WO2022205311A1 - Downlink control information indicating a transmission configuration indicator state - Google Patents

Downlink control information indicating a transmission configuration indicator state Download PDF

Info

Publication number
WO2022205311A1
WO2022205311A1 PCT/CN2021/084945 CN2021084945W WO2022205311A1 WO 2022205311 A1 WO2022205311 A1 WO 2022205311A1 CN 2021084945 W CN2021084945 W CN 2021084945W WO 2022205311 A1 WO2022205311 A1 WO 2022205311A1
Authority
WO
WIPO (PCT)
Prior art keywords
quasi
information
location type
transmission configuration
location
Prior art date
Application number
PCT/CN2021/084945
Other languages
French (fr)
Inventor
Chenxi Zhu
Bingchao LIU
Yi Zhang
Wei Ling
Lingling Xiao
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2021/084945 priority Critical patent/WO2022205311A1/en
Publication of WO2022205311A1 publication Critical patent/WO2022205311A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the subject matter disclosed herein relates generally to wireless communications and more particularly relates to downlink control information indicating a transmission configuration indicator state.
  • a transmission configuration indicator ( “TCI” ) may be used. TCIs may have a corresponding TCI state.
  • the method includes transmitting a radio resource control message to a user equipment.
  • the radio resource control message includes at least one transmission configuration indicator state.
  • the method includes transmitting to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • An apparatus for downlink control information indicating a transmission configuration indicator state includes a transmitter that: transmits a radio resource control message to a user equipment, wherein the radio resource control message includes at least one transmission configuration indicator state; and transmits to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • a method for downlink control information indicating a transmission configuration indicator state includes receiving a radio resource control message including at least one transmission configuration indicator state. In various embodiments, the method includes receiving a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • an apparatus for downlink control information indicating a transmission configuration indicator state includes a receiver that: receives a radio resource control message including at least one transmission configuration indicator state; and receives a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • Figure 1 is a schematic block diagram illustrating one embodiment of a wireless communication system for downlink control information indicating a transmission configuration indicator state
  • Figure 2 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for downlink control information indicating a transmission configuration indicator state
  • Figure 3 is a schematic block diagram illustrating another embodiment of an apparatus that may be used for downlink control information indicating a transmission configuration indicator state
  • FIG. 4 illustrates one embodiment of a TCI state definition
  • Figure 5 is a schematic flow chart diagram illustrating one embodiment of a method for downlink control information indicating a transmission configuration indicator state
  • Figure 6 is a schematic flow chart diagram illustrating another embodiment of a method for downlink control information indicating a transmission configuration indicator state.
  • embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit, ” “module” or “system. ” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • modules may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very-large-scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors.
  • An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
  • a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices.
  • the software portions are stored on one or more computer readable storage devices.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing the code.
  • the storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a storage device More specific examples (a non-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory ( “RAM” ) , a read-only memory ( “ROM” ) , an erasable programmable read-only memory ( “EPROM” or Flash memory) , a portable compact disc read-only memory (CD-ROM” ) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages.
  • the code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
  • LAN local area network
  • WAN wide area network
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • Figure 1 depicts an embodiment of a wireless communication system 100 for downlink control information indicating a transmission configuration indicator state.
  • the wireless communication system 100 includes remote units 102 and network units 104. Even though a specific number of remote units 102 and network units 104 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 102 and network units 104 may be included in the wireless communication system 100.
  • the remote units 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , IoT devices, or the like.
  • the remote units 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like.
  • the remote units 102 may be referred to as subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, UE, user terminals, a device, or by other terminology used in the art.
  • the remote units 102 may communicate directly with one or more of the network units 104 via uplink ( “UL” ) communication signals and/or the remote units 102 may communicate directly with other remote units 102 via sidelink communication.
  • UL uplink
  • the network units 104 may be distributed over a geographic region.
  • a network unit 104 may also be referred to as an access point, an access terminal, a base, a base station, a Node-B, an eNB, a gNodeB ( “gNB” ) , a Home Node-B, a RAN, a relay node, a device, a network device, an integrated and access backhaul ( “IAB” ) node, a donor IAB node, or by any other terminology used in the art.
  • the network units 104 are generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding network units 104.
  • the radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks, among other networks.
  • core networks like the Internet and public switched telephone networks, among other networks.
  • the wireless communication system 100 is compliant with the 5G or NG (Next Generation) standard of the third generation partnership program ( “3GPP” ) protocol, wherein the network unit 104 transmits using NG RAN technology. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocol, for example, WiMAX, among other protocols.
  • the present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
  • the network units 104 may serve a number of remote units 102 within a serving area, for example, a cell or a cell sector via a wireless communication link.
  • the network units 104 transmit downlink ( “DL” ) communication signals to serve the remote units 102 in the time, frequency, and/or spatial domain.
  • DL downlink
  • a network unit 104 may transmit a radio resource control message to a user equipment.
  • the radio resource control message includes at least one transmission configuration indicator state.
  • the m network unit 104 may transmit to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state. Accordingly, a network unit 104 may be used for downlink control information indicating a transmission configuration indicator state.
  • a remote unit 102 may receive a radio resource control message including at least one transmission configuration indicator state.
  • the remote unit 102 may receive a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state. Accordingly, a remote unit 102 may be used for downlink control information indicating a transmission configuration indicator state.
  • Figure 2 depicts one embodiment of an apparatus 200 that may be used for downlink control information indicating a transmission configuration indicator state.
  • the apparatus 200 includes one embodiment of the remote unit 102.
  • the remote unit 102 may include a processor 202, a memory 204, an input device 206, a display 208, a transmitter 210, and a receiver 212.
  • the input device 206 and the display 208 are combined into a single device, such as a touchscreen.
  • the remote unit 102 may not include any input device 206 and/or display 208.
  • the remote unit 102 may include one or more of the processor 202, the memory 204, the transmitter 210, and the receiver 212, and may not include the input device 206 and/or the display 208.
  • the processor 202 may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 202 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller.
  • the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein.
  • the processor 202 is communicatively coupled to the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212.
  • the memory 204 in one embodiment, is a computer readable storage medium.
  • the memory 204 includes volatile computer storage media.
  • the memory 204 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) .
  • the memory 204 includes non-volatile computer storage media.
  • the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 204 includes both volatile and non-volatile computer storage media.
  • the memory 204 also stores program code and related data, such as an operating system or other controller algorithms operating on the remote unit 102.
  • the input device 206 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
  • the input device 206 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen.
  • the input device 206 includes two or more different devices, such as a keyboard and a touch panel.
  • the display 208 may include any known electronically controllable display or display device.
  • the display 208 may be designed to output visual, audible, and/or haptic signals.
  • the display 208 includes an electronic display capable of outputting visual data to a user.
  • the display 208 may include, but is not limited to, an liquid crystal display ( “LCD” ) display, an LED display, an organic light emitting diode ( “OLED” ) display, a projector, or similar display device capable of outputting images, text, or the like to a user.
  • the display 208 may include a wearable display such as a smart watch, smart glasses, a heads-up display, or the like.
  • the display 208 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
  • the display 208 includes one or more speakers for producing sound.
  • the display 208 may produce an audible alert or notification (e.g., a beep or chime) .
