WO2022205854A1 - 显示模组、显示装置、模具和灌胶机 - Google Patents

显示模组、显示装置、模具和灌胶机 Download PDF

Info

Publication number
WO2022205854A1
WO2022205854A1 PCT/CN2021/125661 CN2021125661W WO2022205854A1 WO 2022205854 A1 WO2022205854 A1 WO 2022205854A1 CN 2021125661 W CN2021125661 W CN 2021125661W WO 2022205854 A1 WO2022205854 A1 WO 2022205854A1
Authority
WO
WIPO (PCT)
Prior art keywords
encapsulation layer
display module
display
light
glue filling
Prior art date
Application number
PCT/CN2021/125661
Other languages
English (en)
French (fr)
Inventor
王子锋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022205854A1 publication Critical patent/WO2022205854A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3026Video wall, i.e. stackable semiconductor matrix display modules

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display module, a display device, a mold and a glue filling machine.
  • LED Light Emitting Diode
  • the LED splicing display technology has uneven brightness at at least some splices, which affects the display effect.
  • embodiments of the present disclosure provide a display module, a display device, a mold, and a glue filling machine, which are used to improve the problem of uneven brightness in at least part of the splicing in the LED splicing display technology.
  • the embodiment of the present disclosure provides a display module, a plurality of the display modules are used for splicing for display, the display module includes: a light source and an encapsulation layer covering the light-emitting side of the light source, the encapsulation layer includes at least two The edge area at the splicing position of each display module, the edge area of the encapsulation layer includes the side area of the encapsulation layer; and the optical brightness adjustment structure, the optical brightness adjustment structure is arranged in the edge area of the encapsulation layer, wherein the optical brightness adjustment structure is is configured to: control the optical path at least of the outgoing light from the light source at the splicing location to homogenize the brightness of the splicing location.
  • the optical brightness adjustment structure includes at least one of a scattering microstructure, a transmittance adjustment structure, and a refractive index adjustment structure.
  • the scattering microstructures include regular microprism structures located on at least one side of the encapsulation layer, and the apex angle of the regular microprism structures ranges from 60° to 135°.
  • the ratio of the largest dimension of the regular microprism structure to the thickness of the encapsulation layer is in the range of 2% ⁇ 20%.
  • the optical brightness adjustment structure further includes a flat structure, and the flat structure is disposed on the side of the encapsulation layer and located between the regular microprism structure and the side of the encapsulation layer away from the light source.
  • the transmittance adjustment structure includes at least one of an atomized structure or a low transmittance structure on the side of the encapsulation layer, and the first transmittance of the low transmittance structure is lower than the first transmittance of the non-edge region of the encapsulation layer. Two transmittance.
  • the material of the index-adjusting structure includes an edge region encapsulation material and microcrystalline structures dispersed in the edge region encapsulation material.
  • the edge region encapsulation material is the same as the non-edge region encapsulation material of the encapsulation layer.
  • the display module further includes: a driving circuit board multiplexed as a base substrate; the light source includes light-emitting diodes, and the light-emitting diodes are arranged on the side of the driving circuit board away from the support surface; wherein, the encapsulation layer is arranged on the driving circuit board The side of the circuit board away from the support surface is wrapped with a plurality of light emitting diodes.
  • An embodiment of the present disclosure provides a display device, the display device includes: a display module and a casing as shown above; wherein, at least one display module is detachably fixed on the casing.
  • the display device further includes: a gap layer, the gap layer is located between adjacent display modules, the thickness of the gap layer is determined by the distance between two adjacent encapsulation layers, and the refractive index of the gap layer is less than the refractive index of the encapsulation layer.
  • An embodiment of the present disclosure provides a mold, including: a main body; and a complementary optical brightness adjustment structure disposed on the main body, wherein the complementary optical brightness adjustment structure is used to form the optical brightness adjustment structure in an edge region of an encapsulation layer of a display module , the shape of the optical brightness adjustment structure and the complementary optical brightness adjustment structure are complementary, and the optical brightness adjustment structure is configured to: control at least the optical path of the outgoing light from the light source of the encapsulation layer at the splicing position of the encapsulation layer, so as to homogenize the brightness of the splicing position .
  • An embodiment of the present disclosure provides a glue filling machine, which includes: a first glue filling passage corresponding to an edge area of a display module, and the first glue filling passage is used to form a first glue having a first refractive index in the edge area of the display module a sub-encapsulation layer; and a second gluing channel corresponding to the non-edge area of the display module, the second gluing channel is used to form a second sub-encapsulation layer with a second refractive index in the non-edge area of the display module, wherein the first A glue filling channel and a second glue filling channel are isolated from each other, the first sub-encapsulation layer and the second sub-encapsulation layer together constitute the packaging layer of the display module, and the first sub-encapsulation layer is configured to: control at least the light source from the light source The optical path of the outgoing light at the splicing position of the encapsulation layer to equalize the brightness of the splicing position.
  • the ratio of the first glue filling volume to the second glue filling volume ranges from 70 to 90%, wherein the first glue filling volume is the glue filling of a single glue filling nozzle corresponding to the edge area of the display module
  • the second glue filling amount is the glue filling amount of a single glue filling nozzle corresponding to the non-edge area of the display module.
  • 1 is a plan view of a display device
  • FIG. 2 is a schematic cross-sectional structural diagram of the display device taken along line A-A in FIG. 1;
  • Fig. 3 is a kind of schematic diagram of uniform light mixing
  • Fig. 4 is a kind of schematic diagram of splicing light mixing
  • FIG. 5 is a plan view of a display device provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional structure diagram of the display device taken along line B-B in FIG. 5;
  • FIG. 7 is a schematic diagram of a light path after atomization of a cross-section taken along line B-B according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a light path after refractive index differentiation of a cross-section taken along line B-B according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a refractive index adjustment structure provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a microcrystalline structure and a packaging material provided by an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a light path after diffusion of light in a cross-section taken along line B-B according to an embodiment of the present disclosure
  • FIG. 12 is a schematic cross-sectional view of a display module after light diffusion provided by an embodiment of the present disclosure
  • FIG. 13(a) to 13(h) are schematic diagrams of regular microprism structures provided by embodiments of the present disclosure.
  • FIG. 14 is a schematic cross-sectional view of a display module after light diffusion provided by another embodiment of the present disclosure.
  • FIG. 15 is a schematic cross-sectional structure diagram of a display module provided by another embodiment of the present disclosure.
  • 16 is a schematic cross-sectional structure diagram of a display device provided by another embodiment of the present disclosure.
  • 17 is a flowchart of a method for manufacturing a display module provided by an embodiment of the present disclosure.
  • FIG. 19 is a schematic cross-sectional structure diagram of a mold provided by an embodiment of the present disclosure.
  • FIG. 20 is a schematic cross-sectional structure diagram of a mold provided by another embodiment of the present disclosure.
  • 21 is a schematic cross-sectional structure diagram of a mold provided by another embodiment of the present disclosure.
  • Figure 22 is a schematic cross-sectional structure diagram of a glue filling machine
  • FIG. 23 is a schematic cross-sectional structure diagram of a glue filling machine provided by an embodiment of the present disclosure.
  • FIG. 24 is a schematic cross-sectional structure diagram of a glue pouring machine provided by another embodiment of the present disclosure.
  • FIG. 25 is a block diagram of a display device provided by an embodiment of the present disclosure.
  • the relative positional relationship may also correspond to to change.
  • an element such as a layer, film, region, or substrate is referred to as being “on” or “under” another element, it can be “directly on” or “under” the other element, or it may There are intermediate elements.
  • FIG. 1 is a plan view of a display device.
  • the display device 10 is exemplarily described by taking the assembled LED display screen as an example.
  • the assembled LED display screen is formed by splicing a plurality of display modules 11 .
  • the structure at the edge of the display module 11 is different from the structure at the non-edge of the display module 11 .
  • the edge area has a side, and the light propagation path at the side is different from that at the non-edge of the display module 11, resulting in the brightness at the splicing between two adjacent display modules and the brightness at the non-edge area of the display module. etc. different.
  • the embodiments of the present disclosure aim to improve the phenomenon of uneven display effect at the splicing portion of the display device 10 caused by the above reasons and the like.
  • FIG. 2 is a schematic cross-sectional structure diagram of the display device in FIG. 1 taken along the line A-A.
  • the display module 11 of the display device 10 may include an encapsulation layer 111 , and the encapsulation layer 111 wraps a plurality of LED chips 112 on the circuit board 113 .
  • the LED chip 112 may be fixed on the circuit board 113 by means of flip-chip bonding, silver paste bonding or the like.
  • the gap There is a gap between the two adjacent display modules 11 assembled in FIG. 2 , and the gap cannot be completely eliminated.
  • a certain size of gap needs to be preset.
  • a display product formed by splicing multiple display modules 11 is spliced through an array.
  • infinite size splicing can be achieved to achieve a super large display effect, which is also its biggest advantage compared to LCD liquid crystal display.
  • the LED chips 112 can be uniformly mixed in the air, and there is no defect on the display. Bright band, this kind of uneven brightness is especially obvious when viewing solid color pictures at close range.
  • FIG. 3 is a schematic diagram of a uniform light mixing.
  • FIG. 3 shows the principle of the light path of the non-splicing part in the display module 11 . It can be seen that when all the light rays pass through the flat encapsulation layer 111, the light rays directly enter the air after being refracted, and the refracted light rays change a certain direction. Since the light is refracted only once, although the angle of the refracted light changes from a2 to a1, the size of the light mixing area S1 does not change, and each LED chip 112 has the same light mixing area S1. The overall display effect It looks even.
  • FIG. 4 is a schematic diagram of a splicing light mixing.
  • the edge region of the display module 11 (the edge region includes the sidewall), there is a gap caused by the splicing.
  • the light with the specified exit angle passes through the first optical path of the upper surface of the encapsulation layer 111, and the light with the same specified exit angle passes through the side of the encapsulation layer 111-the side of the encapsulation layer of the adjacent display module-adjacent display module.
  • the second optical paths of light exiting from the upper surface of the encapsulation layer of the group are different.
  • AC and DE are the normal directions of the sides of the encapsulation layer.
  • the dashed line in FIG. 4 shows the optical path of light exit when there is no gap.
  • the refractive index of light from air to the encapsulation layer increases from small to large.
  • the ratio of the refractive index of air to other substances is less than 1, and is equal to the sine ratio of the incident angle to the refraction angle (that is, the refractive index between the air and the encapsulation layer.
  • the first ratio is proportional to the second ratio between the incident angle and the refraction angle, so the incident angle in the air is greater than the refraction angle of the transparent material, and the optical path is reversible.
  • the material of the encapsulation layer includes but not limited to the following at least One: polymethyl methacrylate (such as acrylic, plexiglass, PMMA plastic) (Nd/25°C 1.49), polycarbonate (PC plastic) (Nd/25°C 1.584 ⁇ 1.586), polyethylene terephthalate Alcohol ester (PET) (Nd/25°C 1.65), transparent nylon (Nd/25°C 1.592), acrylonitrile-styrene copolymer (AS, Nd/25°C 1.561), etc.
  • polymethyl methacrylate such as acrylic, plexiglass, PMMA plastic
  • PC plastic polycarbonate
  • PET polyethylene terephthalate Alcohol ester
  • AS acrylonitrile-styrene copolymer
  • Such as the incident angle of light from transparent materials is AFB
  • the refraction angle is CFG
  • the refraction angle CFG is greater than the incident angle AFB
