WO2022205264A1 - 一种金属矿微波-机械流态化开采***及开采方法 - Google Patents

一种金属矿微波-机械流态化开采***及开采方法 Download PDF

Info

Publication number
WO2022205264A1
WO2022205264A1 PCT/CN2021/084818 CN2021084818W WO2022205264A1 WO 2022205264 A1 WO2022205264 A1 WO 2022205264A1 CN 2021084818 W CN2021084818 W CN 2021084818W WO 2022205264 A1 WO2022205264 A1 WO 2022205264A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor
ore
microwave
layer
mechanical
Prior art date
Application number
PCT/CN2021/084818
Other languages
English (en)
French (fr)
Inventor
冯夏庭
林峰
杨成祥
张九雨
苏香馨
李世平
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to US18/023,481 priority Critical patent/US11773720B2/en
Publication of WO2022205264A1 publication Critical patent/WO2022205264A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/22Methods of underground mining; Layouts therefor for ores, e.g. mining placers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/08Apparatus
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings

Definitions

  • the invention belongs to the technical field of metal ore mining, and particularly relates to a microwave-mechanical fluidized mining system and a mining method for metal ore.
  • the essence of metal ore mining is to crush the ore to extract useful minerals.
  • Traditional metal ore mining process the drilling and blasting method is used to drill and blast large pieces of ore, and then transported to the ground for ore crushing, grinding, and flotation, and the useful minerals are selected and transported to the smelter.
  • Ground transport aggregate fills the goaf.
  • the ore crushing and grinding work consumes a lot of energy, especially the effective utilization rate of the grinding work is only 1%, and a large amount of steel loss will be generated, and the subsequent flotation work will also consume a large amount of chemical solution.
  • the effective utilization rate of the grinding work is only 1%, and a large amount of steel loss will be generated, and the subsequent flotation work will also consume a large amount of chemical solution.
  • the purpose of the invention is to provide a microwave-mechanical fluidized mining system and mining method for metal ore, which adopts microwave technology to sequentially perform mechanical continuous mining of pre-split ore, separate waste rock and ore by microwave, and realize the enrichment and melting of metal minerals by microwave focusing melting.
  • the purpose is to transport the waste rock to the goaf to fill on the spot, so as to simplify the ore mining process and realize the fluidized mining of metal ore.
  • a microwave-mechanical fluidized mining system for metal ore including a microwave pre-splitting mechanical mining system, a microwave separation system, a high-power microwave focused melting system and a goaf; the ore-waste mixture mined by the microwave pre-splitting mining system
  • the separated ore is transported to the high-power microwave focusing melting system, and the separated waste rock is transported to the goaf for filling through the conveyor V.
  • the microwave pre-splitting mechanical mining system includes an open microwave radiator, a mechanical cutting machine, a conveyor I and a hoist.
  • the conveyor I is fixedly installed on the ground through a frame thereon, and the output end of the conveyor I is connected to the hoist.
  • the cutting machine is fixedly installed on the ground through the fuselage, and is located on the side of the conveyor I, and an open microwave radiator is installed on the side wall of the cutting machine head; the cutter head of the cutting machine and the open microwave The height and angle of the radiator are controlled by the extension and rotation of the mechanical rocker on the cutting machine.
  • the open microwave radiator is divided into a horizontally arranged open microwave radiator and a vertically arranged open microwave radiator.
  • the horizontally arranged open microwave radiator The radiator is arranged at the front end of the mechanical cutting machine along the cutting direction, and the vertically arranged open microwave radiator is arranged above the vertical cutting direction of the mechanical cutting machine.
  • the microwave separation system includes a microwave cavity, a separation controller and a conveyor II; the conveyor II is installed on the ground through a frame, and the input end is connected to the output end of the elevator, and the conveyor II is close to the elevator side
  • the microwave generator base is installed on the frame through the rib, and the microwave generator I is installed on the upper surface of the microwave generator base.
  • the microwave generator I is connected to the microwave cavity through a waveguide, and the conveyor belt of the conveyor II passes through the microwave cavity.
  • the side of the conveyor II away from the elevator is installed with a support plate through a rib plate, a bracket is installed on the support plate, a separation controller is installed on the upper surface of the bracket, and a plurality of infrared thermal imagers are respectively installed on the two horizontal beams of the bracket I and a plurality of air nozzles, and the number of the infrared thermal imager I and the air nozzles is equal, the air nozzles are located just above the falling of the ore, the infrared thermal imager I and the air nozzles are both connected to the separation controller, and the ore particles After being heated by the closed microwave cavity under the transmission of the conveyor II, the temperature is measured by the infrared thermal imager I.
  • the high-power microwave focusing melting system includes a conveyor III and a vertical flow ore pipeline.
  • the conveyor III is set at the lower right of the conveyor II, and the conveyor IV is set at the lower left of the conveyor III.
  • the conveyor belt of the conveyor IV is a mesh.
  • the outer circle of the flow ore pipeline is provided with a choke coil in the upper part, a single-mode heating cavity, a choke coil and an electromagnetic coil in the lower part, and an infrared thermal imager II is installed on one side of the single-mode heating cavity.
  • the heating cavity is connected to the microwave generator II installed on the ground through a waveguide, and the metal minerals melted through the single-mode heating cavity flow out through the output end of the vertical flow ore pipeline and flow into the molten metal mineral pool through the mesh of the mesh conveyor belt. Gangue minerals are transported to the goaf through conveyor IV and conveyor V.
  • a mining method for a metal ore microwave-mechanical fluidized mining system comprising the following steps:
  • Step 1 divide the ore body into several layers according to the one-time cutting height of the mechanical cutting machine, and cut in layers from bottom to top;
  • Step 2 Turn on the horizontally arranged open microwave radiator and the vertically arranged open microwave radiator at the same time, adjust the maximum output power to the safe range, pre-split the ore bodies of the first layer and the second layer respectively, and open the microwave radiation
  • the mechanical cutting machine synchronously follows up to continuously cut the first layer of ore body, while the vertically arranged open microwave radiator pre-splits the second layer of ore body. Layer ore body, after the first layer ore body is cut, continue to cut the second layer ore body.
  • the mechanical cutting machine moves the horizontally arranged open microwave radiator and cutter head to the first layer through the mechanical rocker arm.
  • the vertically arranged open microwave radiator is moved to the third-layer ore body, and the second layer of ore body has been pre-split by the vertically arranged open microwave radiator.
  • the first layer of ore body choose to turn on or off the horizontally arranged open microwave radiator.
