WO2022206579A1 - 一种上行控制信息传输方法和装置 - Google Patents

一种上行控制信息传输方法和装置 Download PDF

Info

Publication number
WO2022206579A1
WO2022206579A1 PCT/CN2022/082944 CN2022082944W WO2022206579A1 WO 2022206579 A1 WO2022206579 A1 WO 2022206579A1 CN 2022082944 W CN2022082944 W CN 2022082944W WO 2022206579 A1 WO2022206579 A1 WO 2022206579A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
uplink control
priority
uci
ack
Prior art date
Application number
PCT/CN2022/082944
Other languages
English (en)
French (fr)
Inventor
李军
焦淑蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22778762.9A priority Critical patent/EP4311338A1/en
Publication of WO2022206579A1 publication Critical patent/WO2022206579A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for transmitting uplink control information.
  • uplink control information can be divided into high-priority UCI and Low priority UCI.
  • the high-priority UCI corresponds to the URLLC service
  • the low-priority UCI corresponds to the eMBB service.
  • the present application provides a method and device for transmitting uplink control information, which realizes the sending of uplink control information within the capability range of the terminal equipment, and ensures the working performance of the terminal equipment.
  • a first aspect provides a method for transmitting uplink control information.
  • the method includes: a terminal device determines N pieces of uplink control information, where N is an integer and is greater than 3, and the N pieces of uplink control information include first uplink control information and a second uplink control information. control information, the priority of the second uplink control information is higher than that of the first uplink control information; the terminal device sends the physical uplink channel carrying the N uplink control information, wherein the first uplink control information and the second uplink control information are the first uplink control information. encoding after the connection, or: the terminal device discards the first uplink control information and sends a physical uplink channel carrying the second uplink control information.
  • the first uplink control information may include one or more uplink control information
  • the second uplink control information may also include one or more uplink control information
  • the terminal device discards the first uplink control information and sends a physical uplink channel carrying the second uplink control information. It can be understood that the terminal device sends a physical uplink channel carrying high-priority uplink control information.
  • the terminal device discards the first uplink control information and sends a physical uplink channel carrying the second uplink control information. It can be understood that the terminal device can discard some low-priority uplink control information, and send a physical uplink channel carrying high-priority uplink control information and a physical uplink channel carrying part of low-priority uplink control information.
  • the terminal device discards the first uplink control information and sends a physical uplink channel carrying the second uplink control information. It can be understood that the terminal device may continue to discard or send the third uplink control information.
  • the N pieces of uplink control information further include third uplink control information.
  • the terminal device can send the physical uplink channel carrying the second uplink control information, but this application does not make any limitation on whether the terminal device can also send other uplink control information in the N uplink control information.
  • the present application does not exclude the situation that the terminal device may discard part of the first uplink control information and send the bearer second uplink control information and part of other uplink control information.
  • the terminal device may determine N pieces of uplink control information to be sent, where N is an integer and greater than 3. That is to say, in the present application, the number of uplink control information to be sent by the terminal device may be greater than 3, but when sending uplink control information, it may use a joint coding method or a discarding method to make the sent uplink control information The number does not exceed the maximum number of independently encoded uplink control information.
  • the uplink control information can be sent within the capability range of the terminal device, thereby ensuring the working performance of the terminal device.
  • the terminal device discarding the first uplink control information includes: when N is greater than a first threshold, the terminal device discarding the first uplink control information information.
  • the first UCI and the second UCI are encoded after concatenation, including: when N is greater than a first threshold, the terminal device will The first uplink control information and the second uplink control information are concatenated and encoded.
  • the first threshold may be the number or maximum number of independently encoded uplink control information, or the total number or maximum number of independently encoded UCI bit sequences, or the total number of code blocks encoded by uplink control information number, or the total number of code blocks encoded by each independently encoded UCI bit sequence.
  • the terminal device can also introduce a judgment condition before discarding the uplink control information or jointly encoding the uplink control information, so that the uplink control information can be sent within the capability of the terminal device, and the working performance of the terminal device is guaranteed.
  • the first threshold is indicated by the network device, or the first threshold is determined according to the capability reported by the terminal device, or the first threshold is pre-defined.
  • the first threshold can be flexibly determined to ensure that the processing capability of the terminal device is not exceeded and the working performance of the terminal device is guaranteed.
  • the capability reported by the terminal device includes at least one of the following: the number of independently encoded uplink control information supported by the terminal device is greater than 3, or; the The maximum number of independently coded uplink control information supported by the terminal device, or, the terminal device supports code blocks with more than 6 polar codes, or; the terminal device supports enhanced polar codes, or; the terminal device The maximum number of polar code blocks supported by the device.
  • the terminal device can report the capability to the network device, so that the network device can flexibly determine the first threshold according to the indication information of the terminal device and the resource usage on the network side, so that the uplink control information can be sent within the capability range of the terminal device , to ensure the working performance of the terminal equipment.
  • the first uplink control information is the UCI with the lowest priority among the N UCIs.
  • the first uplink control information is the UCI with the lowest priority among the N UCIs.
  • the first uplink control information may be the second part of the channel quality state information (CSI part 2).
  • a method for transmitting uplink control information comprising: a network device receiving a physical uplink channel carrying N pieces of uplink control information, wherein the first uplink control information and the second uplink control information are encoded after concatenation , or; the network device receives a physical uplink channel carrying the second uplink control information, and the physical uplink control channel does not carry the first uplink control information; wherein, the N is an integer and is greater than 3, and the N uplink control information includes The first uplink control information and the second uplink control information, the priority of the second uplink control information is higher than that of the first uplink control information.
  • the physical uplink control channel does not carry the first uplink control information, including: when N is greater than a first threshold, the physical uplink control channel does not carry the first uplink control information. Uplink control information.
  • that the physical uplink control channel does not carry the first uplink control information may be that the first uplink control information is discarded, or the network device discards the first uplink control information, or the network device receives the physical uplink channel and obtains the physical uplink control information. Uplink control information carried on the uplink channel, the uplink control information does not include the first uplink control information.
  • the first UCI and the second UCI are encoded after concatenation, including: when N is greater than a first threshold, the first uplink control The information and the second uplink control information are concatenated and encoded.
  • the first threshold is indicated by the network device, or the first threshold is determined according to the capability reported by the terminal device, or the first threshold is pre-defined.
  • the capability received by the network device includes at least one of the following: the number of independently encoded uplink control information supported by the terminal device is greater than 3, or; The maximum number of independently encoded uplink control information supported by the terminal device, or, the terminal device supports code blocks with more than 6 polar codes, or; the terminal device supports enhanced polar codes, or; all The maximum number of code blocks of polar codes supported by the terminal device.
  • the first uplink control information is the UCI with the lowest priority among the N UCIs.
  • an apparatus for transmitting uplink control information is provided, and the apparatus is configured to execute the communication method in the first aspect or any possible implementation manner of the first aspect.
  • an apparatus for transmitting uplink control information is provided, and the apparatus is configured to execute the communication method in the second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides an apparatus for transmitting uplink control information, including a transceiver and a processor, where the transceiver and the processor are used to implement the first aspect or any possible implementation manner of the first aspect communication method.
  • an embodiment of the present application provides an apparatus for transmitting uplink control information, including a transceiver and a processor, where the transceiver and the processor are used to implement the second aspect or any possible implementation manner of the second aspect communication method.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and send a signal through the output circuit, causing an apparatus including the processor to perform any of the first and second aspects and the first to second aspects method in one possible implementation.
  • the above-mentioned processor may be one or more chips
  • the input circuit may be input pins
  • the output circuit may be output pins
  • the processing circuit may be transistors, gate circuits, flip-flops and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a transceiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing apparatus including a processor and a memory.
  • the processor is configured to read the instructions stored in the memory, and can receive signals through the transceiver and transmit signals through the transmitter, so as to perform any one of the first to second aspects and any possible implementation manners of the first to second aspects method in .
  • the processor is one or more
  • the memory is one or more
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting manner of the memory and the processor.
  • ROM read only memory
  • the relevant data interaction process such as sending indication information, may be a process of outputting indication information from the processor, and receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can be from the transceiver.
  • the transmitter and the transceiver may be collectively referred to as a transceiver.
  • the processing device in the above eighth aspect may be one or more chips, or may also be a chip system.
  • the processor in the processing device may be implemented by hardware or by software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be a general-purpose processor, implemented by reading software codes stored in a memory, which can Integrated in the processor, can be located outside the processor, independent existence.
  • a chip in a ninth aspect, includes a processor and a communication interface, the communication interface is used for communicating with an external device or an internal device, the processor is used for executing the first aspect and the second aspect and the first aspect and the first aspect.
  • the method in either of the two possible implementations
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute the instructions stored in the memory or derived from other instructions.
  • the processor is configured to execute the method of the first aspect to the fourth aspect and any one of the possible implementations of the first aspect to the second aspect
  • a computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes the above-mentioned first to fourth aspects to be executed Aspects and methods of any possible implementations of the first to second aspects.
  • a computer program also referred to as code, or instructions
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction) when it runs on a computer, causing the computer to execute the above-mentioned first A method of any possible implementation of the aspect to the second aspect and the first aspect to the second aspect.
  • a computer program also referred to as code, or instruction
  • a communication system including any device having the functions of implementing the methods and various possible designs of the above-mentioned first to second aspects.
  • the uplink control information is sent within the capability range of the terminal device, and the working performance of the terminal device is guaranteed.
  • FIG. 1 is a scenario to which the present application applies.
  • FIG. 2 is a schematic block diagram of a method for transmitting uplink control information provided by an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a method for transmitting uplink control information provided by an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a method for transmitting uplink control information provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a method for transmitting uplink control information provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a method for transmitting uplink control information provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a method for transmitting uplink control information provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting uplink control information provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an apparatus for transmitting uplink control information provided by an embodiment of the present application.
  • a radio access network device is an access device that a terminal device wirelessly accesses to the mobile communication system, which can be a base station NodeB, an evolved base station eNodeB, a base station in a 5G mobile communication system, a base station in a future mobile communication system, or a base station in a future mobile communication system.
  • a base station NodeB an evolved base station eNodeB
  • a base station in a 5G mobile communication system a base station in a future mobile communication system
  • a base station in a future mobile communication system or a base station in a future mobile communication system.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • a terminal device may also be referred to as a terminal terminal, a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, industrial control (industrial control) wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • VR Virtual Reality
  • AR Augmented Reality
  • industrial control industrial control
  • Radio access network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of the wireless access network device and the terminal device.
  • Communication between wireless access network equipment and terminal equipment and between terminal equipment and terminal equipment can be performed through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum). Licensed spectrum for communication. Communication between wireless access network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through the spectrum below 6G, or through the spectrum above 6G, and can also use the spectrum below 6G and above 6G at the same time. to communicate.
  • the embodiments of the present application do not limit the spectrum resources used between the radio access network device and the terminal device.
  • FIG. 1 is a system architecture diagram to which the embodiments of the present application are applied.
  • the mobile communication system includes a core network device 140, a radio access network device 130, and at least one terminal device (such as the terminal device 120 and the terminal device in FIG. 1). device 110).
  • the terminal device is connected to the wireless access network device by wireless, and the wireless access network device is connected to the core network device by wireless or wired.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment.
  • Terminal equipment can be fixed or movable.
  • FIG. 1 is a system architecture diagram to which the embodiments of the present application are applied.
  • the mobile communication system includes a core network device 140, a radio access network device 130, and at least one terminal device (such as the terminal device 120 and the terminal device in
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminal devices included in the mobile communication system.
  • uplink control information uplink control information
  • UCI uplink control information
  • the uplink control information includes a scheduling request (scheduling request, SR), a hybrid automatic repeat request acknowledgment (Hybrid automatic repeat request acknowledgment, HARQ-ACK), channel state information (channel state information, CSI) and the like.
  • the CSI may further include a precoding matrix indication (PMI), a rank indicator (RI), a layer indicator (LI), a channel quality indicator (CQI), and a channel state.
  • PMI precoding matrix indication
  • RI rank indicator
  • LI layer indicator
  • CQI channel quality indicator
  • RS Information reference signal
  • CSI-RS resource indicator CRI
  • reference signal received power reference signal received power
  • SINR signal to interference plus noise ratio
  • first part CSI (CSI part 1) or second part CSI (CSI part 2).
  • the CSI part 1 may include CRI, RI, broadband CSI of the first transport block (first transport block), sub-band differential CQI of the first TB, and the like.
  • the second part of CSI (CSI part 2) may include wideband CQI, LI, etc. of the second transport block (transport block, TB).
  • the CSI specifically included in CSI part 1 and CSI part 2 is not limited in this application.
  • the bit sequence of the above UCI can be expressed as where O UCI is the length of the UCI bit sequence.
  • the bit sequence of HARQ-ACK can be expressed as
  • the bit sequence of SR can be expressed as
  • the bit sequence of CSI part 1 can be expressed as
  • the bit sequence of CSI part 2 can be expressed as
  • the above-mentioned bit sequences of UCI can be further concatenated to form a total bit sequence of UCI a 0 , a 1 , a 2 .
  • the total bit sequence a 0 , a 1 , a 2 . . . a A-1 of UCI consists of HARQ-ACK and SR (it can also be understood as HARQ-ACK and SR concatenated together), that is,
  • O ACK is the number of bits of HARQ-ACK
  • O SR is the bit sequence of SR
  • A O ACK +O SR
  • A is the total number of bits, or can be understood as payload size.
  • the total bit sequence a 0 , a 1 , a 2 .
  • UCI can also consist of HARQ-ACK, SR and CSI part 1, or HARQ-ACK and CSI part 1, or only HARQ-
  • the ACK consists of either only CSI part 1, only CSI part 2, or only SR. It should be understood that concatenating UCI1 and UCI2, ie concatenating the bit sequence of UCI1 and the bit sequence of UCI2, such as the HARQ-ACK and SR described earlier. It should be understood that the total number of bit sequences of UCI may be 1 or 2 or 3 or other values.
  • the total bit sequence of UCI When the length of the total bit sequence of UCI, that is, A, is greater than or equal to 12, the total bit sequence of UCI adopts polar coding, otherwise it adopts channel coding of small block lengths.
  • the total bit sequence of UCI needs to be divided into code block (CB, codeblock) (code block segmentation), and then add cyclic redundancy check (cyclic redundancy check, CRC) to each CB.
  • CRC cyclic redundancy check
  • the total bit sequence of UCI can be divided into at most 2 code blocks (codeblock, CB), each CB is separately added with cyclic redundancy check (cyclic redundancy check, CRC), and then channel coding (ie polar coding) .
  • the length A of the total bit sequence of the UCI is less than or equal to 1706.
  • HARQ-ACK, SR, and CSI part 1 are concatenated together to form the total UCI bit sequence a 0 , a 1 , a 2 ...a A-1 , and then encode, that is, encode after concatenation of HARQ-ACK, SR, and CSI part 1.
  • CSI part 2 is to separately form another UCI total bit sequence a 0 , a 1 , a 2 . . . a A-1 , and then perform encoding, that is, separate encoding.
  • PUSCH physical uplink shared channel
  • the HARQ-ACK is encoded separately
  • the CSI part 1 is encoded separately
  • the CSI part 2 is also encoded separately.
  • the priority of the UCI may be related to the information contained in the UCI, the physical uplink channel carrying the UCI, the cell, the periodicity and other factors.
  • the CSI is taken as an example for description.
  • aperiodic (aperiodic) CSI reporting is carried on the PUSCH
  • y 0
  • a semi-persistent (semi-persistent) CSI reporting is carried on the PUSCH
  • y 2
  • a periodic (periodic) CSI report is carried on the PUCCH
  • y 3
  • the CSI includes RSRP or SINR
  • c is the serving cell index
  • N cells is the number of cells
  • s is the index of the reporting configuration
  • M S is the maximum number of CSI reporting configurations.
  • the priority of the UCI may also be configured by high-level signaling, or indicated by downlink control information (downlink control information, DCI). For example, when the DCI schedules the HARQ-ACK, the priority of the HARQ-ACK may be indicated. If there are only two priorities, it indicates whether the HARQ-ACK is a high priority or a low priority.