  • the display 208 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback.
  • all or portions of the display 208 may be integrated with the input device 206.
  • the input device 206 and display 208 may form a touchscreen or similar touch-sensitive display.
  • the display 208 may be located near the input device 206.
  • the receiver 212 receives a radio resource control message including at least one transmission configuration indicator state; and receives a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • the remote unit 102 may have any suitable number of transmitters 210 and receivers 212.
  • the transmitter 210 and the receiver 212 may be any suitable type of transmitters and receivers.
  • the transmitter 210 and the receiver 212 may be part of a transceiver.
  • Figure 3 depicts another embodiment of an apparatus 300 that may be used for downlink control information indicating a transmission configuration indicator state.
  • the apparatus 300 includes one embodiment of the network unit 104.
  • the network unit 104 may include a processor 302, a memory 304, an input device 306, a display 308, a transmitter 310, and a receiver 312.
  • the processor 302, the memory 304, the input device 306, the display 308, the transmitter 310, and the receiver 312 may be substantially similar to the processor 202, the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212 of the remote unit 102, respectively.
  • the transmitter 310 transmits a radio resource control message to a user equipment, wherein the radio resource control message includes at least one transmission configuration indicator state; and transmits to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • the network unit 104 may have any suitable number of transmitters 310 and receivers 312.
  • the transmitter 310 and the receiver 312 may be any suitable type of transmitters and receivers.
  • the transmitter 310 and the receiver 312 may be part of a transceiver.
  • a DCI format 1_1 or 1_2 may be sent to a user equipment ( “UE” ) to signal a new beam (e.g., common beam) .
  • the new beam may be used for DL only, DL and UL, and/or UL only.
  • signaling may be used to indicate for which channels a common beam applies.
  • a transmit ( “TX” ) or receive ( “RX” ) beam of physical downlink shared channel ( “PDSCH” ) , physical downlink control channel ( “PDCCH” ) , physical uplink shared channel ( “PUSCH” ) , and/or physical uplink control channel ( “PUCCH” ) may all have different designs and/or signaling mechanisms.
  • DCI e.g., PDSCH
  • MAC-CE medium access control control element
  • PDCCH Physical Downlink Control Channel
  • RRC radio resource control
  • TCI is signaled for PDSCH and PDCCH transmission using RRC, MAC-CE, and DCI.
  • RRC configures TCI states, and if there are more than 8 TCI states configured, MAC-CE may be used to activate or deactivate a subset of TCI states as a TCI codepoint.
  • TCI corresponding to PDSCH may be signaled per PDSCH transmission in DCI format 1_1 and 1_2, indicating a TCI state and associated QCL for the UE to use to receive the PDSCH.
  • a UE may not have enough time to switch to a beam indicated in DCI, so the UE may use a default beam that is the TCI of the control resource set ( “CORESET” ) with a lowest CORESET ID.
  • DCI format 1_1 may be used for scheduling PDSCH transmissions in one cell.
  • the following information may be transmitted by the DCI format 1_1 with cyclic redundancy cycle ( “CRC” ) scrambled by cell radio network temporary identifier ( “C-RNTI” ) , configured scheduling radio network temporary identifier ( “CS-RNTI” ) , or modulation and coding scheme cell radio network temporary identifier ( “MCS-C-RNTI” ) : 1) identifier for a DCI format –1 bit -the value of this bit field is always set to 1, indicating a DL DCI format; 2) carrier indicator –0 or 3 bits; 3) bandwidth part indicator –0, 1, or 2 bits as determined by a number of DL bandwidth parts ( “BWPs” ) n BWP, RRC configured by higher layers, excluding an initial DL bandwidth part -the bitwidth for this field is determined as bits; 4) antenna ports –4, 5, or 6 bits
  • a “bandwidth part indicator” field indicates a bandwidth part other than the active bandwidth part, and if a higher layer parameter tci-PresentInDCI is not enabled for the CORESET used for the PDCCH transmission carrying the DCI format 1_1, then the UE assumes tci-PresentInDCI is not enabled for all CORESETs in the indicated bandwidth part; otherwise, the UE assumes tci-PresentInDCI is enabled for all CORESETs in the indicated bandwidth part.
  • the beams used by PDSCH transmissions and PDCCH transmissions are independent.
  • both codebook and non-codebook PUSCH transmissions are based on SRS resources.
  • DCI format 0_1 or 0_2 includes a field for scheduling request indicator ( “SRI” ) to indicate SRS resources used for a PUSCH transmission.
  • SRS ports and resources are used for RE mapping.
  • each SRS resource may be configured by RRC signaling with a spatialRelationInfo parameter to indicate a TX beam used for transmission.
  • a reference signal ( “RS” ) for spatialRelationInfo may be channel state information reference signal ( “CSI-RS” ) , synchronization signal block ( “SSB” ) , or sounding reference signal ( “SRS” ) .
  • a UE may apply a TX beam indicated by the spatialRelationInfoID to transmit a PUSCH transmission.
  • the spatialRelationInfo of the SRS resource may be valid until it is reconfigured by RRC signaling.
  • the gNB may select a TX beam of a PUSCH transmission sent by a UE by indicating a different SRI value in DCI.
  • a TCI field may be reused to indicate a common TCI.
  • the common TCI may be applied to a PDSCH, a PUSCH, some or all CORESETs, and some or all PUCCH resources. If a PDSCH transmission is scheduled by DCI containing a TCI field, an indicated TCI state may be applied to the PDSCH transmission if there is enough time for a UE to apply the TCI for reception.
  • a TCI field in a DCI format 1_1 or a DCI format 1_2 may be used to indicate a common beam for joint DL TCI and UL TCI, separate DL TCI, and separate UL TCI, without introducing an additional field in the DCI.
  • a UE if receiving a DCI format 1_1 or a DCI format 1_2 with a TCI and scheduling a PDSCH transmission, may be able to tell whether the TCI is to be applied to DL and UL, DL channels only, or UL channels only. For TCI to be applied to UL channels only, the UE may need to determine which TCI to use to receive the PDSCH transmission scheduled by the DCI.
  • high layer signaling may be used to help a UE determine how to use signaled TCI in DCI, and how to receive a PDSCH transmission scheduled by the DCI.
  • a TCI state may be defined by RRC signaling. The TCI state may indicate whether it is applied to DL only (e.g., QCL-TypeD ) , to both DL and UL, or to UL only.
  • QCL-types Two quasi-co-location ( “QCL” ) types may be defined as follows: 1) a first QCL-type for signaling a RS to be used both as RX spatial relation information (e.g., parameter) for DL and TX spatial relation information for UL –in one embodiment, this QCL-type may be called QCL Type-D1 (or typeD1) ; 2) a second QCL-type for signaling a RS to be used only for TX spatial relation information for UL –in one embodiment, this QCL-type may be called QCL Type-D2 (or typeD2) .
  • an original QCL Type-D may be predefined and/or may be used to signal a RS to be used only for RX spatial relation information for DL.
  • a TCI-state definition in RRC configuration may be defined.
  • Figure 4 illustrates one embodiment of a TCI state definition 400.
  • QCL-Types may be defined as: 1) ‘QCL-TypeD’ : ⁇ RX spatial relation information for DL ⁇ ; 2) ‘QCL-TypeD1’ : ⁇ RX spatial relation information for DL and TX spatial relation information for UL ⁇ ; and 3) ‘QCL-TypeD2’ : ⁇ TX spatial relation information for UL ⁇ .
  • TCI states with different QCL-TypeD, QCL-TypeD1, and/or QCL-TypeD2 may be defined in the same TCI state space (e.g., shared TCI state pool) .
  • TCI state space e.g., shared TCI state pool
  • a MAC-CE message is used to define a subset of TCI states with a limited number of TCI codepoints (e.g., 8 TCI codepoints in DCI format 1_1 and/or DCI format 1_2)
  • TCI states with different QCL-TypeD, QCL-TypeD1, and/or QCL-TypeD2 may be defined in the same TCI codepoint space.
  • a UE may be able to tell whether the TCI state is to be used for DL TCI, UL TCI, or DL TCI and UL TCI, and update a common TCI of corresponding channels.
  • a new TCI state may be used to receive a scheduled PDSCH transmission if there is sufficient time to allow the UE to switch to the new RX beam; otherwise, the beam of the previous indicated DL TCI may be used.
  • the new TCI state is used only for UL TCI for transmitting UL channels (e.g., PUSCH, PUCCH) .
  • the UE still uses the beam of the previous indicated DL TCI to receive the scheduled PDSCH transmissions.
  • a separate reference signal may be included in a TCI state as TX spatial relation information for UL transmission.
  • QCL-type2 may be a QCL-TypeD for RX spatial relation information for DL reception.
  • TCI state 1 includes CSI-RS-1 defined as QCL-TypeD;
  • TCI state 2 includes CSI-RS-2 defined as QCL-TypeD1;
  • TCI state 3 includes SRS-1 defined as QCL-TypeD2;
  • TCI state 4 includes CSI-RS-1 defined as QCL-TypeD and SRS-1 defined as QCL-TypeD2.
  • a UE receives DCI indicating TCI state 1
  • the UE receives a PDSCH transmission scheduled by the same DCI using CSI-RS-1.
  • the UE updates the DL TCI state with CSI-RS-1 for the DL channels of corresponding component carriers ( “cc (s) ” ) for future receptions of PDSCH and PDCCH transmissions.
  • the UE receives DCI indicating TCI state 2
  • the UE receives the PDSCH transmission scheduled by the same DCI using CSI-RS-2.
  • the UE updates the DL TCI state with CSI-RS-2 for the DL channels of corresponding cc (s) for future receptions of PDSCH and PDCCH transmissions.
  • the UE also updates an UL TCI state for transmission of PUSCH and PUCCH transmissions using the TX spatial relation information corresponding to CSI-RS-2.
  • the UE receives a DCI indicating TCI state 3
  • the UE receives the PDSCH transmission scheduled by the same DCI using the last DL TCI the UE received.
  • the UE updates the UL TCI state for transmission of PUSCH and PUCCH transmissions using the TX spatial relation information corresponding to CSI-RS-3.
  • the UE receives a DCI indicating TCI state 4, the UE receives the PDSCH transmission scheduled by the same DCI using CSI-RS-1.
  • the UE updates the DL TCI state with CSI-RS-1 for the DL channels of corresponding cc (s) for future receptions of PDSCH and PDCCH transmissions.
