WO2022202229A1 - Composite resin molded body - Google Patents

Composite resin molded body Download PDF

Info

Publication number
WO2022202229A1
WO2022202229A1 PCT/JP2022/009446 JP2022009446W WO2022202229A1 WO 2022202229 A1 WO2022202229 A1 WO 2022202229A1 JP 2022009446 W JP2022009446 W JP 2022009446W WO 2022202229 A1 WO2022202229 A1 WO 2022202229A1
Authority
WO
WIPO (PCT)
Prior art keywords
fused portion
resin molded
molded body
web
color
Prior art date
Application number
PCT/JP2022/009446
Other languages
French (fr)
Japanese (ja)
Inventor
翔 飯濱
裕佑 関岡
幸一 島田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2023508909A priority Critical patent/JPWO2022202229A1/ja
Publication of WO2022202229A1 publication Critical patent/WO2022202229A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics

Definitions

  • the present disclosure relates to composite resin moldings.
  • Thermal bond nonwoven fabrics are widely used as surface sheets for absorbent articles because of their excellent air permeability and flexibility.
  • Absorbent articles include disposable diapers and sanitary napkins.
  • a thermal bonded nonwoven fabric is obtained by sandwiching a web containing fibers made of a thermoplastic resin between a heated embossing roll and a smooth roll to partially melt the fibers and bond the fibers. It has been known.
  • valley dyeing is known as a technique for enhancing the decorative effect by increasing the contrast between the uneven pattern and its surroundings (Patent Document 1).
  • Valley dyeing is a method in which a colored paint is applied to the pattern convex portions of an embossing roll to form a pattern on the base material, and at the same time, the pattern concave portions of the base material are colored.
  • Patent document 1 JP-A-53-24365
  • the colored paint adhering to the pattern projections of the embossing roll may decompose due to the heat of the embossing roll. Therefore, there is a possibility that the fused portion of the thermal bond nonwoven fabric cannot be colored as desired. The colored paint adhering to the fused portion may come off from the fused portion. As a result, the fused portion colored by valley dyeing may be difficult to see.
  • an object of the present disclosure is to provide a composite resin molded body in which even if the fused portion is not colored from the outside, it is easily visible due to its color tone.
  • Means for solving the above problems include the following embodiments.
  • a first resin molding containing a first thermoplastic resin and a coloring agent a second resin molding containing a second thermoplastic resin and a coloring agent that promotes color development or discoloration of the coloring agent;
  • a composite resin molded body comprising: a fused portion in which a part of the first resin molded body and a part of the second resin molded body are fused together.
  • the first resin molding does not contain the colorant
  • the first resin molding includes a first fiber, The composite resin molded article according to ⁇ 1> or ⁇ 2>, wherein the second resin molded article includes a second fiber.
  • the first resin molded body is a first spunbond web containing the first fibers
  • the second resin molded body is a second spunbond web containing the second fibers
  • the composite resin molded article according to ⁇ 3> wherein the first spunbond web is laminated on one main surface of the second spunbond web.
  • the first resin molding is a first fiber
  • the second resin molded body is a second fiber
  • the coloring agent is contained in the first fiber
  • ⁇ 7> The composite resin molded article according to any one of ⁇ 1> to ⁇ 6>, wherein the fusion-bonded portion contains, at least inside, a coloring compound of the coloring agent and the coloring agent.
  • ⁇ 8> The composite resin molded article according to any one of ⁇ 1> to ⁇ 7>, wherein the color former contains a leuco dye.
  • a composite resin molded article in which even if the fused portion is not colored from the outside, it is easily visible due to its color tone.
  • FIG. 1 is a schematic diagram showing an example of a multi-layer spunbond nonwoven fabric manufacturing apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing an example of an apparatus for manufacturing a mixed fiber spunbond nonwoven fabric according to an embodiment of the present disclosure.
  • % indicating the amount of ingredients in the present disclosure is based on mass.
  • a description that does not describe substitution or unsubstituted includes not only those having no substituents but also those having substituents.
  • the term "layer” includes not only the case where the layer is formed in the entire region when observing the region where the layer exists, but also the case where it is formed only in part of the region. included.
  • the term "process” includes not only an independent process, but also a process that cannot be clearly distinguished from other processes as long as the purpose of the process is achieved.
  • a composite resin molded body includes a first resin molded body, a second resin molded body, and a fused portion.
  • the first resin molding contains a first thermoplastic resin and a coloring agent.
  • the second resin molding contains a second thermoplastic resin and a colorant.
  • the color former promotes color development or color change of the color former.
  • the first resin molding contains the first thermoplastic resin as a main component.
  • the second resin molding preferably contains the second thermoplastic resin as a main component. It is preferable that the first resin molding does not contain a coloring agent. It is preferable that the second resin molding does not contain a coloring agent.
  • color former refers to a compound that changes its chemical structure through chemical interaction with a color former and develops or changes color.
  • color former refers to a compound that is itself colorless and that chemically interacts with the color former to change the chemical structure of the color former, cause the color former to develop a color, or change the color hue of the color former. show. "Containing the first thermoplastic resin as the main component” means that the content of the first thermoplastic resin in the first resin molded body is 50% by mass or more with respect to the total amount of the first resin molded body. show.
  • the first resin molded body "does not contain a color former” means that the content of the color former in the first resin molded body is the same as the total amount of the first resin molded body even in the presence of the color former. 1 is sufficiently low so as not to change the color tone of the resin molded product, preferably 0.005% by mass or less, and 0% by mass.
  • "Containing the second thermoplastic resin as the main component” means that the content of the second thermoplastic resin in the second resin molded body is 50% by mass or more with respect to the total amount of the second resin molded body. show.
  • the second resin molded body "does not contain a color former" means that the content of the color former in the second resin molded body is the same as the total amount of the second resin molded body even in the presence of the color former. It is sufficiently low to the extent that the color tone of the resin molding does not change, preferably 0.005% by mass or less, and indicates that it contains 0% by mass.
  • "Compatible” means that the melt of the first thermoplastic resin and the melt of the second thermoplastic resin do not separate under an atmosphere in which the first thermoplastic resin and the second thermoplastic resin melt. Indicates mixing.
  • the first thermoplastic resin and the second thermoplastic resin The compatibility with is preferably high. "Fusing” means that a part of the first resin molded body and a part of the second resin molded body are melted and mixed with each other, and the melted parts of the first resin molded body and the second resin molded body indicates that they are united.
  • the term "fused portion” refers to a portion where the first thermoplastic resin contained in the first resin molded body and the second thermoplastic resin contained in the second resin molded body are mixed with each other.
  • a composite resin molded article includes a fused portion in which a part of the first resin molded body and a part of the second resin molded body are fused together. Therefore, even if the fused portion is not colored from the outside, it is easily visible due to the color tone. This is presumed for the following reasons. When the color former and the color former are mixed, the color former tends to develop or change color. In one embodiment of the present disclosure, in the first resin molded body and the second resin molded body, the color former and the color former are held separately by the first thermoplastic resin and the second thermoplastic resin. Therefore, the chemical interaction between the coloring agent and the coloring agent is difficult to work.
  • the first resin molded body and the second resin molded body are less likely to develop or discolor due to the coloring agent.
  • the fused part a part of the first resin molded body and a part of the second resin molded body are fused by heat.
  • the fused portion is formed by heating, a state in which the color former and the color former temporarily coexist is formed in the fused portion. Therefore, the chemical interaction between the color former and the color former is facilitated, and the fused portion develops or changes color due to the action of the color former.
  • the fused portion and the non-fused portion have different color tones.
  • a non-fused portion indicates a portion of the composite resin molding that is not a fused portion. Therefore, even if the fused portion is not colored from the outside, it is easily visible due to its color tone.
  • each of the first resin molded body and the second resin molded body may be a molded body molded into any shape. At least one of the first resin molded body and the second resin molded body may be a sheet-like article. That is, the first resin molded body and the second resin molded body may be sheet-like articles, or only one of the first resin molded body and the second resin molded body may be a sheet-like article. Examples of sheet materials include resin films and nonwoven fabric sheets.
  • the first resin molded body is a short sheet-like article (hereinafter referred to as "first short sheet")
  • the second resin molded body is a short sheet-like article (hereinafter referred to as "second short sheet").
  • the composite resin molded body may be a bag.
  • the bag body includes a first short sheet, a second short sheet, and a fused portion.
  • the fused portion may be formed continuously along the outer periphery of the main surface of the laminated body.
  • the stacked body is obtained by stacking the first short sheet and the second short sheet such that the main surfaces of the first short sheet and the second short sheet face each other. Thereby, the user can easily know whether or not the bag body is sealed by the difference in color tone between the fused portion and the non-fused portion.
  • the principal surface means each of a pair of surfaces having the widest area in the sheet-like material.
  • the composite resin molded article may be a packaging container.
  • the packaging container may include a resin film, a tray that is an example of a non-sheet material, and a fused portion.
  • the tray has recesses for storing articles.
  • the resin film covers the entire opening of the recess so as to form an article storage space between the resin film and the recess of the tray.
  • the fused portion may be formed continuously so as to surround the recess. Thereby, the user can easily know whether or not the packaging container is sealed by the difference in color tone between the fused portion and the non-fused portion.
  • a food tray etc. are mentioned as a tray.
  • the first resin molded body contains the first fibers and the second resin molded body contains the second fibers.
  • the composite resin molded body may be a nonwoven fabric, a woven fabric, or a knitted fabric. There may be. From the viewpoint of visibility, among these, the composite resin molded article is preferably a nonwoven fabric.
  • "Nonwoven" means a fibrous sheet, web or batt in which the fibers are unidirectionally or randomly oriented and are bonded together by physical entanglement or fusion. Nonwovens do not include paper, wovens, knits, tufts and crimped felts.
  • Nonwoven fabrics include spunbond nonwoven fabrics, meltblown nonwoven fabrics, flash-spun nonwoven fabrics, and the like.
  • spunbonded nonwoven fabric refers to a group of continuous fibers (filaments) spun from a spinneret by melting or dissolving a thermoplastic resin composition, laminated on a moving collection member, and bonded by one or more methods. shows a nonwoven fabric made of The bonding method includes thermocompression bonding, which will be described later.
  • the thermoplastic resin composition, spinneret, and moving collection member will be described later.
  • Woven fabrics include plain weaves, twill weaves, and satin weaves. Each of the first fibers and the second fibers may be long fibers or short fibers.
  • the coloring agent is contained within the first fiber and the coloring agent is contained within the second fiber.
  • the fused part contains the reactant of the color former and the reactant of the color former in its interior.
  • the coloration or discoloration of the fused portion is less likely to change due to abrasion of the fused portion than when the fused portion is colored from the outside using a colored paint or the like.
  • the first resin molded body contains a first spunbond web containing first fibers
  • the second resin molded body contains a second spunbond web containing second fibers.
  • spunbond web refers to a web made by extruding a molten or melted thermoplastic resin composition through a spinneret and laying continuous fibers (filaments) onto a moving collection member. Spunbond webs differ from spunbond nonwovens in that the fibers that make up the spunbond web are not bonded together.
  • the composite resin molded body is , a multi-layer spunbond nonwoven.
  • the multi-layer spunbond nonwoven fabric may comprise first fibers forming a first spunbond web, second fibers forming a second spunbond web, and fused portions.
  • the first spunbond web is laminated onto one major surface of the second spunbond web.
  • Each of the first fibers that make up the first spunbond web and the second fibers that make up the second spunbond web are long fibers. The definition of long fibers will be described later. Details of the multilayer spunbond nonwoven fabric will be described later.
  • the composite resin molded article is a multilayer spunbond nonwoven fabric
  • the composite resin molded article may be referred to as a "multilayer spunbond nonwoven fabric.”
  • the composite resin molded article is preferably a mixed fiber spunbond web.
  • the mixed fiber spunbond web may be composed of each of the first fibers and the second fibers.
  • a mixed fiber spunbond web includes first fibers and second fibers.
  • the composite resin molding is preferably a mixed fiber spunbonded nonwoven fabric.
  • the mixed fiber spunbonded nonwoven fabric includes first fibers and second fibers forming a mixed fiber spunbonded web, and a fused portion.
  • Each of the first fibers constituting the mixed fiber spunbond web and the second fibers constituting the mixed fiber spunbond web are long fibers. The details of the mixed fiber spunbond nonwoven fabric will be described later.
  • the composite resin molded article when the composite resin molded article is a mixed fiber spunbonded nonwoven fabric, the composite resin molded article may be referred to as a "mixed fiber spunbonded nonwoven fabric.”
  • the fused portion is a portion that joins the first resin molded body and the second resin molded body and has a different color tone from the non-fused portion.
  • the fused portion includes a reactant of the color former and a reactant of the color former.
  • the fused portion may include a first thermoplastic resin and a second thermoplastic resin.
  • the fused portion may contain an unreacted product of the color former and an unreacted product of the color former.
  • the fused portion may be formed at one location or at a plurality of locations in the composite resin molded body. The site where the fused portion is formed, the shape of the fused portion, and the like may be appropriately adjusted according to the application of the composite resin molding.
  • the fused portion When the composite resin molded article is a non-woven fabric, the fused portion is thinner (film-like) than the non-fused portion. If the area ratio of the fused portion is not 100%, it is appropriately adjusted according to the application of the composite resin molding.
  • the area ratio of the fused portion is preferably 7% to 20% when the composite resin molded article is a nonwoven fabric.
  • the area ratio of the fused portion was determined by taking a test piece of 10 mm x 10 mm from the composite resin molding, and observing the contact surface of the test piece with the embossing roll with an electron microscope (magnification: 100 times). It is the ratio of the area of the fused portion to the area of the composite resin molded body.
  • the fused part is a color-forming compound of a color former and a color former (that is, a reaction product obtained by reaction between the color former and the color former to develop or change color, and the color former causes color development or color change). It refers to a compound that has As a result, since the color development or discoloration of the fused portion is caused by the color-developing compound generated by the reaction during heating, the fused portion is colored from the outside using a colored paint or the like. Hard to change due to wear of the attachment part.
  • the difference in color tone between the fused portion and the non- fused portion is the color difference ( ⁇ E * ). Since the configuration of the fused portion before fusion is the same as the configuration of the non-fused portion, the difference in color tone between the fused portion and the non-fused portion should be regarded as the difference in color tone before and after fusion. can be done.
  • the CIELab color space is represented by a three-dimensional coordinate system in which the L * , a *, and b* axes are orthogonal to each other.
  • the L * axis represents lightness. The L value ranges from 0 to 100, and the larger the L value, the brighter the image.
  • the + direction of the a * axis represents redness.
  • the ⁇ direction of the a * axis represents /green.
  • the + direction of the b * axis represents yellowness.
  • the ⁇ direction of the b * axis represents blueness.
  • the color difference ( ⁇ E * ) between two colors in the CIELAB color space defines the Euclidean distance between color coordinates (color system) in the CIELab color space.
  • ⁇ E * before and after fusion can be measured using a spectrophotometer. Specifically, the L1 * value, a1 * value, and b1 * value of the reflected light from the non-fused portion and the L2 * value, a2 * value, and b2 * value of the reflected light from the fused portion are measured.
  • ⁇ E * is obtained by applying the value to the following formula (A).
  • ⁇ E * is an index of color tone change due to color development or color change of the color former. A larger value of ⁇ E * indicates better visual contrast.
  • spectrophotometers examples include “CM-3700A” manufactured by Konica Minolta, Inc.
  • ⁇ E * is preferably 3 to 120, more preferably 6 to 120, still more preferably 8 to 120, particularly preferably 10 to 120, still more preferably 15 to 120, still more preferably 20 to 120.
  • ⁇ L * varies depending on whether the color former before developing or discoloring (hereinafter referred to as “first color former”) is achromatic or chromatic.
  • Achromatic refers to white, gray or black.
  • Chratic refers to all colors other than achromatic, examples of which include red, yellow-red, yellow, yellow-green, green, blue-green, blue, blue-violet, purple, or red-purple.
  • ⁇ L * is preferably -100 to -15, more preferably -100 to -20, and still more preferably -100 to -25.
  • ⁇ L * is preferably -100 to -90, more preferably -100 to -80, and even more preferably -100 to -70. , particularly preferably -100 to -60.
  • a preferred range of ⁇ a * varies depending on the color of the first color former.
  • ⁇ a * is preferably +15 or more, more preferably +20 or more, even more preferably +25 or more, and particularly preferably +30 or more.
  • ⁇ a * is preferably ⁇ 15 or less, more preferably ⁇ 20 or less, still more preferably ⁇ 25 or less, and particularly preferably ⁇ 30 or less.
  • a preferred range of ⁇ b * varies depending on the color of the first color former.
  • ⁇ b * is preferably ⁇ 15 or less, more preferably ⁇ 20 or less, even more preferably ⁇ 25 or less, and most preferably ⁇ 30 or less.
  • the combination of the color former and the color former is such that the color former develops or changes color by chemical interaction with the color former, and the first resin molded body, the second resin molded body, and the composite resin molded body are molded. As long as it can be done normally, you can choose freely. Specific examples include an oxidizing agent and a reducing agent, an acid and a base, and the like. A combination of an acid and a base is preferred from the viewpoint of safety and ease of handling. That is, the chemical interaction between the color former and the color former more preferably includes an acid-base reaction, more preferably an acid-base reaction.
  • the coloring agent is appropriately selected according to the application of the composite resin molded article, the color tone developed by chemical interaction with the coloring agent, and the like.
  • the color former is preferably a dye that develops color from colorless to colored rather than a dye that changes color from colored to colored. It preferably contains a leuco dye, more preferably a leuco dye.
  • leuco dyes that develop color by an acid-base reaction include indolylphthalide-based compounds, indolephthalide-based compounds, fluoran-based compounds, triphenylmethanephthalide-based compounds, phenothiazine-based compounds, indolylazaphthalide-based compounds, Examples include triphenylmethane compounds, spiropyran compounds, triazene compounds, leuco auramine compounds, rhodamine lactam compounds, and the like.
  • Indolylazaphthalide-based compounds include 3-(4-diethylamino-2-ethoxyphenyl)-3-(1-ethyl-2-methyl-3-indolyl)-4-azaphthalide.
  • Indolephthalide compounds include 3,3-bis(1-n-butyl-2-methylindol-3-yl)phthalide.
  • These leuco dyes are colorless or light-colored basic compounds having a lactone ring in the molecule. These leuco dyes develop color when the lactone ring is cleaved by an acid, and become colorless or light-colored when the closed structure of the lactone ring is changed by a base. That is, the color reaction of leuco dyes is reversible.
  • These leuco dyes may be used singly or in combination of two or more.
  • the leuco dye is preferably a compound that does not thermally decompose at 250°C.
  • Spunbond nonwoven fabrics include multilayer spunbond nonwoven fabrics described below and mixed fiber spunbond nonwoven fabrics described below.
  • a spunbonded nonwoven fabric may be exposed to an atmosphere of 250° C. during the manufacturing process of the spunbonded nonwoven fabric. Therefore, if the leuco dye is a compound that does not thermally decompose at 250° C., even if the fused portion is not colored from the outside, the fused portion is easily visible due to its color tone. Examples of leuco dyes that do not thermally decompose at 250° C.
  • the content of the coloring agent is appropriately selected according to the shape of the first resin molding and the like.
  • the content of the coloring agent is preferably 0.01% by mass to 15% by mass, more preferably 0.1% by mass to 15% by mass, based on the total amount of the first resin molding 10% by mass. If the content of the coloring agent is within the above range, it is possible to suppress the occurrence of molding defects such as thread breakage. If the content of the coloring agent is within the above range, sufficient visibility can be imparted to the fused portion of the composite resin molding.
  • the content of the color former is preferably 0.01% by mass to 15% by mass, more preferably 0.1% by mass, relative to the total amount of the first resin molded body. % to 10% by mass. If the content of the coloring agent is within the above range, it is possible to suppress the occurrence of molding defects such as sheet tearing. If the content of the coloring agent is within the above range, sufficient visibility can be imparted to the fused portion of the composite resin molding.
  • the color former is appropriately selected according to the type of the color former.
  • Coloring agents capable of developing basic leuco dyes include phenolic compounds, higher fatty acids, aromatic carboxylic acids, and the like. Examples of phenolic compounds include bisphenol S, 4-isopropoxyphenyl-4-hydroxyphenylsulfone, and the like. Stearic acid etc. are mentioned as a higher fatty acid. These colorants may be used singly or in combination of two or more.
  • the colorant is preferably a compound that does not thermally decompose at 250°C. A spunbonded nonwoven fabric may be exposed to an atmosphere of 250° C. during the manufacturing process of the spunbonded nonwoven fabric.
  • the coloring agent is a compound that does not thermally decompose at 250° C.
  • the color tone of the fused portion is easily visible even if the fused portion is not colored from the outside.
  • coloring agents that do not thermally decompose at 250° C. include bisphenol S, 4-isopropoxyphenyl-4-hydroxyphenyl sulfone, and stearic acid.
  • the melting point of the coloring agent is preferably lower than the temperature at which the fused portion of the composite resin molding is formed (hereinafter referred to as "fusion temperature"). Accordingly, when a part of the first resin molded body and a part of the second resin molded body are heated at the fusion bonding temperature, the colorant is easily melted.
  • the color former and the color former are kept in a more mixed state than when a color former having a melting point equal to or higher than the fusion temperature is used. That is, the fused portion becomes more easily colored. As a result, even if the fused portion is not colored from the outside, it is more easily visible due to its color tone.
  • the melting point of the coloring agent is preferably 150° C. or less. Coloring agents having a melting point of 150° C. or lower include 4-isopropoxyphenyl-4-hydroxyphenyl sulfone, stearic acid and the like.
  • the colorant is preferably a higher fatty acid from the viewpoint of moldability of the second resin molded article.
  • the color former is a basic leuco dye and the fused portion is desired to be colored more strongly
  • the acidity of the color former is preferably high, that is, the acid dissociation constant (pKa) is low.
  • the content of the coloring agent is appropriately selected according to the shape of the second resin molding and the like.
  • the content of the coloring agent is preferably 0.01% by mass to 15% by mass, more preferably 0.1% by mass, based on the total amount of the second resin molded body. ⁇ 10% by mass. If the content of the coloring agent is within the above range, the occurrence of molding defects such as thread breakage can be suppressed. If the content of the coloring agent is within the above range, sufficient visibility can be imparted to the fused portion of the composite resin molding.
  • the content of the colorant is preferably 0.01% by mass to 15% by mass, more preferably 0.1%, based on the total amount of the second resin molded product. % to 10% by mass. If the content of the coloring agent is within the above range, it is possible to suppress the occurrence of molding defects such as sheet tearing. If the content of the coloring agent is within the above range, sufficient visibility can be imparted to the fused portion of the composite resin molding.
  • the first resin molded body does not contain a coloring agent
  • the second resin molded body does not contain the coloring agent.
  • the first thermoplastic resin is not particularly limited as long as it is a thermoplastic resin, and is appropriately selected according to the intended use of the composite resin molding. Among them, the first thermoplastic resin is preferably transparent. As such a transparent thermoplastic resin, resins described in "Encyclopedia of Plastic Material Utilization” (Edition number: First edition, Publisher: Industrial Research Institute Encyclopedia Publishing Center, Date of publication: October 20, 2001) are used. You can refer to it. Specific examples of transparent thermoplastic resins include polyolefins, general purpose polystyrene (GPPS), polyvinyl chloride, polyamides, polyesters, polycarbonates, methacrylic resins, and mixtures thereof.
  • GPPS general purpose polystyrene
  • polyolefins examples include propylene-based polymers, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE).
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • propylene-based polymer examples include propylene homopolymers and propylene copolymers.
  • the first thermoplastic resin when the first resin molding is a fiber, the first thermoplastic resin preferably contains a propylene polymer from the viewpoint of spinning stability during molding and stretching processability of the nonwoven fabric. is particularly preferred.
  • the melting point (Tm) of the propylene homopolymer is preferably 155°C or higher, more preferably 157°C to 165°C.
  • the melting point (Tm) of the propylene copolymer is preferably 130°C or higher and lower than 155°C, more preferably 130°C to 150°C.
  • the propylene copolymer is preferably a copolymer of propylene and one or more ⁇ -olefins.
  • the ⁇ -olefin is an ⁇ -olefin having 2 or more carbon atoms (excluding 3 carbon atoms), preferably an ⁇ -olefin having 2 to 8 carbon atoms (excluding 3 carbon atoms).
  • Examples of ⁇ -olefins having 2 or more carbon atoms include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like.
  • the melt flow rate (MFR) of the propylene-based polymer is not particularly limited as long as it can be melt-spun, but is usually 1 g/10 minutes to 1000 g/10 minutes, preferably 5 g/10 minutes to 500 g/10 minutes, and further It is preferably 10 g/10 minutes to 100 g/10 minutes.
  • the melt flow rate of a propylene-based polymer is measured under the conditions of ASTM D-1238, 230° C., and a load of 2.16 kg.
  • the content of the first thermoplastic resin is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, relative to the total amount of the first resin molding.
  • the second thermoplastic resin is not particularly limited as long as it is a thermoplastic resin, and is appropriately selected according to the intended use of the composite resin molding.
  • the second thermoplastic resin include those exemplified as the first thermoplastic resin.
  • the second thermoplastic resin may be the same as or different from the first thermoplastic resin.
  • the second thermoplastic resin preferably contains a propylene-based polymer, and is particularly preferably a propylene-based polymer.
  • the content of the second thermoplastic resin is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass or more, relative to the total amount of the second resin molding.
  • the first thermoplastic resin and the second thermoplastic resin preferably contain the transparent thermoplastic resin (for example, polyolefin) described above.
  • the first resin molded body, the second resin molded body, and the fused portion are more likely to become transparent than in the first configuration.
  • each of the first thermoplastic resin and the second thermoplastic resin does not include a transparent thermoplastic resin (eg, polyolefin).
  • the contrast between the fused portion and the non-fused portion caused by the coloring or discoloration of the coloring agent can be enhanced. As a result, even if the fused portion is not colored from the outside, it is more easily visible due to its color tone.
  • Each of the first resin molded body and the second resin molded body may contain other components, if necessary, within a range that does not impair the effects of one embodiment of the present disclosure.
  • Other components include, for example, sensitizers, antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifog agents, lubricants, dyes, pigments, light stabilizers, antiblocking agents, dispersants agents, nucleating agents, softeners, water repellents, fillers, natural oils, synthetic oils, waxes other than ethylene-based polymer waxes, antibacterial agents, preservatives, matting agents, rust inhibitors, fragrances, antifoaming agents , antifungal agents, insect repellents, and the like.
