WO2022206318A1 - 一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置及方法 - Google Patents

一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置及方法 Download PDF

Info

Publication number
WO2022206318A1
WO2022206318A1 PCT/CN2022/079870 CN2022079870W WO2022206318A1 WO 2022206318 A1 WO2022206318 A1 WO 2022206318A1 CN 2022079870 W CN2022079870 W CN 2022079870W WO 2022206318 A1 WO2022206318 A1 WO 2022206318A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
liquid storage
steel plate
storage tank
pressure
Prior art date
Application number
PCT/CN2022/079870
Other languages
English (en)
French (fr)
Inventor
刘志勇
夏溪芝
蒋金洋
张云升
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/907,888 priority Critical patent/US11821876B2/en
Publication of WO2022206318A1 publication Critical patent/WO2022206318A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means

Definitions

  • the invention relates to a concrete performance test device, in particular to a concrete medium transmission performance test device.
  • Cement concrete is currently the most widely used and used building material in the field of civil engineering. Concrete is considered to be a building material with strong durability, but with its application in complex engineering environments, the premature failure of concrete structures due to durability problems has attracted the attention of scholars in civil engineering.
  • Concrete is often subjected to the coupling effect of mechanical factors (static load, dynamic load) and environmental factors (chloride ion erosion, carbonization, freeze-thaw cycles, sulfate erosion, temperature, etc.) during service, resulting in premature deterioration of structural concrete. and early withdrawal from service.
  • mechanical factors static load, dynamic load
  • environmental factors chloride ion erosion, carbonization, freeze-thaw cycles, sulfate erosion, temperature, etc.
  • cement will be affected by osmotic pressure, load, and temperature alone or together, which will affect the transmission behavior of erosive media in concrete, and then affect the durability of concrete.
  • one of the purposes of the present invention is to provide a medium transmission test device for concrete under the coupling action of temperature-osmotic pressure-load, which can realize temperature-osmotic pressure.
  • - Medium transmission test under load coupling action the second purpose of the present invention is to provide a test method for a medium transmission test device for concrete under temperature-osmotic pressure-load coupling action.
  • the present invention provides a medium transmission test device for concrete under the coupling action of temperature-osmotic pressure-load, which includes a loading device and a water pressure device.
  • the water pressure device includes a liquid storage device tank, pressing pump, liquid storage tank, connecting pipe connecting the pressing pump and liquid storage tank, connecting pipe connecting the pressing pump and liquid storage tank;
  • the liquid storage tank is provided with an open end, and the box mouth of the open end is fixedly connected to the side of the test block, In order to realize the sealing connection between the opening of the liquid storage tank and the side of the test block.
  • test device also includes a high and low temperature test box, the test box is provided with a space for placing the loading device and the liquid storage tank, and the test box is provided with a through hole for the connecting pipe to pass through.
  • the loading device is used to apply the required load to the test block, the press applies the load to the steel plate, and transmits the force to the test block through the steel plate and the spring/disc spring; the side of the test block is sealed with the box mouth of the open end, The test solution is poured into the liquid storage tank, and the water pressure is applied to the test block through the pressing pump; the loading device and the water pressure device are placed in the high and low temperature alternating humidity and heat test chamber, and the temperature is controlled by the test chamber, and finally the osmotic pressure is realized on the test block. - Load-temperature coupling effect.
  • the water pressure device also includes a groove-shaped connecting plate for fixing the test block, the groove-shaped connecting plate is fixedly connected with the open end, and a sealing gasket is provided at the connection between the test block and the box mouth.
  • the tank opening of the liquid storage tank can be set by itself according to the actual test requirements; optionally, there are one or more tank openings.
  • the liquid storage tank has two open ends, and the open ends are located at the left and right ends of the liquid storage tank.
  • the type of the spring/disc spring is selected according to the actual situation; the nut and the screw rod are made of high-strength screw rod and nut.
  • the test method of the above-mentioned concrete medium transmission test device of the present invention comprises the following steps:
  • test solution is pressurized by a pressurizing pump to apply osmotic pressure to the test block.
  • the test block is placed at the center of the upper and lower steel plates, so that the loading load is uniform.
  • step (2) the loading assembly and the liquid storage tank are placed in the high and low temperature test chamber, and the connecting pipe passes through the test chamber and communicates with the pressing pump.
  • the pressure range of the pressing pump is 0 to 10 MPa.