  • DCI downlink control information
  • the priority of the UCI can also be related to the business, for example, the UCI of mMTC has a lower priority than the UCI of eMBB.
  • UCIs between different PUCCH groups may also define priorities, for example, UCIs in PUCCH group 0 have a higher priority than UCIs in PUCCH group 1.
  • UCI between different base stations, or UCI between different UEs, or UCI between different transmission reception points (Transmission reception points, TRP), and the priority between them can also be defined.
  • UCIs with high and low priorities are multiplexed
  • UCIs with high priority (HP) and UCIs with low priority (LP) are carried on PUCCH or PUSCH.
  • PUCCH carries HP HARQ-ACK, LP HARQ-ACK and HP SR.
  • High-priority HARQ-ACK, low-priority HARQ-ACK, and HP or LP CSI are carried on PUSCH.
  • FIG. 2 is a schematic diagram of a method for transmitting uplink control information according to an embodiment of the present application.
  • the method in FIG. 2 includes:
  • Step S201 the terminal device determines N pieces of uplink control information, where N is an integer and greater than 3, and the N pieces of uplink control information include first uplink control information and second uplink control information, and the priority of the second uplink control information is higher than that of the first uplink control information.
  • Uplink control information is an integer and greater than 3
  • the N pieces of uplink control information include first uplink control information and second uplink control information, and the priority of the second uplink control information is higher than that of the first uplink control information. Uplink control information.
  • the N pieces of uplink control information may be understood as the number of uplink control information to be transmitted by the terminal device, or the number of independently encoded UCI total bit sequences.
  • Each of the N UCIs may be HARQ-ACK or CSI part 1 or CSI part 2 or SR.
  • each UCI may also correspond to a priority, and each UCI may independently form a total bit sequence of a UCI, and then perform encoding, that is, each UCI in the N UCIs may be independently encoded.
  • the 4 UCIs may specifically include a high-priority HARQ-ACK, a low-priority HARQ-ACK, a low-priority CSI part 1, and a low-priority CSI part 2.
  • high-priority HARQ-ACK, low-priority HARQ-ACK, high-priority CSI part 1, and high-priority CSI part 2 may be included.
  • high-priority HARQ-ACK, low-priority HARQ-ACK, high-priority CSI part 1, and low-priority CSI part 2 may be included.
  • the total bit sequence of UCI may be composed of a plurality of UCIs.
  • the first uplink control information may be the UCI with the lowest priority among the N UCIs.
  • the first uplink control information may be CSI part 2; for another example, the first uplink control information may be low-priority CSI part 2 or low-priority CSI part 1. It should be noted that those skilled in the art can flexibly determine the content of the first control information according to the actual situation.
  • the first uplink control information may include one or more uplink control information.
  • the second uplink control information may be HARQ-ACK; for another example, the second uplink control information may be CSI part 1. It should be noted that those skilled in the art can flexibly determine the content of the second control information according to the actual situation.
  • the terminal device discards part of the uplink control information or concatenates and encodes the uplink control information.
  • the first threshold in this application can also be understood as the number or the maximum number of uplink control information that supports independent coding, or the number or the maximum number of UCI total bit sequences (an example of the first threshold). That is to say, in this application, the first threshold may be the number or maximum number of independently encoded uplink control information, or the total number or maximum number of independently encoded UCI bit sequences, or the code of uplink control information encoding. The total number of blocks, or the total number of code blocks encoded by each independently encoded UCI bit sequence.
  • the first threshold may be indicated by the network device, or may be determined according to the capability reported by the terminal device, or be predefined.
  • the maximum number of independently encoded uplink control information supported by the terminal device is Y, that is, the first threshold is equal to Y, and Y is a positive integer.
  • the uplink control information can be sent within the capability range of the terminal device, thereby ensuring the working performance of the terminal device.
  • the terminal equipment can determine that the uplink control information is HARQ-ACK and CSI part 1, for example, independently coded high-priority HARQ-ACK, independently coded low-priority HARQ-ACK, independently coded high-priority CSI part 1, Independently encoded low priority CSI part 1. That is to say, in this application, in the uplink control information determined by the terminal device, the total number of independently encoded UCI bit sequences does not exceed the first threshold Y.
  • the terminal device may first report the capability to the network device, for example: the number of independently encoded uplink control information supported by the terminal device is greater than 4, or; the maximum number of independently encoded uplink control information supported by the terminal device is either the maximum number.
  • the network device may indicate the first threshold according to the capability reported by the terminal device and/or the resource situation on the network side. Then, the terminal device can determine the uplink control information according to the configuration or scheduling information of the network device, so as to ensure the maximum number of independently encoded uplink control information.
  • the first threshold in this application can also be understood as the number of code blocks of the supported UCI, or the maximum number of code blocks of the supported UCI (another example of the first threshold).
  • the terminal device can determine that the uplink control information is HARQ-ACK and CSI part 1.
  • the high-priority HARQ-ACK is encoded separately into two code blocks
  • the low-priority HARQ-ACK is encoded separately into two code blocks
  • CSI part 1 is encoded separately and is 1 code block. That is to say, in this application, the number of code blocks of the uplink control information determined by the terminal device does not exceed the maximum number of code blocks, that is, the first threshold.
  • the terminal device may first report the capability to the network device, for example: the terminal device supports code blocks of more than 6 polar codes, or the terminal device supports enhanced polar codes, or the code blocks of polar codes supported by the terminal device maximum number of .
  • the network device may indicate the first threshold of the terminal device, that is, the maximum number of code blocks of the uplink control information, according to the capability reported by the terminal device and/or the resource situation on the network side. Then, the terminal device can determine the uplink control information according to the configuration or scheduling information of the network device, to ensure that the number of code blocks of the transmitted uplink control information does not exceed the maximum number of code blocks indicated by the network device.
  • the terminal device can determine the uplink control information.
  • the terminal device can determine that the uplink control information is HARQ-ACK and CSI part 1.
  • the high-priority HARQ-ACK is 2 code blocks
  • the low-priority HARQ-ACK is 2 code blocks
  • the CSI part 1 is 2 code blocks code block.
  • the terminal device when the terminal device determines the N pieces of uplink control information, it means to determine the N pieces of uplink control information within one time slot (slot) or within a sub-slot (sub-slot).
  • the N pieces of uplink control information overlap in the time domain before multiplexing.
  • PUCCH1 carries high-priority HARQ-ACK
  • PUCCH2 carries low-priority HARQ-ACK
  • PUSCH carries low-priority CSI part 1 and CSI part 2.
  • PUCCH1, PUCCH2, and PUSCH overlap in the time domain. Multiplexed to PUSCH for transmission. Among them, if the high-priority CSI part 1 and CSI part 2 are carried on the PUSCH, it is similar.
  • Step S202 the terminal device sends a physical uplink channel carrying the N uplink control information to the network device, wherein the first uplink control information and the second uplink control information are encoded after concatenation, or; the terminal device discards the first uplink control information Control information, sending a physical uplink channel carrying the second uplink control information.
  • the terminal device may send uplink control information including different priorities on one physical uplink channel.
  • the terminal device may send a physical uplink channel carrying the N uplink control information to the network device, wherein the first uplink control information and the second uplink control information are encoded after concatenation.
  • the terminal device determines that there can be 4 pieces of uplink control information to be sent, which are: independently coded high-priority HARQ-ACK, independently coded low-priority HARQ-ACK -ACK, independently encoded high priority CSI part 1, independently encoded low priority CSI part 1.
  • the terminal device can concatenate the high-priority CSI part 1 and the low-priority CSI part 1 for encoding.
  • the terminal device can support sending up to 6 code blocks of uplink control information, and the terminal device determines that there can be 8 code blocks of uplink control information to be sent, which are: 2 independently encoded high-priority HARQ-ACKs Code blocks, the independently coded low-priority HARQ-ACK is 2 code blocks, the independently coded high-priority CSI part 1 is 2 code blocks, and the independently coded low-priority CSI part 1 is 2 code blocks.
  • the terminal device can concatenate the high-priority CSI part 1 and the low-priority CSI part 1 for encoding. Because the number of code blocks encoded after concatenation is at most two, it can be ensured that the number of code blocks does not exceed the capability of the UE.
  • the terminal device may discard the first uplink control information and send a physical uplink channel carrying the second uplink control information.
  • the terminal device can support sending up to 3 pieces of uplink control information, and the terminal device determines that there can be 4 pieces of uplink control information to be sent, which are: independently coded high-priority HARQ-ACK, independently coded low-priority HARQ-ACK, independently encoded high priority CSI part 1, independently encoded low priority CSI part 1.
  • the terminal device can discard the low-priority CSI part 1.
  • the terminal device determines that there can be 8 uplink control information to be sent, which are: the independently encoded high-priority HARQ-ACK is 2 and the code block, The independently coded low-priority HARQ-ACK is 2 code blocks, the independently coded high-priority CSI part 1 is 2 code blocks, and the independently coded low-priority CSI part 1 is 2 code blocks.
  • the terminal device may discard the code block of the low-priority CSI part 1.
  • a third UCI may also be carried on the physical uplink channel, and the priority of the third UCI is lower than the priority of the second UCI.
  • the third UCI is also one of the N UCIs.
  • the terminal device discards the first uplink control information and sends a physical uplink channel carrying the second uplink control information. It can be understood that the terminal device sends a physical uplink channel carrying high-priority uplink control information.
  • the terminal device discards the first uplink control information and sends a physical uplink channel carrying the second uplink control information. It can be understood that the terminal device can discard some low-priority uplink control information, and send a physical uplink channel carrying high-priority uplink control information and a physical uplink channel carrying part of low-priority uplink control information.
  • the terminal device discards the first uplink control information and sends a physical uplink channel carrying the second uplink control information. It can be understood that the terminal device may continue to discard or send the third uplink control information.
  • the N pieces of uplink control information further include third uplink control information.
  • the terminal device can send the physical uplink channel carrying the second uplink control information, but this application does not make any limitation on whether the terminal device can also send other first uplink control information.
  • the present application does not exclude the situation that the terminal device may discard part of the first uplink control information and send the bearer second uplink control information and part of other first uplink control information.
  • the physical uplink channel may be a physical uplink control channel PUCCH or a physical uplink shared channel PUSCH.
  • the uplink control information can be sent within the capability range of the terminal device, thereby ensuring the working performance of the terminal device.
  • FIG. 3 is a schematic diagram of a method for transmitting uplink control information according to an embodiment of the present application.
  • the method in FIG. 3 includes:
  • Step S301 the base station sends indication information to the UE, where the indication information is used to indicate uplink control information scheduled by the base station.
  • the indication information may be downlink control information (DCI) or high-level configuration information. It should be understood that the indication information corresponding to different UCIs may be different.
  • the base station sends DCI to the UE, and the DCI schedules the transmission of HARQ-ACK.
  • the base station sends configuration information to the UE, and schedules the sending of periodic CSI.
  • the indication information may include one or more DCIs, or one or more high-level configuration information, and the number of scheduled uplink control information is N.
  • the number of uplink control information indicated by the base station may exceed the processing capability of the UE. It should be understood that the number of uplink control information indicated by the base station may exceed the processing capability of the UE means that in the uplink control information scheduled by the base station, the total number of UCI bit sequences that need to be independently encoded exceeds the processing capability of the UE.
  • the base station indicates that the number of uplink control information code blocks may exceed the processing capability of the UE. It should be understood that the base station indicates that the number of uplink control information code blocks may exceed the processing capability of the UE means that in the uplink control information scheduled by the base station, the total number of code blocks of the total bit sequence of UCI that needs to be independently encoded exceeds the processing capacity of the UE. ability
  • Step S302 the UE determines N pieces of uplink control information according to the indication information, where N is an integer and is greater than 3, and the N pieces of uplink control information include the first uplink control information and the second uplink control information, and the priority of the second uplink control information is higher than that of the second uplink control information.
  • the first uplink control information is an integer and is greater than 3
  • the UE can determine the uplink control information through concatenated coding or discarding. control information to ensure that the maximum number of independently encoded uplink control information does not exceed 3.
  • the UE can determine the uplink control information according to the indication information to ensure that the maximum number of independently coded uplink control information is 4.
  • the number of independently encoded uplink control information does not exceed 4.
  • the UE can ensure that the number of uplink control information code blocks does not exceed 5 through concatenated coding or discarding.
  • the UE can determine the uplink control information according to the indication information, and the number of code blocks of the uplink control information does not exceed 8.
  • Step S303 the UE sends a physical uplink channel carrying N pieces of uplink control information to the base station, wherein the first uplink control information and the second uplink control information are encoded after concatenation, or; the UE discards the first uplink control information and sends the information to the network.
  • the device sends a physical uplink channel carrying the second uplink control information.
  • step S202 in the method 200 For details, refer to step S202 in the method 200, and details are not repeated here.
  • the UE can send uplink control information including different priorities on one physical uplink channel without exceeding the processing capability of the UE.
  • Step S304 the base station receives the physical uplink channel carrying the uplink control information.
  • the base station receives the physical uplink channel carrying the uplink control information, and also needs to perform decoding processing on it.
  • the base station may receive a physical uplink channel carrying N pieces of uplink control information, wherein the first uplink control information and the second uplink control information are encoded after concatenation.
  • the base station may receive a physical uplink channel carrying the second uplink control information, where the physical uplink control channel does not include the first uplink control information. It can also be understood that the first uplink control information is discarded.
  • N is an integer greater than 3
  • the N pieces of uplink control information may include first uplink control information and second uplink control information, and the priority of the second uplink control information is higher than that of the first uplink control information.
  • the uplink control information is sent within the capability range of the terminal device, and the working performance of the terminal device is guaranteed.
  • FIG. 4 is a schematic diagram of a method for sending uplink control information according to an embodiment of the present application.
  • the method in FIG. 4 includes:
  • Step S401 the UE sends capability information to the base station.
  • the UE reporting capability information may include: the number of independently coded uplink control information that the UE can report is greater than 3, or; the maximum number of independently coded uplink control information supported by the UE.
  • the UE reporting capability information may include: whether the UE can report whether the number of uplink control information code blocks is greater than or equal to 6, or; the UE reports the maximum number of supported uplink control information code blocks, Or; the UE can report whether it has the ability to enhance polar encoding (polar encode), and so on.
  • Step 402 the base station determines indication information, where the indication information is used to indicate uplink control information scheduled by the base station.
  • the base station may determine the indication information according to the capability reported by the UE and/or the current network resource usage
  • the base station may indicate that the maximum number of independently coded uplink control information is 4 according to the resource usage of the current network.
  • the base station may indicate that the maximum number of independently coded uplink control information is 5 or 3 according to the resource usage of the current network.
  • the base station may indicate that the maximum number of uplink control information code blocks is 8 according to the current network resource usage.
  • the base station may indicate that the maximum number of uplink control information code blocks is 5 according to the current network resource usage.
  • the base station may indicate that the maximum number of uplink control information code blocks is 10 according to the resource usage of the current network.
  • Step S403 the base station sends indication information to the UE.
  • Step S404 the UE determines N pieces of uplink control information according to the indication information, where N is an integer and is greater than 3, and the N pieces of uplink control information include the first uplink control information and the second uplink control information, and the priority of the second uplink control information is higher than that of the second uplink control information.
  • the first uplink control information is an integer and is greater than 3.
  • step S302 in the method 300 For details, reference may be made to step S302 in the method 300, and details are not repeated here.
  • Step 405 the UE sends a physical uplink channel carrying N pieces of uplink control information to the base station, wherein the first uplink control information and the second uplink control information are encoded after concatenation, or; the UE discards the first uplink control information and sends the bearer The physical uplink channel of the second uplink control information.
  • step S303 in the method 300 which will not be repeated.
  • the UE can send uplink control information including different priorities on one physical uplink channel without exceeding the processing capability of the UE.
  • Step S406 the base station receives the physical uplink channel carrying the uplink control information, and performs decoding.
  • step S304 in the method 300 which will not be repeated.
  • the uplink control information is sent within the capability range of the terminal device, and the working performance of the terminal device is guaranteed.
  • FIG. 5 is a schematic diagram of a method for transmitting uplink control information according to an embodiment of the present application.
  • the method in FIG. 5 includes:
  • Step S501 the base station sends indication information to the UE, where the indication information is used to indicate uplink control information scheduled by the base station.
  • step S301 in the method 300 which is not repeated here.