  • GH is parallel to BF, that is, after the light exits from the adjacent display module 11, the The exit angle remains the same, but the light path of the light emitted from the splicing place 20 is shifted to the inside relative to the light emitted from the unspliced place, although the direction has not changed.
  • the macroscopic manifestation is that the light at the splicing 20 is more concentrated than the light at the splicing place, so it is easy to form a bright band at the splicing place 20.
  • An embodiment of the present disclosure provides a display module, and a plurality of the display modules are used for splicing and displaying.
  • the display module may include: a light source and an encapsulation layer covering the light emitting side of the light source, the encapsulation layer includes an edge region located at a splicing position of at least two display modules, and the edge region of the encapsulation layer includes a side region of the encapsulation layer; and
  • the optical brightness adjustment structure is disposed in the edge region of the encapsulation layer, wherein the optical brightness adjustment structure is configured to control the optical path of the outgoing light at the splicing position to equalize the brightness of the splicing position.
  • the light source includes an active light source and a passive light source, and the active light source may be an electrical excitation light source or an optical excitation light source, or the like.
  • the passive light source may be a light source provided by the outside, such as light emitted from the outside to the encapsulation layer, etc., which is not limited herein.
  • FIG. 5 is a plan view of a display device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional structure diagram of the display device taken along the line B-B in FIG. 5 .
  • FIG. 5 and FIG. 6 a schematic illustration is given by taking an example that the refractive index of the edge region of the encapsulation layer is adjusted.
  • the display device 5 may include: a plurality of display modules 50 capable of splicing and displaying, and the splicing place 60 is shown by the dotted line in the figure. At least some of the display modules 50 of the plurality of display modules 50 include an encapsulation layer 51 .
  • the edge area of the encapsulation layer 51 includes an optical brightness adjustment structure 511, which is used to reduce the refractive index difference between the material on the side of the encapsulation layer and the material (such as air, etc.) in the gap at the splicing point, and the optical brightness adjustment structure 511 reduces
  • the influence of the side surface of the encapsulation layer 51 on the optical path from the inside of the encapsulation layer 51 to the outside of the encapsulation layer 51 is to equalize the brightness of the splices 60 between the plurality of display modules 50 .
  • the display device 5 may further include a light source, a circuit board for controlling the light source, a casing for fixing the circuit board, and the like.
  • the light source can be fixed on the circuit board, and the encapsulation layer 51 can cover the upper surface of the circuit board and wrap the light source.
  • the light sources include but are not limited to: incandescent light sources, fluorescent light sources, LED light sources, organic light-emitting diodes (Organic Light Emitting Diode, OLED for short), laser light sources, and the like.
  • the fluorescent light source and the laser light source may be optically pumped or electrically pumped light sources, which are not limited herein.
  • the encapsulation layer 51 can provide physical protection to the encapsulated LED chips 52, and the thickness of the encapsulation layer 51 can be determined according to the application scenario. For example, for a display device that needs to be mounted on a wall, the encapsulation layer 51 does not need to bear excessive load, and the thickness of the encapsulation layer 51 can be made thinner, such as covering the LED chip 52 . For example, for a display device that needs to bear a lot of load, such as a display device laid on the ground or a stage table, the encapsulation layer 51 needs to bear the weight of the human body, the weight of the device, etc.
  • the display device can be effectively improved If the load bearing capacity is high, the thickness of the encapsulation layer 51 can be made thicker. For example, it is determined according to material parameters such as the maximum load to be carried in the preset application scenario and the strength of the packaging layer material. Of course, the thickness of the encapsulation layer 51 can also be made larger than the above calculation result, so as to improve the security of the user using the display device.
  • the encapsulation layer 51 may only be located on the upper surface of the circuit board, or may be located on the upper surface and at least part of the side surfaces of the circuit board at the same time, so that the circuit board can be protected at the same time.
  • the encapsulation layer 51 may also cover the backside of the circuit board, so that the circuit board is isolated from the external environment, which is not limited herein.
  • the optical brightness adjustment structure 511 can reduce the influence of the edge region of the encapsulation layer 51 on the optical path from the inside of the encapsulation layer 51 to the outside of the encapsulation layer 51 . For example, this can be achieved by adjusting light scattering, light refraction, and light incidence angle.
  • the light source may be a light emitting diode, and the light emitting diode is arranged on the side of the driving circuit board away from the support surface.
  • the display module 50 may further include: a driving circuit board 53 that is multiplexed as a base substrate. Wherein, the LED chip 52 may be disposed on the side of the driving circuit board 53 away from the support surface.
  • the supporting surface of the driving circuit board 53 may be the side on which the LED chips 52 are not provided, that is, the side opposite to the surface on which the LED chips 52 are provided on the driving circuit board 53 .
  • the encapsulation layer 51 is disposed on the side of the driving circuit board 53 away from the support surface, and wraps the plurality of LED chips 52 .
  • the LED chip 52 can be fixed on the driving circuit board 53 by means of front-loading and/or flip-chipping.
  • the LED chip 52 in the display module 50 can be a single-color LED chip, for example, the display device 50 can be a red monochrome display screen, a yellow monochrome display screen, an orange monochrome display screen, a green monochrome display screen, and a blue monochrome display screen. screen or purple monochrome display, etc.
  • the display module 50 may include LED chips 52 of various colors. Lights of multiple colors include, but are not limited to, red light, blue light, yellow light, green light, violet light, white light, and the like. Wherein, the white light may be a mixture of red light, blue light and green light, and the white light may be the mixed light after the blue light excites the phosphor.
  • the display module 50 may include a plurality of pixels, and each pixel may be composed of one or more LED chips 52 .
  • a pixel includes a red LED chip, a blue LED chip and a green LED chip, and the driving circuit can control the respective luminous brightness of the red LED chip, the blue LED chip and the green LED chip, so that the display color of a pixel can be adjusted. For example, if only the red LED chip is controlled to light up, the pixel will display red; if only the blue LED chip is controlled to light up, the pixel will display blue; if only the red LED chip and the green LED chip will be controlled to emit light, the pixel will display yellow. ; Control the red LED chip, blue LED chip and green LED chip to emit light, then the pixel displays white.
  • the driving circuit can also control the luminous intensity of each color LED chip at the same time, so that the pixel can display more kinds of colors.
  • the optical brightness adjustment structure 511 includes at least one of a scattering microstructure, a transmittance adjustment structure, and a refractive index adjustment structure. In this way, it is convenient to adjust the influence of the edge region of the encapsulation layer on the optical path by arranging the above-mentioned at least one optical brightness adjustment structure 511 on the side of the encapsulation layer 51 .
  • the optical brightness adjustment structure 511 may be disposed on the edge region of the encapsulation layer 51 , such as at least part of the side surface of the encapsulation layer 51 , or a part of the upper surface of the encapsulation layer 51 adjacent to the side surface, which is not limited herein.
  • such brightness unevenness can be changed by introducing an optical brightness adjustment structure 511 to optimize the corresponding influence inducers.
  • this undesirable phenomenon is reduced through process improvement.
  • the optimization direction is to reduce the internal offset of the H point, that is, to reduce the convergence of the optical path, or to reduce the luminous flux.
  • the spacing between display modules can be greater than 0mm and less than 0.3mm.
  • the mold used for molding the encapsulation layer 51 can be improved to change the light transmission rate or the light incident angle of the edge region of the encapsulation layer 111 in FIG. Uniform undesirable phenomena.
  • the incident angle and the refraction angle are equal.
  • the angle between the incident light and the normal of the surface of the encapsulation layer 111 is reduced, the angle between the outgoing light and the normal of the surface of the encapsulation layer 111 will also become smaller, which effectively improves the H in FIG. 4 .
  • the intra-ray offset of the point i.e. reducing the convergence of the light path.
  • the display device 5 provided by the embodiment of the present disclosure, by optimizing the structure of the edge region of the encapsulation layer 511 of the display module 50, the influence of the edge region of the encapsulation layer 51 on the optical path is changed, and the problem of uneven brightness of the splicing point 60 is improved, The display effect optimization of the entire mosaic display device 5 is realized.
  • optical brightness adjustment structure will be exemplarily described below with reference to FIGS. 7 to 14 .
  • the transmittance adjustment structure is mainly used to adjust the transmittance of the edge region of the encapsulation layer 51 .
  • the transmittance adjustment structure is mainly used to adjust the transmittance of the edge region of the encapsulation layer 51 .
  • the transmittance adjustment structure includes a low transmittance structure on the side of the encapsulation layer, and the first transmittance of the low transmittance structure is lower than the second transmittance of the non-edge region of the encapsulation layer.
  • the light transmittance can also be indirectly reduced by means of light scattering, the light output intensity of the edge region of the encapsulation layer can be reduced, and the phenomenon of light gathering on the side of the encapsulation layer can be avoided.
  • the transmittance adjustment structure may use a low transmittance material with a low transmittance relative to the encapsulation layer 51, so as to reduce the transmittance of the edge region of the encapsulation layer.
  • the transmittance can also be reduced by methods such as ground glass.
  • FIG. 7 is a schematic diagram of a light path after atomization of a cross section taken along line B-B according to an embodiment of the present disclosure.
  • the light emitting surface (non-edge area) of the display module 50 is also the appearance surface, which cannot be non-uniformly fogged.
  • the area of the S1 area of the display module 50 is small, and it is difficult to realize atomization of the S1 area in a large-scale process operation.
  • On the side M it does not affect the appearance of the product, and it is also easy to implement in terms of technology. It is only necessary to add a grinding process for the formed display module 50, and slightly grind the side M of the display module 50. The effect can be selected according to the fine specification of the corresponding grinding tool. After the side surface M is atomized, the luminous flux is reduced due to the influence of increased light scattering, so that the brightness of the splicing portion 60 is reduced, and the display brightness is uniformized.
  • a new grinding process can also be added for the existing mold (for molding the display module 50 ), and the surface of the mold corresponding to at least part of the side surface M is slightly ground, and the grinding effect can be determined according to the corresponding grinding tool. the fine specification to choose.
  • the side M of the formed display module 50 is fogged, the light transmittance is also reduced, and the luminous flux is reduced, so that the brightness of the splicing part 60 is reduced, Achieve uniform display brightness.
  • the atomization method to scatter the outgoing light to reduce the luminous flux
  • it can also be adjusted by the semi-shielding method.
  • coating the side M with colloids of different transparency can also reduce the luminous flux, and can also play the role of weakening the bright band.
  • the transmittance adjustment structure is arranged on the side M, although the light path is not changed or slightly changed, the offset in the light path is not reduced, that is, the collection of light paths is reduced, but the light flux at the splicing point 60 is reduced. . Therefore, the brightness of the splicing portion 60 is effectively reduced, and the uniform display brightness is realized.
  • the adjustment of the transmittance can be determined according to the actual product model. For example, the ratio of the light intensity at the splicing place 60 to the light intensity at the non-splicing place is detected first, and then the transmittance is determined based on this ratio. adjust size. Therefore, the transmittance adjustment structure can be designed based on the adjustment size of the transmittance, such as parameters such as the size, material type, and film thickness of the transmittance adjustment structure.
  • the refractive index adjustment structure is mainly used to weaken the convergence of the light path by adjusting the refractive index of the edge region of the encapsulation layer.
