WO2022206393A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022206393A1
WO2022206393A1 PCT/CN2022/081255 CN2022081255W WO2022206393A1 WO 2022206393 A1 WO2022206393 A1 WO 2022206393A1 CN 2022081255 W CN2022081255 W CN 2022081255W WO 2022206393 A1 WO2022206393 A1 WO 2022206393A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
message
response message
communication
Prior art date
Application number
PCT/CN2022/081255
Other languages
English (en)
French (fr)
Inventor
酉春华
徐小英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206393A1 publication Critical patent/WO2022206393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and device.
  • RRC radio resource control
  • the inactive state is an intermediate state between the connected state and the idle state.
  • the terminal device in the inactive state, can initiate a random access (RA) process to the network device to restore the connection and enter the connected state, so as to transmit data in the connected state, or it can also pass the random access process. , transmit data in inactive state to realize data transmission.
  • RA random access
  • the reselected network device cannot complete the random access procedure in time and enters the connected state, which increases the data transmission delay and affects the communication efficiency.
  • Embodiments of the present application provide a communication method and device, which can solve the problem that random access cannot be completed in time, thereby reducing data transmission delay and improving communication efficiency.
  • a communication method is provided.
  • the communication method is applied to the first network device.
  • the communication method includes: sending a first request message to a second network device, and receiving a first response message from the second network device.
  • the first request message is used to request the data transmission policy of the terminal device.
  • the terminal device is in an inactive state and resides in the first network device.
  • the first response message includes the data transmission policy.
  • the data transmission policy of the terminal device can be configured for the first network device.
  • the first network device can forward the data of the terminal device in time according to the data transmission strategy, complete the random access process in time, and enter the connected state, thereby reducing the data transmission delay. Improve communication efficiency.
  • the data transmission strategy may include: a correspondence between the data of the terminal device and the wireless resources of the terminal device.
  • the terminal device can inform the first network device of the wireless resource corresponding to the data according to the corresponding relationship, so that the first network device can determine the data according to the corresponding relationship, such as determining the type of the data , or determine how the data is transmitted.
  • the first network device can cooperate with the terminal device to complete the random access process in time and enter the connection state, thereby transmitting the data in time, thereby reducing the data transmission delay and improving the communication efficiency.
  • the radio resources may include one or more of the following: radio bearers, radio link control RLC channels, or logical channels.
  • the first network device determines the data of the terminal device according to the corresponding relationship, and cooperates with the terminal device to complete the random access procedure in time and enter the connected state, thereby improving communication. efficiency.
  • the method in the first aspect may further include: receiving first indication information from the terminal device.
  • the first indication information may be used to indicate the radio resources of the terminal device.
  • the first network device can send the first RRC recovery message to the terminal device according to the first indication information, so that the terminal device can quickly restore the connection state, thereby transmitting data in time, reducing data transmission delay, and improving communication efficiency.
  • the method described in the first aspect may further include: sending a second request message to the second network device, and receiving a second response message from the second network device.
  • the second request message may be used to request the terminal device to restore the connection state
  • the second response message may be used to instruct the terminal device to restore the connection state.
  • the second network device since the second network device may be a network device where the terminal device has historically resided, such as an anchor network device, the second network device can accurately determine whether the terminal device needs to restore the connection state, thereby avoiding misjudgment by the first network device. This leads to errors in data transmission, which in turn can improve the reliability of data transmission.
  • the second response message may include the first RRC recovery message, so that the first network device may directly forward the first RRC recovery message.
  • the first RRC recovery message is a message generated by the second network device, rather than a message generated by the first network device. In this way, the second network device can be prevented from sending the configuration information required for generating the first RRC recovery message to the first network device, so as to reduce the risk of leakage of the configuration information, thereby improving network security.
  • the first response message may include a first RRC recovery message.
  • the second network device sends the first RRC recovery message to the first network device in advance, so that the terminal device can receive the first RRC recovery message faster, thereby recovering faster Connected state to further reduce data transmission delay and improve communication efficiency.
  • the method described in the first aspect may be executed by the first network device, or may be executed by a chip (system) or other components or components provided in the first network device, or may be executed by the first network device including the first network device. This is not limited in this application.
  • a communication method is provided.
  • the communication method is applied to the second network device.
  • the communication method includes: receiving a first request message from a first network device, and sending a first response message to the first network device.
  • the first request message is used to request the data transmission policy of the terminal device.
  • the terminal device is in an inactive state and resides in the first network device.
  • the first response message includes the data transmission policy.
  • the data transmission strategy may include: the correspondence between the data of the terminal device and the wireless resources of the terminal device.
  • the radio resources may include one or more of the following: radio bearers, radio link control RLC channels, or logical channels.
  • the method of the second aspect may further include: receiving a second request message from the first network device, and sending a second response message to the first network device.
  • the second request message may be used to request the terminal device to restore the connection state
  • the second response message may be used to instruct the terminal device to restore the connection state.
  • the second response message may include the first RRC recovery message.
  • the first response message may include a first RRC recovery message.
  • the method described in the second aspect may be executed by the second network device, or may be executed by a chip (system) or other components or components provided in the second network device, or may be executed by the second network device including the second network device. This is not limited in this application.
  • a communication device in a third aspect, includes: a receiving module and a sending module.
  • the sending module is configured to send the first request message to the second network device.
  • the receiving module is configured to receive the first response message from the second network device.
  • the first request message is used to request the data transmission policy of the terminal device.
  • the terminal device is in an inactive state and resides in the first network device.
  • the first response message includes the data transmission policy.
  • the data transmission strategy may include: a correspondence between the data of the terminal device and the wireless resources of the terminal device.
  • the radio resources may include one or more of the following: radio bearers, radio link control RLC channels, or logical channels.
  • the apparatus of the third aspect may further include: a processing module.
  • the receiving module is further configured to receive the first indication information from the terminal device.
  • the first indication information may be used to indicate the radio resources of the terminal device.
  • the processing module is configured to control the sending module to send the first radio resource control RRC recovery message to the terminal device according to the first indication information.
  • the sending module is further configured to send the second request message to the second network device before sending the first RRC recovery message to the terminal device.
  • the receiving module is further configured to receive a second response message from the second network device.
  • the second request message may be used to request the terminal device to restore the connection state
  • the second response message may be used to instruct the terminal device to restore the connection state.
  • the second response message may include the first RRC recovery message.
  • the first response message may include a first RRC recovery message.
  • the receiving module and the sending module can also be integrated into a transceiver module.
  • the transceiver module is used to implement the sending function and the receiving function of the apparatus described in the third aspect.
  • the apparatus of the third aspect may further include a storage module, where the storage module stores programs or instructions.
  • the processing module executes the program or the instruction, the apparatus can execute the method described in the first aspect.
  • the apparatus described in the third aspect may be executed by the first network device, may also be executed by a chip (system) or other components or components provided in the first network device, or may be executed by the first network device including the first network device. This is not limited in this application.
  • a communication device in a fourth aspect, includes: a receiving module and a sending module.
  • the receiving module is configured to receive the first request message from the first network device.
  • a sending module configured to send a first response message to the first network device.
  • the first request message is used to request the data transmission policy of the terminal device.
  • the terminal device is in an inactive state and resides in the first network device.
  • the first response message includes the data transmission policy.
  • the data transmission strategy may include: the correspondence between the data of the terminal device and the wireless resources of the terminal device.
  • the radio resources may include one or more of the following: radio bearers, radio link control RLC channels, or logical channels.
  • the receiving module is further configured to receive a second request message from the first network device, and the sending module is further configured to send a second response message to the first network device.
  • the second request message may be used to request the terminal device to restore the connection state
  • the second response message may be used to instruct the terminal device to restore the connection state.
  • the second response message may include the first RRC recovery message.
  • the first response message may include a first RRC recovery message.
  • the apparatus of the fourth aspect may further include a processing module.
  • the processing module is used to realize the processing function of the device.
  • the receiving module and the sending module can also be integrated into a transceiver module.
  • the transceiver module is used to implement the sending function and the receiving function of the apparatus described in the fourth aspect.
  • the apparatus according to the fourth aspect may further include a storage module, where the storage module stores programs or instructions.
  • the processing module executes the program or instruction, the apparatus can execute the method described in the second aspect.
  • the apparatus described in the fourth aspect may be executed by the second network device, or may be executed by a chip (system) or other components or components provided in the second network device, or may be executed by the second network device including the second network device. This is not limited in this application.
  • a communication device in a fifth aspect, includes a processor coupled to a memory for executing a computer program stored in the memory to cause the apparatus to perform the method of the first aspect or the second aspect.
  • the apparatus described in the fifth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver can be used for the device described in the fifth aspect to communicate with other devices.
  • the apparatus described in the fifth aspect may be the network device in the first aspect or the second aspect, or may be a chip (system) or other components or components provided in the network device, or may include the network device installation.
  • a communication device in a sixth aspect, includes: a processor and a memory; the memory is used for storing a computer program, when the processor executes the computer program, so that the apparatus executes the method described in the first aspect or the second aspect.
  • the apparatus described in the sixth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver can be used for the device described in the sixth aspect to communicate with other devices.
  • the apparatus described in the sixth aspect may be the network device in the first aspect or the second aspect, or may be a chip (system) or other components or components provided in the network device, or may include the network device installation.
  • a communication device in a seventh aspect, includes: a processor and an interface circuit. Wherein, the interface circuit is used to receive the code instruction and transmit it to the processor; the processor is used to run the code instruction to execute the method described in the first aspect or the second aspect.
  • the apparatus of the seventh aspect may further include: a receiver and a transmitter.
  • the receiver is used to implement the receiving function of the device
  • the transmitter is used to implement the transmitting function of the device.
  • the transmitter and receiver can also be integrated into one device, such as a transceiver. Wherein, the transceiver is used to realize the sending function and the receiving function of the device.
  • the apparatus of the seventh aspect may further include a memory, where the memory stores programs or instructions.
  • the processor of the seventh aspect executes the program or the instruction, the apparatus can execute the method of the first aspect or the second aspect.
  • the apparatus described in the seventh aspect may be the network device in the first aspect or the second aspect, or may be a chip (system) or other components or components provided in the network device, or may include the network device installation.
  • a communication device in an eighth aspect, includes a processor and a transceiver, wherein the transceiver may be a transceiver circuit or an interface circuit, the transceiver is used for information interaction between the device and other devices, the processor executes program instructions to execute the first aspect or The method described in the second aspect.
  • the apparatus according to the eighth aspect may further include a memory, where the memory stores programs or instructions.
  • the processor of the eighth aspect executes the program or the instruction, the apparatus can execute the method of the first aspect or the second aspect.
  • the apparatus described in the eighth aspect may be the network device in the first aspect or the second aspect, or may be a chip (system) or other components or components provided in the network device, or include the network device installation.
  • a communication system in a ninth aspect, includes one or more network devices.
  • the network device is configured to execute the method described in the first aspect or the second aspect.
  • a computer-readable storage medium comprising: a computer program or instruction; when the computer program or instruction is run on a computer, the computer is made to execute the method of the first aspect or the second aspect.
  • a computer program product comprising computer programs or instructions, which, when the computer program or instructions are run on a computer, cause the computer to perform the method of the first aspect or the second aspect.
  • FIG. 1 is a schematic diagram 1 of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram 1 of a network device provided by an embodiment of the present application.
  • FIG. 3 is a second schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart 1 of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a second schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a third schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram 1 of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a second schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the idle state may be a state in which the terminal device is not connected to the network device.
  • the terminal device can perform procedures such as public land mobile network (PLMN) selection, cell selection, cell reselection, and system message broadcasting.
  • PLMN public land mobile network
  • the terminal device since the terminal device is not connected to the network device, does not access the network, does not occupy service resources of the network device, and does not obtain the context of the terminal device, data cannot be transmitted.
  • the connection state may be a state in which the terminal device completes the connection with the network device.
  • an RRC connection is established between the terminal device and the network device, such as a data radio bearer (DRB) connection or a signaling radio bearer (SRB) connection.
  • DRB data radio bearer
  • SRB signaling radio bearer
  • the terminal device can enter the connected state from the idle state.
  • the terminal device may enter the connected state by sending an RRC connection establishment request (RRC concept establish request) message to the network device, thereby establishing an RRC connection with the network device.
  • RRC connection establishment request RRC concept establish request
  • the terminal device can also enter the connected state from the inactive state.
  • the terminal device can enter the connected state through a random access procedure, such as sending an RRC resume request (RRC resume request) message to the network device, thereby restoring the RRC connection with the network device.
  • the terminal device can also be released from the connected state to the idle state or the inactive state.
  • a terminal device can receive an RRC release (RRC release) message from a network device, and release it to an idle state or an inactive state according to the RRC release message, thereby reducing resource overhead, reducing power consumption, and improving the endurance of the terminal device.
  • RRC release RRC release
  • the inactive state may be an intermediate state between the connected state and the idle state, and may also be referred to as a "third state".
  • the terminal device can realize data transmission through the random access procedure.
  • a terminal device can realize early data transmission in an inactive state through a random access procedure, which is also called "data forwarding" or “small data transmission (SDT)".