  • the cutting speed of the first layer of ore body meets the on-site requirements, turn off the horizontally arranged open microwave radiator; when the cutting speed of the first layer of ore body cannot meet the requirement On-site demand, open the horizontally arranged open microwave radiator; repeat step 2 to continue mining the next layer of ore body;
  • Step 3 the cut ore particles are transported to conveyor II through conveyor I and elevator, and the ore particles are heated through the microwave cavity.
  • Step 4 take the average temperature a measured in step 3 as the standard, when the average temperature of the ore body particles measured by the infrared thermal imager I ⁇ a, it is waste rock, and the waste rock slides down to the conveyor V at the output end of the conveyor II, It is transported to the goaf by conveyor V; when the average temperature of the ore body particles measured by the infrared thermal imager I is greater than a, it is ore, and the controller opens the air nozzle after t seconds according to the feedback of the infrared thermal imager I. When the ore is just below the air nozzle, the ore is blown to the conveyor III through the air nozzle;
  • Step 5 Carry out the next stage treatment for the ore whose melting point difference between the metal mineral and the gangue mineral exceeds 500°C, determine the optimum particle size of the ore by microwave heating through the dielectric property test, and then output the separated ore particles through the conveyor III To the crusher, use the crusher to crush to the best particle size;
  • step 6 the ore particles with the optimum particle size after being crushed by the crusher are uniformly mixed with the graphite powder, and the uniformly mixed ore particles are transported to the high-power microwave focusing melting system.
  • the metal minerals in the ore are melted and flowed out.
  • the conveyor IV starts to work, and the molten metal flows through the mesh of the conveyor belt of the conveyor IV to melt.
  • Metal mineral pool; separated gangue minerals are transported to the goaf through conveyor V;
  • Step 7 parameter optimization: analyze the composition of gangue minerals.
  • the proportion of graphite powder is determined according to the melting effect of gangue minerals.
  • the content of metal minerals in the gangue minerals is greater than or equal to 10%, increase the content of graphite powder and reduce the ore flow rate;
  • the metal mineral content in the stone mineral is less than 10%, the work shall be carried out with the graphite powder content and ore flow rate at this time.
  • Microwave pre-splitting mechanical mining is adopted to replace the traditional blasting mining method, which improves the driving speed and avoids the impact of blasting on the stability of surrounding rock.
  • the beneficiation process is simplified, the traditional crushing, grinding, and flotation processes are reduced, and the consumption of non-renewable resources such as steel and chemical solutions is greatly reduced.
  • the main microwave energy used can be converted through renewable energy.
  • the ore is mixed with graphite powder, microwave heating and electromagnetic coil conventional heating method, to carry out microwave enrichment and melting of ore, which accelerates the heating and melting of ore particles, reduces the loss of steel in the traditional grinding process, and expands the microwave melting of ore.
  • the scope of application while reducing the chemical solution pollution in the beneficiation process.
  • a microwave-mechanical fluidized mining system and method which mainly uses clean and renewable microwave energy to pretreat ore underground, and sequentially performs ore microwave pre-splitting mechanical mining, ore waste rock microwave separation, and ore microwave enrichment and melting.
  • the goaf is filled with waste rock, which simplifies the mining and beneficiation process, improves the mining speed, and reduces the cost of mechanical mining.
  • Fig. 1 is a schematic diagram of the microwave-mechanical fluidized mining system for metal ore of the present invention
  • Fig. 2 is a schematic diagram of the high-power microwave focusing melting system of the metal ore microwave-mechanical fluidization mining system of the present invention
  • FIG. 3 is a top view of the structure of the infrared thermal imager I and the air nozzle of the microwave-mechanical fluidized mining system for metal ore of the present invention
  • FIG. 4 is a schematic diagram of the ore body layering of the microwave-mechanical fluidized mining system for metal ore of the present invention
  • FIG. 5 mining flow chart of the metal ore microwave-mechanical fluidization mining system of the present invention
  • a microwave-mechanical fluidized mining system for metal ore includes a microwave pre-splitting mechanical mining system, a microwave separation system, a high-power microwave focused melting system and a goaf 23;
  • the ore-waste mixture mined by the mining system is transported to the microwave separation system through the conveyor I6 and the elevator 7 on it, the separated ore 11 is transported to the high-power microwave focusing melting system, and the separated waste rock 14 passes through the conveyor.
  • V22 is transported to gob 23 for filling.
  • the microwave pre-splitting mechanical mining system includes an open microwave radiator, a mechanical cutting machine, a conveyor I6 and an elevator 7.
  • the conveyor I6 is fixedly installed on the ground through the frame on it, and the output end of the conveyor I6 is connected to the elevator.
  • the input end of the machine 7 is connected, the cutting machine is fixedly installed on the ground through the fuselage 5, and is located on the side of the conveyor I6.
  • a horizontally arranged open microwave radiator 301 and a vertically arranged open microwave radiator 302 are installed on the side wall of the machine head; the cutter head 2 and the open microwave radiator of the cutting machine are connected to each other through the extension of the mechanical rocker arm 4 on the cutting machine.
  • the height and angle are controlled by rotation, the horizontally arranged open microwave radiator 301 is arranged at the front end of the mechanical cutting machine along the cutting direction, and the vertically arranged open microwave radiator 302 is arranged above the vertical cutting direction of the mechanical cutting machine; the open microwave radiation
  • the frequency of the radiator is 915MHz; the type of the open microwave radiator is determined according to the type of ore 11. For ore 11 with good homogeneity, a flat-mouth open microwave radiator is used, and for ore 11 with poor homogeneity, a large horn-shaped open microwave radiator is used.
  • the number of the open microwave applicators is equal to the ratio of the height of the two layers to the pre-splitting range of a single open microwave applicator.
  • the microwave separation system includes a microwave cavity 9, a separation controller 15 and a conveyor II8.
  • the microwave frequency of the microwave generator I17 is 2.45 GHz; the conveyor II8 is installed on the ground through a rack, and the input end is connected to the elevator.
  • the output end of 7 is connected, the frame on the side of conveyor II8 close to elevator 7 is installed with a microwave generator base through a rib plate, and a microwave generator I17 is installed on the upper surface of the microwave generator base, and the microwave generator I17 passes through the waveguide.
  • the conveyor belt of the conveyor II8 passes through the microwave cavity 9
  • the side of the conveyor II8 away from the elevator 7 is installed with a support plate through a rib plate
  • a bracket is installed on the support plate
  • the upper surface of the bracket is installed with a separation
  • a plurality of infrared thermal imagers I12 and a plurality of air nozzles 13 are respectively installed on the two horizontal beams of the bracket, and the number of the infrared thermal imagers I12 and the air nozzles 13 are equal, and the air nozzles 13 are located in the ore. 11 is set right above where it falls, and the infrared thermal imager I12 and the air nozzle 13 are both connected to the separation controller 15.