  • FIG. 8 is a schematic diagram of a light path after refractive index differentiation of a cross-section taken along the line B-B according to an embodiment of the present disclosure.
  • the refractive index of the edge region of the encapsulation layer 51 by changing the refractive index of the edge region of the encapsulation layer 51 , such as reducing the refractive index of the edge region of the encapsulation layer 51 , the deviation in the light can be reduced, and the convergence of the light path can be reduced.
  • the refractive index formula when the incident angle ⁇ is constant, the exit angle ⁇ varies with the refractive index ⁇ of the encapsulation layer.
  • the refractive index ⁇ of the encapsulation layer is closer to the refractive index of air (the refractive index of air is 1), the values of the exit angle and the incident angle are closer.
  • the refractive index formula is shown in (1).
  • is the refractive index of the encapsulation layer
  • is the incident angle
  • is the exit angle
  • the refractive index of the edge region of the encapsulation layer can help to improve the deviation in the light and reduce the convergence of the light path.
  • the deviation angle is also larger. Therefore, two transparent materials with different refractive indices are used, and the material with a smaller deviation angle is used for the splicing edge. The range of the outward gathering of the H point is also reduced, which can also reduce the bright band.
  • the refractive index of the edge region of the encapsulation layer can be changed by changing the material of the edge region of the encapsulation layer.
  • FIG. 9 is a schematic diagram of a refractive index adjustment structure provided by an embodiment of the present disclosure.
  • the material of the edge area of the encapsulation layer 51 is different from the material of the non-edge area of the encapsulation layer 51 , and the refractive index of the non-edge area of the encapsulation layer 51 is reduced by using a low refractive index material 5111 .
  • a low refractive index material 5111 is used to replace the original material used in the edge region of the encapsulation layer.
  • transparent packaging materials include but are not limited to at least one of the following: polymethyl methacrylate (such as acrylic, plexiglass, PMMA plastic), polycarbonate (PC plastic), polyethylene terephthalate (PET) , transparent nylon, acrylonitrile-styrene copolymer (AS), etc. If the material of the original encapsulation layer uses acrylic, the material in the edge region of the encapsulation layer can be replaced by a material with a lower refractive index, which can effectively reduce the convergence of the light path.
  • polymethyl methacrylate such as acrylic, plexiglass, PMMA plastic
  • PC plastic polycarbonate
  • PET polyethylene terephthalate
  • AS acrylonitrile-styrene copolymer
  • the material of the edge region of the encapsulation layer 51 can be easily realized by improving the glue filling machine to be different from the material of the non-edge region.
  • the glue filling machine includes a plurality of glue filling nozzles, and each glue filling nozzle is used to realize the glue filling operation for a designated area of the encapsulation layer 51 .
  • the refractive index of the edge region of the encapsulation layer 51 can be changed by changing the material flowing out of the gluing nozzle corresponding to the edge region of the encapsulation layer.
  • the edge region encapsulation material may be the same as the non-edge region encapsulation material of encapsulation layer 51 .
  • changing the refractive index of the edge region of the encapsulation layer can be achieved by modifying the material of the edge region of the encapsulation layer. Since there is no need to replace the base material of the encapsulation layer 51 , it is helpful to reduce the types of raw materials, and reduce the production and manufacturing costs such as storage and reclaiming. In addition, it also helps to reduce the chromatic aberration between the encapsulation layers in the edge area and the non-edge area.
  • FIG. 10 is a schematic diagram of a microcrystalline structure and a packaging material provided by an embodiment of the present disclosure.
  • the material in the edge region of the encapsulation layer 51 can be improved by doping or mixing, which is also convenient to finely adjust the refractive index of the edge region of the packaging layer by adjusting the amount of doping or mixing.
  • the refractive index ⁇ of the material in the edge region may be: 0.85a ⁇ a.
  • the refractive index of the acrylic material is 1.49
  • the refractive index of the material in the edge region of the encapsulation layer is adjusted to 1.1, 1.14, 1.18, 1.2, 1.23, 1.35, 1.38, 1.42, 1.45 or 1.48, etc. any of the values.
  • the material of the refractive index adjusting structure includes an edge region encapsulation material and microcrystalline structures 5112 dispersed in the edge region encapsulation material.
  • the microcrystalline structure 5112 includes, but is not limited to, at least one of microcrystals that can reduce the refractive index of the packaging layer material, such as PC polycarbonate, transparent silicone grease particles, and the like.
  • the microcrystalline structure 5112 can be dispersed in the encapsulation material by operations such as stirring, so as to form the encapsulation layer.
  • one material is mainly used, but the microcrystalline structure is used as an additive to modify the edge of the encapsulation layer.
  • Scattering microstructures are mainly used to reduce the convergence of light paths by reducing the angle between the normal of the edge region of the encapsulation layer and the incident light.
  • the light scattering properties can be adjusted by regular microprism structures and/or fog structures disposed at the edge regions of the encapsulation layer.
  • FIG. 11 is a schematic diagram of a diffused light path of a cross section taken along the line B-B according to an embodiment of the present disclosure.
  • the exit angle when the refractive index of the encapsulation layer material is constant, the exit angle can be adjusted by changing the incident angle. Therefore, it can be determined by formula (1) that when the refractive index of the encapsulation layer material is constant, the exit angle can be reduced by reducing the incident angle, so as to improve the intra-ray deflection and reduce the convergence of the optical path. For example, if the incident light is perpendicular to the surface of the encapsulation layer 51, the outgoing light is also perpendicular to the surface of the medium.
  • the structure is used to reduce the average value of the respective outgoing angles of all outgoing light rays and the side surface of the encapsulation layer 51 .
  • the side M is the side of the encapsulation layer, and assuming that M1 and M2 are the side angles of two adjacent splicing modules, which are just perpendicular to the emitted light BF, then it will be the same as the original mixed light area S1. is the same, i.e. no bright band will appear.
  • the light emitted by H1I1 will shift from left to right, that is, to achieve bright and dark areas. This will lead to a bright area or a dark area near the splicing point, and at the same time, it is not convenient to manufacture such a slope on the side of the M.
  • the micro-mirror of the side M can be used.
  • the scattering microstructures include regular microprism structures located on at least one side of the encapsulation layer 51, and the apex angle of the regular microprism structures ranges from 60° to 135°.
  • the regular microprism structure effectively increases the area of the optical path, making it easier for the light to interfere.
  • the angle of the top corner is not easy to be too large, so as to avoid excessive light loss at the corners.
  • the above-mentioned regular microprism structure can be fabricated by using an improved mold.
  • the inner surface of the mold is provided with a microstructure complementary to the regular microprism structure, and after the glue is poured, the encapsulation layer 51 with the regular microprism structure can be formed.
  • FIG. 12 is a schematic cross-sectional view of a display module provided by an embodiment of the present disclosure after the light is diffused.
  • a plurality of scattering microstructures 5113 are disposed on the side surface of the encapsulation layer 51 , and the scattering microstructures 5113 may cover the entire side surface of the encapsulation layer 51 .
  • the scattering microstructure 5113 may be a microstructure protruding from the surface of the encapsulation layer 51 or a concave microstructure, which is not limited herein.
  • the scattering microstructures 5113 may not cover the driving circuit board 53 located at the bottom of the encapsulation layer 51 , and the scattering microstructures 5113 may cover the driving circuit board 53 located at the bottom of the encapsulation layer 51 .
  • the ratio of the largest dimension of the regular microprism structure to the thickness of the encapsulation layer 51 is in the range of 2% ⁇ 20%.
  • a size setting can meet the light diffusion requirements.
  • such a size setting helps to improve device safety and use safety, and reduces the damage to the regular microprism structure and the risk of scratching the user during handling.
  • the ratio of the above thickness determines how many regular microprism structures can be placed at the edge. Too little quantity will cause insufficient light interference, and too much quantity will increase the difficulty of the process, and the brightness equalization effect in the above ratio range is better.
  • FIG. 13(a) to 13(h) are schematic diagrams of regular microprism structures provided by embodiments of the present disclosure.
  • FIGS. 13(a) to 13(h) are schematic cross-sectional views of the regular microprism structure.
  • the regular microprism structure may include one or more vertex angles, and the angular range of the vertex angles may include 60°-135°.
  • FIG. 13( a ) may be a cross-sectional view of a triangular pyramid or a triangular prism
  • FIG. 13( c ) may be a cross-sectional view of a semi-cylindrical or rectangular parallelepiped. It should be noted that the microstructures shown in FIGS.
  • the optical brightness adjustment structure may further include a flat structure 5114 , and the flat structure 5114 is disposed on the side of the encapsulation layer 51 and located on the regular microprism structure and the encapsulation layer 51 . between the upper surfaces.
  • the maximum size of the microprism is 2%X ⁇ 20%X.
  • the size of the flat structure 5114 can be more than 0.5mm, which takes into account the tooling error of 0.3mm.
  • the thickness of the encapsulation layer is determined based on the requirements of the application scene on the mechanical strength of the display device 5 .
  • the maximum size may refer to any one of the maximum width, the maximum length and/or the maximum height, or the maximum value of the maximum width, the maximum length and the maximum height.
  • the scattering microstructures may include irregular scattering microstructures flanking the encapsulation layer, for example, the irregular scattering microstructures may be haze structures.
  • FIG. 14 is a schematic cross-sectional view of a display module after light diffusion provided by another embodiment of the present disclosure.
  • the optical brightness adjustment structure further includes a flat structure 5114 , which is disposed on the upper side of the scattering microstructure 5113 .
  • a serrated mirror structure with a flat upper side and a convex lower side can be used, so that a scattering microstructure complementary to the inner surface of the mold can be easily formed without affecting the splicing process.
  • the appearance, and the concave Ling mirror surface below, does not affect the appearance.
  • FIG. 15 is a schematic cross-sectional structure diagram of a display module provided by another embodiment of the disclosure.
  • the display module 50 may further include a system module 54 and a fixing structure 55 located on the lower surface of the driving circuit board 53 .
  • the system module 54 may include one or more processors and memories, etc., for implementing power adjustment, display image data processing, and the like.
  • the memory may store firmware information and programs of the display module 50, etc., the firmware information such as row and column information, etc., and the program may be a driver or the like.
  • the fixing structure 55 may be a structure that facilitates disassembly and assembly, including but not limited to buckle fixing, magnetic attraction fixing, interference fit fixing, latch fixing, etc., which are not limited herein.
  • FIG. 16 is a schematic cross-sectional structure diagram of a display device according to another embodiment of the present disclosure.
  • the display device 5 may further include: a casing, wherein at least one display module 50 is detachably fixed on the casing.
  • the housing may include a base plate 163 , a support structure 162 , and a mounting structure 161 that cooperates with the fixing structure 55 .
  • the support structure 162 is fixed on the base plate 163, and the side of the support structure 162 away from the base plate 163 is provided with the mounting structure 161.
  • the fixing structure 55 is a magnetic component
  • the mounting structure 161 may include a magnetic component, so that the fixing structure 55 and the The pull-in of the installation structure 161 realizes the fixation and positioning of the display module 50 .
  • a display device 5 includes four display modules 50 arranged in a 2*2 array, two of which are shown in FIG. 16 .
  • the display device may further include: a gap layer, the gap layer is located between adjacent display modules, the thickness of the gap layer is determined by the distance between two adjacent encapsulation layers, and the refractive index of the gap layer is smaller than that of the encapsulation layer the index of refraction.
  • the interstitial layer may be air.
  • the gap layer may be made of a material with a refractive index lower than that of the acrylic material.
  • low-refractive-index materials such as fluid materials, low-refractive-index solid materials, etc.
  • the properties of the injected material can be changed by processes such as heating and lighting, such as changing from a fluid material to a solid material, or from a solid material to a fluid material, and the like.