  • These other components may be contained inside the composite resin molded article or attached to the surface of the composite resin molded article.
  • the multi-layer spunbond nonwoven fabric comprises the first fibers forming the first spunbond web, the second fibers forming the second spunbond web, and the fused portions.
  • a first spunbond web is laminated onto one major surface of a second spunbond web. In the fused portion, part of the first fibers and part of the second fibers are fused.
  • the first spunbond web is an example of the first resin molding.
  • the second spunbond web is an example of the second resin molding.
  • the multi-layer spunbond nonwoven fabric has a fused portion where some of the first fibers that make up the first spunbond web and some of the second fibers that make up the second spunbond web are fused together. Therefore, even if the fused portion is not colored from the outside, the fused portion is easily visible due to its color tone. As a result, the multilayer spunbond nonwoven fabric is excellent in design.
  • the coloring agent is preferably contained in the first fibers constituting the first spunbond web, and the coloring agent is contained in the second fibers constituting the second spunbond web.
  • the fused part contains the reactant of the color former and the reactant of the color former in its interior.
  • the basis weight of the first spunbond web is preferably 360 g/m 2 or less, more preferably 240 g/m 2 or less, still more preferably 150 g/m 2 or less, particularly preferably 15 g/m 2 to 120 g/m 2 , still more preferably is between 8 g/m 2 and 25 g/m 2 .
  • the method for measuring basis weight is the same as the method described in Examples.
  • the average fiber diameter of the first fibers constituting the first spunbond web is preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 40 ⁇ m, and still more preferably 1 ⁇ m to 30 ⁇ m.
  • the average fiber diameter is obtained as follows. Ten 10 mm x 10 mm test pieces are taken from the obtained spunbond nonwoven fabric, and the fiber diameter is read to the first decimal place in ⁇ m using a Nikon ECLIPSE E400 microscope at 20x magnification. The diameter is measured at 20 arbitrary points for each test piece, and the average value is obtained.
  • the thickness of the first spunbond web is appropriately selected depending on the use of the multilayer spunbond nonwoven fabric, and is preferably 0.1 mm to 1.0 mm, more preferably 0.2 mm to 0.5 mm. If the thickness of the first spunbond web is within the above range, the melting efficiency of the spunbond web can be enhanced and the formation of the fused portion can be promoted, and the viewpoint and the fused portion can be given an appropriate thickness to improve color tone visibility. can be improved.
  • the method for measuring the thickness of the first spunbond web is the same as the method described in the Examples.
  • the basis weight of the second spunbond web is the same as that exemplified as the basis weight of the first spunbond web.
  • the basis weight of the second spunbond web may be the same as or different from the basis weight of the first spunbond web.
  • the average fiber diameter of the second fibers constituting the second spunbond web is the same as the average fiber diameter of the first fibers constituting the first spunbond web.
  • the average fiber diameter of the second fibers forming the second spunbond web may be the same as or different from the average fiber diameter of the first fibers forming the first spunbond web.
  • the thickness of the second spunbond web is appropriately selected depending on the application of the multilayer spunbond nonwoven fabric, and is preferably 0.1 mm to 1.0 mm, more preferably 0.2 mm to 0.5 mm. If the thickness of the second spunbonded web is within the above range, the melting efficiency of the spunbonded web can be increased, the formation of the fused portion can be promoted, and an appropriate thickness can be given to the fused portion to improve color visibility. can be made
  • the method for measuring the thickness of the second spunbond web is the same as the method described in the Examples.
  • the multi-layer spunbond nonwoven may comprise other layers in addition to the first spunbond web, the second spunbond web, and the fuses.
  • Other layers may be composed of one layer or two or more layers.
  • Other layers may be disposed on surfaces adjacent to only one of the first spunbond web and the second spunbond web. It may be disposed between the first spunbond web and the second spunbond web as long as it does not hinder the formation of the fused portions of the first spunbond web and the second spunbond web.
  • fiber aggregates include knitted fabrics, woven fabrics, nonwoven fabrics other than the multilayer spunbond nonwoven fabric according to an embodiment of the present disclosure (hereinafter simply referred to as "nonwoven fabrics"), and the like.
  • Nonwoven fabrics include short fiber nonwoven fabrics, long fiber nonwoven fabrics, and the like. “Short fibers” refer to fibers having an average fiber length of 200 mm or less. “Long fiber” refers to "continuous filament” generally used in the technical field, such as Nonwoven Handbook (INDA American Nonwoven Fabric Manufacturers Association, Nonwoven Information Co., Ltd., 1996).
  • Nonwoven fabrics include spunbond nonwoven fabrics, meltblown nonwoven fabrics, wet nonwoven fabrics, dry nonwoven fabrics, dry pulp nonwoven fabrics, flash spun nonwoven fabrics, open fiber nonwoven fabrics, and the like.
  • the fiber assembly may be a sheet of natural fibers such as cotton.
  • resin films include polyolefin films, polyester films, and polyamide films. These other layers may be combined and laminated to the multi-layer spunbond nonwoven. For example, a multilayer spunbond nonwoven fabric, a resin film, and a fiber assembly of natural fibers such as cotton may be laminated in this order.
  • Breathable films include, for example, thermoplastic elastomer films and porous films.
  • thermoplastic elastomer films include moisture-permeable polyurethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, and the like.
  • the porous film is made porous by stretching a thermoplastic resin film containing inorganic particles or organic particles.
  • Thermoplastic resins used in porous films include polyolefins such as high pressure low density polyethylene, linear low density polyethylene (LLDPE), high density polyethylene, polypropylene, polypropylene random copolymers, and combinations thereof.
  • polyolefins such as high pressure low density polyethylene, linear low density polyethylene (LLDPE), high density polyethylene, polypropylene, polypropylene random copolymers, and combinations thereof.
  • the resin film to be laminated with the multilayer spunbond nonwoven fabric include thermoplastic resin films that are not porous when the multilayer spunbond nonwoven fabric does not require air permeability.
  • the material of the non-porous thermoplastic resin film include one or more selected from polyolefins (polyethylene, polypropylene, etc.), polyesters, and polyamides.
  • the method of laminating (bonding) other layers to the multilayer spunbond nonwoven fabric is not particularly limited, and includes heat fusion, mechanical entangling, methods using adhesives, extrusion lamination, and the like.
  • Thermal fusion methods include thermal embossing and ultrasonic fusion.
  • Mechanical interlacing methods include needle punch and water jet.
  • Adhesives include hot melt adhesives and urethane adhesives.
  • Multilayer spunbond nonwovens can be used in textiles.
  • Textile products are not particularly limited, and include absorbent articles, sanitary articles, medical articles, clothing materials, packaging materials, and the like.
  • absorbent articles include disposable diapers and sanitary products.
  • Sanitary articles include sanitary masks and the like.
  • Medical articles include, for example, bandages and the like.
  • the mixed fiber spunbond nonwoven fabric includes the first fibers and second fibers that form the mixed fiber spunbonded web, and the fused portion.
  • the first fibers constituting the mixed fiber spunbond web are an example of the first resin molding.
  • the second fibers constituting the mixed fiber spunbond web are an example of the second resin molding.
  • the mixed fiber spunbonded nonwoven fabric has a fused portion where a part of the first fibers constituting the mixed fiber spunbonded web and a part of the second fibers constituting the mixed fiber spunbonded web are fused together. Therefore, even if the fused portion is not colored from the outside, the fused portion is easily visible due to its color tone. As a result, the mixed fiber spunbond nonwoven fabric is excellent in design.
  • the mixed fiber ratio of the first thermoplastic resin depends on the content of the coloring agent of the first fiber constituting the mixed fiber spunbond web, the coloring content of the second fiber constituting the mixed fiber spunbond web, etc. Selected as appropriate.
  • the mixed fiber ratio of the first thermoplastic resin is preferably 20% to 80% by mass, more preferably 40% to 60% by mass.
  • the “mixed fiber ratio” refers to the ratio of a specific type of fiber contained in a nonwoven fabric layer formed by mixing two or more types of fibers, or the mixing ratio of various types of fibers in the nonwoven fabric layer. That is, the “mixing ratio of the first fiber” in the mixed fiber spunbond nonwoven fabric layer composed of the first fiber and the second fiber is ⁇ mass of the first fiber of the first thermoplastic resin ⁇ (mass of the first fiber + the mass of the second fiber) ⁇ . The “mixing ratio of the second fibers” is ⁇ mass of the second fibers ⁇ (mass of the first fibers+mass of the second fibers) ⁇ .
  • the phrase "different mixed ratios" between the spunbonded nonwoven fabric layers composed of the first thermoplastic resin and the second thermoplastic resin means that the mixing ratio of the first thermoplastic resin and the second thermoplastic resin in each nonwoven fabric layer is different. indicates that
  • the average fiber diameter of the first fibers constituting the mixed fiber spunbond web is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the average fiber diameter of the first fiber is small, the entire fiber containing the coloring agent is easily melted, which is preferable from the viewpoint of improving the visibility of the color tone of the fused portion.
  • Examples of the average fiber diameter of the second fibers that make up the mixed fiber spunbond web are the same as those exemplified as the average fiber diameters of the first fibers that make up the mixed fiber spunbond web.
  • the average fiber diameter of the second fibers constituting the mixed fiber spunbond web may be the same as or different from the average fiber diameter of the first fibers constituting the mixed fiber spunbond web.
  • the average fiber diameter of the second fiber is small, the entire fiber containing the coloring agent is easily melted, which is preferable from the viewpoint of improving the visibility of the color tone of the fused portion.
  • the color former is contained in the first fibers constituting the composite spunbond web, and the color former is contained in the second fibers constituting the composite spunbond web.
  • the fused part contains the reactant of the color former and the reactant of the color former in its interior.
  • the basis weight of the mixed fiber spunbonded web can be selected according to the application of the mixed fiber spunbonded nonwoven fabric.
  • the mixed fiber spunbond nonwoven fabric has a basis weight of preferably 200 g/m 2 or less, more preferably 100 g/m 2 or less, and even more preferably 80 g, from the viewpoint of flexibility and breathability. /m 2 or less, particularly preferably 15 g/m 2 to 60 g/m 2 .
  • the thickness of the mixed fiber spunbonded web is appropriately selected according to the application of the mixed fiber spunbonded nonwoven fabric, and is preferably 0.1 mm to 1.0 mm, more preferably 0.2 mm to 0.5 mm. If the thickness of the mixed fiber spunbonded web is within the above range, the melting efficiency of the spunbonded web can be enhanced and the formation of the fused portion can be promoted, and an appropriate thickness is given to the fused portion to improve color tone visibility. can be made The method for measuring the thickness of the mixed fiber spunbond web is the same as the method described in Examples.
  • the mixed fiber spunbond nonwoven fabric may comprise other layers in addition to the mixed fiber spunbond web and the fused portion.
  • Other layers may be composed of one layer or two or more layers.
  • Other layers include those exemplified as other layers described in the multilayer spunbond nonwoven fabric.
  • the method of laminating (bonding) another layer to the mixed fiber spunbond nonwoven fabric is the same as the method of laminating (bonding) another layer to the multilayer spunbond nonwoven fabric described in the multilayer spunbond nonwoven fabric. things are mentioned.
  • Textile products are not particularly limited, and include absorbent articles, sanitary articles, medical articles, clothing materials, packaging materials, and the like.
  • absorbent articles include disposable diapers and sanitary products.
  • Sanitary articles include sanitary masks and the like.
  • Medical articles include, for example, bandages and the like.
  • FIG. 1 is a schematic diagram showing an example of an apparatus for manufacturing a multilayer spunbond nonwoven fabric according to one embodiment of the present disclosure.
  • a method for manufacturing a multilayer spunbond nonwoven fabric includes a first spinning step, a first web forming step, a second spinning step, a second web forming step, a thermocompression bonding step, and a winding An aspect having steps is preferred.
  • a first spinning process, a first web forming process, a second spinning process, a second web forming process, a thermocompression bonding process, and a winding process are performed in this order.
  • a multi-layer spunbond nonwoven fabric manufacturing apparatus 100 is preferably used in the method for manufacturing a multi-layer spunbond nonwoven fabric according to an embodiment of the present disclosure.
  • the multi-layer spunbond nonwoven fabric manufacturing apparatus 100 includes a first spinning section 10, a first web forming section 20, a second spinning section 30, a second web forming section 40, and a thermocompression bonding section. 50 and a winding section 60 .
  • the first spinning section 10 has a first extruder 11 , a first spinneret 12 and a first ejector 13 .
  • the first extruder 11 melt-kneads the first thermoplastic resin composition and extrudes the melt of the first thermoplastic resin composition to the first spinneret 12 .
  • the first thermoplastic resin composition indicates the raw material of the first resin molding.
  • the first spinneret 12 melt-spun the first thermoplastic resin composition to form the first continuous fiber group 1 .
  • the first ejector 13 draws the first continuous fiber group 1 .
  • the first web forming section 20 has a moving collection member 21 , a first suction unit 22 and a pair of first compaction rolls 23 .
  • the moving collection member 21 has a collection surface for depositing the first continuous fiber group 1 .
  • the first suction unit 22 is used to efficiently collect the first continuous fiber group 1 on the collection surface of the moving collection member 21 .
  • the first suction unit 22 is provided below the collection surface of the moving collection member 21 .
  • a pair of first compaction rolls 23 press the first group of continuous fibers 1 to form the first spunbond web 2 .
  • the second spinning section 30 has a second extruder 31 , a second spinneret 32 and a second ejector 33 .
  • the second extruder 31 melt-kneads the second thermoplastic resin composition and extrudes the melt of the second thermoplastic resin composition to the second spinneret 32 .
  • the second thermoplastic resin composition indicates the raw material of the second resin molding.
  • the second spinneret 32 melt-spun the first thermoplastic resin composition to form the second continuous fiber group 3 .
  • the second ejector 33 draws the second continuous fiber group 3 .
  • the second web forming section 40 has a second suction unit 41 and a pair of second compaction rolls 42 .
  • the second suction unit 41 is used to efficiently collect the second continuous fiber group 3 onto the surface of the first spunbond web 2 .
  • the second suction unit 41 is provided below the collection surface of the moving collection member 21 .
  • the pair of second compaction rolls 42 unites the light fibers (the first spunbond web 2 and the second continuous fiber group 3) together so that the fibers can withstand subsequent processes (for example, thermocompression bonding by the embossing rolls 51). to Specifically, the pair of second compaction rolls 42 presses the first spunbond web 2 and the second continuous fiber group 3 to form the laminated web 4.
  • the laminated web 4 is the first spunbond web 2 and the , and a second spunbond web.
  • a first spunbond web 2 is laminated to one major surface of a second spunbond web.
  • the thermocompression bonding section 50 has an embossing roll 51 and a smoothing roll 52 .
  • the embossing roll 51 and smooth roll 52 thermally compress the laminated web 4 .
  • the embossing roll 51 is a metal roll with engraving on the roll surface.
  • the smooth roll 52 is a metal roll with a smooth roll surface.
  • the winding section 60 has a winder 61 .
  • a winder 61 winds up the multilayer spunbond nonwoven fabric 5 .
  • the first spinning step includes a known process of cooling and stretching the first continuous fiber group 1 before depositing the first continuous fiber group 1 on the collecting surface of the moving collecting member.
  • the first thermoplastic resin composition is put into the first extruder 11 and the melt of the first thermoplastic resin is extruded into the first spinneret 12 .
  • the heating temperature of the first extruder 11 is appropriately adjusted according to the melting point of the first thermoplastic resin composition, etc., and is preferably 200°C to 250°C.
  • the pressure when the melt of the first thermoplastic resin composition is extruded from the first extruder 11 is preferably 20 MPa to 80 MPa.
  • the first thermoplastic resin composition is then melt-spun by the first spinneret 12 to form the first continuous fiber group 1 .
  • the first continuous fiber group 1 is cooled by the cooling air 14 and drawn by the first ejector 13 .
  • the temperature of the cooling air 14 is preferably 5°C to 50°C.
  • the wind speed of the cooling air 14 is preferably 100 m/min to 10,000 m/min.
  • the first spunbond web 2 is formed by depositing the first continuous fiber group 1 on the collecting surface of the moving collecting member 21 .
  • the drawn first continuous fiber group 1 is efficiently collected on the collection surface of the moving collection member 21 by the first suction unit 22 .
  • the collected first continuous fiber group 1 is sandwiched between a pair of first compaction rolls 23 to form the first spunbond web 2 .
  • the temperature of the pair of first compaction rolls 23 when pressing the first continuous fiber group 1 is preferably 100°C to 120°C.
  • the temperature of the compaction roll when pressing the first continuous fiber group 1 is preferably lower than the melting point of the first thermoplastic resin.
  • the second thermoplastic resin composition is melt-spun to form the second continuous fiber group 3 .
  • the second spinning step likewise includes a known process of cooling and drawing the second continuous fiber group 3 before depositing the second continuous fiber group 3 on the first spunbond web 2 .
  • the second thermoplastic resin is put into the second extruder 31 to extrude the melt of the second thermoplastic resin.
  • the heating temperature of the second extruder 31 is appropriately adjusted according to the melting point of the second thermoplastic resin, and is preferably 200.degree. C. to 250.degree.
  • the pressure when the melt of the second thermoplastic resin is extruded from the second extruder 31 is preferably 20 MPa to 80 MPa.
  • a second thermoplastic resin is then melt spun from a second spinneret 32 to form a second continuous fiber group 3 .
  • the second continuous fiber group 3 is cooled by the cooling air 34 and stretched by the second ejector 33 .
  • the temperature of the cooling air 34 is preferably 5°C to 50°C.
  • the wind speed of the cooling air 34 is preferably 100 m/min to 10,000 m/min.
  • a second spunbonded web is formed by depositing a second group of continuous fibers 3 on the first spunbonded web 2 to form a laminated web 4 .
  • the drawn second continuous fiber group 3 is efficiently collected onto the first spunbond web 2 by the second suction unit 41 .
  • the collected second continuous fiber group 3 is sandwiched between a pair of second compaction rolls 42 to form the laminated web 4 .
  • the temperature of the pair of second compaction rolls 42 when pressing the second continuous fiber group 3 is preferably 100°C to 120°C.
  • the temperature of the compaction roll when pressing the second continuous fiber group 3 is preferably lower than the melting point of each of the first thermoplastic resin and the second thermoplastic resin.
  • thermocompression bonding step the laminated web 4 is thermocompression bonded. Thereby, the multilayer spunbond nonwoven fabric 5 is obtained. In other words, a fused portion is formed in the laminated web 4 .
  • the laminated web 4 is sandwiched between an embossing roll 51 and a smoothing roll 52 to form a multi-layer spunbond nonwoven fabric 5 .
  • the surface temperature of each of the embossing roll 51 and the smoothing roll 52 when pressing the laminated web 4 is preferably 140.degree. C. to 150.degree.
  • the pressure when pressing the laminated web 4 is preferably 700 MPa to 1200 MPa.
  • the multilayer spunbond nonwoven fabric 5 is wound by the winder 61 .
  • FIG. 2 is a schematic diagram showing an example of an apparatus for producing a mixed fiber spunbond nonwoven fabric according to an embodiment of the present disclosure.
  • a method for manufacturing a mixed fiber spunbond nonwoven fabric includes a mixed fiber spinning process, a mixed fiber web forming process, a thermocompression bonding process, and a winding process.
  • the mixed fiber spinning process, the mixed fiber web forming process, the thermocompression bonding process, and the winding process are executed in this order.
  • An apparatus 200 for producing a mixed fiber spunbonded nonwoven fabric is preferably used in the method for producing a mixed fiber spunbonded nonwoven fabric according to an embodiment of the present disclosure.
  • the mixed fiber multi-layer spunbonded nonwoven fabric manufacturing apparatus 200 includes a mixed fiber spinning section 10A, a mixed fiber web forming section 20A, a thermocompression bonding section 50, and a winding section 60, as shown in FIG.
  • the mixed fiber spinning section 10A has a first extruder 11 , a second extruder 15 , a third spinneret 16 and a first ejector 13 .
  • the first extruder 11 melt-kneads the first thermoplastic resin composition and extrudes the melt of the first thermoplastic resin composition to the third spinneret 16 .
  • the second extruder 15 melt-kneads the second thermoplastic resin composition and extrudes the melt of the second thermoplastic resin composition to the third spinneret 16 .
  • the third spinneret 16 has many spinning holes (nozzles) for each of the first thermoplastic resin composition and the second thermoplastic resin composition.
  • the third spinneret 16 discharges the first thermoplastic resin composition and the second thermoplastic resin composition independently and simultaneously from different spinning holes to form the third continuous fiber group 6 .
  • the first ejector 13 draws the third continuous fiber group 6 .
  • the mixed fiber web forming section 20A has a moving collecting member 21, a first suction unit 22, and a pair of first compaction rolls 23. As shown in FIG.
  • each of the first thermoplastic resin composition and the second thermoplastic resin composition is melt-spun to form the third continuous fiber group 6 .
  • the mixed fiber spinning process includes a known process of cooling and stretching the third continuous fiber group 6 before depositing the third continuous fiber group 6 on the collecting surface of the moving collecting member 21 .
  • the first thermoplastic resin composition is put into the first extruder 11 and the melt of the first thermoplastic resin composition is extruded to the third spinneret 16 .
  • the second thermoplastic resin composition is fed into the third extruder 15 and the melt of the second thermoplastic resin composition is extruded to the third spinneret 16 .
  • the heating temperature and pressure of each of the first extruder 11 and the third extruder 15 may be the same as the heating temperature and pressure exemplified in the first spinning step described above.
  • each of the first thermoplastic resin composition and the second thermoplastic resin composition is melt-spun from the third spinneret 16 to form the third continuous fiber group 6 .
  • the third continuous fiber group 6 is cooled by the cooling air 14 and drawn by the first ejector 13 .
  • the third continuous fiber group 6 is deposited on the collecting surface of the moving collecting member 21 to form the mixed fiber spunbond web 7 .
  • the mixed fiber web forming step can be performed in the same manner as the first web forming step described above.
  • thermocompression bonding step the mixed fiber spunbond web 7 is thermocompression bonded. As a result, a mixed fiber spunbond nonwoven fabric 8 is obtained. In other words, a fused portion is formed in the mixed fiber spunbond web 7 .
  • thermocompression bonding process is performed in the same manner as the thermocompression bonding process of the multi-layer spunbond nonwoven fabric manufacturing apparatus described above.
  • the winding process is performed in the same manner as the winding process of the multi-layer spunbond nonwoven fabric manufacturing apparatus described above.
  • the composite resin molded article of the present disclosure will be described below with reference to examples, but the composite resin molded article of the present disclosure is not limited by the following embodiments.
  • Components used in Examples and Comparative Examples are as follows.
  • ⁇ Thermoplastic resin> ⁇ Propylene homopolymer (MFR: 60 g/10 min, melting point: 162°C)
  • ⁇ Color former> ⁇ Blue leuco dye: "Blue-63” manufactured by Yamamoto Kasei Co., Ltd. (3-(4-diethylamino-2-ethoxyphenyl)-3-(1-ethyl-2-methyl-3-indolyl)-4-azaphthalide) ⁇ Red leuco dye: Yamamoto Kasei Co., Ltd.
  • Red-40 (3,3-bis (1-n-butyl-2-methylindol-3-yl) phthalide) ⁇ Color agent> -
  • First colorant bisphenol S (melting point: 247°C, acid dissociation constant: 4.5)
  • Second colorant 4-isopropoxyphenyl-4-hydroxyphenylsulfone (melting point 129°C, acid dissociation constant: 4.5)
  • Third coloring agent stearic acid (melting point 70°C, acid dissociation constant: 5.0)
  • a propylene homopolymer (100 parts) and a blue leuco dye (1 part) were mixed to obtain a first raw material.
  • the first raw material was molded at 190° C. using a press film forming machine to obtain a first resin sheet having a thickness of 100 ⁇ m.
  • the color tone of the first resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
  • a portion of the first resin sheet was sandwiched between batch-type sealers and thermocompression bonded to form a fused portion.
  • a batch sealer comprises a pair of metal plates. The surface temperature of each of the pair of metal plates was 190°C.
  • the pressure applied to the first resin sheet was 3 MPa.
  • the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
  • Comparative example 2 In the same manner as in Comparative Example 1, except that a second raw material obtained by mixing propylene homopolymer (100 parts) and red leuco dye (1 part) was used instead of the first raw material. 2 resin sheets were obtained. When the second resin sheet was visually observed, the color tone of the second resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer. In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the second resin sheet. When the fused portion and the non-fused portion of the second resin sheet were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
  • Comparative Example 3 The thickness was 100 ⁇ m in the same manner as in Comparative Example 1, except that instead of the first raw material, a third raw material obtained by mixing a propylene homopolymer (100 parts) and a first colorant (2 parts) was used. A third resin sheet was obtained. When the third resin sheet was visually observed, the color tone of the third resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer. In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the third resin sheet. When the fused portion and the non-fused portion of the third resin sheet were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
  • Comparative Example 4 The thickness was 100 ⁇ m in the same manner as in Comparative Example 1, except that instead of the first raw material, a fourth raw material obtained by mixing a propylene homopolymer (100 parts) and a second colorant (2 parts) was used. was obtained. When the fourth resin sheet was visually observed, the color tone of the fourth resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer. In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the fourth resin sheet. When the fused portion and the non-fused portion of the fourth resin sheet were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
  • Comparative Example 5 The thickness was 100 ⁇ m in the same manner as in Comparative Example 1, except that the fifth raw material was used by mixing the propylene homopolymer (100 parts) and the third colorant (2 parts) instead of the first raw material. was obtained.
  • the color tone of the fifth resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
  • a fused portion was formed in a portion of the fifth resin sheet. When the fused portion and the non-fused portion of the fifth resin sheet were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
  • Comparative Example 6 Comparative Example 1 except that instead of the first raw material, a sixth raw material obtained by mixing a propylene homopolymer (100 parts), a blue leuco dye (1 part), and a second colorant (2 parts) was used. A sixth resin sheet having a thickness of 100 ⁇ m was obtained in the same manner as in the above. When the sixth resin sheet was visually observed, the color tone of the sixth resin sheet was blue as a whole, unlike the color tone (colorless and transparent) of the transparent resin sheet composed only of propylene homopolymer. In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the sixth resin sheet. When the fused portion and the non-fused portion of the sixth resin sheet were visually observed, the color tone of the fused portion was blue, similar to the color tone (blue) of the non-fused portion.
  • Example 1 A first resin sheet containing a blue leuco dye was obtained in the same manner as in Comparative Example 1.