  • the temperature range of the high and low temperature test chamber is -15 ⁇ 200 °C.
  • the test solution can be water, NaCl, NaSO 4 and other solutions.
  • test process is as follows:
  • test block placed in the U-shaped groove of the grooved connecting plate, surround the test block with the grooved connecting plate, and use a silicone pad to fill between the test block and the connecting plate; use a ring on the contact surface of the test block Oxygen resin glues a circle of silicone rings, and the other side of the silicone ring is bonded to the liquid storage tank; use bolts to connect the liquid storage tank and the grooved connecting plate together, and tighten the bolts.
  • One end of the connecting pipe is connected to the electric pressure pump, the other end is put into the liquid storage tank, and an appropriate amount of test solution is injected into the liquid storage tank.
  • the design of this device needs to overcome many technical obstacles: 1.
  • the size of the device is strictly required. First of all, the device needs to adapt to the space of the high and low alternating humid heat box and the electro-hydraulic servo press. Secondly, the device must meet the test requirements of high water pressure, and the space of the liquid storage container should not be too large, otherwise it will be difficult to pressurize. Finally, the permeation unit and loading unit can be efficiently combined and easily disassembled. Therefore, according to the above requirements, a reasonable size infiltration device and loading device are designed. 2. High sealing requirements. The device needs to be used for transmission test research, the research period is long, and the device is required to have good airtightness.
  • the device adopts sealing tape and sealing ring to seal the connection between the pipeline and the pipeline and the pipeline and the liquid storage container. Bonded with epoxy resin, the reservoir and the slotted connection plate are connected with four bolts. Therefore, the present invention breakthroughly realizes the load-temperature-osmotic pressure coupling effect of concrete, can better simulate the complex and harsh environment in which the underground concrete is located, and provides a new method for studying the durability of concrete under complex and harsh conditions. Active device support.
  • the present invention provides a device for coupling osmotic pressure and pressure load, and combining the osmotic device and the loading device can realize the independent or coupled action of load and osmotic pressure. Due to the small size of the device, simple structure and convenient movement, it can be placed in the high and low temperature alternating humidity and heat test chamber to realize the independent, two-two or even three-coupling effects of load, temperature and osmotic pressure, not only multi-factor coupling effect It can also carry out research on the transmission of erosive media, such as chloride salt, sulfate corrosion, etc. In addition, the device can also be placed in instruments such as carbonization boxes to study the interaction of carbonization, loading, osmotic pressure, and salt erosion. Therefore, the device provides an effective device support for the research on the durability of concrete under complex and harsh conditions.
  • Fig. 1 is the structural representation of the inventive test device
  • Fig. 2 is a schematic diagram of a loading module structure
  • Figure 3 is a schematic structural diagram of a water pressure module
  • Fig. 4 is the detailed schematic diagram of the water pressure module
  • Figure 5 is a curve of water pressure changing with time
  • Figure 6 shows the chloride ion concentration distribution curve of concrete under the coupling action of 0.3 stress ratio, 30 °C and 4 MPa osmotic pressure for 3 days;
  • Figure 7 shows the chloride ion concentration distribution curve of concrete under the coupling action of 0.3 stress ratio, 70 °C and 4 MPa osmotic pressure for 3 days;
  • Figure 8 shows the chloride ion concentration distribution curve of concrete under the coupling action of 0.3 stress ratio, 30 °C and 2 MPa osmotic pressure for 3 days.
  • FIG. 1 is a schematic diagram of the structure of the concrete medium transmission test device of the present invention.
  • the test device is a water/ion transmission test device under the coupling action of load-temperature-osmotic pressure, which includes a loading device 1 and a water pressure device 2. and temperature test chamber 3.
  • the temperature test box 3 in this embodiment is a high and low temperature alternating humidity and heat box 31, and there is a large enough space inside the high and low temperature alternating humidity and heat box 31, so that the loading device 1 and the water pressure device 2 can be placed in the high and low temperature alternating humidity and heat box 31. become humid in the hot box.
  • the loading device 1 includes an electro-hydraulic servo press (not shown in the figure), a steel plate 11 for clamping the test block, and several fasteners for connecting the steel plates.
  • the steel plate 11 includes an upper steel plate and a lower steel plate,
  • the upper steel plate includes a first steel plate and a second steel plate located above the first steel plate, and a spring/disc spring 13 is sleeved on the screw rod between the first steel plate and the second steel plate; the fastener in this embodiment adopts a screw nut Fits for tightness. That is, three steel plates with connecting holes, six screws, six nuts and an appropriate amount of spring/disc spring are used.