  • an LED display screen is taken as an example for illustration.
  • the LED display screen includes a plurality of display modules 50 of the same size, which are spliced together in an array.
  • infinite size splicing can be achieved to achieve a super large display effect.
  • This is also the biggest advantage of LED display compared to LCD liquid crystal display.
  • As a general display module 50 it needs to be suitable for different usage scenarios, such as outdoor, stage floor and so on. Therefore, the protection of the LED chip 52 is also necessary, and a one-time package protection for the entire display module 50 can be adopted, so that its optics and hardness can meet various requirements.
  • the driving circuit board 53 may be a PCB board, a closed carrier for LED lamp beads, the substrate 163 may include a structural frame and a back shell, the fixing structure 55 may include magnetic beads enclosed on the back of the PCB board, and the mounting structure 161 may be fixed on the support structure 162 The two magnetic beads attract each other to fix the display module 50 .
  • one display module 50 may be composed of one or more arrays of light panels.
  • the display device provided by the embodiment of the present disclosure, by optimizing the edge area of the encapsulation layer, when displaying a monochrome image, there is no obvious uneven brightness in the overall display effect, and the display effect is effectively improved.
  • the disassembly and installation of the display device is relatively convenient, and can be applied in various scenarios, which effectively improves the user experience.
  • Another aspect of the present disclosure provides a method for manufacturing a display module.
  • FIG. 17 is a flowchart of a method for manufacturing a display module provided by an embodiment of the present disclosure.
  • the display module manufacturing method 170 may include operations S171 to S172.
  • a display assembly in operation S171, includes: a driving circuit board multiplexed as a base substrate, and a plurality of light sources disposed on a side of the driving circuit board away from the supporting surface.
  • an encapsulation layer is formed on a side of the driving circuit board away from the support surface, the encapsulation layer includes an edge area located at a splicing position of at least two display modules, and the edge area of the encapsulation layer includes a side area of the encapsulation layer, and an optical brightness adjustment structure disposed in the edge region of the encapsulation layer, the optical brightness adjustment structure is configured to: control at least the optical path of the outgoing light from the light source at the splicing position to equalize the brightness of the splicing position.
  • the encapsulation layer, edge area, optical brightness adjustment structure, optical path, and display effect equalization can be referred to the descriptions of the relevant parts in the above embodiments, and will not be described in detail here.
  • the molding operation of forming the encapsulation layer on the side of the driving circuit board away from the support surface can be realized by using an improved mold and an existing glue filling machine. For example, fix the display component in a mold with a specified structure on the inner surface, and then use a glue-pouring machine to perform a glue-pouring operation in the mold, so that the encapsulation layer with the optical brightness adjustment structure can be directly molded.
  • the specified structure and the optical brightness adjustment structure are complementary.
  • the above-mentioned forming operation can also be realized by using an existing mold and an improved glue filling machine.
  • the feed material of the nozzle corresponding to the edge region of the encapsulation layer among the multiple nozzles of the glue filling machine may have a lower refractive index than the feed material of other nozzles.
  • the above-mentioned forming operation can also be realized by using the existing mold and the existing glue filling machine.
  • the sides of the formed encapsulation layer are ground.
  • Another aspect of the present disclosure provides a mold.
  • FIG. 18 is a schematic diagram of a cross-sectional structure of a mold.
  • FIG. 19 is a schematic cross-sectional structure diagram of a mold provided by an embodiment of the present disclosure.
  • the mold 180 includes a main body 181 and a complementary optical brightness adjustment structure 1811 disposed on the main body 181 .
  • the complementary optical brightness adjustment structure 1811 is used to form the optical brightness adjustment structure 511 in the edge region of the encapsulation layer 51 of the display module 50 .
  • the optical brightness adjustment structure 511 and the complementary optical brightness adjustment structure 1811 are complementary in shape.
  • the brightness adjustment structure 51 reduces the influence of the edge area of the encapsulation layer on the optical path from the inside of the encapsulation layer 51 to the outside of the encapsulation layer 51 , so as to homogenize the brightness of the splices 60 between the plurality of display modules 50 .
  • the complementary optical brightness adjustment structure 1811 may be a haze structure, a scattering microstructure, or the like.
  • FIG. 20 is a schematic cross-sectional structure diagram of a mold provided by another embodiment of the present disclosure.
  • the scattering microstructure is taken as an example for description.
  • Protruding scattering microstructures 18113 may be provided on the inner surface of the main body 181 . Wherein, the protruding scattering microstructures 18113 may cover the entire inner surface or part of the inner surface of the main body 181 .
  • the protruding scattering microstructure 18113 may be complementary to the structure in FIG. 13 . It should be noted that, concave scattering microstructures may also be provided on the inner surface of the main body 181, or both protruding scattering microstructures 18113 and concave scattering microstructures may be provided.
  • FIG. 21 is a schematic cross-sectional structure diagram of a mold provided by another embodiment of the present disclosure.
  • the complementary optical brightness adjustment structure 1811 may include protruding scattering microstructures 18113 and flattening microstructures 18114 .
  • the mold 180 can be fixed on the side circumference of the display assembly.
  • the mold 180 may be composed of multiple detachable parts, and the multiple detached parts need to be assembled and fixed during molding, which helps to improve the convenience of use.
  • a spring provides a clamping force such that opposing sides of the mold 180 clamp the display assembly.
  • the mold 180 may also be a whole, and the display components are directly placed in the mold 180 .
  • FIG. 21 shows the molding process for the encapsulation layer of the LED display module.
  • the drive circuit board 53 that has been solidified into the main body 181 of the mold 180.
  • the glue is evenly poured into the mold 180 by the glue filling machine, after leveling and curing, the mold 180 is removed to realize the drive circuit board. 53 package.
  • the mold 180 may implement at least one of the following strategies: On the one hand, by atomizing the light path, the light energy is reduced to reduce the brightness. On the one hand, through the generalization of the light source, the mixing and differentiation of the light can be used to reduce the splicing bright band.
  • Another aspect of the present disclosure also provides a glue filling machine.
  • Figure 22 is a schematic cross-sectional structure diagram of a glue filling machine.
  • the glue filling machine may include a glue filling passage 221 and a plurality of glue filling nozzles 222 .
  • the plurality of glue injection nozzles 222 may be evenly arranged.
  • gluing is performed through each gluing nozzle 222 to realize the preparation of the encapsulation layer 51 .
  • the thickness of the encapsulation layer 51 can be calculated according to the size of the opening of the gluing nozzle 222 , the pressure, the viscosity of the gluing material, the gluing time, and the like.
  • the glue pouring process parameters corresponding to the specified thickness of the encapsulation layer can also be determined by means of calibration.
  • the glue filling machine can be improved.
  • FIG. 23 is a schematic cross-sectional structure diagram of a glue pouring machine provided by an embodiment of the present disclosure.
  • the glue filling machine may include a first glue filling passage 224 and a second glue filling passage 223 .
  • the first glue-filling via 224 corresponds to the edge region of the display module, and the first glue-filling pathway 224 is used to form a first sub-package layer with a first refractive index in the edge region of the display module.
  • the second glue filling channel 223 corresponds to the non-edge area of the display module.
  • the second glue filling via 223 is used to form a second sub-package layer with a second refractive index in the non-edge region of the display module.
  • the first glue-filling via 224 and the second glue-filling pathway 223 are isolated from each other, the first sub-package layer and the second sub-package layer together constitute the packaging layer 51 of the display module 50 , and the first sub-package layer is used for The influence of the edge area of the encapsulation layer on the optical path from the inside of the encapsulation layer 51 to the outside of the encapsulation layer 51 is reduced, so as to homogenize the brightness at the splicing point between the multiple display modules.
  • first glue filling passage 224 and the second glue filling passage 223 may be implemented by using mutually isolated pipes, and the fluid pressures in the two pipes may be the same or different.
  • the glue pouring amount of the single glue pouring nozzle 222 of the first glue pouring channel 224 and the single glue pouring nozzle 222 of the second glue pouring channel 223 may be the same or different.
  • the first glue pouring channel 224 and the second glue pouring channel 223 may respectively have a single row or multiple rows of glue pouring nozzles 222 .
  • the number of the glue pouring nozzles 222 of the second glue pouring channel 223 may be more than the number of the glue pouring nozzles 222 of the first glue pouring channel 224 .
  • a single gluing nozzle corresponding to an edge area has a different gluing volume than a single gluing nozzle corresponding to a non-edge area.
  • FIG. 24 is a schematic cross-sectional structure diagram of a glue pouring machine provided by another embodiment of the present disclosure.
  • the opening size of a single glue pouring nozzle 222' corresponding to the edge region is smaller than the opening size of a single glue pouring nozzle 222 in the non-edge region.
  • the ratio of the first glue filling volume to the second glue filling volume ranges from 70% to 90%, wherein the first glue filling volume is the glue filling volume of a single glue filling nozzle 222 ′ corresponding to the edge area of the display module,
  • the second glue filling amount is the glue filling amount of a single glue filling nozzle 222 corresponding to the non-edge area of the display module.
  • the glue filling amount of one channel in the edge area can be between 70% and 90% of the glue filling amount of the first channel in other areas, so as to avoid glue overflow.
  • the ratio of the first glue filling amount to the second glue filling amount ranges from 70 to 90%
  • the glue filling machine provided by the embodiment of the present disclosure can conveniently form different refractive indices in the edge region and the non-edge region of the encapsulation layer, so as to reduce the convergence of the light paths.
  • the original glue filling machine is transformed into two glue filling channels, and materials with different refractive indices are respectively filled, so as to improve the problem of uneven brightness at the splicing of the packaging layers.
  • materials with different refractive indices for the production of different refractive index materials, one can be a conventional transparent material, and the other can be mixed with low-refractive-index microcrystalline particles in a conventional transparent material, so that the two will not form chromatic aberration effects when they are integrally molded with glue. .
  • Another aspect of the present disclosure provides a display device.
  • FIG. 25 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the display device 2500 includes one or more display modules as shown above.
  • the display apparatus 2500 may include one or more processors 2510 and a computer-readable storage medium 2520.
  • the processor 2510 may include, for example, a general-purpose microprocessor, an instruction set processor and/or a related chipset and/or a special-purpose microprocessor (eg, an application specific integrated circuit (ASIC)), and the like.
  • the processor 2510 may also include onboard memory for caching purposes.
  • the computer-readable storage medium 2520 can be, for example, a non-volatile computer-readable storage medium, and specific examples include but are not limited to: magnetic storage devices, such as magnetic tapes or hard disks (HDD); optical storage devices, such as compact disks (CD-ROMs) ; memory, such as random access memory (RAM) or flash memory, etc.
  • magnetic storage devices such as magnetic tapes or hard disks (HDD)
  • optical storage devices such as compact disks (CD-ROMs)
  • CD-ROMs compact disks
  • memory such as random access memory (RAM) or flash memory, etc.
  • the computer-readable storage medium 2520 may include a program 2521, which may include code/computer-executable instructions that, when executed by the processor 2510, cause the processor 2510 to perform image display data processing.
  • the code in program 2521 may include one or more program modules, including, for example, program module 2521A, program module 2521B, . . .
  • the display device 2500 may be any product or component having a display function and a camera function, such as a television, a monitor, a digital photo frame, a mobile phone, a smart watch, a tablet computer, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种显示模组(50)、显示装置(5)、模具(180)和灌胶机。多个显示模组(50)用于拼接进行显示,显示模组(50)包括:光源;覆盖于光源的出光侧的封装层(51),封装层(51)包括位于至少两个显示模组(50)的拼接位置处的边缘区域,封装层(51)的边缘区域包括封装层(51)的侧面区域;以及光学亮度调整结构(511),光学亮度调整结构(511)设置于封装层(51)的边缘区域中。光学亮度调整结构(511)被配置为:控制至少源自光源的出射光在拼接位置处的光学路径,以均化拼接位置的亮度。