  • the ore 11 particles are heated by the closed microwave cavity 9 under the transmission of the conveyor II8, and then pass through the infrared thermal imager I12.
  • the air nozzle 13 is opened, and the ore 11 changes its running track and falls to the conveyor III10 under the action of air blowing. 14 falls on the conveyor V22 without changing the motion track.
  • the high-power microwave focusing melting system includes a conveyor III10 and a vertical flow ore pipeline.
  • the conveyor III10 is located at the lower right of the conveyor II8, and the conveyor IV20 is located at the lower left of the conveyor III10.
  • the conveyor belt of the conveyor IV20 is a mesh.
  • the hole type conveyor belt, the mesh diameter of the conveyor belt of the conveyor IV20 is smaller than the particle size of the graphite powder 26, the conveyor III10 is provided with a conveyor V22 at the lower right, and the conveyor III10 and the conveyor IV20 are installed on the ground through the rack
  • the molten metal mineral pool 18 installed on the ground is arranged below the conveyor IV20.
  • the output end of the conveyor III10 is connected to the crusher 27 through the chute 30.
  • the crusher 27 is installed on the frame of the conveyor IV20 through a bracket, and the bracket is fixed inside.
  • a vertical flow ore pipeline is installed, and the output end of the crusher 27 is connected to the inlet end of the vertical flow ore pipeline.
  • the outer circle of the vertical flow ore pipeline is sequentially provided with a choke coil 25 and a single-mode heating cavity 19 located on the upper part from top to bottom.
  • the choke coil 25 and the electromagnetic coil 24 located at the bottom, an infrared thermal imager II 28 is arranged on one side of the single-mode heating cavity 19, and the single-mode heating cavity 19 is connected to the microwave generator II 29 installed on the ground through the waveguide 16, and the single-mode heating cavity 19 is connected to the ground.
  • the molten metal minerals in the heating chamber 19 flow out through the output end of the vertical flow ore pipeline and flow into the molten metal mineral pool 18 through the mesh of the mesh conveyor belt.
  • the separated gangue minerals 21 are transported to the mined-out through conveyor IV20 and conveyor V22. District 23.
  • the vertical flow ore pipeline, the choke coil 25 in the upper part, the single-mode heating cavity 19 and the choke coil 25 in the lower part form a microwave heating system.
  • the vertical flow ore pipeline of the microwave heating system is coaxially fitted with a high temperature resistant quartz tube with a diameter of 20cm and a melting point of 1800°C; the bottom of the vertical flow ore pipeline and the electromagnetic coil 24 form a conventional heating system, and the electromagnetic coil 24 allows the vertical flow
  • a high temperature is generated at the bottom of the mine pipeline, and its function is to prevent the metallic minerals cooled by the choke coil 25 from condensing into agglomerates.
  • a mining method for a metal ore microwave-mechanical fluidized mining system comprising the following steps:
  • Step 1 according to the one-time cutting height of the mechanical cutting machine, the ore body is divided into several layers, and the layers are cut from bottom to top, and the height of the layers is equal to the one-time cutting height of the cutting machine;
  • Step 2 turn on the horizontally arranged open microwave radiator 301 and the vertically arranged open microwave radiator 302 at the same time, adjust the maximum output power to the safe range, pre-split the ore body 1 of the first layer and the second layer respectively, open the The microwave radiator and the mechanical cutting machine travel in the same direction.
  • the horizontally arranged open microwave radiator 301 pre-splits the ore body 1
  • the mechanical cutting machine synchronously follows up to continuously cut the first layer of the ore body.
  • the cutting device 302 pre-splits the second layer of ore body, and continues to cut the second layer of ore body after the first layer of ore body is cut.
  • the device 301 and the cutter head 2 are translated to the second layer of ore body, and the vertically arranged open microwave radiator 302 is moved to the third layer of ore body, and the second layer of ore body has been irradiated by the vertically arranged open microwave radiator Pre-splitting device 302, according to the cutting effect of the first layer of ore body, choose to open or close the horizontally arranged open microwave radiator, when the cutting speed of the first layer of ore body meets the site requirements, then turn off the horizontally arranged open microwave radiator ; When the cutting speed of the first layer of ore body cannot meet the on-site requirements, turn on the open microwave radiator arranged horizontally; repeat step 2 to continue mining the next layer of ore body, and repeat step 2 to continue mining along the longitudinal direction after the full-section one-time mining depth is completed. ;
  • Step 3 the cut ore body particles are transported to conveyor II8 through conveyor I6 and elevator 7, the ore particles 11 are heated through microwave cavity 9, and the ore body particles reaching the boundary grade are counted by infrared thermal imager I12.
  • step 4 the average temperature a measured in step 3 is used as the standard.
  • the average temperature of the ore body particles measured by the infrared thermal imager I12 ⁇ a it is the waste rock 14, and the waste rock 14 slides down to the conveyor at the output end of the conveyor II8.
  • V22 is transported to goaf 23 by conveyor V22;
  • the controller turns on after t seconds according to the feedback of infrared thermal imager I12 Air nozzle 13, at this time, the ore 11 is just below the air nozzle 13, and the ore 11 is blown to the conveyor III10 through the air nozzle 13;
  • step 5 the next stage treatment is performed for the ore whose melting point difference between the metal mineral and the gangue mineral 21 exceeds 500°C, and the optimum particle size of the ore 11 for microwave heating is determined through the dielectric property test, and then the separated ore 11 particles are conveyed.
  • the machine III10 is output to the crusher 27, and the crusher 27 is used to crush to the best particle size;
  • Step 6 After crushing by the crusher 27, the ore 11 with the optimum particle size is evenly mixed with the graphite powder 26.
  • the graphite powder 26 has a melting point of 3800°C, which has the characteristics of extremely fast heating under microwave conditions, and its function is to adhere to the surface of the ore 11 to accelerate The ore 11 particles are heated up; the uniformly mixed ore 11 particles are transported to the high-power microwave focusing melting system. According to the characteristics of metal minerals absorbing microwaves and their melting point is lower than that of the gangue mineral 21, the metal minerals in the ore 11 are melted and flowed out.
  • the conveyor IV20 starts to work, and the molten metal flows to the molten metal mineral pool 18 through the mesh of the conveyor belt of the conveyor IV20; the separated gangue minerals 21 It is transported to the goaf 23 through the conveyor V22;
  • Step 7 parameter optimization: analyze the composition of the gangue mineral 21, and the proportion of the graphite powder 26 is determined according to the melting effect of the gangue mineral 21 particles. Reduce the flow rate of the ore 11; when the metal mineral content in the gangue mineral 21 is less than 10%, work with the graphite powder 26 content and the flow rate of the ore 11 at this time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Remote Sensing (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Abstract