  • the spring/disc spring can be selected according to your needs, the bolts are high-strength bolts, and the steel plate is made of stainless steel.
  • Six connecting holes are evenly distributed on the left and right sides of the steel plate, and the connecting holes are used for six screws to pass through to meet the requirements of higher loads. need.
  • the test block 14 is placed in the center of the lower steel plate, the three steel plates 11 are placed in parallel along the horizontal direction, and are connected in series by the six vertically arranged screws 12, and the spring/disc spring 13 is sleeved on the upper two steel plates 11 (that is, the first two steel plates 11).
  • the nut 15 is screwed on the top end of the screw 12.
  • the test block can be fixed and pressure maintained by rotating the nut on the top.
  • the water press device 2 includes a liquid storage tank 23 , an electric pressure pump 21 , a high-pressure connecting pipe 22 , a liquid storage tank 27 , a water inlet pipe 28 , a groove-shaped connecting plate 24 for fixing the test block, and bolts 25
  • the high-pressure connecting pipe 22 is used to communicate the pressing pump 21 and the liquid storage tank 23, one end of the connecting pipe 22 is communicated with the liquid storage tank 23, and the other end is communicated with the pressing pump 21, and the high and low temperature are alternated.
  • the side wall of the humid heat box 31 is provided with a through hole for the connection pipe to pass through, and the high pressure connection pipe 22 connects the electric pressure pump 21 with the liquid storage container 23 through the through hole on the high and low temperature alternating humid heat box 31;
  • the box body is in the shape of a hollow cuboid, and the top of the box body is provided with a through hole that communicates with the high-pressure connecting pipe 22.
  • the left and right ends of the box body are open to form a left box mouth and a right box mouth respectively. There is a loading component.
  • the invention provides a device for studying the transmission test of concrete such as moisture/ion under the coupling action of temperature, osmotic pressure and load.
  • place the test block 14 on the loading device apply the required load through the electro-hydraulic servo press, and use a wrench to tighten the nut to achieve pressure retention; connect the liquid storage tank to the loading device and place it in a high
  • the temperature is controlled by the test box; the liquid storage container is filled with solution, the high pressure water inlet pipe is connected to the electric pressure pump through the hole of the test box, and the water pressure is applied through the pressure pump.
  • the specific test process can be carried out according to the following steps:
  • an ultra-high performance concrete sample with a water-to-binder ratio of 0.16 is used, the size is 100mm ⁇ 100mm ⁇ 100mm, the shape of the test block is a cube, and it is taken out after steam curing for 3 days.
  • the experimental solution is NaCl with a concentration of 10%. Solution, the temperature of the experiment is 30 ° C, the osmotic pressure is 4 MPa, and the stress ratio is 0.3 (the ratio of the required stress and the concrete strength).
  • an ultra-high performance concrete sample with a water-to-binder ratio of 0.16 is used, the size is 100mm ⁇ 100mm ⁇ 100mm, the shape of the test block is a cube, and it is taken out after steam curing for 3 days.
  • the experimental solution is NaCl with a concentration of 10%. Solution, the temperature of the experiment is 70°C, the osmotic pressure is 4MPa, and the stress ratio is 0.3.
  • an ultra-high performance concrete sample with a water-to-binder ratio of 0.16 is used, the size is 100mm ⁇ 100mm ⁇ 100mm, the shape of the test block is a cube, and it is taken out after steam curing for 3 days.
  • the experimental solution is NaCl with a concentration of 10%. Solution, the temperature of the experiment is 30°C, the osmotic pressure is 2MPa, and the stress ratio is 0.3.
  • Figure 5 shows the curve of water pressure with time. It can be seen that after 7 days of continuous action, the water pressure remains basically unchanged, indicating that the device has excellent airtightness.
  • Figures 6 to 8 are respectively the chloride ion concentration distribution curves inside the concrete obtained in the above-mentioned examples 1 to 3. It can be seen that the change trend of the chloride ion concentration is basically consistent with the results obtained by similar studies, and changes in temperature, osmotic pressure, etc. After the parameters show a good regularity. Therefore, it is feasible to use this device to conduct experimental research on concrete medium transmission.
  • the invention breakthroughly realizes the load-temperature-osmotic pressure coupling effect of concrete, can better simulate the complex and harsh environment in which the underground concrete is located, and provides an effective method for studying the durability of concrete under complex and harsh conditions. Device support.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置及方法,包括加载装置(1)和加水压装置(2),加载装置(1)包括压力机、用于夹紧试块的上钢板和下钢板、连接上、下钢板的紧固件,上钢板包括第一钢板和第二钢板,第一钢板和第二钢板之间的螺杆上套设有弹簧(13);加水压装置(2)包括储液箱(23)、打压泵(21)、储液池(27)、连通打压泵(21)和储液箱(23)的连接管(22)、连接打压泵(21)和储液池(27)的进水管(28);储液箱(23)设有开口端,开口端的箱口与试块(14)侧面固定连接。该试验装置及方法实现了混凝土的荷载-温度-渗透压耦合作用,能较好地模拟出地下混凝土所处的复杂恶劣环境,为进行复杂恶劣条件下混凝土的耐久性能研究提供了一种有效的装置支持。