Description

显示模组、显示装置、模具和灌胶机 技术领域
本公开涉及显示技术领域,尤其涉及一种显示模组、显示装置、模具和灌胶机。
背景技术
随着发光二极管(Light Emitting Diode,简称LED)拼接显示的技术发展,该技术的应用场景也越来越丰富。例如,城市亮化、户外广告显示和舞台灯光效果显示,商用显示等。
然而,LED拼接显示技术在至少部分拼接处出现亮度不均匀,影响显示效果。
发明内容
有鉴于此,本公开实施例提供一种显示模组、显示装置、模具和灌胶机,用于改善LED拼接显示技术在至少部分拼接处出现亮度不均的问题。
本公开的实施例提供了一种显示模组,多个所述显示模组用于拼接进行显示,该显示模组包括:光源和覆盖于光源的出光侧的封装层,封装层包括位于至少两个显示模组的拼接位置处的边缘区域,封装层的边缘区域包括封装层的侧面区域;以及光学亮度调整结构,光学亮度调整结构设置于封装层的边缘区域中,其中,光学亮度调整结构被配置为:控制至少源自光源的出射光在拼接位置处的光学路径,以均化拼接位置的亮度。
在一些实施例中,光学亮度调整结构包括:散射微结构、透射率调整结构、折射率调整结构中至少一种。
在一些实施例中,散射微结构包括位于封装层的至少一个侧面的规则微棱镜结构,规则微棱镜结构的顶角的范围包括:60°-135°。
在一些实施例中,规则微棱镜结构的最大尺寸相对于封装层的厚度的比例在2%~20%范围内。
在一些实施例中,光学亮度调整结构还包括平整结构,平整结构设置在封装层的侧面,并且位于规则微棱镜结构和封装层的远离光源一侧之间。
在一些实施例中,透射率调整结构包括位于封装层侧面的雾化结构或者 低透过率结构中至少一种,低透过率结构的第一透射率低于封装层的非边缘区域的第二透射率。
在一些实施例中,折射率调整结构的材料包括边缘区域封装材料和分散在边缘区域封装材料中的微晶结构。
在一些实施例中,边缘区域封装材料与封装层的非边缘区域封装材料相同。
在一些实施例中,显示模组还包括:复用为衬底基板的驱动电路板;光源包括发光二极管,发光二极管设置在驱动电路板上远离支撑面的一侧;其中,封装层设置在驱动电路板上远离支撑面的一侧,并且包裹多个发光二极管。
本公开的实施例提供了一种显示装置,显示装置包括:如上所示的显示模组和壳体;其中,至少一个显示模组可拆卸地固定在壳体上。
在一些实施例中,显示装置还包括:间隙层,间隙层位于相邻的显示模组之间,间隙层的厚度由相邻的两个封装层之间的间距来确定,间隙层的折射率小于封装层的折射率。
本公开实施例提供了一种模具,包括:主体;以及设置在主体上的互补光学亮度调整结构,其中,互补光学亮度调整结构用于在显示模组的封装层的边缘区域形成光学亮度调整结构,光学亮度调整结构与互补光学亮度调整结构的形状互补,光学亮度调整结构被配置为:控制至少源自封装层光源的出射光在封装层拼接位置处的光学路径,以均化拼接位置的亮度。
本公开实施例提供了一种灌胶机,包括:与显示模组边缘区域对应的第一灌胶通路,第一灌胶通路用于在显示模组边缘区域形成具有第一折射率的第一子封装层;以及与显示模组非边缘区域对应的第二灌胶通路,第二灌胶通路用于在显示模组非边缘区域形成具有第二折射率的第二子封装层,其中,第一灌胶通路和第二灌胶通路之间相互隔离,第一子封装层和第二子封装层共同构成显示模组的封装层,第一子封装层被配置为:控制至少源自光源的出射光在封装层的拼接位置处的光学路径,以均化拼接位置的亮度。
在一些实施例中,第一灌胶量相对于第二灌胶量的比值范围包括70~90%,其中,第一灌胶量是与显示模组边缘区域对应的单个灌胶喷嘴的灌胶量,第二灌胶量是与显示模组非边缘区域对应的单个灌胶喷嘴的灌胶量。
本公开的附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开文本的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开文本的一些实施例,而非对本公开文本的限制,其中:
图1为一种显示装置的平面图;
图2为图1中显示装置的沿线A-A截取的截面结构示意图;
图3为一种均匀混光的示意图;
图4为一种拼接混光的示意图;
图5为本公开实施例提供的显示装置的平面图;
图6为图5中显示装置的沿线B-B截取的截面结构示意图;
图7为本公开实施例提供的沿线B-B截取截面的雾化后光路径的示意图;
图8为本公开实施例提供的沿线B-B截取截面的折射率分化后光路径的示意图;
图9为本公开实施例提供的折射率调整结构的示意图;
图10为本公开实施例提供的微晶结构和封装材料的示意图;
图11为本公开实施例提供的沿线B-B截取截面的光线扩散后光路径的示意图;
图12为本公开实施例提供的光线扩散后显示模组的截面示意图;
图13(a)~图13(h)为本公开实施例提供的规则微棱镜结构的示意图;
图14为本公开另一实施例提供的光线扩散后显示模组的截面示意图;
图15为本公开另一实施例提供的显示模组的截面结构示意图;
图16为本公开另一实施例提供的显示装置的截面结构示意图;
图17为本公开实施例提供的显示模组制造方法的流程图;
图18为一种模具的截面结构示意图;
图19为本公开实施例提供的模具的截面结构示意图;
图20为本公开另一实施例提供的模具的截面结构示意图;
图21为本公开另一实施例提供的模具的截面结构示意图;
图22为一种灌胶机的截面结构示意图;
图23为本公开实施例提供的灌胶机的截面结构示意图;
图24为本公开另一实施例提供的灌胶机的截面结构示意图;以及
图25为本公开实施例提供的显示装置的方框图。
具体实施方式
为更清楚地阐述本公开的目的、技术方案及优点,以下将结合附图对本公开的实施例进行详细的说明。应当理解,下文对于实施例的描述旨在对本公开的总体构思进行解释和说明,而不应当理解为是对本公开的限制。在说明书和附图中,相同或相似的附图标记指代相同或相似的部件或构件。为了清晰起见,附图不一定按比例绘制,并且附图中可能省略了一些公知部件和结构。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”“顶”或“底”等等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。当诸如层、膜、区域或衬底之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
为了便于理解本公开的技术方案,首先对一种显示装置和该显示装置存在的问题及其产生的原因进行说明。
图1为一种显示装置的平面图。
如图1所示,以拼装式LED显示屏为例对显示装置10进行示例性说明。该拼装式LED显示屏是由多个显示模组11拼接而成的。
一方面,由于显示模组11边缘处的结构与显示模组11非边缘处的构造不同。例如,边缘区域具有侧面,该侧面处的光线传播路径等与显示模组11 非边缘处不同,导致相邻的两个显示模块之间的拼接处的亮度与显示模块的非边缘区域处的亮度等不同。
一方面,在拼接过程中由于机械加工精度、拼装精度等工艺原因的限制,在显示模组11与显示模组11拼接处,相邻显示模组11边缘的LED像素点之间可能出现间距不一致的现象,这对显示质量的影响可以表现为在显示低频图像时会出现亮线或暗线。
本公开实施例旨在改善由于上述原因等所造成的显示装置10的拼接处显示效果不均匀现象。
图2为图1中显示装置的沿线A-A截取的截面结构示意图。
如图2所示,该显示装置10的显示模组11可以包括封装层111,该封装层111包裹位于电路板113之上的多颗LED芯片112。其中,LED芯片112可以是通过倒装焊接、银浆固晶等方式固定在电路板113上。图2中拼装后的两个相邻显示模组11之间存在间隙,该间隙无法完全消除。此外,为了给拼接显示模组11预留一定的冗余窗口,也需要预设一定尺寸的间隙。
由多个显示模组11拼接而成的显示产品,是通过阵列拼接出来的,理论上是可以实现无限尺寸的拼接,实现超大的显示效果,这也是其相对于LCD液晶显示最大的优点。对于上述显示模组11,如果没有封装层111,LED芯片112可以在空气中进行均匀混光,显示上没有缺陷,而实际上由于拼接的原因,在所有拼接处20(虚线位置)可能出现轻微亮带,在近处观看纯色画面时,这种亮度不均匀现象尤为明显。
图3为一种均匀混光的示意图。
如图3所示,对于显示模组11的非边缘区域,不存在拼接造成的间隙,整个非边缘区域的上表面可以是平整的。针对具有相同入射角的光线,其折射角度可以相同。图3中示出了显示模组11中非拼接处的光路原理。可以看出,所有光线经过平整的封装层111时,光线经过折射后直接进入空气,折射后的光线改变了一定的方向。由于光线只进行了一次折射,虽然经过折射后的光线的角度从a2变为a1,但是混光区域S1并没有改变大小,且每个LED芯片112都具有相同的混光区域S1,整体显示效果看起来是均匀的。
图4为一种拼接混光的示意图。
如图4所示,对于显示模组11的边缘区域(边缘区域包括侧壁)进行拼 接后,存在拼接造成的间隙。具有指定出射角度的光线在经历封装层111的上表面出光的第一光学路径,以及具有相同指定出射角度的光线在经历封装层111侧面-相邻显示模组的封装层侧面-相邻显示模组的封装层上表面出光的第二光学路径是不同的。具体地,当显示模组11之间进行拼接后出现空气间隙,光线沿BF射出后,到达间隙,再经过FG进入相邻的显示模组11中,经过GH后再最终沿着HI出射。AC和DE是封装层侧面的法线方向。图4中虚线示出了无间隙时光线出射的光学路径。光线从空气到封装层中的折射率是由小变大的,空气与其它物质的折射率比值小于1,且等于入射角与折射角的正弦比值(即空气和封装层的折射率之间的第一比值与入射角和折射角之间的第二比值成比例关系,所以空气中的入射角大于透明物质的折射角,且光路是可逆的。例如,封装层的材料包括但不限于以下至少一种:聚甲基丙烯酸甲酯(如亚克力、有机玻璃、PMMA塑料)(Nd/25℃1.49)、聚碳酸脂(PC塑料)(Nd/25℃1.584~1.586)、聚对本二甲酸乙二醇脂(PET)(Nd/25℃1.65)、透明尼龙(Nd/25℃1.592)、丙烯腈一苯乙烯共聚物(AS,Nd/25℃1.561)等。如光线从透明物料中的入射角是AFB,折射角是CFG,折射角CFG大于入射角AFB,再由G点回到相邻显示模组11后,GH相对于BF平行,即光线从相邻显示模组11出射后,光线的出射角度不变,但是,从拼接处20出射的光线相对于从未拼接处出射的光线,其光路是向内侧偏移了,虽然方向并没有改变。这就导致拼接处20的LED芯片总光通量虽然没有变,但是出现拼接间隙后,光线向间隙内侧偏移了。宏观表现就是,拼接处20的光线相对没有拼接处的光线更加汇聚,因此容易在拼接处20形成亮带。
本公开实施例提供一种显示模组,多个所述显示模组用于拼接进行显示。
该显示模组可以包括:光源和覆盖于光源的出光侧的封装层,封装层包括位于至少两个显示模组的拼接位置处的边缘区域,封装层的边缘区域包括封装层的侧面区域;以及光学亮度调整结构,光学亮度调整结构设置于封装层的边缘区域中,其中,光学亮度调整结构被配置为:控制出射光在拼接位置处的光学路径,以均化拼接位置的亮度。其中,光源包括主动光源和被动光源,主动光源可以是电激发光源或光激发光源等。被动光源可以是由外界提供的光源,如外部向封装层发射的光线等,在此不做限定。
图5为本公开实施例提供的显示装置的平面图。图6为图5中显示装置 的沿线B-B截取的截面结构示意图。
如图5和图6所示,以封装层边缘区域的折射率经过调整为例进行示意性说明。
该显示装置5可以包括:能够进行拼接显示的多个显示模组50,拼接处60如图中虚线所示。多个显示模组50中至少部分显示模组50包括封装层51。其中,封装层51的边缘区域包括光学亮度调整结构511,用于减小封装层侧面材料与拼接处的缝隙中材料(如空气等)之间的折射率差值,光学亮度调整结构511减小封装层51侧面对从封装层51内部至封装层51外部的光学路径的影响,以对多个显示模组50之间拼接处60的亮度进行均化。
此外,显示装置5还可以进一步包括光源和用于控制光源的电路板,以及用于固定电路板的壳体等。光源可以固定在电路板上,封装层51可以覆盖在电路板的上表面,并且包裹光源。其中,光源包括但不限于:白炽灯光源、荧光光源、LED光源、有机发光二极管(Organic Light Emitting Diode,简称OLED)、激光光源等。其中,荧光光源和激光光源可以为光泵浦或电泵浦光源,在此不做限定。
封装层51可以给被包裹在内的LED芯片52提供物理保护,封装层51的厚度可以根据应用场景而定。例如,对于需要挂载墙壁上的显示设备,其封装层51无需承受过多载荷,则封装层51的厚度可以制造的薄一些,如能覆盖住LED芯片52即可。例如,对于需要承受较多载荷的显示设备,如铺设在地面或舞台台面上的显示设备,封装层51需要承受诸如人体重量、设备重量等,通过制造较厚的封装层51可以有效提升显示设备的载荷承受能力,则封装层51的厚度可以制造的厚一些。如根据预设应用场景中所需承载的最大载荷和封装层材料的强度等材料参数计算来确定的。当然,还可以使得封装层51的厚度比上述计算结果更大一些,以提升用户使用显示设备的安全性。