一种金属矿微波-机械流态化开采***以及利用根据该***的开采方法,包括微波预裂机械采矿***、微波分离***、高功率微波聚焦熔化***及采空区(23);通过微波预裂采矿***采下的矿-废混合体通过其上的输送机I(6)和提升机(7)运输到微波分离***,分离出的矿石运输到高功率微波聚焦熔化***,分离后的废石通过输送机V(22)运输到采空区(23)充填。采用了微波预裂机械采矿提高了掘进速度,避免了***对围岩稳定的影响,简化了选矿的工艺,减少了破碎、磨矿、浮选的工序,主要采用的微波能量可通过可再生能源转化。

Description

一种金属矿微波-机械流态化开采***及开采方法 技术领域
本发明属于金属矿开采技术领域,具体涉及一种金属矿微波-机械流态化开采***及开采方法。
背景技术
金属矿采选的本质就是矿石破碎,将有用矿物提取出来。传统的金属矿采矿工艺流程:采用钻爆法凿岩***大块矿石,随后运到地面进行矿石的破碎、磨矿、浮选工作,将有用的矿物挑选出来运到冶炼厂,同时还需要从地面运输骨料充填采空区。
传统的开采工艺从开矿到选矿的工艺流程繁琐,运输路线长、成本高,在采矿工艺上,钻爆法施工推进速度慢,并且对于围岩的稳定性会产生很大的影响,这给工人施工安全带来了巨大威胁。尤其是金属矿山向深部开采,高地应力、高温的影响会进一步增大传统采矿工艺的难度和成本。其次从地面运输充填料到采空区会增加充填材料和运输成本。传统的选矿工艺,矿石破碎、磨矿工作能耗大,尤其是磨矿工作有效利用率只有1%,并且会产生大量的钢材损耗,而后续的浮选工作还会消耗大量的化学溶液。对于低品位矿石,最终只能提取少量有用的矿物,绝大部分废石的运输、破碎和浮选浪费了巨大的成本。
技术解决方案
本发明目的是提供一种金属矿微波-机械流态化开采***及开采方法,采用微波技术依次进行预裂矿石机械连续开采,微波分离废石与矿石,微波聚焦融化实现金属矿物富集融化的目的,将废石就地运往采空区填充,从而简化矿石采选工艺,实现金属矿的流态化开采。
为了实现上述目的,本发明采用如下技术方案:
一种金属矿微波-机械流态化开采***,包括微波预裂机械采矿***、微波分离***、高功率微波聚焦熔化***及采空区;通过微波预裂采矿***采下的矿-废混合体通过其上的输送机Ⅰ和提升机运输到微波分离***,分离出的矿石运输到高功率微波聚焦熔化***,分离后的废石通过输送机Ⅴ运输到采空区充填。
所述微波预裂机械采矿***包括敞开式微波辐射器、机械切割机、输送机Ⅰ及提升机,输送机Ⅰ通过其上的机架固定安装于地面上,输送机Ⅰ的输出端与提升机的输入端连接,切割机通过机身固定安装于地面上,且位于输送机Ⅰ一侧设置,切割机的机头侧壁上安装有敞开式微波辐射器;切割机的刀盘和敞开式微波辐射器通过切割机上的机械摇臂的伸展与转动控制高度及角度,敞开式微波辐射器分为水平布置的敞开式微波辐射器和垂直布置的敞开式微波辐射器,水平布置的敞开式微波辐射器布置在机械切割机沿切割方向前端,垂直布置的敞开式微波辐射器布置在机械切割机垂直切割方向上方。
所述微波分离***包括微波腔体、分离控制器及输送机Ⅱ;所述输送机Ⅱ通过机架安装于地面上,且输入端与提升机的输出端连接,输送机Ⅱ靠近提升机一侧的机架上通过肋板安装有微波发生器基座,微波发生器基座上表面安装有微波发生器Ⅰ,微波发生器Ⅰ通过波导与微波腔体连接,输送机Ⅱ的传送带穿过微波腔体,输送机Ⅱ远离提升机一侧通过肋板安装有支撑板,支撑板上安装有支架,支架上表面安装有分离控制器,支架的两个水平梁上分别安装有多个红外热成像仪Ⅰ和多个空气喷嘴,且红外热成像仪Ⅰ和空气喷嘴的个数相等,所述空气喷嘴位于矿石下落的正上方设置,红外热成像仪Ⅰ和空气喷嘴均与分离控制器连接,矿石颗粒在输送机Ⅱ的传输下经过封闭的微波腔体加热后,通过红外热成像仪Ⅰ进行测温,加热后的矿石和废石的混合物经过分离控制***的的正下方时,空气喷嘴开启,矿石在气吹的作用下改变运行轨迹下落到输送机Ⅲ上,废石不改变运动轨迹下落到输送机Ⅴ上。
所述高功率微波聚焦熔化***包括输送机Ⅲ、竖向流矿管道,所述输送机Ⅲ位于输送机Ⅱ右下方设置,输送机Ⅲ左下方设置有输送机Ⅳ,输送机Ⅳ的传送带为网孔式传送带,输送机Ⅲ右下方设置有输送机Ⅴ,输送机Ⅲ和输送机Ⅳ均通过机架安装于地面上,输送机Ⅳ下方设置有安装于地面上的熔融金属矿物池,输送机Ⅲ的输出端通过溜槽与破碎机连接,破碎机通过支架安装于输送机Ⅳ机架上,支架内固定安装有竖向流矿管道,破碎机输出端与竖向流矿管道入口端连接,竖向流矿管道外圆从上至下依次设置有位于上部的扼流圈、单模加热腔、位于下部的扼流圈及电磁线圈,单模加热腔一侧设置有红外热成像仪Ⅱ,单模加热腔通过波导与安装于地面的微波发生器Ⅱ连接,经单模加热腔熔融的金属矿物经竖向流矿管道输出端流出通过网孔式传送带的网孔流入熔融金属矿物池,分离出来的脉石矿物通过输送机Ⅳ和输送机Ⅴ输送至采空区。
一种金属矿微波-机械流态化开采***的开采方法,包括以下步骤:
步骤1,根据机械切割机一次切割高度对矿体划分若干层,自下而上分层切割;
步骤2,同时开启水平布置的敞开式微波辐射器和垂直布置的敞开式微波辐射器,调至安全范围的最大输出功率,分别预裂第一层和第二层的矿体,敞开式微波辐射器与机械切割机行进方向一致,水平布置的敞开式微波辐射器预裂矿体后,机械切割机同步跟进连续切割第一层矿体,同时垂直布置的敞开式微波辐射器预裂第二层矿体,第一层矿体切割完毕后继续切割第二层矿体,切割第二层矿体时,机械切割机通过机械摇臂将水平布置的敞开式微波辐射器和刀盘平移到第二层矿体处,此时垂直布置的敞开式微波辐射器移动至第三层矿体处,而第二层矿体已被垂直布置的敞开式微波辐射器预裂,根据第一层矿体的切割效果,选择开启或关闭水平布置的敞开式微波辐射器,当第一层矿体切割速度满足现场需求,则关闭水平布置的敞开式微波辐射器;当第一层矿体切割速度不能满足现场需求,则开启水平布置的敞开式微波辐射器;重复步骤2继续开采下一层矿体;