Description

一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置及方法 技术领域
本发明涉及混凝土性能试验装置,特别是涉及一种混凝土介质传输性能的试验装置。
背景技术
水泥混凝土是目前土木工程领域应用最广泛、用量最大的建筑材料。混凝土被认为是一种耐久性很强的建筑材料,但随着在工程复杂环境中的应用,混凝土结构由于耐久性问题造成的过早失效引起了土木工程界学者的密切关注。
混凝土在服役过程中往往受到力学因素(静载、动载)和环境因素(氯离子侵蚀、碳化、冻融循环、硫酸盐侵蚀、温度等)的耦合作用,从而导致结构混凝土过早地出现劣化和提前退出服役。在一些特殊环境,如地下空间结构、水下结构中,混凝土会受到渗透压、荷载、温度的单独或共同作用,从而影响侵蚀介质在混凝土内部的传输行为,继而影响混凝土耐久性能。
目前,用于研究渗透压、荷载单独作用下混凝土传输性能的装置较多,而能够实现渗透压及荷载耦合作用的装置却很少,因此,设计出一种可实现两者耦合作用的装置是很有必要的。
发明内容
发明目的:针对目前渗透压、荷载作用下混凝土传输性能装置的不足,本发明的目的之一是提供一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置,可以实现温度-渗透压-荷载耦合作用下的介质传输试验;本发明的目的之二是提供一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置的试验方法。
技术方案:本发明提供一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置,其包括加载装置和加水压装置,所述加载装置包括压力机、用于夹紧试块的上钢板和下钢板、连接上下钢板的紧固件,上钢板包括第一钢板和第二钢板,第一钢板和第二钢板之间的螺杆上套设有弹簧;所述加水压装置包括储液箱、打压泵、储液池、连通打压泵和储液箱的连接管、连接打压泵和储液池的连接管;储液箱设有开口端,开口端的箱口与试块侧面固定连接,以实现储液箱的箱口与试块侧面密封连接。
进一步地,试验装置还包括高低温试验箱,试验箱内设有供加载装置和储液箱放置的空间,试验箱上设有供连接管通过的通孔。
即:加载装置用于对试块进行施加所需的荷载,压力机经过对钢板施加载荷,经过钢板及弹簧/碟簧将力传递至试块上;试块侧面与开口端的箱口密封连接,储液箱内灌注试验溶液,通过打压泵对试块施加水压;并将加载装置和水压装置放置于高低温交变湿热试验箱中,通过试验箱控制温度,最终对试块实现渗透压-荷载-温度耦合作用。
其中,加水压装置还包括用于固定试块的槽型连接板,槽型连接板与开口端固定连接,试块与箱口连接处设有密封垫。
其中,储液箱的箱口可根据实际试验需求进行自行设定;可选的,箱口为一个或多个。优选地,所述储液箱两个开口端,开口端位于储液箱的左右两端。
其中,所述的弹簧/碟簧型号根据实际情况选择;螺母、螺杆采用高强螺杆、螺母。
本发明的上述混凝土介质传输试验装置的试验方法,包括以下步骤:
(1)将试块置于上下钢板之间,压力机对钢板施加至所需载荷值,用紧固件连接钢板,旋紧紧固件以保压,形成加载组件;
(2)将加载组件置于储液箱开口端的箱口处,试块侧面与箱口固定连接,使试块堵住箱口;向储液箱中注满试验溶液,连接管的一端与储液箱连通,另一端与打压泵相连通,使加载组件与加水压装置相连;
(3)通过打压泵向试验溶液加压,以向试块施加渗透压。
上述步骤(1)中,试块置于上下钢板的中心位置,使得加载载荷均匀。
上述步骤(2)中,将加载组件和储液箱置于高低温试验箱内,连接管穿过试验箱与打压泵相连通。
其中,打压泵的加压范围为0~10MPa。高低温试验箱的温度范围为-15~200℃。
试验溶液可以是水、NaCl、NaSO 4等溶液。
具体地,试验过程如下:
(1)为防止加载过程中试块的环氧树脂密封层开裂,影响密封效果,故采用先加载后密封的步骤。
将加载装置组装好,试块放于底板中心;将加载装置放于电液伺服压力机下承压板上,根据所需的荷载,设置好荷载参数以及足够长的持压时间,当压力机达到设定荷载后,在持压时间段内,使用扳手拧紧螺母,实现保压。
(2)将加载组件取下来,除了与溶液接触的一面外,其余面使用环氧树脂进行密封。