  • Step S502 the UE determines N pieces of uplink control information according to the indication information, where N is an integer and is greater than 3, and the N pieces of uplink control information include the first uplink control information and the second uplink control information, and the priority of the second uplink control information is higher than that of the second uplink control information.
  • the first uplink control information is an integer and is greater than 3
  • step 302 in the method 300 for the UE to determine the N pieces of uplink control information, reference may be made to step 302 in the method 300, and details are not repeated here.
  • step S503a may be performed, the UE sends a physical uplink channel carrying N pieces of uplink control information to the base station, wherein the first uplink control information and the second uplink control information are encoded after concatenation.
  • CSI part 1 (an example of the second control information) and CSI part 2 (an example of the first control information) may be concatenated and encoded.
  • HARQ-ACK an example of the second control information
  • CSI part 1 an example of the first control information
  • HARQ-ACK an example of the second control information
  • CSI part 2 an example of the first control information
  • UCIs of different priorities may be coded in concatenation.
  • the higher priority CSI part 1 (an example of the second control information) and the lower priority CSI part 2 (an example of the first control information) can be ranked Coding after linking.
  • the high-priority CSI part 2 (an example of the second control information) and the low-priority CSI part 1 (an example of the first control information) can be ranked Coding after linking.
  • HARQ-ACK and CSI part 1 are different priorities
  • HARQ-ACK and CSI part 2 are different priorities, which can be encoded after concatenation, similar to CSI part 1 and CSI part 2, no longer Repeat.
  • N UCIs can also be sorted by priority, for example, the priority of UCI 1 is lower than the priority of UCI2, the priority of UCI2 is lower than the priority of UCI3, and so on, the priority of UCI(N-1) Priority is lower than that of UCI N. Then UCI 1 and UCI 2 can be encoded in concatenation.
  • UCIs of the same type may also be coded in concatenation.
  • the UCI types are both HARQ-ACK, but the high-priority HARQ-ACK and the low-priority HARQ-ACK are concatenated and encoded.
  • the UCI types are both CSI, but the high-priority CSI (for example, CSI part 2) and the low-priority CSI (for example, CSI part 1) are jointly encoded.
  • first uplink control information and second control information in this embodiment are merely examples, and do not make any limitation. Those skilled in the art can determine the content of the first uplink control information and the second uplink control information according to the actual situation.
  • the third UCI, the first UCI and the second UCI may be jointly encoded
  • the third UCI and the fourth UCI may be jointly encoded
  • the third UCI may be independently encoded
  • the fourth UCI may be independently encoded.
  • step S503b may be executed, the UE discards the first uplink control information and sends a physical uplink channel carrying the second uplink control information.
  • the UE may discard CSI part 2 (an example of the first uplink control information) and send the physical uplink channel carrying the second uplink control information.
  • the UE may discard code blocks of CSI part 2.
  • the terminal device determines that there may be four uplink control information to be sent, which are: independently coded HARQ-ACK with high priority, independently coded HARQ-ACK with low priority, independently coded CSI part 1, Independently encoded CSI part 2.
  • the terminal device can discard CSI part 2 (since it is the lowest priority).
  • the terminal device determines that there can be 8 uplink control information to be sent, which are: the independently coded high-priority HARQ-ACK is 2 code blocks, and the independently coded low-priority HARQ-ACK is 2 code blocks , the independently coded CSI part 1 is 2 code blocks, and the independently coded CSI part 2 is 2 code blocks. At this time, the terminal device can discard the code block of CSI part 2.
  • the first uplink control information is CSI part 2 as an example, without any limitation. Those skilled in the art can pre-specify the content of the first uplink control information discarded by the UE according to the actual situation.
  • the first uplink control information may be low-priority CSI part 1 and low-priority CSI part 2. It can also be discarded in priority order.
  • step S503a and step S503b are two parallel implementations, and in the actual operation process, step S503a and step S503b do not need to be performed simultaneously.
  • Step S504 the base station receives the physical uplink channel carrying the uplink control information.
  • step S304 in 300 For details, refer to step S304 in 300, and details are not repeated here.
  • the uplink control information is sent within the capability range of the terminal device, and the working performance of the terminal device is guaranteed.
  • the method 600 is an embodiment of the uplink control information transmission method provided by this application, and the method 600 includes:
  • Step S601 the base station sends indication information to the UE, where the indication information is used to indicate uplink control information scheduled by the base station.
  • step S301 in the method 300 which is not repeated here.
  • Step S602 the UE determines N pieces of uplink control information according to the indication information, where N is an integer and greater than 3, and the N pieces of uplink control information include the first uplink control information and the second uplink control information, and the priority of the second uplink control information is higher than that of the second uplink control information.
  • the first uplink control information is an integer and greater than 3
  • step 302 in the method 300 for the UE to determine the N pieces of uplink control information, reference may be made to step 302 in the method 300, and details are not repeated here.
  • step 603a may be performed, the UE sends a physical uplink channel carrying N pieces of uplink control information to the base station, wherein the first uplink control information and the second uplink control information are encoded after concatenation.
  • the first UCI and the second UCI may be concatenated and encoded.
  • joint encoding may be performed. Assuming that the maximum number of independently coded uplink control information of the UE is 3, and the number of independently coded uplink control information to be transmitted is 4, the UE may perform joint coding.
  • the number of uplink control information independently encoded by low-priority HARQ-ACK is X1
  • the number of uplink control information independently encoded by high-priority HARQ-ACK is X2
  • the number of uplink control information independently encoded by CSI part 1 The number of CSI part 2 is X3, and the number of uplink control information independently encoded by CSI part 2 is X4.
  • the UE can use the CSI part 2 with CSI part 1, or; CSI part 2 and HARQ-ACK are concatenated and encoded.
  • the UE may concatenate and encode uplink control information that exceeds the UE capability with other uplink control information.
  • the UE since the low-priority HARQ-ACK exceeds the processing capability of the UE, at this time, the UE can combine the low-priority HARQ-ACK with CSI part 1, or; combine the low-priority HARQ-ACK It is encoded after concatenation with CSI part 2, and will not be repeated.
  • the first UCI and the second UCI may be concatenated and encoded.
  • the UE may perform joint coding. Assuming that the maximum number of code blocks of the UE is 6, and the number of code blocks of the uplink control information to be transmitted is 8, the UE can perform joint coding.
  • the low-priority HARQ-ACK occupies X1 code blocks
  • the high-priority HARQ-ACK occupies X2 code blocks
  • CSI part 1 occupies X3 code blocks
  • CSI part 2 occupies X4 code blocks.
  • the UE can use the CSI part 2 Co-coding with CSI part 1, or; CSI part 2 and HARQ-ACK.
  • the UE may code the UCI that exceeds the UE's capabilities in conjunction with other UCIs.
  • the UE can combine the low-priority HARQ-ACK with CSI part 1, or; combine the low-priority HARQ-ACK
  • the ACK and CSI part 2 are jointly encoded and will not be described again.
  • step S603b may be performed, where the UE discards the first uplink control information and sends a physical uplink channel carrying the second uplink control information.
  • the UE discards the first uplink control information.
  • the UE may discard the first uplink control information.
  • the maximum number of independently encoded uplink control information of the UE is 3, and the number of uplink control information to be transmitted is 4, the UE may discard the first uplink control information.
  • the number of uplink control information independently encoded by low-priority HARQ-ACK is X1
  • the number of uplink control information independently encoded by high-priority HARQ-ACK is X2
  • the number of uplink control information independently encoded by CSI part 1 is X3
  • the number of uplink control information independently encoded by CSI part 2 is X4.
  • the UE can directly discard the independently encoded uplink control information of CSI part 2; if the independently encoded uplink control information indicated by the base station When the amount of information does not exceed the processing capability of the UE, the UE may not perform the discarding operation.
  • the base station may indicate that there is one high-priority HARQ-ACK independently encoded uplink control information, and one high-priority CSI part 1 code block independently encodes one uplink control information, and the high-priority CSI part 2.
  • One piece of uplink control information is independently encoded, and one piece of uplink control information is independently encoded by low-priority HARQ-ACK.
  • the UE may discard the independently coded uplink control information that exceeds its own capability, for example, discard the low-priority HARQ-ACK. It can also be understood that the transmission of the low-priority HARQ-ACK is canceled at this time.
  • the UE when the total number of code blocks is greater than the second threshold, the UE discards the first uplink control information. For example, when the number of code blocks of the uplink control information to be transmitted exceeds the maximum number of code blocks, the UE may discard the first uplink control information. Assuming that the maximum number of code blocks of the UE is 6, and the number of code blocks of the uplink control information to be transmitted is 8, the UE may discard the first uplink control information.
  • the low-priority HARQ-ACK occupies X1 code blocks
  • the high-priority HARQ-ACK occupies X2 code blocks
  • CSI part 1 occupies X3 code blocks
  • CSI part 2 occupies X4 code blocks.
  • the UE can directly discard the code blocks of CSI part 2; if the number of code blocks does not exceed the processing capability of the UE, The UE may not perform the discard operation.
  • 2 high-priority HARQ-ACK code blocks 1 high-priority CSI part 1 code block, 2 high-priority CSI part 2 code blocks, and 2 low-priority HARQ-ACK code blocks ACK code block.
  • the UE may discard code blocks that exceed its own capability, for example, discard one code block in the low-priority HARQ-ACK. It can also be understood that the transmission of the low-priority HARQ-ACK is canceled at this time.
  • the UE can send uplink control information including different priorities on one physical uplink channel without exceeding the processing capability of the UE.
  • step S603a and step S603b are two parallel implementations, and in the actual operation process, step S603a and step S603b do not need to be executed simultaneously.
  • Step S604 the base station receives the physical uplink channel carrying the uplink control information.
  • step S304 in 300 For details, refer to step S304 in 300, and details are not repeated here.
  • the uplink control information is sent within the capability range of the terminal device, and the working performance of the terminal device is guaranteed.
  • the method 700 is an embodiment of the uplink control information transmission method provided by this application, and the technical solution of this embodiment is as follows:
  • the timing timeline needs to be met, for example, the following first timing sequence and second timing sequence need to be met.
  • the time sequence is the interval between the DCI and the symbol S 0 , and the symbol S 0 is the first symbol of the earliest channel in the overlapping channels.
  • the timing timeline may also be the interval between the physical downlink shared channel (Physical downlink shared channel, PDSCH) and the symbol S 0 .
  • the second timing may be:
  • i represents the i-th PUSCH. It can be understood that there may be multiple PUSCHs in a set of overlapping channels, and i is the index of the PUSCH. specific The formula is as follows:
  • N 2 is the PUSCH preparation time, in units of orthogonal frequency division multiplexing (OFDM) symbols;
  • d 2,1 are parameters related to the demodulation reference signal (DMRS), if PUSCH The first symbol of d 2,1 contains only DMRS, then the value of d 2,1 is 0, otherwise the value of d 2 , 1 is 1.
  • DMRS demodulation reference signal
  • is a constant, generally equal to 64.
  • is the subcarrier spacing index.
  • T C is a time unit, for example, T C can satisfy the following form:
  • T c 1/( ⁇ f max ⁇ N f );
  • ⁇ f max 480 ⁇ 10 3 HZ
  • N f 4096.
  • T switch is the uplink switching gap (uplink switching gap); if the DCI triggers the BWP switch, d 2 , 2 is the bandwidth part (bandwidth part, BWP) switching time (switch time), otherwise it is equal to 0.
  • max() is the operation of taking the maximum value.
  • the symbol may refer to an abbreviation of OFDM symbol.
  • the second timing may be:
  • the first sequence is:
  • i represents the ith PDSCH
  • N 1 is the PDSCH processing duration
  • the value of d 1 , 1 is related to the PDSCH mapping method, the PDSCH length, and the processing capability of the UE.
  • the timing sequence is greater than the first time sequence, or the fourth time sequence is greater than the second time sequence.
  • the fact that the third sequence is greater than the first sequence means that the duration of the third sequence is greater than the first sequence, or the duration of the third sequence is greater than the first sequence.
  • the fact that the fourth sequence is greater than the second sequence means that the duration of the fourth sequence is greater than that of the second sequence, or the duration of the fourth sequence is greater than that of the second sequence.
  • the fourth timing may be:
  • X is greater than 1, and can be 2 or 3, indicating X symbols, and X is an integer.
  • the fourth timing may be:
  • Y is greater than 1 and can be 2 or 3, indicating Y symbols, and Y is an integer.
  • the third sequence is:
  • Z is greater than 1, and can be 2 or 3, indicating Z symbols, and Z is an integer.
  • the present application also considers the influence on the processing time of the UE after the number of code blocks of the uplink control information is increased.
  • the processing time can be increased by increasing the number of symbols, so that the uplink control information can be sent within the capability of the terminal device, which ensures the safety of the terminal device. work performance.
  • the maximum number of uplink control information code blocks supported by the UE is 6, and when the number of code blocks of uplink control information to be sent by the UE is greater than 6, 1, 2 or 3 symbols can be added to increase the processing time , to ensure the working performance of the UE.
  • the number of uplink control information that the UE supports independently encoded is 3, and when the number of uplink control information to be sent by the UE is greater than 3, 1, 2, or 3 symbols can be added to increase the processing time and ensure that The working performance of the UE.
  • the terminal device can determine N pieces of uplink control information, where N is an integer and greater than 3, the N pieces of uplink control information include first uplink control information and second uplink control information, and the second uplink control information
  • the priority of the control information is higher than the first uplink control information; when the N is greater than the first threshold, the processing time of the terminal device or the processing time of the multiplexing will increase, for example, increase the number of more symbols , so that the terminal equipment can complete the multiplexing.
  • each network element includes corresponding hardware structures and/or software modules for performing each function.
  • each network element includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by taking as an example that each function module is divided corresponding to each function.
  • FIG. 8 is a schematic block diagram of an apparatus 100 for transmitting uplink control information provided by an embodiment of the present application.
  • the uplink control information transmission apparatus 100 may include: a transceiver unit 110 and a processing unit 120 .
  • the uplink control information transmission apparatus 100 may be the terminal device in the above method embodiment, or may be a chip for implementing the functions of the terminal device in the above method embodiment. It should be understood that the uplink control information transmission apparatus 100 may correspond to the terminal equipment in the methods 200 , 300 , 400 , 500 , 600 and 700 according to the embodiments of the present application, and the uplink control information transmission apparatus 100 may execute Steps corresponding to the terminal equipment network element in 200, method 300, method 400, method 500, method 600, and method 700 in the embodiments of the present application. It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the uplink control information transmission apparatus 100 may be the network device in the above method embodiment, or may be a chip for implementing the function of the network device in the above method embodiment. It should be understood that the apparatus 100 for transmitting uplink control information may correspond to the network equipment in 200, method 300, method 400, method 500, method 600, and method 700 according to the embodiments of the present application, and the apparatus 100 for transmitting uplink control information may execute this Steps corresponding to the network devices in 200, method 300, method 400, method 500, method 600, and method 700 of the embodiments of the application. It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the uplink control information transmission apparatus 100 when the uplink control information transmission apparatus 100 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface; the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the transceiver unit 110 is used to implement the signal transmission and reception operation of the uplink control information transmission apparatus 100
  • the processing unit 120 is used to implement the signal processing operation of the uplink control information transmission apparatus 100 .
  • the uplink control information transmission apparatus 100 further includes a storage unit 130, and the storage unit 130 is used for storing instructions.
  • FIG. 9 is a schematic block diagram of an apparatus 200 for transmitting uplink control information provided by an embodiment of the present application.
  • the uplink control information transmission apparatus 200 includes: at least one processor 220 .
  • the processor 220 is coupled to the memory for executing instructions stored in the memory to transmit and/or receive signals.
  • the uplink control information transmission apparatus 200 further includes a memory 230 for storing instructions.
  • the uplink control information transmission apparatus 200 further includes a transceiver 210, and the processor 220 controls the transceiver 210 to send and/or receive signals.
  • processor 220 and the memory 230 may be combined into one processing device, and the processor 220 is configured to execute the program codes stored in the memory 230 to realize the above-mentioned functions.
  • the memory 230 may also be integrated in the processor 220 or independent of the processor 220 .
  • transceiver 210 may include a receiver (or, receiver) and a transmitter (or, transmitter).
  • the transceiver may further include antennas, and the number of the antennas may be one or more.
  • the transceiver 210 may be a communication interface or interface circuit.
  • the transceiver 210 in the uplink control information transmission apparatus 200 may correspond to the transceiver unit 110 in the uplink control information transmission apparatus 100, and the processor 220 in the uplink control information transmission apparatus 200 may correspond to the uplink control information transmission apparatus Processing unit 120 in 200 .
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable read-only memory (EPROM). Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct ram-bus RAM direct ram-bus RAM
  • the present application further provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the method 200 and the method 300 shown in Figs.
  • the present application further provides a computer-readable medium, where program codes are stored in the computer-readable medium, and when the program codes are run on a computer, the computer is made to execute the method 200, the method 300, the The method of any one of the embodiments shown in method 400 , method 500 , method 600 and method 700 .
  • the present application further provides a system, which includes the foregoing apparatus or equipment.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state discs, SSD)) etc.
  • the network-side equipment in each of the above apparatus embodiments corresponds to the terminal equipment and the network-side equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units. Or the step of sending, other steps except sending and receiving may be performed by a processing unit (processor). For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside in a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种上行控制信息传输方法,该方法包括:终端设备确定N个上行控制信息,N为整数,且大于3,N个上行控制信息包括第一上行控制信息和第二上行控制信息,第二上行控制信息的优先级高于第一上行控制信息;终端设备发送承载所述N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后进行编码,或者;终端设备丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。实现了在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。