  • SDT small data transmission
  • the terminal device can also quickly restore the connected state through the random access procedure, and transmit data in the connected state.
  • the data transmission in the connection state may be non-small data transmission (non-SDT), which is not limited.
  • the inactive state can save the context of the terminal device, compared to restoring the connected state from the idle state, the context is not required to be regenerated from the inactive state, thereby reducing signaling interaction and data transmission delay. Thus, the communication efficiency is improved.
  • the terminal device can reselect from the cell currently camping on to another cell, such as reselection and camping on a cell with a better signal.
  • the cell reselection may include intra-site reselection and inter-site reselection.
  • Intra-site reselection generally refers to terminal equipment reselection from one cell of the same network equipment to another cell
  • inter-site reselection generally refers to terminal equipment reselection from a cell of one network equipment to a cell of another network equipment.
  • WiFi wireless fidelity
  • V2X vehicle-to-everything
  • D2D device-todevie
  • Communication systems Internet of Vehicles communication systems
  • 4th generation (4G) mobile communication systems such as long term evolution (LTE) systems
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication systems such as new radio (NR) systems
  • 6G 6th generation
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 is a schematic structural diagram of a communication system to which the communication method provided by the embodiment of the present application is applied.
  • the communication system includes network equipment and terminal equipment.
  • the above-mentioned terminal equipment can be connected to a wireless network to obtain other networks through the wireless network, such as services provided by a data network (DN), or communicate with other equipment through the wireless network, such as communication with other terminal equipment.
  • the wireless network includes a radio access network (RAN) and a core network (core network, CN).
  • the RAN may also be called an access network (AN), and may include one or more network devices, such as a first network device and a second network device, for connecting the terminal device to the wireless network, the CN
  • One or more core network network elements may be included to manage the terminal equipment and provide a gateway for communicating with the DN.
  • the above-mentioned terminal equipment also referred to as user equipment (UE) includes equipment that provides voice and/or data services to users, for example, may include a handheld device with a wireless connection function, or a wireless connection The modem's processing device.
  • the terminal equipment may communicate with the CN via the RAN, exchanging voice and/or data with the RAN.
  • the terminal equipment may include wireless terminal equipment, mobile terminal equipment, D2D terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of Things ( internet of things, IoT) terminal equipment, subscriber unit, subscriber station, mobile station, remote station, access point (AP), remote terminal, access terminal, user terminal, user agent, or user equipment, etc.
  • IoT Internet of Things
  • mobile telephones also known as "cellular" telephones, computers with mobile terminal equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • PDA tablet computer
  • PCS personal communication service
  • VR virtual reality
  • AR augmented reality
  • It can also include wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation security.
  • Wireless terminals in transportation safety
  • wireless terminals in smart cities wireless terminals in smart homes
  • in-vehicle terminals RSUs with terminal functions, etc.
  • It may also be an in-vehicle module, an in-vehicle module, an in-vehicle component, an in-vehicle chip, or an in-vehicle unit built into the vehicle as one or more components or units.
  • Restricted devices may also be included, such as devices with lower power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the device for realizing the terminal function may be a terminal device, or a device that can support the terminal device to realize the function, such as a chip system or a combined device or component that can realize the function of the terminal device. installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices. Taking the device for realizing the terminal function as a terminal device as an example, the technical solutions provided by the present application are introduced, but not limited.
  • the above-mentioned network device may be a node or device that accesses a terminal device to a wireless network, and may also be referred to as a base station, including but not limited to: a new generation base station (generation Node B, gNB), an evolved Node B ( evolved node B (eNB), radio network controller (RNC), node B (NB), base station controller (BSC), base transceiver station (BTS), Home base station ((home evolved nodeB, HeNB) or (home node B, HNB)), baseband unit (baseBand unit, BBU), transmitting and receiving point (TRP), transmitting point (transmitting point, TP), or mobile switching center, etc.
  • a new generation base station generation Node B, gNB
  • an evolved Node B evolved node B
  • RNC radio network controller
  • NB node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS base transceiver station
  • Home base station ((home evolved node
  • the device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system or a combined device or component that can realize the function of the network device. Can be installed in network equipment.
  • the technical solution provided by this application is introduced by taking the device for realizing the function of the network device as a network device as an example, but it is not limited.
  • the interface between the network device and the terminal device may be a Uu interface, also called an "air interface".
  • the names of these interfaces may remain unchanged, or may be replaced with other names, which are not limited in this application.
  • the communication between the network device and the terminal device follows a certain protocol layer structure.
  • the control plane protocol layer structure may include an RRC layer, a packet data convergence layer protocol (packet data convergence protocol, PDCP) layer, and a radio link control layer. (radio link control, RLC) layer, medium access control (mediu access control, MAC) layer and physical (physical, PHY) layer.
  • the user plane protocol layer structure may include a PDCP layer, an RLC layer, a MAC layer, and a physical layer.
  • the PDCP layer may also include a service data adaptation protocol (SDAP) layer.
  • SDAP service data adaptation protocol
  • a network device may implement the functions of the above-mentioned protocol layers such as RRC, PDCP, RLC, and MAC by one node, or may implement the functions of these protocol layers by multiple nodes.
  • a network device may include one or more centralized units (centralized units, CUs) and one or more distributed units (distributed units, DUs), and multiple DUs may be centrally controlled by one CU.
  • the interface between the CU and the DU may be referred to as the F1 interface.
  • the control plane (control panel, CP) interface may be F1-C
  • the user plane (user panel, UP) interface may be F1-U.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • the functions of the PDCP layer and the above protocol layers are set in the CU, and the functions of the protocol layers below the PDCP layer (for example, the RLC layer and the MAC layer, etc.) are set in the DU.
  • the above division of the processing functions of the CU and DU according to the protocol layer is only an example, and can also be divided in other ways, for example, the functions of the protocol layer above the RLC layer are set in the CU, and the RLC layer and the following protocol layers.
  • the function of the CU is set in the DU.
  • the CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into partial processing functions with protocol layers. In one design, some functions of the RLC layer and functions of the protocol layers above the RLC layer are placed in the CU, and the remaining functions of the RLC layer and the functions of the protocol layers below the RLC layer are placed in the DU.
  • the functions of the CU or DU can also be divided according to the service type or other system requirements, for example, by the delay, the functions whose processing time needs to meet the delay requirements are set in the DU, and do not need to meet the delay.
  • the required functionality is set in the CU.
  • the CU may also have one or more functions of the core network.
  • the CU can be set on the network side to facilitate centralized management; the DU can have multiple radio functions, or the radio functions can be set remotely. This embodiment of the present application does not limit this.
  • the functions of the CU may be implemented by one entity, or may also be implemented by different entities.
  • the functions of the CU can be further divided, for example, the control plane and the user plane can be separated and implemented by different entities, namely the control plane CU entity, such as the CU-CP entity, and the user plane CU entity.
  • entities such as CU-UP entities.
  • the CU-CP entity and the CU-UP entity can be coupled with the DU to jointly complete the function of the network device.
  • the interface between the CU-CP entity and the CU-UP entity may be the E1 interface
  • the interface between the CU-CP entity and the DU may be the F1-C interface
  • the interface between the CU-UP entity and the DU may be the F1-U interface interface.
  • one DU and one CU-UP can be connected to one CU-CP.
  • one DU can be connected to multiple CU-UPs
  • one CU-UP can be connected to multiple DUs.
  • the signaling generated by the CU may be sent to the terminal device through the DU, or the signaling generated by the terminal device may be sent to the CU through the DU.
  • the DU may not parse the signaling, but directly encapsulate it through the protocol layer and transparently transmit it to the terminal device or CU.
  • the signaling of the RRC or PDCP layer will eventually be processed as the data of the physical layer and sent to the terminal device, or converted from the received data of the physical layer.
  • the signaling of the RRC or PDCP layer can also be considered to be sent by the DU, or sent by the DU and the radio frequency device.
  • the communication method provided by the embodiment of the present application may be applicable to the communication of any two network devices shown in FIG. 1 , and the specific implementation may refer to the following method embodiments, which will not be repeated here.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system may further include other network devices and/or other terminal devices, which are not shown in FIG. 1 .
  • FIG. 4 is a first schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method can be applied to any two network devices shown in FIG. 1 , such as the communication between the first network device and the second network device.
  • the communication method includes the following steps:
  • the first network device sends a first request message to the second network device.
  • the first network device and the second network device may be different network devices.
  • the first network device may be a network device where the terminal device currently resides
  • the second network device may be a network device where the terminal device historically resides, such as an anchor network device of the terminal device.
  • the anchor network device is the network device that releases the terminal device to the inactive state, or is the network device to which the last cell resides before the terminal device enters the inactive state, and stores the context of the terminal device. That is, the terminal device first camps on the cell of the second network device, then switches to the first network device through inter-station cell reselection, and camps on the cell of the first network device.
  • the first request message may be a context recovery request (retrieve UE context request) message, which may be used to request the context of the terminal device, and the context may include the data transmission policy of the terminal device.
  • the terminal device is in an inactive state.
  • the terminal device referred to later in this application generally refers to a terminal device in an inactive state without special description. For example, sending a message by a terminal device means that the terminal device sends the message in an inactive state.
  • the terminal device may send a first RRC recovery request message to the first network device, so as to realize data transmission in an inactive state.
  • the terminal device may package the first RRC recovery request message and the first data to generate a protocol data unit (PDU) of the MAC layer, and send it to the first network device through the physical layer, or the first data may also be sent to the first network device through the physical layer. It can be included in the first RRC recovery request message to realize data transmission.
  • PDU protocol data unit
  • the first data may be small data (small data, SD), such as data radio bearer (DRB) data, or data of a signaling radio bearer (signaling radio bearer, SRB) whose data volume does not exceed a data threshold .
  • the first RRC recovery request message may include a first inactive radio network temporary identifier (inactive-radio network temporary identifier, I-RNTI).
  • I-RNTI active-radio network temporary identifier
  • the first I-RNTI may be allocated by the second network device for the terminal device, corresponds to the context of the terminal device, and indicates that the context is stored in the second network device. In this way, after receiving the first RRC recovery request message from the terminal device, the first network device can send the above context recovery request message to the second network device according to the first I-RNTI.
  • the sending of the first RRC recovery request message by the terminal device is only an example, and is not intended to be limiting.
  • the terminal device may also send non-access stratum (non-access stratum, NAS) messages.
  • NAS non-access stratum
  • the first network device receives a first response message from the second network device.
  • the first response message may be a context recovery response (retrieve UE context response) message, or may also be a context recovery failure (retrieve UE context failure) message.
  • a context recovery response for example, if the second network device determines that the anchor network device can be switched to the first network device, it can send a context recovery response message. If the second network device determines that the anchor network device cannot be switched to the first network device, it may send a context recovery failure message.
  • the first response message may include the complete context of the terminal device, such as the data transmission policy of the terminal device, and one or more of the following configurations of the terminal device: SDAP configuration, PDCP configuration, RLC configuration, or radio bearer (radio bearer, RB) configuration, etc.
  • the first response message may only include, but not limited to, the data transmission policy of the terminal device, and may also include part of the context of the terminal device, such as the RLC configuration of the terminal device.
  • the data transmission policy may be used to indicate the transmission mode of various types of data of the terminal device, and may be a policy obtained by the first network device from the terminal device when the terminal device resides on the first network device, including the data of the terminal device and the terminal device. The correspondence between the wireless resources of the device.
  • the above-mentioned corresponding relationship may be a corresponding relationship between the above-mentioned data type and the above-mentioned wireless resource identifier.
  • the type may include SD and non-small data (N-SD)
  • the radio resource may include one or more of the following: radio bearer, such as DRB, or SRB, radio link control channel (radio link control channel) link control channel, RLCC), or logical channel (logical channel, LC).
  • radio bearer such as DRB, or SRB
  • radio link control channel radio link control channel (radio link control channel) link control channel, RLCC), or logical channel (logical channel, LC).
  • the number of logical channels may be one or more, and multiple logical channels may also be referred to as logical channel groups (logical channel group, LCG).
  • the above-mentioned correspondence may include the correspondence between SD and the identifiers of the one or more first radio resources, and/or include the correspondence between N-SD and the identifiers of the one or more second radio resources.
  • an example is introduced below.
  • the above-mentioned wireless resources as a whole include the above-mentioned first wireless resources and the above-mentioned second wireless resources
  • the identifiers of the remaining wireless resources such as the identifiers of the second wireless resources It can correspond to N-SD.
  • the identifiers of the remaining radio resources such as the identifier of the first radio resource
  • the identifiers of the remaining radio resources are convenient for SD correspondence. That is to say, when one of the corresponding relationships is determined, the other corresponding relationship is determined accordingly.
  • the first network device can configure only one of the corresponding relationships, for example, only configure the corresponding relationship between the N-SD and the identifiers of the above-mentioned one or more second wireless resources, so as to save the storage space of the first network device and optimize the resources configuration to provide operational efficiency.
  • the correspondence between SD and the identifiers of the one or more first radio resources may include one or more of the following: the correspondence between SD and RB1, the correspondence between SD and RLCC1, the correspondence between SD and LC1-LC5
  • the corresponding relationship of , or the corresponding relationship between SD and LCG1 (LCG1 includes LC1-LC5).