(3)将试块置于槽型连接板的U形槽内,用槽型连接板围住试块,并使用硅胶垫填充在试块与连接板之间;在试块接触面上使用环氧树脂粘一圈硅胶圈,并且硅胶圈的另一面与储液箱相粘结;使用螺栓将储液箱与槽型连接板连接在一起,并拧紧螺栓。
(4)待环氧树脂凝结后,将加载组件与储液箱组成的整体放入高低温交变湿热试验箱中。
(5)将储液箱中注满试验溶液,高压连接管的一端连接在储液箱的接头上,另一端穿过高低温交变湿热试验箱上的通孔与箱外的电动打压泵相连,两个连接处都采用密封圈或密封带进行密封处理。
(6)连接管一端与电动打压泵连接,另一端放入储液池中,储液池中注入适量的试 验溶液。
(7)开启高低温交变湿热试验箱,通过控制面板,设置试验温度。
(8)开启电动打压泵,旋转调压旋钮,当压力表的读数达到试验所需压力后,锁死旋钮,关闭开关,进行保压,开始传输试验。
本装置的设计需克服诸多技术障碍:1.装置尺寸要求严格。首先,装置需适应高低交变湿热箱以及电液伺服压力机的空间。其次,装置要满足高水压的试验需求,储液容器的空间不宜过大,否则加压困难。最后,渗透装置和加载装置能进行有效的组合,且易于拆卸。因此根据上述要求,设计出了合理尺寸的渗透装置和加载装置。2.密封性要求高。该装置需用于传输试验研究,该研究周期较长,要求装置具有很好的密闭性。此外,当施加高水压时,对装置的密封性要求也更高。因此,本装置在管道与管道以及管道与储液容器的连接处采用密封带和密封圈进行密封处理,储液容器和试件之间设置硅胶垫,硅胶垫、储液容器以及试件之间采用环氧树脂粘结,储液容器和槽型连接板采用四个螺栓进行连接。因此,本发明突破性地实现了混凝土的荷载-温度-渗透压耦合作用,能较好地模拟出地下混凝土所处的复杂恶劣环境,为进行复杂恶劣条件下混凝土的耐久性能研究提供了一种有效的装置支持。
有益效果:本发明提供一种渗透压和压荷载耦合作用装置,将渗透装置与加载装置相结合,可以实现荷载、渗透压的单独或耦合作用。由于装置尺寸小,结构简单,移动方便,可放入高低温交变湿热试验箱中,实现荷载、温度、渗透压的单独、两两耦合甚至是三者耦合作用,不仅可以进行多因素耦合作用下混凝土水分传输的研究,也可以开展侵蚀介质的传输研究,如氯盐、硫酸盐侵蚀等。此外,该装置还可以放入碳化箱等仪器中,用于研究碳化、荷载、渗透压以及盐侵蚀等的相互耦合作用。因此,本装置为进行复杂恶劣条件下混凝土耐久性能的研究提供了一种有效的装置支持。
附图说明
图1为发明试验装置的结构示意图;
图2为加载模块结构示意图;
图3为加水压模块结构示意图;
图4为加水压模块细节示意图;
图5为水压随时间变化曲线;
图6为混凝土在0.3应力比、30℃以及4MPa渗透压耦合作用3天的氯离子浓度分布曲线;
图7为混凝土在0.3应力比、70℃以及4MPa渗透压耦合作用3天的氯离子浓度分布曲线;
图8为混凝土在0.3应力比、30℃以及2MPa渗透压耦合作用3天的氯离子浓度分布 曲线。
具体实施方式
下面结合实施例对本发明进一步地详细描述。
如图1所示为本发明混凝土介质传输试验装置的结构示意图,该试验装置是一种荷载-温度-渗透压耦合作用下水分/离子传输试验装置,其包括加载装置1和加水压装置2以及温度试验箱3。
本实施例中的温度试验箱3为高低温交变湿热箱31,高低温交变湿热箱31内部设有足够大的空间,以使加载装置1和加水压装置2可以放入高低温交变湿热箱中。
如图2所示,加载装置1包括电液伺服压力机(图中未示出)、用于夹紧试块的钢板11、连接钢板的若干紧固件,钢板11包括上钢板和下钢板,上钢板包括第一钢板、以及位于第一钢板上方的第二钢板,第一钢板和第二钢板之间的螺杆上套设有弹簧/碟簧13;本实施例中的紧固件采用螺杆螺母配合实现紧固。即采用三块带连接孔的钢板、六根螺杆、六个螺母以及适量弹簧/碟簧。其中,弹簧/碟簧根据需要可自行选择型号,螺栓采用高强螺栓,钢板为不锈钢材质,在钢板的左右两侧均匀分布六个连接孔,连接孔供六根螺杆穿过,以满足更高荷载的需求。试块14放置于下钢板的中心位置,三块钢板11沿水平方向平行放置,并通过竖向设置的六根螺杆12串联在一起,弹簧/碟簧13套设于上部两块钢板11(即第一钢板和第二钢板)之间的螺杆12上,螺母15旋于螺杆12的顶端。使用时,可通过旋动顶部的螺母实现试块的固定和保压。