步骤3,切割下来的矿体颗粒通过输送机Ⅰ及提升机输送至输送机Ⅱ,经过微波腔体对矿石颗粒进行加热处理,通过红外热成像仪Ⅰ统计达到边界品位的矿体颗粒经过微波后的最低平均温度a;
步骤4,将步骤3测得的平均温度a作为标准,当红外热成像仪Ⅰ测得矿体颗粒平均温度<a,则为废石,废石在输送机Ⅱ输出端滑落至输送机Ⅴ,通过输送机Ⅴ输送至采空区;当红外热成像仪Ⅰ测得矿体颗粒平均温度>a,则为矿石,控制器根据红外热成像仪Ⅰ的反馈,经过t秒后打开空气喷嘴,此时矿石正好位于空气喷嘴正下方,通过空气喷嘴将矿石吹至输送机Ⅲ上;
步骤5,针对金属矿物与脉石矿物熔点差值超过500℃的矿石进行下阶段处理,通过介电性能测试确定矿石微波加热的最佳粒径,然后将分离出的矿石颗粒经过输送机Ⅲ输出至破碎机,采用破碎机破碎至最佳粒径;
步骤6,通过破碎机破碎后最佳粒径的矿石颗粒与石墨粉均匀混合,均匀混合后的矿石颗粒运送到高功率微波聚焦熔化***,根据金属矿物吸收微波且熔点小于脉石矿物的特点,将矿石中的金属矿物熔化流出,当红外热成像仪Ⅱ检测到单模加热腔内最高温度达到金属矿物熔点后,输送机Ⅳ开始工作,熔融金属通过输送机Ⅳ的传送带的网孔流至熔融金属矿物池;分离后的脉石矿物经过输送机Ⅴ输送至采空区;
步骤7,参数优化:对脉石矿物进行成分分析,石墨粉比例根据脉石矿物熔化效果而定,当脉石矿物中金属矿物含量≥10%时,提高石墨粉含量,降低矿石流速;当脉石矿物中金属矿物含量<10%时,以此时的石墨粉含量和矿石流速进行工作。
有益效果
本发明采用上述技术方案的有益效果是:
(1)采用了微波预裂机械采矿,代替传统的***采矿方法,提高了掘进速度,避免了***对围岩稳定的影响。
(2)简化了选矿的工艺,减少了传统破碎、磨矿、浮选的工序,大幅降低了对钢材、化学溶液等不可再生资源的消耗,主要采用的微波能量可以通过可再生能源转化。
(3)井下微波分离矿石与废石,矿石微波富集熔化生成废渣脉石矿物,就地取材利用废石与脉石矿物充填采空区,降低了运输和充填成本。
(4)采用矿石混合石墨粉,微波加热和电磁线圈常规加热结合的方法,对矿石进行微波富集熔化,加快了矿石颗粒升温熔化,减少了传统磨矿工艺的钢材损耗,扩大了矿石微波熔化的适用范围,同时降低了选矿过程中的化学溶液污染。
(5)一种微波-机械流态化开采***及方法,主要采用清洁可再生的微波能量在井下预处理矿石,依次进行矿石微波预裂机械采矿,矿石废石微波分离,矿石微波富集熔化和废石充填采空区,简化了采矿选矿工艺流程,提高矿山掘进速度,降低机械开采成本。
附图说明
图1 本发明金属矿微波-机械流态化开采***示意图;
图2 本发明金属矿微波-机械流态化开采***的高功率微波聚焦熔化***示意图;
图3本发明金属矿微波-机械流态化开采***的红外热成像仪Ⅰ与空气喷嘴部分结构俯视图;
图4本发明金属矿微波-机械流态化开采***的矿体分层示意图;
图5本发明金属矿微波-机械流态化开采***的开采流程图;
1-矿体,2-刀盘,301-水平布置的敞开式微波辐射器,302-垂直布置的敞开式微波辐射器,4-机械摇臂,5-机身,6-输送机Ⅰ,7-提升机,8-输送机Ⅱ,9-微波腔体,10-输送机Ⅲ,11-矿石,12-红外热成像仪Ⅰ,13-空气喷嘴,14-废石,15-分离控制器,16-波导,17-微波发生器Ⅰ,18-熔融金属矿物池,19-单模加热腔,20-输送机Ⅳ,21-脉石矿物,22-输送机Ⅴ,23-采空区,24-电磁线圈,25-扼流圈,26-石墨粉,27-破碎机,28-红外热成像仪Ⅱ,29-微波发生器Ⅱ,30-溜槽。
本发明的实施方式
下面结合附图和实施例对本发明作进一步的详细说明。
如图1至图5所示,一种金属矿微波-机械流态化开采***,包括微波预裂机械采矿***、微波分离***、高功率微波聚焦熔化***及采空区23;通过微波预裂采矿***采下的矿-废混合体通过其上的输送机Ⅰ6和提升机7运输到微波分离***,分离出的矿石11运输到高功率微波聚焦熔化***,分离后的废石14通过输送机Ⅴ22运输到采空区23充填。
所述微波预裂机械采矿***包括敞开式微波辐射器、机械切割机、输送机Ⅰ6及提升机7,输送机Ⅰ6通过其上的机架固定安装于地面上,输送机Ⅰ6的输出端与提升机7的输入端连接,切割机通过机身5固定安装于地面上,且位于输送机Ⅰ6一侧设置,机械切割机一次进刀深度为矿石11穿透深度的5-8倍;切割机的机头侧壁上安装有水平布置的敞开式微波辐射器301和垂直布置的敞开式微波辐射器302;切割机的刀盘2和敞开式微波辐射器通过切割机上的机械摇臂4的伸展与转动控制高度及角度,水平布置的敞开式微波辐射器301布置在机械切割机沿切割方向前端,垂直布置的敞开式微波辐射器302布置在机械切割机垂直切割方向上方;所述敞开式微波辐射器的频率采用915MHz;敞开式微波辐射器的类型根据矿石11类型而定,对于均质性好的矿石11采用扁嘴形敞开式微波辐射器,对于均质性差的矿石11采用大喇叭形敞开式微波辐射器;所述敞开式微波辐射器的个数等于两层高度与单个敞开式微波辐射器预裂范围的比值。