  • the corresponding relationship between N-SD and the above-mentioned one or more second radio resources may include: the corresponding relationship between N-SD and RB2, the corresponding relationship between N-SD and RLCC2, the corresponding relationship between N-SD and LC6-LC10 Correspondence, or the correspondence between N-SD and LCG2 (LCG2 includes LC6-LC10).
  • the above-mentioned correspondence may be a correspondence between the above-mentioned data transmission mode and the above-mentioned identifier of the wireless resource.
  • the transmission mode may include SDT and N-SDT.
  • the above-mentioned correspondence may include the correspondence between the SDT and the above-mentioned one or more first wireless resources, and the correspondence between the N-SDT and the above-mentioned one or more identifiers of the second wireless resources.
  • the above examples will continue to be introduced below.
  • the corresponding relationship between SDT and the identifier of the one or more first radio resources may include one or more of the following: the corresponding relationship between SDT and RB1, the corresponding relationship between SDT and RLCC1, and the corresponding relationship between SDT and LC1-LC5 The corresponding relationship of , or the corresponding relationship between SDT and LCG1.
  • the corresponding relationship between N-SDT and the above one or more second radio resources may include: the corresponding relationship between N-SDT and RB2, the corresponding relationship between N-SDT and RLCC2, the corresponding relationship between N-SDT and LC6-LC10 Correspondence, or the correspondence between N-SDT and LCG2.
  • the wireless resources may include the above-mentioned multiple wireless resources
  • the first network device can also determine the type of data of the terminal device according to the corresponding relationship. arrival, so that the first network device can cooperate with the terminal device to complete the random access procedure in time to enter the connected state, thereby improving communication efficiency.
  • the second network device may send the first response message to the first network device.
  • the first network device can receive the first response message from the second network device, and obtain the above-mentioned data transmission strategy in the first response message, so that the first network device can complete the transmission in time with the terminal device according to the data transmission strategy.
  • data For example, if there is data to be transmitted on the terminal device, such as the second data, the terminal device can notify the first network device of the wireless resource corresponding to the second data according to the corresponding relationship, so that the first network device can determine the first network device according to the corresponding relationship.
  • Second data such as determining whether the type of the second data is SD or N-SD, or determining whether the transmission mode of the second data is SDT or N-SDT.
  • the first network device can cooperate with the terminal device to complete the random access process in time and enter the connected state, thereby transmitting the second data in time, thereby reducing the data transmission delay and improving the communication efficiency.
  • the first network device and the terminal device cooperate to complete the random access procedure, reference may be made to the relevant introduction in the following first implementation scenario, which will not be repeated here.
  • the method shown in FIG. 4 may further include: receiving the first indication information from the terminal device, and according to the first indication information, and send the first RRC recovery message to the terminal device.
  • the first indication information may be used to indicate the above-mentioned wireless resource of the terminal device, for example, the wireless resource is indicated by carrying an identifier of the wireless resource, so as to indicate the second data to be transmitted by the terminal device.
  • the first indication information may be an RRC message, such as an RRC recovery request message, which is not limited.
  • the first RRC recovery message may be a message sent by the first network device to perform a random access procedure, and is used to instruct the terminal device to recover the connected state.
  • the terminal device can determine the radio resource corresponding to the second data, so as to carry the identifier of the radio resource in the first indication information.
  • the terminal device may first determine the type of the second data, and then determine the identifier of the corresponding wireless resource in the above-mentioned correspondence according to the type.
  • the terminal device may first determine the transmission method of the second data, and then determine the identifier of the corresponding wireless resource in the above-mentioned correspondence according to the transmission method.
  • the above examples will continue to be introduced below.
  • the terminal device may determine that the above identifier includes one or more of the following according to the type: RB1, RLCC1, LC1-LC5, or LCG1, and carry it into the first indication information .
  • the terminal device may determine that the above identifier includes one or more of the following according to the type being N-SD: RB2, RLCC2, LC6-LC10, or LCG2, and carry it to the first in an instruction message.
  • the terminal device may determine that the above identifier includes one or more of the following according to the transmission mode is SDT: RB1, RLCC1, LC1-LC5, or LCG1, and carry it to the first in the instructions.
  • the terminal device may determine that the above identifier includes one or more of the following according to the transmission mode N-SDT: RB2, RLCC2, LC6-LC10, or LCG2, and carry into the first indication information.
  • the terminal device may send the above-mentioned first indication information to the first network device.
  • the first network device may receive the first indication information from the terminal device.
  • the first network device may, according to the wireless resource indicated by the first indication information, for example, according to the identifier of the wireless resource in the first indication information, determine the above-mentioned transmission mode or type corresponding to the identifier in the above-mentioned correspondence, so as to Transmission mode or type, perform random access procedure, such as performing SDT procedure, or perform N-SDT procedure. They are introduced separately below.
  • the SDT process may be executed.
  • the first network device can receive the SD from the terminal device, and send the SD to a core network element, such as an access and mobility management function (AMF) network element, so as to complete the SDT process.
  • a core network element such as an access and mobility management function (AMF) network element
  • the terminal device may continue to send an RRC message carrying the SD to the first network device, such as sending a second RRC recovery request message.
  • the first network device receives the second RRC recovery request message, it can send the SD to the core network element, thereby completing the SDT process.
  • SD may also be carried in the above-mentioned first indication information. That is to say, the terminal device may send the first indication information and the SD together. In this way, if the first network device determines to execute the SDT process, it can send the SD to the core network element in time, so as to further reduce the data transmission delay and improve the communication efficiency.
  • the N-SDT process may be performed.
  • the first network device may send a first RRC recovery message to the terminal device, so that the terminal device can recover the connected state from the inactive state according to the first RRC recovery message, restore the RRC connection with the first network device, and send the first RRC recovery message to the first network device.
  • a network device sends N-SD.
  • the first RRC recovery message may be a message received after it is determined that the N-SDT procedure is performed. For example, if the first network device determines to execute the N-SDT process, it may send the second request message to the second network device.
  • the second request message may be used to request the terminal device to restore the connection state, for example, including the above-mentioned first indication information.
  • the second network device may instruct the terminal device to restore the connection state, such as sending a second response message to the first network device.
  • the second response message may include the above-mentioned first RRC recovery message to instruct the terminal device to resume the connected state. In this way, if the first network device receives the second response message from the second network device, it can send the first RRC recovery message in the second response message to the terminal device.
  • the first RRC recovery message may be a message received before it is determined to perform the N-SDT procedure.
  • the above-mentioned first response message may include the first RRC recovery message. That is, before the terminal device acquires the second data, the second network device sends the first RRC recovery message to the first network device in advance. In this way, the first network device can send the first RRC recovery message to the terminal device in a timely manner, so that the terminal device can receive the first RRC recovery message faster, thereby recovering the connected state more quickly, so as to further reduce the data transmission delay , to further improve communication efficiency.
  • the second network device may be the anchor network device of the terminal device, the second network device can accurately determine whether the terminal device needs to restore the connection state, thereby avoiding data transmission errors due to misjudgment by the first network device, Thus, the reliability of data transmission can be improved.
  • the first RRC recovery message is a message generated by the second network device, rather than a message generated by the first network device.
  • the second network device can be prevented from sending the configuration information required for generating the first RRC recovery message to the first network device, so as to reduce the risk of leakage of the configuration information, thereby improving network security.
  • FIG. 5 is a schematic flowchart of the communication method shown in FIG. 4 in a first application scenario.
  • the UE is the above-mentioned terminal equipment
  • the first gNB is the above-mentioned first network equipment
  • the second gNB is the above-mentioned second network equipment.
  • the equipment suitable for the first application scenario may also include one or more of the following: a UPF network element, an AMF network element, and a policy control function (PCF) network element (Fig.
  • PCF policy control function
  • a session management function (SMF) network element (not shown in Figure 5), a session management function (SMF) network element (not shown in Figure 5), a unified data repository (unified data repository, UDR) network element (not shown in Figure 5), Unified data management (unified data management, UDM) network element (not shown in FIG. 5 ), etc.
  • the AMF network element can also be replaced with a mobility management entity (mobility management entity, MME) network element, and the UPF network element can also be replaced with a serving gateway (serving gateway, S-GW) network element, which is not limited. .
  • the communication method may include:
  • the second gNB sends a first RRC release message to the UE.
  • the first RRC release message may carry the above-mentioned first I-RNTI, and the second gNB is the anchor network device of the UE.
  • the UE is released from the connected state to the inactive state.
  • the UE may be released from the connected state to the inactive state according to the first RRC release message, and retain the context of the UE itself.
  • the UE reselects from the cell of the second gNB to the cell of the first gNB.
  • the UE may reselect from the cell of the second gNB to the cell of the first gNB and continue to maintain the inactive state.
  • the UE sends a first RRC recovery request message to the first gNB.
  • the UE may send a first RRC recovery request message to the first gNB according to the context of the UE itself.
  • the first RRC recovery request message may carry the SD and the first I-RNTI.
  • the first gNB sends a context recovery request message to the second gNB.
  • the first gNB may obtain the above-mentioned SD and the above-mentioned first I-RNTI carried in the context recovery request message. In this way, the first gNB can determine that the anchor point network device of the UE is the second gNB according to the first I-RNTI, so as to send a context recovery request message to the second gNB.
  • the second gNB sends a context recovery response message to the first gNB.
  • the context recovery response message may carry the correspondence between UE data and radio resources.
  • S505 and S506 reference may be made to the relevant introductions in S401 and S402 above, which will not be repeated here.
  • the first gNB sends a path switch request (path switch request) message to the AMF network element.
  • the AMF network element modifies the bearer of the UE on the UPF network element.
  • the AMF network element can modify the UE bearer on the UPF network element from "UE ⁇ second gNB ⁇ UPF network element" to "UE ⁇ first gNB ⁇ UPF network element” according to the path switching request message.
  • the AMF network element sends a path switch request ACK (path switch request ACK) message to the first gNB.
  • path switch request ACK path switch request ACK
  • the first gNB sends SD to the UPF network element.
  • the first gNB can determine that the above-mentioned bearer modification is successful according to the above-mentioned path switching request confirmation message, the first gNB can send the above-mentioned SD to the UPF network element, thereby completing the SDT process in the inactive state.
  • the above S507-S510 are optional processes.
  • the context recovery response message carries the complete context of the UE, it means that the UE's anchor network device is switched from the second gNB to the first gNB.
  • the first gNB may perform S507-S510.
  • the context recovery response message only carries part of the context of the UE, or does not carry the context of the UE, it means that the anchor network device of the UE is still the second gNB. In this way, the first gNB may not perform S507-S510, and send the above-mentioned SD to the second gNB.
  • the UE sends first indication information to the first gNB.
  • the UE may send the first indication information to the first gNB, so that the first gNB can determine to execute the N-SDT process according to the first indication information.
  • the first gNB may send the first indication information to the first gNB, so that the first gNB can determine to execute the N-SDT process according to the first indication information.
  • S511 and S505-S510 are not limited.
  • the first gNB sends a second request message to the second gNB.
  • the second gNB sends a second response message to the first gNB.
  • the second response message includes the first RRC recovery message.
  • S512-S513 reference may be made to the relevant introduction in S402, which is not repeated here.
  • the first gNB sends the first RRC recovery message to the UE.
  • the UE restores the connected state from the inactive state.
  • the UE may restore the connected state from the inactive state according to the first RRC restoration message, thereby restoring the RRC connection with the first gNB.
  • the UE sends the N-SD to the first gNB.
  • the UE may send the N-SD to the first gNB in the connected state.
  • the first gNB sends the N-SD to the UPF network element.
  • the first gNB completes the N-SDT process.
  • FIG. 6 is a schematic flowchart of the communication method shown in FIG. 4 in a second application scenario.
  • the UE is the above-mentioned terminal equipment
  • the first gNB is the above-mentioned first network equipment
  • the second gNB is the above-mentioned second network equipment.
  • devices suitable for the second application scenario may also include one or more of the following: UPF network element, AMF network element, PCF network element (not shown in FIG. 6 ), SMF network element element (not shown in FIG. 6 ), UDR network element (not shown in FIG. 6 ), UDM network element (not shown in FIG. 6 ), and the like.
  • the AMF network element can also be replaced with an MME network element correspondingly
  • the UPF network element can also be replaced with an S-GW network element correspondingly, which is not limited.
  • the communication method may include:
  • the second gNB sends a first RRC release message to the UE.
  • the UE is released from the connected state to the inactive state.
  • the UE reselects from the cell of the second gNB to the cell of the first gNB.
  • the UE sends a first RRC recovery request message to the first gNB.
  • the first gNB sends a context recovery request message to the second gNB.
  • the second gNB sends a context recovery response message to the first gNB.
  • the context recovery response message may not only carry the correspondence between UE data and radio resources, but also carry the above-mentioned first RRC recovery message.
  • S601-S604 reference may be made to the relevant introductions in the foregoing S501-S504, and for the specific implementations of S605 and S606, reference may be made to the relevant introductions in the foregoing S401 and S402, which will not be repeated here.
