WO2022206668A1 - 随机接入信息上报方法和用户设备 - Google Patents

随机接入信息上报方法和用户设备 Download PDF

Info

Publication number
WO2022206668A1
WO2022206668A1 PCT/CN2022/083332 CN2022083332W WO2022206668A1 WO 2022206668 A1 WO2022206668 A1 WO 2022206668A1 CN 2022083332 W CN2022083332 W CN 2022083332W WO 2022206668 A1 WO2022206668 A1 WO 2022206668A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
random access
sdt
report
reporting
Prior art date
Application number
PCT/CN2022/083332
Other languages
English (en)
French (fr)
Inventor
常宁娟
刘仁茂
Original Assignee
夏普株式会社
常宁娟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 常宁娟 filed Critical 夏普株式会社
Publication of WO2022206668A1 publication Critical patent/WO2022206668A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the technical field of wireless communication, and more particularly, to a method for reporting random access information performed by a user equipment and a corresponding user equipment.
  • network optimization can be used to optimize network performance.
  • data collection and data analysis are carried out on the existing deployed and running network to find out the reasons affecting the network quality, and the network performance can be improved by modifying the configured network parameters, adjusting the network structure and deployed devices.
  • Self-configuration and Self-Optimization Network it refers to the process of automatically adjusting the network based on the measurement/performance measurement of user equipment and/or base station.
  • the network side may configure the UE to perform measurements for SON.
  • the SON function includes many aspects, such as the automatic neighbor relationship function (ANR, Automatic Neighbour Relation Function) for reducing the operator's neighbor management burden, and the mobility load balancing function (MLB, Mobility Load) for balancing the responsibility between different cells. Balancing), Mobility Robustness Optimization (MRO) to optimize mobility performance, Random Access Channel Optimization to optimize random access channel parameters, and Radio Link Failure to optimize coverage and MRO reporting functions, etc.
  • ANR Automatic Neighbour Relation Function
  • MLB Mobility Load
  • Balancing Mobility Robustness Optimization
  • Random Access Channel Optimization to optimize random access channel parameters
  • Radio Link Failure to optimize coverage and MRO reporting functions
  • 3GPP 3rd Generation Partnership Project
  • RAN Plenary approved a new work item of Release 17 on further enhancements for New Radio (NR, New Radio) (see RP-201281: New WID on enhancement of data collection for SON/MDT in NR and EN-DC).
  • NR New Radio
  • RP-201281 New WID on enhancement of data collection for SON/MDT in NR and EN-DC.
  • the 3GPP RAN2 working group is currently conducting another version 17 research project (see 3GPP document RP-193252 (Work Item on NR small data transmissions in INACTIVE state)) referred to as the Small Data Transmission (Small Data Transmission, SDT) project.
  • the purpose of this research project is to optimize the signaling overhead and power consumption caused by small-sized data services that are not frequently sent by users.
  • Radio Resource Control_Inactive For user equipment (User Equipment, UE) in the radio resource control inactive state (Radio Resource Control_Inactive, RRC_INACTIVE), some infrequent small-sized data services (such as instant information, heartbeat signals that keep online, smart wearable devices or sensors)
  • RRC_CONNECTED Radio Resource Control_Inactive
  • some infrequent small-sized data services such as instant information, heartbeat signals that keep online, smart wearable devices or sensors
  • the transmission of periodic information and periodic meter reading services brought by smart metering equipment, etc. makes the UE need to enter the RRC_CONNECTED state to perform the transmission of small-sized data packets, and the resulting signaling overhead brings about network performance. It also greatly reduces the energy consumption of the UE.
  • one way is to carry small data in the random access process (such as accompanying or including small data in message 3 of the four-step random access process or accompanying or included in two
  • the message A in the random access process carries small data
  • the data is transmitted through the UE dedicated channel (such as the dedicated traffic channel DTCH or the dedicated control channel DCCH), but there is no need to enter the RRC_CONNECTED state to obtain uplink transmission.
  • Resource means to achieve the goal, reduce signaling overhead and UE energy consumption.
  • the present disclosure aims to realize the problem of random access information reporting in the SON function in the NR network, and further, to solve the problem of how to more accurately feed back random access process information to the network side under the introduction of the SDT mechanism.
  • the present disclosure also provides A method for UE to judge SDT transmission failure under SDT mechanism is proposed.
  • the main purpose of the present disclosure is to provide a random access information reporting method performed by a user equipment and a user equipment, which can implement more refined RA information reporting in an SDT scenario, so that the network side can base on the refined information in the RA report.
  • the RACH performance or the SDT transmission performance can be improved.
  • a random access RA reporting method performed by a user equipment including: initiating and completing a small data transmission SDT process; and sending an RA information report related to the SDT process to a network side , the report includes first information, where the first information is used to indicate the downlink quality information obtained by the UE just before the SDT process is initiated.
  • the first information may be downlink quality information measured by the UE when the random access procedure for SDT is triggered or just before the random access procedure is triggered.
  • the downlink quality may be the RSRP information of the reference signal received power referenced by the downlink path loss of the cell where the UE resides.
  • the RA information may further include second information, where the second information is used to indicate the small data size information of the UE when the random access procedure is triggered or just before the random access procedure is triggered.
  • the small data size may be a size including all data packets associated with the radio bearer RB or logical channel that is enabled with SDT by the network side.
  • the RA information may further include third information, where the third information is used to indicate that the triggering purpose of the random access procedure is for SDT.
  • the RA information may be included in the random access RA report or the connection establishment failure CEF report.
  • the UE may send the RA information report to the network side after receiving the RRC message including the RA information report request from the network side.
  • the RRC message including the RA information reporting request may be a UE information request message; the message including the RA information sent by the UE to the network side may be a UE information response message.
  • a user equipment comprising: a processor; and a memory storing instructions; wherein the instructions, when executed by the processor, perform the above method.
  • a more refined RA information report in an SDT scenario can be implemented, so that the network side can more accurately perform SDT based on the refined information in the RA information report
  • the related RACH parameters are adjusted, so that the RACH performance can be improved.
  • Fig. 1 shows the process of contention-based random access CBRA
  • FIG. 2 shows a process of non-contention-based random access CFRA
  • FIG. 3 shows a flow chart of the general process of the small data transmission process SDT in the prior art.
  • Figure 4 shows a schematic diagram of a general method of RA information reporting performed by a user equipment UE according to the present disclosure.
  • FIG. 5 shows a schematic diagram of a method for reporting RA information performed by a user equipment UE according to Embodiment 1 of the present disclosure.
  • FIG. 6 shows a schematic diagram of a method for reporting RA information performed by a user equipment UE according to Embodiment 2 of the present disclosure.
  • FIG. 7 shows a block diagram of a user equipment according to an embodiment of the present disclosure.
  • the NR mobile communication system is used as an example application environment to specifically describe various embodiments according to the present disclosure.
  • the present disclosure is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as an LTE system connected to a 5G core network, and the like.
  • the base station in the present disclosure can be any type of base station, including Node B, enhanced base station eNB, 5G communication system base station gNB; or micro base station, pico base station, macro base station, home base station, etc.; the cell can also be any type of base station mentioned above.
  • the cell can also be a beam, a transmission point (TRP), and a base station can also be a central unit (gNB-Central Unit, gNB-CU) or a distributed unit (gNB-Distributed Unit, gNB-DU).
  • LTE system is also used to refer to 5G and later LTE systems (such as eLTE systems, or LTE systems that can be connected to the 5G core network) ), while LTE can be replaced with Evolved Universal Terrestrial Radio Access (Evolved Universal Terrestrial Radio Access, E-UTRA) or Evolved Universal Terrestrial Radio Access Network E-UTRAN.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Different embodiments can also work in combination, for example, the same variables/parameters/nouns in different embodiments have the same interpretation.
  • Cancel, Release, Delete, Empty, and Clear can be replaced. Execution, use and application are interchangeable. Configuration and reconfiguration can be replaced. Monitor and detect can be replaced.
  • Physical random access channel resource Physical Random Access Channel (PRACH) resource.
  • PRACH Physical Random Access Channel
  • the base station broadcasts the physical random access channel parameter configuration used by the cell through system information.
  • the physical random access channel resource PRACH resource may refer to the physical frequency resource and/or time domain resource and/or code used for random access. Domain resources (such as preamble).
  • Random Access Channel Random Access Channel, RACH.
  • RACH may refer to either the transport channel RACH or the physical random access channel PRACH, without distinction.
  • RACH parameters/configurations refer to the wireless configuration that implements the random access function, including PRACH related configurations, such as the maximum number of preamble transmissions, power boost parameters, random access response receiving window size, MAC contention resolution timer configuration, PRACH time-frequency resource configuration , Message 1 (ie preamble) subcarrier spacing, information used to indicate the number of synchronization channel blocks (Synchronization Signal Block, SSB) corresponding to each RACH opportunity (RACH occasion, RO) and the contention-based random preamble corresponding to each SSB The configuration of the number of preambles (configured by the ssb-perRACH-OccasionAndCB-PreamblesPerSSB information element), the backoff parameter (in the scalingFactorBI information element), etc.
  • PRACH related configurations such as the maximum number of preamble transmissions, power boost parameters
  • CBRA Contention Based Random Access
  • CFRA Contention Free Random Access
  • RAR Random Access Response Random Access Response
  • third step UE sends message 3 (uplink transmission scheduled by the uplink grant in message 2), message 3 is generally used to send the UE identity to the base station for wireless Resource Control (Radio Resource Control, RRC) RRC message for connection establishment/restoration/re-establishment, UE contention resolution identifier for random access contention resolution, etc.
  • RRC Radio Resource Control
  • user plane data may also be included;
  • the fourth step The UE receives message 4 (ie, a message for contention resolution) from the base station.
  • the PRACH resources used in CBRA are shared by many UEs. When the UE completes the above four steps of random access of CBRA and the contention is successfully resolved, the random access process is successfully completed.
  • the process of CFRA is shown in Figure 2, which is divided into two steps: the first step: for the UE to send message 1 (that is, the random access preamble) to the base station; the second step: the UE receives the message 2 from the base station (that is, random access preamble) Access response Random Access Response, RAR). After successfully receiving message 2 associated with message 1, the UE considers that the CFRA procedure is successfully completed.
  • the base station generally allocates dedicated PRACH resources such as preamble for the UE in advance (referred to as step 0 in FIG. 2 ), so there is no competition.
  • a two-step random access procedure is being introduced in current NR.
  • the first and third steps in the above-mentioned four-step random access procedure are combined to send message A in the same step.
  • message A contains a random access preamble and a subsequent associated PUSCH load.
  • the content of the PUSCH load is consistent with the content contained in message 3, which can include RRC messages, user plane data, and MAC control elements such as cache status. report and UE identity, etc.
  • the second and fourth steps are combined into the same step called message B.
  • Message B is the response to message A in the two-step random access process.
  • the content it contains is similar to the content of the above-mentioned messages 2 and 4, and can include responses for contention resolution (contention resolution identifier, random access preamble identifier).
  • the two-step random access process can shorten the delay of random access.
  • two-step random access adopts a different random access resource configuration from four-step random access.
  • the UE can trigger the random access procedure in various situations, such as initial access, beam recovery request, handover (also available in NR) when it transitions from RRC idle state or RRC inactive state to RRC connected state. called synchronous reconfiguration), etc.
  • the UE selects whether the initiated random access process is a two-step random access or a four-step random access type according to the configuration on the network side and the measurement result of the UE.
  • the UE can fall back to the four-step random access process during two-step random access, for example, when receiving a fallback random access response (fallback Random Access Response, fallbackRAR) sent from the network side, or when two When the number of times that the random access attempt message A is sent exceeds a configured maximum number of times, etc.
  • fallbackRAR fallback Random Access Response
  • the random access procedure described in the present disclosure includes but is not limited to the above random access procedure.
  • the UE In the first type of RA information report, the UE records its RA information for each successfully completed random access procedure in the variable VarRA-Report.
  • the base station For the random access report (called RA report) that records the information of the successfully completed random access process, the base station will send the UE information request UEinformationRequest message to the UE, which contains the RA report request indication (ra-ReportReq information element), used for The UE is requested to report the RA report of the stored random access procedure.
