WO2022203038A1 - 樹脂組成物、成形品、および、その応用 - Google Patents

樹脂組成物、成形品、および、その応用 Download PDF

Info

Publication number
WO2022203038A1
WO2022203038A1 PCT/JP2022/014323 JP2022014323W WO2022203038A1 WO 2022203038 A1 WO2022203038 A1 WO 2022203038A1 JP 2022014323 W JP2022014323 W JP 2022014323W WO 2022203038 A1 WO2022203038 A1 WO 2022203038A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
resin
mass
resin composition
parts
Prior art date
Application number
PCT/JP2022/014323
Other languages
English (en)
French (fr)
Inventor
隆行 鈴木
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to CN202280024489.9A priority Critical patent/CN117425703A/zh
Priority to EP22775819.0A priority patent/EP4317314A1/en
Priority to JP2022541868A priority patent/JP7192164B1/ja
Publication of WO2022203038A1 publication Critical patent/WO2022203038A1/ja
Priority to US18/472,384 priority patent/US20240010819A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • B23K26/282Seam welding of curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/267Marking of plastic artifacts, e.g. with laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0032Pigments, colouring agents or opacifiyng agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • C08K5/3447Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention provides a resin composition that can be used for laser welding and that can be laser-marked, as well as the production of molded articles, kits, laser-welded articles, laser-transmitting resin members, and laser-welded articles using the resin composition. Regarding the method. It also relates to a laser marking agent for a resin composition for laser welding.
  • Thermoplastic polyester resins such as polybutylene terephthalate resin are excellent in mechanical strength, chemical resistance, electrical insulation, etc., and also have excellent heat resistance, moldability, and recyclability. , widely used in various equipment parts.
  • Patent Document 1 a laser-transmitting resin member made of a laser-transmitting material (hereinafter sometimes referred to as "transmitting resin member”) and a laser-absorbing resin member made of a laser-absorbing material (hereinafter, "absorbing resin member”) ) are superimposed and a laser beam is irradiated from the transmissive resin member side to generate heat at the interface with the absorbing resin member for welding.
  • Resin compositions that are applied to molded articles for such applications are required to have a performance (laser weldability) that enables welding by irradiation with a laser beam.
  • the surface of the molded product is printed or drawn with product information, etc., in terms of designability at the time of completion, display of information, identification of parts at the time of assembly, and the like. And when they are required to maintain visibility over a long period of time, laser marking may be used from the viewpoint of reliability. Furthermore, in recent years, a resin composition that can be used as a laser-transmitting resin member during laser welding and that is capable of being laser-marked has also been studied (Patent Document 2).
  • the transmissive resin member has a high laser light transmittance as much as possible, and conversely, the absorptive resin member is preferably colored with a pigment or the like in order to increase the laser light absorptance.
  • the transmissive resin member is preferably colored in the same color as the absorbing resin member.
  • the absorbing resin member and the transmissive resin member may be colored black.
  • the transmissive resin member is colored with a pigment that has a high absorptivity of laser light, like the absorptive resin member, the laser light cannot pass through and laser welding becomes impossible.
  • the resin member For the resin member, a pigment is used that does not hinder the transmission of laser light as much as possible.
  • marking cannot be performed if the laser beam is transmitted. Therefore, there is a demand for a resin composition that permits laser marking while transmitting laser light to some extent.
  • the present invention provides a resin composition excellent in laser transmittance and laser printability and having suppressed unevenness in transmittance, and a molded article, kit, and laser welding using the resin composition. and a method for manufacturing laser welded products.
  • Another object of the present invention is to provide a laser marking agent for a resin composition for laser welding.
  • the inventors have found that the above problems can be solved by using a bismuth compound for the thermoplastic resin and using two or more kinds of non-black organic pigments. Specifically, the above problems have been solved by the following means. ⁇ 1> 100 parts by mass of a thermoplastic resin, 0.002 to 10.000 parts by mass of a bismuth compound, and a total of 0.1 to 5.0 parts by mass of two or more non-black organic pigments for laser marking and a resin composition for laser welding. ⁇ 2> The resin composition according to ⁇ 1>, wherein the content of the bismuth compound is 0.002 to 1.000 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • thermoplastic resin contains a thermoplastic polyester resin.
  • thermoplastic resin contains a polybutylene terephthalate resin.
  • polybutylene terephthalate resin contains units derived from isophthalic acid, and the unit derived from isophthalic acid accounts for 0.5 mol% or more of all units derived from dicarboxylic acid components in the polybutylene terephthalate resin.
  • the resin composition according to ⁇ 4> which is mol% or less.
  • thermoplastic resin contains a polycarbonate resin.
  • thermoplastic resin contains a polycarbonate resin.
  • thermoplastic resin contains a polycarbonate resin.
  • thermoplastic resin contains a polycarbonate resin.
  • ⁇ 7> The resin composition according to any one of ⁇ 1> to ⁇ 6>, which is for a laser transmitting resin member.
  • ⁇ 9> Any one of ⁇ 1> to ⁇ 8>, wherein the absorbance of the mixture of two or more non-black organic pigments at a wavelength of 1064 nm is 1.0 or less and the absorbance at a wavelength of 500 nm is 1.0 or more.
  • the resin composition according to 1. ⁇ 10> Any one of ⁇ 1> to ⁇ 9>, further comprising 0.1 to 18 parts by mass of an aromatic ring-containing compound having a benzene ring and/or a benzocondensed ring with respect to 100 parts by mass of the thermoplastic resin.
  • the resin composition according to . ⁇ 11> The resin composition according to ⁇ 10>, wherein the aromatic ring-containing compound is a compound containing an epoxy group.
  • ⁇ 12> The resin composition according to ⁇ 10>, wherein the aromatic ring-containing compound is a novolak type epoxy compound.
  • ⁇ 13> The resin composition according to any one of ⁇ 1> to ⁇ 12>, further comprising a glass fiber, wherein the glass fiber has a circular cross section.
  • ⁇ 14> A molded article formed from the resin composition according to any one of ⁇ 1> to ⁇ 13>.
  • ⁇ 15> A laser transmitting resin member formed from the resin composition according to any one of ⁇ 1> to ⁇ 13>.
  • ⁇ 16> The molded article according to ⁇ 14>, which is capable of laser marking.
  • ⁇ 17> The laser-transmitting resin member according to ⁇ 15>, which is capable of laser marking.
  • a kit comprising a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
  • ⁇ 20> irradiating the laser-transmitting resin member according to ⁇ 15> or ⁇ 17> with a laser for laser marking;
  • a method for producing a laser-welded product comprising laser-welding the laser-transmitting resin member and a laser-absorbing resin member formed from a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
  • a resin composition excellent in laser transmittance and laser printability and having suppressed unevenness in transmittance a molded article, a laser-transmitting resin member, a kit, and a laser-welded article using the resin composition , and a method for manufacturing a laser-welded article.
  • a laser marking agent for a resin composition for laser welding it has become possible to provide.
  • FIG. 2 is a schematic diagram showing a test piece (transmissive resin member I) for measuring laser welding strength in Examples.
  • FIG. 2 is a schematic diagram showing a test piece (absorbing resin member II) for measuring laser welding strength in Examples.
  • 1 is a schematic diagram showing a test piece (combination of transmitting resin member I and absorbing resin member II) for measuring laser welding strength in Examples.
  • FIG. It is a schematic diagram showing a method of measuring the laser welding strength of the example.
  • the resin composition of the present embodiment contains 100 parts by mass of a thermoplastic resin, 0.002 to 10.000 parts by mass of a bismuth compound, and 0.1 to 5.0 parts by mass of two or more non-black organic pigments in total. It is characterized by being a resin composition for laser marking and laser welding, comprising: With such a configuration, a resin composition having excellent laser transmittance and laser printability and having suppressed unevenness in transmittance can be obtained. In this embodiment, by using a bismuth compound, a resin composition that can be laser-marked and that can be laser-welded can be obtained. That is, while the bismuth compound functions as a laser marking agent, it does not significantly lower the transmittance of the resin composition.
  • the resin composition of the present embodiment can have a tint. That is, it is possible to match the color of the transmissive resin member and the absorptive resin member in laser welding, thereby improving the design appearance. Further, in general, a resin composition molded article tends to have a higher transmittance on the side opposite to the gate. It is presumed that this is because the heat history increases on the gate side, and, for example, crystallization progresses and the transmittance decreases.
  • the difference in transmittance between the side opposite to the gate and the gate side is large, the unevenness in transmittance of the molded product will increase. If the transmittance of the molded article is highly uneven, uneven laser welding will occur. In this embodiment, unevenness is suppressed by blending a bismuth compound and two or more kinds of non-black organic pigments. It was presumed that the organic pigment and bismuth compound acted as nucleating agents, promoted crystallization, and reduced the difference in thermal hysteresis between the gate side and the anti-gate side.
  • the resin composition of the present embodiment uses a pigment instead of a dye as a coloring matter, the dye is not used or the content of the dye can be reduced, so the stain resistance derived from the dye can be effectively suppressed or reduced. As a result, problems such as fading of laser-marked characters can be avoided.
  • the resin composition of the present embodiment can be marked in black or white by using a bismuth compound, it is a resin composition for laser welding on the side of a black or white transmissive resin member and is for laser marking. It can be preferably used for a resin composition.
  • bismuth oxide is used as the bismuth compound, the melt-kneaded product of the thermoplastic resin and bismuth oxide is white. It can also be used as a colored molded product. Dyes usually dissolve in water and/or organic solvents, but pigments do not dissolve in water and organic solvents.
  • the resin composition of this embodiment contains a thermoplastic resin.
  • the thermoplastic resin may be a crystalline thermoplastic resin or an amorphous thermoplastic resin.
  • Thermoplastic resins include thermoplastic polyester resins, polycarbonate resins, aromatic vinyl resins, acrylic resins, polyacetal resins, polyphenylene oxide resins, polyphenylene sulfide resins, polysulfone resins, polyethersulfone resins, polyetherimide resins, polyether resins.
  • examples include ketone resins, polyolefin resins, polyamide resins, thermoplastic polyester resins, polycarbonate resins and aromatic vinyl resins are preferred, thermoplastic polyester resins and/or polycarbonate resins are more preferred, and thermoplastic polyester resins are even more preferred.
  • a part of the thermoplastic resin contained in the resin composition of the present embodiment may have the function of an elastomer.
  • thermoplastic resin comprises a thermoplastic polyester resin. Furthermore, in the first embodiment of the thermoplastic resin, it is preferred that the thermoplastic polyester resin contains polybutylene terephthalate resin. By containing polybutylene terephthalate resin, the effects of the present invention tend to be exhibited more effectively.
  • the content of the thermoplastic polyester resin in the thermoplastic resin contained in the resin composition is preferably 80% by mass or more, more preferably 85% by mass or more, and more preferably 90% by mass. It is more preferably 95% by mass or more, and even more preferably 97% by mass or more.
  • thermoplastic resin contains a thermoplastic polyester resin and further contains a polycarbonate resin.
  • the inclusion of polycarbonate resin tends to increase the laser transmittance of the molded article.
  • the thermoplastic polyester resin preferably further contains polybutylene terephthalate resin.
  • the mass ratio of the thermoplastic polyester resin and the polycarbonate resin is preferably 51-99:49-1, more preferably 60-95:40-5, 70-90: More preferably 30-10, more preferably 75-85:25-15.
  • the total content of the thermoplastic polyester resin and the polycarbonate resin among the thermoplastic resins contained in the resin composition is preferably 80% by mass or more, more preferably 85% by mass or more. It is preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 97% by mass or more.
  • thermoplastic resin is a form in which the thermoplastic resin further contains an aromatic vinyl resin in the above first embodiment or second embodiment.
  • aromatic vinyl resin eg, butadiene rubber-containing polystyrene resin
  • thermoplastic resin is a form in which the thermoplastic resin contains a polyamide resin.
  • the content of the polyamide resin among the thermoplastic resins contained in the resin composition is preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass or more. more preferably 95% by mass or more, and even more preferably 97% by mass or more.
  • polyamide resins include nylon 6 and nylon 66.
  • Semiaromatic polyamides such as 6T/6I, 9T, polyamide MXD6, polyamide MXD10, polyamide MP10 (polyamide synthesized from metaxylylenediamine, paraxylylenediamine and sebacic acid) can also be used.
  • thermoplastic resin is a form in which the thermoplastic resin comprises a polycarbonate resin.
  • the content of the polycarbonate resin among the thermoplastic resins contained in the resin composition is preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass or more. It is more preferably 95% by mass or more, and even more preferably 97% by mass or more. The details of each thermoplastic resin will be described below.
  • thermoplastic polyester resin used in the present embodiment is not particularly defined, but polybutylene terephthalate resin and polyethylene terephthalate resin are exemplified, and polybutylene terephthalate resin is preferred.
  • Polybutylene terephthalate resin is a resin obtained by polycondensation of terephthalic acid as the main acid component and 1,4-butanediol as the main diol component.
  • That the main component of the acid component is terephthalic acid means that 50% by mass or more of the acid component is terephthalic acid, preferably 60% by mass or more, more preferably 70% by mass or more, It may be 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • That the main component of the diol component is 1,4-butanediol means that 50% by mass or more of the diol component is 1,4-butanediol, preferably 60% by mass or more, and 70% by mass.
  • Isophthalic acid and dimer acid are exemplified when the polybutylene terephthalate resin contains other acid components. Further, when the polybutylene terephthalate resin contains other diol components, polyalkylene glycol such as polytetramethylene glycol (PTMG) is exemplified.
  • PTMG polytetramethylene glycol
  • the proportion of the tetramethylene glycol component in the copolymer is preferably 3 to 40% by mass, more preferably 5 to 30% by mass. Preferably, 10 to 25% by mass is more preferable.
  • the ratio of the dimer acid component to the total carboxylic acid component is preferably 0.5 to 30 mol % as carboxylic acid groups, and is preferably 1 to 30% by mole. 20 mol % is more preferred, and 3 to 15 mol % is even more preferred. Such a copolymerization ratio tends to provide an excellent balance of laser weldability, long-term heat resistance, and toughness, which is preferable.
  • the unit derived from isophthalic acid is 0.5 mol% or more and 15 mol% or less in all units derived from the dicarboxylic acid component of the polybutylene terephthalate resin.
  • Such a copolymerization ratio tends to provide an excellent balance of laser weldability, heat resistance, injection moldability and toughness, which is preferable.
  • the polybutylene terephthalate resin used in the present embodiment is a resin (polybutylene terephthalate homopolymer) in which 90% by mass or more of the acid component is terephthalic acid and 90% by mass or more of the diol component is 1,4-butanediol, or , copolymerized polybutylene terephthalate resin obtained by copolymerizing polytetramethylene glycol, and isophthalic acid copolymerized polybutylene terephthalate resin are preferable.
  • the polybutylene terephthalate resin preferably has an intrinsic viscosity of 0.5 to 2 dL/g. From the standpoint of moldability and mechanical properties, those having an intrinsic viscosity in the range of 0.6 to 1.5 dL/g are more preferred. By using those having an intrinsic viscosity of 0.5 dL/g or more, the mechanical strength of the resulting molded article tends to be further improved. Further, by using a polybutylene terephthalate resin having an intrinsic viscosity of 2 dL/g or less, there is a tendency that the fluidity of the polybutylene terephthalate resin is improved, the moldability is improved, and the laser weldability is further improved.
  • the intrinsic viscosity is a value measured at 30° C. in a 1:1 (mass ratio) mixed solvent of tetrachloroethane and phenol. When two or more polybutylene terephthalate resins are included, the intrinsic viscosity is the intrinsic viscosity of the mixture.
  • the amount of terminal carboxyl groups in the polybutylene terephthalate resin may be selected and determined as appropriate, but is usually 60 eq/ton or less, preferably 50 eq/ton or less, and more preferably 30 eq/ton or less. .
  • the amount of terminal carboxyl groups may be selected and determined as appropriate, but is usually 60 eq/ton or less, preferably 50 eq/ton or less, and more preferably 30 eq/ton or less. .
  • the amount of terminal carboxyl groups is usually 60 eq/ton or less, preferably 50 eq/ton or less, and more preferably 30 eq/ton or less.
  • the terminal carboxy group content of the polybutylene terephthalate resin is obtained by dissolving 0.5 g of the polybutylene terephthalate resin in 25 mL of benzyl alcohol and titrating with a 0.01 mol/L benzyl alcohol solution of sodium hydroxide. is the value
  • Examples of the method for adjusting the amount of terminal carboxyl groups include any conventionally known method, such as a method of adjusting polymerization conditions such as a raw material charge ratio during polymerization, polymerization temperature, and a decompression method, and a method of reacting a terminal blocking agent. be done.
  • the polyethylene terephthalate resin used in this embodiment is a resin obtained by polycondensation of terephthalic acid as the main component of the acid component and ethylene glycol as the main component of the diol component.
  • That the main component of the acid component is terephthalic acid means that 50% by mass or more of the acid component is terephthalic acid, preferably 60% by mass or more, more preferably 70% by mass or more, It may be 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the expression that the main component of the diol component is ethylene glycol means that 50% by mass or more of the diol component is ethylene glycol, preferably 60% by mass or more, more preferably 70% by mass or more. It may be 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the polyethylene terephthalate resin contains other acid components, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1 ,3-phenylenedioxydiacetic acid and structural isomers thereof, dicarboxylic acids such as malonic acid, succinic acid and adipic acid and derivatives thereof, oxy acids such as p-hydroxybenzoic acid and glycolic acid and derivatives thereof.
  • dicarboxylic acids such as malonic acid, succinic acid and adipic acid and derivatives thereof
  • oxy acids such as p-hydroxybenzoic acid and glycolic acid and derivatives thereof.
  • polyethylene terephthalate resin contains other acid components, other diol components such as 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, pentamethylene glycol, hexamethylene glycol, neo Aliphatic glycols such as pentyl glycol, alicyclic glycols such as cyclohexanedimethanol, aromatic dihydroxy compound derivatives such as bisphenol A and bisphenol S, and the like.
  • diol components such as 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, pentamethylene glycol, hexamethylene glycol, neo Aliphatic glycols such as pentyl glycol, alicyclic glycols such as cyclohexanedimethanol, aromatic dihydroxy compound derivatives such as bisphenol A and bisphenol S, and the like.
  • the polyethylene terephthalate resin has a branching component, for example, a trifunctional acid such as tricarballylic acid, trimellitic acid, trimellitic acid, or a tetrafunctional acid such as pyromellitic acid, or an acid capable of forming an ester such as glycerin, trimethylolpropane, penta 1.0 mol % or less, preferably 0.5 mol % or less, more preferably 0.3 mol % or less of an alcohol having a trifunctional or tetrafunctional ester-forming ability such as erythritol is copolymerized.
  • a branching component for example, a trifunctional acid such as tricarballylic acid, trimellitic acid, trimellitic acid, or a tetrafunctional acid such as pyromellitic acid, or an acid capable of forming an ester such as glycerin, trimethylolpropane, penta 1.0 mol % or less, preferably 0.5 mol
  • the intrinsic viscosity of the polyethylene terephthalate resin is preferably 0.3 to 1.5 dL/g, more preferably 0.3 to 1.2 dL/g, still more preferably 0.4 to 0.8 dL/g. be.
  • the intrinsic viscosity of polyethylene terephthalate resin is a value measured at 30° C. in a 1:1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the terminal carboxy group concentration of the polyethylene terephthalate resin is preferably 3 to 60 eq/ton, more preferably 5 to 50 eq/ton, still more preferably 8 to 40 eq/ton.
  • the terminal carboxy group concentration is preferably 3 to 60 eq/ton, more preferably 5 to 50 eq/ton, still more preferably 8 to 40 eq/ton.
  • the terminal carboxy group concentration of the polyethylene terephthalate resin is obtained by dissolving 0.5 g of polyethylene terephthalate resin in 25 mL of benzyl alcohol and titrating with a 0.01 mol/L benzyl alcohol solution of sodium hydroxide. value.
  • a known polycarbonate resin can be used for the polycarbonate resin used in the present embodiment.
  • Polycarbonate resins are thermoplastic polymers or copolymers, which may be branched, usually obtained by reacting a dihydroxy compound or a small amount of a polyhydroxy compound with phosgene or a carbonic acid diester.
  • the method for producing a polycarbonate resin is not particularly limited, and one produced by a conventionally known phosgene method (interfacial polymerization method) or a melt method (ester exchange method) can be used.
  • Polycarbonate resin is preferable from the viewpoint of laser transmittance and laser weldability.
  • the dihydroxy compound used as a raw material is preferably an aromatic dihydroxy compound such as 2,2-bis(4-hydroxyphenyl)propane (that is, bisphenol A), tetramethylbisphenol A, bis(4-hydroxyphenyl)-p-diisopropylbenzene, Hydroquinone, resorcinol, 4,4-dihydroxydiphenyl and the like, preferably bisphenol A.
  • aromatic dihydroxy compound such as 2,2-bis(4-hydroxyphenyl)propane (that is, bisphenol A), tetramethylbisphenol A, bis(4-hydroxyphenyl)-p-diisopropylbenzene, Hydroquinone, resorcinol, 4,4-dihydroxydiphenyl and the like, preferably bisphenol A.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound can also be used.
  • Aromatic polycarbonate copolymers derived from a compound are preferred. It may also be a copolymer such as a copolymer with a polymer or oligomer having a siloxane structure. Furthermore, two or more of the above polycarbonate resins may be mixed and used.