  • the UE also updates the UL TCI state for transmission of PUSCH and PUCCH transmissions using the TX spatial relation information corresponding to SRS-1.
  • Figure 5 a schematic flow chart diagram illustrating one embodiment of a method 500 for downlink control information indicating a transmission configuration indicator state.
  • the method 500 is performed by an apparatus, such as the network unit 104.
  • the method 500 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 500 may include transmitting 502 a radio resource control message to a user equipment.
  • the radio resource control message includes at least one transmission configuration indicator state.
  • the method 500 includes transmitting 504 to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
  • the transmission configuration indicator state in response to the at least one quasi-co-location information comprising the second quasi-co-location type, the transmission configuration indicator state does not include the first quasi-co-location type and does not include the third quasi-co-location type.
  • the at least one quasi-co-location information in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
  • the downlink channels comprise a physical downlink shared channel. In certain embodiments, the downlink channels further comprise a physical downlink control channel. In some embodiments, the uplink channels comprise a physical uplink shared channel. In various embodiments, the uplink channels further comprise a physical uplink control channel.
  • a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • the transmission configuration indicator state in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format.
  • the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
  • the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
  • Figure 6 is a schematic flow chart diagram illustrating another embodiment of a method 600 for downlink control information indicating a transmission configuration indicator state.
  • the method 600 is performed by an apparatus, such as the remote unit 102.
  • the method 600 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 600 may include receiving 602 a radio resource control message including at least one transmission configuration indicator state.
  • the method 600 includes receiving 604 a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
  • the transmission configuration indicator state in response to the at least one quasi-co-location information comprising the second quasi-co-location type, does not include the first quasi-co-location type and does not include the third quasi-co-location type. In various embodiments, in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, the at least one quasi-co-location information does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
  • the downlink channels comprise a physical downlink shared channel. In certain embodiments, the downlink channels further comprise a physical downlink control channel. In some embodiments, the uplink channels comprise a physical uplink shared channel. In various embodiments, the uplink channels further comprise a physical uplink control channel.
  • a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • the transmission configuration indicator state in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format.
  • the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
  • the transmission configuration indicator state in response to the transmission configuration indicator state comprising quasi-co-location information indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels.
  • the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
  • a method comprises: transmitting a radio resource control message to a user equipment, wherein the radio resource control message comprises at least one transmission configuration indicator state; and transmitting to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
  • the transmission configuration indicator state in response to the at least one quasi-co-location information comprising the second quasi-co-location type, does not include the first quasi-co-location type and does not include the third quasi-co-location type.
  • the at least one quasi-co-location information in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
  • the downlink channels comprise a physical downlink shared channel.
  • the downlink channels further comprise a physical downlink control channel.
  • the uplink channels comprise a physical uplink shared channel.
  • the uplink channels further comprise a physical uplink control channel.
  • a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • the transmission configuration indicator state in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, applies to downlink data transmission scheduled by the downlink control information format.
  • the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
  • the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
  • an apparatus comprises: a transmitter that: transmits a radio resource control message to a user equipment, wherein the radio resource control message comprises at least one transmission configuration indicator state; and transmits to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
  • the transmission configuration indicator state in response to the at least one quasi-co-location information comprising the second quasi-co-location type, does not include the first quasi-co-location type and does not include the third quasi-co-location type.
  • the at least one quasi-co-location information in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
  • the downlink channels comprise a physical downlink shared channel.
  • the downlink channels further comprise a physical downlink control channel.
  • the uplink channels comprise a physical uplink shared channel.
  • the uplink channels further comprise a physical uplink control channel.
  • a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • the transmission configuration indicator state in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, applies to downlink data transmission scheduled by the downlink control information format.
  • the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
  • the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
  • a method comprises: receiving a radio resource control message comprising at least one transmission configuration indicator state; and receiving a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
  • the transmission configuration indicator state in response to the at least one quasi-co-location information comprising the second quasi-co-location type, does not include the first quasi-co-location type and does not include the third quasi-co-location type.
  • the at least one quasi-co-location information in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
  • the downlink channels comprise a physical downlink shared channel.
  • the downlink channels further comprise a physical downlink control channel.
  • the uplink channels comprise a physical uplink shared channel.
  • the uplink channels further comprise a physical uplink control channel.
  • a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • the transmission configuration indicator state in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, applies to downlink data transmission scheduled by the downlink control information format.
  • the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
  • the transmission configuration indicator state comprising quasi-co-location information indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels.
  • the transmission configuration indicator state comprising quasi-co-location information indicating transmit spatial relation information for uplink channels
  • using a reference signal corresponding to the quasi-co-location information as transmit spatial relation information for uplink channels in response to the transmission configuration indicator state comprising quasi-co-location information indicating transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as transmit spatial relation information for uplink channels.
  • the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
  • an apparatus comprises: a receiver that: receives a radio resource control message comprising at least one transmission configuration indicator state; and receives a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  • the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
  • the transmission configuration indicator state in response to the at least one quasi-co-location information comprising the second quasi-co-location type, does not include the first quasi-co-location type and does not include the third quasi-co-location type.
  • the at least one quasi-co-location information in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
  • the downlink channels comprise a physical downlink shared channel.
  • the downlink channels further comprise a physical downlink control channel.
  • the uplink channels comprise a physical uplink shared channel.
  • the uplink channels further comprise a physical uplink control channel.
  • a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
  • the transmission configuration indicator state in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, applies to downlink data transmission scheduled by the downlink control information format.
  • the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
  • the transmission configuration indicator state comprising quasi-co-location information indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels.
  • the transmission configuration indicator state comprising quasi-co-location information indicating transmit spatial relation information for uplink channels
  • using a reference signal corresponding to the quasi-co-location information as transmit spatial relation information for uplink channels in response to the transmission configuration indicator state comprising quasi-co-location information indicating transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as transmit spatial relation information for uplink channels.
  • the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Apparatuses, methods, and systems are disclosed for downlink control information indicating a transmission configuration indicator state. One method (500) includes transmitting (502) a radio resource control message to a user equipment. The radio resource control message includes at least one transmission configuration indicator state. The method (500) includes transmitting (504) to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.