需要说明的是,封装层51可以仅位于电路板的上表面,也可以同时位于电路板的上表面和至少部分侧面,这样还可以同时给电路板予以保护。此外,封装层51还可以覆盖在电路板的背面,使得电路板与外界环境隔离,在此不做限定。
光学亮度调整结构511可以减小封装层51边缘区域对从封装层51内部至封装层51外部的光学路径的影响。例如,可以通过调整光散射、光折射和 光入射角度等方式来实现。其中,光源可以是发光二极管,发光二极管设置在驱动电路板上远离支撑面的一侧。
如图6所示,显示模组50还可以包括:复用为衬底基板的驱动电路板53。其中,LED芯片52可以设置在驱动电路板53上远离支撑面的一侧。
其中,驱动电路板53的支撑面可以是没有设置LED芯片52的一面,即与驱动电路板53上设置LED芯片52面的相反面。封装层51设置在驱动电路板53上远离支撑面的一侧,并且包裹多个LED芯片52。
具体地,LED芯片52可以通过正装和/或倒装的方式固定在驱动电路板53上。显示模组50中LED芯片52可以是单色LED芯片,如显示设备50可以是红色单色显示屏、黄色单色显示屏、橙色单色显示屏、绿色单色显示屏、蓝色单色显示屏或紫色单色显示屏等。
显示模组50中可以包括多种颜色的LED芯片52。多种颜色的光包括但不限于:红色光、蓝色光、黄色光、绿色光、紫色光和白光等。其中,白光可以是红色光、蓝色光和绿色光混合而成的,白光可以是蓝色光激发荧光粉后的混合光。
显示模组50可以包括多个像素,每个像素可以由一个或多个LED芯片52组成。例如,一个像素包括红光LED芯片、蓝光LED芯片和绿光LED芯片,驱动电路可以控制红光LED芯片、蓝光LED芯片和绿光LED芯片各自的发光亮度,这样可以调节一个像素的显示颜色。例如,仅控制红光LED芯片点亮,则该像素显示红色;仅控制蓝光LED芯片点亮,则该像素显示蓝色;仅控制红光LED芯片和绿光LED芯片发光,则该像素显示黄色;控制红光LED芯片、蓝光LED芯片和绿光LED芯片发光,则该像素显示白色。此外,驱动电路还可以控制各色LED芯片在同一时刻的发光强度,这样可以使得该像素显示更多种类的颜色。
在一些实施例中,光学亮度调整结构511包括:散射微结构、透射率调整结构、折射率调整结构中的至少一种。这样便于通过在封装层51的侧面设置上述至少一种光学亮度调整结构511来调整封装层边缘区域对光学路径的影响。其中,光学亮度调整结构511可以设置在封装层51的边缘区域,如封装层51的至少部分侧面,或者封装层51的上表面中与侧面相邻的部分区域,在此不做限定。
参考关于图4的原理介绍,可以通过引入光学亮度调整结构511优化相应的影响引子来改变这种亮度不均匀。在实际的制作过程中通过工艺的改进来降低这种不良现象。具体地,优化方向是减小H点的内偏移即减小光路的汇集,或者减小光通量来实现。显示模组之间的间距可以大于0mm,并且小于0.3mm。
在一个具体实施例中,可以通过对用于成型封装层51的模具进行改进,来改变图4中封装层111的边缘区域的光通过率或者光线入射角的大小,实现改善拼接处60亮度不均匀的不良现象。其中,当光以垂直于封装层111的方向入射封装层或从封装层中出射时,入射角和折射角相等。当减小入射光与封装层111表面的法线之间的夹角时,则出射光与封装层111表面的法线之间的夹角也会变小,这样就有效改善了图4中H点的光线内偏移,即减小光路的汇集。
本公开实施例提供的显示装置5,通过优化显示模组50的封装层511的边缘区域的结构,来改变封装层51的边缘区域对光学路径的影响,改善拼接处60亮度不均匀的问题,实现整个拼接显示装置5的显示效果优化。
以下结合图7至图14对光学亮度调整结构进行示例性说明。
以下针对透射率调整结构进行示例性说明。透射率调整结构主要用于调整封装层51的边缘区域的透射率,通过降低封装层51的边缘区域的透射率来降低拼接处60的亮度,实现整个拼接显示装置5的显示效果优化。
在一些实施例中,透射率调整结构包括位于封装层侧面的低透过率结构,低透过率结构的第一透射率低于封装层的非边缘区域的第二透射率。需要说明的是,也可以通过光散射的方式来间接地降低光透射率,降低封装层边缘区域的出光强度,避免封装层侧面的光汇集现象。
具体地,透射率调整结构可以是采用相对于封装层51的透射率低的低透光率材料,以减小封装层边缘区域的透射率。此外,也可以是采用类似毛玻璃等方式来降低透射率。
图7为本公开实施例提供的沿线B-B截取截面的雾化后光路径的示意图。
如图7所示,将光路径雾化方案,其中显示模组50的出光面(非边缘区域)也是外观面,是不能进行不均匀雾化的。尤其是显示模组50的S1区域的面积较小,大工艺操作上很难实现对S1区域进行雾化。而在侧面M,其不 影响产品外观,同时也容易在工艺上实现,只需要针对已成型的显示模组50新增一个打磨工艺,对显示模组50的侧面M进行轻微打磨,其打磨的效果可以根据相应打磨工具的精细规格来选择。当侧面M雾化后,受光散射增大的影响,造成光通量减小,使得拼接处60的亮度减小,实现显示亮度均匀化。
此外,也可以针对现有的模具(用于对显示模组50进行成型)新增一个打磨工艺,将模具的与至少部分侧面M对应的表面进行轻微打磨,其打磨的效果可以根据相应打磨工具的精细规格来选择。当使用该经打磨的模具加工显示模组50时,成型的显示模组50的侧面M是雾化的,其光透过率也减小,光通量减小,使得拼接处60的亮度减小,实现显示亮度均匀化。
需要说明的是,除了采用雾化手段来对出射光进行散射,以实现减小光通量外,也可以通过半遮挡方式也调整。例如,在侧面M则涂上不同透明度的胶体也可以减小光通量,也一样可以起到弱化亮带作用。
如图7所示,在侧面M设置透射率调整结构之后,虽然没有改变或轻微改变了光线路径,没有减小光路径内偏移,即减小光路的汇集,但是降低了拼接处60的光通量。因此,有效降低了拼接处60的亮度,实现显示亮度均匀化。
需要说明的是,透过率的调整大小,可以根据实际产品型号而定,如先检测出拼接处60的光强相对于非拼接处的光强的比例,然后基于该比例确定透过率的调整大小。因此,可以基于该透过率的调整大小来设计透射率调整结构,如透射率调整结构的尺寸、材料类型、膜层厚度等参数。
以下针对折射率调整结构进行示例性说明。折射率调整结构主要用于通过调整封装层边缘区域的折射率来减弱光路的汇集。
图8为本公开实施例提供的沿线B-B截取截面的折射率分化后光路径的示意图。
如图8所示,可以通过改变封装层51边缘区域的折射率,如减小封装层51边缘区域的折射率来减少光线内偏移,实现减小光路的汇集。具体地,根据折射率公式可知,入射角α不变时,则出射角β随着封装层折射率η的不同而不同。当封装层折射率η越接近空气折射率(空气折射率为1)时,则出射角与入射角的取值越接近。折射率公式如(1)所示。
η=sin α/sin β     公式(1)
其中,η为封装层折射率,α为入射角,β为出射角。
通过公式(1)可以确定减少封装层边缘区域的折射率有助于改善光线内偏移,实现减小光路的汇集。参考图8所示,当从空气进入其它介质的相对折射率越大,其偏移角度也越大,因此采用两种不同折射率的透明材质,拼接边缘采用偏移角度较小的材料,侧H点向外汇集的范围也随之减小,同样可以减小亮带。
在一些实施例中,可以通过改变封装层边缘区域的材料,来改变封装层边缘区域的折射率。
图9为本公开实施例提供的折射率调整结构的示意图。
如图9所示,封装层51边缘区域的材料与封装层51非边缘区域的材料不同,通过使用低折射率材料5111来降低封装层51非边缘区域的折射率。
图9中采用低折射率材料5111代替封装层边缘区域的原使用材料。例如,透明封装材料包括但不限于以下至少一种:聚甲基丙烯酸甲酯(如亚克力、有机玻璃、PMMA塑料)、聚碳酸脂(PC塑料)、聚对本二甲酸乙二醇脂(PET)、透明尼龙、丙烯腈一苯乙烯共聚物(AS)等。如果原封装层的材料使用的亚克力,则封装层边缘区域的材料可以使用具有更低折射率的材料来代替亚克力,这样就能有效减小光路的汇集。
具体地,可以通过改进灌胶机来便捷地实现封装层51的边缘区域的材料不同于非边缘区域的材料。例如,灌胶机包括多个灌胶喷嘴,每个灌胶喷嘴用于实现针对封装层51的指定区域的灌胶作业。通过改变与封装层边缘区域对应的灌胶喷嘴流出的材料,来实现改变封装层51的边缘区域的折射率。
在一些实施例中,边缘区域封装材料与封装层51的非边缘区域封装材料可以相同。例如,可以通过对封装层边缘区域的材料进行改进来实现改变封装层边缘区域的折射率。由于无需对封装层51的基材进行替换,有助于减少原材料种类,降低仓储、取料等生产制造成本。此外,还有助于减小边缘区域与非边缘区域的封装层之间的色差。
图10为本公开实施例提供的微晶结构和封装材料的示意图。
如图10所示,可以通过对封装层51的边缘区域材料进行掺杂或混料等方式进行改进,这样还便于通过调整掺杂量或混料量来精细地调整封装层边缘区域的折射率。例如,相邻的显示模块50之间的间距小于0.2mm,封装层 非边缘区域的材料折射率为a,则边缘区域的材料折射率η可以为:0.85a≤η<a。如亚克力材料折射率为1.49,通过上述掺杂、添加剂、混料等方式将封装层边缘区域的材料折射率调整为1.1、1.14、1.18、1.2、1.23、1.35、1.38、1.42、1.45或1.48等中任意一种取值。
例如,折射率调整结构的材料包括边缘区域封装材料和分散在边缘区域封装材料中的微晶结构5112。其中,微晶结构5112包括但不限于PC聚碳酸酯、透明硅脂颗粒等可以降低封装层材料的折射率的微晶中至少一种。其中,可以通过搅拌等操作使得微晶结构5112分散在封装材料中,以便进行封装层成型。总体以一种材料为主,只是在封装层的边缘处以微晶结构作为添加剂进行改性。
以下针对散射微结构进行示例性说明。散射微结构主要用于通过减小封装层边缘区域的法线与入射光之间的夹角来减弱光路的汇集。在一些实施例中,可以通过设置在封装层边缘区域的规则微棱镜结构和/或雾化结构来调整光散射特性。
图11为本公开实施例提供的沿线B-B截取截面的光线扩散后光路径的示意图。
参考如公式(1)所示的折射率公式,当封装层材料的折射率不变时,通过改变入射角,可以调节出射角。因此,通过公式(1)可以确定在封装层材料的折射率不变时,可以通过减小入射角来减小出射角,以改善光线内偏移,实现减小光路的汇集。例如,如果入射光与封装层51表面垂直,则出射光也与介质表面垂直,虽然很难使得所有出射光线都与封装层51侧面垂直,但是可以通过在封装层51侧面制备特定形状的散射微结构来减小所有出射光线与封装层51侧面各自出射角的平均值。
如图11所示,侧面M为封装层的侧面,而假设M1和M2为两个相临拼接模组的侧面角度时,刚好与发射光BF垂直,则其将和原有的混合光区S1是一样的,即不会出现亮带。而随着M1和M2的方向改变,H1I1出射光将出现左右偏移即实现亮区和暗区。这样就会导致拼接处附近出现亮区或暗区,同时M侧面也不便于制造成这样的斜面。为了解决上述问题,可以采用侧面M的微凌镜化。
在一些实施例中,散射微结构包括位于封装层51至少一个侧面的规则微 棱镜结构,规则微棱镜结构的顶角的范围包括:60°-135°。这样,当不同的光线射到同一微凌镜面时,其出射光H1、I1的位置都是不一样的,同样的光通量将实现泛化的均匀分布,使亮带消失。其中,规则微棱镜结构有效增加了光学路径的面积,使得光线更容易进行干涉。同时顶角的角度不易过大,避免边角处光线损失过多。
具体地,可以通过采用经改进的模具来制造上述规则微棱镜结构。如模具的内表面设置有与规则微棱镜结构互补的微结构,在进行灌胶后,即可形成具有规则微棱镜结构的封装层51。
图12为本公开实施例提供的光线扩散后显示模组的截面示意图。
如图12所示,封装层51的侧面设置有多个散射微结构5113,该散射微结构5113可以覆盖整个封装层51的侧面。需要说明的是,散射微结构5113可以是从封装层51表面突起的微结构,也可以是内凹的微结构,在此不做限定。散射微结构5113可以不覆盖位于封装层51底部的驱动电路板53,散射微结构5113可以覆盖位于封装层51底部的驱动电路板53。
在一些实施例中,规则微棱镜结构的最大尺寸相对于封装层51的厚度的比例在2%~20%范围内。一方面,这样的尺寸设置能满足光线扩散需求。另一方面,这样的尺寸设置有助于提升设备安全性和使用安全性,降低在搬运过程中对规则微棱镜结构的损伤和对用户造成划伤的风险。其中,上述厚度的比例决定了边缘处可以放置多少规则微棱镜结构,数量过少会造成光线干涉不足,数量过多增加工艺难度,上述比列范围的亮度均化效果较好。
图13(a)~图13(h)为本公开实施例提供的规则微棱镜结构的示意图。
如图13(a)~图13(h)所示,是规则微棱镜结构的截面示意图。规则微棱镜结构可以包括一个或多个顶角,顶角的角度范围可以包括60°-135°。例如,图13(a)示出的可以是三棱锥或三棱柱的截面图,图13(c)示出的可以是半圆柱形或长方体的截面图。需要说明的是,图13(a)~图13(h)所示的微结构仅为示例性示出,对上述微结构进行简单形变得到的散射微结构,多种能用于实现光通量的泛化均匀分布的微结构都适用。