  • the viscosity-average molecular weight of the polycarbonate resin is preferably 5,000 to 30,000, more preferably 10,000 to 28,000, even more preferably 14,000 to 24,000. By using those having a viscosity-average molecular weight of 5,000 or more, the mechanical strength of the resulting molded article tends to be further improved. Further, by using a resin composition having a viscosity average molecular weight of 30,000 or less, the fluidity of the resin composition is improved, and moldability and laser weldability tend to be further improved.
  • the viscosity average molecular weight of the polycarbonate resin is the viscosity average molecular weight [Mv] converted from the solution viscosity measured at 25° C. using methylene chloride as a solvent.
  • the aromatic vinyl-based resin used in this embodiment is preferably a styrene-based resin.
  • the styrene-based resin used in this embodiment is a polymer containing a compound having a styrene skeleton as a main component.
  • a compound having a styrene skeleton as a main component means that 50% by mass or more of the raw material monomer is a compound having a styrene skeleton, preferably 60% by mass or more, more preferably 70% by mass or more. Preferably, it may be 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • Examples of the compound having a styrene skeleton include styrene, ⁇ -methylstyrene, paramethylstyrene, vinyltoluene, vinylxylene and the like, preferably styrene.
  • Polystyrene (PS) is a representative compound having a styrene skeleton.
  • PS polystyrene
  • As the styrene-based resin a copolymer obtained by copolymerizing a compound having a styrene skeleton with another monomer can also be used.
  • Typical examples include acrylonitrile-styrene copolymer (AS resin) obtained by copolymerizing styrene and acrylonitrile, and maleic anhydride-styrene copolymer obtained by copolymerizing styrene and maleic anhydride (maleic anhydride-modified polystyrene resin).
  • AS resin acrylonitrile-styrene copolymer
  • maleic anhydride-styrene copolymer obtained by copolymerizing styrene and maleic anhydride
  • maleic anhydride-modified polystyrene resin maleic anhydride-modified polystyrene resin
  • styrene resin a rubber-containing styrene resin obtained by copolymerizing or blending a rubber component can also be preferably used.
  • the rubber component include conjugated diene hydrocarbons such as butadiene, isoprene, and 1,3-pentadiene.
  • butadiene rubber butadiene rubber-containing polystyrene resin
  • the amount of the rubber component is usually 1% by mass or more and less than 50% by mass, preferably 3 to 40% by mass, more preferably 5 to 30% by mass, based on the total segment of the styrene resin. % by mass, more preferably 5 to 20% by mass.
  • rubber-containing polystyrene resin rubber-containing polystyrene is preferable, butadiene rubber-containing polystyrene is more preferable, and high impact polystyrene (HIPS) is particularly preferable from the viewpoint of toughness.
  • HIPS high impact polystyrene
  • polystyrene resin polystyrene, acrylonitrile-styrene copolymer (AS resin), butadiene rubber-containing polystyrene and maleic anhydride-modified polystyrene are preferable, and among them, polystyrene and high impact polystyrene (HIPS) are preferable.
  • AS resin acrylonitrile-styrene copolymer
  • HIPS high impact polystyrene
  • the aromatic vinyl resin preferably has a weight average molecular weight measured by GPC of 50,000 to 500,000, more preferably 100,000 to 400,000, particularly preferably 150,000 to 300,000.
  • GPC weight average molecular weight measured by GPC of 50,000 to 500,000, more preferably 100,000 to 400,000, particularly preferably 150,000 to 300,000.
  • the resin composition preferably contains 10 to 90% by mass of thermoplastic resin.
  • the content of the thermoplastic resin in the resin composition is preferably 20% by mass or more, more preferably 30% by mass or more, and may be 40% by mass or more, and further 50% by mass. % or more.
  • the content of the thermoplastic resin in the resin composition is preferably 85% by mass or less, and may be 80% by mass or less, 75% by mass or less, or 72% by mass or less.
  • the resin composition may contain only one kind of thermoplastic resin, or may contain two or more kinds thereof. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment contains 0.002 to 10.000 parts by mass of the bismuth compound with respect to 100 parts by mass of the thermoplastic resin.
  • a resin composition that can be laser-marked and laser-welded can be obtained.
  • the bismuth compound functions as a light transmittance reduction suppressing agent for laser marking and laser welding resin compositions containing a thermoplastic resin and two or more non-black organic pigments.
  • the bismuth compound include bismuth oxide, bismuth subgallate, bismuthite, bismuth chloride oxide, bismuth subnitrate, bismuth subsalicylate, bismuth carbonate, bismuth sodium titanate, and mixtures of two or more thereof.
  • bismuth oxide is preferable from the viewpoint of stability.
  • Bismuth oxide is commonly represented by Bi 2 O 3 .
  • the bismuth compound preferably has a specific surface area of 10 to 35 m 2 /g.
  • the average particle size of the bismuth compound is preferably 500 nm to 5 ⁇ m, more preferably 500 nm to 2 ⁇ m.
  • the bismuth compound is usually an aggregate of primary particles, and the number average particle size of the aggregate is preferably within the above range. By setting the average particle size of the bismuth compound within the above range, the laser transmittance can be further increased.
  • the bismuth compound has a small metal specific heat, it is presumed that the bismuth compound easily absorbs heat and enhances the laser marking property.
  • the content of the bismuth compound in the resin composition of the present embodiment is 0.002 parts by mass or more, preferably 0.010 parts by mass or more, and preferably 0.100 parts by mass with respect to 100 parts by mass of the thermoplastic resin. It is more preferably at least 0.150 parts by mass, even more preferably at least 0.200 parts by mass. By making it more than the said lower limit, there exists a tendency for laser marking property to improve more. Further, the content of the bismuth compound is 10.000 parts by mass or less, preferably 6.000 parts by mass or less, and 2.000 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the laser transmittance of the resulting molded product tends to be further improved.
  • the resin composition of the present embodiment may or may not contain a laser absorber other than the bismuth compound (in particular, a laser absorber that is an inorganic compound).
  • a laser absorber other than the bismuth compound in particular, a laser absorber that is an inorganic compound.
  • the resin composition of the present embodiment does not substantially contain laser absorbers other than bismuth compounds. “Substantially free” means that the content of the other laser absorber is 10% by mass or less, preferably 5% by mass or less, and 3% by mass or less of the content of the bismuth compound. is more preferable, and may be 1% by mass or less. Moreover, it is preferably less than 0.01% by mass of the resin composition, and may be less than 0.005% by mass.
  • Laser absorbers other than bismuth compounds include at least one metal oxide selected from mica, iron oxide, titanium oxide, antimony-doped tin, tin oxide, indium oxide, neodymium trioxide, gadolinium, and neodymium. .
  • the transmittance decrease is preferably 5% or less, particularly 3% or less, 1% or less, or 0.5% or less by making the structure substantially free of laser absorbers other than bismuth compounds. can be done. Transmittance reduction is measured as described in the Examples.
  • the resin composition of the present embodiment contains two or more non-black organic pigments.
  • the color of the transmissive resin member formed from the light-transmitting resin composition and the absorbing resin member formed from the light-absorbing resin composition is obtained by including two or more kinds of non-black organic pigments in the resin composition of the present embodiment. The taste can be unified, and the design tends to be improved.
  • the organic pigment used in the present embodiment is preferably an organic pigment (light-transmitting pigment) that transmits a laser at a certain rate or more.
  • the light-transmitting pigment includes, for example, polybutylene terephthalate resin (e.g., Novaduran (registered trademark) 5008), glass fiber (e.g., Nippon Electric Glass Co., Ltd., trade name: T-127) 30% by mass, and pigment ( 0.2% by mass of a pigment considered to be a light-transmitting pigment) was blended so that the total was 100% by mass, and the light transmittance was measured by the measurement method (measurement of transmittance on the opposite side of the gate) described in Examples described later.
  • the transmittance at a wavelength of 1064 nm can be 20% or more. can.
  • the organic pigment used in this embodiment can be appropriately selected according to its use, and its color is not particularly specified.
  • the organic pigment used in this embodiment is preferably a mixture of 2 to 10 organic pigments, preferably a mixture of 2 to 5 organic pigments.
  • the organic pigment used in this embodiment is preferably a chromatic pigment.
  • the organic pigment in this embodiment is preferably a black pigment mixture.
  • a black pigment mixture is a mixture of two or more chromatic organic pigments, such as red, blue, and green, combined to give a black color.
  • the absorbance of the mixture of two or more non-black organic pigments at a wavelength of 1064 nm is preferably 1.0 or less. Considering the balance between laser transmittance and blackness, most non-black organic pigments satisfy the above requirements.
  • the absorbance at a wavelength of 1064 nm of the mixture of two or more non-black organic pigments used in this embodiment is 0.8 or less, the absorbance at a wavelength of 1064 nm is 0.6 or less, and the wavelength is 1064 nm. is 0.01 or more.
  • a first embodiment of the black pigment composition is a form containing a green organic pigment and a red organic pigment.
  • a second embodiment of the black pigment composition is a form containing a red organic pigment, a blue organic pigment and a yellow organic pigment.
  • organic pigments organic pigments such as azo-based, quinacridone-based, perylene-based, and phthalocyanine-based pigments are preferred. Colors include yellow, orange, red, purple, blue, green, and the like, and these colors can be combined to color the resin to a desired color tone.
  • the azo pigments include PV Fast Yellow HG (Pigment Yellow 180, manufactured by Clariant), PV Fast Yellow H3R (Pigment Yellow 181, manufactured by Clariant), and Chromophthal Orange K2960.
  • PV Fast Yellow HG Pigment Yellow 180, manufactured by Clariant
  • PV Fast Yellow H3R PV Fast Yellow 181, manufactured by Clariant
  • Chromophthal Orange K2960 Chromophthal Orange 64
  • Chromophthal Red K3890FP BASF, Pigment Red 144
  • Chromophthal Scarlet K3540 BASF, Pigment Red 166
  • Chromophthal Red K3900 BASF, Pigment Red 166) Pigment Red 214
  • Chromophthal Red K4035 manufactured by BASF, Pigment Red 221), and the like.
  • quinacridone-based pigments include PV Fast Red E4G (Pigment Violet 19, manufactured by Clariant) and PV Fast Pink E-01 (Pigment Red 122, manufactured by Clariant).
  • specific examples of the perylene-based pigment include Paryogen Red K3580 (Pigment Red 149, manufactured by BASF) and Paryogen Red K3911 (Pigment Red 178, manufactured by BASF).
  • Specific examples of the phthalocyanine pigments include Lionol Blue CB7801 (Pigment Blue 15:1, manufactured by Toyocolor Co., Ltd.), Lionol Blue FG7351 (Pigment Blue 15:3, manufactured by Toyocolor Co., Ltd.), and Lionol Green Y.
  • the content (total amount) of the organic pigment in the resin composition of the present embodiment is 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin. By making it more than the said lower limit, a molded article will be colored and designability will improve. By making it equal to or less than the above upper limit, it is possible to effectively suppress a decrease in the transmittance of the resulting molded product.
  • the lower limit of the content is preferably 0.2 parts by mass or more.
  • the upper limit of the content is preferably 3.0 parts by mass or less, more preferably 2.0 parts by mass or less, further preferably 1.0 parts by mass or less, and 0.5 parts by mass or less. It is more preferably 8 parts by mass or less, and even more preferably 0.7 parts by mass or less.
  • substantially free of inorganic pigments other than bismuth compounds means that the content of inorganic pigments other than bismuth compounds is, for example, less than 10% by mass of the content of bismuth compounds, and is preferably 5% by mass or less. , 3% by mass or less, and even more preferably 1% by mass or less.
  • a resin composition containing 0.1 to 5.0 parts by mass of a pigment with respect to 100 parts by mass of a thermoplastic resin, and further containing a dye such as an organic dye, wherein the mass ratio of the organic pigment and the dye is , 1:10 to 10:1 are preferred.
  • a bismuth compound even if a bismuth compound is blended, it does not turn black, but exhibits a white color. Therefore, two or more organic pigments can be blended to produce moldings with various colors.
  • the mass ratio of the content mass of the two or more non-black organic pigments to the content of the bismuth compound is preferably 1:0.05 to 10, and 1: It is more preferably 0.1 to 5, more preferably 1:0.1 to 3, even more preferably 1:0.1 to 2, and 1:0.1 to 1.5. It is even more preferable to have
  • the resin composition of this embodiment may contain an organic dye.
  • the organic dye used in this embodiment can be appropriately selected according to its use, and its color is not particularly specified.
  • the organic dye used in this embodiment may be one type of organic dye, or may be a mixture of two or more types of organic dyes. In particular, it is preferable to combine with two or more of the above organic pigments to form a black colorant mixture.
  • the content of the organic dye is preferably 10 to 90 parts by mass, more preferably 10 to 50 parts by mass, based on 100 parts by mass of the organic pigment. It is more preferably 10 to 40 parts by mass.
  • the absorbance of a mixture of two or more organic pigments and organic dyes at a wavelength of 1064 nm is 1.0 or less, and the absorbance at a wavelength of 500 nm is 1.0 or more.
  • the absorbance of the mixture at a wavelength of 1064 nm is 0.08 or less, and the absorbance at a wavelength of 500 nm is 1.20 or more.
  • organic dyes include nigrosine, naphthalocyanine, aniline black, phthalocyanine, porphyrin, perinone, perylene, quaterrylene, azo, azomethine, anthraquinone, pyrazolone, squaric acid derivatives, perylene, chromium complex, immonium, imidazole (especially benzimidazole), cyanine, etc., and azomethine, anthraquinone, and perinone are preferred, and among these, anthraquinone, perinone, perylene, imidazole (especially benzimidazole), and cyanine are more preferred.
  • e-BIND LTW-8731H and e-BIND LTW-8701H which are organic dyes manufactured by Orient Chemical Co., Ltd.
  • Plas Yellow 8000, Plas Red M 8315, and Plas Red which are organic dyes manufactured by Arimoto Chemical Co., Ltd. 8370, Oil Green 5602, Macrolex Yellow 3G, Macrolex Red EG, Macrolex Green 5B, which are organic dyes manufactured by LANXESS, KP Last HK, KP Last Red HG, KP Last Red H2G, KPl Plast B manufactured by Kiwa Kagaku Kogyo Co., Ltd.
  • the resin composition of the present embodiment preferably contains an aromatic ring-containing compound containing a benzene ring and/or a benzo-fused ring (hereinafter sometimes simply referred to as "aromatic ring-containing compound"). Since the aromatic ring-containing compound has a high laser absorption ability, it compensates for the decrease in transmittance due to the addition of the organic pigment, and enables laser welding and laser marking. Furthermore, heat resistance can be improved by using an aromatic ring-containing compound. Examples of the aromatic ring-containing compound include aromatic ring-containing compounds having a number average molecular weight of 8,000 or less.
  • the number average molecular weight of the aromatic ring-containing compound is preferably 5000 or less, more preferably 3000 or less, more preferably 2000 or less, particularly preferably 1000 or less, even if it is 500 or less. good. Although the lower limit is not particularly defined, the number average molecular weight is preferably 100 or more, more preferably 300 or more, and particularly preferably 400 or more. By setting it as such a range, the effect of this embodiment tends to be exhibited more effectively.
  • the aromatic ring-containing compound preferably contains 15 to 75% by mass of a benzene ring and/or benzocondensed ring as a molecular weight ratio, more preferably 30% by mass or more, still more preferably 35% by mass or more, and particularly preferably It is preferably contained in an amount of 50% by mass or more, more preferably 70% by mass or less, even more preferably 65% by mass or less, and particularly preferably 60% by mass or less.
  • the molecular weight ratio is the ratio of the total molecular weight of benzene rings and/or benzocondensed rings in the aromatic ring-containing compound to the molecular weight of the aromatic ring-containing compound.
  • the benzo-condensed ring refers to a condensed ring containing a benzene ring, and includes an anthracene ring, a phenanthrene ring, and the like.
  • the aromatic ring-containing compound is preferably a compound containing 15 to 75% by mass, more preferably 15 to 70% by mass, based on the molecular weight ratio of benzene rings.
  • An aromatic ring-containing compound is a compound containing a reactive group (preferably an epoxy group).
  • the use of an aromatic ring-containing compound containing a reactive group tends to increase the welding strength during laser welding.
  • the aromatic ring-containing compound containing a reactive group is preferably a compound capable of chemically reacting with a carboxy group or a hydroxy group present at the end of the polybutylene terephthalate resin to cause a cross-linking reaction or chain extension.
  • the aromatic ring-containing compound containing a reactive group specifically includes an epoxy compound (compound containing an epoxy group), a carbodiimide compound, a compound containing an oxazoline group (ring), a compound containing an oxazine group (ring), and a carboxy group.
  • a compound containing an amide group preferably at least one selected from the group consisting of compounds containing an amide group, more preferably at least one selected from epoxy compounds and carbodiimide compounds, and further containing an epoxy compound preferable.
  • 90% by mass or more, further 95% by mass or more, and particularly 99% by mass or more of the aromatic ring-containing compound is preferably an epoxy compound.
  • the epoxy compound is not particularly defined as long as it contains an aromatic ring in a predetermined ratio and contains one or more epoxy groups in one molecule, and a wide range of known epoxy compounds can be used. By including an epoxy compound, there is a tendency to widen the range of laser irradiation conditions.
  • aromatic ring-containing compounds include bisphenol A type epoxy compounds (including bisphenol A diglycidyl ether), bisphenol F type epoxy compounds (including bisphenol F diglycidyl ether), biphenyl type epoxy compounds (bis(glycidyloxy) biphenyl), resorcinol-type epoxy compounds (including resorcinol diglycidyl ether), novolac-type epoxy compounds, glycidyl benzoate, diglycidyl terephthalate, and diglycidyl orthophthalate.
  • ortho-cresol/novolac-type epoxy compounds polyglycidyl ether compounds of O-cresol-formaldehyde polycondensates.
  • a novolac type epoxy compound is even more preferred.
  • Commercially available products include "Joncryl ADR4368C” (trade name: manufactured by BASF), "YDCN704" (trade name: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), "EP-17” (trade name: manufactured by ADEKA), and "CNE220". (trade name: manufactured by Changchun Co., Ltd.) and "JER1003" (trade name: manufactured by Mitsubishi Chemical Corporation).
  • the aromatic ring-containing compound is an epoxy compound
  • its epoxy equivalent is preferably 100 g/eq or more, more preferably 150 g/eq or more.
  • the epoxy equivalent is preferably 1500 g/eq or less, more preferably 900 g/eq or less, and even more preferably 800 g/eq or less.
  • the epoxy equivalent is a value obtained by dividing the molecular weight of an epoxy compound by the number of epoxy groups present in the epoxy compound.
  • the content thereof is preferably 0.1 parts by mass or more, and 0.2 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin. More preferably, it is 0.4 parts by mass or more, and may be 1 part by mass or more. By making it more than the said lower limit, there exists a tendency for welding strength to become high.
  • the upper limit of the content of the aromatic ring-containing compound is preferably 18 parts by mass or less, more preferably 15 parts by mass or less, and 10 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. More preferably, it may be 5 parts by mass or less, 3 parts by mass or less, or 2 parts by mass or less.
  • the resin composition of the present embodiment may contain only one type of aromatic ring-containing compound, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment further contains an inorganic filler.
  • an inorganic filler particularly a fibrous inorganic filler, preferably glass fiber, tends to improve the mechanical strength, increase the heat resistance, and further improve the durability of the laser-welded product.
  • the inorganic filler that can be contained in the resin composition of the present embodiment has the effect of improving the mechanical properties of the resin composition obtained by being blended in the resin, and is a commonly used inorganic filler for plastics.
  • a commonly used inorganic filler for plastics can be used.
  • fibrous inorganic fillers such as glass fiber, carbon fiber, basalt fiber, wollastonite and potassium titanate fiber can be used.
  • Granular or amorphous fillers such as calcium carbonate, titanium oxide, feldspar minerals, clay, organic clay, and glass beads; plate-like fillers such as talc; scaly fillers such as glass flakes, mica, and graphite.
  • Inorganic fillers can also be used.
  • a fibrous filler particularly glass fiber
  • glass fiber either a round cross-sectional shape or an irregular cross-sectional shape can be used.
  • the inorganic filler is more preferably surface-treated with a surface-treating agent such as a coupling agent.
  • a glass fiber to which a surface treatment agent is adhered is preferable because it is excellent in durability, wet heat resistance, hydrolysis resistance, and heat shock resistance.
  • any conventionally known surface treatment agent can be used.
  • silane coupling agents such as aminosilane-based, epoxysilane-based, allylsilane-based, and vinylsilane-based agents are preferred.
  • aminosilane-based surface treatment agents are preferred, and specifically, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane and ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane are preferred. Examples include:
  • the glass fiber in the present embodiment means a fibrous glass material, more specifically, a chopped shape obtained by bundling 1,000 to 10,000 glass fibers and cutting them to a predetermined length. preferable.
  • the glass fiber in the present embodiment preferably has a number average fiber length of 0.5 to 10 mm, more preferably 1 to 5 mm. By using glass fibers having such a number average fiber length, the mechanical strength can be further improved.
  • the number average fiber length is obtained by randomly extracting the glass fibers whose fiber length is to be measured from the image obtained by observation with an optical microscope, measuring the long side, and calculating the number average fiber length from the obtained measured value. calculate.
  • the magnification of observation is 20 times, and the number of lines to be measured is 1,000 or more. It roughly corresponds to the cut length.
  • the cross-section of the glass fiber may be circular, elliptical, oval, rectangular, semicircular on both short sides of a rectangle, cocoon-shaped, etc., but circular is preferred.
  • the circle here is intended to include what is usually called a circle in the technical field of the present embodiment in addition to the geometric meaning of the circle.
  • the lower limit of the number average fiber diameter of the glass fibers is preferably 4.0 ⁇ m or more, more preferably 4.5 ⁇ m or more, and even more preferably 5.0 ⁇ m or more.
  • the upper limit of the number average fiber diameter of the glass fibers is preferably 15.0 ⁇ m or less, more preferably 14.0 ⁇ m or less.
  • the number average fiber diameter of the glass fiber is obtained by randomly extracting the glass fiber whose fiber diameter is to be measured from the image obtained by observation with an electron microscope, and measuring the fiber diameter near the center. calculated from the measured values obtained.