Description

一种上行控制信息传输方法和装置
本申请要求于2021年4月2日提交中国专利局、申请号为202110363901.7、申请名称为“一种上行控制信息传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种上行控制信息传输方法和装置。
背景技术
针对增强型移动宽带(enhanced mobile broadband,eMBB)业务和高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务,上行控制信息(uplink control information,UCI)可分为高优先级UCI和低优先级UCI。其中,高优先级UCI对应URLLC业务,低优先级UCI对应eMBB业务。
目前,正在讨论将高低优先级的UCI复用在一起同时传输,因此,会出现在一个物理上行信道上既承载高优先级的UCI又承载低优先级的UCI的情况。物理上行信道上同时承载高低优先级UCI会增加终端设备的处理复杂度和成本,从而影响终端设备的工作性能。因此,如何更好的上行控制信息传输成为目前需要解决的技术问题。
发明内容
本申请提供一种上行控制信息传输方法和装置,实现了在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
第一方面,提供了一种上行控制信息传输方法,该方法包括:终端设备确定N个上行控制信息,N为整数,且大于3,N个上行控制信息包括第一上行控制信息和第二上行控制信息,第二上行控制信息的优先级高于第一上行控制信息;终端设备发送承载所述N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后进行编码,或者;终端设备丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。
本申请中,第一上行控制信息中可以包括一个或者多个上行控制信息,第二上行控制信息中也可以包括一个或者多个上行控制信息。
在一种可能的实现方式中,终端设备丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。可以理解为,终端设备发送承载高优先级上行控制信息的物理上行信道。
在一种可能的实现方式中,终端设备丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。可以理解为,终端设备可以丢弃部分低优先级的上行控制信息,发送承载高优先级上行控制信息的物理上行信道和承载部分低优先级上行控制信息的物理上行信道。
在一种可能的实现方式中,终端设备丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。可以理解为,终端设备还可以继续丢弃或者发送第三上行控制信息。N个上行控制信息还包括第三上行控制信息。
也就是说,本申请中,终端设备可以发送承载第二上行控制信息的物理上行信道,但是本申请并未对终端设备是否还可以发送N个上行控制信息中的其它上行控制信息做任何限定。本申请并未排除终端设备可以丢弃部分第一上行控制信息,发送承载第二上行控制信息以及部分其它上行控制信息的情况。
基于上述技术方案,终端设备可以确定N个待发送上行控制信息,N为整数,且大于3。也就是说,在本申请中终端设备待发送的上行控制信息的个数可以是大于3,但是在发送上行控制信息时,可以通过联合编码的方式或者丢弃的方式,使得发送的上行控制信息的数量不超过最大独立编码的上行控制信息的个数。可以实现在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
结合第一方面,在第一方面的某些实现方式中,所述终端设备丢弃所述第一上行控制信息,包括:当N大于第一阈值时,所述终端设备丢弃所述第一上行控制信息。
结合第一方面,在第一方面的某些实现方式中,所述第一UCI和所述第二UCI是级联后进行编码,包括:当N大于第一阈值时,所述终端设备将所述第一上行控制信息和所述第二上行控制信息级联后编码。
本申请中,第一阈值可以为独立编码的上行控制信息的个数或者最大个数,或者独立编码的UCI比特序列的总个数或者最大个数,或者上行控制信息编码的码块的总个数,或者各个独立编码的UCI比特序列编码的码块的总个数。
基于上述技术方案,终端设备在丢弃上行控制信息或者将上行控制信息联合编码之前还可以引入判断条件,使得可以在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
结合第一方面,在第一方面的某些实现方式中,所述第一阈值是网络设备指示的,或者所述第一阈值是根据终端设备上报的能力确定的,或者所述第一阈值是预定义的。
基于上述技术方案,在本申请中第一阈值可以灵活确定,保证不超过终端设备的处理能力,保障了终端设备的工作性能。
结合第一方面,在第一方面的某些实现方式中,所述终端设备上报的能力至少包括以下一项:所述终端设备支持的独立编码的上行控制信息个数大于3,或者;所述终端设备支持的最大独立编码的上行控制信息的个数,或者,所述终端设备支持大于6个极化码的码块,或者;所述终端设备支持增强的极化码,或者;所述终端设备支持的极化码的码块的最大个数。
基于上述技术方案,终端设备可以向网络设备上报能力,使得网络设备可以根据终端设备的指示信息以及网络侧的资源使用情况灵活确定第一阈值,使得可以在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
结合第一方面,在第一方面的某些实现方式中,所述第一上行控制信息是所述N个UCI中优先级最低的UCI。
本申请中,第一上行控制信息是所述N个UCI中优先级最低的UCI。例如,第一上行控制信息可以是第二部分信道质量状态信息(CSI part 2)。
应理解,本申请中本领域技术人员可以根据实际情况灵活确定第一控制控制信息,不做限定。
第二方面,提供了一种上行控制信息传输方法,该方法包括:网络设备接收承载N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后编码的,或者;网络设备接收承载第二上行控制信息的物理上行信道,所述物理上行控制信道不承载第一上行控制信息;其中,所述N为整数,且大于3,N个上行控制信息包括第一上行控制信息和第二上行控制信息,第二上行控制信息的优先级高于第一上行控制信息。
结合第二方面,在第二方面的某些实现方式中,所述物理上行控制信道不承载第一上行控制信息,包括:当N大于第一阈值时,所述物理上行控制信道不承载第一上行控制信息。
在一种可能实现方式中,物理上行控制信道不承载第一上行控制信息可以是,第一上行控制信息被丢弃,或者网络设备丢弃第一上行控制信息,或者网络设备接收物理上行信道,获得物理上行信道上承载的上行控制信息,该上行控制信息中不包括第一上行控制信息。
结合第二方面,在第二方面的某些实现方式中,所述第一UCI和所述第二UCI是级联后编码的,包括:当N大于第一阈值时,所述第一上行控制信息和所述第二上行控制信息是级联后编码的。
结合第二方面,在第二方面的某些实现方式中,所述第一阈值是网络设备指示的,或者所述第一阈值是根据终端设备上报的能力确定的,或者所述第一阈值是预定义的。
结合第二方面,在第二方面的某些实现方式中,所述网络设备接收的所述能力至少包括以下一项:所述终端设备支持的独立编码的上行控制信息个数大于3,或者;所述终端设备支持的最大独立编码的上行控制信息的个数,或者,所述终端设备支持大于6个极化码的码块,或者;所述终端设备支持增强的极化码,或者;所述终端设备支持的极化码的码块的最大个数。
结合第二方面,在第二方面的某些实现方式中,所述第一上行控制信息是所述N个UCI中优先级最低的UCI。
第三方面,提供了一种上行控制信息传输装置,所述装置用于执行第一方面或第一方面中任意一种可能的实现方式中的通信方法。
第四方面,提供了一种上行控制信息传输装置,所述装置用于执行第二方面或第二方面中任意一种可能的实现方式中的通信方法。
第五方面,本申请实施例提供了一种上行控制信息传输装置,包括收发器和处理器,所述收发器和处理器用于实现第一方面或第一方面中任意一种可能的实现方式中的通信方法。
第六方面,本申请实施例提供了一种上行控制信息传输装置,包括收发器和处理器,所述收发器和处理器用于实现第二方面或第二方面中任意一种可能的实现方式中的通信方法。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发送信号,使得包括所述处理器 的装置执行第一方面和第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于收发器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过收发器接收信号,通过发射器发射信号,以执行第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
其中,该处理器为一个或多个,该存储器为一个或多个。
其中,该存储器可以与所述处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自收发器。其中,发射器和收发器可以统称为收发器。
上述第八方面中的处理装置可以是一个或多个芯片,或者,也可以是一个芯片***。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于执行第一方面和第二方面以及第一方面和第二方面中任一种可能实现方式中的方法
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于执行第一方面至第四方面以及第一方面至第二方面中任一种可能实现方式中的方法
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得执行上述第一方面至第四方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第十二方面,提供了一种通信***,包括具有实现上述第一方面至第二方面的各方法及各种可能设计的功能的任一种装置。
根据本申请提供的技术方案,实现了在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
附图说明
图1是本申请适用的一种场景。
图2是本申请实施例提供的上行控制信息传输方法的示意性框图。
图3是本申请实施例提供的上行控制信息传输方法的示意性框图。
图4是本申请实施例提供的上行控制信息传输方法的示意性框图。
图5是本申请实施例提供的上行控制信息传输方法的示意性框图。
图6是本申请实施例提供的上行控制信息传输方法的示意图。
图7是本申请实施例提供的上行控制信息传输方法的示意图。
图8是本申请实施例提供的上行控制信息传输装置的示意性框图。
图9是本申请实施例提供的上行控制信息传输装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
无线接入网设备是终端设备通过无线方式接入到该移动通信***中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信***中的基站、未来移动通信***中的基站或WiFi***中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
图1是本申请实施例适用的***架构图,如图所示,该移动通信***包括核心网设备140、无线接入网设备130和至少一个终端设备(如图1中的终端设备120和终端设备110)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与 核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信***中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信***中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
为了便于理解,本申请首先对上行控制信息(uplink control information,UCI)和复用进行简单的介绍。
上行控制信息包括调度请求(scheduling request,SR)、混合自动重传请求确认(Hybrid automatic repeat request acknowledgment,HARQ-ACK)、信道状态信息(channel state information,CSI)等。其中,CSI具体还可以包括预编码矩阵指示(precoding matrix indication,PMI)、秩指示(Rank Indicator,RI)、层指示(Layer Indicator,LI)、信道质量信息(Channel Quality Indicator,CQI)、信道状态信息参考信号(reference signal,RS)资源指示(CSI-RS resource indicator,CRI)、参考信号接收功率(reference signal received power,RSRP),信号干扰噪声比(signal to interference plus noise ratio,SINR)等。在这些CSI中,可以将某些CSI级联起来,称为第一部分CSI(CSI part 1)或者第二部分CSI(CSI part 2)。其中,CSI part 1可以包括CRI、RI、第一个传输块(first transport block)的宽带CSI,第一个TB的子带差分CQI等。第二部分CSI(CSI part 2)可以包括第二个传输块(transport block,TB)的宽带CQI,LI等。CSI part 1和CSI part 2具体包括哪些CSI本申请不做限定。上述UCI的比特序列可以表示为
Figure PCTCN2022082944-appb-000001
其中,O UCI是UCI比特序列的长度。例如,HARQ-ACK的比特序列可以表示为
Figure PCTCN2022082944-appb-000002
SR的比特序列可以表示为
Figure PCTCN2022082944-appb-000003
CSI part 1的比特序列可以表示为
Figure PCTCN2022082944-appb-000004
CSI part 2的比特序列可以表示为
Figure PCTCN2022082944-appb-000005
上述UCI的比特序列可以进一步级联起来形成UCI的总比特序列a 0,a 1,a 2...a A-1,然后进行编码,即编码是对UCI的总比特序列进行处理。例如,UCI的总比特序列a 0,a 1,a 2...a A-1由HARQ-ACK和SR构成(也可以理解为是HARQ-ACK和SR级联在一起),即,
Figure PCTCN2022082944-appb-000006
其中,O ACK是HARQ-ACK的比特数,O SR是SR的比特序列,A=O ACK+O SR,A为总的比特数,或者可以理解为负载大小(payload size)。UCI的总比特序列a 0,a 1,a 2...a A-1还可以由HARQ-ACK、SR以及CSI part 1构成,或者由HARQ-ACK以及CSI part 1构成,或者仅由HARQ-ACK构成,或者仅由CSI part 1构成,或者仅由CSI part 2构成,或者仅由SR构成。应理解,将UCI1和UCI2级联,即将UCI1的比特序列和UCI2的比特序列连接起来,例如之前所述的HARQ-ACK和SR。应理解,UCI的总比特序列的个数可以为1或者2或者3或其它值。
当UCI的总比特序列的长度,即A,大于或者等于12时,UCI的总比特序列采用极化码编码(polar coding),否则采用小块长度的信道编码(channel coding of small block lengths)。当采用极化码编码时,UCI的总比特序列需要进行码块(CB,codeblock)分割(code block segmentation),然后对每个CB加循环冗余码校验(cyclic redundancy check,CRC)。其中,UCI的总比特序列可以拆分为至多2个码块(codeblock,CB),每个CB单独加循环冗余码校验(cyclic redundancy check,CRC),然后进行信道编码(即polar  coding)。其中,UCI的总比特序列的长度A小于或者等于1706。
通常情况下,当UCI承载在物理上行控制信道(physical uplink control channel,PUCCH)上时,HARQ-ACK,SR,CSI part 1是级联在一起组成UCI总比特序列a 0,a 1,a 2...a A-1,然后进行编码,即HARQ-ACK、SR、CSI part 1级联后进行编码。CSI part 2是单独组成另外一个UCI总比特序列a 0,a 1,a 2...a A-1,然后进行编码,即单独编码。当UCI承载在物理上行共享信道(physical uplink shared channel,PUSCH)上时,HARQ-ACK单独进行编码,CSI part 1单独编码,CSI part 2也单独进行编码。
UCI的优先级可以和UCI包含的信息、承载UCI的物理上行信道、小区、周期性等因素有关。具体以CSI为例进行说明。每个CSI上报(CSI report)可以定义一个优先级值(priority value),Pri iCSI(y,k,c,s)=2·N cells·M S·y+N cells·M S·k+M S·c+s该值越小,优先级越高。其中,当PUSCH上承载非周期(aperiodic)CSI上报时,y=0,当PUSCH上承载半静态(semi-persistent)CSI上报时,y=1。当PUCCH上承载半静态(semi-persistent)CSI上报时,y=2,当PUCCH上承载周期(periodic)CSI上报时,y=3。如果CSI包括RSRP或者SINR,则k=0,否则,k=1。c是服务小区索引,N cells是小区个数,s是上报配置的索引,M S是CSI上报配置个数的最大值。
UCI的优先级还可以是高层信令配置的,或者下行控制信息(downlink control information,DCI)指示的。例如,当DCI调度HARQ-ACK时,可以指示HARQ-ACK的优先级。如果只有两个优先级的话,即指示HARQ-ACK是高优先级或者低优先级。
UCI的优先级还可以和业务相关,例如mMTC的UCI相对于eMBB UCI是低优先级。另外,不同PUCCH组之间的UCI也可以定义优先级,例如,PUCCH group 0中的UCI的优先级高于PUCCH group 1中的UCI的优先级。或者不同基站之间的UCI,或者不同UE之间的UCI,或者不同传输接收点(Transmission reception point,TRP)之间的UCI,也可以定义它们之间的优先级。
高低优先级的UCI复用时,包括在PUCCH或者在PUSCH上承载高优先级(high priority,HP)的UCI和低优先级(low priority,LP)的UCI。例如PUCCH上承载HP HARQ-ACK,LP HARQ-ACK以及HP SR。在PUSCH上承载高优先级的HARQ-ACK,低优先级的HARQ-ACK,以及HP或者LP CSI。
目前,为了支持高低优先级UCI复用在一起传输,高低优先级UCI单独编码时,会增加用户设备(user equipment,UE)的编码复杂度和成本。因此,UCI如何更好的复用成为目前需要解决的技术问题。
图2是本申请实施例的上行控制信息传输方法的示意图,图2的方法包括:
步骤S201,终端设备确定N个上行控制信息,N为整数,且大于3,N个上行控制信息包括第一上行控制信息和第二上行控制信息,第二上行控制信息的优先级高于第一上行控制信息。
本申请中,N个上行控制信息可以理解为终端设备待传输的上行控制信息的数量,或者独立编码的UCI总比特序列的个数。N个UCI中的每一个UCI,可以为HARQ-ACK或者CSI part 1或者CSI part 2或者SR。其中,每一个UCI还可以对应一个优先级,每一个UCI都可以单独组成一个UCI的总比特序列,然后进行编码,即所述N个UCI中的每一个UCI都可以单独编码。例如,N=4,4个UCI具体可以包括高优先级的HARQ-ACK, 低优先级的HARQ-ACK,低优先级的CSI part 1以及低优先级的CSI part 2。或者,可以包括高优先级的HARQ-ACK,低优先级的HARQ-ACK,高优先级的CSI part 1,高优先级的CSI part 2。或者,可以包括高优先级的HARQ-ACK,低优先级的HARQ-ACK,高优先级的CSI part 1,低优先级的CSI part 2。或者,UCI的总比特序列也可以由多个UCI构成。
本申请中,第一上行控制信息可以是N个UCI中优先级最低的UCI。例如,第一上行控制信息可以是CSI part 2;又例如,第一上行控制信息可以是低优先级CSI part 2或者低优先级CSI part 1。需要说明的是,本领域技术人员可以根据实际情况灵活确定第一控制信息的内容。本申请中,第一上行控制信息中可以包括一个或者多个上行控制信息。
例如,第二上行控制信息可以是HARQ-ACK;又例如,第二上行控制信息可以是CSI part 1。需要说明的是,本领域技术人员可以根据实际情况灵活确定第二控制信息的内容。
当N超过第一阈值,终端设备丢弃部分上行控制信息或者将上行控制信息级联后编码。
本申请中的第一阈值也可以理解为支持独立编码上行控制信息的个数或者是最大个数,或者是UCI总比特序列的个数或者是最大个数(第一阈值的一例)。也就是说,本申请中,第一阈值可以为独立编码的上行控制信息的个数或者最大个数,或者独立编码的UCI比特序列的总个数或者最大个数,或者上行控制信息编码的码块的总个数,或者各个独立编码的UCI比特序列编码的码块的总个数。
本申请中,第一阈值可以是网络设备指示的,或者可以是根据终端设备上报的能力确定的,或者是预定义的。
本申请中,假设终端设备支持的最大独立编码的上行控制信息的个数是Y,即第一阈值等于Y,Y为正整数。例如,低优先级HARQ-ACK是一个(X1=1)上行控制信息,需要单独编码;高优先级HARQ-ACK是一个(X2=1)上行控制信息,需要单独编码;CSI part 1是一个(X3=1)上行控制信息,需要单独编码;CSI part 2是一个(X4=1)上行控制信息,需要单独编码。
本申请中,终端设备可以确定N个待发送上行控制信息,N为整数,且大于3。也就是说,在本申请中终端设备待发送的上行控制信息的个数可以是大于3,但是在发送上行控制信息时,可以通过联合编码的方式或者丢弃的方式使得发送的上行控制信息的数量不超过最大独立编码的上行控制信息的个数。即,X1+X2+X3+X4<=Y。可以实现在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
作为一个示例,假设终端设备支持的最大独立编码的上行控制信息的个数是4个,即第一阈值等于4。终端设备可以确定上行控制信息为HARQ-ACK和CSI part 1,例如,独立编码的高优先级的HARQ-ACK,独立编码的低优先级的HARQ-ACK,独立编码的高优先级CSI part 1,独立编码的低优先级CSI part 1。也就是说,本申请中,终端设备确定的上行控制信息中,独立编码的UCI的总比特序列个数不超过第一阈值Y。
作为一个示例,终端设备可以先向网络设备上报能力,例如:终端设备支持的独立编码的上行控制信息个数大于4,或者;终端设备支持的最大独立编码的上行控制信息的个数或者是最大个数。网络设备可以根据终端设备上报的能力和/或网络侧的资源情况,指示第一阈值。则终端设备可以根据网络设备的配置或者调度信息确定上行控制信息,保证最大独立编码的上行控制信息的个数。
本申请中的第一阈值还可以理解为支持的UCI的码块数量,或者支持的UCI的码块的最大数量(第一阈值的又一例)。
例如,假设终端设备支持的最大码块个数为Y,即第一阈值等于Y,低优先级HARQ-ACK占据X1个码块,高优先级HARQ-ACK占据X2个码块,CSI part 1占据X3个码块,CSI part 2占据X4个码块,终端设备确定上行控制信息时,保证上行控制信息的码块数量不超过Y,即,X1+X2+X3+X4<=Y。
作为一个示例,假设终端设备支持的最大码块个数是5个。终端设备可以确定上行控制信息为HARQ-ACK和CSI part 1,例如,高优先级的HARQ-ACK单独编码,为2个码块,低优先级的HARQ-ACK单独编码,为2个码块,CSI part 1单独编码,为1个码块。也就是说,本申请中,终端设备确定的上行控制信息的码块数量不超过最大码块个数即第一阈值。
作为一个示例,终端设备可以先向网络设备上报能力,例如:终端设备支持大于6个极化码的码块,或者终端设备支持增强的极化码,或者终端设备支持的极化码的码块的最大个数。网络设备可以根据终端设备上报的能力和/或网络侧的资源情况,指示终端设备第一阈值,即上行控制信息最大码块个数。则终端设备可以根据网络设备的配置或者调度信息确定上行控制信息,保证发送的上行控制信息的码块个数不超过网络设备指示的最大码块个数。
作为一个示例,假设协议中可以预先设定最大码块个数为6,终端设备可以确定上行控制信息。终端设备可以确定上行控制信息为HARQ-ACK和CSI part 1,例如,高优先级的HARQ-ACK为2个码块,低优先级的HARQ-ACK为2个码块,CSI part 1为2个码块。
本申请中,终端设备确定N个上行控制信息是在一个时隙(slot)内或者子时隙(sub-slot)内确定N个上行控制信息。
本申请中,N个上行控制信息在复用前,在时域上有重叠。例如PUCCH1上承载高优先级的HARQ-ACK,PUCCH2上承载低优先级的HARQ-ACK,PUSCH上承载低优先级的CSI part 1和CSI part 2,PUCCH1、PUCCH2、PUSCH在时域上重叠,需要复用到PUSCH上发送。其中,PUSCH上如果承载的是高优先级的CSI part 1和CSI part2也是类似的。
步骤S202,终端设备向网络设备发送承载所述N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后进行编码,或者;终端设备丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。
在本申请中,终端设备可以在一个物理上行信道上发送包含不同优先级的上行控制信息。
在一种可能的实现方式中,终端设备可以向网络设备发送承载所述N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后进行编码。假设,终端设备最大可以支持发送3个上行控制信息,终端设备确定待发送的上行控制信息可以有4个,分别为:独立编码的高优先级的HARQ-ACK,独立编码的低优先级的HARQ-ACK,独立编码的高优先级CSI part 1,独立编码的低优先级CSI part 1。此时,终端设备可以将高优先级CSI part 1和低优先级CSI part 1级联后进行编码。假设,终端设备最大可以支持发送6个上行控制信息的码块,终端设备确定待发送的上行控制信息的码块可以有8个, 分别为:独立编码的高优先级的HARQ-ACK为2个码块,独立编码的低优先级的HARQ-ACK为2个码块,独立编码的高优先级CSI part 1为2个码块,独立编码的低优先级CSI part 1为2个码块。此时,终端设备可以将高优先级CSI part 1的和低优先级CSI part 1级联后进行编码。因为级联后编码的码块最多为2个,因此可以保证码块个数不超过UE的能力。
在一种可能的实现方式中,终端设备可以丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。例如,假设,终端设备最大可以支持发送3个上行控制信息,终端设备确定待发送的上行控制信息可以有4个,分别为:独立编码的高优先级的HARQ-ACK,独立编码的低优先级的HARQ-ACK,独立编码的高优先级CSI part 1,独立编码的低优先级CSI part 1。此时,终端设备可以将低优先级CSI part 1丢弃。假设,终端设备最大可以支持发送6个上行控制信息的码块,终端设备确定待发送的上行控制信息可以有8个,分别为:独立编码的高优先级的HARQ-ACK为2和码块,独立编码的低优先级的HARQ-ACK为2个码块,独立编码的高优先级CSI part 1为2个码块,独立编码的低优先级CSI part 1为2个码块。此时,终端设备可以将低优先级CSI part 1的码块丢弃。
在一种可能的实现方式中,物理上行信道上还可以承载第三UCI,第三UCI的优先级低于第二UCI的优先级。第三UCI也是N个UCI中的其中一个UCI。
本申请中,终端设备丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。可以理解为,终端设备发送承载高优先级上行控制信息的物理上行信道。
本申请中,终端设备丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。可以理解为,终端设备可以丢弃部分低优先级的上行控制信息,发送承载高优先级上行控制信息的物理上行信道和承载部分低优先级上行控制信息的物理上行信道。
本申请中,终端设备丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。可以理解为,终端设备还可以继续丢弃或者发送第三上行控制信息。N个上行控制信息还包括第三上行控制信息。
也就是说,本申请中,终端设备可以发送承载第二上行控制信息的物理上行信道,但是本申请并未对终端设备是否还可以发送其它第一上行控制信息做任何限定。本申请并未排除终端设备可以丢弃部分第一上行控制信息,发送承载第二上行控制信息以及部分其它第一上行控制信息的情况。
应理解,本申请中,物理上行信道可以是物理上行控制信道PUCCH或者物理上行共享信道PUSCH。
根据本申请提供的方法,可以实现在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
图3是本申请实施例的上行控制信息传输方法的示意图,图3的方法包括:
步骤S301,基站向UE发送指示信息,指示信息用于指示基站调度的上行控制信息。
本申请中,指示信息可以是下行控制信息(downlink control information,DCI),也可以是高层配置信息。应理解,不同的UCI对应的指示信息可以是不相同的。例如,基站向UE发送DCI,DCI调度HARQ-ACK的发送。基站向UE发送配置信息,调度周期性CSI的发送。
本申请中,指示信息可以包括一个或者多个DCI,或者一个或者多个高层配置信息, 调度的上行控制信息个数是N个。
在一种可能的实现方式中,基站指示的上行控制信息的个数可能超过UE处理能力。应理解,基站指示的上行控制信息的个数可能超过UE处理能力是指,基站调度的上行控制信息中,需要独立编码的UCI的总比特序列的个数超过了UE的处理能力。
在一种可能的实现方式中,基站指示上行控制信息码块的个数可能超过UE处理能力。应理解,基站指示上行控制信息码块的个数可能超过UE处理能力指的是,基站调度的上行控制信息中,需要独立编码的UCI的总比特序列的总码块个数超过了UE的处理能力
步骤S302,UE根据指示信息确定N个上行控制信息,N为整数,且大于3,N个上行控制信息包括第一上行控制信息和第二上行控制信息,第二上行控制信息的优先级高于第一上行控制信息。
作为一个示例,假设UE的最大独立编码的上行控制信息的个数为3,而指示信息指示最大独立编码的上行控制信息的个数为4时,UE可以通过级联编码或者是丢弃,确定上行控制信息,以保证最大独立编码的上行控制信息的个数不超过3。
作为一个示例,假设UE的最大独立编码的上行控制信息的个数为5,而指示信息指示最大独立编码的上行控制信息的个数为4时,UE可以根据指示信息确定上行控制信息,保证最大独立编码的上行控制信息的个数不超过4。
作为一个示例,假设UE的处理能力为5,而指示信息指示上行控制信息码块的个数为8时,UE可以通过级联编码或者是丢弃,保证上行控制信息的码块数量不超过5。
作为一个示例,假设UE的处理能力为10,而指示信息指示上行控制信息码块的个数为8时,UE可以根据指示信息确定上行控制信息,上行控制信息的码块数量不超过8。
步骤S303,UE向基站发送承载N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后进行编码,或者;UE丢弃第一上行控制信息,向网络设备发送承载所述第二上行控制信息的物理上行信道。
具体可以参见方法200中的步骤S202,不再赘述。
也就是说,本申请中UE可以在一个物理上行信道上发送包含不同优先级的上行控制信息且不会超过UE的处理能力。
步骤S304,基站接收承载上行控制信息的物理上行信道。
在一种可能的实现方式中,基站接收承载上行控制信息的物理上行信道,还需要对其进行译码处理。
在一种可能的实现方式中,基站可以接收承载N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后编码的。
在一种可能的实现方式中,基站可以接收承载第二上行控制信息的物理上行信道,其中,物理上行控制信道不包括第一上行控制信息。也可以理解为,丢弃第一上行控制信息。
本申请中,N为整数,且大于3,N个上行控制信息可以包括第一上行控制信息和第二上行控制信息,第二上行控制信息的优先级高于第一上行控制信息。
根据本申请实施例的方法,实现了在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
图4是本申请实施例的上行控制信息发送方法的示意图,图4的方法包括:
步骤S401,UE向基站发送能力信息。
在一种可能的实现方式中,UE上报能力信息可以包括:UE可以上报支持的独立编码的上行控制信息个数大于3,或者;UE支持的最大独立编码的上行控制信息的个数。
在一种可能的实现方式中,UE上报能力信息可以包括:UE可以上报是否支持大于等于6个上行控制信息码块的个数,或者;UE上报支持的上行控制信息码块的最大个数,或者;UE可以上报是否具备增强极化编码(polar encode)的能力等等。
步骤402,基站确定指示信息,指示信息用于指示基站调度的上行控制信息。
在一种可能的实现方式中,基站可以根据UE上报的能力和/或当前网络资源使用情况确定指示信息
作为一个示例,当UE上报支持大于等于3个最大独立编码的上行控制信息的个数时,例如,基站可以根据当前网络的资源使用情况指示最大独立编码的上行控制信息的个数为4。
作为一个示例,当UE上报支持的最大独立编码的上行控制信息的个数为5时,例如,基站可以根据当前网络的资源使用情况指示最大独立编码的上行控制信息的个数为5或者3。
作为一个示例,当UE上报支持大于等于6个上行控制信息码块数时,例如,基站可以根据当前网络的资源使用情况指示上行控制信息码块的最大个数为8。
作为一个示例,当UE上报支持的上行控制信息码块的最大个数为5或者7时,例如,基站可以根据当前网络的资源使用情况指示上行控制信息码块的最大个数为5。
作为一个示例,当UE上报具备支持增强极化编码的能力时,例如,基站可以根据当前网络的资源使用情况指示上行控制信息码块的最大个数为10。
步骤S403,基站向UE发送指示信息。
步骤S404,UE根据指示信息确定N个上行控制信息,N为整数,且大于3,N个上行控制信息包括第一上行控制信息和第二上行控制信息,第二上行控制信息的优先级高于第一上行控制信息。
具体可以参见方法300中的步骤S302,不再赘述。
步骤405,UE向基站发送承载N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后进行编码,或者;UE丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。
具体可以参见方法300中的步骤S303,不再赘述。
也就是说,本申请中UE可以在一个物理上行信道上发送包含不同优先级的上行控制信息且不会超过UE的处理能力。
步骤S406,基站接收承载上行控制信息的物理上行信道,进行译码。
具体可以参见方法300中的步骤S304,不再赘述。
根据本申请实施例的方法,实现了在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
图5是本申请实施例的上行控制信息传输方法的示意图,图5的方法包括:
步骤S501,基站向UE发送指示信息,指示信息用于指示基站调度的上行控制信息。
具体可以参见方法300中的步骤S301,此处不再赘述。
步骤S502,UE根据指示信息确定N个上行控制信息,N为整数,且大于3,N个上 行控制信息包括第一上行控制信息和第二上行控制信息,第二上行控制信息的优先级高于第一上行控制信息。
本实施例中,UE确定N个上行控制信息具体可参见方法300中步骤302,不再赘述。
在一些实施例中,可以执行步骤S503a,UE向基站发送承载N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后进行编码。
作为一个示例,可以将CSI part 1(第二控制信息的一例)和CSI part 2(第一控制信息的一例)级联后进行编码。
作为一个示例,可以将HARQ-ACK(第二控制信息的一例)和CSI part 1(第一控制信息的一例)级联后进行编码。
作为一个示例,可以将HARQ-ACK(第二控制信息的一例)和CSI part 2(第一控制信息的一例)级联后进行编码。
作为一个示例,可以将不同优先级的UCI进行级联编码。
例如,CSI part 1相比CSI part 2是高优先级,则可以将高优先级的CSI part 1(第二控制信息的一例)和低优先级的CSI part 2(第一控制信息的一例)级联后进行编码。或者,CSI part 1相比CSI part 2是低优先级,则可以将高优先级的CSI part 2(第二控制信息的一例)和低优先级的CSI part 1(第一控制信息的一例)级联后进行编码。应理解,上述优先级的高低只是在第一UCI和第二UCI之间进行比较得到的,不影响其它UCI之间的优先级,或者其它UCI与第一UCI、第二UCI之间的优先级比较。
例如,HARQ-ACK和CSI part 1是不同的优先级,或者,HARQ-ACK和CSI part 2是不同的优先级,均可以级联后进行编码,和CSI part 1和CSI part 2类似,不再赘述。
应理解,还可以将N个UCI按照优先级进行排序,例如,UCI 1的优先级小于UCI2的优先级,UCI2的优先级小于UCI3的优先级,以此类推,UCI(N-1)的优先级小于UCI N的优先级。则可以将UCI 1和UCI 2进行级联编码。
应理解,还可以是将同类型的UCI,但是它们是不同的优先级进行级联编码。例如,UCI类型均为HARQ-ACK,但是将高优先级的HARQ-ACK和低优先级的HARQ-ACK进行级联编码。或者UCI类型均为CSI,但是将高优先级的CSI(例如,CSI part 2)和低优先级的CSI(例如CSI part 1)进行联合编码。
需要说明的是,本实施例上述第一上行控制信息和第二控制信息仅仅是举例,不做任何限定。本领域技术人员可以根据实际情况,确定第一上行控制信息和第二上行控制信息的内容。
本申请中,对于N个UCI中除第一上行控制信息和第二UCI之外的其它UCI,是否也进行级联编码,本申请不做限定。
例如,可以将第三UCI和第一UCI以及第二UCI一起做联合编码,也可以将第三UCI和第四UCI做联合编码,也可以是第三UCI独立编码,第四UCI独立编码等。
在一些实施例中,可以执行步骤S503b,UE丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。
作为一个示例,UE可以丢弃CSI part 2(第一上行控制信息的一例),发送承载第二上行控制信息的物理上行信道。例如,UE可以丢弃CSI part 2的码块。例如,假设,终端设备确定待发送的上行控制信息可以有4个,分别为:独立编码的高优先级的HARQ-ACK, 独立编码的低优先级的HARQ-ACK,独立编码的CSI part 1,独立编码的CSI part 2。此时,终端设备可以将CSI part 2丢弃(因为它是最低优先级)。假设,终端设备确定待发送的上行控制信息可以有8个,分别为:独立编码的高优先级的HARQ-ACK为2个码块,独立编码的低优先级的HARQ-ACK为2个码块,独立编码的CSI part 1为2个码块,独立编码的CSI part 2为2个码块。此时,终端设备可以将CSI part 2的码块丢弃。
需要说明的是,本实施例中第一上行控制信息是以CSI part 2为例,不做任何限定。本领域技术人员可以根据实际情况,预先规定UE丢弃的第一上行控制信息的内容。例如,第一上行控制信息可以是低优先级的CSI part 1和低优先级的CSI part 2。也可以按照优先级顺序进行丢弃。
需要说明的是,本申请中步骤S503a和步骤S503b为并列的两种实施方式,在实际操作过程中,步骤S503a和步骤S503b不需要同时执行。
步骤S504,基站接收承载上行控制信息的物理上行信道。
具体可以参见300中的步骤S304,不再赘述。
根据本申请实施例的方法,实现了在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
方法600是本申请提供的上行控制信息传输方法的实施例,方法600包括:
步骤S601,基站向UE发送指示信息,指示信息用于指示基站调度的上行控制信息。
具体可以参见方法300中的步骤S301,此处不再赘述。
步骤S602,UE根据指示信息确定N个上行控制信息,N为整数,且大于3,N个上行控制信息包括第一上行控制信息和第二上行控制信息,第二上行控制信息的优先级高于第一上行控制信息。
本实施例中,UE确定N个上行控制信息具体可参见方法300中步骤302,不再赘述。
在一些实施例中,可以执行步骤603a,UE向基站发送承载N个上行控制信息的物理上行信道,其中,第一上行控制信息和第二上行控制信息是级联后进行编码。
在一种可能的实现方式中,当N大于第一阈值时,第一UCI和第二UCI可以级联后进行编码。
例如,当待传输的上行控制信息的数量N超过最大独立编码的上行控制信息的个数(即第一阈值)时,可以联合编码。假设UE的最大独立编码的上行控制信息的个数为3,而待传输的独立编码的上行控制信息的个数为4时,UE可以联合编码。
示例性的,假设低优先级HARQ-ACK独立编码的上行控制信息的个数为X1,高优先级HARQ-ACK独立编码的上行控制信息的个数为X2,CSI part 1独立编码的上行控制信息的个数为X3,CSI part 2独立编码的上行控制信息的个数为X4。作为一个示例,如果X1+X2+X3+X4>基站指示的最大独立编码的上行控制信息的个数时,或者;如果X1+X2+X3+X4>UE的处理能力时,UE可以将CSI part 2与CSI part 1,或者;将CSI part 2与HARQ-ACK级联后进行编码。
作为另一个示例,UE可以将超过UE能力的上行控制信息与其它上行控制信息级联后进行编码。参见图6,在图6中由于低优先级的HARQ-ACK超过了UE的处理能力,此时UE可以将低优先级的HARQ-ACK与CSI part 1,或者;将低优先级的HARQ-ACK与CSI part 2级联后进行编码,不再赘述。
在一种可能的实现方式中,当码块总个数大于第二阈值时,第一UCI和第二UCI可以级联后编码。
例如,当待传输的上行控制信息的码块数量超过最大码块个数时,UE可以联合编码。假设UE的最大码块个数为6,而待传输的上行控制信息的码块数量为8时,UE可以联合编码。
示例性的,假设低优先级HARQ-ACK占据X1个码块,高优先级HARQ-ACK占据X2个码块,CSI part 1占据X3个码块,CSI part 2占据X4个码块。作为一个示例,如果X1+X2+X3+X4>基站指示的上行控制信息的最大码块个数时,或者;如果X1+X2+X3+X4>UE的处理能力时,UE可以将CSI part 2与CSI part 1,或者;将CSI part 2与HARQ-ACK联合进行编码。作为另一个示例,UE可以将超过UE能力的UCI与其它UCI联合进行编码。
继续参见图6,在图6中由于低优先级的HARQ-ACK超过了UE的处理能力,此时UE可以将低优先级的HARQ-ACK与CSI part 1,或者;将低优先级的HARQ-ACK与CSI part 2联合进行编码,不再赘述。
在一些实施例中,可以执行步骤S603b,UE丢弃第一上行控制信息,发送承载第二上行控制信息的物理上行信道。
在一种可能的实现方式中,当N大于第一阈值时,UE丢弃第一上行控制信息。
例如,当待传输的上行控制信息的数量N超过最大独立编码的上行控制信息的个数(即第一阈值)时,UE可以丢弃第一上行控制信息。假设UE的最大独立编码的上行控制信息的个数为3,而待传输的上行控制信息的数量为4时,UE可以丢弃第一上行控制信息。
示例性的,假设低优先级HARQ-ACK独立编码的上行控制信息的数量为X1,高优先级HARQ-ACK独立编码的上行控制信息的数量为X2,CSI part 1独立编码的上行控制信息的数量为X3,CSI part 2独立编码的上行控制信息的数量为X4。作为一个示例,如果待发送的独立编码的上行控制信息数量X1+X2+X3+X4>3时,UE可以丢弃CSI part 2;如果独立编码的上行控制信息数量X1+X2+X3+X4<=3时,UE可以不用执行丢弃操作。作为另一个示例,如果,待发送的上行控制信息数量X1+X2+X3+X4>UE的处理能力时,UE可以直接丢弃CSI part 2的独立编码上行控制信息;如果基站指示的独立编码上行控制信息数量没有超过UE的处理能力时,UE可以不用执行丢弃操作。
示例性的,如图7所示,基站可以指示高优先级HARQ-ACK独立编码上行控制信息为1个,高优先级CSI part 1码块独立编码上行控制信息为1个,高优先级CSI part 2独立编码上行控制信息为1个,低优先级HARQ-ACK独立编码上行控制信息为1个。此时,UE可以丢弃超过自身能力的独立编码上行控制信息,比如,丢弃低优先级HARQ-ACK。也可以理解为,此时取消了低优先级HARQ-ACK的发送。
在一种可能的实现方式中,当码块总个数大于第二阈值时,UE丢弃第一上行控制信息。例如,当待传输的上行控制信息的码块数量超过最大码块个数时,UE可以丢弃第一上行控制信息。假设UE的最大码块个数为6,而待传输的上行控制信息的码块数量为8时,UE可以丢弃第一上行控制信息。
示例性的,假设低优先级HARQ-ACK占据X1个码块,高优先级HARQ-ACK占据X2个码块,CSI part 1占据X3个码块,CSI part 2占据X4个码块。作为一个示例,如果 独立编码的上行控制信息的码块数量X1+X2+X3+X4>6时,UE可以丢弃CSI part 2的码块;如果独立编码的上行控制信息的码块数量X1+X2+X3+X4<=6时,UE可以不用执行丢弃操作。作为另一个示例,如果,基站指示的码块数量X1+X2+X3+X4>UE的处理能力时,UE可以直接丢弃CSI part 2的码块;如果码块数量没有超过UE的处理能力时,UE可以不用执行丢弃操作。
示例性的,如图7所示,2个高优先级HARQ-ACK码块,1个高优先级CSI part 1码块,2个高优先级CSI part 2码块,2个低优先级HARQ-ACK码块。此时,UE可以丢弃超过自身能力的码块,比如,丢弃低优先级HARQ-ACK中的一个码块。也可以理解为,此时取消了低优先级HARQ-ACK的发送。
应理解,由于上行控制信息的码块数量和UCI总比特序列的比特数相关,UCI的负载至多拆分为2个码块。
也就是说,本申请中UE可以在一个物理上行信道上发送包含不同优先级的上行控制信息并且不会超过UE的处理能力。
需要说明的是,本申请中步骤S603a和步骤S603b为并列的两种实施方式,在实际操作过程中,步骤S603a和步骤S603b不需要同时执行。
步骤S604,基站接收承载上行控制信息的物理上行信道。
具体可以参见300中的步骤S304,不再赘述。
根据本申请实施例的方法,实现了在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
方法700是本申请提供的上行控制信息传输方法的实施例,本实施例的技术方案如下:
当相同优先级的UCI复用在PUCCH或者PUSCH上传输时,需要满足时序timeline,例如需要满足如下第一时序以及第二时序。
应理解,时序timeline是DCI到符号S 0之间的间隔,符号S 0是重叠信道中最早信道的第一符号。时序timeline也可以是物理下行共享信道(Physical downlink shared channel,PDSCH)到符号S 0之间的间隔。
如果重叠的信道中包括PUSCH,则第二时序可以为:
Figure PCTCN2022082944-appb-000007
其中,i表示第i个PUSCH,可以理解,在一组重叠的信道中,可以有多个PUSCH,i是PUSCH的索引。具体
Figure PCTCN2022082944-appb-000008
的公式如下:
Figure PCTCN2022082944-appb-000009
其中,N 2是PUSCH准备时长,单位为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号;d 2,1是和解调参考信号(demodulation reference signal,DMRS)有关的参数,如果PUSCH的第一个符号只包含DMRS,则d 2,1的取值为0,否则d 2,1的取值为1。κ是常数,一般等于64。μ是子载波间隔索引。T C是时间单元,例如T C可以满足以下形式:
T c=1/(Δf max·N f);
其中,Δf max=480·10 3HZ,N f=4096。
T switch是上行切换间隔(uplink switching gap);如果DCI触发了BWP切换,d 2,2是带宽部分(bandwidth part,BWP)切换时间(switch time),否则等于0。max()是取最大值运算。本申请实施例中,如果没有特别说明,符号可以是指OFDM符号的简称。
如果重叠的信道中不包括PUSCH,则第二时序可以为:
Figure PCTCN2022082944-appb-000010
第一时序为:
Figure PCTCN2022082944-appb-000011
Figure PCTCN2022082944-appb-000012
其中,i表示第i个PDSCH,N 1是PDSCH处理时长,d 1,1的取值和PDSCH的映射方式、PDSCH的长度、UE的处理能力相关。
当不同优先级的UCI复用在PUCCH或者PUSCH上传输时,需要满足时序timeline为第三时序以及第四时序。其中,第三时序大于第一时序,或者,第四时序大于第二时序。
应理解,第三时序大于第一时序指的是,第三时序的时长大于第一时序,或者第三时序的时间长度大于第一时序。
应理解,第四时序大于第二时序指的是,第四时序的时长大于第二时序,或者第四时序的时间长度大于第二时序。
在一种可能的实现方式中,也可以是,当UCI的总比特序列的个数大于3,或者当UCI的总比特序列的码块个数大于6时,第三时序大于第一时序,或者,第四时序大于第二时序。
如果重叠的信道中包括PUSCH,则第四时序可以为:
Figure PCTCN2022082944-appb-000013
Figure PCTCN2022082944-appb-000014
其中,X大于1,可以为2或者3个,表示X个符号,X为整数。
如果重叠的信道中不包括PUSCH,则第四时序可以为:
Figure PCTCN2022082944-appb-000015
其中,Y大于1,可以为2或者3个,表示Y个符号,Y为整数。
第三时序为:
Figure PCTCN2022082944-appb-000016
Figure PCTCN2022082944-appb-000017
其中,Z大于1,可以为2或者3个,表示Z个符号,Z为整数。
由上可以看出,不同优先级复用时,增加符号个数。因此当码块个数继续增大之后,则处理时间还需要继续增大,例如,再增加1或者2或者3个符号。
也就是说,本申请还考虑到上行控制信息的码块个数增加后,对UE的处理时间的影响。当上行控制信息的码块个数或上行控制信息的数量增加后,可以通过增加符号的个数,增大处理时间,从而实现在终端设备的能力范围内发送上行控制信息,保障了终端设备的工作性能。
作为一个示例,假设UE支持上行控制信息码块的最大个数为6,而UE待发送的上行控制信息的码块个数大于6时,可以增加1或者2或者3个符号,增大处理时间,保障UE的工作性能。
作为一个示例,假设UE支持独立编码的上行控制信息的个数为3,而UE待发送的上行控制信息的个数大于3时,可以增加1或者2或者3个符号,增大处理时间,保障UE的工作性能。
即,本申请中终端设备可以确定N个上行控制信息,所述N为整数,且大于3,所述 N个上行控制信息包括第一上行控制信息和第二上行控制信息,所述第二上行控制信息的优先级高于所述第一上行控制信息;当所述N大于第一阈值时,所述终端设备的处理时间或者复用的处理时间将增大,例如增加更多的符号个数,使得终端设备能够完成复用。
需要说明的是,本申请中的实施例可以单独实施,也可以将各个实施例中的步骤结合在一起实施。
以上,结合图2至图7详细说明了本申请实施例提供的方法。下面结合图8和图9介绍本申请实施例提供的上行控制信息传输装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图8是本申请实施例提供的上行控制信息传输装置100的示意性框图。如图所示,该上行控制信息传输装置100可以包括:收发单元110和处理单元120。
在一种可能的设计中,该上行控制信息传输装置100可以是上文方法实施例中的终端设备,也可以是用于实现上文方法实施例中终端设备的功能的芯片。应理解,该上行控制信息传输装置100可对应于根据本申请实施例的方法200、方法300、方法400、方法500、方法600和方法700中的终端设备,该上行控制信息传输装置100可以执行本申请实施例的200、方法300、方法400、方法500、方法600和方法700中的终端设备网元所对应的步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在一种可能的设计中,该上行控制信息传输装置100可以是上文方法实施例中的网络设备,也可以是用于实现上文方法实施例中网络设备的功能的芯片。应理解,该上行控制信息传输装置100可对应于根据本申请实施例的200、方法300、方法400、方法500、方法600和方法700中的网络设备,该上行控制信息传输装置100可以执行本申请实施例的200、方法300、方法400、方法500、方法600和方法700中的网络设备所对应的步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,当该上行控制信息传输装置100为芯片时,该芯片包括收发单元和处理单 元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。收发单元110用于实现上行控制信息传输装置100的信号的收发操作,处理单元120用于实现上行控制信息传输装置100的信号的处理操作。可选地,该上行控制信息传输装置100还包括存储单元130,该存储单元130用于存储指令。
图9是本申请实施例提供的上行控制信息传输装置200的示意性框图。如图所示,该上行控制信息传输装置200包括:至少一个处理器220。该处理器220与存储器耦合,用于执行存储器中存储的指令,以发送信号和/或接收信号。可选地,该上行控制信息传输装置200还包括存储器230,用于存储指令。可选的,该上行控制信息传输装置200还包括收发器210,处理器220控制收发器210发送信号和/或接收信号。
应理解,上述处理器220和存储器230可以合成一个处理装置,处理器220用于执行存储器230中存储的程序代码来实现上述功能。具体实现时,该存储器230也可以集成在处理器220中,或者独立于处理器220。
还应理解,收发器210可以包括接收器(或者称,接收机)和发射器(或者称,发射机)。收发器还可以进一步包括天线,天线的数量可以为一个或多个。收发器210有可以是通信接口或者接口电路。
具体的,该上行控制信息传输装置200中的收发器210可以对应于上行控制信息传输装置100中的收发单元110,该上行控制信息传输装置200中的处理器220可对应于上行控制信息传输装置200中的处理单元120。
应理解,各收发器处理器执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only  memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch-link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct ram-bus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图方法200、方法300、方法400、方法500、方法600和方法700实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行方法200、方法300、方法400、方法500、方法600和方法700所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种***,其包括前述的装置或设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络侧设备与终端设备和方法实施例中的网络侧设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在 进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种上行控制信息传输方法,其特征在于,包括:
    终端设备确定N个上行控制信息UCI,所述N为整数,且大于3,所述N个UCI中的UCI为混合自动重传请求确认HARQ-ACK、第一部分信道状态信息CSI part 1或者第二部分信道状态信息CSI part 2,所述N个UCI包括第一UCI、第二UCI和第三UCI,所述第二UCI的优先级高于所述第三UCI,所述第三UCI的优先级高于所述第一UCI;
    所述终端设备丢弃所述第一UCI,通过物理上行信道发送所述第二UCI和所述第三UCI。
  2. 根据权利要求1所述的方法,其特征在于,所述物理上行信道是物理上行共享信道PUSCH。
  3. 根据权利要求1或2所述的方法,其特征在于,用于承载所述N个UCI的物理上行控制信道PUCCH和PUSCH在时域上重叠。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述N=4,所述N个UCI包括高优先级的HARQ-ACK,低优先级的HARQ-ACK,低优先级的CSI part 1以及低优先级的CSI part 2。
  5. 根据权利要求4所述的方法,其特征在于,所述第一UCI是低优先级的CSI part 2。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述N=4,所述N个UCI包括高优先级的HARQ-ACK,低优先级的HARQ-ACK,高优先级的CSI part 1,高优先级的CSI part 2。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一UCI是所述N个UCI中优先级最低的上行控制信息。
  8. 一种上行控制信息传输方法,其特征在于,包括:
    网络设备接收承载第二上行控制信息UCI和第三UCI的物理上行信道,所述物理上行控制信道不承载第一UCI;
    其中,所述第一UCI、所述第二UCI和所述第三UCI属于N个UCI中的一个,所述N为整数,且大于3,所述N个UCI中的UCI为混合自动重传请求确认HARQ-ACK、第一部分信道状态信息CSI part 1或者第二部分信道状态信息CSI part 2,所述第二UCI的优先级高于所述第三UCI,所述第三UCI的优先级高于所述第一UCI。
  9. 根据权利要求8所述的方法,其特征在于,所述物理上行信道是物理上行共享信道PUSCH。
  10. 根据权利要求8或9所述的方法,其特征在于,用于承载所述N个UCI的物理上行控制信道PUCCH和PUSCH在时域上重叠。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述N=4,所述N个UCI包括高优先级的HARQ-ACK,低优先级的HARQ-ACK,低优先级的CSI part 1以及低优先级的CSI part 2。
  12. 根据权利要求11所述的方法,其特征在于,所述第一UCI是低优先级的CSI part 2。
  13. 根据权利要求8至10中任一项所述的方法,其特征在于,所述N=4,所述N个UCI包括高优先级的HARQ-ACK,低优先级的HARQ-ACK,高优先级的CSI part 1,高优先级的CSI part 2。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述第一UCI是所述N个UCI中优先级最低的上行控制信息。
  15. 一种上行控制信息传输装置,所述装置用于执行如权利要求1至7中任一项所述方法。
  16. 一种上行控制信息传输装置,所述装置用于执行如权利要求8至14中任一项所述方法。
  17. 一种***,其特征在于,所述***包括至少一个如权利要求15所述的装置和至少一个如权利要求16所述的装置。
  18. 一种计算机可读存储介质,其存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至7或8至14中任意一项所述的方法。
  19. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在处理器上运行时,使得处理器执行权利要求1至7或8至14中任一项所述的方法。
PCT/CN2022/082944 2021-04-02 2022-03-25 一种上行控制信息传输方法和装置 WO2022206579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22778762.9A EP4311338A1 (en) 2021-04-02 2022-03-25 Uplink control information transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110363901.7 2021-04-02
CN202110363901.7A CN115190530A (zh) 2021-04-02 2021-04-02 一种上行控制信息传输方法和装置

Publications (1)

Publication Number Publication Date
WO2022206579A1 true WO2022206579A1 (zh) 2022-10-06

Family

ID=83457996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082944 WO2022206579A1 (zh) 2021-04-02 2022-03-25 一种上行控制信息传输方法和装置

Country Status (3)

Country Link
EP (1) EP4311338A1 (zh)
CN (1) CN115190530A (zh)
WO (1) WO2022206579A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710305A (zh) * 2017-06-08 2020-01-17 高通股份有限公司 新无线电中的上行链路控制信息的传输
CN112398614A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 一种上行控制信息uci的处理方法、终端及基站
CN112534927A (zh) * 2018-08-10 2021-03-19 高通股份有限公司 用于无线通信的上行链路冲突处理

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710305A (zh) * 2017-06-08 2020-01-17 高通股份有限公司 新无线电中的上行链路控制信息的传输
CN112534927A (zh) * 2018-08-10 2021-03-19 高通股份有限公司 用于无线通信的上行链路冲突处理
CN112398614A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 一种上行控制信息uci的处理方法、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Intra-UE Multiplexing/Prioritization for Rel-17 URLLC", 3GPP DRAFT; R1-2100439, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970361 *

Also Published As

Publication number Publication date
CN115190530A (zh) 2022-10-14
EP4311338A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
US11212036B2 (en) Data communication method, device, and system
WO2020143428A1 (zh) 传输上行信息的方法和通信装置
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
CN110999365B (zh) 传输数据的方法和终端设备
WO2019233339A1 (zh) 传输信息的方法和通信设备
CN109428680B (zh) 发送或接收上行数据的方法和装置
TW201517674A (zh) 控制通道配置方法與控制通道搜尋方法及其通信裝置
KR20190129491A (ko) 무선 셀룰라 통신 시스템에서 제어 정보 송수신 방법 및 장치
JP2020523893A (ja) 通信方法、端末デバイス、及びネットワークデバイス
WO2018228600A1 (zh) 一种发送和接收数据的方法和装置
WO2018133860A1 (zh) 传输数据的方法、设备和通信***
US20220039088A1 (en) Transmitting method and receiving method for control information, user equipment and base station
JP2022550556A (ja) フィードバック情報伝送方法および装置
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
WO2018228596A1 (zh) 一种数据处理方法及数据处理装置
WO2020199767A1 (zh) 通信方法、通信装置和***
US20200322959A1 (en) Method for transmitting uplink control information, and related product
WO2020164573A1 (zh) 传输方法、接收方法、终端及网络设备
WO2020143813A1 (zh) 传输信息的方法和装置
WO2022117102A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2022206579A1 (zh) 一种上行控制信息传输方法和装置
WO2020156002A1 (zh) 通信方法及通信装置
WO2022237675A1 (zh) 信息发送的方法和装置
WO2023001284A1 (en) Method and apparatus for tboms transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022778762

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778762

Country of ref document: EP

Effective date: 20231018

NENP Non-entry into the national phase

Ref country code: DE