在一些实施例中,为了提升显示设备表面平整度和外观的美感,光学亮度调整结构还可以包括平整结构5114,平整结构5114设置在封装层51的侧面,并且位于规则微棱镜结构和封装层51的上表面之间。
例如,封装层51的厚度是X,则微棱镜的最大尺寸是2%X~20%X。平整结构5114的尺寸可以为0.5mm以上,这样考虑了工装误差0.3mm。封装层厚度基于应用场景对显示装置5的机械强度的需求而定。其中,最大尺寸可以是指:最大宽度、最大长度和/或最大高度中任一者,或者最大宽度、最大长度和最大高度中的最大值。
在一些实施例中,散射微结构可以包括位于封装层侧面的非规则的散射微结构,例如,该非规则的散射微结构可以是雾化结构。
图14为本公开另一实施例提供的光线扩散后显示模组的截面示意图。
如图14所示,封装层51的侧面中,临近封装层51上表面的区域是较平整的区域。具体地,光学亮度调整结构还包括平整结构5114,其设置在散射微结构5113的上侧。例如,可以在用于成型封装层51的模具中采用上侧平面,下侧外凸的锯齿凌镜结构,这样就可以便捷地形成与模具内表面互补的散射微结构,在拼接的时候不影响外观,而下面为内凹的凌镜面,也不影响外观。
图15为本公开另一实施例提供的显示模组的截面结构示意图。
如图15所示,该显示模组50还可以进一步包括位于驱动电路板53下表面的***模块54和固定结构55。
其中,***模块54可以包括一个或多个处理器以及存储器等,用于实现诸如功率调整、显示图像数据处理等。存储器中可以存储有显示模组50的固件信息和程序等,固件信息如行列信息等,程序可以为驱动程序等。
固定结构55可以是便于进行拆装的结构,包括但不限于卡扣固定、磁吸力固定、过盈配合固定、栓锁固定等,在此不做限定。
图16为本公开另一实施例提供的显示装置的截面结构示意图。
如图16所示,显示装置5还可以包括:壳体,其中,至少一个显示模组50可拆卸地固定在壳体上。
例如,壳体可以包括基板163、支撑结构162和与固定结构55相配合的安装结构161。例如,支撑结构162固定在基板163上,支撑结构162远离基板163的一侧设置有安装结构161,当固定结构55是磁力部件时,则安装结构161可以包括磁力部件,以便通过固定结构55和安装结构161的吸合,实现对显示模组50的固定和定位。例如,一个显示装置5包括四个显示模组 50,以2*2的阵列排布,图16中显示了其中的两个显示模组50。
此外,显示装置还可以包括:间隙层,间隙层位于相邻的显示模组之间,间隙层的厚度由相邻的两个封装层之间的间距来确定,间隙层的折射率小于封装层的折射率。例如,间隙层可以是空气。例如,间隙层可以是折射率小于亚克力材料折射率的材料制成。例如,可以在拼装好显示装置后,在显示模组之间的缝隙处注入低折射率材料,如流体材料、低折射率的固体材料等。其中,注入的材料可以通过诸如加热、光照等工艺来改变其性质,如由流体材料转变为固体材料,或者由固体材料转变为流体材料等。
在一个具体实施例中,以LED显示屏为例进行示例性说明。LED显示屏包括多个同尺寸的显示模组50,进行阵列拼接出来的,理论上是可以实现无限尺寸的拼接,实现超大的显示效果,这也是LED显示相对于LCD液晶显示最大的优点。作为通用的显示模组50,其需要适合不同的使用场景,如户外、舞台地面等。因此对于LED芯片52的保护也是必要的,可以采用针对整个显示模组50的一次性封装保护,使得其光学和硬度都可以满足各种需求。其中驱动电路板53可以为PCB板,LED灯珠的封闭载体,基板163可以包括结构框体和后壳,固定结构55包括封闭在PCB板背面的磁珠,安装结构161包括固定在支撑结构162上的磁珠,两个磁珠相互吸引,以对显示模组50进行固定。需要说明的是,一个显示模组50可以由一个或多个灯板阵列组成的。
本公开实施例提供的显示装置,通过对封装层边缘区域的优化,使得在显示单色图像时,整体显示效果中没有明显的亮度不均匀,有效提升了显示效果。此外,该显示装置的拆卸和安装较便捷,并且能够应用于多种场景中,有效提升了用户体验。
本公开的另一方面提供了一种显示模组制造方法。
图17为本公开实施例提供的显示模组制造方法的流程图。
如图17所示,该显示模组制造方法170可以包括操作S171~操作S172。
在操作S171,提供显示组件,显示组件包括:复用为衬底基板的驱动电路板,以及设置在驱动电路板上远离支撑面一侧的多个光源。
在本实施例中,显示组件、驱动电路板、发光二极管等可以参考如上实施例中相关部分的说明,在此不再详述。
在操作S172,在驱动电路板上远离支撑面的一侧形成封装层,封装层包括位于至少两个显示模组的拼接位置处的边缘区域,该封装层的边缘区域包括封装层的侧面区域,以及设置于封装层的边缘区域中光学亮度调整结构,光学亮度调整结构被配置为:控制至少源自光源的出射光在拼接位置处的光学路径,以均化拼接位置的亮度。
在本实施例中,封装层、边缘区域、光学亮度调整结构、光学路径和显示效果均化等可以参考如上实施例中相关部分的说明,在此不再详述。
其中,在驱动电路板上远离支撑面的一侧形成封装层的成型操作,可以是通过改进的模具和现有的灌胶机的配合使用来实现的。例如,将显示组件固定在内表面具有指定结构的模具中,然后使用灌胶机在模具中进行灌胶操作,这样就可以直接成型具有光学亮度调整结构的封装层。其中,指定结构与光学亮度调整结构是互补的。
此外,上述成型操作也可以采用现有的模具和改进的灌胶机的配合使用来实现。例如,灌胶机的多个喷嘴中与封装层边缘区域对应的喷嘴的供给料,可以相对于其他喷嘴供给料具有较低的折射率。
此外,上述成型操作也可以采用现有的模具和现有的灌胶机的配合使用来实现。例如,对成型后的封装层的侧面进行打磨。
本公开的另一方面提供了一种模具。
图18为一种模具的截面结构示意图。图19为本公开实施例提供的模具的截面结构示意图。
如图18和图19所示,该模具180包括主体181和设置在主体181上的互补光学亮度调整结构1811。
在本实施例中,互补光学亮度调整结构1811用于在显示模组50的封装层51的边缘区域形成光学亮度调整结构511,光学亮度调整结构511与互补光学亮度调整结构1811的形状互补,光学亮度调整结构51减小封装层边缘区域对从封装层51内部至封装层51外部的光学路径的影响,以对多个显示模组50之间拼接处60的亮度进行均化。
在一些实施例中,互补光学亮度调整结构1811可以是雾化结构、散射微结构等。
图20为本公开另一实施例提供的模具的截面结构示意图。
如图20所示,以散射微结构为例进行说明。该主体181的内表面上可以设置突出的散射微结构18113。其中,突出的散射微结构18113可以覆盖主体181的全部内表面或部分内表面。该突出的散射微结构18113可以和图13中的结构互补。需要说明的是,该主体181的内表面上也可以设置凹形的散射微结构,或者同时设置有突出的散射微结构18113和凹形的散射微结构。
图21为本公开另一实施例提供的模具的截面结构示意图。
如图21所示,互补光学亮度调整结构1811可以包括突出的散射微结构18113和平整微结构18114。在利用该模具180制作显示模组时,可以将模具180固定在显示组件的侧周。其中,模具180可以由多个可拆分的部分组成,在进行成型时需要将多个被拆分的部分进行拼装和固定,这样有助于提升使用便捷度。例如,弹簧提供夹持力以使得模具180相对的两边夹持显示组件。此外,模具180也可以是一个整体,直接将显示组件置入模具180中。
图21示出了针对LED显示模组的封装层的成型工艺。将固晶完成的驱动电路板53放到模具180的主体181之内,通过灌胶机将胶体均匀的灌入到模具180中后,经过整平和固化后把模具180去掉就实现了驱动电路板53的封装。其中,模具180可以实现以下至少一种策略:一方面,通过雾化光路径,减小光能量来减小亮度。一方面,通过光源的泛化,使其光线的混合区分化来减小拼接亮带。
本公开的另一方面还提供了一种灌胶机。
图22为一种灌胶机的截面结构示意图。
如图22所示,该灌胶机可以包括一个灌胶通路221和多个灌胶喷嘴222。其中,多个灌胶喷嘴222可以是均匀排布的。当灌胶喷嘴222与模具180(包括主体181和互补光学亮度调整结构1811)对准后,通过各灌胶喷嘴222进行灌胶,实现对封装层51的制备。封装层51的厚度可以根据灌胶喷嘴222的开口尺寸、压力、灌胶材料粘度和灌胶时长等进行计算。此外,也可以通过标定的方式确定与指定封装层厚度对应的灌胶工艺参数。
此外,为了满足特殊需求,如多个显示模组之间拼接处的亮度进行均化,可以对灌胶机进行改进。
图23为本公开实施例提供的灌胶机的截面结构示意图。
如图23所示,该灌胶机可以包括第一灌胶通路224和第二灌胶通路223。
图23中第一灌胶通路224与显示模组边缘区域相对应,第一灌胶通路224用于在显示模组边缘区域形成具有第一折射率的第一子封装层。
第二灌胶通路223与显示模组非边缘区域相对应。第二灌胶通路223用于在显示模组非边缘区域形成具有第二折射率的第二子封装层。
具体地,第一灌胶通路224和第二灌胶通路223之间相互隔离,第一子封装层和第二子封装层共同构成显示模组50的封装层51,第一子封装层用于减小封装层边缘区域对从封装层51内部至封装层51外部的光学路径的影响,以对多个显示模组之间拼接处的亮度进行均化。
其中,第一灌胶通路224和第二灌胶通路223可以采用相互隔离的管道来实现,两个管道中流体压力可以相同或不同。第一灌胶通路224的单个灌胶喷嘴222和第二灌胶通路223的单个灌胶喷嘴222的灌胶量可以相同或不同。第一灌胶通路224和第二灌胶通路223分别可以具有单排或多排灌胶喷嘴222。例如,第二灌胶通路223的灌胶喷嘴222的个数可以多于第一灌胶通路224的灌胶喷嘴222的个数。
在一些实施例中,对应于边缘区域的单个灌胶喷嘴的灌胶量和对应于非边缘区域的单个灌胶喷嘴的灌胶量不同。
图24为本公开另一实施例提供的灌胶机的截面结构示意图。
如图24所示,对应于边缘区域的单个灌胶喷嘴222’的开口尺寸,小于非边缘区域的单个灌胶喷嘴222的开口尺寸。
例如,第一灌胶量相对于第二灌胶量的比值范围包括70~90%,其中,第一灌胶量是与显示模组边缘区域对应的单个灌胶喷嘴222’的灌胶量,第二灌胶量是与显示模组非边缘区域对应的单个灌胶喷嘴222的灌胶量。通过以上方式可以使得边缘区域一路的灌胶量是其它区域的一路灌胶量的70~90%之间,避免溢胶。
需要说明的是,为了实现第一灌胶量相对于第二灌胶量的比值范围包括70~90%,除了可以改变第一灌胶通路224的管教喷嘴的开口尺寸之外,还可以通过改变第一灌胶通路224的工艺参数来实现,如改变流体压力、灌胶时长等,在此不做限定。
本公开实施例提供的灌胶机,能够便捷地在封装层的边缘区域和非边缘区域形成不同折射率,以减弱光路的汇集。
本公开实施例提供的灌胶机,将原有的灌胶机改造成两路灌胶通路,分别灌入不同折射率的材质,从而实现改善封装层拼接处亮度不均匀的问题。作为补充,不同折射率材质的制作,一种可以为常规透明材料,另一种可以在常规透明材料中混合低折射率的微晶颗粒,这样两者在灌胶一体成型时不会形成色差影响。
本公开的另一方面提供了一种显示装置。
图25为本公开实施例提供的显示装置的结构示意图。
如图25所示,该显示装置2500包括如上所示的一个或多个显示模组。
此外,该显示装置2500可以包括一个或多个处理器2510和计算机可读存储介质2520。
具体地,处理器2510例如可以包括通用微处理器、指令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC)),等等。处理器2510还可以包括用于缓存用途的板载存储器。
计算机可读存储介质2520,例如可以是非易失性的计算机可读存储介质,具体示例包括但不限于:磁存储装置,如磁带或硬盘(HDD);光存储装置,如光盘(CD-ROM);存储器,如随机存取存储器(RAM)或闪存等等。
计算机可读存储介质2520可以包括程序2521,该程序2521可以包括代码/计算机可执行指令,其在由处理器2510执行时使得处理器2510进行图像显示数据处理。例如,在示例实施例中,程序2521中的代码可以包括一个或多个程序模块,例如包括程序模块2521A、程序模块2521B、……。
在一些实施例中,显示装置2500可以为:电视、显示器、数码相框、手机、智能手表、平板电脑等任何具有显示功能及摄像功能的产品或部件。
虽然结合附图对本公开进行了说明,但是附图中公开的实施例旨在对本公开的实施例进行示例性说明,而不能理解为对本公开的一种限制。附图中的尺寸比例仅仅是示意性的,并不能理解为对本公开的限制。
上述实施例仅例示性的说明了本公开的原理及构造,而非用于限制本公开,本领域的技术人员应明白,在不偏离本公开的总体构思的情况下,对本公开所作的任何改变和改进都在本公开的范围内。本公开的保护范围,应如本公开的权利要求书所界定的范围为准。

Claims (14)

  1. 一种显示模组,多个所述显示模组用于拼接进行显示,所述显示模组包括:
    光源和覆盖于所述光源的出光侧的封装层,所述封装层包括位于至少两个显示模组的拼接位置处的边缘区域,所述封装层的边缘区域包括所述封装层的侧面区域;以及
    光学亮度调整结构,所述光学亮度调整结构设置于所述封装层的边缘区域中,
    其中,所述光学亮度调整结构被配置为:控制至少源自所述光源的出射光在所述拼接位置处的光学路径,以均化所述拼接位置的亮度。
  2. 根据权利要求1所述的显示模组,其中,所述光学亮度调整结构包括:散射微结构、透射率调整结构、折射率调整结构中至少一种。
  3. 根据权利要求2所述的显示模组,其中,所述散射微结构包括位于所述封装层至少一个侧面的规则微棱镜结构,所述规则微棱镜结构的顶角的范围包括:60°-135°。
  4. 根据权利要求3所述的显示模组,其中,所述规则微棱镜结构的最大尺寸相对于封装层的厚度的比例在2%~20%范围内。
  5. 根据权利要求3所述的显示模组,其中,所述光学亮度调整结构还包括平整结构,所述平整结构设置在所述封装层的侧面,并且位于所述规则微棱镜结构和所述封装层的远离所述光源侧面之间。
  6. 根据权利要求2所述的显示模组,其中,所述散射微结构包括位于封装层侧面的雾化结构。
  7. 根据权利要求2所述的显示模组,其中,所述透射率调整结构的第一透射率低于所述封装层的非边缘区域的第二透射率。
  8. 根据权利要求2所述的显示模组,其中,所述折射率调整结构的材料包括边缘区域封装材料和分散在所述边缘区域封装材料中的微晶结构。
  9. 根据权利要求8所述的显示模组,其中,所述边缘区域封装材料与所述封装层的非边缘区域封装材料相同。
  10. 根据权利要求1至9任一项所述的显示模组,还包括:
    复用为衬底基板的驱动电路板;
    所述光源包括发光二极管,所述发光二极管设置在所述驱动电路板上远离支撑面的一侧;
    其中,所述封装层设置在所述驱动电路板上远离所述支撑面的一侧,并且包裹多个发光二极管。
  11. 一种显示装置,包括:
    如权利要求1至10任一项所述的显示模组;
    壳体;
    间隙层;
    其中,所述显示模组可拆卸地固定在所述壳体上,所述间隙层位于相邻的显示模组之间,所述间隙层的厚度由相邻的两个封装层之间的间距来确定,所述间隙层的折射率小于所述封装层的折射率。
  12. 一种模具,包括:
    主体;以及
    设置在所述主体上的互补光学亮度调整结构,
    其中,所述互补光学亮度调整结构用于在显示模组的封装层的边缘区域形成光学亮度调整结构,所述光学亮度调整结构与所述互补光学亮度调整结构的形状互补,所述光学亮度调整结构被配置为:控制至少源自所述封装层中光源的出射光在所述封装层的拼接位置处的光学路径,以均化所述拼接位置的光学显示效果。
  13. 一种灌胶机,包括:
    与显示模组边缘区域对应的第一灌胶通路,所述第一灌胶通路用于在显示模组边缘区域形成具有第一折射率的第一子封装层;以及
    与显示模组非边缘区域对应的第二灌胶通路,所述第二灌胶通路用于在显示模组非边缘区域形成具有第二折射率的第二子封装层,
    其中,所述第一灌胶通路和所述第二灌胶通路之间相互隔离,所述第一子封装层和所述第二子封装层共同构成所述显示模组的封装层,所述第一子封装层被配置为:控制至少源自光源的出射光在所述封装层的拼接位置处的光学路径,以均化所述拼接位置的光学显示效果。
  14. 根据权利要求13所述的灌胶机,其中,第一灌胶量相对于第二灌胶量的比值范围包括70~90%,其中,所述第一灌胶量是与所述显示模组边缘区域对应的单个灌胶喷嘴的灌胶量,所述第二灌胶量是与所述显示模组非边缘区域对应的单个灌胶喷嘴的灌胶量。
PCT/CN2021/125661 2021-03-31 2021-10-22 显示模组、显示装置、模具和灌胶机 WO2022205854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110352337.9A CN115148114A (zh) 2021-03-31 2021-03-31 显示模组、显示装置、模具和灌胶机
CN202110352337.9 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022205854A1 true WO2022205854A1 (zh) 2022-10-06

Family

ID=83404951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125661 WO2022205854A1 (zh) 2021-03-31 2021-10-22 显示模组、显示装置、模具和灌胶机

Country Status (2)

Country Link
CN (1) CN115148114A (zh)
WO (1) WO2022205854A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062795A (zh) * 2014-06-13 2014-09-24 京东方科技集团股份有限公司 拼接屏边框弱化结构及拼接屏
CN104299519A (zh) * 2013-07-15 2015-01-21 深圳富泰宏精密工业有限公司 无缝拼接显示屏
TW201513071A (zh) * 2013-07-23 2015-04-01 Fih Hong Kong Ltd 無縫拼接顯示幕
CN107479113A (zh) * 2016-06-07 2017-12-15 鸿富锦精密工业(深圳)有限公司 光学膜及窄边框显示装置
CN108109533A (zh) * 2017-12-15 2018-06-01 深圳市晶台股份有限公司 一种实现led显示模组的封装方法
CN108205976A (zh) * 2018-02-26 2018-06-26 深圳市视通联合电子有限公司 一种用于拼接屏的无缝液晶显示方法
CN109377892A (zh) * 2018-12-26 2019-02-22 深圳市眸合科技有限公司 一种实现多屏幕无缝拼接显示的光学***
CN109785753A (zh) * 2019-01-29 2019-05-21 云谷(固安)科技有限公司 一种拼接显示面板及显示装置
CN109859618A (zh) * 2019-01-21 2019-06-07 云谷(固安)科技有限公司 一种显示面板及显示装置
CN210378208U (zh) * 2019-07-24 2020-04-21 深圳市科润光电股份有限公司 一种喷胶封装的数显模组

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299519A (zh) * 2013-07-15 2015-01-21 深圳富泰宏精密工业有限公司 无缝拼接显示屏
TW201513071A (zh) * 2013-07-23 2015-04-01 Fih Hong Kong Ltd 無縫拼接顯示幕
CN104062795A (zh) * 2014-06-13 2014-09-24 京东方科技集团股份有限公司 拼接屏边框弱化结构及拼接屏
CN107479113A (zh) * 2016-06-07 2017-12-15 鸿富锦精密工业(深圳)有限公司 光学膜及窄边框显示装置
CN108109533A (zh) * 2017-12-15 2018-06-01 深圳市晶台股份有限公司 一种实现led显示模组的封装方法
CN108205976A (zh) * 2018-02-26 2018-06-26 深圳市视通联合电子有限公司 一种用于拼接屏的无缝液晶显示方法
CN109377892A (zh) * 2018-12-26 2019-02-22 深圳市眸合科技有限公司 一种实现多屏幕无缝拼接显示的光学***
CN109859618A (zh) * 2019-01-21 2019-06-07 云谷(固安)科技有限公司 一种显示面板及显示装置
CN109785753A (zh) * 2019-01-29 2019-05-21 云谷(固安)科技有限公司 一种拼接显示面板及显示装置
CN210378208U (zh) * 2019-07-24 2020-04-21 深圳市科润光电股份有限公司 一种喷胶封装的数显模组

Also Published As

Publication number Publication date
CN115148114A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN215118140U (zh) 显示模组、显示装置、模具和灌胶机
TWI494655B (zh) 具有結構性薄膜之空孔背光裝置及具有該空孔背光裝置之顯示器
US8807774B2 (en) Semispecular hollow backlight with gradient extraction
JP5936824B2 (ja) バックライトユニット及びそれを用いたディスプレイ装置
US9541698B2 (en) Backlights having selected output light flux distributions and display systems using same
CN101910708B (zh) 照明装置和液晶显示装置
CN106019697A (zh) 显示装置
US7637647B2 (en) Back light module
CN202303188U (zh) Led光源的透镜结构及其应用的led封装体
CN103912820B (zh) 发光装置及其相关显示***
CN101782203B (zh) 一种包含自由曲面反射器的背光***
CN110609417A (zh) 灯板及其制造方法、背光源及显示装置
WO2021213042A1 (zh) 显示模组及显示装置
WO2023155527A1 (zh) 背光模组及显示装置
KR101408324B1 (ko) 광 확산렌즈
WO2020063155A1 (zh) 一种led显示屏
CN104487762B (zh) 面光源装置和液晶显示装置
CN110471221A (zh) 一种均匀混光的高色域直下式背光模组
WO2022205854A1 (zh) 显示模组、显示装置、模具和灌胶机
US10782469B2 (en) Light guide plate and its fabricating method, as well as backlight module
US20240103318A1 (en) Quantum dot lens and backlight module
CN207586455U (zh) 一种反射透镜及其超薄型背光模组
WO2019123850A1 (ja) 光源デバイスおよびそれを用いたディスプレイ装置
KR20210034995A (ko) 디스플레이 장치, 이에 구비되는 도광판 및 그 제조 방법
TW202105021A (zh) 調光膜片、背光模組及顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 17.01.2024 (EPO FORM 1205A)