  • the magnification of observation is 1,000, and the number of lines to be measured is 1,000 or more.
  • the number average fiber diameter of glass fibers having a non-circular cross section is the number average fiber diameter when converted to a circle having the same area as the cross section.
  • Glass fiber is commonly supplied glass such as E glass (electrical glass), C glass (chemical glass), A glass (alkali glass), S glass (high strength glass), D glass, R glass and alkali resistant glass.
  • E glass electric glass
  • C glass chemical glass
  • a glass alkali glass
  • S glass high strength glass
  • D glass R glass
  • alkali resistant glass any fiber that can be made into glass fiber can be used, and is not particularly limited. In this embodiment, it is preferable to include E-glass.
  • the glass fibers used in this embodiment are treated with a surface treatment agent such as a silane coupling agent such as ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane. It is preferably treated.
  • the adhesion amount of the surface treatment agent is preferably 0.01 to 1 mass % of the glass fiber.
  • lubricants such as fatty acid amide compounds, silicone oils, antistatic agents such as quaternary ammonium salts, resins having film-forming properties such as epoxy resins and urethane resins, resins having film-forming properties and heat It is also possible to use those surface-treated with a mixture of stabilizers, flame retardants, and the like.
  • Glass fiber is available as a commercial product.
  • Commercially available products include T-286H, T-756H, T-127, T-289H manufactured by Nippon Electric Glass Co., Ltd., DEFT2A manufactured by Owens Corning, HP3540 manufactured by PPG, and CSG3PA820 manufactured by Nittobo. are mentioned.
  • the content of the inorganic filler (preferably glass fiber) in the resin composition of the present embodiment is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin. Preferably, it is 20 parts by mass or more, more preferably 25 parts by mass or more, and even more preferably 30 parts by mass or more.
  • the content is at least the above lower limit, the strength of the base material of the laser-welded product tends to increase, and the heat resistance of the laser-welded product tends to increase.
  • the upper limit of the content of the inorganic filler is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. is more preferred. By making it equal to or less than the above upper limit, there is a tendency for the welding strength at the interface to increase.
  • the content of the inorganic filler (preferably glass fiber) in the resin composition of the present embodiment is preferably 20% by mass or more, more preferably 25% by mass or more.
  • the content of the inorganic filler (preferably glass fiber) is preferably 40% by mass or less, more preferably 35% by mass or less.
  • the resin composition of the present embodiment may contain only one type of inorganic filler (preferably glass fiber), or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment preferably contains a stabilizer, and the stabilizer is preferably a phosphorus-based stabilizer or a phenol-based stabilizer.
  • any known phosphorus stabilizer can be used.
  • Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acid pyrophosphate metal salts such as sodium acid pyrophosphate, potassium acid pyrophosphate, and calcium acid pyrophosphate; phosphoric acid; phosphates of group 1 or group 2 metals such as potassium, sodium phosphate, cesium phosphate, zinc phosphate; Especially preferred.
  • Examples of phenol-based stabilizers include hindered phenol-based antioxidants. These details can be referred to paragraphs 0105 to 0111 of WO2020/013127, the contents of which are incorporated herein.
  • the content of the stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, and usually 2 parts by mass or less, preferably 1.0 parts by mass, relative to 100 parts by mass of the thermoplastic resin. It is below the department. By making the content of the stabilizer equal to or higher than the lower limit of the above range, the effect of the stabilizer can be obtained more effectively. Also, by setting the content of the stabilizer to the upper limit value or less of the above range, the effect does not reach a plateau and it is economical.
  • the resin composition of the present embodiment may contain only one stabilizer, or may contain two or more stabilizers. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment preferably contains a release agent (lubricant).
  • release agents include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, waxes, and polysiloxane-based silicone oils. These details can be referred to paragraphs 0112 to 0121 of WO2020/013127, the contents of which are incorporated herein.
  • the content of the release agent is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, and usually 2 parts by mass or less, preferably 1 part by mass, relative to 100 parts by mass of the thermoplastic resin. It is below.
  • the content of the release agent is equal to or higher than the lower limit of the above range, a sufficient release property effect can be easily obtained. Hydrolyzability is obtained, and contamination of molds during injection molding is less likely to occur.
  • the resin composition of the present embodiment may contain only one release agent, or may contain two or more release agents. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment may optionally contain other components in addition to those mentioned above, as long as the desired physical properties are not significantly impaired.
  • other components include various resin additives.
  • 1 type may be contained and 2 or more types may contain other components by arbitrary combinations and a ratio. Specific examples include flame retardants, ultraviolet absorbers, antistatic agents, antifog agents, antiblocking agents, fluidity improvers, plasticizers, dispersants, antibacterial agents, and laser marking agents other than bismuth compounds.
  • thermoplastic resin preferably accounts for 90% by mass or more, preferably 95% by mass or more, and more preferably 99% by mass or more of the thermoplastic resin component contained in the present embodiment.
  • the upper limit is 100% by mass.
  • the resin composition of the present embodiment When the resin composition of the present embodiment is used as a light-transmissive resin composition, it preferably has excellent transmittance. Specifically, the light-transmissive resin composition of the present embodiment preferably has a transmittance (wavelength: 1064 nm) of 10.0% or more when molded to a thickness of 1.5 mm, and more than 15.0%. It is more preferable to be above. Although the upper limit is not particularly defined, 90% or less is practical, and even 50% or less satisfies the performance requirements.
  • the transmittance of the light-transmitting resin composition of the present embodiment at wavelengths of 800 nm and 1900 nm when molded to a thickness of 1.5 mm is preferably 10% or less, and preferably 5% or less.
  • the L value in accordance with ISO7724/1 when molded into a thickness of 1.5 mm is 45 or less, and further 40 Below, it is preferable that it is 35 or less especially.
  • the L value is preferably 75 or more, more preferably 80 or more, and particularly preferably 85 or more.
  • the resin composition of the present embodiment can be produced by a conventional method for preparing resin compositions. Generally, each component and optional additives are thoroughly mixed together and then melt-kneaded in a single-screw or twin-screw extruder.
  • the resin composition of the present embodiment can also be prepared by not premixing the respective components or premixing only a part of them, supplying the components to an extruder using a feeder, and melt-kneading them. A part of the components such as the pigment may be melt-kneaded with a thermoplastic resin to prepare a masterbatch, and then the remaining components may be blended and melt-kneaded.
  • melt-kneading can be appropriately selected from the range of 220 to 300°C. If the temperature is too high, decomposition gas is likely to be generated, which may cause opacification. Therefore, it is desirable to select a screw structure in consideration of shear heat generation and the like. In order to suppress decomposition during kneading and subsequent molding, it is desirable to use antioxidants and heat stabilizers.
  • the resin composition of this embodiment is molded according to a known method.
  • the method for producing the molded article is not particularly limited, and any molding method generally employed for resin compositions can be employed. Examples include injection molding, ultra-high speed injection molding, injection compression molding, two-color molding, hollow molding such as gas assist, molding using heat insulating molds, and rapid heating molds. Molding method, foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, A blow molding method and the like can be mentioned, and injection molding is particularly preferable.
  • the molded article of this embodiment is formed from the resin composition of this embodiment.
  • the molded product of the present embodiment may be used as a laser-transmitting resin member for laser welding or may be used as a laser-absorbing resin member, but is preferably used as a laser-transmitting resin member.
  • a resin member (in particular, a laser-transmitting resin member) formed from the resin composition of the present embodiment can be laser-marked.
  • a laser-welded product can be obtained by laser-welding the transmitting resin member and the absorbing resin member.
  • the transmissive resin member and the absorbing resin member may be laser welded by any known laser welding method, but are suitable for galvano scanning laser welding.
  • Galvano-scanning laser welding also called quasi-simultaneous welding, is a method of scanning a laser beam with a built-in galvanomirror. By using galvano-scanning laser welding, the entire welded portion is heated almost simultaneously, so the residual stress in the obtained laser-welded product tends to be small.
  • the laser light source used for laser welding can be determined according to the light absorption wavelength of the light-absorbing dye, preferably a laser with a wavelength of 800 to 1100 nm, more preferably a laser with a wavelength of 940 to 1100 nm.
  • Examples of the type of laser light to be irradiated include solid lasers, fiber lasers, semiconductor lasers, gas lasers, liquid lasers, and the like.
  • YAG (yttrium aluminum garnet crystal) laser (wavelength 1064 nm, 1070 nm), LD (laser diode) laser (wavelength 808 nm, 840 nm, 940 nm, 980 nm), etc.
  • laser light with wavelengths of 940 nm, 980 nm, 1064 nm, and 1070 nm is preferred, and laser light with a wavelength of 1064 nm is more preferred.
  • the diameter of the laser focal point is preferably 0.1 mm or more, more preferably 0.2 mm or more, and even more preferably 0.5 mm or more. By making it equal to or less than the upper limit, the welding strength of the laser-welded portion can be further increased.
  • the laser irradiation diameter is preferably 30 mm or less, more preferably 10 mm or less, and even more preferably 3.0 mm or less.
  • the welding width can be more effectively controlled by setting the value to the above lower limit or more.
  • the focal diameter of the laser beam can be selected according to the width and height of the welding surface. Moreover, the laser beam may be focused on the joint surface or may be defocused, and it is preferable to appropriately select the laser beam depending on the object to be welded.
  • the laser output is preferably 1 W or more, more preferably 10 W or more. By making it equal to or higher than the above lower limit, sufficient welding strength can be obtained even if the welding time is short. Also, the laser output is preferably 1000 W or less, more preferably 500 W or less, even more preferably 400 W or less, and even more preferably 300 W or less. The cost of laser welding equipment can be effectively suppressed by setting the amount to the above upper limit or less.
  • the laser irradiation speed is preferably 10 mm/s or higher, more preferably 30 mm/s or higher, even more preferably 50 mm/s or higher, and even more preferably 500 mm/s or higher.
  • Residual stress of the laser-welded product can be more effectively reduced by making the content equal to or higher than the lower limit.
  • the laser irradiation speed is preferably 20000 mm/s or less, more preferably 10000 mm/s or less, even more preferably 5000 mm/s or less, and even more preferably 3000 mm/s or less. By making it equal to or less than the above upper limit value, it is possible to obtain a more sufficient welding strength for the welded article.
  • the output of the laser, the line to be welded, the scanning speed, and/or the scanning method are adjusted according to the shape of the joint surface from the viewpoint of welding efficiency, welding strength, welding appearance, and equipment load. is preferred.
  • the welded portions of the two are usually brought into contact with each other. At this time, it is desirable that the two welded portions are in surface contact, and may be flat surfaces, curved surfaces, or a combination of a flat surface and a curved surface.
  • a transparent plate material such as a glass plate, a quartz plate, or an acrylic plate may be placed on the transmissive resin member, that is, on the laser irradiation side and pressurized.
  • a glass plate or quartz plate it is suitable for facilitating the dissipation of heat generated during laser welding and obtaining a good appearance.
  • the pressure may be applied by a metal plate surrounding the portion to be welded of the transmissive resin member.
  • a laser beam is irradiated from the transmissive resin member side.
  • a lens may be used to converge the laser light on the interface between the two.
  • the focused beam is transmitted through the transmissive resin member, is absorbed near the surface of the absorbing resin member, heats up, and melts.
  • the heat is transferred to the transmissive resin member by thermal conduction and melts, forming a molten pool at the interface between the two, and after cooling, the two are joined.
  • the laser-welded product of the transmitting resin member and the absorbing resin member has high welding strength.
  • the laser-welded product in the present embodiment is intended to include not only finished products and parts, but also members that form a part of them.
  • the kit of this embodiment has the resin composition of this embodiment and a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
  • the resin composition of this embodiment serves as a light-transmitting resin composition.
  • Such a kit has excellent laser weldability, and is preferably used as a kit for producing molded articles by laser welding (laser welded articles).
  • laser marking can also be performed. That is, the resin composition of the present embodiment contained in the kit serves as a light-transmitting resin composition, and a molded article formed from such a light-transmitting resin composition is resistant to laser light during laser welding. It becomes a transparent resin member.
  • a molded article formed from a light-absorbing resin composition serves as a resin member that absorbs laser light during laser welding.
  • the kit of the present embodiment includes a light-absorbing resin composition containing a laser-transmitting resin member formed from the resin composition of the present embodiment, a thermoplastic resin, and a light-absorbing dye. good.
  • the laser-welded product of the present embodiment can be obtained by laser marking by irradiating a laser-transmitting resin member (or the laser-transmitting resin member of the present embodiment) formed from the resin composition of the present embodiment, and , a laser-transmitting resin member and a laser-absorbing resin member formed from a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye can be manufactured by a manufacturing method including laser welding.
  • a manufacturing method including laser welding including laser welding.
  • laser welding or laser marking may be performed first, or both may be performed at the same time.
  • a transparent resin member can be laser marked.
  • the resin composition of the present embodiment is a light-absorbing resin composition containing a light-absorbing dye
  • the absorbing resin member may be laser-markable.
  • the resin composition of the present embodiment may be used for each of the transmissive resin member and the absorptive resin member, so that each of the transmissive resin member and the absorptive resin member may be configured to be laser-markable.
  • 70% by mass or more of the components excluding the pigment and inorganic filler in the resin composition of the present embodiment and the components excluding the pigment and inorganic filler in the light-absorbing resin composition are preferably common. , more preferably 80% by mass or more, more preferably 95 to 100% by mass.
  • the molded article obtained by laser welding in the present embodiment has good mechanical strength, high welding strength, and little damage to the resin due to laser irradiation, so it can be used for various purposes, such as various storage containers, electric ⁇ Applicable to electronic equipment parts, office automation (OA) equipment parts, household appliance parts, machine mechanism parts, vehicle mechanism parts, etc.
  • OA office automation
  • vehicle hollow parts various tanks, intake manifold parts, camera housings
  • vehicle electrical parts various control units, ignition coil parts, etc.
  • automotive electronic parts ⁇ Sensor parts millimeter wave radar, LiDAR, ECU case, housing for sonar sensor, etc.
  • electronic control throttle body motor parts
  • various sensor parts various sensor parts
  • connector parts various sensor parts
  • switch parts breaker parts
  • relay parts coil parts
  • transformer parts transformer parts
  • lamp parts lamp parts, and the like.
  • the resin composition and kit of the present embodiment are suitable for vehicle-mounted camera parts, vehicle-mounted camera modules including vehicle-mounted camera parts, millimeter wave radar modules, sensor modules, and electric parking brake (EPB) parts.
  • EPB electric parking brake
  • the dye used was obtained by weighing each organic dye and stirring for 5 hours.
  • a polycarbonate resin (Iupilon "H4000”) and various non-black organic pigments were placed in a stainless steel tumbler and mixed with stirring for 1 hour.
  • the resulting mixture is put into the main hopper of a 30 mm vent-type twin-screw extruder (manufactured by Japan Steel Works, Ltd., "TEX30 ⁇ "), extruder barrel setting temperature C1 to C15 is 260 ° C., die is 250 ° C., screw
  • the mixture was kneaded at a rotation speed of 200 rpm and a discharge rate of 40 kg/hour and extruded into a strand to obtain pellets.
  • the mixture was kneaded and extruded into strands under conditions of machine barrel set temperatures C1 to C15 of 260° C., a die of 250° C., a screw rotation speed of 200 rpm, and a discharge rate of 40 kg/hour to obtain pellets of the resin composition.
  • the mixture was kneaded and extruded into strands under conditions of machine barrel set temperatures C1 to C15 of 260° C., a die of 250° C., a screw rotation speed of 200 rpm, and a discharge rate of 40 kg/hour to obtain pellets of the light-absorbing resin composition.
  • ⁇ Molding plate for color tone measurement and transmittance measurement (transmissive resin member)> After drying the light-transmitting resin composition pellets obtained above at 120° C. for 7 hours, an injection molding machine (“NEX80-9E” manufactured by Nissei Plastic Industry Co., Ltd.) was used at a cylinder temperature of 260° C. and a mold temperature of 60. C. and the following injection conditions, a 60 mm.times.60 mm.times.thickness 1.5 mm plate for color tone measurement and transmittance measurement (transmissive resin member) was injection molded. (Injection condition) Holding pressure time: 10 sec Cooling time: 10 sec Injection speed: 90mm/sec Back pressure: 5MPa Screw rotation speed: 100 rpm
  • Laser marking was performed on the central portion of the plate for color tone measurement (transmissive resin member) obtained above in a size of 10 mm ⁇ 10 mm square under the following conditions. Evaluation was made in the following four grades A to D. In addition, the color of the plate and the color of the laser marking (printing) are shown.
  • Laser marking device Panasonic LP-Z310 Laser type: Yb fiber laser (wavelength 1064 nm) Laser power: 30W Scan speed: 600mm/s Print pulse period: 50 ⁇ s ⁇ Evaluation>>
  • After laser marking, the visibility of the marked portion relative to the non-marked portion was confirmed by visual observation, and evaluated according to the following evaluation criteria. The evaluation was made by five experts and judged by a majority vote. A: Particularly clear visibility is obtained B: Visibility is obtained to the extent that the marked part and the non-marked part can be easily distinguished by visual inspection C: Marked part and the non-marked part can be visually distinguished Visibility is obtained D: Visibility is not obtained
  • ⁇ Evaluation of ⁇ E>> The color difference ⁇ E between the laser-marked portion and the non-laser-marked portion of the plate obtained above was measured. Measurement was performed using a spectrophotometric color difference meter conforming to ISO7724/1, D65/10 (reflected illumination, 10° directional light reception), SCE (specular reflection removed) colorimetry, and a target mask SAV ( ⁇ 4 mm). was measured using CM-3600d manufactured by Konica Minolta Optics Co., Ltd. was used as a spectrophotometric color difference meter.
  • the obtained evaluation plate (transmissive resin member) (60 mm ⁇ 60 mm ⁇ thickness 1.5 mm) was visually evaluated for color (black, dark gray, gray, light gray, and white). The evaluation was made by five experts and judged by a majority vote.
  • the transmissive resin member and the absorbent resin member are arranged such that the lid-shaped transmissive resin member I is placed on the box-shaped absorbent resin member II, and the overlapping portion of the transmissive resin member I and the absorbent resin member II is the brim.
  • a laser light source is placed vertically above the part, and a glass plate is used to apply a pressing force of 4.92 N/mm inward from both sides in the thickness direction to the overlapped portion of the transmissive resin member I and the absorbing resin member II (extrusion force during welding). ), laser was irradiated under the following conditions to obtain a laser-welded product.
  • the welding equipment is as follows.
  • Galvano scanning laser welding >> Laser device: YLR-300-AC-Y14 manufactured by IPG Wavelength: 1070nm Collimator: 7.5mm Laser Type: Fiber Laser Power: 150W Galvanometer scanner: Fiber Elephants 21 manufactured by ARGES Aperture: 21mm Laser irradiation speed: 900mm/s Laser irradiation frequency: 30 laps Welding circumference: 137 mm The position of the laser scanner was adjusted by defocusing the laser light so that the diameter of the spot irradiated onto the welding surface was 2 mm.
  • a box body composed of the transmissive resin member I and the absorbent resin member II produced above was formed with holes 21 and 22 and jigs 23 and 24 for welding force measurement inserted therein.
  • the measuring jigs 25 and 26 are inserted from the upper and lower surfaces of the transparent resin member I and the absorbing member I, respectively, coupled with the jigs 23 and 24 housed inside, and pulled up and down (pulling speed: 5 mm/min).
  • the strength (welding strength) at which the resin member II separates was measured. Unit is N.
  • a 1-ton Tensilon universal testing machine (10 kN load cell) manufactured by ORIENTEC was used as a device.
  • the resin composition of the present invention was excellent in laser transmittance and laser printability, and the unevenness in transmittance was suppressed.
  • the excellent laser printability can be read from the large ⁇ E.
  • the resin composition of the present invention can contain a pigment instead of a dye as a coloring matter, the stain resistance due to the dye can be suppressed. Further, it was found that even when an organic dye is used in addition to an organic pigment as a coloring matter, it is possible to suppress a decrease in transmittance while suppressing contamination resistance in a well-balanced manner.
  • the resin composition of the present invention contains a bismuth compound that functions as a laser marking agent, the transmittance of the composition does not decrease so much that it can be used in combination with two or more non-black pigments. Therefore, the molded article formed from the resin composition of the present embodiment can have a tint, and the design is improved. In particular, even if bismuth oxide is blended, the molded article does not turn black, so it was found that a white molded article or a molded article with a chromatic tint can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