Description

DOWNLINK CONTROL INFORMATION INDICATING A TRANSMISSION CONFIGURATION INDICATOR STATE FIELD
The subject matter disclosed herein relates generally to wireless communications and more particularly relates to downlink control information indicating a transmission configuration indicator state.
BACKGROUND
In certain wireless communications networks, a transmission configuration indicator ( “TCI” ) may be used. TCIs may have a corresponding TCI state.
BRIEF SUMMARY
Methods for downlink control information indicating a transmission configuration indicator state are disclosed. Apparatuses and systems also perform the functions of the methods. In one embodiment, the method includes transmitting a radio resource control message to a user equipment. The radio resource control message includes at least one transmission configuration indicator state. In various embodiments, the method includes transmitting to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
An apparatus for downlink control information indicating a transmission configuration indicator state, in one embodiment, includes a transmitter that: transmits a radio resource control message to a user equipment, wherein the radio resource control message includes at least one transmission configuration indicator state; and transmits to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
In various embodiments, a method for downlink control information indicating a transmission configuration indicator state includes receiving a radio resource control message including at least one transmission configuration indicator state. In various embodiments, the method includes receiving a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
In some embodiments, an apparatus for downlink control information indicating a transmission configuration indicator state includes a receiver that: receives a radio resource  control message including at least one transmission configuration indicator state; and receives a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Figure 1 is a schematic block diagram illustrating one embodiment of a wireless communication system for downlink control information indicating a transmission configuration indicator state;
Figure 2 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for downlink control information indicating a transmission configuration indicator state;
Figure 3 is a schematic block diagram illustrating another embodiment of an apparatus that may be used for downlink control information indicating a transmission configuration indicator state;
Figure 4 illustrates one embodiment of a TCI state definition;
Figure 5 is a schematic flow chart diagram illustrating one embodiment of a method for downlink control information indicating a transmission configuration indicator state; and
Figure 6 is a schematic flow chart diagram illustrating another embodiment of a method for downlink control information indicating a transmission configuration indicator state.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit, ” “module” or “system. ” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible,  non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
Certain of the functional units described in this specification may be labeled as modules, in order to more particularly emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
Modules may also be implemented in code and/or software for execution by various types of processors. An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
Indeed, a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices. Where a module or portions of a module are implemented in software, the software portions are stored on one or more computer readable storage devices.
Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing the code. The storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory ( “RAM” ) , a read-only memory ( “ROM” ) , an erasable programmable read-only memory ( “EPROM” or Flash memory) , a portable compact  disc read-only memory ( “CD-ROM” ) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages. The code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
Reference throughout this specification to “one embodiment, ” “an embodiment, ” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment, ” “in an embodiment, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a, ” “an, ” and “the” also refer to “one or more” unless expressly specified otherwise.
Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
Aspects of the embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code. The code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, of the illustrated Figures.
Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
The description of elements in each figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
Figure 1 depicts an embodiment of a wireless communication system 100 for downlink control information indicating a transmission configuration indicator state. In one embodiment, the wireless communication system 100 includes remote units 102 and network units 104. Even though a specific number of remote units 102 and network units 104 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 102 and network units 104 may be included in the wireless communication system 100.
In one embodiment, the remote units 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , IoT devices, or the like. In some embodiments, the remote units 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the remote units 102 may be referred to as subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, UE, user terminals, a device, or by other terminology used in the art. The remote units 102 may communicate directly with one or more of the network units 104 via uplink ( “UL” ) communication signals and/or the remote units 102 may communicate directly with other remote units 102 via sidelink communication.
The network units 104 may be distributed over a geographic region. In certain embodiments, a network unit 104 may also be referred to as an access point, an access terminal, a base, a base station, a Node-B, an eNB, a gNodeB ( “gNB” ) , a Home Node-B, a RAN, a relay node, a device, a network device, an integrated and access backhaul ( “IAB” ) node, a donor IAB  node, or by any other terminology used in the art. The network units 104 are generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding network units 104. The radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks, among other networks. These and other elements of radio access and core networks are not illustrated but are well known generally by those having ordinary skill in the art.
In one implementation, the wireless communication system 100 is compliant with the 5G or NG (Next Generation) standard of the third generation partnership program ( “3GPP” ) protocol, wherein the network unit 104 transmits using NG RAN technology. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocol, for example, WiMAX, among other protocols. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
The network units 104 may serve a number of remote units 102 within a serving area, for example, a cell or a cell sector via a wireless communication link. The network units 104 transmit downlink ( “DL” ) communication signals to serve the remote units 102 in the time, frequency, and/or spatial domain.
In various embodiments, a network unit 104 may transmit a radio resource control message to a user equipment. The radio resource control message includes at least one transmission configuration indicator state. In various embodiments, the m network unit 104 may transmit to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state. Accordingly, a network unit 104 may be used for downlink control information indicating a transmission configuration indicator state.
In some embodiments, a remote unit 102 may receive a radio resource control message including at least one transmission configuration indicator state. In various embodiments, the remote unit 102 may receive a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state. Accordingly, a remote unit 102 may be used for downlink control information indicating a transmission configuration indicator state.
Figure 2 depicts one embodiment of an apparatus 200 that may be used for downlink control information indicating a transmission configuration indicator state. The  apparatus 200 includes one embodiment of the remote unit 102. Furthermore, the remote unit 102 may include a processor 202, a memory 204, an input device 206, a display 208, a transmitter 210, and a receiver 212. In some embodiments, the input device 206 and the display 208 are combined into a single device, such as a touchscreen. In certain embodiments, the remote unit 102 may not include any input device 206 and/or display 208. In various embodiments, the remote unit 102 may include one or more of the processor 202, the memory 204, the transmitter 210, and the receiver 212, and may not include the input device 206 and/or the display 208.
The processor 202, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 202 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller. In some embodiments, the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein. The processor 202 is communicatively coupled to the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212.
The memory 204, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 204 includes volatile computer storage media. For example, the memory 204 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) . In some embodiments, the memory 204 includes non-volatile computer storage media. For example, the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 204 includes both volatile and non-volatile computer storage media. In some embodiments, the memory 204 also stores program code and related data, such as an operating system or other controller algorithms operating on the remote unit 102.
The input device 206, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like. In some embodiments, the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display. In some embodiments, the input device 206 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen. In some embodiments, the input device 206 includes two or more different devices, such as a keyboard and a touch panel.
The display 208, in one embodiment, may include any known electronically controllable display or display device. The display 208 may be designed to output visual,  audible, and/or haptic signals. In some embodiments, the display 208 includes an electronic display capable of outputting visual data to a user. For example, the display 208 may include, but is not limited to, an liquid crystal display ( “LCD” ) display, an LED display, an organic light emitting diode ( “OLED” ) display, a projector, or similar display device capable of outputting images, text, or the like to a user. As another, non-limiting, example, the display 208 may include a wearable display such as a smart watch, smart glasses, a heads-up display, or the like. Further, the display 208 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
In certain embodiments, the display 208 includes one or more speakers for producing sound. For example, the display 208 may produce an audible alert or notification (e.g., a beep or chime) . In some embodiments, the display 208 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback. In some embodiments, all or portions of the display 208 may be integrated with the input device 206. For example, the input device 206 and display 208 may form a touchscreen or similar touch-sensitive display. In other embodiments, the display 208 may be located near the input device 206.
In various embodiments, the receiver 212: receives a radio resource control message including at least one transmission configuration indicator state; and receives a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