  • a third resin sheet containing the first colorant was obtained in the same manner as in Comparative Example 3.
  • the first laminated sheet was obtained by laminating the first resin sheet and the third resin sheet. When the first laminated sheet was visually observed, the color tone of the first laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
  • a fused portion was formed in a part of the first laminated sheet to obtain a first composite resin molding. When the fused portion and the non-fused portion of the first composite resin molding were visually observed, the color tone of the fused portion was blue, unlike the color tone (colorless and transparent) of the non-fused portion.
  • Example 2 A first resin sheet containing a blue leuco dye was obtained in the same manner as in Comparative Example 1. A fourth resin sheet containing a second colorant was obtained in the same manner as in Comparative Example 4. The first resin sheet and the fourth resin sheet were laminated to obtain a second laminated sheet. When the second laminated sheet was visually observed, the color tone of the second laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer. In the same manner as in Comparative Example 1, a fused portion was formed in a part of the second laminated sheet to obtain a second composite resin molding.
  • the color tone of the fused portion was dark blue, unlike the color tone of the non-fused portion (colorless and transparent).
  • the color tone of the fused portion of the second composite resin molded body was darker than the color tone of the fused portion of the first composite resin molded body.
  • Example 3 A first resin sheet containing a blue leuco dye was obtained in the same manner as in Comparative Example 1. A fifth resin sheet containing the third colorant was obtained in the same manner as in Comparative Example 5. The first resin sheet and the fifth resin sheet were laminated to obtain a third laminated sheet. When the third laminated sheet was visually observed, the color tone of the third laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer. In the same manner as in Comparative Example 1, a fused portion was formed in a part of the third laminated sheet to obtain a third composite resin molded body.
  • the color tone of the fused portion was pale blue, unlike the color tone of the non-fused portion (colorless and transparent).
  • the color tone of the fused portion of the third composite resin molded body was lighter than the color tone of the fused portion of the first composite resin molded body.
  • Example 4 A second resin sheet containing a red leuco dye was obtained in the same manner as in Comparative Example 2. A third resin sheet containing the first colorant was obtained in the same manner as in Comparative Example 3. The second resin sheet and the third resin sheet were laminated to obtain a fourth laminated sheet. When the fourth laminated sheet was visually observed, the color tone of the fourth laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer. In the same manner as in Comparative Example 1, a fused portion was formed in a part of the fourth laminated sheet to obtain a fourth composite resin molded body. When the fused portion and the non-fused portion of the fourth composite resin molding were visually observed, the color tone of the fused portion was red, unlike the color tone (colorless and transparent) of the non-fused portion.
  • Example 5 A second resin sheet containing a red leuco dye was obtained in the same manner as in Comparative Example 2. A fourth resin sheet containing a second colorant was obtained in the same manner as in Comparative Example 4. The second resin sheet and the fourth resin sheet were laminated to obtain a fifth laminated sheet. When the fifth laminated sheet was visually observed, the color tone of the fifth laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer. In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the fifth laminated sheet to obtain a fifth composite resin molded body.
  • the color tone of the fused portion was dark red, unlike the color tone of the non-fused portion (colorless and transparent).
  • the color tone of the fused portion of the fifth composite resin molded body was darker than the color tone of the fused portion of the fourth composite resin molded body.
  • Example 6 A second resin sheet containing a red leuco dye was obtained in the same manner as in Comparative Example 2. A fifth resin sheet containing the third colorant was obtained in the same manner as in Comparative Example 5. The second resin sheet and the fifth resin sheet were laminated to obtain a sixth laminated sheet. When the sixth laminated sheet was visually observed, the color tone of the sixth laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer. In the same manner as in Comparative Example 1, a fused portion was formed in a part of the sixth laminated sheet to obtain a sixth composite resin molded body.
  • the color tone of the fused portion was pale red, unlike the color tone of the non-fused portion (colorless and transparent).
  • the color tone of the fused portion of the sixth composite resin molded body was lighter than the color tone of the fused portion of the fourth composite resin molded body.
  • Example 7 A first laminated sheet was obtained in the same manner as in Example 1. A portion of the first laminated sheet was sandwiched in a roll press to form a fused portion to obtain a seventh composite resin molded body.
  • a roll-type press includes an engraved roll and a smooth roll. Engraved rolls are metal rolls with engravings on the roll surface. A smooth roll is a metal roll with a smooth roll surface. The surface temperature of each of the engraved roll and the smooth roll was 190°C. The pressure applied to the first laminated sheet was 700 MPa. When the fused portion and the non-fused portion of the seventh composite resin molding were visually observed, the color tone of the fused portion was blue, unlike the color tone (colorless and transparent) of the non-fused portion. In other words, only the portion (fused portion) where the engraving of the engraving roll of the seventh composite resin molding was transferred was blue.
  • Example 8 A second laminated sheet was obtained in the same manner as in Example 2. In the same manner as in Example 7, a fused portion was formed in a part of the second laminated sheet to obtain an eighth composite resin molded body. When the fused portion and the non-fused portion of the eighth composite resin molding were visually observed, the color tone of the fused portion was dark blue, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the engraving roll of the eighth composite resin molding was transferred was dark blue. The color tone of the fused portion of the eighth composite resin molded body was darker than the color tone of the fused portion of the seventh composite resin molded body.
  • Example 9 A third laminated sheet was obtained in the same manner as in Example 3. In the same manner as in Example 7, a fused portion was formed in a part of the third laminated sheet to obtain a ninth composite resin molding. When the fused portion and the non-fused portion of the ninth composite resin molding were visually observed, the color tone of the fused portion was pale blue, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the engraving roll of the ninth composite resin molded body was transferred was pale blue. The color tone of the fused portion of the ninth composite resin molded body was lighter than the color tone of the fused portion of the seventh composite resin molded body.
  • Example 10 A fourth laminated sheet was obtained in the same manner as in Example 4. In the same manner as in Example 7, a fused portion was formed in a part of the fourth laminated sheet to obtain a tenth composite resin molding. When the fused portion and the non-fused portion of the tenth composite resin molding were visually observed, the color tone of the fused portion was red, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the engraving roll of the tenth composite resin molding was transferred was red.
  • Example 11 A fifth laminated sheet was obtained in the same manner as in Example 5.
  • a fused portion was formed in a portion of the fifth laminated sheet to obtain an eleventh composite resin molded body.
  • the color tone of the fused portion was dark red, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the engraving roll of the eleventh composite resin molding was transferred was dark red.
  • the color tone of the fused portion of the eleventh composite resin molded body was darker than the color tone of the fused portion of the tenth composite resin molded body.
  • Example 12 A sixth laminated sheet was obtained in the same manner as in Example 6. In the same manner as in Example 7, a fused portion was formed in a part of the sixth laminated sheet to obtain a twelfth composite resin molding. When the fused portion and the non-fused portion of the twelfth composite resin molding were visually observed, the color tone of the fused portion was pale red, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion where the engraving on the engraving roll of the twelfth composite resin molding was transferred (fused portion) was pale red. The color tone of the fused portion of the twelfth composite resin molded body was lighter than the color tone of the fused portion of the tenth composite resin molded body.
  • Comparative Example 7 A first raw material was obtained in the same manner as in Comparative Example 1. The first raw material was melt-kneaded at 200° C. and spun by a spunbond method. The resulting fibers were deposited onto a collecting surface to obtain a first web. The basis weight of the first web was adjusted to 10 g/m 2 . The average fiber diameter of the fibers forming the first web was 19 ⁇ m. When the first web was visually observed, the color tone of the first web was colorless and transparent, similar to the color tone of the nonwoven fabric composed only of propylene homopolymer. A portion of the first web was sandwiched between embossing rolls to form a fused portion.
  • the embossing roll device includes an embossing roll 51 and a smooth roll 52 .
  • the surface temperature of each of the embossing roll 51 and the smooth roll 52 was 130°C.
  • the pressure applied to the first web was 700 MPa.
  • the engraving area ratio of the embossing roll 51 was 10%.
  • the engraving area ratio of the embossing roll 51 indicates the ratio of the area of the engravings (projections) to the total area of the roll surface of the embossing roll 51 .
  • Comparative Example 8 A fourth raw material was obtained in the same manner as in Comparative Example 4.
  • a second web was obtained in the same manner as in Comparative Example 7, except that the fourth raw material was used instead of the first raw material.
  • the color tone of the second web was colorless and transparent, similar to the color tone of the nonwoven fabric composed only of propylene homopolymer.
  • a fused portion was formed in the second web in the same manner as in Comparative Example 7. When the fused portion and the non-fused portion of the second web were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
  • Comparative Example 9 A propylene homopolymer (100 parts), a blue leuco dye (1 part), and a second colorant (1 part) were mixed to obtain a seventh raw material.
  • a third web was obtained in the same manner as in Comparative Example 7, except that the seventh raw material was used instead of the first raw material.
  • the color tone of the third web was blue as a whole, unlike the color tone of the nonwoven fabric made of only the propylene homopolymer.
  • a fused portion was formed in the third web in the same manner as in Comparative Example 7. When the fused portion and the non-fused portion of the third web were visually observed, the color tone of the fused portion was blue, similar to the color tone (blue) of the non-fused portion.
  • Example 13 A first web was obtained in the same manner as in Comparative Example 7. A second web was obtained in the same manner as in Comparative Example 8. A web laminate was obtained by overlapping the first web and the second web. The total basis weight of the web laminate was 20 g/m 2 .
  • a fused portion was formed in a part of the web laminate to obtain a thirteenth composite resin molded article. When the fused portion and the non-fused portion of the thirteenth composite resin molding were visually observed, the color tone of the fused portion was blue, unlike the color tone (colorless and transparent) of the non-fused portion. In other words, only the portion (fused portion) where the engraving of the embossing roll 51 of the thirteenth composite resin molding was transferred was blue.
  • Example 14 A first raw material was obtained in the same manner as in Comparative Example 1. A propylene homopolymer (100 parts) and a second colorant (1 part) were mixed to obtain an eighth raw material. As shown in FIG. 8, the first raw material was put into the first extruder 11, the eighth raw material was put into the third extruder 15, and melt-kneaded separately at 200°C. Using a spunbond nonwoven fabric molding machine having a third spinneret 16, spun under the conditions that the resin temperature and die temperature of the third spinneret 16 are both 200°C, the temperature of the cooling air 14 is 25°C, and the drawing air speed is 3500 m/min.
  • a third continuous fiber group 6 composed of mixed filaments was deposited on the collection surface of the moving collection member 21 by melt spinning by a bond method to obtain a mixed fiber spunbond web 7 .
  • the mixed fiber spunbond web 7 is composed of a mixed fiber of coloring fiber:coloring fiber in a ratio of 40:60 (mass %).
  • the basis weight of the mixed fiber spunbond web 7 was 20 g/m 2 .
  • the third spinneret 16 has a nozzle pattern in which ejection holes for the first raw material and ejection holes for the eighth raw material are alternately arranged.
  • the nozzle diameter was 0.60 mm ⁇ , and the ratio of the number of nozzles was 40:60.
  • the color tone of the mixed fiber spunbonded web 7 was colorless, like the color tone of the fibers composed only of the propylene homopolymer.
  • a fused portion was formed in a part of the mixed fiber spunbond web 7 to obtain a 14th composite resin molding.
  • the color tone of the fused portion was blue, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the embossing roll 51 of the 14th composite resin molding was transferred was blue.
  • Tables 1 and 2 show the color tone of the fused portion and the color tone of the non-fused portion visually observed in Examples 1 to 14 and Comparative Examples 1 to 9.
  • Example 15 In the same manner as in Example 2, a laminated sheet was obtained in which a sheet containing a blue leuco dye and a sheet containing a colorant were laminated. In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the third laminated sheet to form a strip-shaped fused portion having a width of 10 mm.
  • Example 16 In the same manner as in Example 13, a web laminate having a total basis weight of 20 g/m 2 was obtained by overlapping a web containing a blue leuco dye and a web containing a colorant. In the same manner as in Comparative Example 7, a band-shaped fused portion having a width of 10 mm was formed by forming a fused portion in a part of the web laminate.
  • Table 3 shows the color tone of the fused portion and the color difference of the non-fused portion in Examples 15 and 16.
  • Example 17 A web laminate having a fused portion was obtained in the same manner as in Example 16.
  • a fourth web having a basis weight of 10 g/m 2 made of a propylene homopolymer was obtained in the same manner as in Comparative Example 7, except that only a propylene homopolymer was used as a raw material instead of the first raw material.
  • Two sheets of the fourth web were laminated to obtain a web laminate having a total basis weight of 20 g/m 2 .
  • a portion of this web laminate was sandwiched between batch-type sealers, and the laminated fourth webs were thermocompression bonded to each other to form a band-shaped fused portion having a width of 10 mm.
  • the surface temperature of each of the pair of metal plates of the batch sealer was 190°C.
  • the pressure on the laminated web was 3 MPa.
  • a blue oil-based paint was applied to the fused portion of the web laminate having the fused portion formed thereon so as to have the same color tone as that of the fused portion of Example 17, and then dried. As a result, a blue coating film was formed on the fused portion.
  • Example 17 An abrasion test was conducted on Example 17 and Comparative Example 10. Table 4 shows the evaluation results of the abrasion test.
  • the composite resin molded bodies of Examples 1 to 14 each include a first resin molded body, a second resin molded body, and a fused portion.
  • the first resin molding contains a propylene homopolymer as a main component and a leuco dye, and does not contain a color former.
  • the second resin molding contains a propylene homopolymer as a main component and a colorant, but does not contain a leuco dye.
  • a part of the first resin molded body and a part of the second resin molded body are fused together. Therefore, the color tone of the fused portion was different from the color tone of the non-fused portion. As a result, it was found that in the composite resin moldings of Examples 1 to 14, the fused portion was easily visible due to its color tone even if it was not colored from the outside.
  • the melting point of the first colorant was higher than the fusion temperature.
  • the melting point of the second colorant was lower than the fusing temperature.
  • the fused parts of the composite resin moldings of Examples 2, 5, 8, and 11 containing the second colorant are the first colorant containing the first colorant, Example 4, and Example The color developed more strongly than the fused portions of the composite resin moldings of Examples 7 and 10. From this, it was found that by using a coloring agent whose melting point is lower than the fusion temperature, the fused portion can develop a stronger color in the composite resin molded article.
  • the acidity of the first colorant was higher than that of the third colorant.
  • the melting point of the first colorant was higher than the fusing temperature.
  • the melting point of the third colorant was lower than the fusing temperature.
  • the fused portion of the composite resin moldings of Examples 1, 4, 7, and 10 containing the first colorant contains the third colorant in Examples 3, 6, and 10. The color developed more strongly than the fused portions of the composite resin moldings of Examples 9 and 12. As a result, even if the coloring agent has a melting point lower than the heat-sealing temperature, if the acidity of the coloring agent is high, the fused portion develops a stronger color than when a coloring agent having a low acidity is used. found to get
  • the resin sheets of Comparative Examples 1 to 6 and the webs of Comparative Examples 7 to 9 did not include either the first resin molded body or the second resin molded body. Therefore, the color tone of the fused portion and the color tone of the non-fused portion were the same. It was found that in the resin sheets of Comparative Examples 1 to 6 and the webs of Comparative Examples 7 to 9, the fused portion is not easily visible due to the color tone even if it is not colored from the outside.
  • the form of the composite resin molded article of Example 15 is a laminated sheet.
  • the composite molded article of Example 16 is the same as that of Example 15 except that its form is a multi-layered spunbond nonwoven fabric. Comparing Example 15 and Example 16, the color difference ( ⁇ E) of the multilayer spunbond nonwoven fabric of Example 16 was 23.37, while the color difference ( ⁇ E) of the laminated sheet of Example 15 was 5.37. was 85. From these results, it was found that the multi-layered spunbond nonwoven fabric of Example 16 had improved visual contrast between the non-fused portion and the fused portion compared to the laminated sheet of Example 15.
  • the amount of change in the L * value of the multilayer spunbond nonwoven fabric of Example 16 before and after fusion bonding was greater than the amount of change in the L * value of the laminated sheet of Example 15 before and after fusion bonding. It is presumed that the main reason for this is that the non-fused portion of the spunbond nonwoven fabric is composed of fibers. Specifically, since fibers tend to scatter visible light, the L * value of the non-fused portion made up of fibers is relatively large. As a result, it is presumed that the difference between the L * value of the non-fused portion composed of fibers and the L * value of the fused portion formed into a film by melting the resin increases.
  • the amount of change in the b * value of the multilayer spunbond nonwoven fabric of Example 16 before and after fusion bonding was greater than the amount of change in the b * value of the laminated sheet of Example 15 before and after fusion bonding. This is because, in Example 16, both the form of the first resin molded body containing the color former and the form of the second resin molded body containing the color former are fibers, so melting and mixing occur during fusion bonding. It is speculated that the main factor is ease of use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

This composite resin molded body comprises a first resin molded body, a second resin molded body, and a fused part. The first resin molded body contains a first thermoplastic resin and a coloring agent. The second resin molded body contains a second thermoplastic resin and a color developing agent that promotes color development or color change of the coloring agent. In the fused part, a part of the first resin molded body and a part of the second resin molded body are fused.

Description

複合樹脂成形体Composite resin molding
 本開示は、複合樹脂成形体に関する。 The present disclosure relates to composite resin moldings.
 サーマルボンド不織布は、通気性、及び柔軟性に優れることから、吸収性物品用の表面シートとして幅広く使用されている。吸収性物品は、紙オムツ、及び生理用ナプキンを含む。
 サーマルボンド不織布は、熱可塑性樹脂からなる繊維を含むウェブを、加熱されたエンボスロールと平滑なロールとの間に挟み込んで、繊維の一部を溶融させて繊維間を結合させることで得られることが知られている。
 一方、凹凸模様とその周辺部とのコントラストを強めることによって装飾効果を高める技術として、谷染めが知られている(特許文献1)。谷染めは、エンボスロールの模様凸部に着色塗料を付着させて基材に模様付けを行い、同時に基材の模様凹部を着色する方法である。
Thermal bond nonwoven fabrics are widely used as surface sheets for absorbent articles because of their excellent air permeability and flexibility. Absorbent articles include disposable diapers and sanitary napkins.
A thermal bonded nonwoven fabric is obtained by sandwiching a web containing fibers made of a thermoplastic resin between a heated embossing roll and a smooth roll to partially melt the fibers and bond the fibers. It has been known.
On the other hand, valley dyeing is known as a technique for enhancing the decorative effect by increasing the contrast between the uneven pattern and its surroundings (Patent Document 1). Valley dyeing is a method in which a colored paint is applied to the pattern convex portions of an embossing roll to form a pattern on the base material, and at the same time, the pattern concave portions of the base material are colored.
  特許文献1:特開昭53-24365号公報   Patent document 1: JP-A-53-24365
 しかしながら、装飾効果を高めるために、サーマルボンド不織布の製造方法に谷染めを採用すると、エンボスロールの模様凸部に付着した着色塗料が、エンボスロールの熱によって分解するおそれがある。そのため、サーマルボンド不織布の融着部に所望の色付けをすることができないおそれがある。融着部に付着した着色塗料は、融着部から脱落するおそれがある。これらの結果、谷染めにより色付けされた融着部は、視認されにくい場合がある。 However, if valley dyeing is used in the manufacturing method of the thermal bonded nonwoven fabric in order to enhance the decorative effect, the colored paint adhering to the pattern projections of the embossing roll may decompose due to the heat of the embossing roll. Therefore, there is a possibility that the fused portion of the thermal bond nonwoven fabric cannot be colored as desired. The colored paint adhering to the fused portion may come off from the fused portion. As a result, the fused portion colored by valley dyeing may be difficult to see.
 本開示は、上記事情に鑑み、融着部が外部から着色されていなくても色調によって視認されやすい複合樹脂成形体を提供することを目的とする。 In view of the above circumstances, an object of the present disclosure is to provide a composite resin molded body in which even if the fused portion is not colored from the outside, it is easily visible due to its color tone.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
 <1> 第1熱可塑性樹脂、及び発色剤を含有する第1樹脂成形体と、
 第2熱可塑性樹脂、及び前記発色剤の発色又は変色を促す呈色剤を含有する第2樹脂成形体と、
 前記第1樹脂成形体の一部と前記第2樹脂成形体の一部とが融着した融着部と、を備える、複合樹脂成形体。
 <2> 前記第1樹脂成形体は、前記呈色剤を含有せず、
 前記第2樹脂成形体は、前記発色剤を含有しない、前記<1>に記載の複合樹脂成形体。
 <3> 前記第1樹脂成形体は、第1繊維を含み、
 前記第2樹脂成形体は、第2繊維を含む、前記<1>又は<2>に記載の複合樹脂成形体。
 <4> 前記第1樹脂成形体は、前記第1繊維を含む第1スパンボンドウェブであり、
 前記第2樹脂成形体は、前記第2繊維を含む第2スパンボンドウェブであり、
 前記第1スパンボンドウェブは、前記第2スパンボンドウェブの一方の主面上に積層されている、前記<3>に記載の複合樹脂成形体。
 <5> 前記第1樹脂成形体は、第1繊維であり、
 前記第2樹脂成形体は、第2繊維であり、
 前記第1繊維及び前記第2繊維は、混繊スパンボンドウェブを構成する、前記<3>に記載の複合樹脂成形体。
 <6> 前記発色剤は、前記第1繊維内に含まれ、
 前記呈色剤は、前記第2繊維内に含まれる、前記<3>~<5>のいずれか1つに記載の複合樹脂成形体。
 <7> 前記融着部は、少なくともその内部に、前記発色剤と前記呈色剤との発色化合物を含む、前記<1>~<6>のいずれか1つに記載の複合樹脂成形体。
 <8> 前記発色剤は、ロイコ色素を含む、前記<1>~<7>のいずれか1つに記載の複合樹脂成形体。
Means for solving the above problems include the following embodiments.
<1> A first resin molding containing a first thermoplastic resin and a coloring agent;
a second resin molding containing a second thermoplastic resin and a coloring agent that promotes color development or discoloration of the coloring agent;
A composite resin molded body, comprising: a fused portion in which a part of the first resin molded body and a part of the second resin molded body are fused together.
<2> The first resin molding does not contain the colorant,
The composite resin molded article according to <1>, wherein the second resin molded article does not contain the coloring agent.
<3> The first resin molding includes a first fiber,
The composite resin molded article according to <1> or <2>, wherein the second resin molded article includes a second fiber.
<4> The first resin molded body is a first spunbond web containing the first fibers,
The second resin molded body is a second spunbond web containing the second fibers,
The composite resin molded article according to <3>, wherein the first spunbond web is laminated on one main surface of the second spunbond web.
<5> The first resin molding is a first fiber,
The second resin molded body is a second fiber,
The composite resin molded article according to <3>, wherein the first fibers and the second fibers constitute a mixed fiber spunbond web.
<6> The coloring agent is contained in the first fiber,
The composite resin molded article according to any one of <3> to <5>, wherein the coloring agent is contained in the second fibers.
<7> The composite resin molded article according to any one of <1> to <6>, wherein the fusion-bonded portion contains, at least inside, a coloring compound of the coloring agent and the coloring agent.
<8> The composite resin molded article according to any one of <1> to <7>, wherein the color former contains a leuco dye.
 本開示によれば、融着部が外部から着色されていなくても色調によって視認されやすい複合樹脂成形体が提供される。 According to the present disclosure, a composite resin molded article is provided in which even if the fused portion is not colored from the outside, it is easily visible due to its color tone.
図1は、本開示の実施形態に係る多層スパンボンド不織布の製造装置の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a multi-layer spunbond nonwoven fabric manufacturing apparatus according to an embodiment of the present disclosure. 図2は、本開示の実施形態に係る混繊スパンボンド不織布の製造装置の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of an apparatus for manufacturing a mixed fiber spunbond nonwoven fabric according to an embodiment of the present disclosure.
 以下、図面を参照して、本開示に係る複合樹脂成形体の実施形態について説明する。図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。
 以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。本開示において含有成分量を示す「%」は、特に断らない限り質量基準である。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、本用語に含まれる。
Hereinafter, embodiments of the composite resin molding according to the present disclosure will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
The description of the constituent elements described below may be made based on representative embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
In the present disclosure, a combination of two or more preferred aspects is a more preferred aspect.
In the present disclosure, a numerical range represented using "to" means a range including the numerical values described before and after "to" as lower and upper limits.
In the present disclosure, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous. Unless otherwise specified, "%" indicating the amount of ingredients in the present disclosure is based on mass.
In the description of a group (atomic group) in the present specification, a description that does not describe substitution or unsubstituted includes not only those having no substituents but also those having substituents.
In the present disclosure, the term "layer" includes not only the case where the layer is formed in the entire region when observing the region where the layer exists, but also the case where it is formed only in part of the region. included.
In the present disclosure, the term "process" includes not only an independent process, but also a process that cannot be clearly distinguished from other processes as long as the purpose of the process is achieved.
[複合樹脂成形体]
 本開示の一実施形態に係る複合樹脂成形体は、第1樹脂成形体と、第2樹脂成形体と、融着部と、を備える。第1樹脂成形体は、第1熱可塑性樹脂、及び発色剤を含有する。第2樹脂成形体は、第2熱可塑性樹脂、及び呈色剤を含有する。呈色剤は、発色剤の発色又は変色を促す。融着部は、第1樹脂成形体の一部と第2樹脂成形体の一部とが融着している。第1樹脂成形体は、第1熱可塑性樹脂を主成分とすることが好ましい。第2樹脂成形体は、第2熱可塑性樹脂を主成分とすることが好ましい。第1樹脂成形体は、呈色剤を含有しないことが好ましい。第2樹脂成形体は、発色剤を含有しないことが好ましい。
[Composite resin molding]
A composite resin molded body according to an embodiment of the present disclosure includes a first resin molded body, a second resin molded body, and a fused portion. The first resin molding contains a first thermoplastic resin and a coloring agent. The second resin molding contains a second thermoplastic resin and a colorant. The color former promotes color development or color change of the color former. In the fused part, a part of the first resin molded body and a part of the second resin molded body are fused together. It is preferable that the first resin molding contains the first thermoplastic resin as a main component. The second resin molding preferably contains the second thermoplastic resin as a main component. It is preferable that the first resin molding does not contain a coloring agent. It is preferable that the second resin molding does not contain a coloring agent.