  • the UE After receiving the UEinformationRequest message containing the indication, the UE reports the saved RA report to the base station in the UE information response UEinformationReponse message.
  • the base station takes the RA report reported by one UE as a sample. Based on a sufficient number of samples, the base station can analyze whether the current RACH performance meets the requirements, and adjust the RACH parameters according to the requirements to improve the RACH performance.
  • the second type of RA information-related report is a Connection Establishment Failure (CEF) report. If the initial access fails (the RRC connection establishment process fails or the RRC connection recovery process fails), the random access information of the random access process performed in the RRC connection establishment/restoration process will also be stored in the corresponding CEF report. If the UE has a saved CEF report in the variable VarConnEstFailReport, the UE will include a connEstFailInfoAvailable information element in the RRC message such as the RRC recovery complete message to inform the base station that there is a saved CEF report on it.
  • CEF Connection Establishment Failure
  • the base station sends a UEinformationRequest message to the UE, which includes a CEF report request indication (connEstFailReportReq information element), which is used to request the UE to report the stored CEF report information.
  • a CEF report request indication (connEstFailReportReq information element)
  • the UE After receiving the UEinformationRequest message containing the indication, the UE includes the saved CEF report (ConnEstFailReport information element) in the UEinformationReponse message and reports it to the base station.
  • the third type of RA information-related report is a Radio Link Failure (RLF) report.
  • RLF Radio Link Failure
  • the UE will include an rlf-InfoAvailable information element in an RRC message such as an RRC recovery complete message to inform the base station that there is a saved RLF report on it.
  • the base station sends a UEinformationRequest message to the UE, which includes a radio link failure report request indication (rlf-ReportReq information element), which is used to request the UE to report the stored RLF report information.
  • the UE After receiving the UEinformationRequest message containing the indication, the UE includes the stored RLF report (rlf-Report information element) in the UEinformationReponse message and reports it to the base station. If a random access process is performed in the RLF process (for example, the RLF is triggered due to a random access failure), the RLF report will include information on the random access process.
  • the RA report refers to the above-mentioned first RA information report.
  • the SDT mechanism occurs in the RRC inactive state, it is similar to the initial access, for example, the RRC connection recovery message is included in the random access message 3 or message A.
  • the RA report may also include the CEF report, and the RA information may also be applicable to the RA information contained in the CEF report.
  • the RA report mainly contains two pieces of information about the random access process, one is the number of preamblesent sent, which is used to indicate the number of times the random access preamble is sent during the random access process, corresponding to PREAMBLE_TRANSMISSION_COUNTER count value at the MAC layer; another is a contention detected indication (contention detected), which is used to indicate whether contention is detected for at least one transmitted random access preamble.
  • the RACH parameters that can be adjusted by the base station may include RACH resource configuration, random access preamble division (such as division of preamble packets into dedicated preambles, group A and group B), RACH backoff parameters, RACH transmit power control parameters, and the like.
  • the network optimization structure of the NR system in Release 16 follows the above-mentioned framework in LTE, and enhances it in combination with the characteristics of NR, such as beam characteristics.
  • the NR system supports the UE to save the RA information corresponding to multiple random access procedures.
  • the UE determines that if the number of RA-report entries (number of entries) in the random access report list ra-ReportList stored in the current variable VarRA-Report of the UE is less than the maximum number of entries supported by the system
  • the UE adds a new item in VarRA-Report to record the information of the successfully completed random access process.
  • the information of a random access process includes: information of the cell where the random access preamble is sent (global cell identity, tracking area code or physical cell identity and carrier frequency), random access purpose information and random access public information.
  • the random access public information includes reference downlink frequency information associated with the random access process (such as the absolute frequency of Point A, subcarrier spacing, bandwidth location information locationAndBandwidth, etc.) and each random access sequence arranged in the order of occurrence time.
  • the associated RA information of the attempt includes: information of the cell where the random access preamble is sent (global cell identity, tracking area code or physical cell identity and carrier frequency), random access purpose information and random access public information.
  • the random access public information includes reference downlink frequency information associated with the random access process (such as the absolute frequency of Point A, subcarrier spacing, bandwidth location information locationAndBandwidth, etc.) and each random access sequence arranged in the order of occurrence time.
  • the associated RA information of the attempt includes: information of the cell where the random access preamble is sent (global
  • the RA information associated with each random access attempt includes the beam index value, the number of consecutive random access attempts on the beam (that is, the number of consecutive random access preamble transmissions corresponding to the beam), whether The indication information of the random access contention is detected, and whether the reference signal received strength (Reference Signal Received Power, RSRP) of the beam corresponding to the random access resource used by the random access attempt is higher than a configured threshold value.
  • RSRP Reference Signal Received Power
  • the UE is allowed to save up to 8 RA reports in NR. After the UE enters the RRC idle or inactive state, it still saves the previously generated RA report. The UE may send the saved RA report to the network side after entering the connected state again.
  • the random access information in the current CEF report only saves the random access process information when the connection establishment/recovery failure occurred recently, mainly including the information of each random access attempt in the random access process (in the PerRAInfoList information element). express).
  • the CEF report also includes a numberOfConnFail information element, which is used to indicate the latest value of the RRC setup or RRC recovery procedures that fail continuously in the same cell independently of state transitions.
  • the RA report under the two-step random access process is mainly enhanced. Possible enhancements include including the type information of the two-step random access in the RA report when the UE performs a two-step random access procedure, the fallback information of the two-step random access procedure falling back to the four-step random access procedure, The downlink quality measured by the UE before the two-step random access procedure is triggered, etc.
  • the RA information report described in the present disclosure is not limited to the RA information report in the above-mentioned existing mechanism, and other commands, such as SDT information report, can also be performed.
  • One of the research goals of the small data transmission SDT project is to realize the small data packet transmission in the RRC_INACTIVE state.
  • the UE sends a small data transmission request to the network side through the SDT dedicated PRACH resource in the random access process, and the network side knows that the UE will perform small data transmission in the RRC_INACTIVE state. data transmission, so that the UE will not be configured to enter the RRC connected state.
  • the UE sends the small data to the network side in message A of the two-step random access procedure or message 3 of the four-step random access procedure, and the message A or message 3 also includes the RRC recovery request message.
  • the UE receives a response from the network side including the RRC release message After the message, it is determined that the SDT process ends; if the small data has not been completely sent (that is, there is still unsent uplink small data in the uplink buffer of the UE), after the random access is completed, the network side passes the UE-specific wireless network identifier (such as The Cell-Radio Network Temprary identifier (C-RNTI) schedules the UE to complete uplink or downlink small data transmission, and when all the small data transmissions are completed, the SDT process ends.
  • C-RNTI The Cell-Radio Network Temprary identifier
  • the UE During the SDT process, if the UE has non-SDT uplink data arriving, the UE will send a request indication to the network side or automatically fall back to the traditional non-SDT process to perform uplink data transmission. During the entire SDT process, the UE remains in the RRC_INACTIVE state, which greatly reduces the signaling overhead brought by the traditional data transmission process, saves the UE energy consumption, and can also shorten the data transmission delay. According to the current 3GPP discussion, the UE determines whether to send data through the SDT process based on certain conditions when uplink data arrives. Only when the conditions for initiating the SDT procedure are satisfied, the UE can initiate and use the SDT procedure to transmit data.
  • These conditions may include: the network side configures resources for SDT through system information or UE-specific signaling (such as SDT-specific PRACH configuration), the radio bearer (Radio Bearer, RB) or logic associated with the UE's uplink data to be transmitted
  • the channel is enabled to use the SDT process, the downlink quality of the UE's primary cell (that is, the residing cell in the RRC_INACTIVE state) is greater than or equal to a configured link quality threshold TH1, and the amount of uplink data to be transmitted by the UE The size is less than or equal to a configured data size threshold value TH2, etc.
  • the SDT does not limit the name of the mechanism for transmitting small data in the RA process, and can also be named in other ways, such as early data transmission.
  • the present disclosure mainly proposes a solution to the problem of how the UE performs RA information reporting in the SDT mechanism of small data transmission.
  • the following embodiments of the present disclosure provide specific implementation methods for this problem.
  • the base station can obtain More accurate RA information, so that the SDT-related RACH parameters can be adjusted more accurately based on the accurate information in the RA information report, and the RACH performance is improved.
  • FIG. 4 shows a schematic diagram of a general method of RA information reporting performed by a user equipment UE according to the present disclosure.
  • the method for reporting RA information performed by the user equipment UE of the present disclosure includes: step S410, step S420 and step 430.
  • step S410 the UE performs and completes the SDT process.
  • the UE determines that the uplink data meets the conditions for performing SDT, and completes data transmission through the SDT process.
  • step S420 the UE saves the RA information in the SDT process in a UE variable, where the RA information refers to the RA information associated with the SDT process.
  • the UE sends a report including RA information related to the SDT process to the network side. The report includes the RA information related to the SDT process stored in step S420.
  • the RA information report sent to the network side includes the RA information related to the SDT process or the SDT related parameter information. Therefore, more refined RA information reporting in the SDT scenario can be achieved, so that the network side can more accurately adjust RACH parameters or SDT-related configuration parameters based on the SDT-related information in the report, thereby improving RACH performance or SDT performance.
  • This embodiment provides a method for reporting RA information under the SDT mechanism executed on the UE.
  • Step S110 The UE completes the random access procedure for SDT.
  • the type of the random access procedure may be a four-step random access procedure or a two-step random access procedure.
  • the random access procedure for SDT refers to an RA attempt using SDT dedicated resources is performed in the random access procedure, for example, an RA preamble dedicated to SDT is sent in the random access procedure.
  • the random access procedure is triggered for SDT, so before this step, it also includes:
  • Step 100 The UE determines to initiate an SDT process.
  • the UE completes the random access procedure for SDT considering both success and failure.
  • the successful completion of the SDT process is that the UE successfully receives the RRC release message after the small data transmission is completed in the SDT process and ends the SDT process.
  • the successful completion refers to when the last uplink transmission used for small data transmission is completed or the confirmation information corresponding to the uplink transmission is received (such as the successful reception confirmation of the MAC layer or the RLC layer).
  • the UE completing the random access procedure for SDT may also fail to complete the random access procedure for SDT, or the SDT procedure fails, for example, the RRC timer for monitoring SDT times out , or the small data transmission does not receive the corresponding downlink acknowledgment, or the number of small data packet transmission failures exceeds a configured threshold, or the small data transmission is interrupted, such as due to the occurrence of uplink alignment timer timeout or cell reselection. Small data transfer terminated.
  • the RRC timer is started when the UE initiates the SDT process, or when the UE initiates the RRC recovery process or the sending of the RRC recovery request message in the SDT process, and stops the timer when the UE receives the RRC release message.
  • the timer is T319.
  • the UE may roll back to traditional non-SDT processes to transfer data.
  • the UE completes the random access procedure for SDT, it can also be understood that the UE completes the non-SDT RA procedure after falling back to the traditional non-SDT RA procedure.
  • Step S120 The UE records the RA information for the random access procedure of the SDT described in step S110 in the RA information report.
  • the content of the RA information includes one or more of the following information:
  • the first information downlink quality information measured by the UE when the random access procedure is triggered or just before the random access procedure is triggered.
  • the downlink quality information is the measurement value information of the downlink path loss reference of the serving cell (or called the camping cell or the primary cell) obtained by the UE.
  • the measurement value information is associated with a reference signal measurement power value (Reference Signal Received Power, RSRP), for example, the measurement value information is used to identify a specific value of RSRP or a range of RSRP values.
  • RSRP Reference Signal Received Power
  • the second information the small data size information of the UE when the random access process is triggered or just before the random access process is triggered, which can also be described as small data size information used to determine the initiation of the SDT process.
  • the UE uses the small data size value to compare with the data size threshold value configured by the network side to confirm whether the SDT process can be initiated to complete the sending of the small data.
  • the small data size is also called the small data amount, which refers to the size of the small data sent by initiating the SDT process.
  • the small data size includes the size of a data packet associated with an SDT-enabled radio bearer (Radio Bearer, RB) or a logical channel on the network side.
  • Radio Bearer Radio Bearer
  • the present disclosure does not limit the specific calculation method for the UE to determine the small amount of data when the SDT process is initiated.
  • the data packets of the small data may be all data packets in a packet data aggregation layer (Packet Data Covergence Protocol, PDCP) cache or all data packets or media in a radio link control (Radio Link Control, RLC) cache. Data packets at the Medium Access Control (MAC) layer.
  • PDCP Packet Data Covergence Protocol
  • RLC Radio Link Control
  • the data packet may be a PDCP service data unit (Service Data Unit, SDU), a PDCP protocol data unit (Protocol Data Unit, PDU), RLC SDU, RLC PDU, MAC SDU, MAC PDU, MAC CE, physical layer transmission data block A combination of one or more of etc.
  • the radio bearer may be a data radio bearer (Data Radio Bearer, DRB) or a signaling radio bearer (Signalling Radio Bearer, SRB).
  • DRB Data Radio Bearer
  • SRB Signaling radio bearer
  • the SRB does not include SRB0.
  • the third information is set as the triggering purpose of the random access procedure, that is, the SDT.
  • the raPurpose is used to record the triggering purpose of the random access procedure, or is used to indicate the random access scenario in which the random access report item is triggered.
  • the raPurpose indicator set to SDT in this embodiment is used when the random access procedure is for SDT.
  • Subsequent uplink transmission refers to other small data uplink transmissions that occur after message 3 or message A in the SDT process except for the small data contained in message 3 or message A in the random access process.
  • Subsequent uplink transmission refers to other small data uplink transmissions that occur after message 3 or message A in the SDT process except for the small data contained in message 3 or message A in the random access process.
  • the number of subsequent uplink transmissions refers to the number of newly transmitted MAC PDUs at the MAC layer in subsequent uplink transmissions, excluding the number of retransmitted data packets.
  • it can also be expressed as the number of uplink grants for new transmissions received in the SDT process except those contained in the random access response.
  • the SDT completion refers to the completion of small data transmission in the SDT process, which may be completed successfully or completed unsuccessfully, as described in step S110.
  • Seventh information the elapsed time from the completion of random access to the completion of the SDT process in the SDT process.
  • the random access completion refers to that the UE considers that the random access process is successfully completed when the random access contention is successfully resolved.
  • the completion of the SDT process is consistent with the description in the above-mentioned sixth information, which is not repeated here.
  • Eighth information indicating information that the SDT process is (no) entering the connected state. It can also be expressed as yes (no) receiving the RRC recovery message from the network side during the SDT process.
  • the non-SDT data includes data packets associated with a radio bearer (RB) or a logical channel that is not enabled for SDT on the network side, or data that does not meet the data type required for small data transmission, such as data packet pair
  • RB radio bearer
  • the associated service type is not the service type required for SDT transmission.
  • the information that the base station knows that there is non-SDT data arriving may be that a buffer status report (Buffer Status Report, BSR) associated with the non-SDT data is sent to the base station, or it may be that there is non-SDT data arriving during the SDT process.
  • BSR Buffer Status Report
  • a random access preamble sending or RRC recovery request message is initiated to fall back to the traditional non-SDT process.
  • Tenth information small data size information actually transmitted in the SDT process.
  • small data size information reference may be made to the small data size information in the second information, and details are not described here.
  • the downlink quality threshold value TH1 used to judge whether the SDT process can be initiated.
  • the threshold value TH1 can be configured to the UE through system broadcast information or RRC dedicated signaling, for the UE to determine whether the SDT process can be initiated by comparing the downlink quality and the threshold value TH1 after the arrival of uplink data. send data.
  • the threshold value is an RSRP threshold value.
  • the twelfth information the threshold value TH2 of the amount of data used for judging whether the SDT process can be initiated.
  • the threshold value TH2 can be configured to the UE through system broadcast information or RRC dedicated signaling, for the UE to determine whether the SDT process can be initiated by comparing the size of the small data and the threshold value TH2 after the arrival of uplink data. send data.
  • the RRC setup or RRC recovery procedure refers to the RRC that is not used in the SDT procedure Establish or restore processes.
  • the indication information multiplexes the numberOfConnFail information element.
  • Fourteenth information information used to indicate the latest value of the RRC recovery procedures that fail consecutively in the same cell, where the RRC recovery procedures refer to the RRC recovery procedures used for the SDT procedure.
  • the UE fails in the RRC connection recovery process in the same cell (eg, T319 times out) and the RRC connection recovery process is used for SDT, the UE increases the fourteenth information stored on it by 1.
  • the same cell means that the current cell identity where the RRC connection recovery failure of the UE occurs is the same as the cell identity associated in the report variable saved on the UE.
  • Fifteenth information information used to indicate the latest value of RRC setup or RRC recovery procedures that have failed consecutively in the same cell, where the RRC recovery procedures include both RRC recovery procedures for SDT procedures and non-SDT procedures RRC recovery process.
  • the UE fails in the RRC connection recovery process in the same cell (such as T319 timeout) or when the RRC connection establishment fails (such as T300 timeout)
  • the UE increases the fifteenth information stored on it by 1.
  • the same cell means that the current cell identity where the RRC connection recovery failure of the UE occurs is the same as the cell identity associated in the report variable saved on the UE.
  • the RA information report containing the RA information report is the aforementioned first RA information report, that is, the RA report.
  • the UE adds an entry (RA-Report) to the RA report list RA-ReportList in the RA report variable (such as VarRA-Report) for recording the RA of the random access procedure completed in step S110 information.
  • the UE adds an entry (entry) RA-Report to the RA report list RA-ReportList in the RA report variable VarRA-Report to record the completed random access process information: current variable The number of RA-report entries (number of entries) in the random access report list ra-ReportList stored in VarRA-Report is less than the maximum number of RA reports maxRAReport supported by the system; and the public land mobile network stored in VarRA-Report The number of (Public Land Mobile Network, PLMN) is equal to the set maximum value maxPLMN and the peer PLMN (EPLMN) list is a subset of the PLMN list stored in the VarRA-Report plmn-IdentityList or the EPLMN list is equivalent to that stored in the VarRA-Report The PLMN list plmn-IdentityList.
  • PLMN Public Land Mobile Network
  • the RA information report is the aforementioned second type of RA information report, that is, a CEF report.
  • the UE adds and sets the above RA information in the CEF report variable (eg VarConnEstFailReport).
  • the RA information report is not limited to be the existing RA report, CEF report or RLF report described above; it may also be other types of UE reports, such as reports for reporting SDT process information .
  • This embodiment proposes a method for reporting RA information in the case of SDT implemented on the UE.
  • Step S210 The UE receives the first RRC message including the request information from the network side.
  • the request information is used to request the UE to report the saved report containing RA information or SDT process information.
  • the first RRC message is a UEinformationRequest message
  • the request information is an RA report request indication (ra-ReportReq information element) or a CEF report request indication (connEstFailReportReq information element).
  • Step S220 The UE sends a second RRC message including the RA information report associated with the SDT to the network side, for responding to the first RRC message received in step S210.
  • the second RRC message is a UEinformationResponse message
  • the RA information report is contained in an RA report (ra-ReportList information element) or a CEF report (ConnEstFailReport information element).
  • the RA information report sent by the UE to the network side includes one or more kinds of RA information among the first information to the twelfth information.
  • the first information to the twelfth information are the same as the first information to the fifteenth information described in Embodiment 1, and are not repeated here.
  • This embodiment provides a method for the UE in the RRC_INACTIVE state to determine that the SDT process fails to end.
  • Step S310 The UE initiates an SDT process.
  • the UE initiates the SDT process and is executed after the UE determines that all conditions specified for initiating the SDT process are satisfied.
  • the conditions to be met for initiating the SDT process are as described above, and are not repeated here.
  • the UE starts a timer for monitoring the SDT process, and the timer for monitoring the SDT process is described in Embodiment 1.
  • Step 2 During the SDT process, when the number of transmissions corresponding to the RLC layer data packet associated with the UE's small data transmission, that is, the RLC SDU, is equal to or exceeds a configured threshold, the UE determines that the small data transmission fails, and the SDT The process failed, ending the SDT process.
  • the operation of the UE judging that the small data transmission fails and ending the SDT process is performed at the RRC layer of the UE.
  • this step also includes determining that the small data transmission fails and ending the SDT process after the UE RRC layer receives an indication from the RLC layer that the maximum number of retransmissions has been reached.
  • the RLC refers to the RLC associated with the SDT-enabled RB or logical channel.
  • the UE ending the SDT process includes one or more of the following operations:
  • Operation 1 Stop the timer for monitoring the SDT process
  • Action 2 reset the MAC
  • Operation 3 Delete the key derived during the SDT process
  • Operation 4 Rebuild the RLC entities corresponding to all RBs
  • Operation 5 Suspend all SRBs and DRBs except SRB0;
  • Action 6 Configure lower-level pending encryption and integrity protection.
  • Operation 7 The operation of entering the RRC_IDLE state is performed and the release reason is RRC recovery failure or SDT failure.
  • the release reason is RRC recovery failure or SDT failure.
  • Operation 8 Release the configured CG configuration for SDT
  • Operation 9 Discard the previously saved CG configuration for SDT.
  • the number of transmissions is also called the number of retransmissions, which can be represented by RETX_COUNT; the threshold value is represented by maxRetrThreshold.
  • the timer for monitoring the SDT process is running.
  • the data packet refers to a data packet that is not included in message 3 or transmitted in message A, and is not a data packet sent by using the uplink resource corresponding to the uplink grant in the random access response, that is, the aforementioned implementation data for subsequent upstream transmission as described in the example.
  • the UE performs subsequent uplink transmission after the random access process is completed, that is, when the subsequent uplink transmission is performed, the UE has ended the random access process, and the random access related timers are not running at this time.
  • the random access response window timer ra -ResponseWindow random access contention resolution timer ra-ContentionResolutionTimer
  • message B response window timer msgB-ResponseWindow For example, the random access response window timer ra -ResponseWindow, random access contention resolution timer ra-ContentionResolutionTimer, message B response window timer msgB-ResponseWindow.
  • FIG. 7 is a block diagram representing a user equipment 70 according to an embodiment of the present disclosure.
  • the user equipment 70 includes a processor 710 and a memory 720 .
  • the processor 710 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 720 may include, for example, volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory, and the like.
  • the memory 720 has program instructions stored thereon. When the instruction is executed by the processor 710, the above random access reporting method in the user equipment described in detail in the present disclosure can be executed.
  • the program running on the device may be a program that causes a computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory systems.
  • a program for realizing the functions of the embodiments of the present disclosure can be recorded on a computer-readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” as used herein may be a computer system embedded in the device, and may include an operating system or hardware (eg, peripheral devices).
  • the "computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium that dynamically stores a program for a short period of time, or any other recording medium readable by a computer.
  • circuits eg, monolithic or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general-purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit. In the event that new integrated circuit technologies emerge as a result of advances in semiconductor technology to replace existing integrated circuits, one or more embodiments of the present disclosure may also be implemented using these new integrated circuit technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种随机接入信息上报方法和用户设备。由用户设备执行的随机接入信息上报方法,包括:发起并完成小数据传输SDT过程;以及向网络侧发送与所述SDT过程相关的包含用于表示所述UE在SDT过程发起之前刚刚获得的下行链路质量信息的RA信息报告。由此,能够实现SCG激活场景下的更精细化的RA报告,从而能够提升RACH性能或SDT传输性能。

Description

随机接入信息上报方法和用户设备 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及一种由用户设备执行的随机接入信息上报方法和相应的用户设备。
背景技术
无线网络中通过网络优化可以达到优化网络性能的目的。一般对现有已部署和运行的网络进行数据采集和数据分析等手段,找出影响网络质量的原因,并且通过修改所配置的网络参数、调整网络结构和部署的设备等手段来提升网络性能。对于自配置和自优化网络(Self-configuration and Self-Optimization Network,SON),指的是基于用户设备和/或基站的测量/性能测量来自动调节网络的过程。网络侧可以配置UE执行用于SON的测量。SON功能包含很多方面,如用于降低运行商的邻区管理负担的自动邻区关系功能(ANR,Automatic Neighbour Relation Function)、用于均衡不同小区之间负责的移动负载均衡功能(MLB,Mobility Load Balancing),用于优化移动性能的移动鲁棒性优化功能(MRO,Mobility Robustness Optimization)、用于优化随机接入信道参数的随机接入信道优化功能和用于优化覆盖以及MRO的无线链路失败报告功能等。
第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN全会批准了一个版本17的关于新无线技术(NR,New Radio)进一步增强的新工作项目(参见RP-201281:New WID on enhancement of data collection for SON/MDT in NR and EN-DC)。其研究项目的目标之一就是对于版本16及之前版本的NR***进一步增强和实现SON的功能,包括新的切换机制下的移动鲁棒性优化、随机接入信道性能等。
此外3GPP RAN2工作组目前在进行另一个版本17的研究项目(参见3GPP文档RP-193252(Work Item on NR small data transmissions in INACTIVE state))简称小数据传输(Small Data Transmission,SDT)项目。该研究项目的目的是针对用户不频繁发送的小尺寸数据业务而带来的信令开销和功率消耗进行优化。对于处于无线资源控制非激活态(Radio Resource  Control_Inactive,RRC_INACTIVE)的用户设备(User Equipment,UE),一些不频繁的小尺寸数据业务(如即时信息、保持在线的心跳信号、智能穿戴设备或传感器的周期信息以及智能计量设备带来的周期读表业务等)传输使得UE需要进入无线资源控制连接态RRC_CONNECTED状态来执行小尺寸数据包的发送,由此而来的信令开销带来了网络性能的降低,同时也极大地消耗了UE的能耗。在当前的正在研究的SDT机制中,一种方式是通过在随机接入过程中携带小尺寸数据(如伴随或包含在四步随机接入过程的消息3中携带小数据或伴随或包含在两步随机接入过程中的消息A中携带小数据),以及在随机接入过程后通过UE专用信道(如专用业务信道DTCH或专用控制信道DCCH)来传输数据,但无需进入RRC_CONNECTED态获取上行发送资源的手段来达到目的,降低信令开销和UE能耗。
本公开旨在实现NR网络中SON功能中的随机接入信息上报问题,更进一步地,解决在引入SDT机制下如何更精确地向网络侧反馈随机接入过程信息的问题,此外,本公开还提出了一种SDT机制下UE判定SDT传输失败的方法。
发明内容
本公开的主要目的在于,提供一种由用户设备执行的随机接入信息报告方法以及用户设备,能够实现SDT场景下的更精细化的RA信息报告,使得网络侧能够基于RA报告中的精细信息来更准确地进行SDT相关的RACH参数调整或SDT配置参数调整,从而能够提升RACH性能或SDT传输的性能。
根据本公开的第一方面,提供了一种由用户设备执行的随机接入RA上报方法,包括:发起并完成小数据传输SDT过程;以及向网络侧发送与所述SDT过程相关的RA信息报告,该报告中包含第一信息,所述第一信息用于表示所述UE在SDT过程发起之前刚刚获得的下行链路质量信息。
在上述方法中,可以是,所述第一信息为在用于SDT的随机接入过程触发时或随机接入过程刚好触发之前UE所测量的下行链路质量信息。
在上述方法中,可以是,所述下行链路质量为UE驻留小区的下行路损 参考的参考信号接收功率RSRP信息。
在上述方法中,可以是,所述RA信息还包括第二信息,所述第二信息用于指示在随机接入过程触发时或随机接入过程刚好触发之前UE的小数据大小信息。
在上述方法中,可以是,小数据大小是包含被网络侧使能了SDT的无线承载RB或逻辑信道所关联的所有数据包的大小。
在上述方法中,可以是,所述RA信息还包括第三信息,所述第三信息用于指示该随机接入过程的触发目的是用于SDT。
在上述方法中,可以是,所述RA信息包含在随机接入RA报告或连接建立失败CEF报告中。
在上述方法中,可以是,所述UE在收到来自网络侧的包含RA信息上报请求的RRC消息后,向网络侧发送RA信息上报。
在上述方法中,可以是,所述包含RA信息上报请求的RRC消息为UE信息请求消息;所述UE向网络侧发送的包含RA信息的消息为UE信息响应消息。
根据本公开的第二方面,提供了一种用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行上述方法。
发明效果
根据本公开的由用户设备执行的随机接入报告方法以及用户设备,能够实现SDT场景下的更精细化的RA信息报告,使得网络侧能够基于RA信息报告中的精细信息来更准确地进行SDT相关的RACH参数调整,从而能够提升RACH性能。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1示出了基于竞争的随机接入CBRA的过程;
图2示出了基于非竞争的随机接入CFRA的过程;
图3示出了现有技术中小数据传输过程SDT的一般过程的流程图。
图4示出了根据本公开中由用户设备UE执行的RA信息上报的一般方 法的示意图。
图5示出了根据本公开实施例1的由用户设备UE执行的RA信息上报方法的示意图。
图6示出了根据本公开实施例2的由用户设备UE执行的RA信息上报方法的示意图。
图7示出了根据本公开实施例的用户设备的框图。
具体实施方式
根据结合附图对本公开示例性实施例的以下详细描述,本公开的其它方面、优势和突出特征对于本领域技术人员将变得显而易见。
在本公开中,术语“包括”和“含有”及其派生词意为包括而非限制;术语“或”是包含性的,意为和/或。
在本说明书中,下述用于描述本公开原理的各种实施例只是说明,不应该以任何方式解释为限制公开的范围。参照附图的下述描述用于帮助全面理解由权利要求及其等同物限定的本公开的示例性实施例。下述描述包括多种具体细节来帮助理解,但这些细节应认为仅仅是示例性的。因此,本领域普通技术人员应认识到,在不背离本公开的范围和精神的情况下,可以对本文中描述的实施例进行多种改变和修改。此外,为了清楚和简洁起见,省略了公知功能和结构的描述。此外,贯穿附图,相同参考数字用于相似功能和操作。
下文以NR移动通信***作为示例应用环境,具体描述了根据本公开的多个实施方式。然而,需要指出的是,本公开不限于以下实施方式,而是可适用于更多其它的无线通信***,如连接到5G核心网的LTE***等。
本公开中的基站可以是任何类型基站,包含Node B、增强基站eNB、5G通信***基站gNB;或者微基站、微微基站、宏基站、家庭基站等;所述小区也可以是上述任何类型基站下的小区,小区也可以是光束(beam)、传输点(Transmission point,TRP),基站也可以是组成基站的中心单元(gNB-Central Unit,gNB-CU)或分布式单元(gNB-Distributed Unit,gNB-DU)。若无特殊说明,在本公开中,小区和基站的概念可以互相替换;LTE***也用于指代5G及其之后的LTE***(如称为eLTE***,或者可以连接到5G核心网的LTE***),同时LTE可以用演进的通用陆地无线接 入(Evolved Universal Terrestrial Radio Access,E-UTRA)或演进的通用陆地无线接入网E-UTRAN来替换。不同的实施例之间也可以结合工作,比如不同实施例中相同的变量/参数/名词的做相同解释。取消、释放、删除、清空和清除等可以替换。执行、使用和应用可替换。配置和重配置可以替换。监测(monitor)和检测(detect)可替换。
下面先对本公开涉及到的一些现有概念和机制进行说明。值得注意的是,在下文的描述中的一些命名仅是实例说明性的,而不是限制性的,也可以作其他命名。
物理随机接入信道资源:Physical Random Access Channel(PRACH)resource。基站通过***信息广播小区所使用的物理随机接入信道参数配置,本公开中,物理随机接入信道资源PRACH resource可以指用于随机接入的物理频率资源和/或时域资源和/或码域资源(如preamble)。
随机接入信道:Random Access Channel,RACH。指用于发送随机接入前导的信道,本公开中,RACH既可以指传输信道RACH,也可以指物理随机接入信道PRACH,不作区分。RACH参数/配置指实现随机接入功能的无线配置,包括PRACH的相关配置,比如前导最大发送次数、功率抬升参数、随机接入响应接收窗大小、MAC竞争解决定时器配置、PRACH时频资源配置、消息1(即preamble)子载波间隔、用于指示每个RACH时机(RACH occasion,RO)对应的同步信道块(Synchronization Signal Block,SSB)个数信息和每个SSB对应的基于竞争的随机前导preamble个数的配置(由ssb-perRACH-OccasionAndCB-PreamblesPerSSB信息元素配置)、退避参数(scalingFactorBI信息元素中)等。
随机接入RA过程:
现有NR/LTE机制中,随机接入过程有两种:基于竞争的随机接入(Contention Based Random Access,CBRA)和基于非竞争的随机接入(即无竞争随机接入(Contention Free Random Access,CFRA))。CBRA的过程如图1所示,分为四个步骤:第一步,用于UE向基站发送消息1(即随机接入前导preamble);第二步:UE接收来自基站的消息2(即随机接入响应Random Access Response,RAR);第三步:UE发送消息3(由消息2中的上行许可uplink grant所调度的上行传输),消息3中一般用于向基站发送UE标识、用于无线资源控制(Radio Resource Control,RRC)连接建立/恢 复/重建立的RRC消息、用于随机接入竞争解决的UE竞争解决标识等,在早期数据传输中,也可包含用户面数据;第四步:UE接收来自基站的消息4(即用于竞争解决的消息)。CBRA中所使用的PRACH资源是很多UE共用的,当UE完成CBRA的随机接入上述四个步骤且竞争解决成功后,随机接入过程成功完成。CFRA的过程如图2所示,分为两个步骤:第一步:用于UE向基站发送消息1(即随机接入前导preamble);第二步:UE接收来自基站的消息2(即随机接入响应Random Access Response,RAR)。成功接收消息1关联的消息2后,UE认为CFRA过程成功完成。CFRA一般由基站预先为UE分配专用的PRACH资源如preamble(图2中称为第0步),所以没有竞争存在。当前的NR中正在引入两步随机接入过程。将上述四步随机接入过程中的第一步和第三步合并在同一个步骤发送称消息A。也就是消息A包含一个随机接入前导和随后关联的PUSCH负载,PUSCH负载的内容和消息3中所包含的内容一致,其中可以包含RRC消息,也可以是用户面数据、MAC控制元素如缓存状态报告和UE标识等。第二步和第四步合并成同一个步骤称消息B。消息B是两步随机接入过程中对消息A的响应,它所包含的内容与上述消息2和消息4的内容相似,可包括用于竞争解决的响应(竞争解决标识、随机接入前导标识、UE标识等)、回退(fallback)指示、退避(backoff)指示、时间提前命令、上行许可,也可以包括用于响应消息A中包含的RRC消息对应的响应RRC消息等。相比四步随机接入,两步随机接入过程能够缩短随机接入的时延。通常两步随机接入采用和四步随机接入不同的随机接入资源配置。
UE在多种情况下可以触发随机接入过程,如从RRC空闲态或RRC不活动态(RRC inactive)转入RRC连接态而执行的初始接入、波束恢复请求、切换(在NR中也可称同步重配置)等。UE在随机接入过程触发后根据网络侧的配置和UE的测量结果选择所发起的随机接入过程是两步随机接入还是四步随机接入类型。此外,UE可以在两步随机接入时回退到四步随机接入的过程,比如当收到网络侧发来的回退随机接入响应(fallback Random Access Response,fallbackRAR)时,或者当两步随机接入尝试消息A的发送次数超过一个配置的最大次数时等。本公开所述随机接入过程包含但不限于上述随机接入过程。
RA信息报告:
在当前的NR***中,UE向网络侧上报与RA信息相关报告的场景主要有三种。
第一种RA信息报告中,UE在变量VarRA-Report对每一个成功完成的随机接入过程记录其RA信息。对于记录了成功完成的随机接入过程信息的随机接入报告(称RA报告),基站会下发UE信息请求UEinformationRequest消息给UE,其中包含RA报告请求指示(ra-ReportReq信息元素),用于请求UE上报所保存的随机接入过程的RA报告。收到包含该指示的UEinformationRequest消息后,UE将所保存的RA报告包含在UE信息响应UEinformationReponse消息中报告给基站。基站将一个UE上报的RA报告作为样本。基于足够多的多个样本,基站可以分析当前RACH性能是否满足需求,并按照需求调整RACH参数,来提升RACH性能。
第二种RA信息相关报告是连接建立失败(Connection Establishment Failure,CEF)报告。若初始接入失败(RRC连接建立过程失败或RRC连接恢复过程失败),对应的CEF报告中也会保存RRC连接建立/恢复过程中所执行的随机接入过程的随机接入信息。若UE有保存的CEF报告在变量VarConnEstFailReport中,UE会在RRC消息如RRC恢复完成消息中包含一个connEstFailInfoAvailable信息元素用于告知基站其上有保存的CEF报告。基站下发UEinformationRequest消息给UE,其中包含CEF报告请求指示(connEstFailReportReq信息元素),用于请求UE上报所保存的CEF报告信息。收到包含该指示的UEinformationRequest消息后,UE将所保存的CEF报告(ConnEstFailReport信息元素)包含在UEinformationReponse消息中报告给基站。
第三种RA信息相关报告是无线链路失败(Radio Link Failure,RLF)报告。例如在由于随机接入失败而触发的无线链路失败时,对应的无线链路失败报告中也会保存对应的随机接入信息。若UE有保存的RLF报告在变量VarRLF-Report中,UE会在RRC消息如RRC恢复完成消息中包含一个rlf-InfoAvailable信息元素用于告知基站其上有保存的RLF报告。基站下发UEinformationRequest消息给UE,其中包含无线链路失败报告请求指示 (rlf-ReportReq信息元素),用于请求UE上报所保存的RLF报告信息。收到包含该指示的UEinformationRequest消息后,UE将所保存的RLF报告(rlf-Report信息元素)包含在UEinformationReponse消息中报告给基站。若所述RLF过程中执行了随机接入过程(如RLF是由于随机接入失败而触发的),那么RLF报告中会包含对该随机接入过程的信息。
一般而言RA报告指的是上述第一种RA信息报告。在本公开中,考虑到SDT机制发生在RRC inactive状态,其和初始接入有类似之处,如都在随机接入的消息3或消息A中包含RRC连接恢复消息。基于此,RA报告也可包括CEF报告,所述RA信息也可适用于CEF报告中所包含的RA信息。
在LTE中,RA报告中主要包含两个关于随机接入过程的信息,一个是随机接入前导发送次数(numberofpreamblesent),用于指示在随机接入过程中,随机接入前导发送的次数,对应于MAC层的PREAMBLE_TRANSMISSION_COUNTER计数值;另一个是竞争检测指示(contentiondetected),用于指示对至少一个发送的随机接入前导是否检测到竞争。基站可以调整的RACH参数可以包括RACH资源配置、随机接入前导划分(如划分为专用前导、A组和B组的前导分组划分)、RACH回退(backoff)参数、RACH发送功率控制参数等。
版本16的NR***的网络优化结构沿用了LTE中的上述框架,并结合NR的特性如波束特性等进行了增强。
对于RA报告,NR***中支持UE保存多个随机接入过程所对应的RA信息。当UE成功完成一个随机接入过程时,UE判断若UE当前变量VarRA-Report中所保存的随机接入报告列表ra-ReportList中的RA-report项数(number of entries)小于***所支持的最大RA报告个数maxRAReport时,UE在VarRA-Report中添加一个新的项,用于记录此次成功完成的随机接入过程的信息。一个随机接入过程的信息包括:发送随机接入前导所在的小区信息(全局小区标识、跟踪区域码或物理小区标识和载波频率)、随机接入目的信息以及随机接入公共信息。所述随机接入公共信息包括随机接入过程所关联的参考下行频率信息(如Point A的绝对频率、子载波间隔、带宽位置信息locationAndBandwidth等)和按照发生时间先后顺序排列 的每一个随机接入尝试的所关联的RA信息。每一个随机接入尝试的所关联的RA信息包括波束索引值、在该波束上的连续随机接入尝试的次数(即该波束上所对应的连续的随机接入前导preamble的发送次数)、是否检测到了随机接入竞争的指示信息、该随机接入尝试所使用的随机接入资源上所对应的波束的参考信号接收强度(Reference Signal Received Power,RSRP)是否高于一个配置的门限值的指示信息。
NR中允许UE保存至多8个RA报告。UE在进入到RRC idle或inactive状态后,仍保存之前生成的RA报告。UE可在再次进入连接态后将所保存的RA报告发送给网络侧。
而目前CEF报告中的随机接入信息仅保存最近一次发生的连接建立/恢复失败时的随机接入过程信息,主要包含该随机接入过程中每次随机接入尝试的信息(以PerRAInfoList信息元素表示)。除此之外,CEF报告中还包括了一个numberOfConnFail信息元素,该信息元素用于指示独立于状态转换的在同一个小区内连续失败的RRC建立或RRC恢复流程的最新数值。
目前正在进行的版本17的RA报告优化中,主要对两步随机接入过程下的RA报告进行了增强。可能的增强包括当UE执行一个两步随机接入过程时,在RA报告中包含两步随机接入的类型信息,两步随机接入过程回退到四步随机接入过程的回退信息、UE在两步随机接入过程触发前所测得的下行链路质量等。
本公开中所述RA信息报告不限于上述现有机制中的RA信息报告,也可以做其他命令,如SDT信息报告。
小数据传输SDT机制
小数据传输SDT项目的研究目标之一是实现RRC_INACTIVE状态下的小数据包传输。如图3所示,在基于随机接入的SDT过程中,UE通过随机接入过程中的SDT专用PRACH资源向网络侧发送小数据传输请求,网络侧由此知道UE将进行RRC_INACTIVE状态下的小数据传输,从而不会配置UE进入RRC连接态。随后,UE将小数据携带在两步随机接入过程的消息A中或携带在四步随机接入过程的消息3中发送给网络侧,消息A或消息3中同时包含了RRC恢复请求消息。若所有的小数据已包含在消 息3或消息A中成功发送(即使能了SDT的无线承载或逻辑信道所对应的数据缓存为空),则UE在收到网络侧的包含RRC释放消息的响应消息后确定SDT过程结束;若小数据尚未完全发送完(即UE的上行缓存中仍有尚未发送的上行小数据),则在随机接入完成后,网络侧通过UE专用的无线网络标识(如小区无线网络临时标识(Cell-Radio Network Temprary identifier,C-RNTI))调度UE完成上行或下行的小数据传输,当所述小数据全部传输完成时,SDT过程结束。在SDT过程中,若UE有非SDT上行数据到达,则UE会通过向网络侧发送请求指示或自主回退到传统非SDT过程来执行上行数据发送。在整个SDT过程中,UE保持在RRC_INACTIVE状态,这大大减小了传统数据传输过程所带来的信令开销,节省了UE能耗,同时还可以缩短数据传输的时延。按照当前3GPP的讨论,UE在有上行数据到达时是基于一定条件来判断是否通过SDT过程来发送数据。只有当所述发起SDT过程的条件满足,UE才能发起并使用SDT过程来传输数据。这些条件可能包括:网络侧通过***信息或UE专用信令配置了用于SDT的资源(如SDT专用的PRACH配置)、UE的待传上行数据所关联的无线承载(Radio Bearer,RB)或逻辑信道被使能了使用SDT过程、UE的主小区(即RRC_INACTIVE状态下的驻留小区)的下行链路质量大于或大于等于一个配置的链路质量门限值TH1、UE的待传上行数据量大小小于或小于等于一个配置的数据量大小门限值TH2等。值得指出的是,所述SDT并不限定这种RA过程中传输小数据的机制的名称,也可以作其他命名,如早期数据传输等。
本公开主要就实现小数据传输SDT机制中UE如何进行RA信息上报的问题提出解决方法,本公开下述实施例就该问题给出具体的实施方式,通过本公开所述解决方法,基站可以获取更为精确的RA信息,从而基于RA信息报告中的精确信息更准确地进行SDT相关的RACH参数调整,提升RACH性能。
图4示出了根据本公开中由用户设备UE执行的RA信息上报的一般方法的示意图。
如图4所示,本公开的用户设备UE执行的RA信息上报方法包括:步 骤S410、步骤S420和步骤430。在步骤S410中,UE执行并完成SDT过程。当有上行数据到达时,UE判定所述上行数据符合执行SDT的条件,则通过SDT过程来完成数据的发送。在步骤S420中,UE将所述SDT过程中的RA信息保存在一个UE变量中,所述RA信息指的是与SDT过程相关联的RA信息。在步骤S430中,UE向网络侧发送包含与SDT过程相关的的RA信息的报告。该报告中包含步骤S420中所存储的与SDT过程相关的RA信息。
根据上述方法,在向网络侧发送的RA信息报告中包含用于与SDT过程相关的RA信息或SDT相关参数信息。因此能够实现在SDT场景下的更精细化的RA信息上报,使得网络侧能够基于所述报告中的SDT相关信息来更准确地进行RACH参数或SDT相关配置参数的调整,从而能够提升RACH性能或SDT性能。
实施例1
本实施例给出了一种在UE上执行的SDT机制下的RA信息报告方法。
步骤S110:UE完成用于SDT的随机接入过程。
所述随机接入过程的类型可以是四步随机接入过程,也可以是两步随机接入过程。所述用于SDT的随机接入过程指随机接入过程中执行了使用SDT专用资源的RA尝试,比如随机接入过程中有发送用于SDT专用的RA前导(preamble)。所述随机接入过程是用于SDT而触发的,因此在此步骤之前还包括:
步骤100:UE确定发起SDT过程。
所述UE完成用于SDT的随机接入过程考虑成功和失败两种情况。对前者,可以是UE成功完成用于SDT的随机接入过程,也可以是UE成功完成SDT过程。优选地,所述成功完成SDT过程是UE在SDT过程中小数据传输完成后成功收到RRC释放消息而结束SDT过程。备选地,所述成功完成指当用于小数据传输的最后一个上行传输完成或收到该上行传输对应的确认信息(如MAC层或RLC层的成功接收确认)。对于随机接入过程失败的场景,所述UE完成用于SDT的随机接入过程也可以是用于SDT的随机接入过程失败完成,或者SDT过程失败,比如用于监测SDT的RRC定时器超时,或小数据传输未收到对应的下行确认,或小数据包发送失败的次数超过一个配置的门限值,或小数据传输被中断比如由于发生上行对 齐定时器超时或小区重选而导致的小数据传输终止。优选地,所述RRC定时器在UE发起SDT过程时开启或者在SDT过程中发起RRC恢复过程时或发起RRC恢复请求消息的发送时开启,在UE收到RRC释放消息时停止该定时器。优选地,所述定时器是T319。
在一种实现方式中,所述UE发起的SDT过程若发生失败如RA过程失败(用于SDT的RA尝试即RA前导发送次数超过一个配置的门限值),则所述UE可能会回退到传统非SDT过程来传输数据。在这种情况下所述UE完成用于SDT的随机接入过程也可以理解为UE在回退到传统非SDT的RA过程后完成所述非SDT的RA过程。
步骤S120:UE在RA信息报告中记录步骤S110中所述用于SDT的随机接入过程的RA信息。所述RA信息的内容包括下述信息的一种或多种:
第一信息:在随机接入过程触发时或随机接入过程刚好触发之前UE所测量的下行链路质量信息。
优选地,所述下行链路质量信息是UE所获得的的服务小区(或称驻留小区或主小区)的下行路损参考的测量值信息。优选地,所述测量值信息与参考信号测量功率值(Reference Signal Received Power,RSRP)所关联,比如所述测量值信息用于标识RSRP的具体值或一个RSRP值的范围。
第二信息:在随机接入过程触发时或随机接入过程刚好触发之前UE的小数据大小信息,也可以描述为用于确定发起SDT过程的小数据大小信息。UE使用该小数据大小值与网络侧所配置的数据量大小门限值进行比较来确认是否可以发起SDT过程来完成所述小数据的发送。
小数据大小也称小数据量,指的是通过发起SDT过程以发送的小数据的大小。优选地,所述小数据大小包含被网络侧使能了SDT的无线承载(Radio Bearer,RB)或逻辑信道所关联的数据包的大小。本公开中并不限定UE确定发起SDT过程时的小数据量的具体计算方法。优选地,所述小数据的数据包可以是包数据聚合层(Packet Data Covergence Protocol,PDCP)缓存中的所有数据包或无线链路控制(Radio Link Control,RLC)缓存中的所有数据包或媒体介入控制(Medium Access Control,MAC)层的数据包。所述数据包可以是PDCP服务数据单元(Service Data Unit,SDU)、PDCP协议数据单元(Protocol Data Unit,PDU)、RLC SDU、RLC PDU、MAC SDU、MAC PDU、MAC CE,物理层传输数据块等中的一种或多种的组合。所述无线承载可以是数据无线承载(Data Radio Bearer,DRB)也可以是信令无 线承载(Signalling Radio Bearer,SRB)。可选地,所述SRB不包含SRB0。
第三信息:设置raPurpose信息元素为该随机接入过程的触发目的即SDT。所述raPurpose用于记录随机接入过程的触发目的,或者说用于指示随机接入报告项被触发的随机接入场景。在该实施例中设置为SDT的raPurpose指示符用于当所述随机接入过程是用于SDT的。
第四信息:用于指示SDT过程中是否存在随后(subsequent)上行传输。随后上行传输指的是在SDT过程中除了在随机接入过程中的消息3或消息A中包含的小数据外在消息3或消息A之后发生的其他小数据上行传输。
第五信息:用于指示SDT过程中随后(subsequent)上行传输的次数。随后上行传输指的是在SDT过程中除了在随机接入过程中的消息3或消息A中包含的小数据外在消息3或消息A之后发生的其他小数据上行传输。随后上行传输的的次数指的是随后上行传输在MAC层的新传的MAC PDU个数,不包含重传的数据包个数。此外,也可以表述为SDT过程所收到的除包含在随机接入响应内的其他用于新传的上行许可的个数。
第六信息:SDT过程从发起到完成所经历的时间。所述SDT完成指的是SDT过程中小数据传输完成,可以是成功完成也可以是失败完成,参见步骤S110中所述。
第七信息:SDT过程中从随机接入完成到SDT过程完成所经历的时间。所述随机接入完成指的是随机接入竞争解决成功时UE认为随机接入过程成功完成。所述SDT过程完成与上述第六信息中的描述一致,此处不赘述。
第八信息:SDT过程是(否)进入连接态的指示信息。也可以表述为是(否)在SDT过程中收到网络侧发来的RRC恢复消息。
第九信息:SDT过程中是(否)有非SDT数据到达。也可表述为SDT过程中是(否)向基站指示了有非SDT数据到达的信息,或者SDT过程是否因为非SDT数据到达而回退到传统数据传输过程(回退过程)。优选地,所述非SDT数据包含未被网络侧使能SDT的无线承载(Radio Bearer,RB)或逻辑信道所关联的数据包,或者不符合小数据传输要求数据类型的数据,比如数据包对关联的业务类型不是SDT传输所要求的业务类型。所述向基站知识了有非SDT数据达到的信息可以是向基站发送了与非SDT数据相关联的缓存状态报告(Buffer Status Report,BSR),也可以是因为在SDT过程中有非SDT数据到达而发起的回退到传统非SDT过程的的随机接入前导发送或RRC恢复请求消息。
第十信息:在SDT过程中实际传输的小数据大小信息。所述小数据大小信息可参见第二信息中的小数据大小信息,此处不赘述。
第十一信息:用于判断是否可以发起SDT过程的下行链路质量门限值TH1。所述门限值TH1可以通过***广播信息或RRC专用信令配置给UE,用于UE在上行数据到达后,通过比较下行链路质量和所述门限值TH1来判定是否可以发起SDT过程来发送数据。优选地,所述门限值是一个RSRP门限值。
第十二信息:用于判断是否可以发起SDT过程的数据量大小门限值TH2。所述门限值TH2可以通过***广播信息或RRC专用信令配置给UE,用于UE在上行数据到达后,通过比较小数据的大小和所述门限值TH2来判定是否可以发起SDT过程来发送数据。
第十三信息:用于指示独立于状态转换的在同一个小区内连续失败的RRC建立或RRC恢复流程的最新数值的信息,所述RRC建立或RRC恢复流程指的是不用于SDT过程的RRC建立或恢复流程。优选地,该指示信息复用numberOfConnFail信息元素。当UE在同一个小区发生RRC连接建立或RRC连接恢复失败时(如T300或T319超时),UE将其上所保存的所述第十三信息增加1。所述同一个小区指的是UE发生连接建立失败或连接恢复失败的当前小区标识和UE上保存的报告变量(如VarConnEstFailReport)中所关联的小区标识相同。
第十四信息:用于指示在同一个小区内连续失败的RRC恢复流程的最新数值的信息,所述RRC恢复流程指的是用于SDT过程的RRC恢复流程。当UE在同一个小区发生RRC连接恢复过程失败时(如T319超时)且所述RRC连接恢复过程是用于SDT的,UE将其上所保存的所述第十四信息增加1。所述同一个小区指的是UE发生RRC连接恢复失败的当前小区标识和UE上保存的报告变量中所关联的小区标识相同。
第十五信息:用于指示在同一个小区内连续失败的RRC建立或RRC恢复流程的最新数值的信息,所述RRC恢复流程即包括用于SDT过程的RRC恢复流程也包括用于非SDT过程的RRC恢复流程。当UE在同一个小区发生RRC连接恢复过程失败时(如T319超时)或RRC连接建立失败时(如T300超时),UE将其上所保存的所述第十五信息增加1。所述同一个小区指的是UE发生RRC连接恢复失败的当前小区标识和UE上保存的报告变量中所关联的小区标识相同。
在一种实现方式中,所述包含RA信息报告的是前文所述的第一中RA信息报告即RA报告。在这种情况下,UE在RA报告变量(如VarRA-Report)中的RA报告列表RA-ReportList中添加一个项(entry)RA-Report,用于记录步骤S110中完成的随机接入过程的RA信息。可选地,当下述条件满足时,UE在RA报告变量VarRA-Report中的RA报告列表RA-ReportList中添加一个项(entry)RA-Report来记录所述完成的随机接入过程信息:当前变量VarRA-Report中所保存的随机接入报告列表ra-ReportList中的RA-report条目数(number of entries)小于***所支持的最大RA报告个数maxRAReport;且VarRA-Report中保存的公共陆地移动网络(Public Land Mobile Network,PLMN)数目等于所设定的最大值maxPLMN及对等PLMN(EPLMN)列表是VarRA-Report中保存的PLMN列表plmn-IdentityList的子集或EPLMN列表等同于VarRA-Report中保存的PLMN列表plmn-IdentityList。
在另一种实现方式中,所述RA信息报告是前文所述的第二种RA信息报告即CEF报告。在这种情况下,UE在CEF报告变量(如VarConnEstFailReport)中添加并设置上述RA信息。
在又一种实现方式中,并不限制所述RA信息报告是前文所述已有的RA报告、CEF报告或RLF报告;也可以是其他类型的UE报告,比如用于上报SDT过程信息的报告。
实施例2
该实施例提出了一种在UE上实现的SDT情况下的RA信息上报的方法。
步骤S210:UE接收来自网络侧的包含请求信息的第一RRC消息。所述请求信息用于请求UE上报其所保存的包含RA信息的报告或SDT过程信息。
优选地,所述第一RRC消息是UEinformationRequest消息,所述请求信息是RA报告请求指示(ra-ReportReq信息元素)或CEF报告请求指示(connEstFailReportReq信息元素)。
步骤S220:UE向网络侧发送包含与SDT关联的RA信息报告的第二RRC消息,用于响应步骤S210中收到的第一RRC消息。
优选地,所述第二RRC消息是UEinformationResponse消息,所述RA信息报告是包含在RA报告(ra-ReportList信息元素)或CEF报告 (ConnEstFailReport信息元素)。
所述UE发送给网络侧RA信息报告中,包含第一信息~第十二信息中的一种或多种RA信息。所述第一信息~第十二信息和实施例1中所述第一信息~第十五信息相同,此处不赘述。
实施例3
该实施例给出了一种RRC_INACTIVE状态下的UE判断SDT过程失败结束的方法。
步骤S310:UE发起SDT过程。
所述UE发起SDT过程在UE确定满足发起SDT过程所规定的所有条件后执行。所述发起SDT过程需满足的条件见前文所述,此处不赘述。
优选地,在该步骤中,UE启动用于监测SDT过程的定时器,所述用于监测SDT过程的定时器见实施例1所述。
步骤2:在SDT过程中,当UE的小数据传输所关联的RLC层数据包即RLC SDU所对应的传输次数等于或超过一个配置的门限值时,UE判定此次小数据传输失败,SDT过程失败,结束SDT过程。优选地,所述UE判定小数据传输失败并结束SDT过程的操作在UE的RRC层执行。在这种限定下,该步骤还包括UE RRC层从RLC层收到重传的最大次数已达到的指示后,判定小数据传输失败并结束SDT过程。优选地,所述RLC指的是被使能了SDT的RB或逻辑信道所关联的RLC。
所述UE结束SDT过程包含下述操作的一种或多种:
操作1:停止用于监测SDT过程的定时器;
操作2:重置MAC;
操作3:删除SDT过程中所派生的密钥;
操作4:重建所有RB所对应的RLC实体;
操作5:挂起除SRB0以外所有的SRB和DRB;
操作6:配置下层挂起加密和完整性保护。
操作7:执行进入RRC_IDLE状态的操作且释放理由为RRC恢复失败或SDT失败。所述执行进入RRC_IDLE状态的操作见3GPP规范38.331的5.3.11章节。
当该SDT过程不是基于随机接入过程的SDT而是基于配置的许可(Configured Grant)的SDT时,还包括下述操作:
操作8:释放所配置的用于SDT的CG配置;
操作9:丢弃之前所保存的用于SDT的CG配置。
所述传输次数也称重传次数,可以以RETX_COUNT来表示;所述门限值以maxRetrThreshold来表示。优选地,所述在SDT过程中,可以是当用于监测SDT过程的定时器正在运行。优选地,所述数据包指的是不被包含在消息3或消息A中传输的数据包,不是使用随机接入响应中的上行许可所对应的上行资源所发送的数据包,也就是前述实施例中所述随后上行传输的数据。UE在随机接入过程完成后执行随后上行传输,即在执行随后上行传输时,UE已经结束随机接入过程,此时随机接入相关定时器不处于运行状态如随机接入响应窗定时器ra-ResponseWindow、随机接入竞争解决定时器ra-ContentionResolutionTimer、消息B响应窗定时器msgB-ResponseWindow。
图7是表示根据本公开实施例的用户设备70的框图。如图7所示,该用户设备70包括处理器710和存储器720。处理器710例如可以包括微处理器、微控制器、嵌入式处理器等。存储器720例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器720上存储有程序指令。该指令在由处理器710运行时,可以执行本公开详细描述的用户设备中的上述随机接入报告方法。
运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器***中。
用于实现本公开各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机***读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机***”可以是嵌入在该设备中的计算机***,可以包括操作***或硬件(如***设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如, 单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本公开的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本公开并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本公开并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任何设计改动。另外,可以在权利要求的范围内对本公开进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种由用户设备执行的随机接入RA信息上报方法,包括:
    发起并完成小数据传输SDT过程;以及
    向网络侧发送与所述SDT过程相关的RA信息报告,该报告中包含第一信息,所述第一信息用于表示所述UE在SDT过程发起之前刚刚获得的下行链路质量信息。
  2. 根据权利要求1所述的随机接入RA信息上报方法,其中,
    所述第一信息为在用于SDT的随机接入过程触发时或随机接入过程刚好触发之前UE所测量的下行链路质量信息。
  3. 根据权利要求1或2所述的随机接入RA信息上报方法,其中,
    所述下行链路质量为UE驻留小区的下行路损参考的参考信号接收功率RSRP信息。
  4. 根据权利要求1所述的随机接入RA信息上报方法,其中,
    所述RA信息还包括第二信息,所述第二信息用于指示在随机接入过程触发时或随机接入过程刚好触发之前UE的小数据大小信息。
  5. 根据权利要求4所述的随机接入RA信息上报方法,其中,
    小数据大小是包含被网络侧使能了SDT的无线承载RB或逻辑信道所关联的所有数据包的大小。
  6. 根据权利要求1所述的随机接入RA信息上报方法,其中,
    所述RA信息还包括第三信息,所述第三信息用于指示该随机接入过程的触发目的是用于SDT。
  7. 根据权利要求1所述的随机接入RA信息上报方法,其中,
    所述RA信息包含在随机接入RA报告或连接建立失败CEF报告中。
  8. 根据权利要求1所述的随机接入RA信息上报方法,其中,
    所述UE在收到来自网络侧的包含RA信息上报请求的RRC消息后,向网络侧发送RA信息上报。
  9. 根据权利要求1和7中所述的随机接入RA信息上报方法,其中,
    所述包含RA信息上报请求的RRC消息为UE信息请求消息;所述UE向网络侧发送的包含RA信息的消息为UE信息响应消息。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的随机接入RA信息上报方法。
PCT/CN2022/083332 2021-03-30 2022-03-28 随机接入信息上报方法和用户设备 WO2022206668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110343913.3 2021-03-30
CN202110343913.3A CN115150878A (zh) 2021-03-30 2021-03-30 随机接入信息上报方法和用户设备

Publications (1)

Publication Number Publication Date
WO2022206668A1 true WO2022206668A1 (zh) 2022-10-06

Family

ID=83404293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083332 WO2022206668A1 (zh) 2021-03-30 2022-03-28 随机接入信息上报方法和用户设备

Country Status (2)

Country Link
CN (1) CN115150878A (zh)
WO (1) WO2022206668A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117202227A (zh) * 2022-05-31 2023-12-08 荣耀终端有限公司 Sdt事件记录方法、装置及存储介质
CN118158830A (zh) * 2022-12-02 2024-06-07 夏普株式会社 随机接入报告方法和用户设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238665A (zh) * 2010-05-05 2011-11-09 中兴通讯股份有限公司 随机接入方法、基站、用户设备及***
CN102342145A (zh) * 2009-03-20 2012-02-01 瑞典爱立信有限公司 用于监控随机接入信道的方法和装置
CN105580427A (zh) * 2013-07-31 2016-05-11 松下电器(美国)知识产权公司 移动通信***中的切换过程
US20180152984A1 (en) * 2015-04-22 2018-05-31 Convida Wireless, Llc Small data usage enablement in 3gpp networks
US20180324864A1 (en) * 2017-05-05 2018-11-08 Motorola Mobility Llc Method and apparatus for transmitting a rach preamble on a wireless network
CN110662251A (zh) * 2018-06-29 2020-01-07 夏普株式会社 由用户设备执行的方法以及用户设备
US20200337089A1 (en) * 2019-04-22 2020-10-22 Industrial Technology Research Institute Extended random access method used by ue and base station and related apparatuses using the same
CN112087765A (zh) * 2019-06-13 2020-12-15 夏普株式会社 由用户设备执行的信息报告方法及用户设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102342145A (zh) * 2009-03-20 2012-02-01 瑞典爱立信有限公司 用于监控随机接入信道的方法和装置
CN102238665A (zh) * 2010-05-05 2011-11-09 中兴通讯股份有限公司 随机接入方法、基站、用户设备及***
CN105580427A (zh) * 2013-07-31 2016-05-11 松下电器(美国)知识产权公司 移动通信***中的切换过程
US20180152984A1 (en) * 2015-04-22 2018-05-31 Convida Wireless, Llc Small data usage enablement in 3gpp networks
US20180324864A1 (en) * 2017-05-05 2018-11-08 Motorola Mobility Llc Method and apparatus for transmitting a rach preamble on a wireless network
CN110662251A (zh) * 2018-06-29 2020-01-07 夏普株式会社 由用户设备执行的方法以及用户设备
US20200337089A1 (en) * 2019-04-22 2020-10-22 Industrial Technology Research Institute Extended random access method used by ue and base station and related apparatuses using the same
CN112087765A (zh) * 2019-06-13 2020-12-15 夏普株式会社 由用户设备执行的信息报告方法及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OH SUNG-MIN, SHIN JAESHEUNG: "An Efficient Small Data Transmission Scheme in the 3GPP NB-IoT System", IEEE COMMUNICATIONS LETTERS., IEEE SERVICE CENTER, PISCATAWAY, NJ., US, vol. 21, no. 3, 1 March 2017 (2017-03-01), US , pages 660 - 663, XP055973957, ISSN: 1089-7798, DOI: 10.1109/LCOMM.2016.2632128 *
ZTE CORPORATION, SANECHIPS: "Consideration on 2-step RACH procedure", 3GPP DRAFT; R2-1903549_CONSIDERATION ON 2-STEP RACH PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. China, Xian; 20190408 - 20190412, 28 March 2019 (2019-03-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051692814 *

Also Published As

Publication number Publication date
CN115150878A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP7028978B2 (ja) 無線通信ネットワークにおけるユーザ装置、ネットワークノードおよび方法
US9258747B2 (en) User equipment and methods for fast handover failure recovery in 3GPP LTE network
WO2018171634A1 (zh) 无线网络中的通信方法、装置和***
KR102587763B1 (ko) Lbt 모니터링 장애를 위한 처리 방법, 디바이스 및 시스템
EP3833100A1 (en) Control method for user equipment, and user equipment
WO2022206668A1 (zh) 随机接入信息上报方法和用户设备
WO2010105567A1 (zh) 切换优化方法、设备及***
JP2014506091A (ja) 分散型ran自己組織化の失敗イベント報告相関
US20220078875A1 (en) Method and apparatus for timer control for rrc connection resume procedure in a wireless communication system
WO2021129567A1 (zh) 由用户设备执行的随机接入报告方法和用户设备
US20230362774A1 (en) Radio link failure reporting method and user equipment
US20220394763A1 (en) Methods and apparatus for indicating a failure event
EP4181568A1 (en) Handover information reporting method and user equipment
WO2021087929A1 (zh) 一种随机接入的方法和装置
TWI634802B (zh) 快速網路進入之方法以及使用者設備
WO2023125649A1 (zh) 连接建立失败报告方法和用户设备
WO2020249007A1 (zh) 由用户设备执行的信息报告方法及用户设备
WO2022194041A1 (zh) 随机接入报告方法和用户设备
WO2023040955A1 (zh) 切换信息报告方法以及用户设备
WO2022022444A1 (zh) 由用户设备执行的方法以及用户设备
WO2024114732A1 (zh) 随机接入报告方法和用户设备
WO2024027704A1 (zh) 切换信息报告方法以及用户设备
WO2021129568A1 (zh) 由用户设备执行的随机接入报告方法和用户设备
WO2024057978A1 (ja) 端末装置、方法、および、集積回路
CN117320086A (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778850

Country of ref document: EP

Kind code of ref document: A1