  • the first gNB sends a path switching request message to the AMF network element.
  • the AMF network element modifies the bearer of the UE on the UPF network element.
  • the AMF network element sends a path switching request confirmation message to the first gNB.
  • the first gNB sends SD to the UPF network element.
  • the UE sends the first indication information to the first gNB.
  • the UE may send the first indication information to the first gNB, so that the first gNB can determine to execute the N-SDT process according to the first indication information.
  • the execution order between S611 and S605-S610 is also not limited.
  • the first gNB sends a first RRC recovery message to the UE.
  • the first gNB since the first gNB can obtain the above-mentioned first RRC recovery message when performing the process of S606, then if the first gNB determines to perform the N-SDT process, it can send the first RRC recovery message to the UE in time.
  • the UE restores the connected state from the inactive state.
  • the UE sends the N-SD to the first gNB.
  • the first gNB sends the N-SD to the UPF network element.
  • the second network device can configure the data transmission policy of the terminal device for the first network device, after the terminal device triggers the random access procedure, the first network device will The network device can then send the data of the terminal device in time according to the data transmission strategy, so that the random access process can be completed in time and the connection state can be entered in time, thereby reducing the data transmission delay and improving the communication efficiency.
  • the communication method provided by the embodiment of the present application has been described in detail above with reference to FIG. 4 to FIG. 6 .
  • a communication apparatus for executing the communication method provided by the embodiments of the present application will be described in detail below with reference to FIGS. 7 to 8 .
  • FIG. 7 is a first structural schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 700 includes: a receiving module 701 and a sending module 702 .
  • FIG. 7 only shows the main components of the communication device.
  • the communication apparatus 700 may be applied to the communication system shown in FIG. 1 to perform the function of the first network device in the communication method shown in FIG. 4 , or to perform the function shown in FIG. 5 or FIG. 6 . function of the first gNB in the proposed communication method.
  • the sending module 702 is configured to send the first request message to the second network device.
  • the receiving module 701 is configured to receive the first response message from the second network device.
  • the first request message is used to request the data transmission policy of the terminal device.
  • the terminal device is in an inactive state and resides in the first network device.
  • the first response message includes the data transmission policy.
  • the data transmission strategy may include: a correspondence between the data of the terminal device and the wireless resources of the terminal device.
  • the radio resources may include one or more of the following: radio bearers, radio link control RLC channels, or logical channels.
  • the above communication apparatus 700 may further include: a processing module 703 (shown by a dotted box in FIG. 7 ).
  • the receiving module 701 is further configured to receive the first indication information from the terminal device.
  • the first indication information may be used to indicate the radio resources of the terminal device.
  • the processing module 703 is configured to control the sending module 702 to send the first radio resource control RRC recovery message to the terminal device according to the first indication information.
  • the sending module 702 is further configured to send the second request message to the second network device before the sending module 702 sends the first RRC recovery message to the terminal device.
  • the receiving module 701 is further configured to receive a second response message from the second network device.
  • the second request message may be used to request the terminal device to restore the connection state
  • the second response message may be used to instruct the terminal device to restore the connection state.
  • the second response message may include the first RRC recovery message.
  • the first response message may include a first RRC recovery message.
  • the receiving module 701 and the sending module 702 may also be integrated into one module, such as a transceiver module (not shown in FIG. 7 ).
  • the transceiver module is used to implement the sending function and the receiving function of the communication device 700 .
  • the communication apparatus 700 may further include a storage module (not shown in FIG. 7 ), where the storage module stores programs or instructions.
  • the communication apparatus 700 can execute the function of the first network device in the communication method shown in FIG. 4 , or execute the first gNB in the communication method shown in FIG. 5 or FIG. 6 . function.
  • the processing module 701 involved in the communication device 700 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module 702 may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver module Receiver or Transceiver Unit.
  • the communication device 700 may be a network device, a chip (system) or other components or components that can be provided in the network device, or a device including a network device, which is not limited in this application.
  • the communication apparatus 700 may be applied to the communication system shown in FIG. 1 to perform the function of the second network device in the communication method shown in FIG. 4 , or to perform the function shown in FIG. 5 or FIG. 6 . function of the second gNB in the proposed communication method.
  • the receiving module 701 is configured to receive a first request message from a first network device.
  • the sending module 702 is configured to send a first response message to the first network device.
  • the first request message is used to request the data transmission policy of the terminal device.
  • the terminal device is in an inactive state and resides in the first network device.
  • the first response message includes the data transmission policy.
  • the data transmission strategy may include: the correspondence between the data of the terminal device and the wireless resources of the terminal device.
  • the radio resources may include one or more of the following: radio bearers, radio link control RLC channels, or logical channels.
  • the receiving module 701 is further configured to receive the second request message from the first network device.
  • the sending module 702 is further configured to send a second response message to the first network device.
  • the second request message may be used to request the terminal device to restore the connection state, and the second response message may be used to instruct the terminal device to restore the connection state.
  • the second response message may include the first RRC recovery message.
  • the first response message may include a first RRC recovery message.
  • the receiving module 701 and the sending module 702 may also be integrated into one module, such as a transceiver module (not shown in FIG. 7 ).
  • the transceiver module is used to implement the sending function and the receiving function of the communication device 700 .
  • the communication apparatus 700 may further include a processing module 703 (shown in a dotted box in FIG. 7 ).
  • the processing module 703 is used to implement the processing function of the communication device 700 .
  • the communication apparatus 700 may further include a storage module (not shown in FIG. 7 ), where the storage module stores programs or instructions.
  • the communication apparatus 700 can perform the function of the second network device in the communication method shown in FIG. 4 , or execute the second gNB in the communication method shown in FIG. 5 or FIG. 6 . function.