 「発色剤」とは、呈色剤との化学的相互作用により化学構造が変化し、発色又は変色する化合物を示す。
 「呈色剤」とは、それ自体は無色であり、発色剤との化学的相互作用により発色剤の化学構造を変化させ、発色剤を発色させ、又は発色剤の発色色相を変色させる化合物を示す。
 「第1熱可塑性樹脂を主成分とする」とは、第1樹脂成形体において、第1樹脂成形体の総量に対して、第1熱可塑性樹脂の含有量が50質量%以上であることを示す。
 第1樹脂成形体が「呈色剤を含有しない」とは、第1樹脂成形体において、第1樹脂成形体の総量に対して、呈色剤の含有量が発色剤との共存下でも第1樹脂成形体の色調を変化させない程度に十分に低く、好ましくは0.005質量%以下であり、0質量%を含むことを示す。
 「第2熱可塑性樹脂を主成分とする」とは、第2樹脂成形体において、第2樹脂成形体の総量に対して、第2熱可塑性樹脂の含有量が50質量%以上であることを示す。
 第2樹脂成形体が「発色剤を含有しない」とは、第2樹脂成形体において、第2樹脂成形体の総量に対して、発色剤の含有量が呈色剤との共存下でも第2樹脂成形体の色調を変化させない程度に十分に低く、好ましくは0.005質量%以下であり、0質量%を含むことを示す。
 「相溶性を有する」とは、第1熱可塑性樹脂及び第2熱可塑性樹脂が溶融する雰囲気下において、第1熱可塑性樹脂の溶融物と第2熱可塑性樹脂の溶融物とが分離せずに混ざり合うことを示す。第1樹脂成形体に含有される発色剤と第2樹脂成形体に含有される呈色剤との化学的相互作用を効率的に発現させる観点から、第1熱可塑性樹脂と第2熱可塑性樹脂との相溶性は高いことが好ましい。
 「融着」とは、第1樹脂成形体の一部及び第2樹脂成形体の一部が溶融して互いに混ざり合って、第1樹脂成形体及び第2樹脂成形体の各々の溶融した部位同士が一体化していることを示す。
 「融着部」とは、第1樹脂成形体に含まれる第1熱可塑性樹脂と、第2樹脂成形体に含まれる第2熱可塑性樹脂とが互いに混ざり合っている部位を示す。
The term “color former” refers to a compound that changes its chemical structure through chemical interaction with a color former and develops or changes color.
The term “color former” refers to a compound that is itself colorless and that chemically interacts with the color former to change the chemical structure of the color former, cause the color former to develop a color, or change the color hue of the color former. show.
"Containing the first thermoplastic resin as the main component" means that the content of the first thermoplastic resin in the first resin molded body is 50% by mass or more with respect to the total amount of the first resin molded body. show.
The first resin molded body "does not contain a color former" means that the content of the color former in the first resin molded body is the same as the total amount of the first resin molded body even in the presence of the color former. 1 is sufficiently low so as not to change the color tone of the resin molded product, preferably 0.005% by mass or less, and 0% by mass.
"Containing the second thermoplastic resin as the main component" means that the content of the second thermoplastic resin in the second resin molded body is 50% by mass or more with respect to the total amount of the second resin molded body. show.
The second resin molded body "does not contain a color former" means that the content of the color former in the second resin molded body is the same as the total amount of the second resin molded body even in the presence of the color former. It is sufficiently low to the extent that the color tone of the resin molding does not change, preferably 0.005% by mass or less, and indicates that it contains 0% by mass.
"Compatible" means that the melt of the first thermoplastic resin and the melt of the second thermoplastic resin do not separate under an atmosphere in which the first thermoplastic resin and the second thermoplastic resin melt. Indicates mixing. From the viewpoint of efficiently expressing the chemical interaction between the color former contained in the first resin molded body and the color former contained in the second resin molded body, the first thermoplastic resin and the second thermoplastic resin The compatibility with is preferably high.
"Fusing" means that a part of the first resin molded body and a part of the second resin molded body are melted and mixed with each other, and the melted parts of the first resin molded body and the second resin molded body indicates that they are united.
The term "fused portion" refers to a portion where the first thermoplastic resin contained in the first resin molded body and the second thermoplastic resin contained in the second resin molded body are mixed with each other.
 本開示の一実施形態の複合樹脂成形体は、第1樹脂成形体の一部と第2樹脂成形体の一部とが融着している融着部を備える。そのため、融着部が外部から着色されていなくても色調によって視認されやすい。これは、下記の理由によると推測される。
 発色剤及び呈色剤が混合すると、発色剤は発色又は変色しやすい。
 本開示の一実施形態では、第1樹脂成形体及び第2樹脂成形体において、発色剤及び呈色剤は、第1熱可塑性樹脂及び第2熱可塑性樹脂によって分離した状態で保持されている。そのため、発色剤と呈色剤との化学的相互作用は働きにくい。これにより、第1樹脂成形体及び第2樹脂成形体は、発色剤によって発色又は変色しにくい。
 一方、融着部は、第1樹脂成形体の一部と第2樹脂成形体の一部とが熱により融着されている。つまり、加熱によって融着部が形成される際、融着部において発色剤及び呈色剤が一時的に共存する状態が形成される。そのため、発色剤と呈色剤との化学的相互作用が働きやすくなることにより、融着部は、発色剤が呈色剤の作用を受けて発色又は変色する。
 その結果、複合樹脂成形体において、融着部と非融着部とは色調が異なる。非融着部は、複合樹脂成形体のうち融着部でない部位を示す。それゆえ、融着部が外部から着色されていなくても色調によって視認されやすい。
A composite resin molded article according to an embodiment of the present disclosure includes a fused portion in which a part of the first resin molded body and a part of the second resin molded body are fused together. Therefore, even if the fused portion is not colored from the outside, it is easily visible due to the color tone. This is presumed for the following reasons.
When the color former and the color former are mixed, the color former tends to develop or change color.
In one embodiment of the present disclosure, in the first resin molded body and the second resin molded body, the color former and the color former are held separately by the first thermoplastic resin and the second thermoplastic resin. Therefore, the chemical interaction between the coloring agent and the coloring agent is difficult to work. As a result, the first resin molded body and the second resin molded body are less likely to develop or discolor due to the coloring agent.
On the other hand, in the fused part, a part of the first resin molded body and a part of the second resin molded body are fused by heat. In other words, when the fused portion is formed by heating, a state in which the color former and the color former temporarily coexist is formed in the fused portion. Therefore, the chemical interaction between the color former and the color former is facilitated, and the fused portion develops or changes color due to the action of the color former.
As a result, in the composite resin molding, the fused portion and the non-fused portion have different color tones. A non-fused portion indicates a portion of the composite resin molding that is not a fused portion. Therefore, even if the fused portion is not colored from the outside, it is easily visible due to its color tone.
<樹脂成形体>
 視認性の観点から、第1樹脂成形体及び第2樹脂成形体の各々は、いずれの形状に成形された成形体であってもよい。
 第1樹脂成形体及び第2樹脂成形体の少なくとも一方は、シート状物であってもよい。つまり、第1樹脂成形体及び第2樹脂成形体が、シート状物であってもよいし、第1樹脂成形体及び第2樹脂成形体の一方のみが、シート状物であってもよい。
 シート状物としては、例えば、樹脂フィルム、不織布シート等が挙げられる。
 第1樹脂成形体が短尺のシート状物(以下、「第1短尺シート」という。)で、第2樹脂成形体が短尺のシート状物(以下、「第2短尺シート」という。)である場合、複合樹脂成形体は袋体であってもよい。袋体は、第1短尺シートと、第2短尺シートと、融着部とを備える。融着部は、重ね合わせ体の主面の外周周縁に沿って連続的に形成されていてもよい。重ね合わせ体は、第1短尺シート及び第2短尺シートの各々の主面同士が対向するように、第1短尺シート及び第2短尺シートが重ね合わせられている。これにより、ユーザーは、袋体が密閉されているか否かを、融着部と非融着部との色調の違いによって容易に知ることができる。主面とは、シート状物においては最も広い面積を有する一対の面の各々を示す。
 第1樹脂成形体及び第2樹脂成形体の一方がシート状物で、他方がシート状物でない物である場合、複合樹脂成形体は、包装容器であってもよい。包装容器は、樹脂フィルムと、シート状物でない物の一例であるトレイと、融着部とを備えるものでもよい。トレイは、物品を収容するための凹部を有する。樹脂フィルムは、樹脂フィルムとトレイの凹部との間に物品の収容空間を形成するように凹部の開口部全体を覆っている。融着部は、凹部を囲うようにして連続的に形成されていてもよい。これにより、ユーザーは、包装容器が密閉されているか否かを、融着部と非融着部の色調の違いによって容易に知ることができる。トレイとしては、食品トレイ等が挙げられる。
<Resin molding>
From the viewpoint of visibility, each of the first resin molded body and the second resin molded body may be a molded body molded into any shape.
At least one of the first resin molded body and the second resin molded body may be a sheet-like article. That is, the first resin molded body and the second resin molded body may be sheet-like articles, or only one of the first resin molded body and the second resin molded body may be a sheet-like article.
Examples of sheet materials include resin films and nonwoven fabric sheets.
The first resin molded body is a short sheet-like article (hereinafter referred to as "first short sheet"), and the second resin molded body is a short sheet-like article (hereinafter referred to as "second short sheet"). In this case, the composite resin molded body may be a bag. The bag body includes a first short sheet, a second short sheet, and a fused portion. The fused portion may be formed continuously along the outer periphery of the main surface of the laminated body. The stacked body is obtained by stacking the first short sheet and the second short sheet such that the main surfaces of the first short sheet and the second short sheet face each other. Thereby, the user can easily know whether or not the bag body is sealed by the difference in color tone between the fused portion and the non-fused portion. The principal surface means each of a pair of surfaces having the widest area in the sheet-like material.
When one of the first resin molded article and the second resin molded article is a sheet-shaped article and the other is a non-sheet-shaped article, the composite resin molded article may be a packaging container. The packaging container may include a resin film, a tray that is an example of a non-sheet material, and a fused portion. The tray has recesses for storing articles. The resin film covers the entire opening of the recess so as to form an article storage space between the resin film and the recess of the tray. The fused portion may be formed continuously so as to surround the recess. Thereby, the user can easily know whether or not the packaging container is sealed by the difference in color tone between the fused portion and the non-fused portion. A food tray etc. are mentioned as a tray.
 視認性の観点から、第1樹脂成形体は、第1繊維を含み、第2樹脂成形体は、第2繊維を含むことが好ましい。
 第1樹脂成形体が第1繊維を含み、第2樹脂成形体が第2繊維を含む場合、複合樹脂成形体は、不織布であってもよいし、織布であってもよいし、編物であってもよい。視認性の観点から、これらの中でも、複合樹脂成形体は、不織布であることが好ましい。「不織布」とは、繊維シート、ウェブ又はバットで、繊維が一方向又はランダムに配向しており、物理的交絡又は融着によって繊維間が結合されたものをいう。不織布は、紙、織物、編物、タフト及び縮じゅうフェルトを含まない。不織布としては、スパンボンド不織布、メルトブローン不織布、フラッシュ紡糸不織布等が挙げられる。「スパンボンド不織布」とは、熱可塑性樹脂組成物の溶融又は溶解によって,紡糸口金から紡糸された連続繊維(フィラメント)群を移動捕集部材上に積層し,一つ又は二つ以上の結合方法で作られた不織布を示す。結合方法は、後述する熱圧着を含む。熱可塑性樹脂組成物、紡糸口金、及び移動捕集部材については、後述する。織布としては、平織物、綾織物、朱子織物等が挙げられる。第1繊維及び第2繊維の各々は、長繊維であってもよいし、短繊維であってもよい。
From the viewpoint of visibility, it is preferable that the first resin molded body contains the first fibers and the second resin molded body contains the second fibers.
When the first resin molded body contains the first fibers and the second resin molded body contains the second fibers, the composite resin molded body may be a nonwoven fabric, a woven fabric, or a knitted fabric. There may be. From the viewpoint of visibility, among these, the composite resin molded article is preferably a nonwoven fabric. "Nonwoven" means a fibrous sheet, web or batt in which the fibers are unidirectionally or randomly oriented and are bonded together by physical entanglement or fusion. Nonwovens do not include paper, wovens, knits, tufts and crimped felts. Nonwoven fabrics include spunbond nonwoven fabrics, meltblown nonwoven fabrics, flash-spun nonwoven fabrics, and the like. "Spunbonded nonwoven fabric" refers to a group of continuous fibers (filaments) spun from a spinneret by melting or dissolving a thermoplastic resin composition, laminated on a moving collection member, and bonded by one or more methods. shows a nonwoven fabric made of The bonding method includes thermocompression bonding, which will be described later. The thermoplastic resin composition, spinneret, and moving collection member will be described later. Woven fabrics include plain weaves, twill weaves, and satin weaves. Each of the first fibers and the second fibers may be long fibers or short fibers.
 発色剤は、第1繊維内に含まれ、呈色剤は、第2繊維内に含まれていることが好ましい。これにより、融着部は、その内部に、発色剤の反応物及び呈色剤の反応物を含む。その結果、融着部の発色又は変色は、融着部が外部から着色塗料等を用いて着色されている場合よりも、融着部の摩耗によって変化しにくい。 It is preferable that the coloring agent is contained within the first fiber and the coloring agent is contained within the second fiber. Thereby, the fused part contains the reactant of the color former and the reactant of the color former in its interior. As a result, the coloration or discoloration of the fused portion is less likely to change due to abrasion of the fused portion than when the fused portion is colored from the outside using a colored paint or the like.
 視認性の観点から、第1樹脂成形体は、第1繊維を含有する第1スパンボンドウェブを含有し、第2樹脂成形体は、第2繊維を含有する第2スパンボンドウェブを含有することが好ましい。「スパンボンドウェブ」とは、溶融又は溶解された熱可塑性樹脂組成物を紡糸口金から押し出し,連続繊維(フィラメント)を移動捕集部材上に積層することによって作られたウェブを示す。スパンボンドウェブは、スパンボンドウェブを構成する繊維同士が結合されていない点で、スパンボンド不織布と異なる。第1樹脂成形体が、第1繊維を含有する第1スパンボンドウェブを含有し、第2樹脂成形体が、第2繊維を含有する第2スパンボンドウェブを含有する場合、複合樹脂成形体は、多層スパンボンド不織布であってもよい。多層スパンボンド不織布は、第1スパンボンドウェブを構成する第1繊維と、第2スパンボンドウェブを構成する第2繊維と、融着部とを備えるものでもよい。第1スパンボンドウェブは、第2スパンボンドウェブの一方の主面上に積層されていることが好ましい。第1スパンボンドウェブを構成する第1繊維、及び第2スパンボンドウェブを構成する第2繊維の各々は、長繊維である。長繊維の定義については後述する。
 多層スパンボンド不織布の詳細については後述する。
 以下、複合樹脂成形体が多層スパンボンド不織布である場合、複合樹脂成形体を「多層スパンボンド不織布」という場合がある。
From the viewpoint of visibility, the first resin molded body contains a first spunbond web containing first fibers, and the second resin molded body contains a second spunbond web containing second fibers. is preferred. "Spunbond web" refers to a web made by extruding a molten or melted thermoplastic resin composition through a spinneret and laying continuous fibers (filaments) onto a moving collection member. Spunbond webs differ from spunbond nonwovens in that the fibers that make up the spunbond web are not bonded together. When the first resin molded body contains the first spunbond web containing the first fibers and the second resin molded body contains the second spunbond web containing the second fibers, the composite resin molded body is , a multi-layer spunbond nonwoven. The multi-layer spunbond nonwoven fabric may comprise first fibers forming a first spunbond web, second fibers forming a second spunbond web, and fused portions. Preferably, the first spunbond web is laminated onto one major surface of the second spunbond web. Each of the first fibers that make up the first spunbond web and the second fibers that make up the second spunbond web are long fibers. The definition of long fibers will be described later.
Details of the multilayer spunbond nonwoven fabric will be described later.
Hereinafter, when the composite resin molded article is a multilayer spunbond nonwoven fabric, the composite resin molded article may be referred to as a "multilayer spunbond nonwoven fabric."
 視認性の観点から、複合樹脂成形体は、混繊スパンボンドウェブであることが好ましい。混繊スパンボンドウェブは、第1繊維及び第2繊維の各々によって構成されてもよい。混繊スパンボンドウェブは、第1繊維及び第2繊維を含む。第1繊維及び第2繊維の各々が混繊スパンボンドウェブを構成する場合、複合樹脂成形体は、混繊スパンボンド不織布であることが好ましい。混繊スパンボンド不織布は、混繊スパンボンドウェブを構成する第1繊維及び第2繊維と、融着部とを備える。混繊スパンボンドウェブを構成する第1繊維、及び混繊スパンボンドウェブを構成する第2繊維の各々は、長繊維である。
 混繊スパンボンド不織布の詳細については後述する。
 以下、複合樹脂成形体が混繊スパンボンド不織布である場合、複合樹脂成形体を「混繊スパンボンド不織布」という場合がある。
From the viewpoint of visibility, the composite resin molded article is preferably a mixed fiber spunbond web. The mixed fiber spunbond web may be composed of each of the first fibers and the second fibers. A mixed fiber spunbond web includes first fibers and second fibers. When each of the first fibers and the second fibers constitutes a mixed fiber spunbonded web, the composite resin molding is preferably a mixed fiber spunbonded nonwoven fabric. The mixed fiber spunbonded nonwoven fabric includes first fibers and second fibers forming a mixed fiber spunbonded web, and a fused portion. Each of the first fibers constituting the mixed fiber spunbond web and the second fibers constituting the mixed fiber spunbond web are long fibers.
The details of the mixed fiber spunbond nonwoven fabric will be described later.
Hereinafter, when the composite resin molded article is a mixed fiber spunbonded nonwoven fabric, the composite resin molded article may be referred to as a "mixed fiber spunbonded nonwoven fabric."
<融着部>
 融着部は、第1樹脂成形体と第2樹脂成形体とを結合するとともに、非融着部とは色調が異なる部位である。
 融着部は、発色剤の反応物及び呈色剤の反応物を含む。融着部は、第1熱可塑性樹脂及び第2熱可塑性樹脂を含んでもよい。融着部は、発色剤の未反応物及び呈色剤の未反応物を含んでもよい。
 融着部は、複合樹脂成形体のうち、1か所に形成されていてもよいし、複数個所に形成されていてもよい。融着部が形成される部位、融着部の形状等は、複合樹脂成形体の用途等に応じて適宜調整すればよい。
 複合樹脂成形体が不織布である場合、融着部は非融着部に対して薄肉(フィルム状)である。
 融着部の面積率は、100%でなければ、複合樹脂成形体の用途等に応じて適宜調整される。融着部の面積率は、複合樹脂成形体が不織布である場合、好ましくは7%~20%である。融着部の面積率は、複合樹脂成形体から10mm×10mmの大きさの試験片を採取し、試験片のエンボスロールとの接触面を、電子顕微鏡(倍率:100倍)で観察し、観察した複合樹脂成形体の面積に対する、融着部の面積の割合である。
<Fusion part>
The fused portion is a portion that joins the first resin molded body and the second resin molded body and has a different color tone from the non-fused portion.
The fused portion includes a reactant of the color former and a reactant of the color former. The fused portion may include a first thermoplastic resin and a second thermoplastic resin. The fused portion may contain an unreacted product of the color former and an unreacted product of the color former.
The fused portion may be formed at one location or at a plurality of locations in the composite resin molded body. The site where the fused portion is formed, the shape of the fused portion, and the like may be appropriately adjusted according to the application of the composite resin molding.
When the composite resin molded article is a non-woven fabric, the fused portion is thinner (film-like) than the non-fused portion.
If the area ratio of the fused portion is not 100%, it is appropriately adjusted according to the application of the composite resin molding. The area ratio of the fused portion is preferably 7% to 20% when the composite resin molded article is a nonwoven fabric. The area ratio of the fused portion was determined by taking a test piece of 10 mm x 10 mm from the composite resin molding, and observing the contact surface of the test piece with the embossing roll with an electron microscope (magnification: 100 times). It is the ratio of the area of the fused portion to the area of the composite resin molded body.
 融着部は、少なくともその内部に、発色剤と呈色剤との発色化合物(即ち、発色剤と呈色剤とが反応して発色又は変色した反応物であり、発色剤が発色又は変色をしている化合物を指す。)を含むことが好ましい。これにより、融着部の発色又は変色は、加熱時の反応によって生成した発色化合物に起因するものであるため、融着部が外部から着色塗料等を用いて着色されている場合よりも、融着部の摩耗によって変化しにくい。 The fused part is a color-forming compound of a color former and a color former (that is, a reaction product obtained by reaction between the color former and the color former to develop or change color, and the color former causes color development or color change). It refers to a compound that has As a result, since the color development or discoloration of the fused portion is caused by the color-developing compound generated by the reaction during heating, the fused portion is colored from the outside using a colored paint or the like. Hard to change due to wear of the attachment part.
<色差(ΔE)>
 融着部と非融着部との色調の差は、CIE(国際照明委員会)で規格化されたLa色空間(以下、「CIELab色空間」という。)による色差(ΔE)を用いて定量化され得る。なお、融着部の融着前の構成は、非融着部の構成と同様であるため、融着部と非融着部との色調の差を、融着前後の色調の差とみなすことができる。
 CIELab色空間は、L軸、a軸及びb軸が互いに直交した三次元座標系で表される。L軸は明度を表す。L値は0~100の範囲内であり、L値が大きいほど明るいことを示す。a軸の+方向は赤みを表す。a軸の-方向は/緑を表す。b軸の+方向は黄色さを表す。b軸の-方向は青さを表す。CIELAB色空間による2色の間の色差(ΔE)は、CIELab色空間の色座標(表色系)間のユークリッド距離を定義する。
<Color difference (ΔE * )>
The difference in color tone between the fused portion and the non- fused portion is the color difference ( ΔE * ). Since the configuration of the fused portion before fusion is the same as the configuration of the non-fused portion, the difference in color tone between the fused portion and the non-fused portion should be regarded as the difference in color tone before and after fusion. can be done.
The CIELab color space is represented by a three-dimensional coordinate system in which the L * , a *, and b* axes are orthogonal to each other. The L * axis represents lightness. The L value ranges from 0 to 100, and the larger the L value, the brighter the image. The + direction of the a * axis represents redness. The − direction of the a * axis represents /green. The + direction of the b * axis represents yellowness. The − direction of the b * axis represents blueness. The color difference (ΔE * ) between two colors in the CIELAB color space defines the Euclidean distance between color coordinates (color system) in the CIELab color space.
 融着前後のΔEは、分光測色計を用いて測定され得る。詳しくは、非融着部の反射光のL1値、a1値、b1値と、融着部の反射光のL2値、a2値、b2値をそれぞれ測定し、これらの測定値を下式(A)に当てはめることで、ΔEは求められる。
 ΔEは、発色剤の発色又は変色による色調変化の指標である。ΔEの値が大きいほど視覚的なコントラストに優れていることを示す。
ΔE * before and after fusion can be measured using a spectrophotometer. Specifically, the L1 * value, a1 * value, and b1 * value of the reflected light from the non-fused portion and the L2 * value, a2 * value, and b2 * value of the reflected light from the fused portion are measured. ΔE * is obtained by applying the value to the following formula (A).
ΔE * is an index of color tone change due to color development or color change of the color former. A larger value of ΔE * indicates better visual contrast.
 式(A):ΔE=((L1-L2+(a1-a2+(b1-b21/2 Formula (A): ΔE * = ((L1 * -L2 * ) 2+ (a1 * -a2 * ) 2+ (b1 * -b2 * ) 2 ) 1/2
 分光測色計としては、例えば、コニカミノルタ株式会社製の「CM-3700A」等が挙げられる。 Examples of spectrophotometers include "CM-3700A" manufactured by Konica Minolta, Inc.
 視認性の観点から、ΔEは、好ましくは3~120、より好ましくは6~120、さらに好ましくは8~120、特に好ましくは10~120、一層好ましくは15~120、より一層好ましくは20~120である。 From the viewpoint of visibility, ΔE * is preferably 3 to 120, more preferably 6 to 120, still more preferably 8 to 120, particularly preferably 10 to 120, still more preferably 15 to 120, still more preferably 20 to 120.
 ΔLの好ましい範囲は、発色又は変色する前の状態の発色剤(以下、「第1発色剤」という。)が無彩色及び有彩色のどちらであるかによって異なる。「無彩色」とは、白、灰色又は黒を示す。「有彩色」とは無彩色以外の全ての色を示し、例として、赤、黄赤、黄、黄緑、緑、青緑、青、青紫、紫、又は赤紫が挙げられる。
 融着前後の明度差の観点から、第1発色剤が無彩色である場合、ΔLは、好ましくは-100~-15、より好ましくは-100~-20、さらに好ましくは-100~-25、特に好ましくは-100~-30、一層好ましくは-100~-35である。
 融着前後の明度差の観点から、第1発色剤が有彩色である場合、ΔLは、好ましくは-100~-90、より好ましくは-100~-80、さらに好ましくは-100~-70、特に好ましくは-100~-60である。
The preferred range of ΔL * varies depending on whether the color former before developing or discoloring (hereinafter referred to as “first color former”) is achromatic or chromatic. "Achromatic" refers to white, gray or black. "Chromatic" refers to all colors other than achromatic, examples of which include red, yellow-red, yellow, yellow-green, green, blue-green, blue, blue-violet, purple, or red-purple.
From the viewpoint of lightness difference before and after fusion bonding, when the first color former is achromatic, ΔL * is preferably -100 to -15, more preferably -100 to -20, and still more preferably -100 to -25. , particularly preferably -100 to -30, more preferably -100 to -35.
From the viewpoint of the lightness difference before and after fusion bonding, when the first color former is a chromatic color, ΔL * is preferably -100 to -90, more preferably -100 to -80, and even more preferably -100 to -70. , particularly preferably -100 to -60.
 Δaの好ましい範囲は、第1発色剤の色によって異なる。
 第1発色の色彩が赤色系である場合、Δaは、好ましくは+15以上、より好ましくは+20以上、さらに好ましくは+25以上、特に好ましくは+30以上である。第1発色剤の色彩が緑色系である場合、Δaは、好ましくは-15以下、より好ましくは-20以下、さらに好ましくは-25以下、特に好ましくは-30以下である。
A preferred range of Δa * varies depending on the color of the first color former.
When the first color is reddish, Δa * is preferably +15 or more, more preferably +20 or more, even more preferably +25 or more, and particularly preferably +30 or more. When the color of the first color coupler is green, Δa * is preferably −15 or less, more preferably −20 or less, still more preferably −25 or less, and particularly preferably −30 or less.