Although only one transmitter 210 and one receiver 212 are illustrated, the remote unit 102 may have any suitable number of transmitters 210 and receivers 212. The transmitter 210 and the receiver 212 may be any suitable type of transmitters and receivers. In one embodiment, the transmitter 210 and the receiver 212 may be part of a transceiver.
Figure 3 depicts another embodiment of an apparatus 300 that may be used for downlink control information indicating a transmission configuration indicator state. The apparatus 300 includes one embodiment of the network unit 104. Furthermore, the network unit 104 may include a processor 302, a memory 304, an input device 306, a display 308, a transmitter 310, and a receiver 312. As may be appreciated, the processor 302, the memory 304, the input device 306, the display 308, the transmitter 310, and the receiver 312 may be substantially similar to the processor 202, the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212 of the remote unit 102, respectively.
In some embodiments, the transmitter 310: transmits a radio resource control message to a user equipment, wherein the radio resource control message includes at least one transmission configuration indicator state; and transmits to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
Although only one transmitter 310 and one receiver 312 are illustrated, the network unit 104 may have any suitable number of transmitters 310 and receivers 312. The transmitter 310 and the receiver 312 may be any suitable type of transmitters and receivers. In one embodiment, the transmitter 310 and the receiver 312 may be part of a transceiver.
In some embodiments, if a downlink control information ( “DCI” ) based beam indication is applied, a DCI format 1_1 or 1_2 may be sent to a user equipment ( “UE” ) to signal a new beam (e.g., common beam) . The new beam may be used for DL only, DL and UL, and/or UL only. In various embodiments, signaling may be used to indicate for which channels a common beam applies.
In certain embodiments, a transmit ( “TX” ) or receive ( “RX” ) beam of physical downlink shared channel ( “PDSCH” ) , physical downlink control channel ( “PDCCH” ) , physical uplink shared channel ( “PUSCH” ) , and/or physical uplink control channel ( “PUCCH” ) may all have different designs and/or signaling mechanisms. Some designs and/or signaling mechanisms may be dynamically changed via DCI (e.g., PDSCH) , some designs and/or signaling mechanisms may only be changed using a medium access control control element ( “MAC-CE” ) (e.g., PDCCH, PUCCH) , and designs and/or signaling mechanisms may be changed with a combination of DCI and radio resource control ( “RRC” ) (e.g., PUSCH) but with limited flexibility.
In various embodiments, TCI is signaled for PDSCH and PDCCH transmission using RRC, MAC-CE, and DCI. In some embodiments, RRC configures TCI states, and if there are more than 8 TCI states configured, MAC-CE may be used to activate or deactivate a subset of TCI states as a TCI codepoint. In certain embodiments, TCI corresponding to PDSCH may be signaled per PDSCH transmission in DCI format 1_1 and 1_2, indicating a TCI state and associated QCL for the UE to use to receive the PDSCH. In various embodiments, if a time between DCI and a PDSCH transmission is shorter than an RRC parameter TimeDurationForQCL, a UE may not have enough time to switch to a beam indicated in DCI, so the UE may use a default beam that is the TCI of the control resource set ( “CORESET” ) with a lowest CORESET ID.
In some embodiments, DCI format 1_1 may be used for scheduling PDSCH transmissions in one cell. In such embodiments, the following information may be transmitted by the DCI format 1_1 with cyclic redundancy cycle ( “CRC” ) scrambled by cell radio network temporary identifier ( “C-RNTI” ) , configured scheduling radio network temporary identifier ( “CS-RNTI” ) , or modulation and coding scheme cell radio network temporary identifier ( “MCS-C-RNTI” ) : 1) identifier for a DCI format –1 bit -the value of this bit field is always set to 1, indicating a DL DCI format; 2) carrier indicator –0 or 3 bits; 3) bandwidth part indicator –0, 1, or 2 bits as determined by a number of DL bandwidth parts ( “BWPs” ) n BWP, RRC configured by higher layers, excluding an initial DL bandwidth part -the bitwidth for this field is determined as 
Figure PCTCN2021084945-appb-000001
bits; 4) antenna ports –4, 5, or 6 bits; and 5) transmission configuration indication –0 bit if higher layer parameter tci-PresentInDCI is not enabled, otherwise 3 bits. If a “bandwidth part indicator” field indicates a bandwidth part other than the active bandwidth part, and if a higher layer parameter tci-PresentInDCI is not enabled for the CORESET used for the PDCCH transmission carrying the DCI format 1_1, then the UE assumes tci-PresentInDCI is not enabled for all CORESETs in the indicated bandwidth part; otherwise, the UE assumes tci-PresentInDCI is enabled for all CORESETs in the indicated bandwidth part.
In certain embodiments, except a time in which the time between DCI and a PDSCH transmission is shorter than an RRC parameter TimeDurationForQCL, the beams used by PDSCH transmissions and PDCCH transmissions are independent.
In various embodiments, both codebook and non-codebook PUSCH transmissions are based on SRS resources. In some embodiments, DCI format 0_1 or 0_2 includes a field for scheduling request indicator ( “SRI” ) to indicate SRS resources used for a PUSCH transmission. In certain embodiments, SRS ports and resources are used for RE mapping. In such embodiments, each SRS resource may be configured by RRC signaling with a spatialRelationInfo parameter to indicate a TX beam used for transmission. In certain embodiments, a reference signal ( “RS” ) for spatialRelationInfo may be channel state information reference signal ( “CSI-RS” ) , synchronization signal block ( “SSB” ) , or sounding reference signal ( “SRS” ) . In various embodiments, if a spatialRelationInfo field is configured for an SRS resource, a UE may apply a TX beam indicated by the spatialRelationInfoID to transmit a PUSCH transmission. In such embodiments, the spatialRelationInfo of the SRS resource may be valid until it is reconfigured by RRC signaling. The gNB may select a TX beam of a PUSCH transmission sent by a UE by indicating a different SRI value in DCI.
In some embodiments, such as embodiments that use a DCI format 1_1 or a DCI format 1_2, a TCI field may be reused to indicate a common TCI. The common TCI may be applied to a PDSCH, a PUSCH, some or all CORESETs, and some or all PUCCH resources. If a PDSCH transmission is scheduled by DCI containing a TCI field, an indicated TCI state may be applied to the PDSCH transmission if there is enough time for a UE to apply the TCI for reception. In certain embodiments, a TCI field in a DCI format 1_1 or a DCI format 1_2 may be used to indicate a common beam for joint DL TCI and UL TCI, separate DL TCI, and separate UL TCI, without introducing an additional field in the DCI. In such embodiments, a UE, if receiving a DCI format 1_1 or a DCI format 1_2 with a TCI and scheduling a PDSCH transmission, may be able to tell whether the TCI is to be applied to DL and UL, DL channels only, or UL channels only. For TCI to be applied to UL channels only, the UE may need to determine which TCI to use to receive the PDSCH transmission scheduled by the DCI.
In certain embodiments, high layer signaling may be used to help a UE determine how to use signaled TCI in DCI, and how to receive a PDSCH transmission scheduled by the DCI. In some embodiments, a TCI state may be defined by RRC signaling. The TCI state may indicate whether it is applied to DL only (e.g., QCL-TypeD ) , to both DL and UL, or to UL only. Two quasi-co-location ( “QCL” ) types ( “QCL-types” ) may be defined as follows: 1) a first QCL-type for signaling a RS to be used both as RX spatial relation information (e.g., parameter) for DL and TX spatial relation information for UL –in one embodiment, this QCL-type may be called QCL Type-D1 (or typeD1) ; 2) a second QCL-type for signaling a RS to be used only for TX spatial relation information for UL –in one embodiment, this QCL-type may be called QCL Type-D2 (or typeD2) .
In various embodiments, an original QCL Type-D may be predefined and/or may be used to signal a RS to be used only for RX spatial relation information for DL.
In certain embodiments, to accommodate additional QCL-Types, and to accommodate SRS for a source RS, a TCI-state definition in RRC configuration may be defined. Figure 4 illustrates one embodiment of a TCI state definition 400.
In some embodiments, QCL-Types may be defined as: 1) ‘QCL-TypeD’ : {RX spatial relation information for DL} ; 2) ‘QCL-TypeD1’ : {RX spatial relation information for DL and TX spatial relation information for UL} ; and 3) ‘QCL-TypeD2’ : {TX spatial relation information for UL} .
In various embodiments, TCI states with different QCL-TypeD, QCL-TypeD1, and/or QCL-TypeD2 may be defined in the same TCI state space (e.g., shared TCI state pool) . In such embodiments, if a MAC-CE message is used to define a subset of TCI states with a  limited number of TCI codepoints (e.g., 8 TCI codepoints in DCI format 1_1 and/or DCI format 1_2) , TCI states with different QCL-TypeD, QCL-TypeD1, and/or QCL-TypeD2 may be defined in the same TCI codepoint space. In certain embodiments, if a UE receives a DCI format 1_1 and/or DCI format 1_2 with a TCI field, by checking a TCI state defined by RRC signaling corresponding to the TCI codepoint of the DCI, the UE may be able to tell whether the TCI state is to be used for DL TCI, UL TCI, or DL TCI and UL TCI, and update a common TCI of corresponding channels. In some embodiments, if a TCI state in DCI is of type QCL-TypeD or QCL-TypeD1, a new TCI state may be used to receive a scheduled PDSCH transmission if there is sufficient time to allow the UE to switch to the new RX beam; otherwise, the beam of the previous indicated DL TCI may be used. In such embodiments, if the TCI state in the DCI is of type QCL-TypeD2, the new TCI state is used only for UL TCI for transmitting UL channels (e.g., PUSCH, PUCCH) . Moreover, in such embodiments, the UE still uses the beam of the previous indicated DL TCI to receive the scheduled PDSCH transmissions.
In certain embodiments, if DL TCI and UL TCI have different RS for their RX spatial relation information and TX spatial relation information, a separate reference signal may be included in a TCI state as TX spatial relation information for UL transmission. In some embodiments, QCL-type2 may be a QCL-TypeD for RX spatial relation information for DL reception.
In one example, TCI state 1 includes CSI-RS-1 defined as QCL-TypeD; TCI state 2 includes CSI-RS-2 defined as QCL-TypeD1; TCI state 3 includes SRS-1 defined as QCL-TypeD2; TCI state 4 includes CSI-RS-1 defined as QCL-TypeD and SRS-1 defined as QCL-TypeD2.
In such an example, if a UE receives DCI indicating TCI state 1, the UE receives a PDSCH transmission scheduled by the same DCI using CSI-RS-1. The UE updates the DL TCI state with CSI-RS-1 for the DL channels of corresponding component carriers ( “cc (s) ” ) for future receptions of PDSCH and PDCCH transmissions.
Moreover, in such an example, if the UE receives DCI indicating TCI state 2, the UE receives the PDSCH transmission scheduled by the same DCI using CSI-RS-2. The UE updates the DL TCI state with CSI-RS-2 for the DL channels of corresponding cc (s) for future receptions of PDSCH and PDCCH transmissions. The UE also updates an UL TCI state for transmission of PUSCH and PUCCH transmissions using the TX spatial relation information corresponding to CSI-RS-2.
Further, in such an example, if the UE receives a DCI indicating TCI state 3, the UE receives the PDSCH transmission scheduled by the same DCI using the last DL TCI the UE  received. The UE updates the UL TCI state for transmission of PUSCH and PUCCH transmissions using the TX spatial relation information corresponding to CSI-RS-3.
In such an example, if the UE receives a DCI indicating TCI state 4, the UE receives the PDSCH transmission scheduled by the same DCI using CSI-RS-1. The UE updates the DL TCI state with CSI-RS-1 for the DL channels of corresponding cc (s) for future receptions of PDSCH and PDCCH transmissions. The UE also updates the UL TCI state for transmission of PUSCH and PUCCH transmissions using the TX spatial relation information corresponding to SRS-1.