レーザー透過性およびレーザー印字性に優れ、かつ、透過率のムラが抑制された樹脂組成物、ならびに、前記樹脂組成物を用いた成形品、レーザー透過樹脂部材、キット、レーザー溶着品、レーザー溶着品の製造方法、および、レーザー溶着用樹脂組成物用のレーザーマーキング剤の提供。熱可塑性樹脂100質量部と、ビスマス化合物0.002~10.000質量部と、2種以上の非黒色有機顔料を合計で0.1~5.0質量部を含む、レーザーマーキング用かつレーザー溶着用樹脂組成物。

Description

樹脂組成物、成形品、および、その応用
 本発明は、レーザー溶着に用いることができ、かつ、レーザーマーキング可能な樹脂組成物、ならびに、前記樹脂組成物を用いた成形品、キット、レーザー溶着品、レーザー透過樹脂部材、レーザー溶着品の製造方法に関する。また、レーザー溶着用樹脂組成物用のレーザーマーキング剤に関する。
 ポリブチレンテレフタレート樹脂を始めとする熱可塑性ポリエステル樹脂は、機械的強度、耐薬品性および電気絶縁性等に優れており、また、優れた耐熱性、成形性、リサイクル性を有していることから、各種の機器部品に広く用いられている。
 最近では、生産性効率化のため溶着加工を行う例が増加してきており、なかでも電子部品への影響が少ないレーザー溶着が多用されてきている(例えば、特許文献1)。
 レーザー溶着は、レーザー透過性の材料からなるレーザー透過樹脂部材(以下、「透過樹脂部材」ということがある)と、レーザー光吸収性の材料からなるレーザー吸収樹脂部材(以下、「吸収樹脂部材」ということがある)を重ねて、透過樹脂部材側からレーザー光を照射し、吸収樹脂部材との界面を発熱させて溶着する技術である。そして、そのような用途の成形品に適用される樹脂組成物としては、レーザー光の照射によって溶着することが可能な性能(レーザー溶着性)を有することが要求される。
 一方、成形品において、完成時の意匠性、情報の表示や組立時の部品識別性等の点で、成形品表面に製品情報等の印字、描画を施す場合も多い。そして、それらが長期間にわたって視認性を維持することが求められる場合は、信頼性の観点からレーザーマーキングが用いられることがある。
 さらに、近年、レーザー溶着時においてレーザー透過樹脂部材として用いることができる樹脂組成物であって、レーザーマーキング可能な樹脂組成物も検討されている(特許文献2)。
特許第6183822号公報 特開2020-050822号公報
 ここで、レーザー溶着において、透過樹脂部材はできるだけレーザー光の透過率を高くすることが好ましく、逆に吸収樹脂部材はレーザー光の吸収率を高くするため顔料等で着色することが望ましい。
一方、レーザー溶着されたレーザー溶着品の意匠性の観点から、透過樹脂部材も吸収樹脂部材と同系色に着色されていることが好ましく、例えば、吸収樹脂部材および透過樹脂部材を黒色に着色することがある。
 しかしながら、透過樹脂部材について、吸収樹脂部材と同様に、レーザー光の吸収率の高い顔料で着色してしまうと、レーザー光が透過しなくなってしまいレーザー溶着が不可能となってしまうことから、透過樹脂部材は、レーザー光の透過をできるだけ阻害しないような色素が用いられていた。
 一方で、透過樹脂部材にレーザーマーキングを施す場合、レーザー光が透過してしまうとマーキングできない。そこで、レーザー光をある程度透過させつつ、レーザーマーキングも可能な樹脂組成物が求められる。また、レーザーマーキングおよびレーザー溶着が可能であっても、レーザー印字性が劣っていたり、透過率にムラがあると、適切なレーザーマーキングおよびレーザー溶着ができない。
 かかる状況のもと、本発明は、レーザー透過性およびレーザー印字性に優れ、かつ、透過率のムラが抑制された樹脂組成物、ならびに、前記樹脂組成物を用いた成形品、キット、レーザー溶着品、および、レーザー溶着品の製造方法を提供することを目的とする。また、レーザー溶着用樹脂組成物用のレーザーマーキング剤を提供することを目的とする。
 上記課題のもと、熱可塑性樹脂にビスマス化合物を用い、かつ、2種以上の非黒色有機顔料を用いることにより、上記課題を解決しうることを見出した。
 具体的には、下記手段により、上記課題は解決された。
<1>熱可塑性樹脂100質量部と、ビスマス化合物0.002~10.000質量部と、2種以上の非黒色有機顔料を合計で0.1~5.0質量部を含む、レーザーマーキング用かつレーザー溶着用樹脂組成物。
<2>前記ビスマス化合物の含有量が、前記熱可塑性樹脂100質量部に対して、0.002~1.000質量部である、<1>に記載の樹脂組成物。
<3>前記熱可塑性樹脂が、熱可塑性ポリエステル樹脂を含む、<1>または<2>に記載の樹脂組成物。
<4>前記熱可塑性樹脂が、ポリブチレンテレフタレート樹脂を含む、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>前記ポリブチレンテレフタレート樹脂が、イソフタル酸に由来する単位を含み、かつ、ポリブチレンテレフタレート樹脂のジカルボン酸成分に由来する全単位中、イソフタル酸に由来する単位が0.5モル%以上15モル%以下である、<4>に記載の樹脂組成物。
<6>前記熱可塑性樹脂が、ポリカーボネート樹脂を含む、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記樹脂組成物は、レーザー透過樹脂部材用である、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>前記2種以上の非黒色有機顔料の含有量と前記ビスマス化合物の含有量の質量比が、1:0.05~10である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>前記2種以上の非黒色有機顔料の混合物の波長1064nmにおける吸光度が、1.0以下であり、波長500nmにおける吸光度が1.0以上である、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10>さらに、熱可塑性樹脂100質量部に対し、ベンゼン環および/またはベンゾ縮合環を有する芳香環含有化合物を0.1~18質量部含む、<1>~<9>のいずれか1つに記載の樹脂組成物。
<11>前記芳香環含有化合物がエポキシ基を含む化合物である、<10>に記載の樹脂組成物。
<12>前記芳香環含有化合物がノボラック型エポキシ化合物である、<10>に記載の樹脂組成物。
<13>さらにガラス繊維を含み、前記ガラス繊維の断面が円形である、<1>~<12>のいずれか1つに記載の樹脂組成物。
<14><1>~<13>のいずれか1つに記載の樹脂組成物から形成された成形品。
<15><1>~<13>のいずれか1つに記載の樹脂組成物から形成されたレーザー透過樹脂部材。
<16>レーザーマーキングが可能である、<14>に記載の成形品。
<17>レーザーマーキングが可能である、<15>に記載のレーザー透過樹脂部材。
<18><1>~<13>のいずれか1つに記載の樹脂組成物と、
熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とを
有するキット。
<19><15>または<17>に記載のレーザー透過樹脂部材と、
熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物から形成されたレーザー吸収樹脂部材とのレーザー溶着品。
<20><15>または<17>に記載のレーザー透過樹脂部材に、レーザーを照射してレーザーマーキングすること、および、
前記レーザー透過樹脂部材と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物から形成されたレーザー吸収樹脂部材とを、レーザー溶着することを含む、レーザー溶着品の製造方法。
<21>前記レーザー溶着をガルバノスキャニング式レーザー溶着によって行う、<20>に記載のレーザー溶着品の製造方法。
<22>熱可塑性樹脂と2種以上の非黒色有機顔料を含むレーザー溶着用樹脂組成物用のレーザーマーキング剤であって、
ビスマス化合物を含む、レーザーマーキング剤。
 本発明により、レーザー透過性およびレーザー印字性に優れ、かつ、透過率のムラが抑制された樹脂組成物、ならびに、前記樹脂組成物を用いた成形品、レーザー透過樹脂部材、キット、レーザー溶着品、および、レーザー溶着品の製造方法を提供可能になった。また、レーザー溶着用樹脂組成物用のレーザーマーキング剤を提供可能になった。
実施例のレーザー溶着強度を測定するための試験片(透過樹脂部材I)を示す概略図である。 実施例のレーザー溶着強度を測定するための試験片(吸収樹脂部材II)を示す概略図である。 実施例のレーザー溶着強度を測定するための試験片(透過樹脂部材Iと吸収樹脂部材IIの組み合わせ)を示す概略図である。 実施例のレーザー溶着強度の測定方法を示す概略図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書において、重量平均分子量および数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィ)法により測定したポリスチレン換算値である。
 本明細書で示す規格が年度によって、測定方法等が異なる場合、特に述べない限り、2021年1月1日時点おける規格に基づくものとする。
 本実施形態の樹脂組成物は、熱可塑性樹脂100質量部と、ビスマス化合物0.002~10.000質量部と、2種以上の非黒色有機顔料を合計で0.1~5.0質量部を含む、レーザーマーキング用かつレーザー溶着用樹脂組成物であることを特徴とする。
 このような構成とすることにより、レーザー透過性およびレーザー印字性に優れ、かつ、透過率のムラが抑制された樹脂組成物が得られる。
 本実施形態では、ビスマス化合物を用いることにより、レーザーマーキングが可能であり、レーザー溶着が可能な樹脂組成物が得られる。すなわち、ビスマス化合物は、レーザーマーキング剤として機能する一方、樹脂組成物の透過率をあまり下げない。そのため、熱可塑性樹脂とビスマス化合物を含む樹脂組成物に、2種以上の非黒色有機顔料を配合しても、レーザー透過性の低下を効果的に抑制できる。そのため、本実施形態の樹脂組成物に色味を持たせることができる。すなわち、レーザー溶着における、透過樹脂部材と吸収樹脂部材の色味を一致させ、意匠外観を向上させることができる。
 また、一般的に、樹脂組成物の成形品は反ゲート側の透過率が高くなる傾向にある。これは、ゲート側は熱履歴が高くなり、例えば、結晶化が進み透過率が低くなるためであると推測された。反ゲート側とゲート側の透過率の差が大きいと、成形品の透過率のムラが大きくなってしまう。そして、成形品の透過率のムラが大きいと、レーザー溶着ムラが生じてしまう。本実施形態においては、ビスマス化合物と2種以上の非黒色有機顔料とを配合することにより、ムラを抑制している。これは、有機顔料およびビスマス化合物が核剤として働き、結晶化を促進し、ゲート側と反ゲート側の熱履歴の差を小さくできたと推測された。
 さらに、本実施形態の樹脂組成物は、色素として、染料ではなく、顔料を用いているため、染料を使用しない、あるいは、染料の含有量を減らすことができるため、染料に由来する耐汚染性を効果的に抑制ないし低減できる。この結果、レーザーマーキングした文字が薄れる等の問題も回避できる。また、本実施形態の樹脂組成物はビスマス化合物を用いることにより黒色、白色でもマーキング可能であるため、黒色あるいは白色の透過樹脂部材側のレーザー溶着用樹脂組成物であって、レーザーマーキング用である樹脂組成物に好ましく用いることができる。
 さらに、ビスマス化合物として酸化ビスマスを用いた場合には、熱可塑性樹脂と酸化ビスマスの溶融混練物は白色であるため、黒色に着色する場合の他、白色の成形品や有彩色色素を配合した有彩色成形品としても用いることができる。
 なお、通常染料は水および/または有機溶剤に溶解するが、顔料は水および有機溶剤に溶解しない。
<熱可塑性樹脂>
 本実施形態の樹脂組成物は、熱可塑性樹脂を含む。熱可塑性樹脂は、結晶性熱可塑性樹脂であっても、非晶性熱可塑性樹脂であってもよい。本実施形態においては、少なくとも結晶性熱可塑性樹脂を含むことが好ましく、熱可塑性樹脂の30質量%以上が結晶性熱可塑性樹脂であることが好ましい。このような構成とすることにより、ビスマス化合物を添加する際の核剤としての効果がより効果的に発揮される。
 熱可塑性樹脂としては、熱可塑性ポリエステル樹脂、ポリカーボネート樹脂、芳香族ビニル系樹脂、アクリル樹脂、ポリアセタール樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイド樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリオレフィン樹脂、ポリアミド樹脂等が例示され、熱可塑性ポリエステル樹脂、ポリカーボネート樹脂、芳香族ビニル系樹脂が好ましく、熱可塑性ポリエステル樹脂および/またはポリカーボネート樹脂がより好ましく、熱可塑性ポリエステル樹脂がさらに好ましい。
 また、本実施形態の樹脂組成物に含まれる熱可塑性樹脂は、その一部がエラストマーの機能を有するものであってもよい。
 熱可塑性樹脂の第一の実施形態は、熱可塑性樹脂が、熱可塑性ポリエステル樹脂を含むことである。
 さらに、熱可塑性樹脂の第一の実施形態においては、熱可塑性ポリエステル樹脂がポリブチレンテレフタレート樹脂を含むことが好ましい。ポリブチレンテレフタレート樹脂を含むことにより、本発明の効果がより効果的に発揮される傾向にある。
 第一の実施形態では、樹脂組成物に含まれる熱可塑性樹脂のうち熱可塑性ポリエステル樹脂の含有量が80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが一層好ましく、97質量%以上であることがさらに一層好ましい。
 熱可塑性樹脂の第二の実施形態は、熱可塑性樹脂が、熱可塑性ポリエステル樹脂を含み、さらに、ポリカーボネート樹脂を含むことである。ポリカーボネート樹脂を含むことにより、成形品のレーザー透過率が高くなる傾向にある。第二の実施形態においては、さらに、前記熱可塑性ポリエステル樹脂がポリブチレンテレフタレート樹脂を含むことが好ましい。第二の実施形態では、熱可塑性ポリエステル樹脂とポリカーボネート樹脂の質量比率は、51~99:49~1であることが好ましく、60~95:40~5であることがより好ましく、70~90:30~10であることがさらに好ましく、75~85:25~15であることが一層好ましい。
 第二の実施形態では、樹脂組成物に含まれる熱可塑性樹脂のうち熱可塑性ポリエステル樹脂とポリカーボネート樹脂の合計の含有量が80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが一層好ましく、97質量%以上であることがさらに一層好ましい。
 熱可塑性樹脂の第三の実施形態は、熱可塑性樹脂が、上記第一の実施形態または第二の実施形態において、さらに、芳香族ビニル系樹脂を含む形態である。特に、熱可塑性ポリエステル樹脂100質量部に対して、芳香族ビニル系樹脂(例えば、ブタジエンゴム含有ポリスチレン樹脂)を5~100質量部含む形態が例示される。
 熱可塑性樹脂の第四の実施形態は、熱可塑性樹脂がポリアミド樹脂を含む形態である。
 第四の実施形態では、樹脂組成物に含まれる熱可塑性樹脂のうちポリアミド樹脂の含有量が80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが一層好ましく97質量%以上であることがさらに一層好ましい。ポリアミド樹脂としては、ナイロン6、ナイロン66が例示される。また、6T/6I、9T、ポリアミドMXD6、ポリアミドMXD10、ポリアミドMP10(メタキシリレンジアミンとパラキシリレンジアミンとセバシン酸から合成されるポリアミド)などの半芳香族ポリアミドも用いることができる。
 熱可塑性樹脂の第五の実施形態は、熱可塑性樹脂がポリカーボネート樹脂を含む形態である。
 第四の実施形態では、樹脂組成物に含まれる熱可塑性樹脂のうちポリカーボネート樹脂の含有量が80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが一層好ましく、97質量%以上であることがさらに一層好ましい。
 以下、各熱可塑性樹脂の詳細について説明する。
<<熱可塑性ポリエステル樹脂>>
 本実施形態で用いられる熱可塑性ポリエステル樹脂は、その種類について特に定めるものではないが、ポリブチレンテレフタレート樹脂およびポリエチレンテレフタレート樹脂が例示され、ポリブチレンテレフタレート樹脂が好ましい。
 ポリブチレンテレフタレート樹脂は、酸成分の主成分としてテレフタル酸を、ジオール成分の主成分として1,4-ブタンジオールを重縮合させて得られる樹脂である。酸成分の主成分がテレフタル酸であるとは、酸成分の50質量%以上がテレフタル酸であることをいい、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上、90質量%以上、95質量%以上であってもよい。ジオール成分の主成分が1,4-ブタンジオールであるとは、ジオール成分の50質量%以上が1,4-ブタンジオールであることをいい、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上、90質量%以上、95質量%以上であってもよい。
 ポリブチレンテレフタレート樹脂が、他の酸成分を含む場合、イソフタル酸、ダイマー酸が例示される。また、ポリブチレンテレフタレート樹脂が他のジオール成分を含む場合、ポリテトラメチレングリコール(PTMG)等のポリアルキレングリコール等が例示される。
 ポリブチレンテレフタレート樹脂として、ポリテトラメチレングリコールを共重合したものを用いる場合は、共重合体中のテトラメチレングリコール成分の割合は3~40質量%であることが好ましく、5~30質量%がより好ましく、10~25質量%がさらに好ましい。このような共重合割合とすることにより、レーザー溶着性と耐熱性とのバランスにより優れる傾向となり好ましい。
 ポリブチレンテレフタレート樹脂として、ダイマー酸共重合ポリブチレンテレフタレートを用いる場合は、全カルボン酸成分に占めるダイマー酸成分の割合は、カルボン酸基として0.5~30モル%であることが好ましく、1~20モル%がより好ましく、3~15モル%がさらに好ましい。このような共重合割合とすることにより、レーザー溶着性、長期耐熱性および靭性のバランスに優れる傾向となり好ましい。
 前記ポリブチレンテレフタレート樹脂が、イソフタル酸に由来する単位を含む場合、ポリブチレンテレフタレート樹脂のジカルボン酸成分に由来する全単位中、イソフタル酸に由来する単位が0.5モル%以上15モル%以下であることが好ましい。このような共重合割合とすることにより、レーザー溶着性、耐熱性、射出成形性および靭性のバランスに優れる傾向となり好ましい。
 本実施形態で用いるポリブチレンテレフタレート樹脂は、酸成分の90質量%以上がテレフタル酸であり、ジオール成分の90質量%以上が1,4-ブタンジオールである樹脂(ポリブチレンテレフタレートホモポリマー)、または、ポリテトラメチレングリコールを共重合した共重合ポリブチレンテレフタレート樹脂、イソフタル酸共重合ポリブチレンテレフタレート樹脂が好ましい。
 ポリブチレンテレフタレート樹脂の固有粘度は、0.5~2dL/gであるものが好ましい。成形性および機械的特性の点からして、0.6~1.5dL/gの範囲の固有粘度を有するものがより好ましい。固有粘度が0.5dL/g以上のものを用いることにより、得られる成形品の機械的強度がより向上する傾向にある。また、固有粘度が2dL/g以下のものを用いることにより、ポリブチレンテレフタレート樹脂の流動性が向上し、成形性が向上し、レーザー溶着性がより向上する傾向にある。
 なお、固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定される値である。
 ポリブチレンテレフタレート樹脂を2種以上含む場合、固有粘度は混合物の固有粘度とする。
 ポリブチレンテレフタレート樹脂の末端カルボキシ基量は、適宜選択して決定すればよいが、通常、60eq/ton以下であり、50eq/ton以下であることが好ましく、30eq/ton以下であることがさらに好ましい。末端カルボキシ基量を50eq/ton以下とすることにより、ポリブチレンテレフタレート樹脂の溶融成形時のガスの発生をより効果的に抑制できる。また、末端カルボキシ基量の下限値は特に定めるものではないが、通常、5eq/tonである。