 Δbの好ましい範囲は、第1発色剤の色によって異なる。
 第1発色剤の色彩が青色系である場合、Δbは、-15以下が好ましく、-20以下がより好ましく、-25以下がさらに好ましく、-30以下が特に極めて好ましい。
A preferred range of Δb * varies depending on the color of the first color former.
When the color of the first color coupler is blue, Δb * is preferably −15 or less, more preferably −20 or less, even more preferably −25 or less, and most preferably −30 or less.
(発色剤及び呈色剤)
 発色剤及び呈色剤の組合せは、発色剤が呈色剤との化学的相互作用により発色又は変色し、かつ、第1樹脂成形体、第2樹脂成形体、及び複合樹脂成形体の成形を正常に実施できる限りにおいて、自由に選択してよい。具体的には、酸化剤と還元剤、酸と塩基、などが挙げられる。安全性や取り扱いの簡便さの観点から、酸と塩基の組み合わせが好ましい。すなわち、発色剤と呈色剤との化学的相互作用は、酸塩基反応を含むことがより好ましく、酸塩基反応であることがより好ましい。
(Color former and color former)
The combination of the color former and the color former is such that the color former develops or changes color by chemical interaction with the color former, and the first resin molded body, the second resin molded body, and the composite resin molded body are molded. As long as it can be done normally, you can choose freely. Specific examples include an oxidizing agent and a reducing agent, an acid and a base, and the like. A combination of an acid and a base is preferred from the viewpoint of safety and ease of handling. That is, the chemical interaction between the color former and the color former more preferably includes an acid-base reaction, more preferably an acid-base reaction.
(発色剤)
 発色剤は、複合樹脂成形体の用途、及び呈色剤との化学的相互作用によって発色する色調等に応じて適宜選択される。複合樹脂成形体の融着部と非融着部との色調差を強調する観点から、発色剤は、有色から有色へと変色する色素よりも、無色から有色へと発色する色素であることが好ましく、ロイコ色素を含むことがより好ましく、ロイコ色素であることがさらに好ましい。
(color former)
The coloring agent is appropriately selected according to the application of the composite resin molded article, the color tone developed by chemical interaction with the coloring agent, and the like. From the viewpoint of emphasizing the color tone difference between the fused portion and the non-fused portion of the composite resin molding, the color former is preferably a dye that develops color from colorless to colored rather than a dye that changes color from colored to colored. It preferably contains a leuco dye, more preferably a leuco dye.
 酸塩基反応によって発色するロイコ色素としては、例えば、インドリルフタリド系化合物、インドールフタリド系化合物、フルオラン系化合物、トリフェニルメタンフタリド系化合物、フェノチアジン系化合物、インドリルアザフタリド系化合物、トリフェニルメタン系化合物、スピロピラン系化合物、トリアゼン系化合物、ロイコオーラミン系化合物、ローダミンラクタム系化合物等が挙げられる。インドリルアザフタリド系化合物は、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-エチル-2-メチル-3-インドリル)-4-アザフタリドを含む。インドールフタリド系化合物は、3,3-ビス(1-n-ブチル-2-メチルインドール-3-イル)フタリドを含む。これらのロイコ色素は、分子内にラクトン環を有する無色又は淡色の塩基性化合物である。これらのロイコ色素は、酸によってラクトン環が開裂して発色し、塩基によってラクトン環の閉環構造が変化し無色又は淡色になる。すなわち、ロイコ色素の呈色反応は、可逆的である。これらのロイコ色素は一種単独で使用してもよいし、二種以上組み合わせて使用してもよい。
 複合樹脂成形体がスパンボンド不織布である場合、ロイコ色素は、250℃において熱分解しない化合物であることが好ましい。スパンボンド不織布は、後述する多層スパンボンド不織布、及び後述する混繊スパンボンド不織布を含む。スパンボンド不織布は、スパンボンド不織布の製造過程において、250℃の雰囲気下に曝される場合がある。そのため、ロイコ色素が、250℃において熱分解しない化合物であれば、融着部が外部から着色されていなくても色調によって視認されやすい。
 250℃において、熱分解しないロイコ色素としては、例えば、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-エチル-2-メチル-3-インドリル)-4-アザフタリド、3,3-ビス(1-n-ブチル-2-メチルインドール-3-イル)フタリド等が挙げられる。
Examples of leuco dyes that develop color by an acid-base reaction include indolylphthalide-based compounds, indolephthalide-based compounds, fluoran-based compounds, triphenylmethanephthalide-based compounds, phenothiazine-based compounds, indolylazaphthalide-based compounds, Examples include triphenylmethane compounds, spiropyran compounds, triazene compounds, leuco auramine compounds, rhodamine lactam compounds, and the like. Indolylazaphthalide-based compounds include 3-(4-diethylamino-2-ethoxyphenyl)-3-(1-ethyl-2-methyl-3-indolyl)-4-azaphthalide. Indolephthalide compounds include 3,3-bis(1-n-butyl-2-methylindol-3-yl)phthalide. These leuco dyes are colorless or light-colored basic compounds having a lactone ring in the molecule. These leuco dyes develop color when the lactone ring is cleaved by an acid, and become colorless or light-colored when the closed structure of the lactone ring is changed by a base. That is, the color reaction of leuco dyes is reversible. These leuco dyes may be used singly or in combination of two or more.
When the composite resin molded article is a spunbond nonwoven fabric, the leuco dye is preferably a compound that does not thermally decompose at 250°C. Spunbond nonwoven fabrics include multilayer spunbond nonwoven fabrics described below and mixed fiber spunbond nonwoven fabrics described below. A spunbonded nonwoven fabric may be exposed to an atmosphere of 250° C. during the manufacturing process of the spunbonded nonwoven fabric. Therefore, if the leuco dye is a compound that does not thermally decompose at 250° C., even if the fused portion is not colored from the outside, the fused portion is easily visible due to its color tone.
Examples of leuco dyes that do not thermally decompose at 250° C. include 3-(4-diethylamino-2-ethoxyphenyl)-3-(1-ethyl-2-methyl-3-indolyl)-4-azaphthalide, 3,3 -bis(1-n-butyl-2-methylindol-3-yl)phthalide and the like.
 発色剤の含有量は、第1樹脂成形体の形状等に応じて適宜選択される。
 第1樹脂成形体が繊維である場合、発色剤の含有量は、第1樹脂成形体の総量に対して、好ましくは0.01質量%~15質量%、より好ましくは0.1質量%~10質量%である。発色剤の含有量が上記範囲内であれば、糸切れ等の成形不良の発生を抑制することができる。発色剤の含有量が上記範囲内であれば、複合樹脂成形体の融着部に十分な視認性を与えることができる。
 第1樹脂成形体がシート状物である場合、発色剤の含有量は、第1樹脂成形体の総量に対して、好ましくは0.01質量%~15質量%、より好ましくは0.1質量%~10質量%である。発色剤の含有量が上記範囲内であれば、シート破れ等の成形不良の発生を抑制することができる。発色剤の含有量が上記範囲内であれば、複合樹脂成形体の融着部に十分な視認性を与えることができる。
The content of the coloring agent is appropriately selected according to the shape of the first resin molding and the like.
When the first resin molding is a fiber, the content of the coloring agent is preferably 0.01% by mass to 15% by mass, more preferably 0.1% by mass to 15% by mass, based on the total amount of the first resin molding 10% by mass. If the content of the coloring agent is within the above range, it is possible to suppress the occurrence of molding defects such as thread breakage. If the content of the coloring agent is within the above range, sufficient visibility can be imparted to the fused portion of the composite resin molding.
When the first resin molded body is a sheet-like article, the content of the color former is preferably 0.01% by mass to 15% by mass, more preferably 0.1% by mass, relative to the total amount of the first resin molded body. % to 10% by mass. If the content of the coloring agent is within the above range, it is possible to suppress the occurrence of molding defects such as sheet tearing. If the content of the coloring agent is within the above range, sufficient visibility can be imparted to the fused portion of the composite resin molding.
(呈色剤)
 呈色剤は、発色剤の種類等に応じて、適宜選択される。
 塩基性ロイコ色素を発色させうる呈色剤としては、フェノール性化合物、高級脂肪酸、芳香族カルボン酸等が挙げられる。フェノール性化合物としては、例えば、ビスフェノールS、4-イソプロポキシフェニル-4-ヒドロキシフェニルスルホン等が挙げられる。高級脂肪酸としては、ステアリン酸等が挙げられる。これらの呈色剤は一種単独で使用してもよいし、二種以上組み合わせて使用してもよい。
 複合樹脂成形体がスパンボンド不織布である場合、呈色剤は、250℃において熱分解しない化合物であることが好ましい。スパンボンド不織布は、スパンボンド不織布の製造過程において、250℃の雰囲気下に曝される場合がある。そのため、呈色剤が、250℃において熱分解しない化合物であれば、融着部が外部から着色されていなくても色調によって視認されやすい。
 250℃において、熱分解しない呈色剤としては、例えば、ビスフェノールS、4-イソプロポキシフェニル-4-ヒドロキシフェニルスルホン、ステアリン酸等が挙げられる。
 呈色剤の融点は、複合樹脂成形体の融着部を形成する温度(以下、「融着温度」という。)よりも低いことが好ましい。これにより、第1樹脂成形体の一部及び第2樹脂成形体の一部が融着温度で加熱された際、呈色剤は、融解しやすい。そのため、融着部において、発色剤及び呈色剤は、融点が融着温度以上の呈色剤を用いる場合よりもより混合された状態で保持される。つまり、融着部は、より発色しやすくなる。その結果、融着部は、外部から着色されていなくても色調によってより視認されやすい。
 複合樹脂成形体がスパンボンド不織布である場合、呈色剤の融点は、150℃以下であることが好ましい。融点が150℃以下の呈色剤としては、4-イソプロポキシフェニル-4-ヒドロキシフェニルスルホン、ステアリン酸等挙げられる。
 複合樹脂成形体がスパンボンド不織布である場合、第2樹脂成形体の成形性の観点から、呈色剤は、高級脂肪酸であることが好ましい。
 発色剤が塩基性ロイコ色素であり、融着部をより強く発色させたい場合、呈色剤の酸性度が高いこと、すなわち酸解離定数(pKa)が低いことが好ましい。これにより、ロイコ色素と呈色剤が混合すると、ロイコ色素のラクトン環は開環しやすくなる。つまり、ロイコ色素は発色しやすくなる。
(coloring agent)
The color former is appropriately selected according to the type of the color former.
Coloring agents capable of developing basic leuco dyes include phenolic compounds, higher fatty acids, aromatic carboxylic acids, and the like. Examples of phenolic compounds include bisphenol S, 4-isopropoxyphenyl-4-hydroxyphenylsulfone, and the like. Stearic acid etc. are mentioned as a higher fatty acid. These colorants may be used singly or in combination of two or more.
When the composite resin molded article is a spunbond nonwoven fabric, the colorant is preferably a compound that does not thermally decompose at 250°C. A spunbonded nonwoven fabric may be exposed to an atmosphere of 250° C. during the manufacturing process of the spunbonded nonwoven fabric. Therefore, if the coloring agent is a compound that does not thermally decompose at 250° C., the color tone of the fused portion is easily visible even if the fused portion is not colored from the outside.
Examples of coloring agents that do not thermally decompose at 250° C. include bisphenol S, 4-isopropoxyphenyl-4-hydroxyphenyl sulfone, and stearic acid.
The melting point of the coloring agent is preferably lower than the temperature at which the fused portion of the composite resin molding is formed (hereinafter referred to as "fusion temperature"). Accordingly, when a part of the first resin molded body and a part of the second resin molded body are heated at the fusion bonding temperature, the colorant is easily melted. Therefore, in the fused portion, the color former and the color former are kept in a more mixed state than when a color former having a melting point equal to or higher than the fusion temperature is used. That is, the fused portion becomes more easily colored. As a result, even if the fused portion is not colored from the outside, it is more easily visible due to its color tone.
When the composite resin molded article is a spunbond nonwoven fabric, the melting point of the coloring agent is preferably 150° C. or less. Coloring agents having a melting point of 150° C. or lower include 4-isopropoxyphenyl-4-hydroxyphenyl sulfone, stearic acid and the like.
When the composite resin molded article is a spunbond nonwoven fabric, the colorant is preferably a higher fatty acid from the viewpoint of moldability of the second resin molded article.
When the color former is a basic leuco dye and the fused portion is desired to be colored more strongly, the acidity of the color former is preferably high, that is, the acid dissociation constant (pKa) is low. As a result, when the leuco dye and the colorant are mixed, the lactone ring of the leuco dye is easily opened. That is, the leuco dye becomes easy to develop color.
 呈色剤の含有量は、第2樹脂成形体の形状等に応じて適宜選択される。
 第2樹脂成形体が繊維である場合、呈色剤の含有量は、第2樹脂成形体の総量に対して、好ましくは0.01質量%~15質量%、より好ましくは0.1質量%~10質量%である。呈色剤の含有量が上記範囲内であれば、糸切れ等の成形不良の発生を抑制することができる。呈色剤の含有量が上記範囲内であれば、複合樹脂成形体の融着部に十分な視認性を与えることができる。
 第2樹脂成形体がシート状物である場合、呈色剤の含有量は、第2樹脂成形体の総量に対して、好ましくは0.01質量%~15質量%、より好ましくは0.1質量%~10質量%である。呈色剤の含有量が上記範囲内であれば、シート破れ等の成形不良の発生を抑制することができる。呈色剤の含有量が上記範囲内であれば、複合樹脂成形体の融着部に十分な視認性を与えることができる。
The content of the coloring agent is appropriately selected according to the shape of the second resin molding and the like.
When the second resin molded body is a fiber, the content of the coloring agent is preferably 0.01% by mass to 15% by mass, more preferably 0.1% by mass, based on the total amount of the second resin molded body. ~10% by mass. If the content of the coloring agent is within the above range, the occurrence of molding defects such as thread breakage can be suppressed. If the content of the coloring agent is within the above range, sufficient visibility can be imparted to the fused portion of the composite resin molding.
When the second resin molded product is a sheet-shaped product, the content of the colorant is preferably 0.01% by mass to 15% by mass, more preferably 0.1%, based on the total amount of the second resin molded product. % to 10% by mass. If the content of the coloring agent is within the above range, it is possible to suppress the occurrence of molding defects such as sheet tearing. If the content of the coloring agent is within the above range, sufficient visibility can be imparted to the fused portion of the composite resin molding.
 第1樹脂成形体は、呈色剤を含有せず、第2樹脂成形体は、前記発色剤を含有しないことが好ましい。これにより、融着部と非融着部とのコントラストをより強めることができる。その結果、融着部は、外部から着色されていなくても色調によってより視認されやすい。 It is preferable that the first resin molded body does not contain a coloring agent, and the second resin molded body does not contain the coloring agent. Thereby, the contrast between the fused portion and the non-fused portion can be enhanced. As a result, even if the fused portion is not colored from the outside, it is more easily visible due to its color tone.
(第1熱可塑性樹脂)
 第1熱可塑性樹脂は、熱可塑性樹脂であれば特に限定されず、複合樹脂成形体の用途等に応じて適宜選択される。なかでも、第1熱可塑性樹脂は、透明であることが好ましい。このような透明な熱可塑性樹脂としては、「プラスチック材料活用事典」(版数:初版,発行所:産業調査会事典出版センター、発行年月日:2001年10月20日)に記載の樹脂を参照してもよい。具体的に、透明な熱可塑性樹脂としては、例えば、ポリオレフィン、汎用ポリスチレン(GPPS:General Purpose Polysthylene)、ポリ塩化ビニル、ポリアミド、ポリエステル、ポリカーボネート、メタクリル樹脂又はこれらの混合物等が挙げられる。ポリオレフィンとしては、例えば、プロピレン系重合体、低密度ポリエチレン(LDPE:Low Density Polyethylene)、線状低密度ポリエチレン(LLDPE:Linear Low Density Polyethylene)、高密度ポリエチレン(HDPE:High Density Polyethylene)等が挙げられる。プロピレン系重合体は、プロピレン単独重合体、プロピレン共重合体等が挙げられる。
(First thermoplastic resin)
The first thermoplastic resin is not particularly limited as long as it is a thermoplastic resin, and is appropriately selected according to the intended use of the composite resin molding. Among them, the first thermoplastic resin is preferably transparent. As such a transparent thermoplastic resin, resins described in "Encyclopedia of Plastic Material Utilization" (Edition number: First edition, Publisher: Industrial Research Institute Encyclopedia Publishing Center, Date of publication: October 20, 2001) are used. You can refer to it. Specific examples of transparent thermoplastic resins include polyolefins, general purpose polystyrene (GPPS), polyvinyl chloride, polyamides, polyesters, polycarbonates, methacrylic resins, and mixtures thereof. Examples of polyolefins include propylene-based polymers, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE). . Examples of the propylene-based polymer include propylene homopolymers and propylene copolymers.
 中でも、第1樹脂成形体が繊維である場合、成形時の紡糸安定性や不織布の延伸加工性の観点から、第1熱可塑性樹脂は、プロピレン系重合体を含むことが好ましく、プロピレン系重合体であることが特に好ましい。
 プロピレン単独重合体の融点(Tm)は、好ましくは155℃以上、より好ましくは157℃~165℃である。プロピレン共重合体の融点(Tm)は、好ましくは130℃以上155℃未満、より好ましくは130℃~150℃である。
 プロピレン共重合体は、プロピレンと、1種又は2種以上のα-オレフィンとの共重合体が好ましい。α-オレフィンとしては、炭素数2以上(但し炭素数3を除く)のα-オレフィン、好ましくは炭素数2~8(但し炭素数3を除く)のα-オレフィンである。炭素数2以上のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等が挙げられる。
 プロピレン系重合体のメルトフローレート(MFR)は、溶融紡糸し得る限り、特に限定はされないが、通常、1g/10分~1000g/10分、好ましくは5g/10分~500g/10分、さらに好ましくは10g/10分~100g/10分である。
 プロピレン系重合体のメルトフローレートは、ASTMD-1238、230℃、荷重2.16kgの条件で測定される。
Among them, when the first resin molding is a fiber, the first thermoplastic resin preferably contains a propylene polymer from the viewpoint of spinning stability during molding and stretching processability of the nonwoven fabric. is particularly preferred.
The melting point (Tm) of the propylene homopolymer is preferably 155°C or higher, more preferably 157°C to 165°C. The melting point (Tm) of the propylene copolymer is preferably 130°C or higher and lower than 155°C, more preferably 130°C to 150°C.
The propylene copolymer is preferably a copolymer of propylene and one or more α-olefins. The α-olefin is an α-olefin having 2 or more carbon atoms (excluding 3 carbon atoms), preferably an α-olefin having 2 to 8 carbon atoms (excluding 3 carbon atoms). Examples of α-olefins having 2 or more carbon atoms include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like.
The melt flow rate (MFR) of the propylene-based polymer is not particularly limited as long as it can be melt-spun, but is usually 1 g/10 minutes to 1000 g/10 minutes, preferably 5 g/10 minutes to 500 g/10 minutes, and further It is preferably 10 g/10 minutes to 100 g/10 minutes.
The melt flow rate of a propylene-based polymer is measured under the conditions of ASTM D-1238, 230° C., and a load of 2.16 kg.
 第1熱可塑性樹脂の含有量は、第1樹脂成形体の総量に対して、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。 The content of the first thermoplastic resin is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, relative to the total amount of the first resin molding.
(第2熱可塑性樹脂)
 第2熱可塑性樹脂は、熱可塑性樹脂であれば特に限定されず、複合樹脂成形体の用途等に応じて適宜選択される。第2熱可塑性樹脂としては、第1熱可塑性樹脂として例示したものと同様のものが挙げられる。第2熱可塑性樹脂は、第1熱可塑性樹脂と同一であってもよいし、異なっていてもよい。第2熱可塑性樹脂は、プロピレン系重合体を含むことが好ましく、プロピレン系重合体であることが特に好ましい。
(Second thermoplastic resin)
The second thermoplastic resin is not particularly limited as long as it is a thermoplastic resin, and is appropriately selected according to the intended use of the composite resin molding. Examples of the second thermoplastic resin include those exemplified as the first thermoplastic resin. The second thermoplastic resin may be the same as or different from the first thermoplastic resin. The second thermoplastic resin preferably contains a propylene-based polymer, and is particularly preferably a propylene-based polymer.
 第2熱可塑性樹脂の含有量は、第2樹脂成形体の総量に対して、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。 The content of the second thermoplastic resin is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass or more, relative to the total amount of the second resin molding.
 第1熱可塑性樹脂及び第2熱可塑性樹脂は、上述した透明な熱可塑性樹脂(例えば、ポリオレフィン)を含むことが好ましい。これにより、第1樹脂成形体、第2樹脂成形体、及び融着部は、第1構成よりも透明になりやすい。第1構成では、第1熱可塑性樹脂及び第2熱可塑性樹脂の各々は、透明な熱可塑性樹脂(例えば、ポリオレフィン)を含まない。つまり、発色剤の発色又は変色に起因する、融着部と非融着部とのコントラストをより強めることができる。その結果、融着部は、外部から着色されていなくても色調によってより視認されやすい。 The first thermoplastic resin and the second thermoplastic resin preferably contain the transparent thermoplastic resin (for example, polyolefin) described above. As a result, the first resin molded body, the second resin molded body, and the fused portion are more likely to become transparent than in the first configuration. In a first configuration, each of the first thermoplastic resin and the second thermoplastic resin does not include a transparent thermoplastic resin (eg, polyolefin). In other words, the contrast between the fused portion and the non-fused portion caused by the coloring or discoloration of the coloring agent can be enhanced. As a result, even if the fused portion is not colored from the outside, it is more easily visible due to its color tone.
 第1樹脂成形体及び第2樹脂成形体の各々は、必要に応じて、本開示の一実施形態の効果を損なわれない範囲で、他の成分を含んでもよい。他の成分としては、例えば、増感剤、酸化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、スリップ剤、防曇剤、滑剤、染料、顔料、耐光安定剤、ブロッキング防止剤、分散剤、核剤、柔軟剤、撥水剤、充填剤、天然油、合成油、エチレン系重合体ワックス以外のワックス、抗菌剤、防腐剤、艶消し剤、防錆剤、芳香剤、消泡剤、防黴剤、防虫剤等が挙げられる。これら他の成分は、複合樹脂成形体の内部に含まれていてもよく、複合樹脂成形体の表面に付着していてもよい。 Each of the first resin molded body and the second resin molded body may contain other components, if necessary, within a range that does not impair the effects of one embodiment of the present disclosure. Other components include, for example, sensitizers, antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifog agents, lubricants, dyes, pigments, light stabilizers, antiblocking agents, dispersants agents, nucleating agents, softeners, water repellents, fillers, natural oils, synthetic oils, waxes other than ethylene-based polymer waxes, antibacterial agents, preservatives, matting agents, rust inhibitors, fragrances, antifoaming agents , antifungal agents, insect repellents, and the like. These other components may be contained inside the composite resin molded article or attached to the surface of the composite resin molded article.
[多層スパンボンド不織布]
 次に、多層スパンボンド不織布について、説明する。
 多層スパンボンド不織布は、上述したように、第1スパンボンドウェブを構成する第1繊維と、第2スパンボンドウェブを構成する第2繊維と、融着部とを備える。第1スパンボンドウェブは、第2スパンボンドウェブの一方の主面上に積層されている。融着部では、第1繊維の一部と第2繊維の一部とが融着している。
 第1スパンボンドウェブは、第1樹脂成形体の一例である。第2スパンボンドウェブは、第2樹脂成形体の一例である。
[Multilayer spunbond nonwoven fabric]
Next, the multilayer spunbond nonwoven fabric will be described.
The multi-layer spunbond nonwoven fabric, as described above, comprises the first fibers forming the first spunbond web, the second fibers forming the second spunbond web, and the fused portions. A first spunbond web is laminated onto one major surface of a second spunbond web. In the fused portion, part of the first fibers and part of the second fibers are fused.
The first spunbond web is an example of the first resin molding. The second spunbond web is an example of the second resin molding.
 多層スパンボンド不織布は、第1スパンボンドウェブを構成する第1繊維の一部と第2スパンボンドウェブを構成する第2繊維の一部とが融着している融着部を備える。そのため、融着部は、外部から着色されていなくても色調によって視認されやすい。その結果、多層スパンボンド不織布は、意匠性に優れる。 The multi-layer spunbond nonwoven fabric has a fused portion where some of the first fibers that make up the first spunbond web and some of the second fibers that make up the second spunbond web are fused together. Therefore, even if the fused portion is not colored from the outside, the fused portion is easily visible due to its color tone. As a result, the multilayer spunbond nonwoven fabric is excellent in design.
 発色剤は、第1スパンボンドウェブを構成する第1繊維に含まれ、呈色剤は、第2スパンボンドウェブを構成する第2繊維に含まれることが好ましい。これにより、融着部は、その内部に、発色剤の反応物及び呈色剤の反応物を含む。その結果、融着部の発色又は変色は、融着部が外部から着色塗料等を用いて着色されている場合よりも、融着部の摩耗によって変化しにくい。 The coloring agent is preferably contained in the first fibers constituting the first spunbond web, and the coloring agent is contained in the second fibers constituting the second spunbond web. Thereby, the fused part contains the reactant of the color former and the reactant of the color former in its interior. As a result, the coloration or discoloration of the fused portion is less likely to change due to abrasion of the fused portion than when the fused portion is colored from the outside using a colored paint or the like.
<第1スパンボンドウェブ>
 第1スパンボンドウェブの目付は、好ましくは360g/m以下、より好ましくは240g/m以下、さらに好ましくは150g/m以下、特に好ましくは15g/m~120g/m、さらに好ましくは8g/m~25g/mである。目付の測定方法は、実施例に記載の方法と同様である。
<First spunbond web>
The basis weight of the first spunbond web is preferably 360 g/m 2 or less, more preferably 240 g/m 2 or less, still more preferably 150 g/m 2 or less, particularly preferably 15 g/m 2 to 120 g/m 2 , still more preferably is between 8 g/m 2 and 25 g/m 2 . The method for measuring basis weight is the same as the method described in Examples.