如图3所示,加水压装置2包括储液箱23、电动打压泵21、高压连接管22、储液池27、进水管28、用于固定试块的槽型连接板24、螺栓25以及硅胶垫(圈)26,高压连接管22用于连通打压泵21和储液箱23,连接管22的一端与储液箱23连通,另一端与打压泵21相连通,且高低温交变湿热箱31的侧壁设有供连接管通过的通孔,高压连接管22通过高低温交变湿热箱31上的通孔将电动打压泵21与储液容器23相连接;储液箱23的箱体呈空心长方体状,箱体顶部设有连通高压连接管22的通孔,箱体左右两端均开口,分别形成左箱口和右箱口,左箱口和右箱口的两侧均设有加载组件。
如图4所示,以储液箱23的右箱口连接为例,右箱口向外侧延伸有两块连接板,试块14放于槽型连接板24中的凹槽中,两者之间填充硅胶垫26,储液箱23的右箱口向外延伸的连接板通过螺栓25与槽型连接板24固定连接,储液箱的右箱口和试块14左侧面通过硅胶圈26密封连接。上述钢板、储液箱以及连接板均为不锈钢材质。
本发明提供了一种研究混凝土在温度-渗透压-荷载耦合作用下水分/离子等介质传输试验的装置。该试验装置时,将试块14放置于加载装置上,通过电液伺服压力机施加所需的荷载,并使用扳手旋紧螺母实现保压;将储液箱与加载装置相连,并放置于高低温交变湿热试验箱中,通过试验箱控制温度;将储液容器注满溶液,高压进水管通过 试验箱的孔洞将其与电动打压泵相连,通过打压泵施加水压。
具体地试验过程可按照如下步骤进行:
(1)为防止加载过程中试块环氧树脂密封层开裂,影响密封效果,故采用先加载后密封的步骤。
组装加载装置,试块放于下钢板的中心位置,试块上方设置上钢板,并用螺杆依次连接钢板,螺杆顶部旋入高强螺栓;
将加载装置放于电液伺服压力机下承压板上,根据设定的应力比,设置好加载荷载值以及足够长的持压时间,当压力机达到设定荷载后,在持压时间段内,使用扳手拧紧螺母,实现保压,形成加载组件。
(2)将加载组件从压力机上取下来,此时试块的上下表面均与钢板紧密接触,试块的侧面除了与溶液接触的一面外,使用环氧树脂将其余三面密封。
(3)将槽型连接板围住试块,使试块位于槽型连接板的凹槽中,并使用硅胶垫填充试块与槽型连接板之间的空隙;硅胶垫的厚度为10mm。
在箱口与试块接触面上用环氧树脂粘一圈宽度为10mm的硅胶圈,且硅胶圈的另一面与储液箱的箱口相粘结;使用螺栓将箱口向外延伸的连接板与槽型连接板连接在一起,并拧紧螺栓。
(4)待环氧树脂凝结后,将加载组件与储液容器组成的整体放入高低温交变湿热试验箱中。
(5)向储液箱中注满浓度为10%的NaCl溶液,将高压连接管的一端连接在储液箱顶部的接头上,另一端穿过高低温交变湿热试验箱上的通孔与电动打压泵相连,两个连接处都采用密封圈和密封带进行密封处理。
(6)将进水管一端放入储液池中,另一端与打压泵相连,储液池中注入适量的浓度为10%的NaCl溶液。
(7)开启高低温交变湿热试验箱,通过控制面板设置所需温度。
(8)开启电动打压泵,旋转调压旋钮,当压力表的读数达到所需水压后,锁死旋钮,关闭开关,进行保压,开始传输试验。
实施例1:
本实施例采用水胶比为0.16的超高性能混凝土样品,尺寸为100mm×100mm×100mm,试块的形状为正方体,在蒸汽养护3d后取出,应用例中实验用溶液为浓度10%的NaCl溶液,实验的温度采用30℃,渗透压为4MPa,应力比采用0.3(所需应力和混凝土强度比值)。
实施例2:
本实施例采用水胶比为0.16的超高性能混凝土样品,尺寸为 100mm×100mm×100mm,试块的形状为正方体,在蒸汽养护3d后取出,应用例中实验用溶液为浓度10%的NaCl溶液,实验的温度采用70℃,渗透压为4MPa,应力比采用0.3。
实施例3:
本实施例采用水胶比为0.16的超高性能混凝土样品,尺寸为100mm×100mm×100mm,试块的形状为正方体,在蒸汽养护3d后取出,应用例中实验用溶液为浓度10%的NaCl溶液,实验的温度采用30℃,渗透压为2MPa,应力比采用0.3。
图5为水压随时间变化曲线,可以看出持续作用7天后,水压基本保持不变,说明装置具有极佳的密闭性。图6-图8分别为上述实施例例1~3得到的混凝土内部的氯离子浓度分布曲线,可以看出氯离子浓度的变化趋势与类似研究得到的结果基本一致,且改变温度、渗透压等参数后呈现出较好的规律性。因此,应用该装置进行混凝土介质传输试验研究是可行的。本发明突破性地实现了混凝土的荷载-温度-渗透压耦合作用,能较好地模拟出地下混凝土所处的复杂恶劣环境,为进行复杂恶劣条件下混凝土的耐久性能研究提供了一种有效的装置支持。