Figure 5 a schematic flow chart diagram illustrating one embodiment of a method 500 for downlink control information indicating a transmission configuration indicator state. In some embodiments, the method 500 is performed by an apparatus, such as the network unit 104. In certain embodiments, the method 500 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
In certain embodiments, the method 500 may include transmitting 502 a radio resource control message to a user equipment. The radio resource control message includes at least one transmission configuration indicator state. In various embodiments, the method 500 includes transmitting 504 to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
In certain embodiments, the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof. In some embodiments, in response to the at least one quasi-co-location information comprising the second quasi-co-location type, the transmission configuration indicator state does not include the first quasi-co-location type and does not include the third quasi-co-location type. In various embodiments, in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, the at least one quasi-co-location information does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
In one embodiment, the downlink channels comprise a physical downlink shared channel. In certain embodiments, the downlink channels further comprise a physical downlink control channel. In some embodiments, the uplink channels comprise a physical uplink shared channel. In various embodiments, the uplink channels further comprise a physical uplink control channel.
In one embodiment, a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof. In certain embodiments, a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof. In some embodiments, in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format.
In one embodiment, the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels. In certain embodiments, the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
Figure 6 is a schematic flow chart diagram illustrating another embodiment of a method 600 for downlink control information indicating a transmission configuration indicator state. In some embodiments, the method 600 is performed by an apparatus, such as the remote unit 102. In certain embodiments, the method 600 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 600 may include receiving 602 a radio resource control message including at least one transmission configuration indicator state. In various embodiments, the method 600 includes receiving 604 a downlink control information format having a transmission  configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
In certain embodiments, the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
In some embodiments, in response to the at least one quasi-co-location information comprising the second quasi-co-location type, the transmission configuration indicator state does not include the first quasi-co-location type and does not include the third quasi-co-location type. In various embodiments, in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, the at least one quasi-co-location information does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
In one embodiment, the downlink channels comprise a physical downlink shared channel. In certain embodiments, the downlink channels further comprise a physical downlink control channel. In some embodiments, the uplink channels comprise a physical uplink shared channel. In various embodiments, the uplink channels further comprise a physical uplink control channel.
In one embodiment, a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof. In certain embodiments, a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof. In some embodiments, in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format.
In one embodiment, the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second  quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels. In certain embodiments, in response to the transmission configuration indicator state comprising quasi-co-location information indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels.
In some embodiments, in response to the transmission configuration indicator state comprising quasi-co-location information indicating transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as transmit spatial relation information for uplink channels. In various embodiments, the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
In one embodiment, a method comprises: transmitting a radio resource control message to a user equipment, wherein the radio resource control message comprises at least one transmission configuration indicator state; and transmitting to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
In certain embodiments, the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
In some embodiments, in response to the at least one quasi-co-location information comprising the second quasi-co-location type, the transmission configuration indicator state does not include the first quasi-co-location type and does not include the third quasi-co-location type.
In various embodiments, in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, the at least one quasi-co-location  information does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
In one embodiment, the downlink channels comprise a physical downlink shared channel.
In certain embodiments, the downlink channels further comprise a physical downlink control channel.
In some embodiments, the uplink channels comprise a physical uplink shared channel.
In various embodiments, the uplink channels further comprise a physical uplink control channel.
In one embodiment, a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
In certain embodiments, a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
In some embodiments, in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format.
In one embodiment, the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
In certain embodiments, the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
In one embodiment, an apparatus comprises: a transmitter that: transmits a radio resource control message to a user equipment, wherein the radio resource control message  comprises at least one transmission configuration indicator state; and transmits to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
In certain embodiments, the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
In some embodiments, in response to the at least one quasi-co-location information comprising the second quasi-co-location type, the transmission configuration indicator state does not include the first quasi-co-location type and does not include the third quasi-co-location type.
In various embodiments, in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, the at least one quasi-co-location information does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
In one embodiment, the downlink channels comprise a physical downlink shared channel.
In certain embodiments, the downlink channels further comprise a physical downlink control channel.
In some embodiments, the uplink channels comprise a physical uplink shared channel.
In various embodiments, the uplink channels further comprise a physical uplink control channel.
In one embodiment, a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
In certain embodiments, a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference  signal information, a sounding reference signal for beam management, or some combination thereof.
In some embodiments, in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format.
In one embodiment, the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
In certain embodiments, the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
In one embodiment, a method comprises: receiving a radio resource control message comprising at least one transmission configuration indicator state; and receiving a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
In certain embodiments, the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
In some embodiments, in response to the at least one quasi-co-location information comprising the second quasi-co-location type, the transmission configuration indicator state does not include the first quasi-co-location type and does not include the third quasi-co-location type.
In various embodiments, in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, the at least one quasi-co-location information does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
In one embodiment, the downlink channels comprise a physical downlink shared channel.
In certain embodiments, the downlink channels further comprise a physical downlink control channel.
In some embodiments, the uplink channels comprise a physical uplink shared channel.
In various embodiments, the uplink channels further comprise a physical uplink control channel.
In one embodiment, a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
In certain embodiments, a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
In some embodiments, in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format.
In one embodiment, the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
In certain embodiments, in response to the transmission configuration indicator state comprising quasi-co-location information indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels.
In some embodiments, in response to the transmission configuration indicator state comprising quasi-co-location information indicating transmit spatial relation information  for uplink channels, using a reference signal corresponding to the quasi-co-location information as transmit spatial relation information for uplink channels.
In various embodiments, the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
In one embodiment, an apparatus comprises: a receiver that: receives a radio resource control message comprising at least one transmission configuration indicator state; and receives a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
In certain embodiments, the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
In some embodiments, in response to the at least one quasi-co-location information comprising the second quasi-co-location type, the transmission configuration indicator state does not include the first quasi-co-location type and does not include the third quasi-co-location type.
In various embodiments, in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, the at least one quasi-co-location information does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type.
In one embodiment, the downlink channels comprise a physical downlink shared channel.
In certain embodiments, the downlink channels further comprise a physical downlink control channel.
In some embodiments, the uplink channels comprise a physical uplink shared channel.
In various embodiments, the uplink channels further comprise a physical uplink control channel.
In one embodiment, a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference  signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
In certain embodiments, a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof.
In some embodiments, in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format.
In one embodiment, the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
In certain embodiments, in response to the transmission configuration indicator state comprising quasi-co-location information indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels.
In some embodiments, in response to the transmission configuration indicator state comprising quasi-co-location information indicating transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as transmit spatial relation information for uplink channels.
In various embodiments, the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (15)