 第1スパンボンドウェブを構成する第1繊維の平均繊維径は、好ましくは1μm~50μm、より好ましく1μmは~40μm、さらに好ましくは1μm~30μmである。第1スパンボンドウェブを構成する第1繊維の平均繊維径が小さいと、発色剤を含む繊維全体が溶融しやすくなり、融着部の色調視認性を向上できる観点で好ましい。
 平均繊維径は、次のようにして求められる。得られたスパンボンド不織布から、10mm×10mmの試験片を10点採取し、Nikon社製ECLIPSE E400顕微鏡を用いて、倍率20倍で、繊維の直径をμm単位で小数点第1位まで読み取る。1試験片毎に任意の20箇所の径を測定し、平均値を求める。
The average fiber diameter of the first fibers constituting the first spunbond web is preferably 1 μm to 50 μm, more preferably 1 μm to 40 μm, and still more preferably 1 μm to 30 μm. When the average fiber diameter of the first fibers constituting the first spunbond web is small, the entire fibers containing the coloring agent are easily melted, which is preferable from the viewpoint of improving the color tone visibility of the fused portion.
The average fiber diameter is obtained as follows. Ten 10 mm x 10 mm test pieces are taken from the obtained spunbond nonwoven fabric, and the fiber diameter is read to the first decimal place in μm using a Nikon ECLIPSE E400 microscope at 20x magnification. The diameter is measured at 20 arbitrary points for each test piece, and the average value is obtained.
 第1スパンボンドウェブの厚みは、多層スパンボンド不織布の用途等に応じて適宜選択され、好ましくは0.1mm~1.0mm、より好ましくは0.2mm~0.5mmである。第1スパンボンドウェブの厚みが上記範囲内であれば、スパンボンドウェブの溶融効率を高め融着部の形成を促進することができるとともに、観点及び融着部に適切な厚みを与え色調視認性を向上させることができる。
 第1スパンボンドウェブの厚みの測定方法は、実施例に記載の方法と同様である。
The thickness of the first spunbond web is appropriately selected depending on the use of the multilayer spunbond nonwoven fabric, and is preferably 0.1 mm to 1.0 mm, more preferably 0.2 mm to 0.5 mm. If the thickness of the first spunbond web is within the above range, the melting efficiency of the spunbond web can be enhanced and the formation of the fused portion can be promoted, and the viewpoint and the fused portion can be given an appropriate thickness to improve color tone visibility. can be improved.
The method for measuring the thickness of the first spunbond web is the same as the method described in the Examples.
<第2スパンボンドウェブ>
 第2スパンボンドウェブの目付は、第1スパンボンドウェブの目付として例示したものと同様である。第2スパンボンドウェブの目付は、第1スパンボンドウェブの目付と同一であってもよいし、異なっていてもよい。
<Second spunbond web>
The basis weight of the second spunbond web is the same as that exemplified as the basis weight of the first spunbond web. The basis weight of the second spunbond web may be the same as or different from the basis weight of the first spunbond web.
 第2スパンボンドウェブを構成する第2繊維の平均繊維径は、第1スパンボンドウェブを構成する第1繊維の平均繊維径として例示したものと同様のものが挙げられる。第2スパンボンドウェブを構成する第2繊維の平均繊維径は、第1スパンボンドウェブを構成する第1繊維の平均繊維径と同一であってもよいし、異なっていてもよい。第2スパンボンドウェブを構成する第2繊維の平均繊維径が小さいと、発色剤を含む繊維全体が溶融しやすくなり、融着部の色調視認性を向上できる観点で好ましい。 The average fiber diameter of the second fibers constituting the second spunbond web is the same as the average fiber diameter of the first fibers constituting the first spunbond web. The average fiber diameter of the second fibers forming the second spunbond web may be the same as or different from the average fiber diameter of the first fibers forming the first spunbond web. When the average fiber diameter of the second fibers constituting the second spunbond web is small, the entire fibers containing the color former are easily melted, which is preferable from the viewpoint of improving the visibility of the color tone of the fused portion.
 第2スパンボンドウェブの厚みは、多層スパンボンド不織布の用途等に応じて適宜選択され、好ましくは0.1mm~1.0mm、より好ましくは0.2mm~0.5mmである。第2スパンボンドウェブの厚みが上記範囲内であれば、スパンボンドウェブの溶融効率を高め融着部の形成を促進することができるとともに、融着部に適切な厚みを与え色調視認性を向上させることができる。
 第2スパンボンドウェブの厚みの測定方法は、実施例に記載の方法と同様である。
The thickness of the second spunbond web is appropriately selected depending on the application of the multilayer spunbond nonwoven fabric, and is preferably 0.1 mm to 1.0 mm, more preferably 0.2 mm to 0.5 mm. If the thickness of the second spunbonded web is within the above range, the melting efficiency of the spunbonded web can be increased, the formation of the fused portion can be promoted, and an appropriate thickness can be given to the fused portion to improve color visibility. can be made
The method for measuring the thickness of the second spunbond web is the same as the method described in the Examples.
<他の層>
 多層スパンボンド不織布は、第1スパンボンドウェブ、第2スパンボンドウェブ、及び融着部に加えて、他の層を備えていてもよい。他の層の構成は、1層であってもよく、2層以上であってもよい。他の層は、第1スパンボンドウェブ及び第2スパンボンドウェブの一方にのみ隣接する面に配されていてもよい。第1スパンボンドウェブ及び第2スパンボンドウェブの融着部の形成を阻害しない限りにおいて、第1スパンボンドウェブ及び第2スパンボンドウェブの間に配されていてもよい。
<Other layers>
The multi-layer spunbond nonwoven may comprise other layers in addition to the first spunbond web, the second spunbond web, and the fuses. Other layers may be composed of one layer or two or more layers. Other layers may be disposed on surfaces adjacent to only one of the first spunbond web and the second spunbond web. It may be disposed between the first spunbond web and the second spunbond web as long as it does not hinder the formation of the fused portions of the first spunbond web and the second spunbond web.
 他の層としては、例えば、繊維集合体、樹脂シート、樹脂フィルム等が挙げられる。
 繊維集合体としては、例えば、編物、織物、本開示の一実施形態に係る多層スパンボンド不織布以外の不織布(以下、単に「不織布」という。)等が挙げられる。
Other layers include, for example, fiber aggregates, resin sheets, resin films, and the like.
Examples of fiber aggregates include knitted fabrics, woven fabrics, nonwoven fabrics other than the multilayer spunbond nonwoven fabric according to an embodiment of the present disclosure (hereinafter simply referred to as "nonwoven fabrics"), and the like.
 不織布としては、短繊維不織布、長繊維不織布等が挙げられる。
 「短繊維」とは、平均繊維長200mm以下の繊維を示す。
 「長繊維」とは、不織布便覧(INDA米国不織布工業会編、株式会社不織布情報、1996年)等、当技術分野で一般的に用いられている「連続長繊維(continuous filament)」を示す。
 不織布としては、スパンボンド不織布、メルトブローン不織布、湿式不織布、乾式不織布、乾式パルプ不織布、フラッシュ紡糸不織布、開繊不織布等が挙げられる。繊維集合体は、コットン等の天然繊維のシート状物であってもよい。
 樹脂フィルムとしては、ポリオレフィンフィルム、ポリエステルフィルム、ポリアミドフィルム等が挙げられる。
 これらの他の層は組み合わせて、多層スパンボンド不織布に積層されていてもよい。例えば、多層スパンボンド不織布と、樹脂フィルムと、コットン等の天然繊維の繊維集合体とがこの順で積層されたものであってもよい。
Nonwoven fabrics include short fiber nonwoven fabrics, long fiber nonwoven fabrics, and the like.
“Short fibers” refer to fibers having an average fiber length of 200 mm or less.
"Long fiber" refers to "continuous filament" generally used in the technical field, such as Nonwoven Handbook (INDA American Nonwoven Fabric Manufacturers Association, Nonwoven Information Co., Ltd., 1996).
Nonwoven fabrics include spunbond nonwoven fabrics, meltblown nonwoven fabrics, wet nonwoven fabrics, dry nonwoven fabrics, dry pulp nonwoven fabrics, flash spun nonwoven fabrics, open fiber nonwoven fabrics, and the like. The fiber assembly may be a sheet of natural fibers such as cotton.
Examples of resin films include polyolefin films, polyester films, and polyamide films.
These other layers may be combined and laminated to the multi-layer spunbond nonwoven. For example, a multilayer spunbond nonwoven fabric, a resin film, and a fiber assembly of natural fibers such as cotton may be laminated in this order.
 多層スパンボンド不織布と積層する樹脂フィルムとしては、多層スパンボンド不織布が通気性を必要とする場合には、通気性フィルム、又は透湿性フィルムが好ましい。
 通気性フィルムとしては、例えば、熱可塑性エラストマーのフィルム、多孔フィルム等が挙げられる。熱可塑性エラストマーのフィルムとしては、透湿性を有するポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等が挙げられる。多孔フィルムは、無機粒子又は有機粒子を含む熱可塑性樹脂フィルムを延伸して多孔化してなる。多孔フィルムに用いる熱可塑性樹脂としては、高圧法低密度ポリエチレン、線状低密度ポリエチレン(LLDPE)、高密度ポリエチレン、ポリプロピレン、ポリプロピレンランダム共重合体、これらの組み合わせ等のポリオレフィンが挙げられる。
 多層スパンボンド不織布と積層する樹脂フィルムとしては、多層スパンボンド不織布が通気性を必要としない場合には、多孔化されていない熱可塑性樹脂フィルム等が挙げられる。多孔化されていない熱可塑性樹脂フィルムの材質としては、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリエステル、ポリアミドから選ばれる1種以上が挙げられる。
As the resin film to be laminated with the multilayer spunbond nonwoven fabric, when the multilayer spunbond nonwoven fabric requires air permeability, an air-permeable film or a moisture-permeable film is preferable.
Breathable films include, for example, thermoplastic elastomer films and porous films. Examples of thermoplastic elastomer films include moisture-permeable polyurethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, and the like. The porous film is made porous by stretching a thermoplastic resin film containing inorganic particles or organic particles. Thermoplastic resins used in porous films include polyolefins such as high pressure low density polyethylene, linear low density polyethylene (LLDPE), high density polyethylene, polypropylene, polypropylene random copolymers, and combinations thereof.
Examples of the resin film to be laminated with the multilayer spunbond nonwoven fabric include thermoplastic resin films that are not porous when the multilayer spunbond nonwoven fabric does not require air permeability. Examples of the material of the non-porous thermoplastic resin film include one or more selected from polyolefins (polyethylene, polypropylene, etc.), polyesters, and polyamides.
 多層スパンボンド不織布に他の層を積層する(貼り合せる)方法としては、特に制限されず、熱融着法、機械的交絡法、接着剤を用いる方法、押出しラミネート等が挙げられる。熱融着法は、熱エンボス加工、及び超音波融着を含む。機械的交絡法は、ニードルパンチ、及びウォータージェットを含む。接着剤は、ホットメルト接着剤、及びウレタン系接着剤を含む。 The method of laminating (bonding) other layers to the multilayer spunbond nonwoven fabric is not particularly limited, and includes heat fusion, mechanical entangling, methods using adhesives, extrusion lamination, and the like. Thermal fusion methods include thermal embossing and ultrasonic fusion. Mechanical interlacing methods include needle punch and water jet. Adhesives include hot melt adhesives and urethane adhesives.
<多層スパンボンド不織布の用途>
 多層スパンボンド不織布は、繊維製品に用いられ得る。繊維製品は、特に限定されず、吸収性物品、衛生物品、医療物品、衣料素材、包装材などが挙げられる。吸収性物品としては、例えば、使い捨てオムツ、生理用品等が挙げられる。衛生物品としては、衛生マスク等が挙げられる。医療物品としては、例えば、包帯等が挙げられる。
<Uses of multi-layer spunbond nonwoven fabric>
Multilayer spunbond nonwovens can be used in textiles. Textile products are not particularly limited, and include absorbent articles, sanitary articles, medical articles, clothing materials, packaging materials, and the like. Examples of absorbent articles include disposable diapers and sanitary products. Sanitary articles include sanitary masks and the like. Medical articles include, for example, bandages and the like.
[混繊スパンボンド不織布]
 次に、混繊スパンボンド不織布について、説明する。
 混繊スパンボンド不織布は、上述したように、混繊スパンボンドウェブを構成する第1繊維及び第2繊維と、融着部とを備える。
 混繊スパンボンドウェブを構成する第1繊維は、第1樹脂成形体の一例である。混繊スパンボンドウェブを構成する第2繊維は、第2樹脂成形体の一例である。
[Mixed fiber spunbond nonwoven fabric]
Next, the mixed fiber spunbond nonwoven fabric will be described.
As described above, the mixed fiber spunbonded nonwoven fabric includes the first fibers and second fibers that form the mixed fiber spunbonded web, and the fused portion.
The first fibers constituting the mixed fiber spunbond web are an example of the first resin molding. The second fibers constituting the mixed fiber spunbond web are an example of the second resin molding.
 混繊スパンボンド不織布は、混繊スパンボンドウェブを構成する第1繊維の一部と、混繊スパンボンドウェブを構成する第2繊維の一部とが融着している融着部を備える。そのため、融着部は、外部から着色されていなくても色調によって視認されやすい。その結果、混繊スパンボンド不織布は、意匠性に優れる。 The mixed fiber spunbonded nonwoven fabric has a fused portion where a part of the first fibers constituting the mixed fiber spunbonded web and a part of the second fibers constituting the mixed fiber spunbonded web are fused together. Therefore, even if the fused portion is not colored from the outside, the fused portion is easily visible due to its color tone. As a result, the mixed fiber spunbond nonwoven fabric is excellent in design.
<混繊スパンボンドウェブ>
 第1熱可塑性樹脂の混繊率は、混繊スパンボンドウェブを構成する第1繊維の発色剤の含有量及び混繊スパンボンドウェブを構成する第2繊維の呈色の含有量等に応じて適宜選択される。第1熱可塑性樹脂の混繊率は、好ましくは20質量%~80質量%、より好ましくは40質量%~60質量%である。
<Mixed fiber spunbond web>
The mixed fiber ratio of the first thermoplastic resin depends on the content of the coloring agent of the first fiber constituting the mixed fiber spunbond web, the coloring content of the second fiber constituting the mixed fiber spunbond web, etc. Selected as appropriate. The mixed fiber ratio of the first thermoplastic resin is preferably 20% to 80% by mass, more preferably 40% to 60% by mass.
 「混繊率」とは、2種以上の繊維を混合してなる不織布層における、ある特定の種類の繊維が含まれている割合、又は当該不織布層における各種繊維の混合割合を示す。すなわち、第1繊維と第2繊維とからなる混繊スパンボンド不織布層における「第1繊維の混繊率」とは、{第1熱可塑性樹脂の第1繊維の質量÷(第1繊維の質量+第2繊維の質量)}である。「第2繊維の混繊率」とは、{第2繊維の質量÷(第1繊維の質量+第2繊維の質量)}である。第1熱可塑性樹脂と第2熱可塑性樹脂とからなるスパンボンド不織布層間において「混繊率が異なる」とは、各不織布層における第1熱可塑性樹脂と第2熱可塑性樹脂との混合割合が異なることを示す。 The "mixed fiber ratio" refers to the ratio of a specific type of fiber contained in a nonwoven fabric layer formed by mixing two or more types of fibers, or the mixing ratio of various types of fibers in the nonwoven fabric layer. That is, the "mixing ratio of the first fiber" in the mixed fiber spunbond nonwoven fabric layer composed of the first fiber and the second fiber is {mass of the first fiber of the first thermoplastic resin ÷ (mass of the first fiber + the mass of the second fiber)}. The “mixing ratio of the second fibers” is {mass of the second fibers÷(mass of the first fibers+mass of the second fibers)}. The phrase "different mixed ratios" between the spunbonded nonwoven fabric layers composed of the first thermoplastic resin and the second thermoplastic resin means that the mixing ratio of the first thermoplastic resin and the second thermoplastic resin in each nonwoven fabric layer is different. indicates that
 混繊スパンボンドウェブを構成する第1繊維の平均繊維径は、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下である。第1繊維の平均繊維径が小さいと、発色剤を含む繊維全体が溶融しやすくなり、融着部の色調視認性を向上できる観点で好ましい。 The average fiber diameter of the first fibers constituting the mixed fiber spunbond web is preferably 50 µm or less, more preferably 40 µm or less, and even more preferably 30 µm or less. When the average fiber diameter of the first fiber is small, the entire fiber containing the coloring agent is easily melted, which is preferable from the viewpoint of improving the visibility of the color tone of the fused portion.
 混繊スパンボンドウェブを構成する第2繊維の平均繊維径は、混繊スパンボンドウェブを構成する第1繊維の平均繊維径として例示したものと同様のものが挙げられる。混繊スパンボンドウェブを構成する第2繊維の平均繊維径は、混繊スパンボンドウェブを構成する第1繊維の平均繊維径と同一であってもよいし、異なっていてもよい。第2繊維の平均繊維径が小さいと、発色剤を含む繊維全体が溶融しやすくなり、融着部の色調視認性を向上できる観点で好ましい。 Examples of the average fiber diameter of the second fibers that make up the mixed fiber spunbond web are the same as those exemplified as the average fiber diameters of the first fibers that make up the mixed fiber spunbond web. The average fiber diameter of the second fibers constituting the mixed fiber spunbond web may be the same as or different from the average fiber diameter of the first fibers constituting the mixed fiber spunbond web. When the average fiber diameter of the second fiber is small, the entire fiber containing the coloring agent is easily melted, which is preferable from the viewpoint of improving the visibility of the color tone of the fused portion.
 発色剤は、混載スパンボンドウェブを構成する第1繊維に含まれ、呈色剤は、混載スパンボンドウェブを構成する第2繊維に含まれることが好ましい。これにより、融着部は、その内部に、発色剤の反応物及び呈色剤の反応物を含む。その結果、融着部の発色又は変色は、融着部が外部から着色塗料等を用いて着色されている場合よりも、融着部の摩耗によって変化しにくい。 It is preferable that the color former is contained in the first fibers constituting the composite spunbond web, and the color former is contained in the second fibers constituting the composite spunbond web. Thereby, the fused part contains the reactant of the color former and the reactant of the color former in its interior. As a result, the coloration or discoloration of the fused portion is less likely to change due to abrasion of the fused portion than when the fused portion is colored from the outside using a colored paint or the like.
 混繊スパンボンドウェブの目付は、混繊スパンボンド不織布の用途に応じて選択され得る。例えば、オムツ等の衛生材用途においては、柔軟性及び通気性の観点から、混繊スパンボンド不織布の目付は、好ましくは200g/m以下、より好ましくは100g/m以下、さらに好ましくは80g/m以下、特に好ましくは15g/m~60g/mである。 The basis weight of the mixed fiber spunbonded web can be selected according to the application of the mixed fiber spunbonded nonwoven fabric. For example, in sanitary material applications such as diapers, the mixed fiber spunbond nonwoven fabric has a basis weight of preferably 200 g/m 2 or less, more preferably 100 g/m 2 or less, and even more preferably 80 g, from the viewpoint of flexibility and breathability. /m 2 or less, particularly preferably 15 g/m 2 to 60 g/m 2 .
 混繊スパンボンドウェブの厚みは、混繊スパンボンド不織布の用途等に応じて適宜選択され、好ましくは0.1mm~1.0mm、より好ましくは0.2mm~0.5mmである。混繊スパンボンドウェブの厚みが上記範囲内であれば、スパンボンドウェブの溶融効率を高め融着部の形成を促進することができるとともに、融着部に適切な厚みを与え色調視認性を向上させることができる。
 混繊スパンボンドウェブの厚みの測定方法は、実施例に記載の方法と同様である。
The thickness of the mixed fiber spunbonded web is appropriately selected according to the application of the mixed fiber spunbonded nonwoven fabric, and is preferably 0.1 mm to 1.0 mm, more preferably 0.2 mm to 0.5 mm. If the thickness of the mixed fiber spunbonded web is within the above range, the melting efficiency of the spunbonded web can be enhanced and the formation of the fused portion can be promoted, and an appropriate thickness is given to the fused portion to improve color tone visibility. can be made
The method for measuring the thickness of the mixed fiber spunbond web is the same as the method described in Examples.
<他の層>
 混繊スパンボンド不織布は、混繊スパンボンドウェブ、及び融着部に加えて、他の層を備えていてもよい。他の層の構成は、1層であってもよく、2層以上であってもよい。
<Other layers>
The mixed fiber spunbond nonwoven fabric may comprise other layers in addition to the mixed fiber spunbond web and the fused portion. Other layers may be composed of one layer or two or more layers.
 他の層としては、多層スパンボンド不織布において説明した他の層として例示したものと同様のものが挙げられる。
 混繊スパンボンド不織布に他の層を積層する(貼り合わせる)方法としては、多層スパンボンド不織布において説明した多層スパンボンド不織布に他の層を積層する(貼り合せる)方法として例示したものと同様のものが挙げられる。
Other layers include those exemplified as other layers described in the multilayer spunbond nonwoven fabric.
The method of laminating (bonding) another layer to the mixed fiber spunbond nonwoven fabric is the same as the method of laminating (bonding) another layer to the multilayer spunbond nonwoven fabric described in the multilayer spunbond nonwoven fabric. things are mentioned.
<混繊スパンボンド不織布の用途>
 混繊スパンボンド不織布は、繊維製品に用いられ得る。繊維製品は、特に限定されず、吸収性物品、衛生物品、医療物品、衣料素材、包装材などが挙げられる。吸収性物品としては、例えば、使い捨てオムツ、生理用品等が挙げられる。衛生物品としては、衛生マスク等が挙げられる。医療物品としては、例えば、包帯等が挙げられる。
<Uses of mixed fiber spunbond nonwoven fabric>
Mixed fiber spunbond nonwovens can be used in textile products. Textile products are not particularly limited, and include absorbent articles, sanitary articles, medical articles, clothing materials, packaging materials, and the like. Examples of absorbent articles include disposable diapers and sanitary products. Sanitary articles include sanitary masks and the like. Medical articles include, for example, bandages and the like.
<多層スパンボンド不織布の製造方法>
 次に、図1を参照して、多層スパンボンド不織布の製造方法の一例について説明する。図1は、本開示の一実施形態に係る多層スパンボンド不織布の製造装置の一例を示す概略図である。
<Method for producing multilayer spunbond nonwoven fabric>
Next, an example of a method for producing a multilayer spunbond nonwoven fabric will be described with reference to FIG. FIG. 1 is a schematic diagram showing an example of an apparatus for manufacturing a multilayer spunbond nonwoven fabric according to one embodiment of the present disclosure.
 本開示の一実施形態に係る多層スパンボンド不織布の製造方法は、第1紡糸工程と、第1ウェブ形成工程と、第2紡糸工程と、第2ウェブ形成工程と、熱圧着工程と、巻取工程とを有する態様が好ましい。第1紡糸工程、第1ウェブ形成工程、第2紡糸工程、第2ウェブ形成工程、熱圧着工程、及び巻取工程は、この順に実行される。 A method for manufacturing a multilayer spunbond nonwoven fabric according to an embodiment of the present disclosure includes a first spinning step, a first web forming step, a second spinning step, a second web forming step, a thermocompression bonding step, and a winding An aspect having steps is preferred. A first spinning process, a first web forming process, a second spinning process, a second web forming process, a thermocompression bonding process, and a winding process are performed in this order.
<多層スパンボンド不織布の製造装置>
 本開示の一実施形態に係る多層スパンボンド不織布の製造方法には、多層スパンボンド不織布の製造装置100が好適に用いられる。
 多層スパンボンド不織布の製造装置100は、図1に示すように、第1紡糸部10と、第1ウェブ形成部20と、第2紡糸部30と、第2ウェブ形成部40と、熱圧着部50と、巻取部60を備える。
 第1紡糸部10は、第1押出機11と、第1紡糸口金12と、第1エジェクター13とを有する。第1押出機11は、第1熱可塑性樹脂組成物を溶融混練して、第1熱可塑性樹脂組成物の溶融物を第1紡糸口金12に押し出す。第1熱可塑性樹脂組成物は、第1樹脂成形体の原料を示す。第1紡糸口金12は、第1熱可塑性樹脂組成物を溶融紡糸して、第1連続繊維群1を形成する。第1エジェクター13は、第1連続繊維群1を延伸する。
 第1ウェブ形成部20は、移動捕集部材21と、第1サクションユニット22と、一対の第1コンパクションロール23とを有する。移動捕集部材21は、第1連続繊維群1を堆積するための捕集面を有する。第1サクションユニット22は、第1連続繊維群1を移動捕集部材21の捕集面上に効率よく捕集するために用いられる。第1サクションユニット22は、移動捕集部材21の補集面の下部に設けられている。一対の第1コンパクションロール23は、第1連続繊維群1を押圧して、第1スパンボンドウェブ2を形成する。
 第2紡糸部30は、第2押出機31と、第2紡糸口金32と、第2エジェクター33とを有する。第2押出機31は、第2熱可塑性樹脂組成物を溶融混練して、第2熱可塑性樹脂組成物の溶融物を第2紡糸口金32に押し出す。第2熱可塑性樹脂組成物は、第2樹脂成形体の原料を示す。第2紡糸口金32は、第1熱可塑性樹脂組成物を溶融紡糸して、第2連続繊維群3を形成する。第2エジェクター33は、第2連続繊維群3を延伸する。
 第2ウェブ形成部40は、第2サクションユニット41と、一対の第2コンパクションロール42とを有する。第2サクションユニット41は、第2連続繊維群3を第1スパンボンドウェブ2の表面上に効率よく捕集するために用いられる。第2サクションユニット41は、移動捕集部材21の補集面の下部に設けられている。一対の第2コンパクションロール42は、軽い繊維同士(第1スパンボンドウェブ2及び第2連続繊維群3)を一体化し、後工程(例えば、エンボスロール51による熱圧着等)に繊維が耐えられるようにする。具体的に、一対の第2コンパクションロール42は、第1スパンボンドウェブ2及び第2連続繊維群3を押圧して、積層ウェブ4を形成する、積層ウェブ4は、第1スパンボンドウェブ2と、第2スパンボンドウェブとを有する。第1スパンボンドウェブ2は、第2スパンボンドウェブの一方の主面に積層されている。
 熱圧着部50は、エンボスロール51と、平滑ロール52とを有する。エンボスロール51及び平滑ロール52は、積層ウェブ4を熱圧着する。エンボスロール51は、ロール表面に彫刻が施された金属製ロールである。平滑ロール52は、ロール表面が平滑な金属製ロールである。
 巻取部60は、ワインダー61を有する。ワインダー61は、多層スパンボンド不織布5を巻き取る。
<Manufacturing equipment for multi-layer spunbond nonwoven fabric>
A multi-layer spunbond nonwoven fabric manufacturing apparatus 100 is preferably used in the method for manufacturing a multi-layer spunbond nonwoven fabric according to an embodiment of the present disclosure.