Claims (9)

  1. 一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置,其特征在于:包括加载装置和加水压装置,所述加载装置包括压力机、用于夹紧试块的上钢板和下钢板、连接上下钢板的紧固件,上钢板包括第一钢板和第二钢板,第一钢板和第二钢板之间的螺杆上套设有弹簧;所述加水压装置包括储液箱(23)、打压泵(21)、储液池(27)、连通打压泵(21)和储液箱(23)的连接管、连接打压泵(21)和储液池(27)的连接管;储液箱(23)设有开口端,开口端的箱口与试块(14)侧面固定连接。
  2. 根据权利要求1所述的混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置,其特征在于:试验装置还包括高低温试验箱(31),试验箱内设有供加载装置和储液箱放置的空间,试验箱上设有供连接管通过的通孔。
  3. 根据权利要求1所述的混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置,其特征在于:加水压装置还包括用于固定试块的槽型连接板(24),槽型连接板与开口端固定连接,试块与箱口连接处设有密封垫。
  4. 根据权利要求1所述的混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置,其特征在于:所述储液箱(23)两个开口端,开口端分别位于储液箱的左右两端。
  5. 根据权利要求1~4中任一项所述的混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置的试验方法,其特征在于包括以下步骤:
    (1)将试块置于上下钢板之间,压力机对钢板施加至所需载荷值,用紧固件连接钢板,旋紧紧固件以保压,形成加载组件;
    (2)将加载组件置于储液箱开口端的箱口处,试块侧面与箱口固定连接,使试块堵住箱口;向储液箱中注满试验溶液,连接管的一端与储液箱连通,另一端与打压泵相连通,使加载组件与加水压装置相连;
    (3)通过打压泵向试验溶液加压,以向试块施加渗透压。
  6. 根据权利要求5所述的试验方法,其特征在于:步骤(1)中,试块置于上下钢板的中心位置。
  7. 根据权利要求5所述的试验方法,其特征在于:步骤(2)中,将加载组件和储液箱置于高低温试验箱内,连接管穿过试验箱与打压泵相连通。
  8. 根据权利要求5所述的试验方法,其特征在于:打压泵的加压范围为0~10MPa。
  9. 根据权利要求5所述的试验方法,其特征在于:高低温试验箱的温度范围为-15~200℃。
PCT/CN2022/079870 2021-04-02 2022-03-09 一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置及方法 WO2022206318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/907,888 US11821876B2 (en) 2021-04-02 2022-03-09 Test method of medium transmission test device for concrete under temperature-osmotic pressure-load coupling effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110365426.7 2021-04-02
CN202110365426.7A CN113109159B (zh) 2021-04-02 2021-04-02 一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置的试验方法

Publications (1)

Publication Number Publication Date
WO2022206318A1 true WO2022206318A1 (zh) 2022-10-06

Family

ID=76713948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079870 WO2022206318A1 (zh) 2021-04-02 2022-03-09 一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置及方法

Country Status (3)