  • the processing module 703 involved in the communication apparatus 700 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver or transceiver unit.
  • the communication device 700 may be the network device shown in FIG. 1 , or may be a chip (system) or other components or components provided in the above-mentioned network device, or an apparatus including the network device. The embodiment does not limit this.
  • the processing module 703 involved in the communication apparatus 700 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver or a Transceiver unit.
  • FIG. 8 is a second schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device may be a network device, or may be a chip (system) or other components or assemblies that can be provided in the network device.
  • the communication apparatus 800 may include a processor 801 .
  • the communication apparatus 800 may further include a memory 802 and/or a transceiver 803 .
  • the processor 801 is coupled with the memory 802 and the transceiver 803, such as can be connected through a communication bus.
  • the processor 801 is the control center of the communication device 800, which may be one processor, or may be a general term for multiple processing elements.
  • the processor 801 is one or more central processing units (CPUs), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more of the embodiments of the present application
  • An integrated circuit such as: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA).
  • the processor 801 may execute various functions of the communication device 800 by running or executing software programs stored in the memory 802 and calling data stored in the memory 802 .
  • the processor 801 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 8 .
  • the communication apparatus 800 may also include multiple processors, for example, the processor 801 and the processor 804 shown in FIG. 8 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 802 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 801 .
  • the memory 802 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 801 .
  • the processor 801 For the specific implementation, reference may be made to the above method embodiments, which will not be repeated here.
  • memory 802 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM), or a random access memory (RAM) or other type of static storage device that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions which may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disks storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 802 may be integrated with the processor 801, or may exist independently, and be coupled to the processor 801 through an interface circuit (not shown in FIG. 8)
  • the transceiver 803 is used for communication with other communication devices.
  • the communication apparatus 800 is a terminal device, and the transceiver 803 can be used to communicate with a network device or communicate with another terminal device.
  • the communication apparatus 800 is a network device, and the transceiver 803 may be used to communicate with a terminal device or communicate with another network device.
  • the transceiver 803 may include a receiver and a transmitter (not shown separately in FIG. 8). Among them, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 803 may be integrated with the processor 801, or may exist independently, and be coupled to the processor 801 through an interface circuit (not shown in FIG. 8 ) of the communication device 800, which is not performed in this embodiment of the present application Specific restrictions.
  • the structure of the communication device 800 shown in FIG. 8 does not constitute a limitation of the communication device, and an actual communication device may include more or less components than those shown in the figure, or combine some components, or Different component arrangements.
  • processors in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (eg, circuits), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,能够解决随机接入无法及时完成的问题,从而降低数据传输时延,提高通信效率,可应用于NR、LTE等***中。该方法包括:向第二网络设备发送第一请求消息,并接收来自第二网络设备的第一响应消息。其中,第一请求消息用于请求终端设备的数据传输策略。该终端设备处于非激活态,且在第一网络设备驻留。第一响应消息包括该数据传输策略。

Description

通信方法及装置
本申请要求于2021年3月21日提交国家知识产权局、申请号为202110352279.X、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
在第五代(the 5th generation,5G)通信***中,终端设备存在三种无线资源控制(radio resource control,RRC)状态,分别为连接(CONNECTED)态、空闲(IDLE)态和非激活(INACTIVE)态。
具体而言,非激活态是介于连接态和空闲态之间的中间状态。其中,终端设备在非激活态下,可以向网络设备发起随机接入(random access,RA)流程,以恢复连接,进入连接态,从而在连接态下传输数据,或者也可以通过随机接入流程,在非激活态下传输数据,以实现数据传输。
然而,当终端设备执行小区重选后,重选的网络设备无法及时完成随机接入流程,进入连接态,从而导致数据传输时延增加,影响通信效率了。
发明内容
本申请实施例提供一种通信方法及装置,能够解决随机接入无法及时完成的问题,从而降低数据传输时延,提高通信效率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法。该通信方法应用于第一网络设备。该通信方法包括:向第二网络设备发送第一请求消息,并接收来自第二网络设备的第一响应消息。其中,第一请求消息用于请求终端设备的数据传输策略。该终端设备处于非激活态,且在第一网络设备驻留。第一响应消息包括该数据传输策略。
根据第一方面所述的方法可知,由于第二网络设备是终端设备的锚点网络设备,故可以为第一网络设备配置终端设备的数据传输策略。如此,终端设备在触发随机接入流程后,第一网络设备便可以根据该数据传输策略,及时转发终端设备的数据,以及时完成随机接入流程,进入连接态,从而降低数据传输时延,提高通信效率。
一种可能的设计方案中,数据传输策略可以包括:终端设备的数据与终端设备的无线资源之间的对应关系。如此,若终端设备上有待传输数据,则终端设备可以根据该对应关系告知第一网络设备该数据对应的无线资源,以便第一网络设备可以根据该对应关系确定该数据,如确定该数据的类型,或者确定该数据的传输方式。这样,第一网络设备可以配合终端设备及时完成随机接入流程,进入连接态,从而及时传输该数据,进而可以降低数据传输时延,提高通信效率。
可选地,无线资源可以包括如下一种或多种:无线承载、无线链路控制RLC信道、 或逻辑信道。如此,无论终端设备告知第一网络设备的是上述哪一种无线资源,第一网络设备根据对应关系确定终端设备的数据,并配合终端设备及时完成随机接入流程,进入连接态,从而提高通信效率。
可选地,第一方面所述的方法还可以包括:接收来自终端设备的第一指示信息。其中,第一指示信息可以用于指示终端设备的无线资源。如此,第一网络设备可以根据第一指示信息,向终端设备发送第一无线资源控制RRC恢复消息,以便终端设备能够快速恢复连接态,从而及时传输数据,降低数据传输时延,提高通信效率。
进一步地,在向终端设备发送第一RRC恢复消息之前,第一方面所述的方法还可以包括:向第二网络设备发送第二请求消息,并接收来自第二网络设备的第二响应消息。其中,第二请求消息可以用于请求终端设备恢复连接态,第二响应消息可以用于指示终端设备恢复连接态。其中,由于第二网络设备可以是终端设备历史驻留的网络设备,如锚点网络设备,第二网络设备可以准确地判断终端设备是否需要恢复连接态,从而避免因第一网络设备误判断而导致数据传输出错,进而可以提高数据传输的可靠性。
进一步地,第二响应消息可以包括第一RRC恢复消息,以便第一网络设备可以直接转发该第一RRC恢复消息。换言之,第一RRC恢复消息是第二网络设备生成的消息,而非第一网络设备生成的消息。如此,可以避免第二网络设备向第一网络设备发送生成第一RRC恢复消息所需的配置信息,以降低配置信息的泄露风险,从而提高网络安全。
进一步地,第一响应消息可以包括第一RRC恢复消息。换言之,在终端设备获取待传输数据之前,第二网络设备便提前向第一网络设备发送第一RRC恢复消息,以便终端设备能够更快地接收到该第一RRC恢复消息,从而更快地恢复连接态,以进一步降低数据传输时延,提高通信效率。
需要说明的是,第一方面所述的方法可以由第一网络设备执行,也可以由设置于第一网络设备中的芯片(***)或其他部件或组件执行,还可以由包含第一网络设备的装置执行,本申请对此不做限定。
第二方面,提供一种通信方法。该通信方法应用于第二网络设备。该通信方法包括:接收来自第一网络设备的第一请求消息,并向第一网络设备发送第一响应消息。其中,第一请求消息用于请求终端设备的数据传输策略。该终端设备处于非激活态,且在第一网络设备驻留。第一响应消息包括该数据传输策略。
一种可能的设计方案中,数据传输策略可以包括:终端设备的数据与终端设备的无线资源的对应关系。
可选地,无线资源可以包括如下一种或多种:无线承载、无线链路控制RLC信道、或逻辑信道。
一种可能的设计方案中,第二方面所述的方法还可以包括:接收来自第一网络设备的第二请求消息,并向第一网络设备发送第二响应消息。其中,第二请求消息可以用于请求终端设备恢复连接态,第二响应消息可以用于指示终端设备恢复连接态。
可选地,第二响应消息可以包括第一RRC恢复消息。
一种可能的设计方案中,第一响应消息可以包括第一RRC恢复消息。
需要说明的是,第二方面所述的方法可以由第二网络设备执行,也可以由设置于第二网络设备中的芯片(***)或其他部件或组件执行,还可以由包含第二网络设备的装置执行,本申请对此不做限定。
此外,第二方面所述的方法的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第三方面,提供一种通信装置。该装置包括:接收模块和发送模块。其中,发送模块,用于向第二网络设备发送第一请求消息。接收模块,用于接收来自第二网络设备的第一响应消息。其中,第一请求消息用于请求终端设备的数据传输策略。该终端设备处于非激活态,且在第一网络设备驻留。第一响应消息包括该数据传输策略。
一种可能的设计方案中,数据传输策略可以包括:终端设备的数据与终端设备的无线资源之间的对应关系。
可选地,无线资源可以包括如下一种或多种:无线承载、无线链路控制RLC信道、或逻辑信道。
可选地,第三方面所述的装置还可以包括:处理模块。其中,接收模块,还用于接收来自终端设备的第一指示信息。其中,第一指示信息可以用于指示终端设备的无线资源。如此,处理模块,用于根据第一指示信息,控制发送模块向终端设备发送第一无线资源控制RRC恢复消息。
进一步地,发送模块,还用于在向终端设备发送第一RRC恢复消息之前,向第二网络设备发送第二请求消息。接收模块,还用于接收来自第二网络设备的第二响应消息。其中,第二请求消息可以用于请求终端设备恢复连接态,第二响应消息可以用于指示终端设备恢复连接态。
进一步地,第二响应消息可以包括第一RRC恢复消息。
进一步地,第一响应消息可以包括第一RRC恢复消息。
可选地,接收模块和发送模块也可以集成为收发模块。其中,收发模块用于实现第三方面所述的装置的发送功能和接收功能。
可选地,第三方面所述的装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该装置可以执行第一方面所述的方法。
需要说明的是,第三方面所述的装置可以由第一网络设备执行,也可以由设置于第一网络设备中的芯片(***)或其他部件或组件执行,还可以由包含第一网络设备的装置执行,本申请对此不做限定。
此外,第三方面所述的方法的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第四方面,提供一种通信装置。该装置包括:接收模块和发送模块。其中,接收模块,用于接收来自第一网络设备的第一请求消息。发送模块,用于向第一网络设备发送第一响应消息。其中,第一请求消息用于请求终端设备的数据传输策略。该终端设备处于非激活态,且在第一网络设备驻留。第一响应消息包括该数据传输策略。
一种可能的设计方案中,数据传输策略可以包括:终端设备的数据与终端设备的无线资源的对应关系。
可选地,无线资源可以包括如下一种或多种:无线承载、无线链路控制RLC信道、 或逻辑信道。
一种可能的设计方案中,接收模块,还用于接收来自第一网络设备的第二请求消息,发送模块,还用于向第一网络设备发送第二响应消息。其中,第二请求消息可以用于请求终端设备恢复连接态,第二响应消息可以用于指示终端设备恢复连接态。
可选地,第二响应消息可以包括第一RRC恢复消息。
一种可能的设计方案中,第一响应消息可以包括第一RRC恢复消息。
可选地,第四方面所述的装置还可以包括处理模块。其中,处理模块用于实现该装置的处理功能。
可选地,接收模块和发送模块也可以集成为收发模块。其中,收发模块用于实现第四方面所述的装置的发送功能和接收功能。
可选地,第四方面所述的装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该装置可以执行第二方面所述的方法。
需要说明的是,第四方面所述的装置可以由第二网络设备执行,也可以由设置于第二网络设备中的芯片(***)或其他部件或组件执行,还可以由包含第二网络设备的装置执行,本申请对此不做限定。
此外,第四方面所述的装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该装置包括:处理器,该处理器与存储器耦合,该处理器用于执行存储器中存储的计算机程序,以使得该装置执行第一方面或第二方面所述的方法。
在一种可能的设计方案中,第五方面所述的装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第五方面所述的装置与其他装置通信。