As shown in FIG. 1, the multi-layer spunbond nonwoven fabric manufacturing apparatus 100 includes a first spinning section 10, a first web forming section 20, a second spinning section 30, a second web forming section 40, and a thermocompression bonding section. 50 and a winding section 60 .
The first spinning section 10 has a first extruder 11 , a first spinneret 12 and a first ejector 13 . The first extruder 11 melt-kneads the first thermoplastic resin composition and extrudes the melt of the first thermoplastic resin composition to the first spinneret 12 . The first thermoplastic resin composition indicates the raw material of the first resin molding. The first spinneret 12 melt-spun the first thermoplastic resin composition to form the first continuous fiber group 1 . The first ejector 13 draws the first continuous fiber group 1 .
The first web forming section 20 has a moving collection member 21 , a first suction unit 22 and a pair of first compaction rolls 23 . The moving collection member 21 has a collection surface for depositing the first continuous fiber group 1 . The first suction unit 22 is used to efficiently collect the first continuous fiber group 1 on the collection surface of the moving collection member 21 . The first suction unit 22 is provided below the collection surface of the moving collection member 21 . A pair of first compaction rolls 23 press the first group of continuous fibers 1 to form the first spunbond web 2 .
The second spinning section 30 has a second extruder 31 , a second spinneret 32 and a second ejector 33 . The second extruder 31 melt-kneads the second thermoplastic resin composition and extrudes the melt of the second thermoplastic resin composition to the second spinneret 32 . The second thermoplastic resin composition indicates the raw material of the second resin molding. The second spinneret 32 melt-spun the first thermoplastic resin composition to form the second continuous fiber group 3 . The second ejector 33 draws the second continuous fiber group 3 .
The second web forming section 40 has a second suction unit 41 and a pair of second compaction rolls 42 . The second suction unit 41 is used to efficiently collect the second continuous fiber group 3 onto the surface of the first spunbond web 2 . The second suction unit 41 is provided below the collection surface of the moving collection member 21 . The pair of second compaction rolls 42 unites the light fibers (the first spunbond web 2 and the second continuous fiber group 3) together so that the fibers can withstand subsequent processes (for example, thermocompression bonding by the embossing rolls 51). to Specifically, the pair of second compaction rolls 42 presses the first spunbond web 2 and the second continuous fiber group 3 to form the laminated web 4. The laminated web 4 is the first spunbond web 2 and the , and a second spunbond web. A first spunbond web 2 is laminated to one major surface of a second spunbond web.
The thermocompression bonding section 50 has an embossing roll 51 and a smoothing roll 52 . The embossing roll 51 and smooth roll 52 thermally compress the laminated web 4 . The embossing roll 51 is a metal roll with engraving on the roll surface. The smooth roll 52 is a metal roll with a smooth roll surface.
The winding section 60 has a winder 61 . A winder 61 winds up the multilayer spunbond nonwoven fabric 5 .
<第1紡糸工程>
 第1紡糸工程では、第1熱可塑性樹脂組成物を溶融紡糸して第1連続繊維群1を形成する。第1紡糸工程では、移動捕集部材の捕集面上に第1連続繊維群1を堆積させるまでの間に、第1連続繊維群1を冷却して延伸する公知の過程が含まれる。
<First spinning process>
In the first spinning step, the first thermoplastic resin composition is melt-spun to form the first continuous fiber group 1 . The first spinning step includes a known process of cooling and stretching the first continuous fiber group 1 before depositing the first continuous fiber group 1 on the collecting surface of the moving collecting member.
 具体的に、第1熱可塑性樹脂組成物を第1押出機11に投入し、第1熱可塑性樹脂の溶融物を第1紡糸口金12に押し出す。この際、第1押出機11の加熱温度は、第1熱可塑性樹脂組成物の融点等に応じて適宜調整され、好ましくは200℃~250℃である。第1熱可塑性樹脂組成物の溶融物を第1押出機11から押し出す際の圧力は、好ましくは20MPa~80MPaである。
 次いで、第1熱可塑性樹脂組成物は第1紡糸口金12によって溶融紡糸され、第1連続繊維群1が形成される。第1連続繊維群1は、冷却風14によって冷却され、第1エジェクター13により延伸される。
 冷却風14の温度は、好ましくは5℃~50℃である。冷却風14の風速は、好ましくは100m/分~10,000m/分である。
Specifically, the first thermoplastic resin composition is put into the first extruder 11 and the melt of the first thermoplastic resin is extruded into the first spinneret 12 . At this time, the heating temperature of the first extruder 11 is appropriately adjusted according to the melting point of the first thermoplastic resin composition, etc., and is preferably 200°C to 250°C. The pressure when the melt of the first thermoplastic resin composition is extruded from the first extruder 11 is preferably 20 MPa to 80 MPa.
The first thermoplastic resin composition is then melt-spun by the first spinneret 12 to form the first continuous fiber group 1 . The first continuous fiber group 1 is cooled by the cooling air 14 and drawn by the first ejector 13 .
The temperature of the cooling air 14 is preferably 5°C to 50°C. The wind speed of the cooling air 14 is preferably 100 m/min to 10,000 m/min.
<第1ウェブ形成工程>
 第1ウェブ形成工程では、移動捕集部材21の捕集面上に、第1連続繊維群1を堆積させて、第1スパンボンドウェブ2を形成する。
<First web forming step>
In the first web forming step, the first spunbond web 2 is formed by depositing the first continuous fiber group 1 on the collecting surface of the moving collecting member 21 .
 具体的に、延伸された第1連続繊維群1は、第1サクションユニット22によって、移動捕集部材21の捕集面上に効率よく補集される。捕集された第1連続繊維群1は一対の第1コンパクションロール23の間に挟み込まれて、第1スパンボンドウェブ2が形成される。
 第1連続繊維群1を押圧するときの一対の第1コンパクションロール23の温度は、好ましくは100℃~120℃である。第1連続繊維群1を押圧するときのコンパクションロールの温度は、第1熱可塑性樹脂の融点よりも低いことが好ましい。
Specifically, the drawn first continuous fiber group 1 is efficiently collected on the collection surface of the moving collection member 21 by the first suction unit 22 . The collected first continuous fiber group 1 is sandwiched between a pair of first compaction rolls 23 to form the first spunbond web 2 .
The temperature of the pair of first compaction rolls 23 when pressing the first continuous fiber group 1 is preferably 100°C to 120°C. The temperature of the compaction roll when pressing the first continuous fiber group 1 is preferably lower than the melting point of the first thermoplastic resin.
<第2紡糸工程>
 第2紡糸工程では、第2熱可塑性樹脂組成物を溶融紡糸して、第2連続繊維群3を形成する。
 第2紡糸工程も同様に、第1スパンボンドウェブ2上に第2連続繊維群3を堆積させるまでの間に、第2連続繊維群3を冷却して延伸する公知の過程が含まれる。
<Second spinning process>
In the second spinning step, the second thermoplastic resin composition is melt-spun to form the second continuous fiber group 3 .
The second spinning step likewise includes a known process of cooling and drawing the second continuous fiber group 3 before depositing the second continuous fiber group 3 on the first spunbond web 2 .
 具体的に、第2熱可塑性樹脂を第2押出機31に投入し、第2熱可塑性樹脂の溶融物を押し出す。この際、第2押出機31の加熱温度は、第2熱可塑性樹脂の融点等に応じて適宜調整され、好ましくは200℃~250℃である。第2熱可塑性樹脂の溶融物を第2押出機31から押し出す際の圧力は、好ましくは20MPa~80MPaである。
 次いで、第2熱可塑性樹脂を第2紡糸口金32から溶融紡糸して、第2連続繊維群3が形成される。第2連続繊維群3は、冷却風34によって冷却され、第2エジェクター33により延伸される。
 冷却風34の温度は、好ましくは5℃~50℃である。冷却風34の風速は、好ましくは100m/分~10,000m/分である。
Specifically, the second thermoplastic resin is put into the second extruder 31 to extrude the melt of the second thermoplastic resin. At this time, the heating temperature of the second extruder 31 is appropriately adjusted according to the melting point of the second thermoplastic resin, and is preferably 200.degree. C. to 250.degree. The pressure when the melt of the second thermoplastic resin is extruded from the second extruder 31 is preferably 20 MPa to 80 MPa.
A second thermoplastic resin is then melt spun from a second spinneret 32 to form a second continuous fiber group 3 . The second continuous fiber group 3 is cooled by the cooling air 34 and stretched by the second ejector 33 .
The temperature of the cooling air 34 is preferably 5°C to 50°C. The wind speed of the cooling air 34 is preferably 100 m/min to 10,000 m/min.
<第2ウェブ形成工程>
 第2ウェブ形成工程では、第1スパンボンドウェブ2上に、第2連続繊維群3を堆積させて第2スパンボンドウェブを形成して、積層ウェブ4を形成する。
<Second Web Forming Step>
In the second web forming step, a second spunbonded web is formed by depositing a second group of continuous fibers 3 on the first spunbonded web 2 to form a laminated web 4 .
 具体的に、延伸された第2連続繊維群3は、第2サクションユニット41によって、第1スパンボンドウェブ2上に効率よく補集される。捕集された第2連続繊維群3は一対の第2コンパクションロール42の間に挟み込まれて、積層ウェブ4が形成される。
 第2連続繊維群3を押圧するときの一対の第2コンパクションロール42の温度は、好ましくは100℃~120℃である。第2連続繊維群3を押圧するときのコンパクションロールの温度は、第1熱可塑性樹脂及び第2熱可塑性樹脂の各々の融点よりも低いことが好ましい。
Specifically, the drawn second continuous fiber group 3 is efficiently collected onto the first spunbond web 2 by the second suction unit 41 . The collected second continuous fiber group 3 is sandwiched between a pair of second compaction rolls 42 to form the laminated web 4 .
The temperature of the pair of second compaction rolls 42 when pressing the second continuous fiber group 3 is preferably 100°C to 120°C. The temperature of the compaction roll when pressing the second continuous fiber group 3 is preferably lower than the melting point of each of the first thermoplastic resin and the second thermoplastic resin.
<熱圧着工程>
 熱圧着工程では、積層ウェブ4を熱圧着する。これにより、多層スパンボンド不織布5が得られる。換言すると、積層ウェブ4に融着部が形成される。
<Thermocompression process>
In the thermocompression bonding step, the laminated web 4 is thermocompression bonded. Thereby, the multilayer spunbond nonwoven fabric 5 is obtained. In other words, a fused portion is formed in the laminated web 4 .
 具体的に、積層ウェブ4はエンボスロール51と平滑ロール52との間に挟み込まれて、多層スパンボンド不織布5が形成される。
 積層ウェブ4を押圧するときエンボスロール51及び平滑ロール52の各々の表面温度は、好ましくは140℃~150℃である。
 積層ウェブ4を押圧するときの圧力は、好ましくは700MPa~1200MPaである。
Specifically, the laminated web 4 is sandwiched between an embossing roll 51 and a smoothing roll 52 to form a multi-layer spunbond nonwoven fabric 5 .
The surface temperature of each of the embossing roll 51 and the smoothing roll 52 when pressing the laminated web 4 is preferably 140.degree. C. to 150.degree.
The pressure when pressing the laminated web 4 is preferably 700 MPa to 1200 MPa.
<巻取工程>
 巻取工程では、多層スパンボンド不織布5を巻き取って、回収する。
<Winding process>
In the winding step, the multilayer spunbond nonwoven fabric 5 is wound and collected.
 具体的に、多層スパンボンド不織布5は、ワインダー61によって巻き取られる。 Specifically, the multilayer spunbond nonwoven fabric 5 is wound by the winder 61 .
(混繊スパンボンドの製造方法)
 次に、図2を参照して、混繊スパンボンド不織布の製造方法の一例について説明する。図2は、本開示の一実施形態に係る混繊スパンボンド不織布の製造装置の一例を示す概略図である。
(Manufacturing method of mixed fiber spunbond)
Next, an example of a method for producing a mixed fiber spunbonded nonwoven fabric will be described with reference to FIG. FIG. 2 is a schematic diagram showing an example of an apparatus for producing a mixed fiber spunbond nonwoven fabric according to an embodiment of the present disclosure.
 本開示の一実施形態に係る混繊スパンボンド不織布の製造方法は、混繊紡糸工程と、混繊ウェブ形成工程と、熱圧着工程と、巻取工程とを有する。混繊紡糸工程、混繊ウェブ形成工程、熱圧着工程、及び巻取工程は、この順に実行される。 A method for manufacturing a mixed fiber spunbond nonwoven fabric according to an embodiment of the present disclosure includes a mixed fiber spinning process, a mixed fiber web forming process, a thermocompression bonding process, and a winding process. The mixed fiber spinning process, the mixed fiber web forming process, the thermocompression bonding process, and the winding process are executed in this order.
<混繊スパンボンド不織布の製造装置>
 本開示の一実施形態に係る混繊スパンボンド不織布の製造方法には、混繊スパンボンド不織布の製造装置200が好適に用いられる。
 混繊多層スパンボンド不織布の製造装置200は、図2に示すように、混繊紡糸部10Aと、混繊ウェブ形成部20Aと、熱圧着部50と、巻取部60を備える。
 混繊紡糸部10Aは、第1押出機11と、第2押出機15と、第3紡糸口金16と、第1エジェクター13とを有する。第1押出機11は、第1熱可塑性樹脂組成物を溶融混練して、第1熱可塑性樹脂組成物の溶融物を第3紡糸口金16に押し出す。第2押出機15は、第2熱可塑性樹脂組成物を溶融混練して、第2熱可塑性樹脂組成物の溶融物を第3紡糸口金16に押し出す。第3紡糸口金16は、第1熱可塑性樹脂組成物及び第2熱可塑性樹脂組成物の各々を個別に多数の紡糸孔(ノズル)を有する。第3紡糸口金16は、第1熱可塑性樹脂組成物と第2熱可塑性樹脂組成物とを異なる紡糸孔から独立に同時に吐出して、第3連続繊維群6を形成する。第1エジェクター13は、第3連続繊維群6を延伸する。
 混繊ウェブ形成部20Aは、移動捕集部材21と、第1サクションユニット22と、一対の第1コンパクションロール23とを有する。
<Manufacturing equipment for mixed fiber spunbond nonwoven fabric>
An apparatus 200 for producing a mixed fiber spunbonded nonwoven fabric is preferably used in the method for producing a mixed fiber spunbonded nonwoven fabric according to an embodiment of the present disclosure.
The mixed fiber multi-layer spunbonded nonwoven fabric manufacturing apparatus 200 includes a mixed fiber spinning section 10A, a mixed fiber web forming section 20A, a thermocompression bonding section 50, and a winding section 60, as shown in FIG.
The mixed fiber spinning section 10A has a first extruder 11 , a second extruder 15 , a third spinneret 16 and a first ejector 13 . The first extruder 11 melt-kneads the first thermoplastic resin composition and extrudes the melt of the first thermoplastic resin composition to the third spinneret 16 . The second extruder 15 melt-kneads the second thermoplastic resin composition and extrudes the melt of the second thermoplastic resin composition to the third spinneret 16 . The third spinneret 16 has many spinning holes (nozzles) for each of the first thermoplastic resin composition and the second thermoplastic resin composition. The third spinneret 16 discharges the first thermoplastic resin composition and the second thermoplastic resin composition independently and simultaneously from different spinning holes to form the third continuous fiber group 6 . The first ejector 13 draws the third continuous fiber group 6 .
The mixed fiber web forming section 20A has a moving collecting member 21, a first suction unit 22, and a pair of first compaction rolls 23. As shown in FIG.
<混繊紡糸工程>
 混繊紡糸工程では、第1熱可塑性樹脂組成物及び第2熱可塑性樹脂組成物の各々を溶融紡糸して第3連続繊維群6を形成する。混繊紡糸工程では、移動捕集部材21の捕集面上に第3連続繊維群6を堆積させるまでの間に、第3連続繊維群6を冷却して延伸する公知の過程が含まれる。
<Mixed fiber spinning process>
In the mixed fiber spinning step, each of the first thermoplastic resin composition and the second thermoplastic resin composition is melt-spun to form the third continuous fiber group 6 . The mixed fiber spinning process includes a known process of cooling and stretching the third continuous fiber group 6 before depositing the third continuous fiber group 6 on the collecting surface of the moving collecting member 21 .
 具体的に、第1熱可塑性樹脂組成物を第1押出機11に投入し、第1熱可塑性樹脂組成物の溶融物を第3紡糸口金16に押し出す。同時に、第2熱可塑性樹脂組成物を第3押出機15に投入し、第2熱可塑性樹脂組成物の溶融物を第3紡糸口金16に押し出す。
 この際、第1押出機11及び第3押出機15の各々の加熱温度及び圧力は、上述した第1紡糸工程で例示した加熱温度及び圧力と同様であってもよい。
 次いで、第1熱可塑性樹脂組成物及び第2熱可塑性樹脂組成物の各々を第3紡糸口金16から溶融紡糸して、第3連続繊維群6を形成する。第3連続繊維群6は、冷却風14によって冷却され、第1エジェクター13により延伸される。
Specifically, the first thermoplastic resin composition is put into the first extruder 11 and the melt of the first thermoplastic resin composition is extruded to the third spinneret 16 . At the same time, the second thermoplastic resin composition is fed into the third extruder 15 and the melt of the second thermoplastic resin composition is extruded to the third spinneret 16 .
At this time, the heating temperature and pressure of each of the first extruder 11 and the third extruder 15 may be the same as the heating temperature and pressure exemplified in the first spinning step described above.
Next, each of the first thermoplastic resin composition and the second thermoplastic resin composition is melt-spun from the third spinneret 16 to form the third continuous fiber group 6 . The third continuous fiber group 6 is cooled by the cooling air 14 and drawn by the first ejector 13 .
<混繊ウェブ形成工程>
 混繊ウェブ形成工程では、移動捕集部材21の捕集面上に、第3連続繊維群6を堆積させて混繊スパンボンドウェブ7を形成する。
<Mixed fiber web forming process>
In the mixed fiber web forming step, the third continuous fiber group 6 is deposited on the collecting surface of the moving collecting member 21 to form the mixed fiber spunbond web 7 .
 混繊ウェブ形成工程は、上述した第1ウェブ形成工程と同様に実行され得る。 The mixed fiber web forming step can be performed in the same manner as the first web forming step described above.
<熱圧着工程>
 熱圧着工程では、混繊スパンボンドウェブ7を熱圧着する。これにより、混繊スパンボンド不織布8が得られる。換言すると、混繊スパンボンドウェブ7に融着部が形成される。
<Thermocompression process>
In the thermocompression bonding step, the mixed fiber spunbond web 7 is thermocompression bonded. As a result, a mixed fiber spunbond nonwoven fabric 8 is obtained. In other words, a fused portion is formed in the mixed fiber spunbond web 7 .
 熱圧着工程は、上述した多層スパンボンド不織布の製造装置の熱圧着工程と同等にして実行される。 The thermocompression bonding process is performed in the same manner as the thermocompression bonding process of the multi-layer spunbond nonwoven fabric manufacturing apparatus described above.
<巻取工程>
 巻取工程では、混繊スパンボンド不織布8を巻き取って、回収する。
<Winding process>
In the winding step, the mixed fiber spunbond nonwoven fabric 8 is wound and collected.
 巻取工程は、上述した多層スパンボンド不織布の製造装置の巻取工程と同等にして実行される。 The winding process is performed in the same manner as the winding process of the multi-layer spunbond nonwoven fabric manufacturing apparatus described above.
 以下、実施例により、本開示の複合樹脂成形体について説明するが、本開示の複合樹脂成形体は、以下の実施態様により何ら限定されるものではない。 The composite resin molded article of the present disclosure will be described below with reference to examples, but the composite resin molded article of the present disclosure is not limited by the following embodiments.
 実施例及び比較例における物性値等は、以下の方法により測定した。 The physical property values, etc. in Examples and Comparative Examples were measured by the following methods.
(1)目付〔g/m
 実施例及び比較例で得られた不織布から、100mm(流れ方向:MD)×100mm(流れ方向と直交する方向:CD)の試験片を10点採取した。試験片の採取場所は、CD方向にわたって10箇所とした。次いで、20℃、相対湿度50%RH環境下で、採取した各試験片に対して上皿電子天秤(研精工業社製)を用いて、それぞれ質量〔g〕を測定した。各試験片の質量の平均値を求めた。求めた平均値から1m当たりの質量〔g〕に換算し、小数点第2位を四捨五入して各不織布サンプルの目付〔g/m〕とした。
(1) basis weight [g/m 2 ]
Ten test pieces of 100 mm (machine direction: MD) x 100 mm (direction perpendicular to machine direction: CD) were collected from the nonwoven fabrics obtained in Examples and Comparative Examples. Ten test pieces were collected in the CD direction. Next, the mass [g] was measured for each test piece taken under an environment of 20° C. and a relative humidity of 50% using a top-pan electronic balance (manufactured by Kensei Kogyo Co., Ltd.). An average value of the mass of each test piece was obtained. The obtained average value was converted to mass [g] per 1 m 2 , rounded off to the second decimal place, and determined as basis weight [g/m 2 ] of each nonwoven fabric sample.
(2)厚み〔mm〕
 実施例及び比較例で得られた不織布から、100mm(MD)×100mm(CD)の試験片を10点採取した。試験片の採取場所は、目付け測定用の試験片と同様の場所とした。次いで、採取した各試験片に対して荷重型厚み計(尾崎製作所社製)を用いて、JIS L 1096:2010に記載の方法で厚み〔mm〕を測定した。各試験片の厚みの平均値を求め、小数点第2位を四捨五入して各不織布サンプルの厚み〔mm〕とした。
(2) Thickness [mm]
Ten test pieces of 100 mm (MD)×100 mm (CD) were collected from the nonwoven fabrics obtained in Examples and Comparative Examples. The test piece was taken from the same place as the test piece for basis weight measurement. Next, the thickness [mm] of each sampled test piece was measured by the method described in JIS L 1096:2010 using a load-type thickness gauge (manufactured by Ozaki Seisakusho Co., Ltd.). The average value of the thickness of each test piece was obtained and rounded off to the second decimal place to obtain the thickness [mm] of each nonwoven fabric sample.
(3)色差〔-〕
 コニカミノルタ株式会社製の分光測色計「CM-3700A」(SCE方式、視野角2度、光源:CIE D65)にて、非融着部および融着部における反射光のL値、a値、及びb値を測定し、JIS-P8150に規定されたCIELab色空間による色差式により、融着前後の色差を算出した。
(3) Color difference [-]
Using a spectrophotometer "CM-3700A" (SCE method, viewing angle 2 degrees, light source: CIE D65) manufactured by Konica Minolta, Inc., the L * value and a * of the reflected light at the non-fused portion and the fused portion and b * values were measured, and the color difference before and after fusion was calculated by the color difference formula based on the CIELab color space specified in JIS-P8150.
(4)摩耗性試験〔-〕
 学振型摩擦堅牢度試験機(株式会社大栄科学精器製作所製、新型NR-100)を用い、JIS L 0849の摩擦堅牢度試験法に準拠して、積層ウェブの融着部に対して摩擦試験を行った。詳しくは、摩擦子側には布テープ(株式会社寺岡製作所製、No.1532)を貼付し、荷重300gをかけた状態で、融着部をMD方向に50回往復させて擦り、融着部の青色の耐摩耗性を以下の基準で評価した。
 評価A:融着部の青色の損傷を確認できなかった。
 評価B:融着部の青色の損傷を確認した。
(4) Abrasion test [-]
Using a Gakushin type rubbing fastness tester (manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd., new model NR-100), in accordance with the rubbing fastness test method of JIS L 0849, Friction against the fused part of the laminated web did the test. Specifically, a cloth tape (manufactured by Teraoka Seisakusho Co., Ltd., No. 1532) is attached to the friction element side, and the fused portion is reciprocated 50 times in the MD direction with a load of 300 g applied to rub the fused portion. The abrasion resistance of blue color was evaluated according to the following criteria.
Evaluation A: No blue damage was observed in the fused portion.
Evaluation B: Blue damage was confirmed in the fused portion.
 実施例及び比較例で使用した各成分は以下のとおりである。
<熱可塑性樹脂>
・プロピレン単独重合体(MFR:60g/10分、融点:162℃)
<発色剤>
・青色ロイコ色素:山本化成株式会社製の「Blue-63」(3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-エチル-2-メチル-3-インドリル)-4-アザフタリド)
・赤色ロイコ色素:山本化成株式会社製の「Red-40」(3,3-ビス(1-n-ブチル-2-メチルインドール-3-イル)フタリド)
<呈色剤>
・第1呈色剤:ビスフェノールS(融点:247℃、酸解離定数:4.5)
・第2呈色剤:4-イソプロポキシフェニル-4-ヒドロキシフェニルスルホン(融点129℃、酸解離定数:4.5)
・第3呈色剤:ステアリン酸(融点70℃、酸解離定数:5.0)
Components used in Examples and Comparative Examples are as follows.
<Thermoplastic resin>
・Propylene homopolymer (MFR: 60 g/10 min, melting point: 162°C)
<Color former>
・ Blue leuco dye: "Blue-63" manufactured by Yamamoto Kasei Co., Ltd. (3-(4-diethylamino-2-ethoxyphenyl)-3-(1-ethyl-2-methyl-3-indolyl)-4-azaphthalide)
・ Red leuco dye: Yamamoto Kasei Co., Ltd. "Red-40" (3,3-bis (1-n-butyl-2-methylindol-3-yl) phthalide)
<Color agent>
- First colorant: bisphenol S (melting point: 247°C, acid dissociation constant: 4.5)
- Second colorant: 4-isopropoxyphenyl-4-hydroxyphenylsulfone (melting point 129°C, acid dissociation constant: 4.5)
- Third coloring agent: stearic acid (melting point 70°C, acid dissociation constant: 5.0)
(比較例1)
 プロピレン単独重合体(100部)、及び青色ロイコ色素(1部)を混ぜ合わせて、第1原料を得た。
 第1原料をプレスフィルム作成機で190℃にて成形し、厚さ100μmの第1樹脂シートを得た。
 第1樹脂シートを目視で観察したところ、第1樹脂シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 第1樹脂シートの一部をバッチ式シーラーに挟み込み、熱圧着して、融着部を形成した。バッチ式シーラーは、一対の金属板を備える。一対の金属板の各々の表面温度は、190℃であった。第1樹脂シートに掛かる圧力は、3MPaであった。
 第1樹脂シートの融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と同様に、無色透明であった。
(Comparative example 1)
A propylene homopolymer (100 parts) and a blue leuco dye (1 part) were mixed to obtain a first raw material.