所述微波分离***包括微波腔体9、分离控制器15及输送机Ⅱ8,微波发生器Ⅰ17的微波频率采用2.45GHz;所述输送机Ⅱ8通过机架安装于地面上,且输入端与提升机7的输出端连接,输送机Ⅱ8靠近提升机7一侧的机架上通过肋板安装有微波发生器基座,微波发生器基座上表面安装有微波发生器Ⅰ17,微波发生器Ⅰ17通过波导16与微波腔体9连接,输送机Ⅱ8的传送带穿过微波腔体9,输送机Ⅱ8远离提升机7一侧通过肋板安装有支撑板,支撑板上安装有支架,支架上表面安装有分离控制器15,支架的两个水平梁上分别安装有多个红外热成像仪Ⅰ12和多个空气喷嘴13,且红外热成像仪Ⅰ12和空气喷嘴13的个数相等,所述空气喷嘴13位于矿石11下落的正上方设置,红外热成像仪Ⅰ12和空气喷嘴13均与分离控制器15连接,矿石11颗粒在输送机Ⅱ8的传输下经过封闭的微波腔体9加热后,通过红外热成像仪Ⅰ12进行测温,加热后的矿石11和废石14的混合物经过分离控制***的的正下方时,空气喷嘴13开启,矿石11在气吹的作用下改变运行轨迹下落到输送机Ⅲ10上,废石14不改变运动轨迹下落到输送机Ⅴ22上。
所述高功率微波聚焦熔化***包括输送机Ⅲ10、竖向流矿管道,所述输送机Ⅲ10位于输送机Ⅱ8右下方设置,输送机Ⅲ10左下方设置有输送机Ⅳ20,输送机Ⅳ20的传送带为网孔式传送带,所述输送机Ⅳ20的输送带的网孔直径小于石墨粉26颗粒粒径,输送机Ⅲ10右下方设置有输送机Ⅴ22,输送机Ⅲ10和输送机Ⅳ20均通过机架安装于地面上,输送机Ⅳ20下方设置有安装于地面上的熔融金属矿物池18,输送机Ⅲ10的输出端通过溜槽30与破碎机27连接,破碎机27通过支架安装于输送机Ⅳ20机架上,支架内固定安装有竖向流矿管道,破碎机27输出端与竖向流矿管道入口端连接,竖向流矿管道外圆从上至下依次设置有位于上部的扼流圈25、单模加热腔19、位于下部的扼流圈25及电磁线圈24,单模加热腔19一侧设置有红外热成像仪Ⅱ28,单模加热腔19通过波导16与安装于地面的微波发生器Ⅱ29连接,经单模加热腔19熔融的金属矿物经竖向流矿管道输出端流出通过网孔式传送带的网孔流入熔融金属矿物池18,分离出来的脉石矿物21通过输送机Ⅳ20和输送机Ⅴ22输送至采空区23。
所述竖向流矿管道、位于上部的扼流圈25、单模加热腔19及位于下部的扼流圈25组成微波加热***,单模加热腔19采用微波频率915MHz的单模腔结构,组成微波加热***的竖向流矿管道内同轴套装有耐高温石英管,直径为20cm,熔点为1800℃;竖向流矿管道底部及电磁线圈24组成常规加热***,电磁线圈24让竖向流矿管道底部产生高温,其作用是防止经过扼流圈25冷却的金属矿物凝结成块。
一种金属矿微波-机械流态化开采***的开采方法,包括以下步骤:
步骤1,根据机械切割机一次切割高度对矿体划分若干层,自下而上分层切割,所述分层的高度等于切割机一次切割高度;
步骤2,同时开启水平布置的敞开式微波辐射器301和垂直布置的敞开式微波辐射器302,调至安全范围的最大输出功率,分别预裂第一层和第二层的矿体1,敞开式微波辐射器与机械切割机行进方向一致,水平布置的敞开式微波辐射器301预裂矿体1后,机械切割机同步跟进连续切割第一层矿体,同时垂直布置的敞开式微波辐射器302预裂第二层矿体,第一层矿体切割完毕后继续切割第二层矿体,切割第二层矿体时,机械切割机通过机械摇臂4将水平布置的敞开式微波辐射器301和刀盘2平移到第二层矿体处,此时垂直布置的敞开式微波辐射器302移动至第三层矿体处,而第二层矿体已被垂直布置的敞开式微波辐射器302预裂,根据第一层矿体的切割效果,选择开启或关闭水平布置的敞开式微波辐射器,当第一层矿体切割速度满足现场需求,则关闭水平布置的敞开式微波辐射器;当第一层矿体切割速度不能满足现场需求,则开启水平布置的敞开式微波辐射器;重复步骤2继续开采下一层矿体,全断面一次采深完毕后重复步骤2继续沿纵向开采;
步骤3,切割下来的矿体颗粒通过输送机Ⅰ6及提升机7输送至输送机Ⅱ8,经过微波腔体9对矿石11颗粒进行加热处理,通过红外热成像仪Ⅰ12统计达到边界品位的矿体颗粒经过微波后的最低平均温度a;
步骤4,将步骤3测得的平均温度a作为标准,当红外热成像仪Ⅰ12测得矿体颗粒平均温度<a,则为废石14,废石14在输送机Ⅱ8输出端滑落至输送机Ⅴ22,通过输送机Ⅴ22输送至采空区23;当红外热成像仪Ⅰ12测得矿体颗粒平均温度>a,则为矿石11,控制器根据红外热成像仪Ⅰ12的反馈,经过t秒后打开空气喷嘴13,此时矿石11正好位于空气喷嘴13正下方,通过空气喷嘴13将矿石11吹至输送机Ⅲ10上;
步骤5,针对金属矿物与脉石矿物21熔点差值超过500℃的矿石进行下阶段处理,通过介电性能测试确定矿石11微波加热的最佳粒径,然后将分离出的矿石11颗粒经过输送机Ⅲ10输出至破碎机27,采用破碎机27破碎至最佳粒径;
步骤6,通过破碎机27破碎后最佳粒径的矿石11颗粒与石墨粉26均匀混合,石墨粉26熔点3800℃,具有微波条件下升温极快的特点,其作用是附着矿石11颗粒表面加速矿石11颗粒升温;均匀混合后的矿石11颗粒运送到高功率微波聚焦熔化***,根据金属矿物吸收微波且熔点小于脉石矿物21的特点,将矿石11中的金属矿物熔化流出,当红外热成像仪Ⅱ28检测到单模加热腔19内最高温度达到金属矿物熔点后,输送机Ⅳ20开始工作,熔融金属通过输送机Ⅳ20的传送带的网孔流至熔融金属矿物池18;分离后的脉石矿物21经过输送机Ⅴ22输送至采空区23;
步骤7,参数优化:对脉石矿物21进行成分分析,石墨粉26比例根据脉石矿物21颗粒熔化效果而定,当脉石矿物21中金属矿物含量≥10%时,提高石墨粉26含量,降低矿石11流速;当脉石矿物21中金属矿物含量<10%时,以此时的石墨粉26含量和矿石11流速进行工作。