 ポリブチレンテレフタレート樹脂を2種以上含む場合、末端カルボキシ基量は混合物の末端カルボキシ基量とする。
 なお、ポリブチレンテレフタレート樹脂の末端カルボキシ基量は、ベンジルアルコール25mLにポリブチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を用いて滴定することにより、求められる値である。末端カルボキシ基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法が挙げられる。
 本実施形態で用いられるポリエチレンテレフタレート樹脂は、酸成分の主成分としてテレフタル酸とジオール成分の主成分としてエチレングリコールを重縮合させて得られる樹脂である。酸成分の主成分がテレフタル酸であるとは、酸成分の50質量%以上がテレフタル酸であることをいい、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上、90質量%以上、95質量%以上であってもよい。ジオール成分の主成分がエチレングリコールであるとは、ジオール成分の50質量%以上がエチレングリコールであることをいい、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上、90質量%以上、95質量%以上であってもよい。
 ポリエチレンテレフタレート樹脂が他の酸成分を含む場合、フタル酸、イソフタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、4,4’-ビフェニルジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-フェニレンジオキシジ酢酸およびこれらの構造異性体、マロン酸、コハク酸、アジピン酸等のジカルボン酸およびその誘導体、p-ヒドロキシ安息香酸、グリコール酸等のオキシ酸またはその誘導体が挙げられる。
 また、ポリエチレンテレフタレート樹脂が他の酸成分を含む場合、他のジオール成分として、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環式グリコール、ビスフェノールA、ビスフェノールS等の芳香族ジヒドロキシ化合物誘導体等が挙げられる。
 さらに、ポリエチレンテレフタレート樹脂は、分岐成分、例えばトリカルバリル酸、トリメリシン酸、トリメリット酸等の如き三官能、もしくはピロメリット酸の如き四官能のエステル形成能を有する酸またはグリセリン、トリメチロールプロパン、ペンタエリトリット等の如き三官能もしくは四官能のエステル形成能を有するアルコールを1.0モル%以下、好ましくは0.5モル%以下、さらに好ましくは0.3モル%以下を共重合せしめたものであってもよい。
 ポリエチレンテレフタレート樹脂の固有粘度は、好ましくは0.3~1.5dL/gであり、より好ましくは0.3~1.2dL/gであり、さらに好ましくは0.4~0.8dL/gである。
 なお、ポリエチレンテレフタレート樹脂の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定する値である。
 また、ポリエチレンテレフタレート樹脂の末端カルボキシ基の濃度は、好ましくは3~60eq/tonであり、より好ましくは5~50eq/tonであり、さらに好ましくは8~40eq/tonである。末端カルボキシ基濃度を60eq/ton以下とすることで、樹脂材料の溶融成形時にガスが発生しにくくなり、得られる成形品の機械的特性が向上する傾向にあり、逆に末端カルボキシ基濃度を3eq/ton以上とすることで、得られる成形品の耐熱性、滞留熱安定性や色相が向上する傾向にあり、好ましい。
 なお、ポリエチレンテレフタレート樹脂の末端カルボキシ基濃度は、ベンジルアルコール25mLにポリエチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定することにより、求められる値である。
<<ポリカーボネート樹脂>>
 本実施形態で用いられるポリカーボネート樹脂は、公知のポリカーボネート樹脂を用いることができる。ポリカーボネート樹脂は、通常、ジヒドロキシ化合物またはこれと少量のポリヒドロキシ化合物を、ホスゲンまたは炭酸ジエステルと反応させることによって得られる、分岐していてもよい熱可塑性重合体または共重合体である。ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができるが、溶融重合法で製造したポリカーボネート樹脂が、レーザー透過性、レーザー溶着性の点から好ましい。
 原料のジヒドロキシ化合物としては、芳香族ジヒドロキシ化合物が好ましく、2,2-ビス(4-ヒドロキシフェニル)プロパン(即ちビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等が挙げられ、好ましくはビスフェノールAが挙げられる。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。
 ポリカーボネート樹脂としては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される芳香族ポリカーボネート樹脂、または、2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導される芳香族ポリカーボネート共重合体が好ましい。また、シロキサン構造を有するポリマーまたはオリゴマーとの共重合体等の共重合体であってもよい。さらには、上述したポリカーボネート樹脂の2種以上を混合して用いてもよい。
 ポリカーボネート樹脂の粘度平均分子量は、5,000~30,000であることが好ましく、10,000~28,000であることがより好ましく、14,000~24,000であることがさらに好ましい。粘度平均分子量が5,000以上のものを用いることにより、得られる成形品の機械的強度がより向上する傾向にある。また、粘度平均分子量が30,000以下のものを用いることにより、樹脂組成物の流動性が向上し、成形性やレーザー溶着性がより向上する傾向にある。
 なお、ポリカーボネート樹脂の粘度平均分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算される粘度平均分子量[Mv]である。
<<芳香族ビニル系樹脂>>
 本実施形態で用いられる芳香族ビニル系樹脂は、スチレン系樹脂が好ましい。
 本実施形態で用いられるスチレン系樹脂は、スチレン骨格を有する化合物を主成分とする重合体である。スチレン骨格を有する化合物を主成分とするとは、原料モノマーの50質量%以上がスチレン骨格を有する化合物であることをいい、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上、90質量%以上、95質量%以上であってもよい。
 スチレン骨格を有する化合物としては、スチレン、α-メチルスチレン、パラメチルスチレン、ビニルトルエン、ビニルキシレン等を挙げることができ、好ましくは、スチレンである。スチレン骨格を有する化合物としては、ポリスチレン(PS)が代表的なものである。
 また、スチレン系樹脂としては、スチレン骨格を有する化合物に他の単量体を共重合させた共重合体も用いることができる。代表的なものとしては、スチレンとアクリロニトリルを共重合させたアクリロニトリル-スチレン共重合体(AS樹脂)、スチレンと無水マレイン酸を共重合させた無水マレイン酸-スチレン共重合体(無水マレイン酸変性ポリスチレン樹脂)が挙げられる。
 スチレン系樹脂としては、ゴム成分を共重合またはブレンドしたゴム含有スチレン樹脂も好ましく使用することができる。ゴム成分の例としては、ブタジエン、イソプレン、1,3-ペンタジエンなどの共役ジエン系炭化水素が挙げられるが、本実施形態においてはブタジエン系ゴム(ブタジエンゴム含有ポリスチレン樹脂)が好ましく用いられる。
 ゴム成分を共重合またはブレンドする場合、ゴム成分の量は、スチレン系樹脂の全セグメント中の通常1質量%以上50質量%未満であり、好ましくは3~40質量%、より好ましくは5~30質量%、さらに好ましくは5~20質量%である。
 ゴム成分含有スチレン系樹脂としては、ゴム含有ポリスチレンが好ましく、ブタジエンゴム含有ポリスチレンがより好ましく、靱性の点から、ハイインパクトポリスチレン(HIPS)が特に好ましい。
 スチレン系樹脂としては、ポリスチレン、アクリロニトリル-スチレン共重合体(AS樹脂)、ブタジエンゴム含有ポリスチレンおよび無水マレイン酸変性ポリスチレンが好ましく、中でも、ポリスチレン、ハイインパクトポリスチレン(HIPS)が好ましい。
 芳香族ビニル系樹脂としては、GPCにより測定した重量平均分子量が50000~500000であることが好ましく、中でも100000~400000、特に150000~300000が好ましい。重量平均分子量を50000以上とすることにより、成形品のブリードアウトをより効果的に抑制でき、また、成形時に分解ガスが発生しにくくなり、ウエルド強度が高くなる傾向にある。また、重量平均分子量を500000以下とすることにより、樹脂組成物の流動性が向上し、レーザー溶着強度がより向上する傾向にある。
 本実施形態では、樹脂組成物が熱可塑性樹脂を10~90質量%含むことが好ましい。前記熱可塑性樹脂の含有量は、樹脂組成物中、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であってもよく、さらには、50質量%以上であってもよい。また、樹脂組成物中の熱可塑性樹脂の含有量は、85質量%以下であることが好ましく、80質量%以下、75質量%以下、72質量%以下であってもよい。
 樹脂組成物は、熱可塑性樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<ビスマス化合物>
 本実施形態の樹脂組成物は、ビスマス化合物を、熱可塑性樹脂100質量部に対し、0.002~10.000質量部含む。ビスマス化合物を含むことにより、レーザーマーキングが可能であり、かつ、レーザー溶着も可能な樹脂組成物が得られる。また、ビスマス化合物は、熱可塑性樹脂と2種以上の非黒色有機顔料を含むレーザーマーキング用かつレーザー溶着用樹脂組成物の光線透過率減少抑制剤としての機能を果たす。
 ビスマス化合物としては、酸化ビスマス、次没食子酸ビスマス、輝蒼鉛鉱、塩化酸化ビスマス、次硝酸ビスマス、次サリチル酸ビスマス、炭酸酸化ビスマス、チタン酸ビスマスナトリウムおよびこれらの2種以上の混合物等が挙げられる。中でも酸化ビスマスが安定性の点から好ましい。酸化ビスマスは、通常、Biで表されるものである。
 ビスマス化合物は、比表面積が、10~35m/gの比表面積であることが好ましい。
 また、ビスマス化合物の平均粒子径は、500nm~5μmであることが好ましく、500nm~2μmであることがより好ましい。ビスマス化合物は通常、一次粒子の凝集体であるが、その凝集体の数平均粒子が前記範囲となることが好ましい。ビスマス化合物の平均粒子径を前記範囲の粒子径とすることにより、レーザーの透過率をより高めることができる。
 また、ビスマス化合物は金属比熱が小さいため、熱を吸収しやすくレーザーマーキング性を高めると推測される。
 本実施形態の樹脂組成物のビスマス化合物の含有量は、前記熱可塑性樹脂100質量部に対して、0.002質量部以上であり、0.010質量部以上であることが好ましく、0.100質量部以上であることがさらに好ましく、0.150質量部以上であることが一層好ましく、0.200質量部以上であることがより一層好ましい。前記下限値以上とすることにより、レーザーマーキング性がより向上する傾向にある。また、前記ビスマス化合物の含有量は、前記熱可塑性樹脂100質量部に対して、10.000質量部以下であり、6.000質量部以下であることが好ましく、2.000質量部以下であることがさらに好ましく、1.500質量部以下であることが一層好ましく、1.000質量部以下であることがより一層好ましく、0.8質量部以下、0.5質量部以下であってもよい。前記上限値以下とすることにより、得られる成形品のレーザー透過率がより向上する傾向にある。
 本実施形態の樹脂組成物は、ビスマス化合物以外のレーザー吸収剤(特に、無機化合物であるレーザー吸収剤)を含んでいてもよいし、含んでいなくてもよい。本実施形態の樹脂組成物が、光透過性樹脂組成物(レーザー透過樹脂部材用)して用いられる場合、ビスマス化合物以外のレーザー吸収剤を実質的に含まない方が好ましい。実質的に含まないとは、他のレーザー吸収剤の含有量が、ビスマス化合物の含有量の10質量%以下であることをいい、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であってもよい。また、樹脂組成物の0.01質量%未満であることが好ましく、さらには、0.005質量%未満であってもよい。ビスマス化合物以外のレーザー吸収剤としては、マイカ、酸化鉄、酸化チタン、アンチモンドープ錫、酸化錫、酸化インジウム、三酸化ネオジム、ガドリウムおよびネオジムから選択される少なくとも1つの金属の酸化物が例示される。
 また、ビスマス化合物以外のレーザー吸収剤を実質的に含まない構成とすることにより、透過率減少量を好ましくは5%以下、特に、3%以下、1%以下、0.5%以下とすることができる。透過率減少量は、実施例の記載に従って測定される。
<有機顔料>
 本実施形態の樹脂組成物は、2種以上の非黒色有機顔料を含む。
 本実施形態の樹脂組成物が2種以上の非黒色有機顔料を含むことにより、光透過性樹脂組成物から形成される透過樹脂部材と光吸収性樹脂組成物から形成される吸収樹脂部材の色味を統一することができ、意匠性が向上する傾向にある。
 本実施形態で用いる有機顔料は、レーザー溶着のための光透過性樹脂組成物として用いる場合、レーザーを一定割合以上透過する有機顔料(光透過性顔料)であることが好ましい。
 光透過性顔料とは、例えば、ポリブチレンテレフタレート樹脂(例えば、ノバデュラン(登録商標)5008)と、ガラス繊維(例えば、日本電気硝子社製、商品名:T-127)30質量%と、顔料(光透過性顔料と思われる顔料)0.2質量%を合計100質量%となるように配合し、後述する実施例に記載の測定方法(反ゲート側透過率の測定)で光線透過率を測定したときに、透過率が20%以上となる顔料を含む。また、本実施形態における光透過性顔料を配合することにより、例えば、本実施形態の樹脂組成物を1.5mmの厚さに成形したときの波長1064nmにおける透過率が20%以上とすることができる。
 本実施形態で用いる有機顔料は、その用途に応じて適宜選択することができ、その色も特に定めるものではない。本実施形態で用いる有機顔料は、2~10種の有機顔料の混合物であることが好ましく、2~5種の有機顔料の混合物であることが好ましい。本実施形態で用いる有機顔料は、有彩色顔料であることが好ましい。特に、本実施形態における有機顔料は黒色顔料混合物であることが好ましい。黒色顔料混合物とは、赤、青、緑等の有彩色有機顔料が2種以上組み合わさって、黒色を呈する顔料混合物を意味する。
 本実施形態においては、2種以上の非黒色有機顔料の混合物の波長1064nmにおける吸光度が、1.0以下であることが好ましい。レーザー透過率と黒色度のバランスを考慮すると、非黒色の有機顔料の大半は上記要件を満たす。
 より好ましくは、本実施形態で用いる2種以上の非黒色有機顔料の混合物の波長1064nmにおける吸光度が、0.8以下であり、波長1064nmにおける吸光度が、0.6以下であり、かつ、波長1064nmにおける吸光度が0.01以上である。
 黒色顔料組成物の第一の実施形態は、緑色有機顔料と赤色有機顔料を含む形態である。黒色顔料組成物の第二の実施形態は、赤色有機顔料と青色有機顔料と黄色有機顔料を含む形態である。
 有機顔料の具体例としては、アゾ系、キナクリドン系、ペリレン系、フタロシアニン系等の有機系顔料であることが好ましい。色調は、黄色、橙色、赤色、紫色、青色および緑色等があり、これらを組み合わせて配合し、所望の色調に樹脂を着色することができる。具体的には、上記アゾ系顔料の具体例としては、例えば、PVファーストイエローHG(クラリアント社製、ピグメントイエロー180)、PVファーストイエローH3R(クラリアント社製、ピグメントイエロー181)、クロモフタールオレンジK2960(BASF社製、ピグメントオレンジ64)、クロモフタールレッドK3890FP(BASF社製、ピグメントレッド144)、クロモフタールスカーレットK3540(BASF社製、ピグメントレッド166)、クロモフタールレッドK3900(BASF社製、ピグメントレッド214)、クロモフタールレッドK4035(BASF社製、ピグメントレッド221)等が挙げられる。
 上記キナクリドン系顔料の具体例としては、例えば、PVファーストレッドE4G(クラリアント社製、ピグメントバイオレット19)、PVファーストピンクE-01(クラリアント社製、ピグメントレッド122)等が挙げられる。
 上記ペリレン系顔料の具体例としては、例えば、パリオゲンレッドK3580(BASF社製、ピグメントレッド149)、パリオゲンレッドK3911(BASF社製、ピグメントレッド178)等が挙げられる。
 上記フタロシアニン系顔料の具体例としては、例えば、リオノールブルーCB7801(トーヨーカラー社製、ピグメントブルー15:1)、リオノールブルーFG7351(トーヨーカラー社製、ピグメントブルー15:3)、リオノールグリーンY-102(トーヨーカラー社製、ピグメントグリーン7)、リオノールグリーン6Y-501(トーヨーカラー社製、ピグメントグリーン36)、スミトーン シアニンブルーGH(住化カラー社製、ピグメントブルー15:3)等が挙げられる。これらの色素は1種単独で用いても良く、2種以上を用いてもよい。
 中でも黒色調色の観点から、PVファーストイエローHG、パリオゲンレッドK3911、スミトーン シアニンブルーGHの組み合わせがより好ましい。
 本実施形態の樹脂組成物における有機顔料の含有量(総量)は、熱可塑性樹脂100質量部に対し、0.1~5.0質量部である。前記下限値以上とすることにより、成形品が着色され、意匠性が高まる。前記上限値以下とすることにより、得られる成形品の透過率の低下を効果的に抑制できる。前記含有量の下限値は、0.2質量部以上であることが好ましい。また、前記含有量の上限値は、3.0質量部以下であることが好ましく、2.0質量部以下であることがより好ましく、1.0質量部以下であることがさらに好ましく、0.8質量部以下であることが一層好ましく、0.7質量部以下であることがより一層好ましい。
 本実施形態においては、有機色素は、特に、以下のブレンド比が好ましい。
(1)熱可塑性樹脂100質量部に対して、顔料を0.1~5.0質量部含む樹脂組成物であって、ビスマス化合物以外の無機顔料を実質的に含まない樹脂組成物。ビスマス化合物以外の無機顔料を実質的に含まないとは、ビスマス化合物以外の無機顔料の含有量が、例えば、ビスマス化合物の含有量の10質量%未満であることをいい、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下がさらに好ましい。
(2)熱可塑性樹脂100質量部に対して、顔料を0.1~5.0質量部含む樹脂組成物であって、さらに、有機染料等の染料を含み、有機顔料と染料の質量比率は、1:10~10:1が好ましい。
 本実施形態においては、ビスマス化合物を配合しても、黒くならず、白い色を呈するため、2種以上の有機顔料を配合して、種々の色味の成形品を製造することができる。
 また、本実施形態の樹脂組成物における、前記2種以上の非黒色有機顔料の含有量質量とビスマス化合物の含有量の質量比が、1:0.05~10であることが好ましく、1:0.1~5であることがより好ましく、1:0.1~3であることがさらに好ましく、1:0.1~2であることが一層好ましく、1:0.1~1.5であることがより一層好ましい。
<有機染料>
 本実施形態の樹脂組成物は、有機染料を含んでいてもよい。
 本実施形態で用いる有機染料は、その用途に応じて適宜選択することができ、その色も特に定めるものではない。本実施形態で用いる有機染料は、1種の有機染料であってもよいし、2種以上の有機染料の混合物であってもよい。特に、上記2種以上の有機顔料と併せて、黒色を呈する着色剤混合物となるものが好ましい。
 樹脂組成物が有機染料を含有する場合、その有機染料の含有量は、有機顔料100質量部に対し、10~90質量部であることが好ましく、10~50質量部であることがより好ましく、10~40質量部であることがさらに好ましい。
 本実施形態においては、樹脂組成物が有機染料を含む場合、2種以上の有機顔料と有機染料の混合物の波長1064nmにおける吸光度が、1.0以下であり、波長500nmにおける吸光度が1.0以上であることが好ましい。好ましくは、前記混合物の波長1064nmにおける吸光度が、0.08以下であり、波長500nmにおける吸光度が1.20以上である。
 有機染料の具体例としては、ニグロシン、ナフタロシアニン、アニリンブラック、フタロシアニン、ポルフィリン、ペリノン、ペリレン、クオテリレン、アゾ、アゾメチン、アントラキノン、ピラゾロン、スクエア酸誘導体、ペリレン、クロム錯体、インモニウム、イミダゾール(特に、ベンズイミダゾール)、シアニン等が挙げられ、アゾメチン、アントラキノン、ペリノンが好ましく、その中でもアントラキノン、ペリノン、ペリレン、イミダゾール(特に、ベンズイミダゾール)、シアニンがより好ましい。
 市販品としては、オリエント化学工業社製の有機染料であるe-BIND LTW-8731H、e-BIND LTW-8701H、有本化学社製の有機染料であるPlast Yellow 8000、Plast Red M 8315、Plast Red 8370、Oil Green 5602、LANXESS社製の有機染料であるMacrolex Yellow 3G、Macrolex Red EG、Macrolex Green 5B、 紀和化学工業社製のKP Plast HK、KP Plast Red HG、KP Plast Red H2G、KP Plast Blue R、KP Plast Blue GR、KP Plast Green G、BASF社製、Lumogenシリーズ等が例示される。また、特許第4157300号公報に記載の有機染料、特許第4040460号公報に記載の有機染料も採用することができ、これらの内容は本明細書に組み込まれる。
<芳香環含有化合物>
 本実施形態の樹脂組成物は、ベンゼン環および/またはベンゾ縮合環を含む芳香環含有化合物(以下、単に、「芳香環含有化合物」ということがある)を含むことが好ましい。芳香環含有化合物は、レーザー吸収能が高いため、有機顔料を配合したことによる透過率の低下を補い、レーザー溶着およびレーザーマーキングを可能にする。さらに、芳香環含有化合物を用いることにより、耐熱特性も向上させることができる。
 前記芳香環含有化合物としては、数平均分子量が8000以下である芳香環含有化合物が挙げられる。芳香環含有化合物の数平均分子量は5000以下であることが好ましく、3000以下であることがさらに好ましく、2000以下であることがより好ましく、1000以下であることが特に好ましく、500以下であってもよい。下限値については、特に定めるものではないが、数平均分子量が100以上であることが好ましく、300以上であることがさらに好ましく、400以上であることが特に好ましい。このような範囲とすることにより、本実施形態の効果がより効果的に発揮される傾向にある。
 また、芳香環含有化合物は、ベンゼン環および/またはベンゾ縮合環を、分子量比率として15~75質量%含むものが好ましく、より好ましくは30質量%以上、さらに好ましくは35質量%以上、特に好ましくは50質量%以上含むことが好ましく、また、より好ましくは70質量%以下、さらに好ましくは65質量%以下、特に好ましくは60質量%以下含むことが好ましい。分子量比率は、芳香環含有化合物の分子量に対する該芳香環含有化合物中のベンゼン環および/またはベンゾ縮合環の総分子量の割合である。
 ここで、ベンソ縮合環とは、ベンゼン環を含んでいる縮合環を指し、アントラセン環、フェナントレン環等が挙げられる。本実施形態では、芳香環含有化合物はベンゼン環を分子量比率として、15~75質量%含む化合物が好ましく、15~70質量%含む化合物がより好ましい。
 芳香環含有化合物は、反応性基(好ましくは、エポキシ基)を含む化合物である。反応性基を含む芳香環含有化合物を用いることにより、レーザー溶着する際の溶着強度が高くなる傾向にある。
 反応性基を含む芳香環含有化合物は、ポリブチレンテレフタレート樹脂の末端に存在するカルボキシ基やヒドロキシ基と化学反応し、架橋反応や鎖長延長が生じ得る化合物が好ましい。反応性基を含む芳香環含有化合物は、具体的には、エポキシ化合物(エポキシ基を含む化合物)、カルボジイミド化合物、オキサゾリン基(環)を含む化合物、オキサジン基(環)を含む化合物、カルボキシ基を含む化合物、およびアミド基を含む化合物からなる群から選ばれた1種以上を含むことが好ましく、エポキシ化合物およびカルボジイミド化合物から選ばれる少なくとも1種を含むことがより好ましく、エポキシ化合物を含むことがさらに好ましい。特に、本実施形態においては、芳香環含有化合物の90質量%以上、さらには95質量%以上、特には99質量%以上がエポキシ化合物であることが好ましい。
 エポキシ化合物は、芳香環を所定の割合で含み、一分子中に一個以上のエポキシ基を含む化合物であれば特に定めるものではなく、公知のエポキシ化合物を広く採用することができる。エポキシ化合物を含むことにより、レーザー照射条件幅が広がる傾向にある。
 芳香環含有化合物の具体例としては、ビスフェノールA型エポキシ化合物(ビスフェノールAジグリシジルエーテルを含む)、ビスフェノールF型エポキシ化合物(ビスフェノールFジグリシジルエーテルを含む)、ビフェニル型エポキシ化合物(ビス(グリシジルオキシ)ビフェニルを含む)、レゾルシン型エポキシ化合物(レゾルシノールジグリシジルエーテルを含む)、ノボラック型エポキシ化合物、安息香酸グリシジルエステル、テレフタル酸ジグリシジルエステル、オルトフタル酸ジグリシジルエステルが挙げられる。
 中でも、ビスフェノールA型エポキシ化合物、ノボラック型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビフェニル型エポキシ化合物等が好ましく、特にオルソクレゾール/ノボラック型エポキシ化合物(O-クレゾール・ホルムアルデヒド重縮合物のポリグリシジルエーテル化合物)がより好ましく、ノボラック型エポキシ化合物がさらに好ましい。
 市販のものとしては、「Joncryl ADR4368C」(商品名:BASF社製)、「YDCN704」(商品名:新日鉄住金化学社製)、「EP-17」(商品名:ADEKA社製)、「CNE220」(商品名:長春社製)および「JER1003」(商品名:三菱ケミカル社製)などが挙げられる。
 芳香環含有化合物がエポキシ化合物である場合、そのエポキシ当量が100g/eq以上であることが好ましく、より好ましくは150g/eq以上である。また、前記エポキシ当量が1500g/eq以下であることが好ましく、900g/eq以下であることがより好ましく、800g/eq以下であることがさらに好ましい。ここで、エポキシ当量とは、エポキシ化合物の分子量を、エポキシ化合物中に存在するエポキシ基の数で除した値である。
 エポキシ当量を上記下限値以上とすることにより、溶着強度や溶着品の耐加水分解性がより高くなる傾向にある。上記上限値以下とすることにより、流動性が高くなり成形しやすくなる傾向にある。
 本実施形態の樹脂組成物が、芳香環含有化合物を含む場合、その含有量は、熱可塑性樹脂100質量部に対して、0.1質量部以上であることが好ましく、0.2質量部以上であることがさらに好ましく、0.4質量部以上であることがより好ましく、1質量部以上であってもよい。前記下限値以上とすることにより、溶着強度が高くなる傾向にある。また、前記芳香環含有化合物の含有量の上限値は、熱可塑性樹脂100質量部に対して、18質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることがさらに好ましく、さらには、5質量部以下、3質量部以下、2質量部以下であってもよい。前記上限値以下とすることにより、流動性がより高くなり成形性が向上する傾向にある。
 本実施形態の樹脂組成物は、芳香環含有化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<無機充填剤>
 本実施形態の樹脂組成物は、さらに、無機充填剤を含むことが好ましい。無機充填剤、特に、繊維状の無機充填剤、好ましくはガラス繊維を含むことにより、機械的強度を向上させると共に、耐熱強度高くなり、レーザー溶着品の耐久性がより向上する傾向にある。
 本実施形態の樹脂組成物で用いる含有され得る無機充填剤としては、樹脂に配合することにより得られる樹脂組成物の機械的性質を向上させる効果を有するものであり、常用のプラスチック用無機充填剤を用いることができる。好ましくはガラス繊維、炭素繊維、玄武岩繊維、ウォラストナイト、チタン酸カリウム繊維等の繊維状の無機充填剤を用いることができる。また、炭酸カルシウム、酸化チタン、長石系鉱物、クレー、有機化クレー、ガラスビーズ等の粒状または無定形の充填剤;タルク等の板状の充填剤;ガラスフレーク、マイカ、グラファイト等の鱗片状の無機充填剤を用いることもできる。中でも、機械的強度、剛性および耐熱性の点から、繊維状の充填剤、特にはガラス繊維を用いるのが好ましい。ガラス繊維としては、丸型断面形状または異型断面形状のいずれをも用いることができる。
 無機充填剤は、カップリング剤等の表面処理剤によって、表面処理されたものを用いることがより好ましい。表面処理剤が付着したガラス繊維は、耐久性、耐湿熱性、耐加水分解性、耐ヒートショック性に優れるので好ましい。
 表面処理剤としては、従来公知の任意のものを使用でき、具体的には、例えば、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系等のシランカップリング剤が好ましく挙げられる。これらの中では、アミノシラン系表面処理剤が好ましく、具体的には例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシランおよびγ-(2-アミノエチル)アミノプロピルトリメトキシシランが好ましい例として挙げられる。
 また、その他の表面処理剤として、ノボラック型等のエポキシ樹脂系表面処理剤、ビスフェノールA型のエポキシ樹脂系表面処理剤等も好ましく挙げられ、特にノボラック型エポキシ樹脂系表面処理剤による処理が好ましい。
 シラン系表面処理剤とエポキシ樹脂系表面処理剤は、それぞれ単独で用いても複数種で用いてもよく、両者を併用することも好ましい。本実施形態におけるガラス繊維とは、繊維状のガラス材料を意味し、より具体的には、1,000~10,000本のガラス繊維を集束し、所定の長さにカットされたチョップド形状が好ましい。
 本実施形態におけるガラス繊維は、数平均繊維長が0.5~10mmのものが好ましく、1~5mmのものがより好ましい。このような数平均繊維長のガラス繊維を用いることにより、機械的強度をより向上させることができる。数平均繊維長は光学顕微鏡の観察で得られる画像に対して、繊維長を測定する対象のガラス繊維をランダムに抽出してその長辺を測定し、得られた測定値から数平均繊維長を算出する。観察の倍率は20倍とし、測定本数は1,000本以上として行う。概ね、カット長に相当する。
 また、ガラス繊維の断面は、円形、楕円形、長円形、長方形、長方形の両短辺に半円を合わせた形状、まゆ型等いずれの形状であってもよいが、円形が好ましい。ここでの円形は、幾何学的な意味での円形に加え、本実施形態の技術分野において通常円形と称されるものを含む趣旨である。断面が円形であるガラス繊維を用いることにより、本来ガラス繊維を添加することでレーザー透過率が低下するが、その低下率を小さくすることができる傾向にある。ガラス繊維の数平均繊維径は、下限が、4.0μm以上であることが好ましく、4.5μm以上であることがより好ましく、5.0μm以上であることがさらに好ましい。ガラス繊維の数平均繊維径の上限は、15.0μm以下であることが好ましく、14.0μm以下であることがより好ましい。このような範囲の数平均繊維径を有するガラス繊維を用いることにより、より機械的強度に優れた成形品が得られる傾向にある。なお、ガラス繊維の数平均繊維径は、電子顕微鏡の観察で得られる画像に対して、繊維径を測定する対象のガラス繊維をランダムに抽出し、中央部に近いところで繊維径を測定し、得られた測定値から算出する。観察の倍率は1,000倍とし、測定本数は1,000本以上として行う。円形以外の断面を有するガラス繊維の数平均繊維径は、断面の面積と同じ面積の円に換算したときの数平均繊維径とする。
 ガラス繊維は、一般的に供給されるEガラス(Electricalglass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)、Dガラス、Rガラスおよび耐アルカリガラス等のガラスを溶融紡糸して得られる繊維が用いられるが、ガラス繊維にできるものであれば使用可能であり、特に限定されない。本実施形態では、Eガラスを含むことが好ましい。
 本実施形態で用いるガラス繊維は、例えば、γ-メタクリルオキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等のシランカップリング剤等の表面処理剤で表面処理されていることが好ましい。表面処理剤の付着量は、ガラス繊維の0.01~1質量%であることが好ましい。さらに必要に応じて、脂肪酸アミド化合物、シリコーンオイル等の潤滑剤、第4級アンモニウム塩等の帯電防止剤、エポキシ樹脂、ウレタン樹脂等の被膜形成能を有する樹脂、被膜形成能を有する樹脂と熱安定剤、難燃剤等の混合物で表面処理されたものを用いることもできる。
 ガラス繊維は市販品として入手できる。市販品としては、例えば、日本電気硝子社製、T-286H、T-756H、T-127、T-289H、オーウェンスコーニング社製、DEFT2A、PPG社製、HP3540、日東紡社製、CSG3PA820等が挙げられる。
 本実施形態の樹脂組成物における無機充填剤(好ましくはガラス繊維)の含有量は、熱可塑性樹脂100質量部に対し、10質量部以上であることが好ましく、15質量部以上であることがより好ましく、20質量部以上であることがさらに好ましく、25質量部以上であることが一層好ましく、30質量部以上であることがより一層好ましい。前記下限値以上とすることにより、レーザー溶着品の母材強度が高くなり、また、レーザー溶着品の耐熱性が高くなる傾向にある。また、前記無機充填剤の含有量の上限値は、熱可塑性樹脂100質量部に対し、70質量部以下であることが好ましく、60質量部以下であることがより好ましく、50質量部以下であることがさらに好ましい。前記上限値以下とすることにより、界面部分の溶着強度が高くなる傾向にある。
 また、本実施形態の樹脂組成物における無機充填剤(好ましくはガラス繊維)の含有量は、樹脂組成物の20質量%以上であることが好ましく、25質量%以上であることがより好ましい。また、前記無機充填剤(好ましくはガラス繊維)の含有量は、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。
 本実施形態の樹脂組成物は、無機充填剤(好ましくはガラス繊維)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<安定剤>
 本実施形態の樹脂組成物は、安定剤を含有することが好ましく、安定剤としてはリン系安定剤やフェノール系安定剤が好ましい。
 リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
 フェノール系安定剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。
 これらの詳細は、国際公開第2020/013127号の段落0105~0111の記載を参酌でき、この内容は本明細書に組み込まれる。
 安定剤の含有量は、熱可塑性樹脂100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1.0質量部以下である。安定剤の含有量を前記範囲の下限値以上とすることで、安定剤としての効果をより効果的に得ることができる。また、安定剤の含有量を前記範囲の上限値以下にすることにより、効果が頭打ちになることなく、経済的である。
 本実施形態の樹脂組成物は、安定剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<離型剤>
 本実施形態の樹脂組成物は、離型剤(滑剤)を含有することが好ましい。離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15000の脂肪族炭化水素化合物、ワックス、ポリシロキサン系シリコーンオイルなどが挙げられる。
 これらの詳細は、国際公開第2020/013127号の段落0112~0121の記載を参酌でき、この内容は本明細書に組み込まれる。
 離型剤の含有量は、熱可塑性樹脂100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1質量部以下である。離型剤の含有量を前記範囲の下限値以上とすることにより離型性の効果が十分に得られやすく、離型剤の含有量が前記範囲の上限値以下とすることにより、十分な耐加水分解性が得られ、また射出成形時の金型汚染などが生じにくくなる。
 本実施形態の樹脂組成物は、離型剤を1種のみ含んでいても、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<他の成分>
 本実施形態の樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上記したもの以外に他の成分を含有していてもよい。他成分の例を挙げると、各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせおよび比率で含有されていてもよい。
 具体的には、難燃剤、紫外線吸収剤、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤、ビスマス化合物以外のレーザーマーキング剤などが挙げられる。
 本実施形態では、熱可塑性樹脂、ビスマス化合物、2種以上の非黒色有機顔料、ならびに、必要に応じて配合される成分(例えば、無機充填剤、安定剤、離型剤、有機染料)の合計が、本実施形態に含まれる熱可塑性樹脂成分の90質量%以上を占めることが好ましく、95質量%以上を占めることが好ましく、99質量%以上を占めることがさらに好ましい。上限は、100質量%である。
<樹脂組成物の物性>
 本実施形態の樹脂組成物を光透過性樹脂組成物として用いる場合、透過率に優れていることが好ましい。具体的には、本実施形態の光透過性樹脂組成物は、1.5mm厚に成形したときの透過率(波長:1064nm)が10.0%以上超であることが好ましく、15.0%以上であることがより好ましい。上限値は特に定めるものではないが、90%以下が実際的であり、50%以下であっても十分に性能要求を満たす。また、本実施形態の光透過性樹脂組成物は、1.5mm厚に成形したときの波長800nmおよび1900nmにおける透過率が、それぞれ、10%以下であることが好ましく、5%以下であることがより好ましい。
 本実施形態の樹脂組成物は、黒色の成形品に使用する場合には、厚さ1.5mmに成形したときのISO7724/1に準拠したL値が45以下であることが好ましく、さらには40以下、特には35以下であることが好ましい。また、本実施形態の樹脂組成物は、白色の成形品に使用する場合には、上記L値が75以上であることが好ましく、さらには80以上、特には85以上であることが好ましい。
<樹脂組成物の製造方法>
 本実施形態の樹脂組成物は、樹脂組成物の調製の常法によって製造できる。通常は各成分および所望により添加される種々の添加剤を一緒にしてよく混合し、次いで一軸または二軸押出機で溶融混練する。また、各成分を予め混合することなく、ないしはその一部のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練し、本実施形態の樹脂組成物を調製することもできる。顔料等の一部の成分を熱可塑性樹脂と溶融混練してマスターバッチを調製し、次いでこれに残りの成分を配合して溶融混練してもよい。
 なお、無機充填剤を用いる場合には、押出機のシリンダー途中のサイドフィーダーから供給することも好ましい。
 溶融混練に際しての加熱温度は、通常220~300℃の範囲から適宜選ぶことができる。温度が高すぎると分解ガスが発生しやすく、不透明化の原因になる場合がある。それ故、剪断発熱等に考慮したスクリュー構成の選定が望ましい。混練り時や、後行程の成形時の分解を抑制する為、酸化防止剤や熱安定剤の使用が望ましい。
<成形品および成形品の製造方法>
 本形態の樹脂組成物は、公知の方法に従って成形される。
 成形品の製造方法は、特に限定されず、樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等が挙げられ、中でも射出成形が好ましい。
 射出成形の詳細は、特許第6183822号公報の段落0113~0116の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本実施形態の成形品は、本実施形態の樹脂組成物から形成される。本実施形態の成形品は、レーザー溶着の際のレーザー透過樹脂部材として用いられてもよいし、レーザー吸収樹脂部材として用いられてもよいが、レーザー透過樹脂部材として用いられることが好ましい。さらに、本実施形態の樹脂組成物から形成された樹脂部材(特に、レーザー透過樹脂部材)は、レーザーマーキングが可能である。
<レーザー溶着品の製造方法>
 次に、レーザー溶着方法について説明する。本実施形態では、透過樹脂部材と吸収樹脂部材をレーザー溶着させてレーザー溶着品とすることができる。レーザー溶着することによって透過樹脂部材と吸収樹脂部材を、接着剤を用いずに、強固に溶着することができる。
 透過樹脂部材と吸収樹脂部材とは、公知のいずれのレーザー溶着法によって、レーザー溶着されてもよいが、ガルバノスキャニング式レーザー溶着に適している。ガルバノスキャニング式レーザー溶着とは、準同時溶着(Quasi-simultaneous welding)とも呼ばれ、内蔵のガルバノミラーでレーザー光を走査する方式である。ガルバノスキャニング式レーザー溶着を用いることにより、溶着部全体がほぼ同時に加熱されるため、得られるレーザー溶着品の残留応力が小さくなる傾向にある。
 レーザー溶着に用いるレーザー光源としては、光吸収性色素の光の吸収波長に応じて定めることができ、波長800~1100nmの範囲のレーザーが好ましく、940~1100nmの範囲のレーザーがより好ましい。照射するレーザー光の種類としては、例えば固体レーザー、ファイバーレーザー、半導体レーザー、気体レーザー、液体レーザー等を挙げることができる。例えばYAG(イットリウム・アルミニウム・ガーネット結晶)レーザー(波長1064nm、1070nm)、LD(レーザーダイオード)レーザー(波長808nm、840nm、940nm、980nm)等を好ましく用いることができる。中でも、波長940nm、980nm、1064nm、1070nmのレーザー光が好ましく、1064nmのレーザー光がより好ましい。
 レーザー焦点径は、直径0.1mm以上であることが好ましく、直径0.2mm以上がより好ましく、直径0.5mm以上が一層好ましい。前記上限値以下にすることによって、レーザー溶着部の溶着強度をより高めることができる。また、レーザー照射径は直径30mm以下であることが好ましく、10mm以下がより好ましく、3.0mm以下が一層好ましい。前記下限値以上にすることによって、溶着幅をより効果的に制御することができる。
 なお、溶着面の幅、高さに合わせて、レーザー光の焦点径を選択することができる。
 また、レーザー光は、接合面にフォーカスしてもよいしデフォーカスしてもよく、求める溶着品体に応じて適宜選択することが好ましい。
 レーザー出力は、1W以上であることが好ましく、10W以上がより好ましい。前記下限値以上にすることによって、溶着時間が短くてもより十分な溶着強度を得ることができる。また、レーザー出力は1000W以下が好ましく、500W以下がより好ましく、400W以下がさらに好ましく、300W以下が一層好ましい。前記上限値以下にすることによってレーザー溶着設備費用を効果的に抑えることができる。
 レーザー照射速度は、10mm/s以上が好ましく、30mm/s以上がより好ましく、50mm/s以上がさらに好ましく、500mm/s以上が一層好ましい。前記下限値以上にすることによって、レーザー溶着品の残留応力をより効果的に低減することができる。また、レーザー照射速度は20000mm/s以下が好ましく、10000mm/s以下がより好ましく、5000mm/s以下がさらに好ましく、3000mm/s以下がより一層好ましい。前記上限値以下にすることによって、溶着品についてより十分な溶着強度を得ることができる。また、レーザー走査方法に関しては、溶着効率、溶着強度、溶着外観および装置負荷の観点から、接合面の形状に合わせて、レーザーの出力、溶着予定ライン、走査速度、および/または走査方法を調整することが好ましい。
 レーザー溶着は、より具体的には、透過樹脂部材と吸収樹脂部材を溶着する場合、通常、両者の溶着する箇所同士を相互に接触させる。この時、両者の溶着箇所は面接触が望ましく、平面同士、曲面同士、または、平面と曲面の組み合わせであってもよい。重ね合わされた状態を維持する際、透過樹脂部材の上、つまりレーザー照射側にガラス板、石英板、アクリル板などの透明板材を配置して加圧してもよい。特にガラス板、または石英板を配置する場合は、レーザー溶着時に発生する熱の放熱を促進し、良好な外観を得るのに適している。また、透過樹脂部材の溶着予定部周辺を囲う金属板で加圧してもよい。
 次いで、透過樹脂部材側からレーザー光を照射する。この時、必要によりレンズを利用して両者の界面にレーザー光を集光させてもよい。その集光ビームは、透過樹脂部材中を透過し、吸収樹脂部材の表面近傍で吸収されて発熱し溶融する。次にその熱は熱伝導によって透過樹脂部材にも伝わって溶融し、両者の界面に溶融プールを形成し、冷却後、両者が接合する。
 このようにして透過樹脂部材と吸収樹脂部材とのレーザー溶着品は、高い溶着強度を有する。なお、本実施形態におけるレーザー溶着品とは、完成品や部品の他、これらの一部分を成す部材も含む趣旨である。
<キット、および、レーザーマーキングされたレーザー溶着品>
 本実施形態のキットは、本実施形態の樹脂組成物と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とを有する。前記キットにおいては、本実施形態の樹脂組成物が、光透過性樹脂組成物としての役割を果たす。このようなキットはレーザー溶着性に優れたものとなり、レーザー溶着による成形品(レーザー溶着品)の製造のためのキットとして好ましく用いられる。さらに、レーザーマーキングも行うことができる。
 すなわち、キットに含まれる本実施形態の樹脂組成物は、光透過性樹脂組成物としての役割を果たし、かかる光透過性樹脂組成物から形成された成形品は、レーザー溶着の際のレーザー光に対する透過樹脂部材となる。一方、光吸収性樹脂組成物から形成された成形品は、レーザー溶着の際のレーザー光に対する吸収樹脂部材となる。また、本実施形態のキットは、本実施形態の樹脂組成物から形成されたレーザー透過樹脂部材と熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とを有するキットであってもよい。
 また、本実施形態のレーザー溶着品は、本実施形態の樹脂組成物から形成されたレーザー透過樹脂部材(または、本実施形態のレーザー透過樹脂部材)にレーザーを照射してレーザーマーキングすること、および、レーザー透過樹脂部材と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物から形成されたレーザー吸収樹脂部材とをレーザー溶着することを含む製造方法によって製造できる。本実施形態のレーザー溶着品を製造する場合、レーザー溶着とレーザーマーキングはいずれを先に行ってもよいし、同時に行ってもよい。通常、透過樹脂部材はレーザーマーキングが可能である。また、本実施形態の樹脂組成物が、光吸収性色素を含む、光吸収性樹脂組成物である場合、吸収樹脂部材が、レーザーマーキングが可能であってもよい。さらに、透過樹脂部材および吸収樹脂部材について、それぞれ、本実施形態の樹脂組成物を用い、透過樹脂部材および吸収樹脂部材のそれぞれについて、レーザーマーキング可能な構成にしてもよい。
 上記キットは、本実施形態の樹脂組成物中の色素および無機充填剤を除く成分と、光吸収性樹脂組成物中の色素および無機充填剤を除く成分の70質量%以上が共通することが好ましく、80質量%以上が共通することがより好ましく、95~100質量%が共通することが一層好ましい。
 本実施形態でレーザー溶着して得られた成形品は、機械的強度が良好で、高い溶着強度を有し、レーザー照射による樹脂の損傷も少ないため、種々の用途、例えば、各種保存容器、電気・電子機器部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、車両機構部品などに適用できる。特に、食品用容器、薬品用容器、油脂製品容器、車両用中空部品(各種タンク、インテークマニホールド部品、カメラ筐体)、車両用電装部品(各種コントロールユニット、イグニッションコイル部品など)、車載用電子部品・センサー部品(ミリ波レーダー、LiDAR、ECUケース、ソナーセンサーなどの筐体)、電子制御スロットルボディ、モーター部品、各種センサー部品、コネクター部品、スイッチ部品、ブレーカー部品、リレー部品、コイル部品、トランス部品、ランプ部品などに好適に用いることができる。特に、本実施形態の樹脂組成物およびキットは、車載カメラ部品および車載カメラ部品を含む車載カメラモジュールやミリ波レーダーモジュール、センサーモジュール、電動パーキングブレーキ(EPB)部品、に適している。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
1.原料
 下記表1、表2に示す原料を用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<染料の調整>
 染料は、各有機染料を秤量し、5時間撹拌したものを用いた。
<2種以上の非黒色有機顔料の混合物の吸光度の測定>
 ポリカーボネート樹脂(ユーピロン「H4000」)と各種非黒色有機顔料をステンレ製タンブラーに入れ、1時間撹拌混合した。得られた混合物を、30mmのベントタイプ2軸押出機(日本製鋼所社製、「TEX30α」)のメインホッパーに投入し、押出機バレル設定温度C1~C15を260℃、ダイを250℃、スクリュー回転数200rpm、吐出量40kg/時間の条件で混練してストランド状に押し出し、ペレットを得た。得られたペレットを、120℃で7時間乾燥した後、射出成形機(日精樹脂工業社製「NEX80-9E」)を用いてシリンダー温度260℃、金型温度60℃、および、以下の射出条件で、透過率測定用の60mm×60mm×厚さ1.5mmのプレートを射出成形した。上記で得られたプレートについて、紫外可視近赤外分光光度計を用いて、波長1064nmにおける透過率(%)を求めた。
2.実施例1~12、比較例1~8
<光透過性樹脂組成物(ペレット)の製造>
 表3~6に示すように、ガラス繊維以外の成分をステンレ製タンブラーに入れ、1時間撹拌混合した。表3~6の各成分は質量部表記である。得られた混合物を、30mmのベントタイプ2軸押出機(日本製鋼所社製、「TEX30α」)のメインホッパーに投入し、ガラス繊維(GF)はホッパーから7番目のサイドフィーダーより供給し、押出機バレル設定温度C1~C15を260℃、ダイを250℃、スクリュー回転数200rpm、吐出量40kg/時間の条件で混練してストランド状に押し出し、樹脂組成物のペレットを得た。
<光吸収性樹脂組成物(ペレット)の製造>
 表7に示すように、ガラス繊維以外の成分をステンレ製タンブラーに入れ、1時間撹拌混合した。表7の各成分は質量部表記である。得られた混合物を、30mmのベントタイプ2軸押出機(日本製鋼所社製、「TEX30α」)のメインホッパーに投入し、ガラス繊維(GF)はホッパーから7番目のサイドフィーダーより供給し、押出機バレル設定温度C1~C15を260℃、ダイを250℃、スクリュー回転数200rpm、吐出量40kg/時間の条件で混練してストランド状に押し出し、光吸収性樹脂組成物のペレットを得た。
<色調測定、透過率測定用プレートの成形(透過樹脂部材)>
 上記で得られた光透過性樹脂組成物ペレットを、120℃で7時間乾燥した後、射出成形機(日精樹脂工業社製「NEX80-9E」)を用いてシリンダー温度260℃、金型温度60℃、および、以下の射出条件で、透過率測定用の60mm×60mm×厚さ1.5mmの色調測定と透過率測定用(透過樹脂部材)プレートを射出成形した。
(射出条件)
 保圧時間:10sec
 冷却時間:10sec
 射出速度:90mm/sec
 背圧:5MPa
 スクリュー回転数:100rpm
<レーザーマーキング特性>
 上記で得られた色調測定用プレート(透過樹脂部材)の中央部に、以下の条件で10mm×10mm四方のサイズでレーザーマーキングをした。以下に示すA~Dの4段階で評価した。また、プレートの色とレーザーマーキング(印字)の色を示した。
レーザーマーキング装置:Panasonic社製 LP-Z310
レーザーの種類:Ybファイバーレーザー(波長1064nm)
レーザーパワー:30W
スキャンスピード:600mm/s
印字パルス周期:50μs
<<評価>>
 レーザーマーキング後、目視観察により、非マーキング部に対するマーキング部の視認性を確認し、以下評価基準で評価した。評価は5人の専門家が行い多数決で判断した。
A:特に明瞭な視認性が得られている
B:目視によりマーキング部と非マーキング部が容易に識別できる程度の視認性が得られている
C:目視によりマーキング部と非マーキング部が識別できる程度の視認性が得られている
D:視認性が得られていない
<<ΔEの評価>>
 上記で得られたプレートのレーザーマーキング部、非レーザーマーキング部の色差ΔEを測定した。測定は、ISO7724/1に準拠した分光測色色差計を用い、D65/10(反射照明・10°方向受光)、SCE(正反射光除去)測色法にて、ターゲットマスクSAV(φ4mm)を用いて測定した。
 分光測色色差計は、コニカミノルタオプティクス社製、CM-3600d)を用いた。
<1.5mmt 透過率>
 上記で得られた透過率測定用プレート(60mm×60mm×厚さ1.5mm)のうち、ゲート側より45mmの地点から、かつ、試験プレートの幅の中心部(非レーザーマーキング部)において、紫外可視近赤外分光光度計を用いて、波長1064nmにおける透過率(%)を求めた(反ゲート側の透過率、G)。また、ゲート側の地点においても、波長1064nmにおける透過率(%)を求めた(反ゲート側の透過率、G’)。透過率さ(ΔG-G’)を算出した。
 紫外可視近赤外分光光度計は、島津製作所社製「UV-3100PC」積分球付きを用いた。
<色調L(SCE)(透過樹脂部材、非レーザーマーキング部)>
 上記で得られた色調測定用プレート(透過樹脂部材)中央部の色調L(SCE)をそれぞれ測定した。測定は、ISO7724/1に準拠した分光測色色差計を用い、D65/10(反射照明・10°方向受光)、SCE(正反射光除去)測色法にて、ターゲットマスクSAV(φ4mm)を用いて測定した。
 分光測色色差計は、コニカミノルタオプティクス社製、CM-3600d)を用いた。
<耐汚染性>
<<白色のPBTプレートの製造>>
 ポリブチレンテレフタレートペレット(三菱エンジニアリングプラスチックス社製、ノバデュラン 5010G30 NA)を120℃で7時間乾燥した後、射出成形機(日精樹脂工業社製「NEX80-9E」)を用いてシリンダー温度260℃、金型温度60℃、および、以下の射出条件で、60mm×60mm×厚さ1.5mmの白色のPBTプレートを射出成形した。
<<色移り試験>>
 上記で得られた評価用プレート(透過樹脂部材)(60mm×60mm×厚さ1.5mm)と、白色のPBTプレートを用いて、両プレートをクリップで挟み、120℃に設定された恒温槽に12時間入れ、白色PBTプレートへの色移り(汚染性)を以下評価基準で調べた。評価は5人の専門家が行い多数決で判断した。
<<評価>>
A:全く色移りしていない
B:若干色移り跡が認められる
C:明確に色移りが認められる
<黒色度>
 上記で得られた評価用プレート(透過樹脂部材)(60mm×60mm×厚さ1.5mm)の目視での色合い(黒、濃グレー、グレー、薄グレー、白)を評価した。評価は5人の専門家が行い多数決で判断した。
<溶着強度(コップ)>
<<透過樹脂部材の作製>>
 上記で得られた光透過性樹脂組成物(ペレット)を120℃で7時間乾燥した後、射出成形機(日本製鋼所社製「J55」)を用いて、シリンダー温度260℃、金型温度60℃で成形して、図1に示すような、厚さ1.5mmの成形品(透過樹脂部材I)を作製した。
<<吸収樹脂部材の作製>>
 上記で得られた光吸収性樹脂ペレットを120℃で7時間乾燥した後、射出成形機(日本製鋼所社製「J55」)を用いて、シリンダー温度260℃、金型温度60℃で成形して、図2に示すような成形品(吸収樹脂部材II)を作製した。
 透過樹脂部材と吸収樹脂部材とを、図3に示すように、箱状の吸収樹脂部材IIに蓋状の透過樹脂部材Iを重ね、透過樹脂部材Iおよび吸収樹脂部材IIの重なり部分である鍔部の垂直上方位置にレーザー光源を配置し、ガラス板を用いて透過樹脂部材Iおよび吸収樹脂部材IIの重なり部分に厚み方向両側から内側方向に4.92N/mmの押し力(溶着時押し出し力)を掛けつつ、下記条件にて、レーザーを照射してレーザー溶着品を得た。
 溶着装置は以下の通りである。
<<ガルバノスキャニング式レーザー溶着>>
レーザー装置:IPG社製 YLR-300-AC-Y14
波長:1070nm
コリメータ:7.5mm
レーザータイプ:ファイバー
レーザー出力:150W
ガルバノスキャナ:ARGES社製 Fiber Elephants21
アパーチャー:21mm
レーザー照射速度:900mm/s
レーザー照射周数:30周
溶着部円周:137mm
 溶着面に照射されるスポット径が直径2mmになるように、レーザー光をデフォーカスしてレーザースキャナの位置調整をした。
<<レーザー溶着強度の測定>>
 図4に示すように、それぞれ穴21、22をあけて、溶着力測定用の冶具23、24を内部に入れた状態で、上記で作製した透過樹脂部材Iおよび吸収樹脂部材IIからなる箱体の上面および下面からそれぞれに測定用冶具25、26を挿入して、内部に収納した冶具23、24とそれぞれ結合させ、上下に引っ張って(引張速度:5mm/min)、透過樹脂部材Iおよび吸収樹脂部材IIが離れる強度(溶着強度)を測定した。単位は、Nで示した。
 尚、装置はORIENTEC社製、1tテンシロンの万能型試験機(ロードセル10kN)を使用した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 上記結果から明らかなとおり、本発明の樹脂組成物は、レーザー透過性およびレーザー印字性に優れ、かつ、透過率のムラが抑制されていた。レーザー印字性が優れることは、上記ΔEが大きいことから読み取れる。
 また、本発明の樹脂組成物は、色素として、染料ではなく、顔料を配合することができるため、染料由来の耐汚染性を抑制できた。また、色素として、有機顔料に加えて、有機染料を併用した場合においても、透過率の低下をより抑えつつ、耐汚染性もバランスよく抑制できることが分かった。
 さらに、本発明の樹脂組成物は、レーザーマーキング剤として機能するビスマス化合物を配合しても、その透過率があまり低下しないため、2種以上の非黒色顔料との併用が可能になった。そのため、本実施形態の樹脂組成物から形成される成形品には、色味を持たせることができ、意匠性が向上する。特に、酸化ビスマスを配合しても、そのことによって成形品が黒くならないため、白い成形品や有彩色の色味のある成形品が得られることが分かった。
21、22 穴
23、24 測定用の冶具
25、26 測定用治具

Claims (22)

  1. 熱可塑性樹脂100質量部と、ビスマス化合物0.002~10.000質量部と、2種以上の非黒色有機顔料を合計で0.1~5.0質量部を含む、レーザーマーキング用かつレーザー溶着用樹脂組成物。
  2. 前記ビスマス化合物の含有量が、前記熱可塑性樹脂100質量部に対して、0.002~1.000質量部である、請求項1に記載の樹脂組成物。
  3. 前記熱可塑性樹脂が、熱可塑性ポリエステル樹脂を含む、請求項1または2に記載の樹脂組成物。
  4. 前記熱可塑性樹脂が、ポリブチレンテレフタレート樹脂を含む、請求項1~3のいずれか1項に記載の樹脂組成物。
  5. 前記ポリブチレンテレフタレート樹脂が、イソフタル酸に由来する単位を含み、かつ、ポリブチレンテレフタレート樹脂のジカルボン酸成分に由来する全単位中、イソフタル酸に由来する単位が0.5モル%以上15モル%以下である、請求項4に記載の樹脂組成物。
  6. 前記熱可塑性樹脂が、ポリカーボネート樹脂を含む、請求項1~5のいずれか1項に記載の樹脂組成物。
  7. 前記樹脂組成物は、レーザー透過樹脂部材用である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8. 前記2種以上の非黒色有機顔料の含有量と前記ビスマス化合物の含有量の質量比が、1:0.05~10である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9. 前記2種以上の非黒色有機顔料の混合物の波長1064nmにおける吸光度が、1.0以下であり、波長500nmにおける吸光度が1.0以上である、請求項1~8のいずれか1項に記載の樹脂組成物。
  10. さらに、熱可塑性樹脂100質量部に対し、ベンゼン環および/またはベンゾ縮合環を分子量比率として、15~75質量%の割合で含む芳香環含有化合物を0.1~18質量部含む、請求項1~9のいずれか1項に記載の樹脂組成物。
  11. 前記芳香環含有化合物がエポキシ基を含む化合物である、請求項10に記載の樹脂組成物。
  12. 前記芳香環含有化合物がノボラック型エポキシ化合物である、請求項10に記載の樹脂組成物。
  13. さらにガラス繊維を含み、前記ガラス繊維の断面が円形である、請求項1~12のいずれか1項に記載の樹脂組成物。
  14. 請求項1~13のいずれか1項に記載の樹脂組成物から形成された成形品。
  15. 請求項1~13のいずれか1項に記載の樹脂組成物から形成されたレーザー透過樹脂部材。
  16. レーザーマーキングが可能である、請求項14に記載の成形品。
  17. レーザーマーキングが可能である、請求項15に記載のレーザー透過樹脂部材。
  18. 請求項1~13のいずれか1項に記載の樹脂組成物と、
    熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とを
    有するキット。
  19. 請求項15または17に記載のレーザー透過樹脂部材と、
    熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物から形成されたレーザー吸収樹脂部材とのレーザー溶着品。
  20. 請求項15または17に記載のレーザー透過樹脂部材に、レーザーを照射してレーザーマーキングすること、および、
    前記レーザー透過樹脂部材と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物から形成されたレーザー吸収樹脂部材とを、レーザー溶着することを含む、レーザー溶着品の製造方法。
  21. 前記レーザー溶着をガルバノスキャニング式レーザー溶着によって行う、請求項20に記載のレーザー溶着品の製造方法。
  22. 熱可塑性樹脂と2種以上の非黒色有機顔料を含むレーザー溶着用樹脂組成物用のレーザーマーキング剤であって、
    ビスマス化合物を含む、レーザーマーキング剤。
PCT/JP2022/014323 2021-03-26 2022-03-25 樹脂組成物、成形品、および、その応用 WO2022203038A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280024489.9A CN117425703A (zh) 2021-03-26 2022-03-25 树脂组合物、成型品及其应用
EP22775819.0A EP4317314A1 (en) 2021-03-26 2022-03-25 Resin composition, molded article, and use thereof
JP2022541868A JP7192164B1 (ja) 2021-03-26 2022-03-25 樹脂組成物、成形品、および、その応用
US18/472,384 US20240010819A1 (en) 2021-03-26 2023-09-22 Resin composition, molded article, and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053962 2021-03-26
JP2021053962 2021-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/472,384 Continuation US20240010819A1 (en) 2021-03-26 2023-09-22 Resin composition, molded article, and applications thereof

Publications (1)

Publication Number Publication Date
WO2022203038A1 true WO2022203038A1 (ja) 2022-09-29

Family

ID=83397450

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/014324 WO2022203039A1 (ja) 2021-03-26 2022-03-25 樹脂組成物、成形品、および、その応用
PCT/JP2022/014323 WO2022203038A1 (ja) 2021-03-26 2022-03-25 樹脂組成物、成形品、および、その応用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014324 WO2022203039A1 (ja) 2021-03-26 2022-03-25 樹脂組成物、成形品、および、その応用

Country Status (5)

Country Link
US (2) US20240018336A1 (ja)
EP (2) EP4317314A1 (ja)
JP (2) JP7192163B1 (ja)
CN (2) CN117425704A (ja)
WO (2) WO2022203039A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443307A (zh) * 2020-05-07 2022-12-06 三菱工程塑料株式会社 树脂组合物、成型品、套组、车载照相机部件、车载照相机模块和成型品的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254252A (ja) * 1992-03-13 1993-10-05 Nippon Kayaku Co Ltd レ−ザ−マーキング組成物
JP4040460B2 (ja) 2000-11-13 2008-01-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー レーザー溶接用の着色熱可塑性樹脂組成物、そのための着色剤としての特定の中性アントラキノン染料、およびそれから成形される製品
JP4157300B2 (ja) 1999-12-14 2008-10-01 ランクセス・ドイチュランド・ゲーエムベーハー レーザー透過溶接が可能な熱可塑性成形用組成物
JP2016501921A (ja) * 2012-10-19 2016-01-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung マイクロスフェア
JP2016190451A (ja) * 2015-03-31 2016-11-10 日本カーバイド工業株式会社 レーザーラベルおよびそれを用いたレーザーマーキング方法
US20170152372A1 (en) * 2014-06-23 2017-06-01 Merck Patent Gmbh Microspheres
JP6183822B1 (ja) 2016-02-25 2017-08-23 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
WO2020013127A1 (ja) 2018-07-11 2020-01-16 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物および成形品
JP2020050822A (ja) 2018-09-28 2020-04-02 ポリプラスチックス株式会社 レーザー溶着及びレーザーマーキングが可能な樹脂組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254252A (ja) * 1992-03-13 1993-10-05 Nippon Kayaku Co Ltd レ−ザ−マーキング組成物
JP4157300B2 (ja) 1999-12-14 2008-10-01 ランクセス・ドイチュランド・ゲーエムベーハー レーザー透過溶接が可能な熱可塑性成形用組成物
JP4040460B2 (ja) 2000-11-13 2008-01-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー レーザー溶接用の着色熱可塑性樹脂組成物、そのための着色剤としての特定の中性アントラキノン染料、およびそれから成形される製品
JP2016501921A (ja) * 2012-10-19 2016-01-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung マイクロスフェア
US20170152372A1 (en) * 2014-06-23 2017-06-01 Merck Patent Gmbh Microspheres
JP2016190451A (ja) * 2015-03-31 2016-11-10 日本カーバイド工業株式会社 レーザーラベルおよびそれを用いたレーザーマーキング方法
JP6183822B1 (ja) 2016-02-25 2017-08-23 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
WO2020013127A1 (ja) 2018-07-11 2020-01-16 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物および成形品
JP2020050822A (ja) 2018-09-28 2020-04-02 ポリプラスチックス株式会社 レーザー溶着及びレーザーマーキングが可能な樹脂組成物

Also Published As

Publication number Publication date
EP4317314A1 (en) 2024-02-07
EP4317315A1 (en) 2024-02-07
JPWO2022203038A1 (ja) 2022-09-29
JP7192163B1 (ja) 2022-12-19
CN117425704A (zh) 2024-01-19
CN117425703A (zh) 2024-01-19
US20240010819A1 (en) 2024-01-11
JPWO2022203039A1 (ja) 2022-09-29
US20240018336A1 (en) 2024-01-18
WO2022203039A1 (ja) 2022-09-29
JP7192164B1 (ja) 2022-12-19

Similar Documents

Publication Publication Date Title
AU773611B2 (en) Laser beam weldable thermoplastic molding materials
CN108473762B (zh) 聚酰胺树脂组合物、组件、成型品的制造方法及成型品
WO2021225154A1 (ja) 樹脂組成物、成形品、キット、車載カメラ部品、車載カメラモジュール、および、成形品の製造方法
WO2019216368A1 (ja) 樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品
US20240010819A1 (en) Resin composition, molded article, and applications thereof
EP1701835B1 (en) Process for laser welding polyester compositions
CN115427515B (zh) 振镜式激光焊接用树脂组合物、成型品、振镜式激光焊接用套组、车载照相机部件、车载照相机模块、紫外线暴露体和成型品的制造方法
JPWO2019088073A1 (ja) レーザー溶着体
JP2008133341A (ja) 黒色のレーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP4720149B2 (ja) レーザ溶着用着色樹脂組成物およびそれを用いた複合成形体
JP7197350B2 (ja) ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
JP7122490B1 (ja) 樹脂組成物、成形品、樹脂組成物の使用、キット、レーザー溶着品、および、レーザー溶着品の製造方法
JP2007246716A (ja) レーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
WO2023149503A1 (ja) 樹脂組成物、成形体、ペレット、および、レーザー溶着体
US11746234B2 (en) Polyamide resin composition and molded article
JP2023114411A (ja) 樹脂組成物、成形体、および、レーザー溶着体
JP2023114412A (ja) 樹脂組成物、成形体、および、レーザー溶着体
JP7487583B2 (ja) 樹脂組成物、成形体、レーザー溶着用キット、車載カメラモジュール、および、成形体の製造方法
CN115885013A (zh) 树脂组合物、组合物组合、成型品、以及成型品的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022541868

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024489.9

Country of ref document: CN

Ref document number: 2301006117

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022775819

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775819

Country of ref document: EP

Effective date: 20231026