作限定。
在实际应用中,本申请也可以通过在显示区域内设置呈矩阵排列的多个光传感器,通过检测各光传感器的光强,可以实现触控功能。或者,通过在指纹识别区设置多个光传感器,通过感测指纹触碰处指纹谷和脊的相对光强来实现指纹识别功能。或者,也可以如图19所示,在显示面板30的相对的两侧分别设置至少一个光传感器PD,图中以左侧L和右侧R为例,通过检测两侧光传感器PD输出信号的时序先后可以实现手势识别功能。例如,当两侧光传感器PD输出信号的时序如图20所示时,图20中,L表示左侧光传感器PD的输出信号,R表示右侧光传感器PD的输出信号,左侧光传感器PD的输出信号先变小,右侧光传感器PD的输出信号后变小,表示左边先被遮挡,右边后被遮挡,从而手势是从左向右。
图21为本申请一种实施例提供的显示模组的剖面结构示意图。参见图21,本申请实施例提供的显示模组100可以包括依次层叠设置的显示面板30、偏光片110和盖板层120,所述显示面板30可以为本申请实施例提供的上述任一种显示面板,由于本申请实施例提供的显示面板30相比相关技术可以降低成本,因此本申请实施例提供的显示模组同样可以降低成本。
示例性的,在具体实施时,如图21所示,所述盖板层120可以通过光学透明胶130与所述偏光片110粘合,在此不作限定。
参见图22至图25,图22为本申请实施例提供的一种显示模组的俯视结构示意图;图23为图22所示的显示模组沿AA’方向的剖面结构示意图;图24为图22所示的显示模组沿BB’方向的一种剖面结构示意图;图25为图22所示的显示模组沿BB’方向的另一种剖面结构示意图。在所述显示模组100中,所述显示面板30具有显示区域A1和非显示区域A2;所述显示面板30的所述非显示区域A2设置有多个所述光传感器PD,所述显示模组100还包括位于所述显示面板30和所述盖板层120之间的遮光油墨层140和至少一个滤光膜。可选地,所述至少一个滤光膜可以包括至少一个黄色滤光膜Y、至少一个青色滤光膜C以及至少一个品红色滤光膜M。所述遮光油墨层140在所述显示面板30的正投影覆盖所述非显示区域A2,每一所述滤光膜Y、C和M在所述显示面板30的正投影均位于所述非显示区域A2内。每一所述滤光膜可以对应至少一个所述光传感器PD,例如图24和图 25中,每一所述黄色滤光膜Y可以对应至少一个所述光传感器PD,每一所述青色滤光膜C可以对应至少一个所述光传感器PD,每一所述品红色滤光膜M可以对应至少一个所述光传感器PD,图24和图25均以一个所述滤光膜对应一个所述光传感器为例进行示意。
遮光油墨层140用于遮挡显示面板30的非显示区域A2;所述遮光油墨层140具有至少一个第一开口V1以及与每一所述滤光膜分别对应的至少一个第二开口,例如与每一所述黄色滤光膜Y对应的至少一个第二开口V2,与每一所述青色滤光膜C对应的至少一个第二开口V2,与每一所述品红色滤光膜M对应的至少一个第二开口V2。每一所述第一开口V1可以对应至少一个所述光传感器PD。
具体如图24所示,所述滤光膜Y、C和M在所述显示面板30的正投影覆盖与所述滤光膜对应的所述至少一个第二开口V2在所述显示面板30的正投影,例如所述黄色滤光膜Y在所述显示面板30的正投影覆盖与该黄色滤光膜Y对应的所述至少一个第二开口V2在所述显示面板30的正投影,所述青色滤光膜C在所述显示面板30的正投影覆盖与该青色滤光膜C对应的所述至少一个第二开口V2在所述显示面板30的正投影,所述品红色滤光膜M在所述显示面板30的正投影覆盖与该品红色滤光膜M对应的所述至少一个第二开口V2在所述显示面板30的正投影,且所述滤光膜Y、C和M在所述显示面板30的正投影与所述第一开口V1在所述显示面板30的正投影不重叠。这里的“不重叠”是指两个区域不具有任何重叠区域。
在具体实施时,如图25所示,所述滤光膜Y、C和M和所述遮光油墨层140可以同层设置,当然也可以如图24所示,所述滤光膜Y、C和M和所述遮光油墨层140设置在不同层,在此不作限定。
示例性的,参见图24和图25,可以以每4个光传感器PD为一组检测单元P100,非显示区域A2可以设置至少一组所述检测单元P100,针对每一所述检测单元P100,其中一个光传感器PD对应一个第一开口V1,另外三个光传感器PD对应三个第二开口V2,三个第二开口V2分别对应一个黄色滤光膜Y、一个品红色滤光膜M和一个青色滤光膜C。其中,黄色滤光膜Y可以使黄色的光透过,品红色滤光膜M可以使品红色的光透光,青色滤光膜C可以使青色的光透过,三种滤光膜的透光率与波长的曲线图可以参见图26。从而可以通过检测环境光中黄色光、青色光、品红色光以及白色光(即从第一开口V1透过的光)的强度来计算环境光中的B(蓝光)、G(绿光)、R(红光)以及NIR(红外光)的强度值。其中,计算公式可以如下:
B=W-Y                                                   (1)
G=W-M                                                   (2)
R=W-C                                                   (3)