Claims (5)

  1. 一种金属矿微波-机械流态化开采***,其特征在于,包括微波预裂机械采矿***、微波分离***、高功率微波聚焦熔化***及采空区;通过微波预裂采矿***采下的矿-废混合体通过其上的输送机Ⅰ和提升机运输到微波分离***,分离出的矿石运输到高功率微波聚焦熔化***,分离后的废石通过输送机Ⅴ运输到采空区充填。
  2. 根据权利要求1所述的一种金属矿微波-机械流态化开采***,其特征在于:所述微波预裂机械采矿***包括敞开式微波辐射器、机械切割机、输送机Ⅰ及提升机,输送机Ⅰ通过其上的机架固定安装于地面上,输送机Ⅰ的输出端与提升机的输入端连接,切割机通过机身固定安装于地面上,且位于输送机Ⅰ一侧设置,切割机的机头侧壁上安装有敞开式微波辐射器;切割机的刀盘和敞开式微波辐射器通过切割机上的机械摇臂的伸展与转动控制高度及角度,敞开式微波辐射器分为水平布置的敞开式微波辐射器和垂直布置的敞开式微波辐射器,水平布置的敞开式微波辐射器布置在机械切割机沿切割方向前端,垂直布置的敞开式微波辐射器布置在机械切割机垂直切割方向上方。
  3. 根据权利要求1所述的一种金属矿微波-机械流态化开采***,其特征在于:所述微波分离***包括微波腔体、分离控制器及输送机Ⅱ;所述输送机Ⅱ通过机架安装于地面上,且输入端与提升机的输出端连接,输送机Ⅱ靠近提升机一侧的机架上通过肋板安装有微波发生器基座,微波发生器基座上表面安装有微波发生器Ⅰ,微波发生器Ⅰ通过波导与微波腔体连接,输送机Ⅱ的传送带穿过微波腔体,输送机Ⅱ远离提升机一侧通过肋板安装有支撑板,支撑板上安装有支架,支架上表面安装有分离控制器,支架的两个水平梁上分别安装有多个红外热成像仪Ⅰ和多个空气喷嘴,且红外热成像仪Ⅰ和空气喷嘴的个数相等,所述空气喷嘴位于矿石下落的正上方设置,红外热成像仪Ⅰ和空气喷嘴均与分离控制器连接,矿石颗粒在输送机Ⅱ的传输下经过封闭的微波腔体加热后,通过红外热成像仪Ⅰ进行测温,加热后的矿石和废石的混合物经过分离控制***的的正下方时,空气喷嘴开启,矿石在气吹的作用下改变运行轨迹下落到输送机Ⅲ上,废石不改变运动轨迹下落到输送机Ⅴ上。
  4. 根据权利要求1所述的一种金属矿微波-机械流态化开采***,其特征在于:所述高功率微波聚焦熔化***包括输送机Ⅲ、竖向流矿管道,所述输送机Ⅲ位于输送机Ⅱ右下方设置,输送机Ⅲ左下方设置有输送机Ⅳ,输送机Ⅳ的传送带为网孔式传送带,输送机Ⅲ右下方设置有输送机Ⅴ,输送机Ⅲ和输送机Ⅳ均通过机架安装于地面上,输送机Ⅳ下方设置有安装于地面上的熔融金属矿物池,输送机Ⅲ的输出端通过溜槽与破碎机连接,破碎机通过支架安装于输送机Ⅳ机架上,支架内固定安装有竖向流矿管道,破碎机输出端与竖向流矿管道入口端连接,竖向流矿管道外圆从上至下依次设置有上扼流圈、单模加热腔、下扼流圈及电磁线圈,单模加热腔一侧设置有红外热成像仪Ⅱ,单模加热腔通过波导与安装于地面的微波发生器Ⅱ连接,经单模加热腔熔融的金属矿物经竖向流矿管道输出端流出通过网孔式传送带的网孔流入熔融金属矿物池,分离出来的脉石矿物通过输送机Ⅳ和输送机Ⅴ输送至采空区。
  5. 根据权利要求1所述的一种金属矿微波-机械流态化开采***的开采方法,其特征在于,包括以下步骤:
    步骤1,根据机械切割机一次切割高度对矿体划分若干层,自下而上分层切割;
    步骤2,同时开启水平布置的敞开式微波辐射器和垂直布置的敞开式微波辐射器,调至安全范围的最大输出功率,分别预裂第一层和第二层的矿体,敞开式微波辐射器与机械切割机行进方向一致,水平布置的敞开式微波辐射器预裂矿体后,机械切割机同步跟进连续切割第一层矿体,同时垂直布置的敞开式微波辐射器预裂第二层矿体,第一层矿体切割完毕后继续切割第二层矿体,切割第二层矿体时,机械切割机通过机械摇臂将水平布置的敞开式微波辐射器和刀盘平移到第二层矿体处,此时垂直布置的敞开式微波辐射器移动至第三层矿体处,而第二层矿体已被垂直布置的敞开式微波辐射器预裂,根据第一层矿体的切割效果,选择开启或关闭水平布置的敞开式微波辐射器,当第一层矿体切割速度满足现场需求,则关闭水平布置的敞开式微波辐射器;当第一层矿体切割速度不能满足现场需求,则开启水平布置的敞开式微波辐射器;重复步骤2继续开采下一层矿体;
    步骤3,切割下来的矿体颗粒通过输送机Ⅰ及提升机输送至输送机Ⅱ,经过微波腔体对矿石颗粒进行加热处理,通过红外热成像仪Ⅰ统计达到边界品位的矿体颗粒经过微波后的最低平均温度a;
    步骤4,将步骤3测得的平均温度a作为标准,当红外热成像仪Ⅰ测得矿体颗粒平均温度<a,则为废石,废石在输送机Ⅱ输出端滑落至输送机Ⅴ,通过输送机Ⅴ输送至采空区;当红外热成像仪Ⅰ测得矿体颗粒平均温度>a,则为矿石,控制器根据红外热成像仪Ⅰ的反馈,经过t秒后打开空气喷嘴,此时矿石正好位于空气喷嘴正下方,通过空气喷嘴将矿石吹至输送机Ⅲ上;
    步骤5,针对金属矿物与脉石矿物熔点差值超过500℃的矿石进行下阶段处理,通过介电性能测试确定矿石微波加热的最佳粒径,然后将分离出的矿石颗粒经过输送机Ⅲ输出至破碎机,采用破碎机破碎至最佳粒径;
    步骤6,通过破碎机破碎后最佳粒径的矿石颗粒与石墨粉均匀混合,均匀混合后的矿石颗粒运送到高功率微波聚焦熔化***,根据金属矿物吸收微波且熔点小于脉石矿物的特点,将矿石中的金属矿物熔化流出,当红外热成像仪Ⅱ检测到单模加热腔内最高温度达到金属矿物熔点后,输送机Ⅳ开始工作,熔融金属通过输送机Ⅳ的传送带的网孔流至熔融金属矿物池;分离后的脉石矿物经过输送机Ⅴ输送至采空区;
    步骤7,参数优化:对脉石矿物进行成分分析,石墨粉比例根据脉石矿物熔化效果而定,当脉石矿物中金属矿物含量≥10%时,提高石墨粉含量,降低矿石流速;当脉石矿物中金属矿物含量<10%时,以此时的石墨粉含量和矿石流速进行工作。
PCT/CN2021/084818 2021-03-30 2021-04-01 一种金属矿微波-机械流态化开采***及开采方法 WO2022205264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/023,481 US11773720B2 (en) 2021-03-30 2021-04-01 Microwave-mechanical fluidization mining system and mining method for metal mines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110338294.9A CN113047837B (zh) 2021-03-30 2021-03-30 一种金属矿微波-机械流态化开采***及开采方法
CN202110338294.9 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022205264A1 true WO2022205264A1 (zh) 2022-10-06