在本申请中,第五方面所述的装置可以为第一方面或第二方面中的网络设备,或者可设置于该网络设备中的芯片(***)或其他部件或组件,或者包含该网络设备的装置。
此外,第五方面所述的装置的技术效果可以参考第一方面或第二方面所述的方法的技术效果,此处不再赘述。
第六方面,提供了一种通信装置。该装置包括:处理器和存储器;该存储器用于存储计算机程序,当该处理器执行该计算机程序时,以使该装置执行第一方面或第二方面所述的方法。
在一种可能的设计方案中,第六方面所述的装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第六方面所述的装置与其他装置通信。
在本申请中,第六方面所述的装置可以为第一方面或第二方面中的网络设备,或者可设置于该网络设备中的芯片(***)或其他部件或组件,或者包含该网络设备的装置。
此外,第六方面所述的装置的技术效果可以参考第一方面或第二方面所述的方法的技术效果,此处不再赘述。
第七方面,提供了一种通信装置。该装置包括:处理器和接口电路。其中,接口电路,用于接收代码指令并传输至该处理器;处理器用于运行该代码指令以执行第一 方面或第二方面所述的方法。
可选地,第七方面所述的装置还可以包括:接收器和发送器。其中,接收器用于实现该装置的接收功能,发送器用于实现该装置的发送功能。可选地,该发送器和接收器也可以集成为一个器件,如收发器。其中,收发器则用于实现该装置的发送功能和接收功能。
可选地,第七方面所述的装置还可以包括存储器,该存储器存储有程序或指令。当第七方面所述的处理器执行该程序或指令时,使得该装置可以执行第一方面或第二方面所述的方法。
在本申请中,第七方面所述的装置可以为第一方面或第二方面中的网络设备,或者可设置于该网络设备中的芯片(***)或其他部件或组件,或者包含该网络设备的装置。
此外,第七方面所述的装置的技术效果可以参考第一方面或第二方面所述的方法的技术效果,此处不再赘述。
第八方面,提供了一种通信装置。该装置包括处理器和收发器,其中,收发器可以为收发电路或接口电路,该收发器用于该装置和其他装置之间进行信息交互,该处理器执行程序指令,用以执行第一方面或第二方面所述的方法。
可选地,第八方面所述的装置还可以包括存储器,该存储器存储有程序或指令。当第八方面所述的处理器执行该程序或指令时,使得该装置可以执行第一方面或第二方面所述的方法。
在本申请中,第八方面所述的装置可以为第一方面或第二方面中的网络设备,或者可设置于该网络设备中的芯片(***)或其他部件或组件,或者包含该网络设备的装置。
此外,第八方面所述的装置的技术效果可以参考第一方面或第二方面所述的方法的技术效果,此处不再赘述。
第九方面,提供一种通信***。该通信***包括一个或多个网络设备。该网络设备用于执行第一方面或第二方面所述的方法。
第十方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面或第二方面所述的方法。
第十一方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面或第二方面所述的方法。
附图说明
图1为本申请实施例提供的通信***的架构示意图一;
图2为本申请实施例提供的网络设备的结构示意图一;
图3为本申请实施例提供的网络设备的结构示意图二;
图4为本申请实施例提供的通信方法的流程示意图一;
图5为本申请实施例提供的通信方法的流程示意图二;
图6为本申请实施例提供的通信方法的流程示意图三;
图7为本申请实施例提供的通信装置的结构示意图一;
图8为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
下面先介绍本申请涉及的技术术语。
1、空闲态
其中,空闲态可以是终端设备未与网络设备连接时所处的状态。在空闲态下,终端设备可以执行公共陆地移动网(public land mobile network,PLMN)选择、小区选择、小区重选和***消息广播等流程。并且,在空闲态下,由于终端设备没有与网络设备连接,没有接入网络,也没有占用网络设备的业务资源,更没有获得终端设备的上下文,因此无法传输数据。
2、连接态
其中,连接态可以是终端设备完成与网络设备的连接之后所处的状态。在连接态下,终端设备与网络设备之间建立有RRC连接,如数据无线承载(data radio bearer,DRB)的连接,或者信令无线承载(signalling radio bearers,SRB)的连接。如此,终端设备可以从网络设备获得上下文,并根据该上下文传输数据。
其中,终端设备可以从空闲态进入连接态。比如,终端设备可通过向网络设备发送RRC连接建立请求(RRC concection establish request)消息进入连接态,从而与网络设备建立RRC连接。或者,终端设备也可以从非激活态进入连接态。比如,终端设备可通过随机接入流程,如向网络设备发送RRC恢复请求(RRC resume request)消息,以进入连接态,从而恢复与网络设备之间的RRC连接。此外,终端设备还可以从连接态释放到空闲态或者非激活态。比如,终端设备可以接收来自网络设备的RRC释放(RRC release)消息,并根据RRC释放消息释放到空闲态或者非激活态,从而减少资源开销,降低功耗,以提升终端设备的续航能力。
3、非激活态
其中,非激活态可以是介于连接态与空闲态之间的中间状态,也可以称作“第三态”。在非激活态下,终端设备可以通过随机接入流程实现数据传输。比如,终端设备可以通过随机接入流程实现非激活态下的数据早传,也称作“数据前传”或“小数据传输(small data transmission,SDT)”。又比如,终端设备也可以通过随机接入流程快速恢复连接态,并在连接态下传输数据。其中,连接态下的数据传输可以是非小数据传输(non-small data transmission,non-SDT),对此不予限定。
此外,由于非激活态可以保存终端设备的上下文,则相较于从空闲态恢复连接态,从非激活态恢复连接态无需再生成该上下文,从而可以减少信令交互,降低数据传输时延,进而提高通信效率。
4、小区重选
如前所述,在非激活态或者空闲态下,终端设备可以从当前驻留的小区重选到其他小区,如重选并驻留到信号更好的小区。其中,小区重选可以包括站内重选和站间重选。站内重选一般指终端设备从同一网络设备的一个小区重选到另一个小区,而站间重选一般指终端设备从一个网络设备的小区重选到另一个网络设备的小区。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如无线保真(wireless fidelity,WiFi)***,车到任意物体(vehicle to everything,V2X)通信***、设备 间(device-todevie,D2D)通信***、车联网通信***、第4代(4th generation,4G)移动通信***,如长期演进(long term evolution,LTE)***、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、5G移动通信***,如新空口(new radio,NR)***,以及未来的通信***,如第六代(6th generation,6G)移动通信***等。
本申请将围绕可包括多个设备、组件、模块等的***来呈现各个方面、实施例或特征。应当理解和明白的是,各个***可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图1中示出的通信***为例详细说明适用于本申请实施例的通信***。示例性地,图1为本申请实施例提供的通信方法所适用的一种通信***的架构示意图。
如图1所示,该通信***包括网络设备和终端设备。
其中,上述终端设备,可接入到无线网络,以通过无线网络获取其它网络,如数据网络(data network,DN)提供的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。该无线网络包括无线接入网(radio access network,RAN)和核心网(core network,CN)。其中,RAN也可以称为接入网(access network,AN),可以包括一个或多个网络设备,如第一网络设备和第二网络设备,用于将终端设备接入到无线网络,CN中可以包括一个或多个核心网网元(图1中未示出),用于对终端设备进行管理并提供与DN通信的网关。
具体而言,上述终端设备,又可以称为用户设备(user equipment,UE),包括向用户提供语音和/或数据服务的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经RAN与CN进行通信,与RAN交换语音和/或数据。该终端设备可以包括无线终端设备、移动终端设备、D2D终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type  communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元、订户站,移动站、远程站、接入点(access point,AP)、远程终端、接入终端、用户终端、用户代理、或用户装备等。例如,可以包括移动电话,也称为“蜂窝”电话,具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)等设备。还可以包括工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元。也可以包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
应理解,本申请中,用于实现终端功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片***或可实现终端设备功能的组合器件、部件,该装置可以被安装在终端设备中。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。以用于实现终端功能的装置是终端设备为例,介绍本申请提供的技术方案,但不作为限定。
上述网络设备可以为将终端设备接入到无线网络的节点或设备,又可以称为基站,包括但不限于:5G通信***中的新一代基站(generation Node B,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站((home evolved nodeB,HeNB)或(home node B,HNB))、基带单元(baseBand unit,BBU)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、或移动交换中心等。
应理解,本申请中,用于实现网络设备功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片***或可实现网络设备功能的组合器件、部件,该装置可以被安装在网络设备中。本申请中,以用于实现网络设备功能的装置是网络设备为例,介绍本申请提供的技术方案,但不作为限定。
进一步地,网络设备与终端设备之间的接口可以为Uu接口,也称为“空口”。当然,在未来通信中,这些接口的名称可以不变,或者也可以用其它名称代替,本申请对此不限定。示例性地,网络设备和终端设备之间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括RRC层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(mediu access control,MAC)层和物理(physical,PHY)层。用户面协议层结构可以包括PDCP 层、RLC层、MAC层和物理层,一种可能的实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
网络设备可以由一个节点实现上述RRC、PDCP、RLC和MAC等协议层的功能,或者可以由多个节点实现这些协议层的功能。例如,在一种演进结构中,网络设备可以包括一个或多个集中单元(centralized unit,CU)和一个或多个分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。作为示例,CU和DU之间的接口可以称为F1接口。其中,控制面(control panel,CP)接口可以为F1-C,用户面(user panel,UP)接口可以为F1-U。CU和DU可以根据无线网络的协议层划分。比如图2所示,PDCP层及以上协议层的功能设置在CU,PDCP层以下协议层(例如RLC层和MAC层等)的功能设置在DU。
可以理解地,上述对CU和DU的处理功能按照协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分,比如RLC层以上协议层的功能设置在CU,RLC层及以下协议层的功能设置在DU,又比如可以将CU或者DU划分为具有更多协议层的功能,再比如CU或DU还可以划分为具有协议层的部分处理功能。在一种设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他***需求对CU或者DU的功能进行划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在另一种设计中,CU也可以具有核心网的一个或多个功能。示例性地,CU可以设置在网络侧方便集中管理;DU可以具有多个射频功能,也可以将射频功能拉远设置。本申请实施例对此并不进行限定。
示例性地,CU的功能可以由一个实体来实现,或者也可以由不同的实体来实现。例如,如图3所示,可以对CU的功能进行进一步切分,如将控制面和用户面分离并通过不同实体来实现,分别为控制面CU实体,如CU-CP实体,以及用户面CU实体,如CU-UP实体。其中,CU-CP实体和CU-UP实体可以与DU相耦合,共同完成网络设备的功能。CU-CP实体与CU-UP实体之间的接口可以为E1接口,CU-CP实体与DU之间的接口可以为F1-C接口,CU-UP实体与DU之间的接口可以为F1-U接口。其中,一个DU和一个CU-UP可以连接到一个CU-CP。在同一个CU-CP控制下,一个DU可以连接到多个CU-UP,一个CU-UP可以连接到多个DU。
应理解,在上述图2和图3所示意的架构中,可以通过DU向终端设备发送CU产生的信令,或者可以通过DU向CU发送终端设备产生的信令。DU可以不对该信令进行解析,而直接通过协议层封装后透传给终端设备或CU。例如,RRC或PDCP层的信令最终会处理为物理层的数据发送给终端设备,或者,由接收到的物理层的数据转变而来。在这种架构下,该RRC或PDCP层的信令,也可以认为是由DU发送的,或者,由DU和射频装置发送的。
需要说明的是,本申请实施例提供的通信方法,可以适用于图1所示的任意两个网络设备的通信,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信***中,相应的名称也可以用其他通信***中的对应功能的名称进行替代。
应理解,图1仅为便于理解而示例的简化示意图,该通信***中还可以包括其他网络设备,和/或,其他终端设备,图1中未予以画出。
下面将结合图4-图6对本申请实施例提供的通信方法进行具体阐述。
示例性地,图4为本申请实施例提供的通信方法的流程示意图一。该通信方法可以适用于图1所示的任意两个网络设备,如第一网络设备与第二网络设备之间的通信。
如图4所示,该通信方法包括如下步骤:
S401,第一网络设备向第二网络设备发送第一请求消息。
其中,第一网络设备和第二网络设备可以是不同的网络设备。第一网络设备可以为终端设备当前驻留的网络设备,第二网络设备可以为终端设备历史驻留的网络设备,如可以为终端设备的锚点网络设备。其中,锚点网络设备是将终端设备释放到非激活态,或者说是终端设备进入非激活态前最后一个驻留的小区所属的网络设备,且保存有终端设备的上下文。也就是说,终端设备先驻留在第二网络设备的小区,然后通过站间小区重选切换到第一网络设备,并在第一网络设备的小区驻留。
其中,第一请求消息可以是上下文恢复请求(retrieve UE context request)消息,可以用于请求终端设备的上下文,该上下文可以包括终端设备的数据传输策略。其中,终端设备处于非激活态。为便于理解,本申请后续所指的终端设备,不做特殊说明一般指处于非激活态的终端设备。比如,终端设备发送消息是指终端设备在非激活态下发送该消息。
具体而言,当终端设备在第一网络设备的小区完成驻留后,可以向第一网络设备发送第一RRC恢复请求消息,以实现非激活态下的数据传输。比如,终端设备可以打包第一RRC恢复请求消息和第一数据,以生成MAC层的协议数据单元(protocol data unit,PDU),并通过物理层向第一网络设备发送,或者,第一数据也可以包含在第一RRC恢复请求消息中,从而实现数据传输。其中,第一数据可以是小数据(small data,SD),例如数据无线承载(data radio bearer,DRB)数据、或信令无线承载(signaling radio bearer,SRB)的数据量不超过数据门限的数据。第一RRC恢复请求消息可以包括第一非激活态无线网络临时标识(inactive-radio network temporary identifier,I-RNTI)。该第一I-RNTI可以是第二网络设备为终端设备分配的,与终端设备的上下文对应,并指示该上下文保存在第二网络设备中。如此,第一网络设备接收到来自终端设备的第一RRC恢复请求消息后,可以根据该第一I-RNTI,向第二网络设备发送上述上下文恢复请求消息。
应理解,终端设备发送第一RRC恢复请求消息仅为一种示例,不作为限定。比如,终端设备也可以发送非接入层(non-access stratum,NAS)消息。
S402,第一网络设备接收来自第二网络设备的第一响应消息。
其中,第一响应消息可以是上下文恢复响应(retrieve UE context response)消息,或者,也可以是上下文恢复失败(retrieve UE context failure)消息。比如,若第二网络设备确定锚点网络设备可以切换为第一网络设备,则可以发送上下文恢复响应消息。若第二网络设备确定锚点网络设备不可以切换为第一网络设备,则可以发送上下文恢复失败消息。其中,若第一响应消息是上下文恢复响应消息,则第一响应消息可以包括终端设备的完整上下文,如包括终端设备的数据传输策略,以及终端设备的如下一 项或多项配置:SDAP配置、PDCP配置、RLC配置、或无线承载(radio bearer,RB)配置等。若第一响应消息是上下文恢复失败消息,则第一响应消息可以只包括终端设备的数据传输策略,但不作为限定,如还可以包括终端设备的部分上下文,如包括终端设备的RLC配置。
其中,数据传输策略可以用于指示终端设备的各类数据的传输方式,可以是终端设备在第一网络设备驻留时,第一网络设备从终端设备获取的策略,包括终端设备的数据与终端设备的无线资源之间的对应关系。