I=(Y+M+C)-2W
=(G+R+I)+(B+R+I)+(B+G+I)-2×(B+G+R+I)    (4)
其中,上述公式(1)至(4)中的B表示蓝光的强度,G表示绿光的强度,R表示红光的强度,W表示白色光的强度,Y表示黄色光的强度,M表示品红色光的强度,C表示青色光的强度,I表示红外光的强度。
进一步地,还可以通过B(蓝光)、G(绿光)和R(红光)的强度值实现环境的色温检测功能。其中,环境光的色度值x和y的计算公式可符合如下公式:
x=X/(X+Y+Z)                                               (5)
y=Y/(X+Y+Z)                                                (6)
Figure PCTCN2022083422-appb-000002
Figure PCTCN2022083422-appb-000003
Figure PCTCN2022083422-appb-000004
其中,公式(7)中L1(λ)表示红光的强度值,R(λ)表示红光的波长,EQE1(λ)表示红光的EQE,公式(8)中L2(λ)表示绿光的强度值,G(λ)表示绿光的波长,EQE2(λ)表示绿光的EQE,公式(9)中L3(λ)表示蓝光的强度值,B(λ)表示蓝光的波长,EQE3(λ)表示蓝光的EQE。
将本申请通过检测环境光中黄色光、青色光、品红色光以及白色光的强度来计算环境光中的B(蓝光)、G(绿光)和R(红光)的强度值,与直接检测环境光中的B(蓝光)、G(绿光)和R(红光)的强度值相比,低照度检测能力的比值如下表2所示:
CMY:RGB* 太阳光谱 星光光谱
C:R 2 2.5
M:G 2.1 4.4
Y:B 2.6 11.7
表2
在表2中,CMY表示无红外滤光膜的数据,RGB*表示现有技术中有红外滤光膜的数据。由上表可知,本申请的低照度检测能力能提升至2倍以上。因此,本申请通过采用C/M/Y替代R/G/B作为环境色温的测量通道,可以实现进光量提升2倍及以上,进而提高显示模组在低照度下的感应能力。
另外,本申请通过采用C/M/Y替代R/G/B作为环境色温的测量通道,可以减少制作红外光通道,从而减小光传感器数量、减少制作红外光滤光膜的工序以及节省芯片模数转换通道数量,进而降低显示模组的制作复杂度和成本。
参见图27,可选地,所述显示模组100还可以包括分别位于所述偏光片110两侧的第一四分之一波长延迟层150和第二四分之一波长延迟层160。当外部环境光OP1经过偏光片110之后成为线性偏振光,而线性偏振光经显示面板30背板反射后再照射至偏光片110需要2次经过第二四分之一波长延迟层160,从而使线性偏振光的偏振方向与偏光片110的偏振方向垂直,从而反射回来的线性偏振光不能通过偏振片110,进而降低显示模组的反射率;同理显示面板30发出的光OP2经偏光片110转换为线性偏振光之后,经物体(如人脸)反射后的反射光OP3同样需要2次经过第一四分之一波长延迟层150,从而使线性偏振光的偏振方向与偏光片110的偏振方向垂直,不能通过偏振片110,从而避免显示面板30发的光经物体反射后照射在至光传感器PD上,从而导致测量值偏离真实环境造成测量误差。
进一步地,当所述显示模组检测的环境由纯黑环境变为光照度为02Lx时的环境时,光传感器的输出信号就可以发生显著的变化,因此,所述显示模组可以将低照度检测能力提升至0.2lx。
示例性的,参见图28,所述显示模组还可以包括位于所述显示面板30与盖板层120 之间的触摸层170。在具体实施时,触摸层170可以设置在显示面板30和偏光片110之间,在此不作限定。
本申请还提供了一种电子设备,包本申请实施例提供的上述任一种显示模组。由于该电子设备解决问题的原理与前述一种显示模组相似,因此该电子设备的实施可以参见前述显示模组的实施,重复之处不再赘述。
在具体实施时,本申请中的电子设备可以利用集成在显示面板内的光传感器来检测当前环境的光照条件,以此来调节显示面板的屏幕的亮度,使人眼感觉舒适而不刺眼,同时降低显示屏幕功耗。例如电子设备为如图3所示的手机,图4所示的平板,便携式电脑,显示器和电视等。该电子设备还可以利用集成在显示面板内的光传感器来检测某一特定波长(例如红光/绿光/蓝光/红外光/紫外线),以此来实现更多的功能及应用,例如,色温检测、接近光检测、紫外线强度检测等。例如手机、平板、如图5所示的手表、电脑、监控屏、电视等通过感测外界环境光中特定波长的光(例如紫外光/红外光)从而实现特定功能,例如红外感测可用于接近感应,紫外感测可以实现UV指数传感器。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种显示面板,其特征在于,包括相对设置的显示基板和对向基板;其中:
    所述显示基板包括衬底基板以及位于所述衬底基板上的显示功能膜层和至少一个光传感器;
    所述显示功能膜层至少包括层叠设置的半导体层和多层金属电极层,且所述半导体层具有第一P型轻掺杂区和第一P型重掺杂区;