Family

ID=76517019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084818 WO2022205264A1 (zh) 2021-03-30 2021-04-01 一种金属矿微波-机械流态化开采***及开采方法

Country Status (3)

Country Link
US (1) US11773720B2 (zh)
CN (1) CN113047837B (zh)
WO (1) WO2022205264A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117189114B (zh) * 2023-10-25 2024-03-12 山东黄金矿业科技有限公司 一种自动化充填开采***

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277168B1 (en) * 2000-02-14 2001-08-21 Xiaodi Huang Method for direct metal making by microwave energy
US20040107796A1 (en) * 2002-12-04 2004-06-10 Satyendra Kumar Plasma-assisted melting
CN102076432A (zh) * 2008-09-11 2011-05-25 技术资源有限公司 分选采矿材料
CN102441553A (zh) * 2010-10-12 2012-05-09 深圳市格林美高新技术股份有限公司 一种从贵金属电子废料回收贵金属的方法及设备
WO2013149293A1 (en) * 2012-04-04 2013-10-10 Technological Resources Pty. Limited Separating mined material
CN103827445A (zh) * 2011-07-08 2014-05-28 技术信息有限公司 开采作业中的分选
US20140260801A1 (en) * 2011-07-28 2014-09-18 Technological Resources Pty. Limited Sorting mined material
CN104096680A (zh) * 2014-07-16 2014-10-15 山东大学 基于微波加热与红外线阵成像的矿石分选***及方法
CN104368527A (zh) * 2014-11-10 2015-02-25 安徽理工大学 井下快速风力煤矸分离装置
CN105122045A (zh) * 2012-11-30 2015-12-02 技术资源有限公司 分选采出物料
WO2020243919A1 (zh) * 2019-06-05 2020-12-10 中国矿业大学(北京) 适用于矿体流态化开采的采掘机及开采方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2091584C1 (ru) * 1994-02-28 1997-09-27 Российский Университет Дружбы Народов Способ управления кровлей при многослоевой одновременной выемке моющего пологого пласта угля и устройство для его осуществления
US7571814B2 (en) * 2002-02-22 2009-08-11 Wave Separation Technologies Llc Method for separating metal values by exposing to microwave/millimeter wave energy
CN103397881B (zh) * 2013-07-23 2016-03-02 中南大学 一种扩大矿房回采面积的工程方法
CN111926179A (zh) * 2020-09-09 2020-11-13 云南等离子科技有限公司 一种微波提钒节能环保提取装置及提取方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277168B1 (en) * 2000-02-14 2001-08-21 Xiaodi Huang Method for direct metal making by microwave energy
US20040107796A1 (en) * 2002-12-04 2004-06-10 Satyendra Kumar Plasma-assisted melting
CN102076432A (zh) * 2008-09-11 2011-05-25 技术资源有限公司 分选采矿材料
CN102441553A (zh) * 2010-10-12 2012-05-09 深圳市格林美高新技术股份有限公司 一种从贵金属电子废料回收贵金属的方法及设备
CN103827445A (zh) * 2011-07-08 2014-05-28 技术信息有限公司 开采作业中的分选
US20140260801A1 (en) * 2011-07-28 2014-09-18 Technological Resources Pty. Limited Sorting mined material
WO2013149293A1 (en) * 2012-04-04 2013-10-10 Technological Resources Pty. Limited Separating mined material
CN105122045A (zh) * 2012-11-30 2015-12-02 技术资源有限公司 分选采出物料
CN104096680A (zh) * 2014-07-16 2014-10-15 山东大学 基于微波加热与红外线阵成像的矿石分选***及方法
CN104368527A (zh) * 2014-11-10 2015-02-25 安徽理工大学 井下快速风力煤矸分离装置
WO2020243919A1 (zh) * 2019-06-05 2020-12-10 中国矿业大学(北京) 适用于矿体流态化开采的采掘机及开采方法

Also Published As

Publication number Publication date
CN113047837A (zh) 2021-06-29
CN113047837B (zh) 2022-02-01
US11773720B2 (en) 2023-10-03
US20230243259A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
CN102010122B (zh) 一种利用铁尾矿制备无机矿渣纤维的方法
US2621034A (en) Apparatus for expanding minerals
CN102304623B (zh) 一种铜吹炼渣还原贫化的方法和设备
WO2022205264A1 (zh) 一种金属矿微波-机械流态化开采***及开采方法
CN106111297A (zh) 一种贫磁铁矿的选矿工艺及其生产***
CN110130920A (zh) 隧道出渣、砂石加工及砼加工输送一体化设备及工艺
CN103862056A (zh) 一种铁合金熔液粒化方法
CN102776383A (zh) 一种富氧侧吹熔池熔炼粗铅的方法
Yu et al. An innovative methodology for recycling iron from magnetic preconcentrate of an iron ore tailing
CN110953019A (zh) 一种利用微波技术提高充填体早期强度的方法
CN106672973B (zh) 一种利用硅厂碎硅进行再生熔炼的控制***及方法
Evdokimov et al. Metal recovery from old tailings
CN102978313A (zh) 改善高炉布料的烧结矿给料***和给料方法
CN102534200A (zh) 微波烧结处理镍钼矿提取钼的方法
CN113546728B (zh) 一种碳化硅微粉研磨***及其使用方法
CN101956077A (zh) 一种铍铀矿浸出渣浮选回收铍的方法
CN104831086A (zh) 一种铅锌物料烧结熔炼的方法
CN112371305B (zh) 一种混合土混磨磁选工艺
CN207888887U (zh) 利用冶炼熔渣生产发泡微晶防火保温装饰一体板的生产线
Orumwense et al. Effect of microwave pretreatment on the liberation characteristics of a massive sulfide ore
CN105567891B (zh) 一种高温液态渣热能提取方法
CN206692338U (zh) 一种利用硅厂碎硅进行再生熔炼的控制***
CN105463184A (zh) 一种矿用预处理设备
CN202945295U (zh) 一种改善铁矿石热爆裂性能的装置
CN219656631U (zh) 液态铜熔炼炉渣余热回收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933924

Country of ref document: EP

Kind code of ref document: A1