作为一种可能的实现方式,上述对应关系可以是上述数据的类型与上述无线资源的标识对应关系。其中,该类型可以包括SD和非小数据(non-small data,N-SD),该无线资源可以包括如下一种或多种:无线承载、如DRB、或SRB、无线链路控制信道(radio link control channel,RLCC)、或逻辑信道(logical channel,LC)。其中,逻辑信道可以是一个或者多个,多个逻辑信道也可以称作逻辑信道组(logical channel group,LCG)。换言之,上述对应关系可以包括SD与上述一种或多种第一无线资源的标识的对应关系,和/或,包括N-SD与上述一种或多种第二无线资源的标识对应关系。为便于理解,下面通过一个示例进行介绍。
应理解,由于上述无线资源整体包括上述第一无线资源和上述第二无线资源,在SD与第一无线资源的标识的对应情况下,剩下的无线资源的标识,如第二无线资源的标识便与N-SD可以对应。反之,在N-SD与第二无线资源的标识的对应情况下,剩下的无线资源的标识,如第一无线资源的标识便于SD对应。也就是说,在其一种对应关系确定的情况下,另一种对应关系便相应确定。如此,第一网络设备可以只配置其中一种对应关系,如只配置N-SD与上述一种或多种第二无线资源的标识的对应关系,以节约第一网络设备的储存空间,优化资源配置,提供运行效率。比如,一方面,SD与上述一种或多种第一无线资源的标识的对应关系可以包括如下一项或多项:SD与RB1的对应关系、SD与RLCC1的对应关系、SD与LC1-LC5的对应关系、或SD与LCG1(LCG1包括LC1-LC5)的对应关系。另一方面,N-SD与上述一种或多种第二无线资源的对应关系可以包括:N-SD与RB2的对应关系、N-SD与RLCC2的对应关系、N-SD与LC6-LC10的对应关系、或N-SD与LCG2(LCG2包括LC6-LC10)的对应关系。
作为另一种可能的实现方式,上述对应关系可以是上述数据的传输方式与上述无线资源的标识的对应关系。其中,该传输方式可以包括SDT和N-SDT。换言之,上述对应关系可以包括SDT与上述一种或多种第一无线资源的对应关系,以及包括N-SDT与上述一种或多种第二无线资源的标识的对应关系。为便于理解,下面继续对上述示例进行介绍。
又比如,一方面,SDT与上述一种或多种第一无线资源的标识对应关系可以包括如下一项或多项:SDT与RB1的对应关系、SDT与RLCC1的对应关系、SDT与LC1-LC5的对应关系、或SDT与LCG1的对应关系。另一方面,N-SDT与上述一种或多种第二无线资源的对应关系可以包括:N-SDT与RB2的对应关系、N-SDT与RLCC2的对应关系、N-SDT与LC6-LC10的对应关系、或N-SDT与LCG2的对应关系。
应理解,由于无线资源可以包括上述多种无线资源,则无论终端设备告知第一网 络设备的是上述哪一种无线资源,第一网络设备也可以根据对应关系确定终端设备的那种类型的数据到达,以便第一网络设备可以配合终端设备及时完成随机接入流程,以进入连接态,从而提高通信效率。
进一步地,第二网络设备可以向第一网络设备发送该第一响应消息。相应地,第一网络设备可以接收来自第二网络设备的第一响应消息,并获取第一响应消息中的上述数据传输策略,以便第一网络设备可以根据数据传输策略,配合终端设备及时完成传输数据。比如,若终端设备上有待传输数据,如第二数据,则终端设备可以根据该对应关系告知第一网络设备该第二数据对应的无线资源,以便第一网络设备可以根据该对应关系确定该第二数据,如确定第二数据的类型是SD还是N-SD,或者确定第二数据的传输方式是SDT还是N-SDT。这样,第一网络设备可以配合终端设备及时完成随机接入流程,进入连接态,从而及时传输第二数据,进而可以降低数据传输时延,提高通信效率。其中,第一网络设备与终端设备如何配合完成随机接入流程,可以参考下述第一种实现场景中的相关介绍,在此不再赘述。
可选地,在图4所示出的实施例的第一种实现场景中,S402之后,图4中所示出的方法还可以包括:接收来自终端设备的第一指示信息,并根据第一指示信息,向终端设备发送第一RRC恢复消息。
其中,第一指示信息可以用于指示终端设备的上述无线资源,如通过携带该无线资源的标识来指示该无线资源,以表示终端设备有待传输的第二数据。第一指示信息可以是RRC消息,如RRC恢复请求消息,对此不予限定。其中,第一RRC恢复消息可以是第一网络设备执行随机接入流程发送的消息,用于指示终端设备恢复连接态。
具体而言,若终端设备获取上述第二数据时,则可以确定第二数据对应的无线资源,从而在第一指示信息中携带该无线资源的标识。其中,若上述对应关系是第二数据的类型与无线资源的对应关系,则终端设备可以先确定第二数据的类型,再根据该类型,在上述对应关系中确定对应无线资源的标识。若上述对应关系是第二数据的传输方式与无线资源的对应关系,则终端设备可以先确定第二数据的传输方式,再根据该传输方式,在上述对应关系中确定对应无线资源的标识。为便于理解,下面继续对上述示例进行介绍。
比如,若第二数据的类型为SD,则终端设备可以根据类型为SD,确定上述标识包括如下一项或多项:RB1、RLCC1、LC1-LC5、或LCG1,并携带到第一指示信息中。或者,若第二数据的类型为N-SD,则终端设备可以根据类型为N-SD,确定上述标识包括如下一项或多项:RB2、RLCC2、LC6-LC10、或LCG2,并携带到第一指示信息中。
又比如,若第二数据的传输方式为SDT,则终端设备可以根据传输方式为SDT,确定上述标识包括如下一项或多项:RB1、RLCC1、LC1-LC5、或LCG1,并携带到第一指示信息中。或者,若第二数据的传输方式为N-SDT,则终端设备可以根据传输方式为N-SDT,确定上述标识包括如下一项或多项:RB2、RLCC2、LC6-LC10、或LCG2,并携带到第一指示信息中。
进一步地,终端设备可以向第一网络设备发送上述第一指示信息。相应地,第一网络设备可以接收来自终端设备的第一指示信息。如此,第一网络设备可以根据上述 第一指示信息指示的无线资源,如根据该第一指示信息中无线资源的标识,在上述对应关系中确定该标识对应的上述传输方式或类型,以根据该传输方式或类型,执行随机接入流程,如执行SDT流程,或者执行N-SDT流程。下面分别介绍。
A、SDT流程
其中,若第一网络设备确定传输方式为SDT,或者确定类型为SD,则可以执行SDT流程。
具体而言,第一网络设备可以接收来自终端设备的SD,并向核心网网元,如向接入和移动性管理功能(access and mobility management function,AMF)网元发送该SD,从而完成SDT流程。
其中,作为一种方式,终端设备在向第一网络设备发送第一指示信息后,可以继续向第一网络设备发送携带该SD的RRC消息,如发送第二RRC恢复请求消息。如此,若第一网络设备接收到第二RRC恢复请求消息,可以向核心网网元发送该SD,从而完成SDT流程。作为另一种方式,SD也可以携带在上述第一指示信息中。也就是说,终端设备可以一并发送第一指示信息和SD。如此,若第一网络设备确定执行SDT流程,则可以及时向核心网网元发送该SD,以进一步降低数据传输时延,提高通信效率。
B、N-SDT流程
其中,若第一网络设备确定传输方式为N-SDT,或者确定类型为N-SD,则可以执行N-SDT流程。
具体而言,第一网络设备可以向终端设备发送第一RRC恢复消息,以便终端设备可以根据第一RRC恢复消息从非激活态恢复连接态,并恢复与第一网络设备的RRC连接,向第一网络设备发送N-SD。
其中,作为一种方式,第一RRC恢复消息可以是确定执行N-SDT流程之后接收的消息。比如,若第一网络设备确定执行N-SDT流程,则可以向第二网络设备发送第二请求消息。其中,第二请求消息可以用于请求终端设备恢复连接态,例如包括上述第一指示信息。相应地,第二网络设备可以指示终端设备恢复连接态,如向第一网络设备发送第二响应消息。其中,第二响应消息可以包括上述第一RRC恢复消息,以指示终端设备恢复连接态。如此,若第一网络设备接收自第二网络设备的第二响应消息,则可以向终端设备发送该第二响应消息中的第一RRC恢复消息。
作为另一种方式,第一RRC恢复消息可以是确定执行N-SDT流程之前接收的消息。比如,上述第一响应消息可以包括该第一RRC恢复消息。也就是说,在终端设备获取第二数据之前,第二网络设备便提前向第一网络设备发送第一RRC恢复消息。如此,第一网络设备可以及时向终端设备发送该第一RRC恢复消息,以便终端设备能够更快地接收到该第一RRC恢复消息,从而更快地恢复连接态,以进一步降低数据传输时延,进一步提高通信效率。
应理解,由于第二网络设备可以是终端设备的锚点网络设备,如此第二网络设备可以准确地判断终端设备是否需要恢复连接态,从而避免因第一网络设备误判断而导致数据传输出错,进而可以提高数据传输的可靠性。
还应理解,无论采用上述哪一种方式发送第一RRC恢复消息,第一RRC恢复消 息都是第二网络设备生成的消息,而非第一网络设备生成的消息。如此,可以避免第二网络设备向第一网络设备发送生成第一RRC恢复消息所需的配置信息,以降低配置信息的泄露风险,从而提高网络安全。
以上结合图4,对本申请提供的通信方法的原理进行了介绍,下面结合图5和图6具体介绍该方法在实际场景中的应用。
请参阅图5,图5为图4中所示出的通信方法在第一应用场景下的流程示意图。在图5中,UE为上述的终端设备,第一gNB为上述的第一网络设备,第二gNB为上述的第二网络设备。此外,如图5所示,适用于该第一应用场景下的设备还可以包括如下一项或多项:UPF网元、AMF网元、策略控制功能(policy control function,PCF)网元(图5中未示出)、会话管理功能(session management function,SMF)网元(图5中未示出)、统一数据存储库(unified data repository,UDR)网元(图5中未示出)、统一数据管理(unified data management,UDM)网元(图5中未示出)等。其中,AMF网元也可以对应更换为移动性管理实体(mobility management entity,MME)网元,UPF网元也可以对应更换为服务网关(serving gateway,S-GW)网元,对此不予限定。
如图5所示,该第一应用场景下,通信方法可以包括:
S501,第二gNB向UE发送第一RRC释放消息。
其中,第一RRC释放消息可以携带上述第一I-RNTI,第二gNB为UE的锚点网络设备。
S502,UE从连接态释放到非激活态。
其中,UE可以根据第一RRC释放消息,从连接态释放到非激活态,并保留UE自身的上下文。
S503,UE从第二gNB的小区重选到第一gNB的小区。
其中,UE可以从第二gNB的小区重选到第一gNB的小区,并继续保持非激活态。
S504,UE向第一gNB发送第一RRC恢复请求消息。
其中,若UE有SD需要传输,则UE可以根据UE自身的上下文,向第一gNB发送第一RRC恢复请求消息。第一RRC恢复请求消息可以携带该SD以及第一I-RNTI。
S505,第一gNB向第二gNB发送上下文恢复请求消息。
其中,第一gNB可以获取上下文恢复请求消息携带的上述SD以及上述第一I-RNTI。如此,第一gNB可以根据该第一I-RNTI,确定UE的锚点网络设备为第二gNB,从而向第二gNB发送上下文恢复请求消息。
S506,第二gNB向第一gNB发送上下文恢复响应消息。
其中,上下文恢复响应消息可以携带UE的数据与无线资源的对应关系。此外,S505和S506的具体实现可以参考上述S401和S402中的相关介绍,在此不再赘述。
S507,第一gNB向AMF网元发送路径切换请求(path switch request)消息。
S508,AMF网元修改UPF网元上UE的承载。
其中,AMF网元可以根据路径切换请求消息,将UPF网元上UE的承载,从“UE→第二gNB→UPF网元”修改为“UE→第一gNB→UPF网元”。
S509,AMF网元向第一gNB发送路径切换请求确认(path switch request ACK) 消息。
S510,第一gNB向UPF网元发送SD。
其中,由于第一gNB可以根据上述路径切换请求确认消息,确定上述承载修改成功,则第一gNB可以向UPF网元发送上述SD,从而完成非激活态下的SDT流程。
应理解,上述S507-S510为可选流程。例如,若上下文恢复响应消息携带有UE的完整上下文,则表示UE的锚点网络设备从第二gNB切换为第一gNB。如此,第一gNB可以执行S507-S510。反之,若上下文恢复响应消息只携带有UE的部分上下文,或者未携带UE的上下文,则表示UE的锚点网络设备仍为第二gNB。如此,第一gNB可以不执行S507-S510,并向第二gNB发送上述SD。
S511,UE向第一gNB发送第一指示信息。
其中,若UE有N-SD需要传输,则可以向第一gNB发送第一指示信息,以便第一gNB可以根据第一指示信息,确定执行N-SDT流程。此外,S511的具体实现可以参考上述S402中相关介绍,在此不再赘述。再者,S511与S505-S510之间的执行顺序不限定。
S512,第一gNB向第二gNB发送第二请求消息。
S513,第二gNB向第一gNB发送第二响应消息。
其中,第二响应消息包括第一RRC恢复消息。S512-S513的具体实现可以参考上述S402中相关介绍,在此不再赘述。
S514,第一gNB向UE发送第一RRC恢复消息。
S515,UE从非激活态恢复连接态。
其中,UE可以根据第一RRC恢复消息,从非激活态恢复连接态,从而恢复与第一gNB的RRC连接。
S516,UE向第一gNB发送N-SD。
其中,UE在连接态下可以向第一gNB发送N-SD。
S517,第一gNB向UPF网元发送N-SD。
如此,第一gNB执行完N-SDT流程。
请参阅图6,图6为图4中所示出的通信方法在第二应用场景下的流程示意图。在图6中,UE为上述的终端设备,第一gNB为上述的第一网络设备,第二gNB为上述的第二网络设备。此外,如图6所示,适用于该第二应用场景下的设备还可以包括如下一项或多项:UPF网元、AMF网元、PCF网元(图6中未示出)、SMF网元(图6中未示出)、UDR网元(图6中未示出)、UDM网元(图6中未示出)等。其中,AMF网元也可以对应更换为MME网元,UPF网元也可以对应更换为S-GW网元,对此不予限定。
如图6所示,该第二应用场景下,通信方法可以包括:
S601,第二gNB向UE发送第一RRC释放消息。
S602,UE从连接态释放到非激活态。
S603,UE从第二gNB的小区重选到第一gNB的小区。
S604,UE向第一gNB发送第一RRC恢复请求消息。
S605,第一gNB向第二gNB发送上下文恢复请求消息。
S606,第二gNB向第一gNB发送上下文恢复响应消息。
其中,上下文恢复响应消息不仅可以携带UE的数据与无线资源的对应关系,还可以携带上述第一RRC恢复消息。此外,S601-S604的具体实现可以参考上述S501-S504中的相关介绍,S605和S606的具体实现可以参考上述S401和S402中的相关介绍,在此不再赘述。
S607,第一gNB向AMF网元发送路径切换请求消息。
S608,AMF网元修改UPF网元上UE的承载。
S609,AMF网元向第一gNB发送路径切换请求确认消息。
S610,第一gNB向UPF网元发送SD。
其中,S607-S610的具体实现可以参考上述S507-S510中的相关介绍,在此不再赘述。
S611,UE向第一gNB发送第一指示信息。
其中,若UE有N-SD需要传输,则可以向第一gNB发送第一指示信息,以便第一gNB可以根据第一指示信息,确定执行N-SDT流程。此外,S611的具体实现可以参考上述S402中相关介绍,在此不再赘述。再者,S611与S605-S610之间的执行顺序也不限定。
S612,第一gNB向UE发送第一RRC恢复消息。
其中,由于第一gNB在执行S606流程时,便可以获取上述第一RRC恢复消息,那么,若第一gNB确定执行N-SDT流程,则可以及时向UE发送该第一RRC恢复消息。
S613,UE从非激活态恢复连接态。
S614,UE向第一gNB发送N-SD。
S615,第一gNB向UPF网元发送N-SD。
其中,S613-S615的具体实现可以参考上述S515-S517中的相关介绍,在此不再赘述。
基于图4-图6中任一项所示出的通信方法可知,由于第二网络设备可以为第一网络设备配置终端设备的数据传输策略,那么终端设备在触发随机接入流程后,第一网络设备便可以根据该数据传输策略,及时发送终端设备的数据,以便随机接入流程能够及时完成,及时进入连接态,从而降低数据传输时延,提高通信效率。
以上结合图4-图6详细说明了本申请实施例提供的通信方法。以下结合图7-图8详细说明用于执行本申请实施例提供的通信方法的通信装置。
示例性地,图7是本申请实施例提供的通信装置的结构示意图一。如图7所示,通信装置700包括:接收模块701和发送模块702。为了便于说明,图7仅示出了该通信装置的主要部件。
一些实施例中,通信装置700可适用于图1中所示出的通信***中,执行图4中所示出的通信方法中第一网络设备的功能,或者执行图5或图6中所示出的通信方法中第一gNB的功能。
其中,发送模块702,用于向第二网络设备发送第一请求消息。
接收模块701,用于接收来自第二网络设备的第一响应消息。
其中,第一请求消息用于请求终端设备的数据传输策略。该终端设备处于非激活态,且在第一网络设备驻留。第一响应消息包括该数据传输策略。
一种可能的设计方案中,数据传输策略可以包括:终端设备的数据与终端设备的无线资源之间的对应关系。
可选地,无线资源可以包括如下一种或多种:无线承载、无线链路控制RLC信道、或逻辑信道。
可选地,上述通信装置700还可以包括:处理模块703(图7中虚线框示出)。其中,接收模块701,还用于接收来自终端设备的第一指示信息。其中,第一指示信息可以用于指示终端设备的无线资源。如此,处理模块703,用于根据第一指示信息,控制发送模块702向终端设备发送第一无线资源控制RRC恢复消息。
进一步地,发送模块702,还用于发送模块702在向终端设备发送第一RRC恢复消息之前,向第二网络设备发送第二请求消息。接收模块701,还用于接收来自第二网络设备的第二响应消息。其中,第二请求消息可以用于请求终端设备恢复连接态,第二响应消息可以用于指示终端设备恢复连接态。
进一步地,第二响应消息可以包括第一RRC恢复消息。
进一步地,第一响应消息可以包括第一RRC恢复消息。
可选地,接收模块701和发送模块702也可以集成为一个模块,如收发模块(图7中未示出)。其中,收发模块用于实现通信装置700的发送功能和接收功能。
可选地,通信装置700还可以包括存储模块(图7中未示出),该存储模块存储有程序或指令。当接收模块701执行该程序或指令时,使得通信装置700可以执行图4所示出的通信方法中第一网络设备的功能,或者执行图5或图6所示出的通信方法中第一gNB的功能。
应理解,通信装置700中涉及的处理模块701可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块702可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置700可以是网络设备,也可以是可设置于网络设备中的芯片(***)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,通信装置700的技术效果可以参考第图4-图6中任一项所示出的通信方法的技术效果,此处不再赘述。