    所述光传感器包括输入电极、输出电极以及与所述半导体层同层设置的沟道区、第一掺杂区和第二掺杂区;
    所述第一掺杂区和所述第二掺杂区分别位于所述沟道区的两侧,且所述输入电极与所述第一掺杂区电连接,所述输出电极与所述第二掺杂区电连接;
    所述第一掺杂区和/或所述第二掺杂区与所述第一P型重掺杂区的材质相同、掺杂浓度相同;
    所述输入电极和所述输出电极分别与所述多层金属电极层中的至少一层金属电极层同层设置。
  2. 如权利要求1所述的显示面板,其特征在于,所述光传感器的沟道区与所述第一P型轻掺杂区的材质相同、掺杂浓度相同。
  3. 如权利要求1所述的显示面板,其特征在于,所述光传感器的沟道区的材质为本征半导体材料。
  4. 如权利要求1-3任一项所述的显示面板,其特征在于,所述第一掺杂区与所述第一P型重掺杂区的材质相同、掺杂浓度相同时,所述第二掺杂区为N型掺杂区;或
    所述第二掺杂区与所述第一P型重掺杂区的材质相同、掺杂浓度相同时,所述第一掺杂区为N型掺杂区。
  5. 如权利要求1-4任一项所述的显示面板,其特征在于,所述光传感器还包括与所述多层金属电极层中的其中一层金属电极层同层设置的至少一个栅电极,且所述至少一个栅电极在所述沟道区的正投影与所述沟道区部分重叠。
  6. 如权利要求5所述的显示面板,其特征在于,所述光传感器包括一个所述栅电极,且所述栅电极位于靠近所述输出电极一侧。
  7. 如权利要求1-6任一项所述的显示面板,其特征在于,所述显示面板具有显示区域和非显示区域,且所述显示基板包括多个所述光传感器;
    多个所述光传感器均位于所述非显示区域;或
    多个所述光传感器均位于所述显示区域;或
    多个所述光传感器中一部分所述光传感器位于所述非显示区域,另一部分所述光传感器位于所述显示区域。
  8. 一种显示模组,其特征在于,包括依次层叠设置的显示面板、偏光片和盖板层,所述显示面板为如权利要求1-7任一项所述的显示面板。
  9. 如权利要求8所述的显示模组,其特征在于,所述显示面板具有显示区域和非显示区域,所述显示面板的所述非显示区域设置有多个所述光传感器;
    所述显示模组还包括位于所述显示面板和所述盖板层之间的遮光油墨层和至少一个滤光膜;
    所述遮光油墨层在所述显示面板的正投影覆盖所述非显示区域,每一所述滤光膜在所述显示面板的正投影均位于所述非显示区域内,且每一所述滤光膜至少对应至少一个所述光传感器;
    所述遮光油墨层具有至少一个第一开口以及与每一所述滤光膜分别对应的至少一个第二开口,且每一所述第一开口对应至少一个所述光传感器;
    所述滤光膜在所述显示面板的正投影覆盖与所述滤光膜对应的所述至少一个第二开口在所述显示面板的正投影,且所述滤光膜在所述显示面板的正投影与所述第一开口在所述显示面板的正投影不重合。
  10. 如权利要求9所述的显示模组,其特征在于,所述至少一个滤光膜包括至少一个黄色滤光膜、至少一个青色滤光膜以及至少一个品红色滤光膜。
  11. 如权利要求9所述的显示模组,其特征在于,所述滤光膜和所述遮光油墨层同层设置。
  12. 如权利要求8-11任一项所述的显示模组,其特征在于,所述显示模组还包括分别位于所述偏光片两侧的第一四分之一波长延迟层和第二四分之一波长延迟层。
  13. 如权利要求8-12任一项所述的显示模组,其特征在于,所述显示模组还包括位于所述显示面板与所述盖板层之间的触摸层。
  14. 一种电子设备,其特征在于,包括如权利要求8-13任一项所述的显示模组。
PCT/CN2022/083422 2021-03-30 2022-03-28 一种显示面板、显示模组及电子设备 WO2022206687A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237034996A KR20230156401A (ko) 2021-03-30 2022-03-28 디스플레이 패널, 디스플레이 모듈 및 전자 장치
EP22778869.2A EP4300584A1 (en) 2021-03-30 2022-03-28 Display panel, display module, and electronic device
JP2023560735A JP2024513414A (ja) 2021-03-30 2022-03-28 ディスプレイパネル、ディスプレイモジュール、および電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110342330.9 2021-03-30
CN202110342330.9A CN113488507A (zh) 2021-03-30 2021-03-30 一种显示面板、显示模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022206687A1 true WO2022206687A1 (zh) 2022-10-06