  1. A method comprising:
    transmitting a radio resource control message to a user equipment, wherein the radio resource control message comprises at least one transmission configuration indicator state; and
    transmitting to the user equipment a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  2. The method of claim 1, wherein the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
  3. The method of claim 2, wherein:
    in response to the at least one quasi-co-location information comprising the second quasi-co-location type, the transmission configuration indicator state does not include the first quasi-co-location type and does not include the third quasi-co-location type;
    in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, the at least one quasi-co-location information does not include a typeA quasi-co-location type, does not include a typeB  quasi-co-location type, and does not include a typeC quasi-co-location type;
    in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format; or
    some combination thereof.
  4. The method of claim 2, wherein:
    the downlink channels comprise a physical downlink shared channel and a physical downlink control channel;
    the uplink channels comprise a physical uplink shared channel and a physical uplink control channel; or
    a combination thereof.
  5. The method of claim 2, wherein:
    a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof;
    a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof; or
    a combination thereof.
  6. The method of claim 1, wherein the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
  7. The method of claim 1, wherein the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
  8. A method comprising:
    receiving a radio resource control message comprising at least one transmission configuration indicator state; and
    receiving a downlink control information format having a transmission configuration indicator field indicating a transmission configuration indicator state of the at least one transmission configuration indicator state.
  9. The method of claim 8, wherein the transmission configuration indicator state comprises at least one quasi-co-location information having a first quasi-co-location type indicating receive spatial relation information for downlink channels, a second quasi-co-location type indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, a third quasi-co-location type indicating transmit spatial relation information for uplink channels, or some combination thereof.
  10. The method of claim 9, wherein:
    in response to the at least one quasi-co-location information comprising the second quasi-co-location type, the transmission configuration indicator state does not include the first quasi-co-location type and does not include the third quasi-co-location type;
    in response to the at least one quasi-co-location information comprising only the third quasi-co-location type, the at least one quasi-co-location information does not include a typeA quasi-co-location type, does not include a typeB quasi-co-location type, and does not include a typeC quasi-co-location type;
    in response to the transmission configuration indicator state comprising quasi-co-location information indicating receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as receive spatial relation information for downlink channels and transmit spatial relation information for uplink channels;
    in response to the transmission configuration indicator state comprising quasi-co-location information indicating transmit spatial relation information for uplink channels, using a reference signal corresponding to the quasi-co-location information as transmit spatial relation information for uplink channels; or
    a combination thereof.
  11. The method of claim 9, wherein:
    the downlink channels comprise a physical downlink shared channel and a physical downlink control channel;
    the uplink channels comprise a physical uplink shared channel and a physical uplink control channel; or
    a combination thereof.
  12. The method of claim 9, wherein:
    a type of reference signal used for the second quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof;
    a type of reference signal used for the third quasi-co-location type comprises a synchronization signal block, a channel state information reference signal with repetition, a channel state information references signal with tracking reference signal information, a sounding reference signal for beam management, or some combination thereof; or
    a combination thereof.
  13. The method of claim 9, wherein, in response to the transmission configuration indicator state comprising the first quasi-co-location type or the second quasi-co-location type, the transmission configuration indicator state applies to downlink data transmission scheduled by the downlink control information format.
  14. The method of claim 8, wherein the transmission configuration indicator state comprises at least two quasi-co-location information comprising a first quasi-co-location type and a second quasi-co-location type, the first quasi-co-location type indicating receive spatial  relation information for downlink channels, and the second quasi-co-location type indicating transmit spatial relation information for uplink channels.
  15. The method of claim 8, wherein the downlink control information format is for scheduling downlink data transmission, and the downlink control information format comprises downlink control information format 1_1 or downlink control information format 1_2.
PCT/CN2021/084945 2021-04-01 2021-04-01 Downlink control information indicating a transmission configuration indicator state WO2022205311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084945 WO2022205311A1 (en) 2021-04-01 2021-04-01 Downlink control information indicating a transmission configuration indicator state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084945 WO2022205311A1 (en) 2021-04-01 2021-04-01 Downlink control information indicating a transmission configuration indicator state

Publications (1)

Publication Number Publication Date
WO2022205311A1 true WO2022205311A1 (en) 2022-10-06

Family

ID=83457808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084945 WO2022205311A1 (en) 2021-04-01 2021-04-01 Downlink control information indicating a transmission configuration indicator state

Country Status (1)

Country Link
WO (1) WO2022205311A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9585174B2 (en) * 2013-07-26 2017-02-28 Intel IP Corporation Downtilt selection in a full dimensional multiple-input multiple-output system
CN110959304A (en) * 2018-05-17 2020-04-03 Lg电子株式会社 Method for determining transmission configuration indicator of terminal in wireless communication system and apparatus using the same
CN110958693A (en) * 2018-09-27 2020-04-03 索尼公司 Electronic device and communication method
CN111010890A (en) * 2018-08-06 2020-04-14 Lg电子株式会社 Method for receiving signal in CORESET of wireless communication system and apparatus using the same
CN111316739A (en) * 2017-11-08 2020-06-19 三星电子株式会社 Method and apparatus for beam management in unlicensed spectrum
CN112514314A (en) * 2018-08-03 2021-03-16 高通股份有限公司 Configuring a user equipment to operate in a transmission/reception point (TRP) mode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9585174B2 (en) * 2013-07-26 2017-02-28 Intel IP Corporation Downtilt selection in a full dimensional multiple-input multiple-output system
CN111316739A (en) * 2017-11-08 2020-06-19 三星电子株式会社 Method and apparatus for beam management in unlicensed spectrum
CN110959304A (en) * 2018-05-17 2020-04-03 Lg电子株式会社 Method for determining transmission configuration indicator of terminal in wireless communication system and apparatus using the same
CN112514314A (en) * 2018-08-03 2021-03-16 高通股份有限公司 Configuring a user equipment to operate in a transmission/reception point (TRP) mode
CN111010890A (en) * 2018-08-06 2020-04-14 Lg电子株式会社 Method for receiving signal in CORESET of wireless communication system and apparatus using the same
CN110958693A (en) * 2018-09-27 2020-04-03 索尼公司 Electronic device and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Remaining Details on QCL", 3GPP DRAFT; R1-1800867, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051385137 *

Similar Documents

Publication Publication Date Title
US11909473B2 (en) SRS configurations and SRS transmission
US20230047048A1 (en) Sounding reference signals (srs) for antenna switching
US20240154664A1 (en) Configuring shared and ue specific beams and tci states
US20230155771A1 (en) Transmission and reception point reporting
US11990964B2 (en) Channel state information report calculation
US11515963B2 (en) Multiple CSI reports
WO2022153241A1 (en) Configuring channel occupancy sharing
WO2020034188A1 (en) Srs configurations and srs transmission
US20230361831A1 (en) Determining channel state information reference signals
WO2022205311A1 (en) Downlink control information indicating a transmission configuration indicator state
US11522596B2 (en) Beam reporting
WO2023050142A1 (en) Configuring transmission configuration indicator states
WO2021181312A1 (en) Multiplexing pattern determination based on subcarrier spacing values
WO2023056597A1 (en) Transmission configuration indicator state carrier configuration
WO2023050272A1 (en) Determining a resource configuration based on a list of component carriers
WO2023130343A1 (en) Transmission configuration indicator states for sounding reference signal resources
US20230198680A1 (en) Codebook configuration for harq reporting
US20240137148A1 (en) Updating a channel state information report
US20240235725A9 (en) Updating a channel state information report
WO2024069533A1 (en) Determining parameters for multiple models for wireless communication systems
WO2023161850A1 (en) Configuring a sidelink assignment index

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933970

Country of ref document: EP

Kind code of ref document: A1