Country Link
US (1) US11821876B2 (zh)
CN (1) CN113109159B (zh)
WO (1) WO2022206318A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109159B (zh) 2021-04-02 2022-03-08 东南大学 一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置的试验方法
CN115372234A (zh) * 2022-07-20 2022-11-22 山东大学 一种衬砌材料劣化试验装置及方法
US11828744B1 (en) * 2023-04-26 2023-11-28 The Florida International University Board Of Trustees In situ rapid testing for assessing quality of concrete
CN116754459B (zh) * 2023-08-22 2023-11-07 武汉理工大学 一种既有混凝土抗渗等级的检测方法
CN117871248A (zh) * 2023-12-27 2024-04-12 中国矿业大学 一种多工况耦合作用下再生混凝土力学性能测试***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564916A (zh) * 2012-01-16 2012-07-11 河海大学 混凝土快速氯离子迁移系数加载测试装置及其方法
CN103364313A (zh) * 2013-07-08 2013-10-23 长沙理工大学 一种确定多因素作用下预应力混凝土氯离子扩散机理的试验装置及方法
KR101966694B1 (ko) * 2017-11-07 2019-04-08 주식회사 삼일피엔유 콘크리트 구조물 염소이온 침투저항성과 확산계수 시험방법 및 그 시험장치
CN109655380A (zh) * 2018-12-20 2019-04-19 石家庄铁道大学 在弯曲载荷作用下测试氯离子在混凝土中扩散系数的方法
CN110455699A (zh) * 2019-08-16 2019-11-15 交通运输部公路科学研究所 一种混凝土腐蚀实验装置及使用方法
CN110595975A (zh) * 2019-04-19 2019-12-20 华北水利水电大学 混凝土氯离子扩散模拟试验装置及检测方法
CN113109159A (zh) * 2021-04-02 2021-07-13 东南大学 一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107543755B (zh) * 2017-08-03 2020-08-21 中南大学 荷载与冻融循环耦合下混凝土耐久性试验装置及评价方法
CN108918250B (zh) * 2018-06-11 2020-07-24 安徽理工大学 围岩或土作用下的真三轴渗流试验装置和试验方法
CN109507097B (zh) * 2018-11-26 2022-08-19 建湖联众智慧科技有限公司 一种混凝土偏压柱持荷浸蚀试验装置
CN110132741A (zh) * 2019-06-14 2019-08-16 青岛理工大学 一种模拟海洋环境动静联合加载混凝土的试验装置
CN210665327U (zh) * 2019-08-28 2020-06-02 吉林大学 一种混凝土试件试验设备
CN111896446A (zh) * 2020-07-09 2020-11-06 河海大学 一种考虑温度作用的接触面剪切渗流试验装置及试验方法
CN111896454A (zh) * 2020-08-10 2020-11-06 中铁第四勘察设计院集团有限公司 混凝土抗水渗透性试验装置及试验方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564916A (zh) * 2012-01-16 2012-07-11 河海大学 混凝土快速氯离子迁移系数加载测试装置及其方法
CN103364313A (zh) * 2013-07-08 2013-10-23 长沙理工大学 一种确定多因素作用下预应力混凝土氯离子扩散机理的试验装置及方法
KR101966694B1 (ko) * 2017-11-07 2019-04-08 주식회사 삼일피엔유 콘크리트 구조물 염소이온 침투저항성과 확산계수 시험방법 및 그 시험장치
CN109655380A (zh) * 2018-12-20 2019-04-19 石家庄铁道大学 在弯曲载荷作用下测试氯离子在混凝土中扩散系数的方法
CN110595975A (zh) * 2019-04-19 2019-12-20 华北水利水电大学 混凝土氯离子扩散模拟试验装置及检测方法
CN110455699A (zh) * 2019-08-16 2019-11-15 交通运输部公路科学研究所 一种混凝土腐蚀实验装置及使用方法
CN113109159A (zh) * 2021-04-02 2021-07-13 东南大学 一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置及方法

Also Published As

Publication number Publication date
CN113109159A (zh) 2021-07-13
CN113109159B (zh) 2022-03-08
US20230123095A1 (en) 2023-04-20
US11821876B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2022206318A1 (zh) 一种混凝土在温度-渗透压-荷载耦合作用下介质传输试验装置及方法
CN106404549B (zh) 一种超临界二氧化碳压裂模拟实验装置
CN107101876B (zh) 复杂作用下混凝土面板溶蚀劣化试验装置及其方法
CN106483022B (zh) 一种混凝土试件预制裂缝内的水压密封加载装置及试验方法
CN108693043B (zh) 一种水工混凝土水力劈裂试验装置、混凝土制作模具及试验方法
CN104020065B (zh) 一种机械式应力‑腐蚀耦合疲劳试验装置
CN110132820A (zh) 利用岩石真三轴加载测试***开展裂隙岩体各向异性渗流测试的装置设计及方法
CN102980839B (zh) 一种氯离子在混凝土中渗透系数测定装置及方法
CN107228805B (zh) 三向拉压力-高水力梯度作用混凝土溶蚀试验装置及方法
WO2019153501A1 (zh) 微裂隙三轴应力渗流注浆试验***及其使用方法
CN112305172A (zh) 一种多场耦合作用下注浆材料特性演化模拟试验装置及方法
CN110715848A (zh) 一种应力冲刷腐蚀实验装置
CN113156079B (zh) 一种液氮浸没煤样裂纹时空演化及力学参数测试实验装置
CN214334823U (zh) 一种多场耦合作用下注浆材料特性演化模拟试验装置
US2927877A (en) Heat exchanger
CN117169096B (zh) 模拟干湿交替-交变水压耦合的试验***及方法
CN111535610B (zh) 一种负压注胶施工方法
CN217006896U (zh) 盐溶液冻融循环及荷载耦合作用下混凝土腐蚀实验装置
CN108169455B (zh) 一种充填介质真三轴渗透失稳试验室及试验方法
CN108362594B (zh) 模拟双向拉压力作用电加速混凝土溶蚀试验装置及方法
CN206945241U (zh) 双向密封蝶阀密封性检测装置
CN215726654U (zh) 一种消防管道气密性检测设备
CN215218624U (zh) 一种含瓦斯煤冻胀效应的测试装置
CN110514697B (zh) 一种黑棉土电渗试验装置及试验方法
JPH03287046A (ja) 応力腐食割れ試験装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778502

Country of ref document: EP

Kind code of ref document: A1