Family

ID=77932701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083422 WO2022206687A1 (zh) 2021-03-30 2022-03-28 一种显示面板、显示模组及电子设备

Country Status (5)

Country Link
EP (1) EP4300584A1 (zh)
JP (1) JP2024513414A (zh)
KR (1) KR20230156401A (zh)
CN (1) CN113488507A (zh)
WO (1) WO2022206687A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488507A (zh) * 2021-03-30 2021-10-08 华为技术有限公司 一种显示面板、显示模组及电子设备
CN114792715B (zh) * 2022-04-08 2024-06-11 武汉华星光电技术有限公司 显示面板
CN115312540A (zh) * 2022-07-28 2022-11-08 武汉华星光电技术有限公司 阵列基板及显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624556A (zh) * 2003-08-25 2005-06-08 东芝松下显示技术有限公司 显示装置以及光电变换元件
US20090283772A1 (en) * 2008-05-16 2009-11-19 Au Optronics Corporation Photo sensitive unit and pixel structure and liquid crystal display panel having the same
CN102859693A (zh) * 2010-04-16 2013-01-02 夏普株式会社 半导体装置
CN113488507A (zh) * 2021-03-30 2021-10-08 华为技术有限公司 一种显示面板、显示模组及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847835B (zh) * 2017-04-01 2019-12-27 厦门天马微电子有限公司 一种显示面板、显示面板的制备方法、以及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624556A (zh) * 2003-08-25 2005-06-08 东芝松下显示技术有限公司 显示装置以及光电变换元件
US20090283772A1 (en) * 2008-05-16 2009-11-19 Au Optronics Corporation Photo sensitive unit and pixel structure and liquid crystal display panel having the same
CN102859693A (zh) * 2010-04-16 2013-01-02 夏普株式会社 半导体装置
CN113488507A (zh) * 2021-03-30 2021-10-08 华为技术有限公司 一种显示面板、显示模组及电子设备

Also Published As

Publication number Publication date
KR20230156401A (ko) 2023-11-14
CN113488507A (zh) 2021-10-08
JP2024513414A (ja) 2024-03-25
EP4300584A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2022206687A1 (zh) 一种显示面板、显示模组及电子设备
US20090128529A1 (en) Display Device and Electronic Device
US8952946B2 (en) Display panel, module, and electronic device
US7898619B2 (en) Liquid crystal display
US8451241B2 (en) Liquid crystal display device
US9983734B2 (en) Display
US20100164921A1 (en) Display apparatus
CN107256880B (zh) 一种显示器阵列基板、制备方法和显示器
US11334195B2 (en) Optical detection apparatus
TW202011097A (zh) 顯示面板
US10482310B2 (en) Display module
WO2020052029A1 (zh) 显示面板
US7999259B2 (en) Display device having a photodiode whose p region has an edge width different than that of the n region
US8248395B2 (en) Image display device
WO2021204093A1 (zh) 一种显示屏和电子设备
CN113093425A (zh) 显示面板和显示装置
CN111723771A (zh) 显示装置及其制作方法
JP4957232B2 (ja) 電気光学装置
CN113764492B (zh) 一种显示面板及其制作方法、显示装置
CN113544855B (zh) 显示面板及显示装置
US12035603B2 (en) Display panel and display device
CN113690287B (zh) 显示面板及其制备方法、显示装置
US11415858B2 (en) Photoelectric display unit and display device including thereof
WO2023056821A1 (zh) 自发光显示装置和液晶显示装置
US20240204156A1 (en) Display device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022778869

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023560735

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022778869

Country of ref document: EP

Effective date: 20230925

ENP Entry into the national phase

Ref document number: 20237034996

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034996

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE