WO2022202567A1 - In-wheel motor and saddle-riding-type vehicle - Google Patents

In-wheel motor and saddle-riding-type vehicle Download PDF

Info

Publication number
WO2022202567A1
WO2022202567A1 PCT/JP2022/012049 JP2022012049W WO2022202567A1 WO 2022202567 A1 WO2022202567 A1 WO 2022202567A1 JP 2022012049 W JP2022012049 W JP 2022012049W WO 2022202567 A1 WO2022202567 A1 WO 2022202567A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
wheel motor
motor
rotor
vehicle
Prior art date
Application number
PCT/JP2022/012049
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 日▲高▼
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2022202567A1 publication Critical patent/WO2022202567A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/14Torque-transmitting axles composite or split, e.g. half- axles; Couplings between axle parts or sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • B62K25/12Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg
    • B62K25/14Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg with single arm on each fork leg
    • B62K25/20Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg with single arm on each fork leg for rear wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/12Motorcycles characterised by position of motor or engine with the engine beside or within the driven wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to an in-wheel motor and a straddle-type vehicle.
  • This application claims priority to Japanese Patent Application No. 2021-049682 filed in Japan on March 24, 2021, the content of which is incorporated herein.
  • Patent Document 1 discloses a motor section having a rotor and a stator, a speed reducer section for reducing the rotation of the rotor, a case having an accommodating section for housing the motor section and the speed reducer section, and a rotor through the speed reducer section.
  • An in-wheel motor is disclosed that includes a wheel through which rotation is transmitted.
  • the left and right drive wheels are configured symmetrically. Therefore, the vehicle body balance in the vehicle width direction can be optimized between the left and right drive wheels without excessively considering the weight balance in the axial direction for each drive wheel.
  • an in-wheel motor is applied to a saddle-type vehicle such as a two-wheeled vehicle or a tricycle with one rear wheel, if the weight balance of the driving wheels is uneven in the axial direction, the balance of the vehicle body in the vehicle width direction will be uneven, resulting in poor running. Performance may be affected.
  • the motor which is a heavy object, may deviate from the center of gravity of the wheel, and the weight balance tends to be biased in the axial direction.
  • the present invention provides an in-wheel motor capable of optimizing the weight balance in the axial direction, and a straddle-type vehicle equipped with the in-wheel motor.
  • An in-wheel motor is an in-wheel motor for a saddle type vehicle (1), comprising an electric motor (20) including a rotor (21) and a stator (24) and a wheel (13). ), an output shaft (32) coupled to the hub (70), and an output shaft (32) coupled to the hub (70). and a speed reducer (40) for reducing the speed of the rotation of and transmitting it to the output shaft (32).
  • the reduction gear and the hub which are heavy items, can be arranged on both sides in the axial direction with the electric motor sandwiched therebetween, it is possible to prevent the heavy items from being unevenly arranged in the axial direction. Therefore, the weight balance in the axial direction of the in-wheel motor can be optimized.
  • the speed reducer (40) is arranged coaxially with the output shaft (32) and arranged axially outside the end surface (21a) of the rotor (21). may be
  • the speed reducer is arranged axially inward of the end surface of the rotor and enters the recess formed in the rotor, the magnetic path of the rotor is narrowed, the efficiency of the electric motor is reduced, and the efficiency reduction of the electric motor is suppressed. Therefore, the rotor can be enlarged. According to the configuration according to the aspect of the present invention, since the speed reducer is arranged axially outside the end surface of the rotor, it is possible to suppress an increase in the size of the rotor. Therefore, a small in-wheel motor can be formed by suppressing an increase in the size of the electric motor.
  • a cylindrical outer shaft (31) for transmitting the rotation of the rotor (21) to the speed reducer (40) is provided, and the output shaft (32) is , may be inserted through the outer shaft (31) to transmit the output of the speed reducer (40) to the hub (70).
  • the output of the electric motor can be transmitted to the hub through the inner side of the outer shaft.
  • the size of the in-wheel motor can be reduced compared to a configuration in which a power transmission path is provided so as to pass through the outside of the rear wheel.
  • the output shaft (32) may have an oil passage (34) therein.
  • lubricating oil can be supplied to the movable parts around the output shaft through the oil passage.
  • a housing (50) that houses the electric motor (20) is provided, and the housing (50) is an outer peripheral portion ( 51a) and fins (56) projecting outward from the outer peripheral portion (51a).
  • the area of the outer surface of the housing can be expanded by the fins, so that the electric motor and the like in the housing can be efficiently cooled through the housing.
  • the electric motor (20) may overlap the width center (C) of the rim (14) of the wheel (13).
  • the weight balance of the in-wheel motor in the axial direction can be further optimized by moving the electric motor, which is a heavy object, closer to the center of the width of the wheel.
  • a straddle-type vehicle includes an in-wheel motor (5) according to any one of aspects (1) to (6) above, and an in-wheel motor (5) provided with the in-wheel motor (5). It comprises a wheel (3) and a swing arm (6) supporting said rear wheel (3), said in-wheel motor (5) housing said electric motor (20) and said speed reducer (40). A housing (50) is detachably attached to the swing arm (6).
  • the in-wheel motor and rear wheels can be separated from the vehicle body by removing the housing from the swing arm. Therefore, maintenance of the rear part of the vehicle can be improved.
  • the aspect of (7) above further includes a vehicle body frame (7) that supports the swing arm (6), and the housing (50) includes the vehicle body frame (7) and the rear body frame (7) as viewed from the rear of the vehicle. It may be arranged inside in the vehicle width direction from the straight line (L) circumscribing the wheel (3).
  • the housing does not touch the ground, so damage to the in-wheel motors can be suppressed when the vehicle overturns.
  • an in-wheel motor capable of optimizing the weight balance in the axial direction, and a straddle-type vehicle equipped with the in-wheel motor.
  • FIG. 1 is a left side view of the saddle-ride type vehicle of the first embodiment;
  • FIG. FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1;
  • FIG. 2 is a cross-sectional view taken along line III-III of FIG. 1; It is a sectional view of a rear wheel and an in-wheel motor of a 2nd embodiment.
  • FIG. 1 is a left side view of the straddle-type vehicle of the first embodiment.
  • the motorcycle 1 of the present embodiment is an example of a straddle-type vehicle that is operated while the driver straddles a seat (not shown).
  • a motorcycle 1 includes a front wheel 2 and a rear wheel 3, a front wheel suspension 4 that supports the front wheel 2, an in-wheel motor 5 that drives the rear wheel 3, and a swing arm 6 that supports the in-wheel motor 5.
  • the motorcycle 1 also includes a vehicle body frame 7 that supports the front wheel suspension 4 and the swing arm 6, a battery 8 that is a power source for the in-wheel motor 5, and a PCU (power control unit) 9 that controls the in-wheel motor 5. , provided.
  • the front wheel suspension 4 supports the axle of the front wheel 2.
  • the front wheel suspension device 4 suspends the front wheel 2 with respect to the vehicle body frame 7 so as to be displaceable in the vertical direction.
  • the front wheel suspension system 4 is of a swing arm type.
  • the front wheel 2 is rotatably supported by a front wheel suspension device 4 .
  • the front wheel 2 is linked to a steering wheel via a link mechanism (not shown).
  • the front wheels 2 are steered by operating a steering wheel. That is, in this embodiment, the motorcycle 1 has a so-called hub center steering mechanism.
  • the motorcycle may be a vehicle in which a telescopic fork type front wheel suspension is rotatably supported on the vehicle body frame.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG.
  • the rear wheel 3 includes a wheel 13 having a rim 14 and a disc 15 and a tire 16 mounted on the rim 14 .
  • the wheel 13 is formed asymmetrically.
  • the wheel 13 is formed so that a hub mounting surface 15a formed in the center of the disc 15 faces one side (left side in this embodiment) in the vehicle width direction.
  • the disk 15 is a so-called inset wheel formed so that the hub mounting surface 15a is located on the other side (right side in this embodiment) of the width center C of the rim 14 in the vehicle width direction.
  • the width center C of the rim 14 is a virtual plane that coincides with the width center of the vehicle.
  • the in-wheel motor 5 is arranged inside the rim 14 of the wheel 13 of the rear wheel 3 .
  • the in-wheel motor 5 is fixed to the swing arm 6 .
  • a wheel 13 is attached to the in-wheel motor 5 from the other side in the vehicle width direction.
  • the in-wheel motor 5 outputs driving force for driving the rear wheels 3 to the other side in the vehicle width direction.
  • the configuration of the in-wheel motor 5 will be described later.
  • the swing arm 6 is supported by the body frame 7 so as to be vertically swingable.
  • the swing arm 6 extends rearward from a connecting portion to the vehicle body frame 7 in a side view.
  • the swing arm 6 crosses the rear wheel 3 in a side view through only one side of the vehicle width direction with respect to the rear wheel 3 .
  • the in-wheel motor 5 is detachably coupled to the rear end of the swing arm 6 .
  • the swing arm 6 constitutes a unit swing type rear suspension together with the in-wheel motor 5 and a rear cushion (not shown) to support the rear wheel 3 .
  • the vehicle body frame 7 has a head pipe 11 that supports the steering wheel at the front end, supports the front wheel suspension 4 at the front lower part, and supports the swing arm 6 at the rear lower part. Also, the body frame 7 holds the battery 8 and the PCU 9 .
  • the battery 8 is arranged behind the front wheel suspension 4 and forward of the swing arm 6 .
  • the battery 8 is arranged on the center of the width of the vehicle so as to be sandwiched between the body frames 7 from the outside in the width direction of the vehicle.
  • the PCU 9 is a control device that includes a PDU (Power Drive Unit) that is a motor driver and an ECU (Electric Control Unit) that controls the PDU.
  • the PCU 9 is arranged below the battery 8 .
  • the PCU 9 is arranged so as to be sandwiched between the vehicle body frames 7 from the outside in the vehicle width direction.
  • the PDU includes an inverter, converts the current supplied from the battery 8 from direct current to alternating current, and then supplies power to the in-wheel motor 5 through the three-phase line 18 .
  • a three-phase line 18 electrically connects the in-wheel motor 5 and the PCU 9 .
  • the three-phase line 18 is arranged so that at least a portion of the three-phase line 18 passes through the vehicle width center side of the swing arm 6 . That is, at least part of the three-phase line 18 is covered with the swing arm 6 when viewed from the side of the vehicle.
  • the in-wheel motor 5 includes an electric motor 20 that generates driving force for driving the rear wheels 3 , a wheel center shaft 30 that transmits the output of the electric motor 20 to the wheels 13 , and a driving force of the electric motor 20 .
  • a reduction gear 40 for reducing rotation a housing 50 containing the electric motor 20 and the reduction gear 40, a bearing 60 mounted on the wheel center shaft 30, and a hub 70 coupled to the wheel 13 and coupled to the wheel center shaft 30. , provided.
  • the direction along the central axis O of the rear wheel 3 will be referred to as the axial direction
  • the direction perpendicular to the central axis O will be referred to as the radial direction
  • the direction of rotation around the central axis O will be referred to as the radial direction. It is called circumferential direction.
  • the axial direction coincides with the vehicle width direction.
  • the one (left side) of the vehicle width direction is defined as a first axial direction
  • the opposite direction (right side) is defined as a second axial direction.
  • the electric motor 20 is an inner rotor type IPM (Interior Permanent Magnet) motor (embedded magnet synchronous motor).
  • the electric motor 20 has a rotor 21 and a stator 24 .
  • the rotor 21 includes a rotor core 22 and permanent magnets (not shown).
  • the rotor core 22 is formed in a cylindrical shape centered on the central axis O. As shown in FIG.
  • the rotor core 22 is formed by laminating a plurality of electromagnetic steel sheets in the axial direction. Note that the rotor core 22 may be formed by pressure-molding soft magnetic powder.
  • a plurality of slots (not shown) are formed through the rotor core 22 in the axial direction.
  • a permanent magnet is housed in each slot.
  • the permanent magnets are radially magnetized and form a plurality of magnetic pole portions on the outer peripheral portion of the rotor core 22 .
  • the plurality of magnetic pole portions are formed such that their magnetization directions are alternately reversed along the circumferential direction.
  • the stator 24 includes a stator core 25 and multiple layers (for example, U-phase, V-phase, and W-phase) coils 26 attached to the stator core 25 .
  • Stator 24 generates a magnetic field when current flows through coil 26 .
  • the stator core 25 is formed in a cylindrical shape centered on the central axis O.
  • the stator core 25 is arranged so as to surround the rotor core 22 while being radially spaced from the rotor core 22 by a predetermined distance.
  • the stator core 25 is formed by laminating a plurality of electromagnetic steel sheets in the axial direction.
  • the stator core 25 may be formed by pressure-molding soft magnetic powder.
  • the stator core 25 is provided with slots in which the coils 26 are inserted so as to line up in the circumferential direction.
  • the coil 26 is a segment coil configured by inserting a plurality of conductor segments formed of flat wire into slots of the stator core 25 and connecting them to each other at portions protruding from the stator core 25 in the axial direction.
  • the coils 26 of each phase are mounted on the stator core 25 by distributed winding.
  • the rotor core 22 and the stator core 25 are formed to have the same size in the axial direction.
  • the rotor core 22 and the stator core 25 are arranged so that their end faces are aligned in the axial direction.
  • the coil 26 protrudes to both axial sides of the rotor core 22 .
  • the electric motor 20 is arranged such that at least a portion thereof is located inside the rim 14 of the wheel 13 .
  • the end surfaces of the rotor core 22 and the stator core 25 in the second axial direction are located inside the rim 14, and the end surfaces of the rotor core 22 and the stator core 25 in the first axial direction are positioned in the vehicle width direction. It is located outside 14.
  • the wheel center shaft 30 has a cylindrical outer shaft 31 with both ends opened, and an inner shaft 32 (output shaft) inserted inside the outer shaft 31 .
  • the outer shaft 31 and the inner shaft 32 are arranged around the central axis O. As shown in FIG.
  • the outer shaft 31 is provided on the input side of the speed reducer 40 .
  • the outer shaft 31 is inserted inside the rotor core 22 .
  • the outer shaft 31 is fixed to the rotor core 22 via a cylindrical collar 33 fitted onto the outer shaft 31 .
  • the outer shaft 31 rotates integrally with the rotor 21 .
  • the outer shaft 31 protrudes axially on both sides of the rotor core 22 .
  • the inner shaft 32 is provided on the output side of the reduction gear 40 .
  • Inner shaft 32 transmits the output of speed reducer 40 to hub 70 .
  • the inner shaft 32 is radially spaced apart from the outer shaft 31 .
  • the inner shaft 32 is rotatable with respect to the outer shaft 31 .
  • the inner shaft 32 protrudes from the outer shaft 31 on both sides in the axial direction.
  • the inner shaft 32 is cylindrical and has a cavity inside.
  • a cavity of the inner shaft 32 serves as a channel 34 (oil channel) through which a coolant, which will be described later, flows.
  • the flow path 34 opens at the end face of the inner shaft 32 in the first axial direction.
  • the inner shaft 32 is formed with a discharge hole (not shown) that opens on the outer peripheral surface and communicates the flow path 34 with the outside of the inner shaft 32 .
  • the discharge hole is formed at a location close to the bearing 60 .
  • the speed reducer 40 reduces the speed of rotation of the outer shaft 31 and transmits it to the inner shaft 32 .
  • the speed reducer 40 is arranged on the opposite side of the wheel 13 to the disk 15 with the rotor 21 interposed therebetween.
  • the entire speed reducer 40 is arranged in a first axial direction with respect to the width center C of the rim 14 .
  • the reduction gear 40 is a planetary gear reduction gear.
  • the speed reducer 40 is arranged coaxially with the wheel center axis 30 .
  • the entire reduction gear 40 is arranged axially outside (to the left of) the end surface 21 a of the rotor 21 on the reduction gear 40 side. In this embodiment, the entire speed reducer 40 is arranged axially outside the electric motor 20 as a whole.
  • the speed reducer 40 includes a sun gear 41, a planetary gear 42, a planetary carrier 43, and a ring gear 44.
  • the sun gear 41 is formed on the outer peripheral surface of the end portion of the outer shaft 31 in the first axial direction.
  • Planetary gear 42 meshes with sun gear 41 .
  • the planetary gear 42 is rotatably supported by the planetary carrier 43 .
  • the planetary carrier 43 is arranged to face the edge of the outer shaft 31 in the first axial direction.
  • the planetary carrier 43 is spline-fitted to the inner shaft 32 and rotates together with the inner shaft 32 .
  • the ring gear 44 is formed in an annular shape coaxial with the sun gear 41 and has internal teeth that mesh with the planetary gear 42 on its inner periphery. Ring gear 44 is fastened to housing 50 .
  • the housing 50 is formed in a cylindrical shape with both ends closed and arranged coaxially with the central axis O.
  • the housing 50 includes a case body 51 that houses the electric motor 20 , a lid 52 that closes the opening of the case body 51 , and an intermediate plate 53 arranged inside the case body 51 and the lid 52 .
  • the case main body 51 is formed in a bottomed cylindrical shape and is open in the first axial direction.
  • the case main body 51 includes a peripheral wall portion 51a that surrounds the stator 24 from the outside in the radial direction along the entire circumference, and a bottom wall portion 51b that protrudes radially inward from the edge of the peripheral wall portion 51a in the second axial direction.
  • the peripheral wall portion 51 a holds the stator core 25 .
  • the peripheral wall portion 51a protrudes from the stator core 25 on both sides in the axial direction. At least part of the peripheral wall portion 51a is arranged inside the rim 14 of the wheel 13 and radially faces the rim 14 over the entire circumference.
  • the bottom wall portion 51b faces the disk 15 of the wheel 13.
  • a shaft hole 51c is formed in the bottom wall portion 51b.
  • the shaft hole 51c axially penetrates the bottom wall portion 51b with the central axis O as the center.
  • the inner shaft 32 is inserted through the shaft hole 51c.
  • the inner shaft 32 protrudes in the second axial direction from the bottom wall portion 51b.
  • An annular oil seal 80 is arranged between the shaft hole 51 c and the inner shaft 32 .
  • the lid body 52 is fastened to the peripheral wall portion 51a of the case body 51.
  • the lid body 52 is in close contact with the opening edge of the case body 51 over the entire circumference.
  • the outer surface of the lid body 52 protrudes axially outward (first direction) step by step from the outer peripheral edge toward the central axis O side.
  • a recess 52a for holding a bearing 60 is formed in the center of the inner surface of the lid 52. As shown in FIG.
  • the intermediate plate 53 is arranged between the electric motor 20 and the speed reducer 40 .
  • the intermediate plate 53 is formed in an annular shape centered on the central axis O. As shown in FIG.
  • the intermediate plate 53 extends radially inward from the outer peripheral portion coupled to the case body 51 .
  • the outer shaft 31 and the inner shaft 32 are inserted inside the intermediate plate 53 .
  • the intermediate plate 53 is formed with an annular protrusion 54 that protrudes toward the lid 52 and extends in the circumferential direction.
  • a ring gear 44 is fastened to the annular protrusion 54 .
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG.
  • a fastening convex portion 55 is formed on the outer peripheral surface of the peripheral wall portion 51a.
  • a plurality of fastening protrusions 55 are formed at intervals in the circumferential direction.
  • a bolt hole 55a is formed through the fastening protrusion 55 in the axial direction.
  • the fastening protrusion 55 is sandwiched from both sides in the axial direction by the swing arm 6 .
  • Through holes 6 a coaxial with the bolt holes 55 a of the fastening projection 55 are formed in the swing arm 6 at locations on both sides of the fastening projection 55 in the axial direction.
  • the fastening protrusion 55 is fastened to the swing arm 6 with a bolt inserted through the bolt hole 55a and the through hole 6a. Thereby, the housing 50 can be attached to and detached from the swing arm 6 .
  • fins 56 are formed on the outer peripheral surface of the peripheral wall portion 51a.
  • the fins 56 protrude radially outward from portions of the peripheral wall portion 51a excluding the fastening protrusions 55 .
  • a plurality of fins 56 are provided at intervals in the radial direction.
  • the fins 56 extend along the circumferential direction.
  • the housing 50 is arranged inside in the vehicle width direction of an imaginary straight line L that circumscribes the body frame 7 and the rear wheel 3 when viewed from the rear of the vehicle.
  • the imaginary straight line L circumscribes the body frame 7 and the rear wheel 3 from the opposite side of the wheel 13 to the disk 15 with respect to the housing 50 in the vehicle width direction.
  • the bearing 60 includes a first bearing 61, a second bearing 62, a third bearing 63 and a fourth bearing 64.
  • a first bearing 61 , a second bearing 62 and a third bearing 63 are interposed between the housing 50 and the wheel center shaft 30 .
  • the first bearing 61, the second bearing 62 and the third bearing 63 are ball bearings.
  • the first bearing 61 is fitted into the shaft hole 51c of the bottom wall portion 51b of the case main body 51 inside the oil seal 80 and is mounted on the outer peripheral surface of the inner shaft 32 . Thereby, the case body 51 rotatably supports the inner shaft 32 .
  • the inner ring 61i of the first bearing 61 abuts on the step on the outer peripheral surface of the inner shaft 32 from the outside.
  • the second bearing 62 is fitted into the recess 52 a of the lid 52 .
  • the second bearing 62 is mounted on the outer peripheral surface of the end portion of the inner shaft 32 in the first direction in the axial direction, on the side opposite to the outer shaft 31 with the planetary carrier 43 of the speed reducer 40 interposed therebetween.
  • the lid body 52 supports the inner shaft 32 rotatably.
  • the third bearing 63 is mounted inside the intermediate plate 53 and mounted on the outer peripheral surface of the outer shaft 31 .
  • the intermediate plate 53 thereby rotatably supports the inner shaft 32 .
  • the fourth bearing 64 is a needle bearing.
  • the fourth bearing 64 is attached to the inner peripheral surface of the end portion of the outer shaft 31 in the second axial direction, and is attached to the outer peripheral surface of the inner shaft 32 .
  • the hub 70 is arranged on the opposite side of the speed reducer 40 with the electric motor 20 interposed therebetween.
  • the entire hub 70 is arranged on the opposite side of the speed reducer 40 with respect to the width center C of the rim 14 .
  • Hub 70 is fixed to inner shaft 32 outside housing 50 .
  • the hub 70 is coupled to the axial end of the inner shaft 32 in the second direction.
  • the hub 70 includes a cylindrical hub shaft portion 71 fitted onto the inner shaft 32 and a flange 72 projecting radially outward from the hub shaft portion 71 .
  • the hub shaft portion 71 is fastened to the inner shaft 32 by a nut 75 that is formed at the end portion of the inner shaft 32 in the second axial direction and screwed onto an internal thread.
  • Flange 72 has a wheel mounting surface 73 that joins hub mounting surface 15 a of disk 15 of wheel 13 .
  • Flange 72 is fastened to disk 15 of wheel 13 .
  • a refrigerant for example, automatic transmission fluid
  • the coolant is circulated inside the housing 50 by an oil pump (not shown).
  • the coolant is pumped up from the inner lower part of the housing 50 by the oil pump and introduced into the flow path 34 of the inner shaft 32 .
  • the coolant introduced into flow path 34 is discharged from a discharge hole formed in inner shaft 32 to cool and lubricate each part in housing 50 .
  • the discharge hole of the inner shaft 32 may be formed at a position facing the inner peripheral surface of the outer shaft 31 .
  • the outer shaft 31 and the collar 33 may be formed with through holes penetrating in the radial direction, and the rotor core 22 may be formed with flow paths communicating with the through holes of the outer shaft 31 and the collar 33 .
  • the coolant can be circulated in the rotor core 22 to cool the rotor 21 .
  • the oil pump may be externally attached to the housing 50 or may be built in the housing 50 . Also, the oil pump may be operated by the output of the electric motor 20 or may be operated by electric power supplied from a system separate from the electric motor 20 .
  • the in-wheel motor 5 of the present embodiment includes the speed reducer 40 arranged on the opposite side of the hub 70 with the electric motor 20 interposed therebetween to reduce the speed of rotation of the rotor 21 and transmit the speed to the inner shaft 32 .
  • the reduction gear 40 and the hub 70 which are heavy objects, can be arranged on both sides in the axial direction with the electric motor 20 interposed therebetween, it is possible to prevent the heavy objects from being unevenly arranged in the axial direction. Therefore, the weight balance in the axial direction of the in-wheel motor 5 can be optimized.
  • the speed reducer 40 is arranged coaxially with the outer shaft 31 and arranged axially outside the end surface 21 a of the rotor 21 . If the speed reducer is arranged axially inward of the end surface of the rotor and enters the recess formed in the rotor, the magnetic path of the rotor is narrowed, the efficiency of the electric motor is reduced, and the efficiency reduction of the electric motor is suppressed. Therefore, the rotor may become large. According to this embodiment, since the speed reducer 40 is arranged axially outside the end surface 21a of the rotor 21, the rotor 21 can be prevented from increasing in size. Therefore, it is possible to suppress an increase in size of the electric motor 20 and form a small in-wheel motor 5 .
  • the in-wheel motor 5 further includes a cylindrical outer shaft 31 that transmits rotation of the rotor 21 to the speed reducer 40 .
  • the inner shaft 32 is inserted through the outer shaft 31 and transmits the output of the speed reducer 40 to the hub 70 .
  • This configuration allows the output of the electric motor 20 to be transmitted to the hub 70 through the inner side of the outer shaft 31 .
  • the in-wheel motor 5 can be made smaller compared to a configuration in which a power transmission path is provided so as to pass through the outside of the rear wheel 3 .
  • the inner shaft 32 has a flow path 34 inside. With this configuration, the coolant can be supplied to the movable portion around the inner shaft 32 through the flow path 34 .
  • a housing 50 that houses the electric motor 20 has a peripheral wall portion 51a that surrounds the stator 24 and fins 56 that protrude outward from the peripheral wall portion 51a. With this configuration, the area of the outer surface of the housing 50 can be increased by the fins 56 , so that the electric motor 20 and the like inside the housing 50 can be efficiently cooled through the housing 50 .
  • the housing 50 is detachably attached to the swing arm 6. According to this configuration, the in-wheel motor 5 and the rear wheel 3 can be separated from the vehicle body by removing the housing 50 from the swing arm 6 . Therefore, maintenance of the rear part of the vehicle can be improved.
  • the housing 50 is arranged inside in the vehicle width direction of an imaginary straight line L that circumscribes the body frame 7 and the rear wheel 3 when viewed from the rear of the vehicle. According to this configuration, even if the vehicle is tilted until the vehicle body frame 7 touches the ground, the housing 50 does not touch the ground. In addition, it is possible to prevent the maximum bank angle of the vehicle from being restricted by the ground contact of the in-wheel motor 5, and improve the turning performance of the vehicle.
  • FIG. 4 is a cross-sectional view of the rear wheel and in-wheel motor of the second embodiment.
  • the second embodiment shown in FIG. 4 differs from the first embodiment in that the in-wheel motor 5 is arranged so that the electric motor 20 overlaps the width center C of the rim 14 of the wheel 13 .
  • the electric motor 20, which is a heavy object is moved to the center of the width of the rear wheel 3, so that the weight balance of the in-wheel motor 5 in the axial direction can be further optimized.
  • the present invention is not limited to the above-described embodiments described with reference to the drawings, and various modifications are conceivable within its technical scope.
  • the present invention is applied to motorcycles, but the scope of application of the present invention is not limited to this.
  • the present invention can be applied to a rear one-wheel motor tricycle. That is, the present invention can be applied to a saddle type vehicle in which drive wheels driven by in-wheel motors are arranged on the vehicle width center of the vehicle.
  • the coils 26 of the stator 24 are distributed by segment coils, but the present invention is not limited to this configuration.
  • the stator coils may be concentrated or distributed winding of copper wire.
  • a so-called IPM motor including a magnet-embedded rotor 21 is taken as an example of the electric motor 20, but the configuration is not limited to this.
  • the electric motor may be a so-called SPM (Surface Permanent Magnet) motor having a rotor with a magnet attached to the outer peripheral surface of the rotor core.
  • the housing 50 of the in-wheel motor 5 is detachable from the swing arm 6, but the configuration is not limited to this. That is, the housing of the in-wheel motor may be integrated with the swing arm.
  • an in-wheel motor capable of optimizing the weight balance in the axial direction, and a straddle-type vehicle equipped with the in-wheel motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

This in-wheel motor (5) of a saddle-riding-type vehicle (1) comprises: a motor (20) including a rotor (21) and a stator (24); a hub (70) coupled to a wheel (13); an inner shaft (32) coupled to the hub (70); and a reducer (40) which is disposed on the opposite side of the hub (70) while sandwiching the motor (20), reduces the rotation speed of the rotor (21), and transmits the rotation to the inner shaft (32).

Description

インホイールモータおよび鞍乗り型車両In-wheel motor and straddle-type vehicle
 本発明は、インホイールモータおよび鞍乗り型車両に関するものである。
 本願は、2021年3月24日に日本に出願された特願2021-049682号について優先権を主張し、その内容をここに援用する。
The present invention relates to an in-wheel motor and a straddle-type vehicle.
This application claims priority to Japanese Patent Application No. 2021-049682 filed in Japan on March 24, 2021, the content of which is incorporated herein.
 従来、車輪駆動装置として、ホイールの内側にモータが配置されたインホイールモータがある。インホイールモータには、モータの出力を減速してホイールに伝達する減速機を備えた、いわゆるギアリダクション方式のものがある(例えば、特許文献1参照)。特許文献1には、ロータおよびステータを有するモータ部と、ロータの回転を減速する減速機部と、モータ部および減速機部を収容する収容部を有するケースと、減速機部を介してロータの回転が伝わるホイールと、を備えたインホイールモータが開示されている。 Conventionally, as a wheel drive device, there is an in-wheel motor in which a motor is arranged inside the wheel. Some in-wheel motors are of a so-called gear reduction type, which includes a reduction gear that reduces the output of the motor and transmits it to the wheels (see, for example, Patent Document 1). Patent Document 1 discloses a motor section having a rotor and a stator, a speed reducer section for reducing the rotation of the rotor, a case having an accommodating section for housing the motor section and the speed reducer section, and a rotor through the speed reducer section. An in-wheel motor is disclosed that includes a wheel through which rotation is transmitted.
 ところで、四輪車や後二輪の三輪車等、左右に駆動輪を有する車両にインホイールモータを適用した場合、左右の駆動輪がおおよそ左右対称に構成される。このため、各駆動輪において軸方向の重量バランスを過度に考慮しなくても、左右の駆動輪で車幅方向の車体バランスを適正化できる。一方で、二輪車や後一輪の三輪車等の鞍乗り型車両にインホイールモータを適用した場合、駆動輪の重量バランスが軸方向に偏っていると、車幅方向の車体バランスに偏りが生じて走行性能に影響が生じる可能性がある。このため、駆動輪の軸方向の重量バランスを適正化する必要がある。特にギアリダクション方式のインホイールモータにおいて、減速機部の配置によっては、重量物であるモータが車輪の重心から外れてしまい、重量バランスが軸方向に偏りやすい。 By the way, when an in-wheel motor is applied to a vehicle having left and right drive wheels, such as a four-wheel vehicle or a three-wheel vehicle with two rear wheels, the left and right drive wheels are configured symmetrically. Therefore, the vehicle body balance in the vehicle width direction can be optimized between the left and right drive wheels without excessively considering the weight balance in the axial direction for each drive wheel. On the other hand, when an in-wheel motor is applied to a saddle-type vehicle such as a two-wheeled vehicle or a tricycle with one rear wheel, if the weight balance of the driving wheels is uneven in the axial direction, the balance of the vehicle body in the vehicle width direction will be uneven, resulting in poor running. Performance may be affected. Therefore, it is necessary to optimize the weight balance in the axial direction of the drive wheels. In particular, in a gear reduction type in-wheel motor, depending on the arrangement of the speed reducer, the motor, which is a heavy object, may deviate from the center of gravity of the wheel, and the weight balance tends to be biased in the axial direction.
国際公開第2019/124152号WO2019/124152
 しかしながら、従来のインホイールモータにおいては、軸方向の重量バランスに改善の余地がある。 However, in conventional in-wheel motors, there is room for improvement in the weight balance in the axial direction.
 そこで本発明は、軸方向の重量バランスを適正化できるインホイールモータ、およびそのインホイールモータを備えた鞍乗り型車両を提供するものである。 Accordingly, the present invention provides an in-wheel motor capable of optimizing the weight balance in the axial direction, and a straddle-type vehicle equipped with the in-wheel motor.
 (1)本発明の一態様に係るインホイールモータは、鞍乗り型車両(1)のインホイールモータであって、ロータ(21)およびステータ(24)を含む電動機(20)と、ホイール(13)に結合するハブ(70)と、前記ハブ(70)に結合した出力軸(32)と、前記電動機(20)を挟んで前記ハブ(70)の反対側に配置され、前記ロータ(21)の回転を減速して前記出力軸(32)に伝達する減速機(40)と、を備える。 (1) An in-wheel motor according to one aspect of the present invention is an in-wheel motor for a saddle type vehicle (1), comprising an electric motor (20) including a rotor (21) and a stator (24) and a wheel (13). ), an output shaft (32) coupled to the hub (70), and an output shaft (32) coupled to the hub (70). and a speed reducer (40) for reducing the speed of the rotation of and transmitting it to the output shaft (32).
 上記の構成によれば、電動機を挟んだ軸方向の両側に重量物である減速機およびハブを配置できるので、重量物が軸方向において偏って配置されることを抑制できる。したがって、インホイールモータの軸方向の重量バランスを適正化できる。 According to the above configuration, since the reduction gear and the hub, which are heavy items, can be arranged on both sides in the axial direction with the electric motor sandwiched therebetween, it is possible to prevent the heavy items from being unevenly arranged in the axial direction. Therefore, the weight balance in the axial direction of the in-wheel motor can be optimized.
(2)上記(1)の態様において、前記減速機(40)は、前記出力軸(32)と同軸に配置され、前記ロータ(21)の端面(21a)よりも軸方向の外側に配置されていてもよい。 (2) In the aspect (1) above, the speed reducer (40) is arranged coaxially with the output shaft (32) and arranged axially outside the end surface (21a) of the rotor (21). may be
 仮に減速機がロータの端面よりも軸方向の内側に配置されてロータに形成された凹部に入り込むと、ロータの磁路が狭められて電動機の効率が低下するとともに、電動機の効率低下を抑制するためにロータが大型化し得る。
 本発明の上記態様に係る構成によれば、減速機がロータの端面よりも軸方向の外側に配置されているので、ロータの大型化を抑制できる。したがって、電動機の大型化を抑制して小型なインホイールモータを形成できる。
If the speed reducer is arranged axially inward of the end surface of the rotor and enters the recess formed in the rotor, the magnetic path of the rotor is narrowed, the efficiency of the electric motor is reduced, and the efficiency reduction of the electric motor is suppressed. Therefore, the rotor can be enlarged.
According to the configuration according to the aspect of the present invention, since the speed reducer is arranged axially outside the end surface of the rotor, it is possible to suppress an increase in the size of the rotor. Therefore, a small in-wheel motor can be formed by suppressing an increase in the size of the electric motor.
(3)上記(1)または(2)の態様において、前記ロータ(21)の回転を前記減速機(40)に伝達する円筒状のアウターシャフト(31)を備え、前記出力軸(32)は、前記アウターシャフト(31)に挿通され、前記減速機(40)の出力を前記ハブ(70)に伝達してもよい。 (3) In the aspect (1) or (2) above, a cylindrical outer shaft (31) for transmitting the rotation of the rotor (21) to the speed reducer (40) is provided, and the output shaft (32) is , may be inserted through the outer shaft (31) to transmit the output of the speed reducer (40) to the hub (70).
 上記の構成によれば、電動機の出力をアウターシャフトの内側を通してハブに伝達することができる。これにより、後輪の外側を通るように動力伝達路が設けられた構成と比較して、インホイールモータを小型化できる。 According to the above configuration, the output of the electric motor can be transmitted to the hub through the inner side of the outer shaft. As a result, the size of the in-wheel motor can be reduced compared to a configuration in which a power transmission path is provided so as to pass through the outside of the rear wheel.
(4)上記(1)から(3)のいずれかの態様において、前記出力軸(32)は、内部に油路(34)を有していてもよい。 (4) In any one of aspects (1) to (3) above, the output shaft (32) may have an oil passage (34) therein.
 上記の構成によれば、油路を通じて出力軸の周囲の可動部に潤滑油を供給できる。 According to the above configuration, lubricating oil can be supplied to the movable parts around the output shaft through the oil passage.
(5)上記(1)から(4)のいずれかの態様において、前記電動機(20)を収容するハウジング(50)を備え、前記ハウジング(50)は、前記ステータ(24)を囲う外周部(51a)と、前記外周部(51a)から外側に突出したフィン(56)と、を有していてもよい。 (5) In any one of the aspects (1) to (4) above, a housing (50) that houses the electric motor (20) is provided, and the housing (50) is an outer peripheral portion ( 51a) and fins (56) projecting outward from the outer peripheral portion (51a).
 上記の構成によれば、フィンによってハウジングの外表面の面積を拡大できるので、ハウジングを介してハウジング内の電動機等を効率よく冷却することができる。 According to the above configuration, the area of the outer surface of the housing can be expanded by the fins, so that the electric motor and the like in the housing can be efficiently cooled through the housing.
(6)上記(1)から(5)のいずれかの態様において、前記電動機(20)は、前記ホイール(13)のリム(14)の幅中心(C)に重なっていてもよい。 (6) In any one of aspects (1) to (5) above, the electric motor (20) may overlap the width center (C) of the rim (14) of the wheel (13).
 上記の構成によれば、重量物である電動機が車輪の幅中心に寄ることで、更にインホイールモータの軸方向の重量バランスを適正化できる。 According to the above configuration, the weight balance of the in-wheel motor in the axial direction can be further optimized by moving the electric motor, which is a heavy object, closer to the center of the width of the wheel.
(7)本発明の一態様に係る鞍乗り型車両は、上記(1)から(6)のいずれかの態様のインホイールモータ(5)と、前記インホイールモータ(5)が設けられた後輪(3)と、前記後輪(3)を支持するスイングアーム(6)と、を備え、前記インホイールモータ(5)は、前記電動機(20)および前記減速機(40)を収容するとともに前記スイングアーム(6)に着脱可能に取り付けられたハウジング(50)を備える。 (7) A straddle-type vehicle according to an aspect of the present invention includes an in-wheel motor (5) according to any one of aspects (1) to (6) above, and an in-wheel motor (5) provided with the in-wheel motor (5). It comprises a wheel (3) and a swing arm (6) supporting said rear wheel (3), said in-wheel motor (5) housing said electric motor (20) and said speed reducer (40). A housing (50) is detachably attached to the swing arm (6).
 上記の構成によれば、スイングアームからハウジングを取り外すことで、車体からインホイールモータおよび後輪を分離できる。したがって、車両後部のメンテナンス性を向上させることができる。 According to the above configuration, the in-wheel motor and rear wheels can be separated from the vehicle body by removing the housing from the swing arm. Therefore, maintenance of the rear part of the vehicle can be improved.
(8)上記(7)の態様において、前記スイングアーム(6)を支持する車体フレーム(7)をさらに備え、前記ハウジング(50)は、車両後方から見て前記車体フレーム(7)と前記後輪(3)とに外接する直線(L)よりも車幅方向の内側に配置されていてもよい。 (8) The aspect of (7) above further includes a vehicle body frame (7) that supports the swing arm (6), and the housing (50) includes the vehicle body frame (7) and the rear body frame (7) as viewed from the rear of the vehicle. It may be arranged inside in the vehicle width direction from the straight line (L) circumscribing the wheel (3).
 上記の構成によれば、車体フレームが接地するまで車両を傾けてもハウジングが接地しないので、車両転倒時にインホイールモータが損傷することを抑制できる。また、車両の最大バンク角がインホイールモータの接地によって制限されることを抑制でき、車両の旋回性能を向上させることができる。 According to the above configuration, even if the vehicle is tilted until the body frame touches the ground, the housing does not touch the ground, so damage to the in-wheel motors can be suppressed when the vehicle overturns. In addition, it is possible to prevent the maximum bank angle of the vehicle from being restricted by the grounding of the in-wheel motors, thereby improving the turning performance of the vehicle.
 本発明によれば、軸方向の重量バランスを適正化できるインホイールモータ、およびそのインホイールモータを備えた鞍乗り型車両を提供することができる。 According to the present invention, it is possible to provide an in-wheel motor capable of optimizing the weight balance in the axial direction, and a straddle-type vehicle equipped with the in-wheel motor.
第1実施形態の鞍乗り型車両の左側面図である。1 is a left side view of the saddle-ride type vehicle of the first embodiment; FIG. 図1のII-II線における断面図である。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1; 図1のIII-III線における断面図である。FIG. 2 is a cross-sectional view taken along line III-III of FIG. 1; 第2実施形態の後輪およびインホイールモータの断面図である。It is a sectional view of a rear wheel and an in-wheel motor of a 2nd embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。なお以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。また、以下の説明における前後上下左右等の方向は、以下に説明する車両における方向と同一とする。すなわち、上下方向は鉛直方向と一致し、左右方向は車幅方向と一致する。また、以下の説明に用いる図中において、矢印UPは上方、矢印FRは前方、矢印LHは左方をそれぞれ示している。 Hereinafter, embodiments of the present invention will be described based on the drawings. In the following description, the same reference numerals are given to components having the same or similar functions. Duplicate descriptions of these configurations may be omitted. Further, directions such as front, rear, up, down, left, and right in the following description are the same as the directions of the vehicle described below. That is, the vertical direction corresponds to the vertical direction, and the horizontal direction corresponds to the vehicle width direction. In the drawings used for the following description, an arrow UP indicates upward, an arrow FR indicates forward, and an arrow LH indicates leftward.
(第1実施形態)
<車両の全体構成>
 図1は、第1実施形態の鞍乗り型車両の左側面図である。
 図1に示すように、本実施形態の自動二輪車1は、運転者がシート(不図示)に跨った状態で運転操作される鞍乗り型車両の一例である。自動二輪車1は、前輪2および後輪3と、前輪2を支持する前輪懸架装置4と、後輪3を駆動するインホイールモータ5と、インホイールモータ5を支持するスイングアーム6と、を備える。また、自動二輪車1は、前輪懸架装置4およびスイングアーム6を支持する車体フレーム7と、インホイールモータ5の電源であるバッテリ8と、インホイールモータ5を制御するPCU(パワーコントロールユニット)9と、を備える。
(First embodiment)
<Overall vehicle configuration>
FIG. 1 is a left side view of the straddle-type vehicle of the first embodiment.
As shown in FIG. 1, the motorcycle 1 of the present embodiment is an example of a straddle-type vehicle that is operated while the driver straddles a seat (not shown). A motorcycle 1 includes a front wheel 2 and a rear wheel 3, a front wheel suspension 4 that supports the front wheel 2, an in-wheel motor 5 that drives the rear wheel 3, and a swing arm 6 that supports the in-wheel motor 5. . The motorcycle 1 also includes a vehicle body frame 7 that supports the front wheel suspension 4 and the swing arm 6, a battery 8 that is a power source for the in-wheel motor 5, and a PCU (power control unit) 9 that controls the in-wheel motor 5. , provided.
 前輪懸架装置4は、前輪2の車軸を支持する。前輪懸架装置4は、車体フレーム7に対して前輪2を上下方向に変位可能に懸架する。前輪懸架装置4は、スイングアーム式である。前輪2は、前輪懸架装置4に転向可能に支持されている。前輪2は、図示しないリンク機構を介してハンドルに連係されている。前輪2は、ハンドルを操作されることで操舵される。すなわち、本実施形態では、自動二輪車1は、いわゆるハブセンターステアリング機構を備えている。ただし、自動二輪車は、テレスコピックフォーク式の前輪懸架装置が車体フレームに回動可能に支持された車両であってもよい。 The front wheel suspension 4 supports the axle of the front wheel 2. The front wheel suspension device 4 suspends the front wheel 2 with respect to the vehicle body frame 7 so as to be displaceable in the vertical direction. The front wheel suspension system 4 is of a swing arm type. The front wheel 2 is rotatably supported by a front wheel suspension device 4 . The front wheel 2 is linked to a steering wheel via a link mechanism (not shown). The front wheels 2 are steered by operating a steering wheel. That is, in this embodiment, the motorcycle 1 has a so-called hub center steering mechanism. However, the motorcycle may be a vehicle in which a telescopic fork type front wheel suspension is rotatably supported on the vehicle body frame.
 図2は、図1のII-II線における断面図である。
 図2に示すように、後輪3は、リム14およびディスク15を有するホイール13と、リム14に装着されるタイヤ16と、を備える。ホイール13は、左右非対称に形成されている。ホイール13は、ディスク15の中央に形成されたハブ取付面15aが車幅方向の一方(本実施形態では左側)を向くように形成されている。ディスク15は、ハブ取付面15aがリム14の幅中心Cよりも車幅方向の他方(本実施形態では右側)に位置するように形成された、いわゆるインセットのホイールである。なお、リム14の幅中心Cは、車両の車幅中心に一致する仮想平面である。
FIG. 2 is a cross-sectional view taken along line II-II of FIG.
As shown in FIG. 2 , the rear wheel 3 includes a wheel 13 having a rim 14 and a disc 15 and a tire 16 mounted on the rim 14 . The wheel 13 is formed asymmetrically. The wheel 13 is formed so that a hub mounting surface 15a formed in the center of the disc 15 faces one side (left side in this embodiment) in the vehicle width direction. The disk 15 is a so-called inset wheel formed so that the hub mounting surface 15a is located on the other side (right side in this embodiment) of the width center C of the rim 14 in the vehicle width direction. Note that the width center C of the rim 14 is a virtual plane that coincides with the width center of the vehicle.
 図1に示すように、インホイールモータ5は、後輪3のホイール13のリム14の内側に配置されている。インホイールモータ5は、スイングアーム6に固定されている。インホイールモータ5には、ホイール13が車幅方向の前記他方から取り付けられている。インホイールモータ5は、後輪3を駆動させるための駆動力を車幅方向の前記他方に出力する。インホイールモータ5の構成については後述する。 As shown in FIG. 1 , the in-wheel motor 5 is arranged inside the rim 14 of the wheel 13 of the rear wheel 3 . The in-wheel motor 5 is fixed to the swing arm 6 . A wheel 13 is attached to the in-wheel motor 5 from the other side in the vehicle width direction. The in-wheel motor 5 outputs driving force for driving the rear wheels 3 to the other side in the vehicle width direction. The configuration of the in-wheel motor 5 will be described later.
 スイングアーム6は、車体フレーム7に上下揺動可能に支持されている。スイングアーム6は、側面視で車体フレーム7への連結部から後方に延びている。スイングアーム6は、後輪3に対する車幅方向の前記一方のみを通って、側面視で後輪3に交差している。スイングアーム6の後端部には、インホイールモータ5が着脱可能に結合している。これにより、スイングアーム6は、インホイールモータ5および図示しないリヤクッションとともにユニットスイング式のリヤサスペンションを構成し、後輪3を支持している。 The swing arm 6 is supported by the body frame 7 so as to be vertically swingable. The swing arm 6 extends rearward from a connecting portion to the vehicle body frame 7 in a side view. The swing arm 6 crosses the rear wheel 3 in a side view through only one side of the vehicle width direction with respect to the rear wheel 3 . The in-wheel motor 5 is detachably coupled to the rear end of the swing arm 6 . Thus, the swing arm 6 constitutes a unit swing type rear suspension together with the in-wheel motor 5 and a rear cushion (not shown) to support the rear wheel 3 .
 車体フレーム7は、前端にハンドルを支持するヘッドパイプ11を有するとともに、前下部において前輪懸架装置4を支持し、後下部においてスイングアーム6を支持している。また、車体フレーム7は、バッテリ8およびPCU9を保持している。 The vehicle body frame 7 has a head pipe 11 that supports the steering wheel at the front end, supports the front wheel suspension 4 at the front lower part, and supports the swing arm 6 at the rear lower part. Also, the body frame 7 holds the battery 8 and the PCU 9 .
 バッテリ8は、前輪懸架装置4よりも後方、かつスイングアーム6よりも前方に配置されている。バッテリ8は、車両の車幅中心上で、車幅方向の外側から車体フレーム7によって挟まれるように配置されている。 The battery 8 is arranged behind the front wheel suspension 4 and forward of the swing arm 6 . The battery 8 is arranged on the center of the width of the vehicle so as to be sandwiched between the body frames 7 from the outside in the width direction of the vehicle.
 PCU9は、モータドライバであるPDU(Power Drive Unit)や、PDUを制御するECU(Electric Control Unit)等を含む制御装置である。PCU9は、バッテリ8の下方に配置されている。PCU9は、車幅方向の外側から車体フレーム7によって挟まれるように配置されている。PDUは、インバータを含み、バッテリ8から給電される電流を直流から交流に変換した後、三相線18を通じてインホイールモータ5へ給電する。三相線18は、インホイールモータ5とPCU9とを電気的に接続している。三相線18は、少なくとも一部がスイングアーム6に対する車両の車幅中心側を通るように配置されている。すなわち、三相線18の少なくとも一部は、車両側面視でスイングアーム6によって覆われている。 The PCU 9 is a control device that includes a PDU (Power Drive Unit) that is a motor driver and an ECU (Electric Control Unit) that controls the PDU. The PCU 9 is arranged below the battery 8 . The PCU 9 is arranged so as to be sandwiched between the vehicle body frames 7 from the outside in the vehicle width direction. The PDU includes an inverter, converts the current supplied from the battery 8 from direct current to alternating current, and then supplies power to the in-wheel motor 5 through the three-phase line 18 . A three-phase line 18 electrically connects the in-wheel motor 5 and the PCU 9 . The three-phase line 18 is arranged so that at least a portion of the three-phase line 18 passes through the vehicle width center side of the swing arm 6 . That is, at least part of the three-phase line 18 is covered with the swing arm 6 when viewed from the side of the vehicle.
<インホイールモータの構成>
 ここで、インホイールモータ5について詳述する。
 図2に示すように、インホイールモータ5は、後輪3を駆動させるための駆動力を発生させる電動機20と、電動機20の出力をホイール13に伝達する車輪中心軸30と、電動機20の駆動回転を減速する減速機40と、電動機20および減速機40を収容するハウジング50と、車輪中心軸30に装着された軸受60と、ホイール13に結合するとともに車輪中心軸30に結合したハブ70と、を備える。なお、以下のインホイールモータ5に関する説明において、後輪3の中心軸線Oに沿う方向を軸方向と称し、中心軸線Oに直交する方向を径方向と称し、中心軸線O回りに周回する方向を周方向と称する。軸方向は、車幅方向に一致している。車幅方向の前記一方(左側)を軸方向の第1方向と定義し、その反対方向(右側)を軸方向の第2方向と定義する。
<Configuration of in-wheel motor>
Here, the in-wheel motor 5 will be described in detail.
As shown in FIG. 2 , the in-wheel motor 5 includes an electric motor 20 that generates driving force for driving the rear wheels 3 , a wheel center shaft 30 that transmits the output of the electric motor 20 to the wheels 13 , and a driving force of the electric motor 20 . A reduction gear 40 for reducing rotation, a housing 50 containing the electric motor 20 and the reduction gear 40, a bearing 60 mounted on the wheel center shaft 30, and a hub 70 coupled to the wheel 13 and coupled to the wheel center shaft 30. , provided. In the following description of the in-wheel motor 5, the direction along the central axis O of the rear wheel 3 will be referred to as the axial direction, the direction perpendicular to the central axis O will be referred to as the radial direction, and the direction of rotation around the central axis O will be referred to as the radial direction. It is called circumferential direction. The axial direction coincides with the vehicle width direction. The one (left side) of the vehicle width direction is defined as a first axial direction, and the opposite direction (right side) is defined as a second axial direction.
 電動機20は、インナーロータ型のIPM(Interior Permanent Magnet)モータ(埋込磁石同期モータ)である。電動機20は、ロータ21およびステータ24を備える。 The electric motor 20 is an inner rotor type IPM (Interior Permanent Magnet) motor (embedded magnet synchronous motor). The electric motor 20 has a rotor 21 and a stator 24 .
 ロータ21は、ロータコア22および永久磁石(不図示)を備える。ロータコア22は、中心軸線Oを中心とする円筒状に形成されている。ロータコア22は、電磁鋼板を軸方向に複数枚積層することにより形成されている。なお、ロータコア22は、軟磁性粉を加圧成形することにより形成されていてもよい。ロータコア22には、軸方向に貫通する複数のスロット(不図示)が形成されている。各スロット内には、永久磁石が収容されている。永久磁石は、径方向に磁化され、ロータコア22の外周部に複数の磁極部を形成している。複数の磁極部は、周方向に沿って交互に磁化方向が反転するように形成されている。 The rotor 21 includes a rotor core 22 and permanent magnets (not shown). The rotor core 22 is formed in a cylindrical shape centered on the central axis O. As shown in FIG. The rotor core 22 is formed by laminating a plurality of electromagnetic steel sheets in the axial direction. Note that the rotor core 22 may be formed by pressure-molding soft magnetic powder. A plurality of slots (not shown) are formed through the rotor core 22 in the axial direction. A permanent magnet is housed in each slot. The permanent magnets are radially magnetized and form a plurality of magnetic pole portions on the outer peripheral portion of the rotor core 22 . The plurality of magnetic pole portions are formed such that their magnetization directions are alternately reversed along the circumferential direction.
 ステータ24は、ステータコア25と、ステータコア25に装着された複数層(例えば、U相、V相、W相)のコイル26と、を備えている。ステータ24は、コイル26に電流が流れることにより磁界を発生する。 The stator 24 includes a stator core 25 and multiple layers (for example, U-phase, V-phase, and W-phase) coils 26 attached to the stator core 25 . Stator 24 generates a magnetic field when current flows through coil 26 .
 ステータコア25は、中心軸線Oを中心とする円筒状に形成されている。ステータコア25は、ロータコア22に対して径方向に所定間隔を空けた状態で、ロータコア22を囲うように配置されている。ステータコア25は、電磁鋼板を軸方向に複数枚積層することにより形成されている。なお、ステータコア25は、軟磁性粉を加圧成形することにより形成されていてもよい。ステータコア25には、コイル26が挿入されたスロットが周方向に並んで設けられている。例えば、コイル26は、平角線により形成された複数の導体セグメントをステータコア25のスロットに挿入し、ステータコア25から軸方向に突出した部分において互いに連結されて構成されたセグメントコイルである。本実施形態では、各相のコイル26が分布巻によってステータコア25に装着されている。 The stator core 25 is formed in a cylindrical shape centered on the central axis O. The stator core 25 is arranged so as to surround the rotor core 22 while being radially spaced from the rotor core 22 by a predetermined distance. The stator core 25 is formed by laminating a plurality of electromagnetic steel sheets in the axial direction. The stator core 25 may be formed by pressure-molding soft magnetic powder. The stator core 25 is provided with slots in which the coils 26 are inserted so as to line up in the circumferential direction. For example, the coil 26 is a segment coil configured by inserting a plurality of conductor segments formed of flat wire into slots of the stator core 25 and connecting them to each other at portions protruding from the stator core 25 in the axial direction. In this embodiment, the coils 26 of each phase are mounted on the stator core 25 by distributed winding.
 ロータコア22およびステータコア25は、軸方向において互いに同じ大きさに形成されている。ロータコア22およびステータコア25は、軸方向において端面が互いに一致するように配置されている。これにより、コイル26は、ロータコア22よりも軸方向の両側に突出している。電動機20は、少なくとも一部がホイール13のリム14の内側に位置するように配置されている。本実施形態では、ロータコア22およびステータコア25それぞれにおける軸方向の第2方向の端面がリム14の内側に位置し、ロータコア22およびステータコア25それぞれにおける軸方向の第1方向の端面が車幅方向においてリム14よりも外側に位置している。 The rotor core 22 and the stator core 25 are formed to have the same size in the axial direction. The rotor core 22 and the stator core 25 are arranged so that their end faces are aligned in the axial direction. As a result, the coil 26 protrudes to both axial sides of the rotor core 22 . The electric motor 20 is arranged such that at least a portion thereof is located inside the rim 14 of the wheel 13 . In the present embodiment, the end surfaces of the rotor core 22 and the stator core 25 in the second axial direction are located inside the rim 14, and the end surfaces of the rotor core 22 and the stator core 25 in the first axial direction are positioned in the vehicle width direction. It is located outside 14.
 車輪中心軸30は、両端が開口した円筒状のアウターシャフト31と、アウターシャフト31の内側に挿通されたインナーシャフト32(出力軸)と、を有する。アウターシャフト31およびインナーシャフト32は、中心軸線Oを中心に配置されている。アウターシャフト31は、減速機40の入力側に設けられている。アウターシャフト31は、ロータコア22の内側に挿入されている。アウターシャフト31は、アウターシャフト31に外挿された円筒状のカラー33を介してロータコア22に固定されている。これによりアウターシャフト31は、ロータ21と一体回転する。アウターシャフト31は、ロータコア22よりも軸方向の両側に突出している。インナーシャフト32は、減速機40の出力側に設けられている。インナーシャフト32は、減速機40の出力をハブ70に伝達する。インナーシャフト32は、アウターシャフト31に対して径方向に間隔をあけて配置されている。インナーシャフト32は、アウターシャフト31に対して回転可能とされている。インナーシャフト32は、アウターシャフト31から軸方向の両側に突出している。 The wheel center shaft 30 has a cylindrical outer shaft 31 with both ends opened, and an inner shaft 32 (output shaft) inserted inside the outer shaft 31 . The outer shaft 31 and the inner shaft 32 are arranged around the central axis O. As shown in FIG. The outer shaft 31 is provided on the input side of the speed reducer 40 . The outer shaft 31 is inserted inside the rotor core 22 . The outer shaft 31 is fixed to the rotor core 22 via a cylindrical collar 33 fitted onto the outer shaft 31 . As a result, the outer shaft 31 rotates integrally with the rotor 21 . The outer shaft 31 protrudes axially on both sides of the rotor core 22 . The inner shaft 32 is provided on the output side of the reduction gear 40 . Inner shaft 32 transmits the output of speed reducer 40 to hub 70 . The inner shaft 32 is radially spaced apart from the outer shaft 31 . The inner shaft 32 is rotatable with respect to the outer shaft 31 . The inner shaft 32 protrudes from the outer shaft 31 on both sides in the axial direction.
 インナーシャフト32は、円筒状に形成され、内部に空洞を有する。インナーシャフト32の空洞は、後述する冷媒が流通する流路34(油路)となっている。流路34は、インナーシャフト32における軸方向の第1方向の端面に開口している。インナーシャフト32には、外周面に開口して流路34とインナーシャフト32の外側とを連通する吐出孔(不図示)が形成されている。例えば、吐出孔は、軸受60に近接する箇所に形成されている。 The inner shaft 32 is cylindrical and has a cavity inside. A cavity of the inner shaft 32 serves as a channel 34 (oil channel) through which a coolant, which will be described later, flows. The flow path 34 opens at the end face of the inner shaft 32 in the first axial direction. The inner shaft 32 is formed with a discharge hole (not shown) that opens on the outer peripheral surface and communicates the flow path 34 with the outside of the inner shaft 32 . For example, the discharge hole is formed at a location close to the bearing 60 .
 減速機40は、アウターシャフト31の回転を減速してインナーシャフト32に伝達する。減速機40は、ロータ21を挟んでホイール13のディスク15とは反対側に配置されている。減速機40の全体は、リム14の幅中心Cに対する軸方向の第1方向に配置されている。減速機40は、遊星歯車式の減速機である。減速機40は、車輪中心軸30と同軸に配置されている。減速機40の全体は、ロータ21における減速機40側の端面21aよりも軸方向の外側(左側)に配置されている。本実施形態では、減速機40の全体は、電動機20の全体よりも軸方向の外側に配置されている。 The speed reducer 40 reduces the speed of rotation of the outer shaft 31 and transmits it to the inner shaft 32 . The speed reducer 40 is arranged on the opposite side of the wheel 13 to the disk 15 with the rotor 21 interposed therebetween. The entire speed reducer 40 is arranged in a first axial direction with respect to the width center C of the rim 14 . The reduction gear 40 is a planetary gear reduction gear. The speed reducer 40 is arranged coaxially with the wheel center axis 30 . The entire reduction gear 40 is arranged axially outside (to the left of) the end surface 21 a of the rotor 21 on the reduction gear 40 side. In this embodiment, the entire speed reducer 40 is arranged axially outside the electric motor 20 as a whole.
 減速機40は、サンギヤ41と、プラネタリギヤ42と、プラネタリキャリア43と、リングギヤ44と、を備える。サンギヤ41は、アウターシャフト31における軸方向の第1方向の端部の外周面に形成されている。プラネタリギヤ42は、サンギヤ41に噛み合う。プラネタリギヤ42は、プラネタリキャリア43に回転可能に支持されている。プラネタリキャリア43は、アウターシャフト31における軸方向の第1方向の端縁に対向するように配置されている。プラネタリキャリア43は、インナーシャフト32にスプライン嵌合され、インナーシャフト32と一体回転する。リングギヤ44は、サンギヤ41と同軸の円環状に形成され、内周部にプラネタリギヤ42と噛み合う内歯を有する。リングギヤ44は、ハウジング50に締結されている。 The speed reducer 40 includes a sun gear 41, a planetary gear 42, a planetary carrier 43, and a ring gear 44. The sun gear 41 is formed on the outer peripheral surface of the end portion of the outer shaft 31 in the first axial direction. Planetary gear 42 meshes with sun gear 41 . The planetary gear 42 is rotatably supported by the planetary carrier 43 . The planetary carrier 43 is arranged to face the edge of the outer shaft 31 in the first axial direction. The planetary carrier 43 is spline-fitted to the inner shaft 32 and rotates together with the inner shaft 32 . The ring gear 44 is formed in an annular shape coaxial with the sun gear 41 and has internal teeth that mesh with the planetary gear 42 on its inner periphery. Ring gear 44 is fastened to housing 50 .
 ハウジング50は、両端が閉塞した円筒状に形成され、中心軸線Oと同軸に配置されている。ハウジング50は、電動機20を収容するケース本体51と、ケース本体51の開口を閉塞する蓋体52と、ケース本体51および蓋体52の内側に配置された中間プレート53と、を備える。 The housing 50 is formed in a cylindrical shape with both ends closed and arranged coaxially with the central axis O. The housing 50 includes a case body 51 that houses the electric motor 20 , a lid 52 that closes the opening of the case body 51 , and an intermediate plate 53 arranged inside the case body 51 and the lid 52 .
 ケース本体51は、有底円筒状に形成され、軸方向の第1方向に開口している。ケース本体51は、ステータ24を径方向の外側から全周にわたって囲う周壁部51aと、周壁部51aにおける軸方向の第2方向の端縁から径方向の内側に張り出した底壁部51bと、を備える。 The case main body 51 is formed in a bottomed cylindrical shape and is open in the first axial direction. The case main body 51 includes a peripheral wall portion 51a that surrounds the stator 24 from the outside in the radial direction along the entire circumference, and a bottom wall portion 51b that protrudes radially inward from the edge of the peripheral wall portion 51a in the second axial direction. Prepare.
 周壁部51aは、ステータコア25を保持している。周壁部51aは、ステータコア25よりも軸方向の両側に張り出している。周壁部51aのうち少なくとも一部は、ホイール13のリム14の内側に配置され、全周にわたってリム14に径方向で対向している。 The peripheral wall portion 51 a holds the stator core 25 . The peripheral wall portion 51a protrudes from the stator core 25 on both sides in the axial direction. At least part of the peripheral wall portion 51a is arranged inside the rim 14 of the wheel 13 and radially faces the rim 14 over the entire circumference.
 底壁部51bは、ホイール13のディスク15に対向している。底壁部51bには、軸孔51cが形成されている。軸孔51cは、中心軸線Oを中心に底壁部51bを軸方向に貫通している。軸孔51cには、インナーシャフト32が挿通されている。インナーシャフト32は、底壁部51bから軸方向の第2方向に突出している。軸孔51cとインナーシャフト32との間には、円環状のオイルシール80が配置されている。 The bottom wall portion 51b faces the disk 15 of the wheel 13. A shaft hole 51c is formed in the bottom wall portion 51b. The shaft hole 51c axially penetrates the bottom wall portion 51b with the central axis O as the center. The inner shaft 32 is inserted through the shaft hole 51c. The inner shaft 32 protrudes in the second axial direction from the bottom wall portion 51b. An annular oil seal 80 is arranged between the shaft hole 51 c and the inner shaft 32 .
 蓋体52は、ケース本体51の周壁部51aに締結されている。蓋体52は、ケース本体51の開口縁に全周にわたって密接している。蓋体52の外面は、外周縁から中心軸線O側に向かうに従い段階的に軸方向の外側(第1方向)に突出している。蓋体52の内面の中心には、後述する軸受60を保持する凹部52aが形成されている。 The lid body 52 is fastened to the peripheral wall portion 51a of the case body 51. The lid body 52 is in close contact with the opening edge of the case body 51 over the entire circumference. The outer surface of the lid body 52 protrudes axially outward (first direction) step by step from the outer peripheral edge toward the central axis O side. A recess 52a for holding a bearing 60, which will be described later, is formed in the center of the inner surface of the lid 52. As shown in FIG.
 中間プレート53は、電動機20と減速機40との間に配置されている。中間プレート53は、中心軸線Oを中心とする円環状に形成されている。中間プレート53は、ケース本体51に結合した外周部から径方向の内側に延びている。中間プレート53の内側には、アウターシャフト31およびインナーシャフト32が挿通されている。中間プレート53には、蓋体52側に突出するとともに周方向に延びる環状凸部54が形成されている。環状凸部54には、リングギヤ44が締結されている。 The intermediate plate 53 is arranged between the electric motor 20 and the speed reducer 40 . The intermediate plate 53 is formed in an annular shape centered on the central axis O. As shown in FIG. The intermediate plate 53 extends radially inward from the outer peripheral portion coupled to the case body 51 . The outer shaft 31 and the inner shaft 32 are inserted inside the intermediate plate 53 . The intermediate plate 53 is formed with an annular protrusion 54 that protrudes toward the lid 52 and extends in the circumferential direction. A ring gear 44 is fastened to the annular protrusion 54 .
 図3は、図1のIII-III線における断面図である。
 図3に示すように、周壁部51aの外周面には、締結凸部55が形成されている。締結凸部55は、周方向に間隔をあけて複数形成されている。締結凸部55には、軸方向に貫通したボルト孔55aが形成されている。締結凸部55は、スイングアーム6によって軸方向の両側から挟まれている。スイングアーム6のうち締結凸部55の軸方向両側に位置する箇所には、締結凸部55のボルト孔55aと同軸の貫通孔6aが形成されている。締結凸部55は、ボルト孔55aおよび貫通孔6aに挿通されたボルトによって、スイングアーム6に締結されている。これによりハウジング50は、スイングアーム6に着脱可能とされている。
FIG. 3 is a cross-sectional view taken along line III-III of FIG.
As shown in FIG. 3, a fastening convex portion 55 is formed on the outer peripheral surface of the peripheral wall portion 51a. A plurality of fastening protrusions 55 are formed at intervals in the circumferential direction. A bolt hole 55a is formed through the fastening protrusion 55 in the axial direction. The fastening protrusion 55 is sandwiched from both sides in the axial direction by the swing arm 6 . Through holes 6 a coaxial with the bolt holes 55 a of the fastening projection 55 are formed in the swing arm 6 at locations on both sides of the fastening projection 55 in the axial direction. The fastening protrusion 55 is fastened to the swing arm 6 with a bolt inserted through the bolt hole 55a and the through hole 6a. Thereby, the housing 50 can be attached to and detached from the swing arm 6 .
 図2に示すように、周壁部51aの外周面には、フィン56が形成されている。フィン56は、周壁部51aのうち締結凸部55を除く箇所から径方向の外側に突出している。フィン56は、径方向に間隔をあけて複数設けられている。フィン56は、周方向に沿って延びている。 As shown in FIG. 2, fins 56 are formed on the outer peripheral surface of the peripheral wall portion 51a. The fins 56 protrude radially outward from portions of the peripheral wall portion 51a excluding the fastening protrusions 55 . A plurality of fins 56 are provided at intervals in the radial direction. The fins 56 extend along the circumferential direction.
 ハウジング50は、車両後方から見て車体フレーム7と後輪3とに外接する仮想直線Lよりも車幅方向の内側に配置されている。仮想直線Lは、車幅方向においてハウジング50に対してホイール13のディスク15とは反対側から車体フレーム7および後輪3に外接している。 The housing 50 is arranged inside in the vehicle width direction of an imaginary straight line L that circumscribes the body frame 7 and the rear wheel 3 when viewed from the rear of the vehicle. The imaginary straight line L circumscribes the body frame 7 and the rear wheel 3 from the opposite side of the wheel 13 to the disk 15 with respect to the housing 50 in the vehicle width direction.
 軸受60は、第1軸受61、第2軸受62、第3軸受63および第4軸受64を備える。第1軸受61、第2軸受62および第3軸受63は、ハウジング50と車輪中心軸30との間に介在している。第1軸受61、第2軸受62および第3軸受63は、ボールベアリングである。第1軸受61は、オイルシール80よりも内側でケース本体51の底壁部51bの軸孔51cに嵌入されているとともに、インナーシャフト32の外周面に装着されている。これにより、ケース本体51は、インナーシャフト32を回転可能に支持している。第1軸受61の内輪61iは、インナーシャフト32の外周面の段差に外側から当接している。第2軸受62は、蓋体52の凹部52aに嵌入されている。第2軸受62は、減速機40のプラネタリキャリア43を挟んでアウターシャフト31とは反対側で、インナーシャフト32における軸方向の第1方向の端部の外周面に装着されている。これにより蓋体52は、インナーシャフト32を回転可能に支持している。第3軸受63は、中間プレート53の内側に装着されているとともに、アウターシャフト31の外周面に装着されている。これにより中間プレート53は、インナーシャフト32を回転可能に支持している。第4軸受64は、ニードルベアリングである。第4軸受64は、アウターシャフト31における軸方向の第2方向の端部の内周面に装着されているとともに、インナーシャフト32の外周面に装着されている。これにより、アウターシャフト31およびインナーシャフト32は、互いに同軸に配置された状態を維持している。 The bearing 60 includes a first bearing 61, a second bearing 62, a third bearing 63 and a fourth bearing 64. A first bearing 61 , a second bearing 62 and a third bearing 63 are interposed between the housing 50 and the wheel center shaft 30 . The first bearing 61, the second bearing 62 and the third bearing 63 are ball bearings. The first bearing 61 is fitted into the shaft hole 51c of the bottom wall portion 51b of the case main body 51 inside the oil seal 80 and is mounted on the outer peripheral surface of the inner shaft 32 . Thereby, the case body 51 rotatably supports the inner shaft 32 . The inner ring 61i of the first bearing 61 abuts on the step on the outer peripheral surface of the inner shaft 32 from the outside. The second bearing 62 is fitted into the recess 52 a of the lid 52 . The second bearing 62 is mounted on the outer peripheral surface of the end portion of the inner shaft 32 in the first direction in the axial direction, on the side opposite to the outer shaft 31 with the planetary carrier 43 of the speed reducer 40 interposed therebetween. Thereby, the lid body 52 supports the inner shaft 32 rotatably. The third bearing 63 is mounted inside the intermediate plate 53 and mounted on the outer peripheral surface of the outer shaft 31 . The intermediate plate 53 thereby rotatably supports the inner shaft 32 . The fourth bearing 64 is a needle bearing. The fourth bearing 64 is attached to the inner peripheral surface of the end portion of the outer shaft 31 in the second axial direction, and is attached to the outer peripheral surface of the inner shaft 32 . As a result, the outer shaft 31 and the inner shaft 32 are kept coaxial with each other.
 ハブ70は、電動機20を挟んで減速機40とは反対側に配置されている。ハブ70の全体は、リム14の幅中心Cに対して減速機40とは反対側に配置されている。ハブ70は、ハウジング50の外側でインナーシャフト32に固定されている。ハブ70は、インナーシャフト32における軸方向の第2方向の端部に結合している。ハブ70は、インナーシャフト32に外挿された円筒状のハブ軸部71と、ハブ軸部71から径方向の外側に張り出したフランジ72と、を備える。ハブ軸部71は、インナーシャフト32における軸方向の第2方向の端部に形成されためねじに螺着したナット75によって、インナーシャフト32に締結されている。フランジ72は、ホイール13のディスク15のハブ取付面15aに接合するホイール取付面73を有する。フランジ72は、ホイール13のディスク15に締結されている。 The hub 70 is arranged on the opposite side of the speed reducer 40 with the electric motor 20 interposed therebetween. The entire hub 70 is arranged on the opposite side of the speed reducer 40 with respect to the width center C of the rim 14 . Hub 70 is fixed to inner shaft 32 outside housing 50 . The hub 70 is coupled to the axial end of the inner shaft 32 in the second direction. The hub 70 includes a cylindrical hub shaft portion 71 fitted onto the inner shaft 32 and a flange 72 projecting radially outward from the hub shaft portion 71 . The hub shaft portion 71 is fastened to the inner shaft 32 by a nut 75 that is formed at the end portion of the inner shaft 32 in the second axial direction and screwed onto an internal thread. Flange 72 has a wheel mounting surface 73 that joins hub mounting surface 15 a of disk 15 of wheel 13 . Flange 72 is fastened to disk 15 of wheel 13 .
 ハウジング50内には、電動機20や減速機40、軸受60等の冷却用および潤滑用として、冷媒(例えばオートマチックトランスミッションフルード)が導入されている。冷媒は、オイルポンプ(不図示)によってハウジング50内を循環する。冷媒は、オイルポンプによりハウジング50の内側下部から汲み上げられて、インナーシャフト32の流路34に導入される。流路34に導入された冷媒は、インナーシャフト32に形成された吐出孔から吐出されて、ハウジング50内の各部を冷却および潤滑する。 A refrigerant (for example, automatic transmission fluid) is introduced into the housing 50 for cooling and lubricating the electric motor 20, the speed reducer 40, the bearings 60, and the like. The coolant is circulated inside the housing 50 by an oil pump (not shown). The coolant is pumped up from the inner lower part of the housing 50 by the oil pump and introduced into the flow path 34 of the inner shaft 32 . The coolant introduced into flow path 34 is discharged from a discharge hole formed in inner shaft 32 to cool and lubricate each part in housing 50 .
 なお、インナーシャフト32の吐出孔は、アウターシャフト31の内周面に対向する位置に形成されていてもよい。この場合、アウターシャフト31およびカラー33には径方向に貫通する貫通孔が形成され、ロータコア22にはアウターシャフト31およびカラー33の貫通孔に連通する流路が形成されていてもよい。これにより、冷媒をロータコア22内に流通させてロータ21を冷却することができる。なお、オイルポンプは、ハウジング50に外付けされてもよいし、ハウジング50に内蔵されてもよい。また、オイルポンプは、電動機20の出力によって作動してもよいし、電動機20とは別系統で供給された電力によって作動してもよい。 Note that the discharge hole of the inner shaft 32 may be formed at a position facing the inner peripheral surface of the outer shaft 31 . In this case, the outer shaft 31 and the collar 33 may be formed with through holes penetrating in the radial direction, and the rotor core 22 may be formed with flow paths communicating with the through holes of the outer shaft 31 and the collar 33 . Thereby, the coolant can be circulated in the rotor core 22 to cool the rotor 21 . Note that the oil pump may be externally attached to the housing 50 or may be built in the housing 50 . Also, the oil pump may be operated by the output of the electric motor 20 or may be operated by electric power supplied from a system separate from the electric motor 20 .
 以上に説明したように、本実施形態のインホイールモータ5は、電動機20を挟んでハブ70の反対側に配置され、ロータ21の回転を減速してインナーシャフト32に伝達する減速機40を備える。この構成によれば、電動機20を挟んだ軸方向の両側に重量物である減速機40およびハブ70を配置できるので、重量物が軸方向において偏って配置されることを抑制できる。したがって、インホイールモータ5の軸方向の重量バランスを適正化できる。 As described above, the in-wheel motor 5 of the present embodiment includes the speed reducer 40 arranged on the opposite side of the hub 70 with the electric motor 20 interposed therebetween to reduce the speed of rotation of the rotor 21 and transmit the speed to the inner shaft 32 . . According to this configuration, since the reduction gear 40 and the hub 70, which are heavy objects, can be arranged on both sides in the axial direction with the electric motor 20 interposed therebetween, it is possible to prevent the heavy objects from being unevenly arranged in the axial direction. Therefore, the weight balance in the axial direction of the in-wheel motor 5 can be optimized.
 減速機40は、アウターシャフト31と同軸に配置され、ロータ21の端面21aよりも軸方向の外側に配置されている。仮に減速機がロータの端面よりも軸方向の内側に配置されてロータに形成された凹部に入り込むと、ロータの磁路が狭められて電動機の効率が低下するとともに、電動機の効率低下を抑制するためにロータが大型化し得る。本実施形態によれば、減速機40がロータ21の端面21aよりも軸方向の外側に配置されているので、ロータ21の大型化を抑制できる。したがって、電動機20の大型化を抑制して小型なインホイールモータ5を形成できる。 The speed reducer 40 is arranged coaxially with the outer shaft 31 and arranged axially outside the end surface 21 a of the rotor 21 . If the speed reducer is arranged axially inward of the end surface of the rotor and enters the recess formed in the rotor, the magnetic path of the rotor is narrowed, the efficiency of the electric motor is reduced, and the efficiency reduction of the electric motor is suppressed. Therefore, the rotor may become large. According to this embodiment, since the speed reducer 40 is arranged axially outside the end surface 21a of the rotor 21, the rotor 21 can be prevented from increasing in size. Therefore, it is possible to suppress an increase in size of the electric motor 20 and form a small in-wheel motor 5 .
 また、インホイールモータ5は、ロータ21の回転を減速機40に伝達する円筒状のアウターシャフト31をさらに備える。インナーシャフト32は、アウターシャフト31に挿通され、減速機40の出力をハブ70に伝達する。この構成によれば、電動機20の出力をアウターシャフト31の内側を通してハブ70に伝達することができる。これにより、後輪3の外側を通るように動力伝達路が設けられた構成と比較して、インホイールモータ5を小型化できる。 In addition, the in-wheel motor 5 further includes a cylindrical outer shaft 31 that transmits rotation of the rotor 21 to the speed reducer 40 . The inner shaft 32 is inserted through the outer shaft 31 and transmits the output of the speed reducer 40 to the hub 70 . This configuration allows the output of the electric motor 20 to be transmitted to the hub 70 through the inner side of the outer shaft 31 . As a result, the in-wheel motor 5 can be made smaller compared to a configuration in which a power transmission path is provided so as to pass through the outside of the rear wheel 3 .
 インナーシャフト32は、内部に流路34を有する。この構成によれば、流路34を通じてインナーシャフト32の周囲の可動部に冷媒を供給できる。 The inner shaft 32 has a flow path 34 inside. With this configuration, the coolant can be supplied to the movable portion around the inner shaft 32 through the flow path 34 .
 電動機20を収容するハウジング50は、ステータ24を囲う周壁部51aと、周壁部51aから外側に突出したフィン56と、を有する。この構成によれば、フィン56によってハウジング50の外表面の面積を拡大できるので、ハウジング50を介してハウジング50内の電動機20等を効率よく冷却することができる。 A housing 50 that houses the electric motor 20 has a peripheral wall portion 51a that surrounds the stator 24 and fins 56 that protrude outward from the peripheral wall portion 51a. With this configuration, the area of the outer surface of the housing 50 can be increased by the fins 56 , so that the electric motor 20 and the like inside the housing 50 can be efficiently cooled through the housing 50 .
 ハウジング50は、スイングアーム6に着脱可能に取り付けられている。この構成によれば、スイングアーム6からハウジング50を取り外すことで、車体からインホイールモータ5および後輪3を分離できる。したがって、車両後部のメンテナンス性を向上させることができる。 The housing 50 is detachably attached to the swing arm 6. According to this configuration, the in-wheel motor 5 and the rear wheel 3 can be separated from the vehicle body by removing the housing 50 from the swing arm 6 . Therefore, maintenance of the rear part of the vehicle can be improved.
 ハウジング50は、車両後方から見て車体フレーム7と後輪3とに外接する仮想直線Lよりも車幅方向の内側に配置されている。この構成によれば、車体フレーム7が接地するまで車両を傾けてもハウジング50が接地しないので、車両転倒時にインホイールモータ5が損傷することを抑制できる。また、車両の最大バンク角がインホイールモータ5の接地によって制限されることを抑制でき、車両の旋回性能を向上させることができる。 The housing 50 is arranged inside in the vehicle width direction of an imaginary straight line L that circumscribes the body frame 7 and the rear wheel 3 when viewed from the rear of the vehicle. According to this configuration, even if the vehicle is tilted until the vehicle body frame 7 touches the ground, the housing 50 does not touch the ground. In addition, it is possible to prevent the maximum bank angle of the vehicle from being restricted by the ground contact of the in-wheel motor 5, and improve the turning performance of the vehicle.
(第2実施形態)
 図4は、第2実施形態の後輪およびインホイールモータの断面図である。
 図4に示す第2実施形態は、インホイールモータ5は、電動機20がホイール13のリム14の幅中心Cに重なるように配置されている点で、第1実施形態とは異なる。これにより、重量物である電動機20が後輪3の幅中心に寄ることで、更にインホイールモータ5の軸方向の重量バランスを適正化できる。
(Second embodiment)
FIG. 4 is a cross-sectional view of the rear wheel and in-wheel motor of the second embodiment.
The second embodiment shown in FIG. 4 differs from the first embodiment in that the in-wheel motor 5 is arranged so that the electric motor 20 overlaps the width center C of the rim 14 of the wheel 13 . As a result, the electric motor 20, which is a heavy object, is moved to the center of the width of the rear wheel 3, so that the weight balance of the in-wheel motor 5 in the axial direction can be further optimized.
 なお、本発明は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
 例えば、上記実施形態では、本発明を自動二輪車に適用しているが、本発明の適用範囲はこれに限定されない。例えば、本発明は、後一輪の自動三輪車に適用することができる。すなわち、本発明は、インホイールモータによって駆動される駆動輪が車両の車幅中心上に配置された鞍乗り型車両に適用できる。
It should be noted that the present invention is not limited to the above-described embodiments described with reference to the drawings, and various modifications are conceivable within its technical scope.
For example, in the above embodiments, the present invention is applied to motorcycles, but the scope of application of the present invention is not limited to this. For example, the present invention can be applied to a rear one-wheel motor tricycle. That is, the present invention can be applied to a saddle type vehicle in which drive wheels driven by in-wheel motors are arranged on the vehicle width center of the vehicle.
 また、上記実施形態では、ステータ24のコイル26がセグメントコイルによって分布巻されているが、この構成に限定されない。例えば、ステータのコイルは、銅線によって集中巻または分布巻されていてもよい。
 また、上記実施形態においては、電動機20として磁石埋込形のロータ21を備えた、いわゆるIPMモータを例に挙げているが、この構成に限定されない。電動機は、ロータコアの外周面に磁石が装着されたロータを備えた、いわゆるSPM(Surface  Permanent  Magnet)モータであってもよい。
In the above embodiment, the coils 26 of the stator 24 are distributed by segment coils, but the present invention is not limited to this configuration. For example, the stator coils may be concentrated or distributed winding of copper wire.
In the above-described embodiment, a so-called IPM motor including a magnet-embedded rotor 21 is taken as an example of the electric motor 20, but the configuration is not limited to this. The electric motor may be a so-called SPM (Surface Permanent Magnet) motor having a rotor with a magnet attached to the outer peripheral surface of the rotor core.
 また、上記実施形態では、インホイールモータ5のハウジング50がスイングアーム6に着脱可能とされているが、この構成に限定されない。すなわち、インホイールモータのハウジングは、スイングアームと一体化していてもよい。 Also, in the above embodiment, the housing 50 of the in-wheel motor 5 is detachable from the swing arm 6, but the configuration is not limited to this. That is, the housing of the in-wheel motor may be integrated with the swing arm.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the constituent elements in the above-described embodiment with well-known constituent elements within the scope of the present invention.
 本発明によれば、軸方向の重量バランスを適正化できるインホイールモータ、およびそのインホイールモータを備えた鞍乗り型車両を提供することができる。 According to the present invention, it is possible to provide an in-wheel motor capable of optimizing the weight balance in the axial direction, and a straddle-type vehicle equipped with the in-wheel motor.
 1…自動二輪車(鞍乗り型車両)
 3…後輪
 5…インホイールモータ
 6…スイングアーム
 7…車体フレーム
 13…ホイール
 14…リム
 20…電動機
 21…ロータ
 21a…端面
 24…ステータ
 31…アウターシャフト
 32…インナーシャフト(出力軸)
 34…流路(油路)
 40…減速機
 50…ハウジング
 51a…周壁部(外周部)
 56…フィン
 70…ハブ
 C…幅中心
 L…仮想直線(直線)
1 … motorcycle (saddle type vehicle)
3 Rear wheel 5 In-wheel motor 6 Swing arm 7 Body frame 13 Wheel 14 Rim 20 Electric motor 21 Rotor 21a End surface 24 Stator 31 Outer shaft 32 Inner shaft (output shaft)
34... Flow path (oil path)
40... Reducer 50... Housing 51a... Peripheral wall portion (peripheral portion)
56... Fin 70... Hub C... Width center L... Imaginary straight line (straight line)

Claims (8)

  1.  鞍乗り型車両(1)のインホイールモータであって、
     ロータ(21)およびステータ(24)を含む電動機(20)と、
     ホイール(13)に結合するハブ(70)と、
     前記ハブ(70)に結合した出力軸(32)と、
     前記電動機(20)を挟んで前記ハブ(70)の反対側に配置され、前記ロータ(21)の回転を減速して前記出力軸(32)に伝達する減速機(40)と、
     を備えるインホイールモータ。
    An in-wheel motor for a saddle-ride type vehicle (1),
    an electric motor (20) comprising a rotor (21) and a stator (24);
    a hub (70) coupled to the wheel (13);
    an output shaft (32) coupled to the hub (70);
    a speed reducer (40) arranged on the opposite side of the hub (70) with the electric motor (20) interposed therebetween, for reducing the speed of rotation of the rotor (21) and transmitting it to the output shaft (32);
    in-wheel motor.
  2.  前記減速機(40)は、前記出力軸(32)と同軸に配置され、前記ロータ(21)の端面(21a)よりも軸方向の外側に配置されている、
     請求項1に記載のインホイールモータ。
    The speed reducer (40) is arranged coaxially with the output shaft (32) and arranged axially outside an end surface (21a) of the rotor (21),
    The in-wheel motor according to claim 1.
  3.  前記ロータ(21)の回転を前記減速機(40)に伝達する円筒状のアウターシャフト(31)を備え、
     前記出力軸(32)は、前記アウターシャフト(31)に挿通され、前記減速機(40)の出力を前記ハブ(70)に伝達する、
     請求項1または請求項2に記載のインホイールモータ。
    A cylindrical outer shaft (31) for transmitting rotation of the rotor (21) to the speed reducer (40),
    The output shaft (32) is inserted through the outer shaft (31) and transmits the output of the speed reducer (40) to the hub (70).
    The in-wheel motor according to claim 1 or 2.
  4.  前記出力軸(32)は、内部に油路(34)を有する、
     請求項1から請求項3のいずれか1項に記載のインホイールモータ。
    The output shaft (32) has an oil passage (34) inside,
    The in-wheel motor according to any one of claims 1 to 3.
  5.  前記電動機(20)を収容するハウジング(50)を備え、
     前記ハウジング(50)は、
      前記ステータ(24)を囲う外周部(51a)と、
      前記外周部(51a)から外側に突出したフィン(56)と、
     を有する、
     請求項1から請求項4のいずれか1項に記載のインホイールモータ。
    A housing (50) that houses the electric motor (20),
    The housing (50) comprises:
    an outer peripheral portion (51a) surrounding the stator (24);
    Fins (56) projecting outward from the outer peripheral portion (51a);
    having
    The in-wheel motor according to any one of claims 1 to 4.
  6.  前記電動機(20)は、前記ホイール(13)のリム(14)の幅中心(C)に重なっている、
     請求項1から請求項5のいずれか1項に記載のインホイールモータ。
    The electric motor (20) overlaps the center of width (C) of the rim (14) of the wheel (13).
    The in-wheel motor according to any one of claims 1 to 5.
  7.  請求項1から請求項6のいずれか1項に記載のインホイールモータ(5)と、
     前記インホイールモータ(5)が設けられた後輪(3)と、
     前記後輪(3)を支持するスイングアーム(6)と、
     を備え、
     前記インホイールモータ(5)は、前記電動機(20)および前記減速機(40)を収容するとともに前記スイングアーム(6)に着脱可能に取り付けられたハウジング(50)を備える、
     鞍乗り型車両。
    an in-wheel motor (5) according to any one of claims 1 to 6;
    a rear wheel (3) provided with the in-wheel motor (5);
    a swing arm (6) supporting the rear wheel (3);
    with
    The in-wheel motor (5) includes a housing (50) that accommodates the electric motor (20) and the speed reducer (40) and is detachably attached to the swing arm (6).
    saddle-type vehicle.
  8.  前記スイングアーム(6)を支持する車体フレーム(7)をさらに備え、
     前記ハウジング(50)は、車両後方から見て前記車体フレーム(7)と前記後輪(3)とに外接する直線(L)よりも車幅方向の内側に配置されている、
     請求項7に記載の鞍乗り型車両。
    further comprising a vehicle body frame (7) that supports the swing arm (6);
    The housing (50) is arranged inside in the vehicle width direction of a straight line (L) circumscribing the body frame (7) and the rear wheel (3) when viewed from the rear of the vehicle.
    A straddle-type vehicle according to claim 7.
PCT/JP2022/012049 2021-03-24 2022-03-16 In-wheel motor and saddle-riding-type vehicle WO2022202567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021049682 2021-03-24
JP2021-049682 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202567A1 true WO2022202567A1 (en) 2022-09-29

Family

ID=83397127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012049 WO2022202567A1 (en) 2021-03-24 2022-03-16 In-wheel motor and saddle-riding-type vehicle

Country Status (1)

Country Link
WO (1) WO2022202567A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002277A (en) * 2001-06-27 2003-01-08 Yamaha Motor Co Ltd Electric power unit, motor vehicle and power-assisted two wheeler
JP2009136078A (en) * 2007-11-29 2009-06-18 Toyota Motor Corp Motor cooling structure
JP2012091689A (en) * 2010-10-27 2012-05-17 Honda Motor Co Ltd Electric motorcycle
JP2015116900A (en) * 2013-12-18 2015-06-25 Ntn株式会社 Wheel drive device
WO2019211947A1 (en) * 2018-05-03 2019-11-07 本田技研工業株式会社 Saddle-ride type electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002277A (en) * 2001-06-27 2003-01-08 Yamaha Motor Co Ltd Electric power unit, motor vehicle and power-assisted two wheeler
JP2009136078A (en) * 2007-11-29 2009-06-18 Toyota Motor Corp Motor cooling structure
JP2012091689A (en) * 2010-10-27 2012-05-17 Honda Motor Co Ltd Electric motorcycle
JP2015116900A (en) * 2013-12-18 2015-06-25 Ntn株式会社 Wheel drive device
WO2019211947A1 (en) * 2018-05-03 2019-11-07 本田技研工業株式会社 Saddle-ride type electric vehicle

Similar Documents

Publication Publication Date Title
US9308965B2 (en) Electric wheel hub drive for a vehicle, in particular a bicycle, including a stator with an ironless hollow cylindrical stator winding
TWI454407B (en) Electric bicycle
WO2012059962A1 (en) Power device for electric vehicle
US9150093B2 (en) In-wheel motor and electrically driven vehicle
US20150298537A1 (en) Wheel motor configuration for vehicle motorization
TWI457250B (en) Electric vehicle
EP3310645B1 (en) Electric vehicle and driving system for electric vehicle
JP2013126859A (en) Wheel for saddle-ride type electric vehicle, wheel-driving electric motor for saddle-ride type electric vehicle, and saddle-ride type electric vehicle
JP2011035954A (en) Motor drive and motor-driven vehicle for mounting the same
JP2021041860A (en) Drive unit
CN106995033B (en) Driving mechanism of electric vehicle
WO2019235203A1 (en) Electric vehicle and drive device for same
WO2022202567A1 (en) In-wheel motor and saddle-riding-type vehicle
WO2019124152A1 (en) In-wheel motor
JP2987466B2 (en) Swing arm type electric motorcycle
JP2020158012A (en) Electrically-driven saddle-riding type vehicular power unit
JP2007318868A (en) Cooling structure of electric motor
WO2019124242A1 (en) In-wheel motor
JPH0490979A (en) Electric motor-operated riding astride vehicle
JPH05105178A (en) Electric motor cooling structure for motorcycle driven by electric motor
KR20230081804A (en) In-Wheel Motor Assembly Having Rotor Bracket Having Cooling Aid Protrusion
JP2011160506A (en) Molded motor and electric vehicle with the same
JP6199933B2 (en) Saddle riding vehicle
WO2024095429A1 (en) Power unit and electric vehicle
CN109204648B (en) Saddle-ride type vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775355

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775355

Country of ref document: EP

Kind code of ref document: A1