另一些实施例中,通信装置700可适用于图1中所示出的通信***中,执行图4中所示出的通信方法中第二网络设备的功能,或者执行图5或图6所示出的通信方法中第二gNB的功能。
其中,接收模块701,用于接收来自第一网络设备的第一请求消息。
发送模块702,用于向第一网络设备发送第一响应消息。
其中,第一请求消息用于请求终端设备的数据传输策略。该终端设备处于非激活态,且在第一网络设备驻留。第一响应消息包括该数据传输策略。
一种可能的设计方案中,数据传输策略可以包括:终端设备的数据与终端设备的无线资源的对应关系。
可选地,无线资源可以包括如下一种或多种:无线承载、无线链路控制RLC信道、或逻辑信道。
一种可能的设计方案中,接收模块701,还用于接收来自第一网络设备的第二请求消息。发送模块702,还用于向第一网络设备发送第二响应消息。其中,第二请求消息可以用于请求终端设备恢复连接态,第二响应消息可以用于指示终端设备恢复连接态。
可选地,第二响应消息可以包括第一RRC恢复消息。
一种可能的设计方案中,第一响应消息可以包括第一RRC恢复消息。
可选地,接收模块701和发送模块702也可以集成为一个模块,如收发模块(图7未示出)。其中,收发模块用于实现通信装置700的发送功能和接收功能。
可选地,通信装置700还可以包括处理模块703(图7以虚线框示出)。其中,处理模块703用于实现通信装置700的处理功能。
可选地,通信装置700还可以包括存储模块(图7中未示出),该存储模块存储有程序或指令。当接收模块701执行该程序或指令时,使得通信装置700可以执行图4所示出的通信方法中第二网络设备的功能,或者执行图5或图6所示出的通信方法中第二gNB的功能。
应理解,通信装置700中涉及的处理模块703可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置700可以是图1中所示出的网络设备,也可以是设置于上述网络设备中的芯片(***)或其他部件或组件,或者包含该网络设备的装置,本申请实施例对此不做限定。
此外,通信装置700的技术效果,可以分别参考图4-图6中任一项所示出的通信方法的技术效果,此处不再赘述。
此外,通信装置700中涉及的处理模块703可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
示例性地,图8为本申请实施例提供的通信装置的结构示意图二。该通信装置可以是网络设备,也可以是可设置于网络设备的芯片(***)或其他部件或组件。如图8所示,通信装置800可以包括处理器801。可选地,通信装置800还可以包括存储器802和/或收发器803。其中,处理器801与存储器802和收发器803耦合,如可以通过通信总线连接。
下面结合图8对通信装置800的各个构成部件进行具体的介绍:
其中,处理器801是通信装置800的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器801是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器801可以通过运行或执行存储在存储器802内的软件程序,以及调用存储在存储器802内的数据,执行通信装置800的各种功能。
在具体的实现中,作为一种实施例,处理器801可以包括一个或多个CPU,例如图8中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置800也可以包括多个处理器,例如图8中所示的处理器801和处理器804。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器802用于存储执行本申请方案的软件程序,并由处理器801来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器802可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器802可以和处理器801集成在一起,也可以独立存在,并通过通信装置800的接口电路(图8中未示出)与处理器801耦合,本申请实施例对此不作具体限定。
收发器803,用于与其他通信装置之间的通信。例如,通信装置800为终端设备,收发器803可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置800为网络设备,收发器803可以用于与终端设备通信,或者与另一个网络设备通信。
可选地,收发器803可以包括接收器和发送器(图8中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器803可以和处理器801集成在一起,也可以独立存在,并通过通信装置800的接口电路(图8中未示出)与处理器801耦合,本申请实施例对此不作具体限定。
需要说明的是,图8中示出的通信装置800的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置800的技术效果可以参考上述方法实施例所述的通信方法的技术效果,此处不再赘述。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以 是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功 能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,应用于第一网络设备,包括:
    向第二网络设备发送第一请求消息,其中,所述第一请求消息用于请求终端设备的数据传输策略,所述终端设备处于非激活态,所述终端设备在所述第一网络设备驻留;
    接收来自所述第二网络设备的第一响应消息,其中,所述第一响应消息包括所述数据传输策略。
  2. 根据权利要求1所述的通信方法,其特征在于,
    所述数据传输策略包括:所述终端设备的数据与所述终端设备的无线资源之间的对应关系。
  3. 根据权利要求2所述的通信方法,其特征在于,所述无线资源包括如下一种或多种:无线承载、无线链路控制RLC信道、或逻辑信道。
  4. 根据权利要求2或3所述的通信方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第一指示信息,其中,所述第一指示信息用于指示所述无线资源;
    根据所述第一指示信息,向所述终端设备发送第一无线资源控制RRC恢复消息。
  5. 根据权利要求4所述的通信方法,其特征在于,在所述向所述终端设备发送第一RRC恢复消息之前,所述方法还包括:
    向所述第二网络设备发送第二请求消息,其中,所述第二请求消息用于请求所述终端设备恢复连接态;
    接收来自所述第二网络设备的第二响应消息,其中,所述第二响应消息用于指示所述终端设备恢复连接态。
  6. 根据权利要求5所述的通信方法,其特征在于,所述第二响应消息包括所述第一RRC恢复消息。
  7. 根据权利要求4所述的通信方法,其特征在于,所述第一响应消息包括所述第一RRC恢复消息。
  8. 一种通信方法,其特征在于,应用于第二网络设备,包括:
    接收来自第一网络设备的第一请求消息,其中,所述第一请求消息用于请求终端设备的数据传输策略,所述终端设备处于非激活态,所述终端设备在所述第一网络设备驻留;
    向所述第一网络设备发送第一响应消息,其中,所述第一响应消息包括所述数据传输策略。
  9. 根据权利要求8所述的通信方法,其特征在于,
    所述数据传输策略包括:所述终端设备的数据与所述终端设备的无线资源的对应关系。
  10. 根据权利要求9所述的通信方法,其特征在于,
    所述无线资源包括如下一种或多种:无线承载、无线链路控制RLC信道、或逻辑信道。
  11. 根据权利要求8-10中任一项所述的通信方法,其特征在于,所述方法还包括:
    接收来自所述第一网络设备的第二请求消息,其中,所述第二请求消息用于请求所述终端设备恢复连接态;
    向所述第一网络设备发送第二响应消息,其中,所述第二响应消息用于指示所述终端设备恢复连接态。
  12. 根据权利要求11所述的通信方法,其特征在于,
    所述第二响应消息包括第一RRC恢复消息。
  13. 根据权利要求8-10中任一项所述的通信方法,其特征在于,
    所述第一响应消息包括第一RRC恢复消息。
  14. 一种通信装置,其特征在于,包括:接收模块和发送模块;其中,
    所述发送模块,用于向第二网络设备发送第一请求消息,其中,所述第一请求消息用于请求终端设备的数据传输策略,所述终端设备处于非激活态,所述终端设备在第一网络设备驻留;
    所述接收模块,用于接收来自所述第二网络设备的第一响应消息,其中,所述第一响应消息包括所述数据传输策略。
  15. 根据权利要求14所述的通信装置,其特征在于,
    所述数据传输策略包括:所述终端设备的数据与所述终端设备的无线资源之间的对应关系。
  16. 根据权利要求15所述的通信装置,其特征在于,所述无线资源包括如下一种或多种:无线承载、无线链路控制RLC信道、或逻辑信道。
  17. 根据权利要求15所述的通信装置,其特征在于,所述装置还包括:处理模块,其中,
    所述接收模块,还用于接收来自所述终端设备的第一指示信息,其中,所述第一指示信息用于指示所述无线资源;
    所述处理模块,用于根据所述第一指示信息,控制所述发送模块向所述终端设备发送第一RRC恢复消息。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述发送模块,还用于在所述发送模块向所述终端设备发送第一RRC恢复消息之前,向所述第二网络设备发送第二请求消息,其中,所述第二请求消息用于请求所述终端设备恢复连接态;
    所述接收模块,还用于接收来自所述第二网络设备的第二响应消息,其中,所述第二响应消息用于指示所述终端设备恢复连接态。
  19. 根据权利要求18所述的通信装置,其特征在于,所述第二响应消息包括所述第一RRC恢复消息。
  20. 根据权利要求17所述的通信装置,其特征在于,所述第一响应消息包括所述第一RRC恢复消息。
  21. 一种通信装置,其特征在于,包括:发送模块和接收模块,其中,
    所述接收模块,用于接收来自第一网络设备的第一请求消息,其中,所述第一请求消息用于请求终端设备的数据传输策略,所述终端设备处于非激活态,所述终端设 备在所述第一网络设备驻留;
    所述发送模块,用于向所述第一网络设备发送第一响应消息,其中,所述第一响应消息包括所述数据传输策略。
  22. 根据权利要求21所述的通信装置,其特征在于,
    所述数据传输策略包括:所述终端设备的数据与所述终端设备的无线资源的对应关系。
  23. 根据权利要求22所述的通信装置,其特征在于,
    所述无线资源包括如下一种或多种:无线承载、无线链路控制RLC信道、或逻辑信道。
  24. 根据权利要求21-23中任一项所述的通信装置,其特征在于,
    所述接收模块,还用于接收来自所述第一网络设备的第二请求消息,其中,所述第二请求消息用于请求所述终端设备恢复连接态;
    所述发送模块,还用于向所述第一网络设备发送第二响应消息,其中,所述第二响应消息用于指示所述终端设备恢复连接态。
  25. 根据权利要求24所述的通信装置,其特征在于,
    所述第二响应消息包括第一RRC恢复消息。
  26. 根据权利要求21-23中任一项所述的通信装置,其特征在于,
    所述第一响应消息包括第一RRC恢复消息。
  27. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1-7中任一项所述的方法,或者执行如权利要求8-13中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器和接口电路;其中,
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1-7中任一项所述的方法,或者执行如权利要求8-13中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法。
PCT/CN2022/081255 2021-03-31 2022-03-16 通信方法及装置 WO2022206393A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110352279.XA CN115150894A (zh) 2021-03-31 2021-03-31 通信方法及装置
CN202110352279.X 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022206393A1 true WO2022206393A1 (zh) 2022-10-06

Family

ID=83404900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081255 WO2022206393A1 (zh) 2021-03-31 2022-03-16 通信方法及装置

Country Status (2)

Country Link
CN (1) CN115150894A (zh)
WO (1) WO2022206393A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117009108A (zh) * 2023-02-24 2023-11-07 荣耀终端有限公司 消息处理方法、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632810A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 控制终端设备状态的方法、终端设备和网络设备
CN111757556A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种数据传输方法及装置
WO2021000331A1 (zh) * 2019-07-04 2021-01-07 Oppo广东移动通信有限公司 一种数据传输方法及装置、通信设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632810A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 控制终端设备状态的方法、终端设备和网络设备
CN111757556A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种数据传输方法及装置
WO2021000331A1 (zh) * 2019-07-04 2021-01-07 Oppo广东移动通信有限公司 一种数据传输方法及装置、通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EMAIL DISCUSSION RAPPORTEUR (ZTE CORPORATION): "Offline 509 on SDT control plane and CBs", 3GPP DRAFT; R2-2102075, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. e-Meeting; 20210125 - 20210205, 10 February 2021 (2021-02-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051977905 *
RAPPORTEUR (ZTE): "Discussion on support of small data transmission in INACTIVE state", 3GPP DRAFT; R3-210192, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20210125 - 20210204, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974925 *

Also Published As

Publication number Publication date
CN115150894A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP6945659B2 (ja) 情報処理方法および関連装置
WO2018165996A1 (zh) 切换方法和装置
US10893574B2 (en) Packet data unit session release method and network entity performing the same
CN111385830B (zh) 通信方法和装置
US20240224133A1 (en) Method and device for connection reestablishment and context management in a wireless communication system
JP7413553B2 (ja) 再確立方法および通信機器
EP4033799B1 (en) Relay transmission method, relay terminal and remote terminal
KR20210113591A (ko) 데이터 흐름 처리 방법, 기기 및 저장 매체
KR20220044341A (ko) 보안 보호 모드 결정 방법 및 장치
US20220287137A1 (en) Ran node, radio terminal, and methods therefor
JP2019528588A (ja) オンデマンドシステム情報を送信するためのモバイル通信システム方法、ユーザ機器、および基地局
WO2022206393A1 (zh) 通信方法及装置
CN112368976B (zh) 用于执行组通信的终端和方法
WO2022206618A1 (zh) 一种通信方法及装置
CN113473553B (zh) 通信方法及通信装置
JP2020503739A (ja) データ処理方法及び装置
CN110830994B (zh) 会话迁移的方法、装置和存储介质
WO2018228545A1 (zh) 信息处理方法以及相关装置
WO2023134332A1 (zh) 一种通信方法及***
WO2023125375A1 (zh) 通信方法及装置
WO2023103958A1 (zh) 一种通信方法及装置
WO2023202206A1 (zh) 通信方法及装置
WO2024067139A1 (zh) 一种通信方法及装置
WO2023065109A1 (zh) 信息发送方法、信息接收方法、装置和***
JP2024505786A (ja) 構成リセット方法及びその装置、端末機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778576

Country of ref document: EP

Kind code of ref document: A1