The first raw material was molded at 190° C. using a press film forming machine to obtain a first resin sheet having a thickness of 100 μm.
When the first resin sheet was visually observed, the color tone of the first resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
A portion of the first resin sheet was sandwiched between batch-type sealers and thermocompression bonded to form a fused portion. A batch sealer comprises a pair of metal plates. The surface temperature of each of the pair of metal plates was 190°C. The pressure applied to the first resin sheet was 3 MPa.
When the fused portion and the non-fused portion of the first resin sheet were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
(比較例2)
 第1原料の代わりに、プロピレン単独重合体(100部)、及び赤色ロイコ色素(1部)を混ぜ合わせた第2原料を用いた他は、比較例1と同様にして、厚さ100μmの第2樹脂シートを得た。
 第2樹脂シートを目視で観察したところ、第2樹脂シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第2樹脂シートの一部に融着部を形成した。
 第2樹脂シートの融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と同様に、無色透明であった。
(Comparative example 2)
In the same manner as in Comparative Example 1, except that a second raw material obtained by mixing propylene homopolymer (100 parts) and red leuco dye (1 part) was used instead of the first raw material. 2 resin sheets were obtained.
When the second resin sheet was visually observed, the color tone of the second resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the second resin sheet.
When the fused portion and the non-fused portion of the second resin sheet were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
(比較例3)
 第1原料の代わりに、プロピレン単独重合体(100部)、及び第1呈色剤(2部)を混ぜ合わせた第3原料を用いた他は、比較例1と同様にして、厚さ100μmの第3樹脂シートを得た。
 第3樹脂シートを目視で観察したところ、第3樹脂シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第3樹脂シートの一部に融着部を形成した。
 第3樹脂シートの融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と同様に、無色透明であった。
(Comparative Example 3)
The thickness was 100 μm in the same manner as in Comparative Example 1, except that instead of the first raw material, a third raw material obtained by mixing a propylene homopolymer (100 parts) and a first colorant (2 parts) was used. A third resin sheet was obtained.
When the third resin sheet was visually observed, the color tone of the third resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the third resin sheet.
When the fused portion and the non-fused portion of the third resin sheet were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
(比較例4)
 第1原料の代わりに、プロピレン単独重合体(100部)、及び第2呈色剤(2部)を混ぜ合わせた第4原料を用いた他は、比較例1と同様にして、厚さ100μmの第4樹脂シートを得た。
 第4樹脂シートを目視で観察したところ、第4樹脂シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第4樹脂シートの一部に融着部を形成した。
 第4樹脂シートの融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と同様に、無色透明であった。
(Comparative Example 4)
The thickness was 100 μm in the same manner as in Comparative Example 1, except that instead of the first raw material, a fourth raw material obtained by mixing a propylene homopolymer (100 parts) and a second colorant (2 parts) was used. was obtained.
When the fourth resin sheet was visually observed, the color tone of the fourth resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the fourth resin sheet.
When the fused portion and the non-fused portion of the fourth resin sheet were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
(比較例5)
 第1原料の代わりに、プロピレン単独重合体(100部)、及び第3呈色剤(2部)を混ぜ合わせて第5原料を用いた他は、比較例1と同様にして、厚さ100μmの第5樹脂シートを得た。
 第5樹脂シートを目視で観察したところ、第5樹脂シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第5樹脂シートの一部に融着部を形成した。
 第5樹脂シートの融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と同様に、無色透明であった。
(Comparative Example 5)
The thickness was 100 μm in the same manner as in Comparative Example 1, except that the fifth raw material was used by mixing the propylene homopolymer (100 parts) and the third colorant (2 parts) instead of the first raw material. was obtained.
When the fifth resin sheet was visually observed, the color tone of the fifth resin sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the fifth resin sheet.
When the fused portion and the non-fused portion of the fifth resin sheet were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
(比較例6)
 第1原料の代わりに、プロピレン単独重合体(100部)、青色ロイコ色素(1部)、及び第2呈色剤(2部)を混ぜ合わせた第6原料を用いた他は、比較例1と同様にして、厚さ100μmの第6樹脂シートを得た。
 第6樹脂シートを目視で観察したところ、第6樹脂シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調(無色透明)と異なり、樹脂シート全体が青色であった。
 比較例1と同様にして、第6樹脂シートの一部に融着部を形成した。
 第6樹脂シートの融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(青色)と同様に、青色であった。
(Comparative Example 6)
Comparative Example 1 except that instead of the first raw material, a sixth raw material obtained by mixing a propylene homopolymer (100 parts), a blue leuco dye (1 part), and a second colorant (2 parts) was used. A sixth resin sheet having a thickness of 100 μm was obtained in the same manner as in the above.
When the sixth resin sheet was visually observed, the color tone of the sixth resin sheet was blue as a whole, unlike the color tone (colorless and transparent) of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the sixth resin sheet.
When the fused portion and the non-fused portion of the sixth resin sheet were visually observed, the color tone of the fused portion was blue, similar to the color tone (blue) of the non-fused portion.
(実施例1)
 比較例1と同様にして、青色ロイコ色素を含む第1樹脂シートを得た。比較例3と同様にして、第1呈色剤を含む第3樹脂シートを得た。第1樹脂シートと第3樹脂シートを重ね合わせて、第1積層シートを得た。
 第1積層シートを目視で観察したところ、第1積層シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第1積層シートの一部に融着部を形成して、第1複合樹脂成形体を得た。
 第1複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、青色であった。
(Example 1)
A first resin sheet containing a blue leuco dye was obtained in the same manner as in Comparative Example 1. A third resin sheet containing the first colorant was obtained in the same manner as in Comparative Example 3. The first laminated sheet was obtained by laminating the first resin sheet and the third resin sheet.
When the first laminated sheet was visually observed, the color tone of the first laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a part of the first laminated sheet to obtain a first composite resin molding.
When the fused portion and the non-fused portion of the first composite resin molding were visually observed, the color tone of the fused portion was blue, unlike the color tone (colorless and transparent) of the non-fused portion.
(実施例2)
 比較例1と同様にして、青色ロイコ色素を含む第1樹脂シートを得た。比較例4と同様にして、第2呈色剤を含む第4樹脂シートを得た。第1樹脂シートと第4樹脂シートを重ね合わせて、第2積層シートを得た。
 第2積層シートを目視で観察したところ、第2積層シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第2積層シートの一部に融着部を形成して、第2複合樹脂成形体を得た。
 第2複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、濃青色であった。
 第2複合樹脂成形体の融着部の色調は、第1複合樹脂成形体の融着部の色調よりも濃かった。
(Example 2)
A first resin sheet containing a blue leuco dye was obtained in the same manner as in Comparative Example 1. A fourth resin sheet containing a second colorant was obtained in the same manner as in Comparative Example 4. The first resin sheet and the fourth resin sheet were laminated to obtain a second laminated sheet.
When the second laminated sheet was visually observed, the color tone of the second laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a part of the second laminated sheet to obtain a second composite resin molding.
When the fused portion and the non-fused portion of the second composite resin molding were visually observed, the color tone of the fused portion was dark blue, unlike the color tone of the non-fused portion (colorless and transparent).
The color tone of the fused portion of the second composite resin molded body was darker than the color tone of the fused portion of the first composite resin molded body.
(実施例3)
 比較例1と同様にして、青色ロイコ色素を含む第1樹脂シートを得た。比較例5と同様にして、第3呈色剤を含む第5樹脂シートを得た。第1樹脂シートと第5樹脂シートを重ね合わせて、第3積層シートを得た。
 第3積層シートを目視で観察したところ、第3積層シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第3積層シートの一部に融着部を形成して、第3複合樹脂成形体を得た。
 第3複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、薄青色であった。
 第3複合樹脂成形体の融着部の色調は、第1複合樹脂成形体の融着部の色調よりも薄かった。
(Example 3)
A first resin sheet containing a blue leuco dye was obtained in the same manner as in Comparative Example 1. A fifth resin sheet containing the third colorant was obtained in the same manner as in Comparative Example 5. The first resin sheet and the fifth resin sheet were laminated to obtain a third laminated sheet.
When the third laminated sheet was visually observed, the color tone of the third laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a part of the third laminated sheet to obtain a third composite resin molded body.
When the fused portion and the non-fused portion of the third composite resin molding were visually observed, the color tone of the fused portion was pale blue, unlike the color tone of the non-fused portion (colorless and transparent).
The color tone of the fused portion of the third composite resin molded body was lighter than the color tone of the fused portion of the first composite resin molded body.
(実施例4)
 比較例2と同様にして、赤色ロイコ色素を含む第2樹脂シートを得た。比較例3と同様にして、第1呈色剤を含む第3樹脂シートを得た。第2樹脂シートと第3樹脂シートを重ね合わせて、第4積層シートを得た。
 第4積層シートを目視で観察したところ、第4積層シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第4積層シートの一部に融着部を形成して、第4複合樹脂成形体を得た。
 第4複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、赤色であった。
(Example 4)
A second resin sheet containing a red leuco dye was obtained in the same manner as in Comparative Example 2. A third resin sheet containing the first colorant was obtained in the same manner as in Comparative Example 3. The second resin sheet and the third resin sheet were laminated to obtain a fourth laminated sheet.
When the fourth laminated sheet was visually observed, the color tone of the fourth laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a part of the fourth laminated sheet to obtain a fourth composite resin molded body.
When the fused portion and the non-fused portion of the fourth composite resin molding were visually observed, the color tone of the fused portion was red, unlike the color tone (colorless and transparent) of the non-fused portion.
(実施例5)
 比較例2と同様にして、赤色ロイコ色素を含む第2樹脂シートを得た。比較例4と同様にして、第2呈色剤を含む第4樹脂シートを得た。第2樹脂シートと第4樹脂シートを重ね合わせて、第5積層シートを得た。
 第5積層シートを目視で観察したところ、第5積層シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第5積層シートの一部に融着部を形成して、第5複合樹脂成形体を得た。
 第5複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、濃赤色であった。
 第5複合樹脂成形体の融着部の色調は、第4複合樹脂成形体の融着部の色調よりも濃かった。
(Example 5)
A second resin sheet containing a red leuco dye was obtained in the same manner as in Comparative Example 2. A fourth resin sheet containing a second colorant was obtained in the same manner as in Comparative Example 4. The second resin sheet and the fourth resin sheet were laminated to obtain a fifth laminated sheet.
When the fifth laminated sheet was visually observed, the color tone of the fifth laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the fifth laminated sheet to obtain a fifth composite resin molded body.
When the fused portion and the non-fused portion of the fifth composite resin molding were visually observed, the color tone of the fused portion was dark red, unlike the color tone of the non-fused portion (colorless and transparent).
The color tone of the fused portion of the fifth composite resin molded body was darker than the color tone of the fused portion of the fourth composite resin molded body.
(実施例6)
 比較例2と同様にして、赤色ロイコ色素を含む第2樹脂シートを得た。比較例5と同様にして、第3呈色剤を含む第5樹脂シートを得た。第2樹脂シートと第5樹脂シートを重ね合わせて、第6積層シートを得た。
 第6積層シートを目視で観察したところ、第6積層シートの色調は、プロピレン単独重合体のみからなる透明樹脂シートの色調と同様に、無色透明であった。
 比較例1と同様にして、第6積層シートの一部に融着部を形成して、第6複合樹脂成形体を得た。
 第6複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、薄赤色であった。
 第6複合樹脂成形体の融着部の色調は、第4複合樹脂成形体の融着部の色調よりも薄かった。
(Example 6)
A second resin sheet containing a red leuco dye was obtained in the same manner as in Comparative Example 2. A fifth resin sheet containing the third colorant was obtained in the same manner as in Comparative Example 5. The second resin sheet and the fifth resin sheet were laminated to obtain a sixth laminated sheet.
When the sixth laminated sheet was visually observed, the color tone of the sixth laminated sheet was colorless and transparent, similar to the color tone of the transparent resin sheet composed only of propylene homopolymer.
In the same manner as in Comparative Example 1, a fused portion was formed in a part of the sixth laminated sheet to obtain a sixth composite resin molded body.
When the fused portion and the non-fused portion of the sixth composite resin molding were visually observed, the color tone of the fused portion was pale red, unlike the color tone of the non-fused portion (colorless and transparent).
The color tone of the fused portion of the sixth composite resin molded body was lighter than the color tone of the fused portion of the fourth composite resin molded body.
(実施例7)
 実施例1と同様にして、第1積層シートを得た。
 第1積層シートの一部をロール型プレス機に挟み込んで、融着部を形成して、第7複合樹脂成形体を得た。ロール型プレス機は、彫刻ロールと、平滑ロールとを備える。彫刻ロールは、ロール表面に彫刻が施された金属製ロールである。平滑ロールは、ロール表面が平滑な金属製ロールである。彫刻ロール及び平滑ロールの各々の表面温度は、190℃であった。第1積層シートに掛かる圧力は、700MPaであった。
 第7複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、青色であった。換言すると、第7複合樹脂成形体の彫刻ロールの彫刻が転写された部位(融着部)のみが青色であった。
(Example 7)
A first laminated sheet was obtained in the same manner as in Example 1.
A portion of the first laminated sheet was sandwiched in a roll press to form a fused portion to obtain a seventh composite resin molded body. A roll-type press includes an engraved roll and a smooth roll. Engraved rolls are metal rolls with engravings on the roll surface. A smooth roll is a metal roll with a smooth roll surface. The surface temperature of each of the engraved roll and the smooth roll was 190°C. The pressure applied to the first laminated sheet was 700 MPa.
When the fused portion and the non-fused portion of the seventh composite resin molding were visually observed, the color tone of the fused portion was blue, unlike the color tone (colorless and transparent) of the non-fused portion. In other words, only the portion (fused portion) where the engraving of the engraving roll of the seventh composite resin molding was transferred was blue.
(実施例8)
 実施例2と同様にして、第2積層シートを得た。
 実施例7と同様にして、第2積層シートの一部に融着部を形成して、第8複合樹脂成形体を得た。
 第8複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、濃青色であった。換言すると、第8複合樹脂成形体の彫刻ロールの彫刻が転写された部位(融着部)のみが濃青色であった。
 第8複合樹脂成形体の融着部の色調は、第7複合樹脂成形体の融着部の色調よりも濃かった。
(Example 8)
A second laminated sheet was obtained in the same manner as in Example 2.
In the same manner as in Example 7, a fused portion was formed in a part of the second laminated sheet to obtain an eighth composite resin molded body.
When the fused portion and the non-fused portion of the eighth composite resin molding were visually observed, the color tone of the fused portion was dark blue, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the engraving roll of the eighth composite resin molding was transferred was dark blue.
The color tone of the fused portion of the eighth composite resin molded body was darker than the color tone of the fused portion of the seventh composite resin molded body.
(実施例9)
 実施例3と同様にして、第3積層シートを得た。
 実施例7と同様にして、第3積層シートの一部に融着部を形成して、第9複合樹脂成形体を得た。
 第9複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、薄青色であった。換言すると、第9複合樹脂成形体の彫刻ロールの彫刻が転写された部位(融着部)のみが薄青色であった。
 第9複合樹脂成形体の融着部の色調は、第7複合樹脂成形体の融着部の色調よりも薄かった。
(Example 9)
A third laminated sheet was obtained in the same manner as in Example 3.
In the same manner as in Example 7, a fused portion was formed in a part of the third laminated sheet to obtain a ninth composite resin molding.
When the fused portion and the non-fused portion of the ninth composite resin molding were visually observed, the color tone of the fused portion was pale blue, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the engraving roll of the ninth composite resin molded body was transferred was pale blue.
The color tone of the fused portion of the ninth composite resin molded body was lighter than the color tone of the fused portion of the seventh composite resin molded body.
(実施例10)
 実施例4と同様にして、第4積層シートを得た。
 実施例7と同様にして、第4積層シートの一部に融着部を形成して、第10複合樹脂成形体を得た。
 第10複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、赤色であった。換言すると、第10複合樹脂成形体の彫刻ロールの彫刻が転写された部位(融着部)のみが赤色であった。
(Example 10)
A fourth laminated sheet was obtained in the same manner as in Example 4.
In the same manner as in Example 7, a fused portion was formed in a part of the fourth laminated sheet to obtain a tenth composite resin molding.
When the fused portion and the non-fused portion of the tenth composite resin molding were visually observed, the color tone of the fused portion was red, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the engraving roll of the tenth composite resin molding was transferred was red.
(実施例11)
 実施例5と同様にして、第5積層シートを得た。
 実施例7と同様にして、第5積層シートの一部に融着部を形成して、第11複合樹脂成形体を得た。
 第11複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、濃赤色であった。換言すると、第11複合樹脂成形体の彫刻ロールの彫刻が転写された部位(融着部)のみが濃赤色であった。
 第11複合樹脂成形体の融着部の色調は、第10複合樹脂成形体の融着部の色調よりも濃かった。
(Example 11)
A fifth laminated sheet was obtained in the same manner as in Example 5.
In the same manner as in Example 7, a fused portion was formed in a portion of the fifth laminated sheet to obtain an eleventh composite resin molded body.
When the fused portion and the non-fused portion of the eleventh composite resin molding were visually observed, the color tone of the fused portion was dark red, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the engraving roll of the eleventh composite resin molding was transferred was dark red.
The color tone of the fused portion of the eleventh composite resin molded body was darker than the color tone of the fused portion of the tenth composite resin molded body.
(実施例12)
 実施例6と同様にして、第6積層シートを得た。
 実施例7と同様にして、第6積層シートの一部に融着部を形成して、第12複合樹脂成形体を得た。
 第12複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、薄赤色であった。換言すると、第12複合樹脂成形体の彫刻ロールの彫刻が転写された部位(融着部)のみが薄赤色であった。
 第12複合樹脂成形体の融着部の色調は、第10複合樹脂成形体の融着部の色調よりも薄かった。
(Example 12)
A sixth laminated sheet was obtained in the same manner as in Example 6.
In the same manner as in Example 7, a fused portion was formed in a part of the sixth laminated sheet to obtain a twelfth composite resin molding.
When the fused portion and the non-fused portion of the twelfth composite resin molding were visually observed, the color tone of the fused portion was pale red, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion where the engraving on the engraving roll of the twelfth composite resin molding was transferred (fused portion) was pale red.
The color tone of the fused portion of the twelfth composite resin molded body was lighter than the color tone of the fused portion of the tenth composite resin molded body.
(比較例7)
 比較例1と同様にして、第1原料を得た。
 第1原料を200℃にて溶融混練し、スパンボンド法にて紡糸を行った。得られた繊維を補集面上に堆積させて、第1ウェブを得た。第1ウェブの目付は、10g/mとなるように調整されていた。第1ウェブを構成する繊維の平均繊維径は、19μmであった。
 第1ウェブを目視で観察したところ、第1ウェブの色調は、プロピレン単独重合体のみからなる不織布の色調と同様に、無色透明であった。
 第1ウェブの一部をエンボスロール装置に挟み込んで、融着部を形成した。エンボスロール装置は、エンボスロール51と、平滑ロール52とを備える。エンボスロール51及び平滑ロール52の各々の表面温度は、130℃であった。第1ウェブに掛かる圧力は、700MPaであった。エンボスロール51の彫刻面積率は、10%であった。エンボスロール51の彫刻面積率は、エンボスロール51のロール表面の全面積に対する、彫刻部(凸部)の面積の割合を示す。
 第1ウェブの融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と同様に、無色透明であった。
(Comparative Example 7)
A first raw material was obtained in the same manner as in Comparative Example 1.
The first raw material was melt-kneaded at 200° C. and spun by a spunbond method. The resulting fibers were deposited onto a collecting surface to obtain a first web. The basis weight of the first web was adjusted to 10 g/m 2 . The average fiber diameter of the fibers forming the first web was 19 μm.
When the first web was visually observed, the color tone of the first web was colorless and transparent, similar to the color tone of the nonwoven fabric composed only of propylene homopolymer.
A portion of the first web was sandwiched between embossing rolls to form a fused portion. The embossing roll device includes an embossing roll 51 and a smooth roll 52 . The surface temperature of each of the embossing roll 51 and the smooth roll 52 was 130°C. The pressure applied to the first web was 700 MPa. The engraving area ratio of the embossing roll 51 was 10%. The engraving area ratio of the embossing roll 51 indicates the ratio of the area of the engravings (projections) to the total area of the roll surface of the embossing roll 51 .
When the fused portion and the non-fused portion of the first web were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
(比較例8)
 比較例4と同様にして、第4原料を得た。
 第1原料の代わりに、第4原料を用いた他は、比較例7と同様にして、第2ウェブを得た。
 第2ウェブを目視で観察したところ、第2ウェブの色調は、プロピレン単独重合体のみからなる不織布の色調と同様に、無色透明であった。
 比較例7と同様にして、第2ウェブに融着部を形成した。
 第2ウェブの融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と同様に、無色透明であった。
(Comparative Example 8)
A fourth raw material was obtained in the same manner as in Comparative Example 4.
A second web was obtained in the same manner as in Comparative Example 7, except that the fourth raw material was used instead of the first raw material.
When the second web was visually observed, the color tone of the second web was colorless and transparent, similar to the color tone of the nonwoven fabric composed only of propylene homopolymer.
A fused portion was formed in the second web in the same manner as in Comparative Example 7.
When the fused portion and the non-fused portion of the second web were visually observed, the color tone of the fused portion was colorless and transparent, similar to the color tone of the non-fused portion (colorless and transparent).
(比較例9)
 プロピレン単独重合体(100部)、青色ロイコ色素(1部)、及び第2呈色剤(1部)を混ぜ合わせて第7原料を得た。
 第1原料の代わりに、第7原料を用いた他は、比較例7と同様にして、第3ウェブを得た。
 第3ウェブを目視で観察したところ、第3ウェブの色調は、プロピレン単独重合体のみからなる不織布の色調と異なり、第3ウェブの全体が青色であった。
 比較例7と同様にして、第3ウェブに融着部を形成した。
 第3ウェブの融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(青色)と同様に、青色であった。
(Comparative Example 9)
A propylene homopolymer (100 parts), a blue leuco dye (1 part), and a second colorant (1 part) were mixed to obtain a seventh raw material.
A third web was obtained in the same manner as in Comparative Example 7, except that the seventh raw material was used instead of the first raw material.
When the third web was visually observed, the color tone of the third web was blue as a whole, unlike the color tone of the nonwoven fabric made of only the propylene homopolymer.
A fused portion was formed in the third web in the same manner as in Comparative Example 7.
When the fused portion and the non-fused portion of the third web were visually observed, the color tone of the fused portion was blue, similar to the color tone (blue) of the non-fused portion.
<実施例13>
 比較例7と同様にして、第1ウェブを得た。比較例8と同様にして、第2ウェブを得た。第1ウェブと第2ウェブを重ね合わせて、ウェブ積層体を得た。ウェブ積層体の総目付20g/mであった。
 比較例7と同様にして、ウェブ積層体の一部に融着部を形成して、第13複合樹脂成形体を得た。
 第13複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、青色であった。換言すると、第13複合樹脂成形体のエンボスロール51の彫刻が転写された部位(融着部)のみが青色であった。
<Example 13>
A first web was obtained in the same manner as in Comparative Example 7. A second web was obtained in the same manner as in Comparative Example 8. A web laminate was obtained by overlapping the first web and the second web. The total basis weight of the web laminate was 20 g/m 2 .
In the same manner as in Comparative Example 7, a fused portion was formed in a part of the web laminate to obtain a thirteenth composite resin molded article.
When the fused portion and the non-fused portion of the thirteenth composite resin molding were visually observed, the color tone of the fused portion was blue, unlike the color tone (colorless and transparent) of the non-fused portion. In other words, only the portion (fused portion) where the engraving of the embossing roll 51 of the thirteenth composite resin molding was transferred was blue.
<実施例14>
 比較例1と同様にして、第1原料を得た。プロピレン単独重合体(100部)、及び第2呈色剤(1部)を混ぜ合わせて第8原料を得た。
 図8に示すように、第1押出機11に第1原料を投入し、第3押出機15に第8原料を投入して、別々に200℃にて溶融混練した。
 第3紡糸口金16を有するスパンボンド不織布成形機を用いて、第3紡糸口金16の樹脂温度とダイ温度がともに200℃、冷却風14の温度25℃、延伸エア風速3500m/分の条件でスパンボンド法により溶融紡糸し、混合長繊維からなる第3連続繊維群6を移動捕集部材21の捕集面上に堆積させ、混繊スパンボンドウェブ7を得た。混繊スパンボンドウェブ7は発色繊維:呈色繊維が40:60(質量%)の混合繊維からなる。混繊スパンボンドウェブ7の目付は、20g/mであった。
 第3紡糸口金16は、第1原料用の吐出孔と第8原料用の吐出孔とが交互に配列されたノズルパターンを有する。ノズル径は0.60mmφであり、ノズル数の比は、第1原料からなる繊維用ノズル:第6原料からなる繊維用ノズル=40:60であった。
 混繊スパンボンドウェブ7を目視で観察したところ、混繊スパンボンドウェブ7の色調は、プロピレン単独重合体のみからなる繊維の色調と同様に、無色であった。
 次いで、比較例7と同様にして、混繊スパンボンドウェブ7の一部に融着部を形成して、第14複合樹脂成形体を得た。
 第14複合樹脂成形体の融着部と非融着部とを目視で観察したところ、融着部の色調は、非融着部の色調(無色透明)と異なり、青色であった。換言すると、第14複合樹脂成形体のエンボスロール51の彫刻が転写された部位(融着部)のみが青色であった。
<Example 14>
A first raw material was obtained in the same manner as in Comparative Example 1. A propylene homopolymer (100 parts) and a second colorant (1 part) were mixed to obtain an eighth raw material.
As shown in FIG. 8, the first raw material was put into the first extruder 11, the eighth raw material was put into the third extruder 15, and melt-kneaded separately at 200°C.
Using a spunbond nonwoven fabric molding machine having a third spinneret 16, spun under the conditions that the resin temperature and die temperature of the third spinneret 16 are both 200°C, the temperature of the cooling air 14 is 25°C, and the drawing air speed is 3500 m/min. A third continuous fiber group 6 composed of mixed filaments was deposited on the collection surface of the moving collection member 21 by melt spinning by a bond method to obtain a mixed fiber spunbond web 7 . The mixed fiber spunbond web 7 is composed of a mixed fiber of coloring fiber:coloring fiber in a ratio of 40:60 (mass %). The basis weight of the mixed fiber spunbond web 7 was 20 g/m 2 .
The third spinneret 16 has a nozzle pattern in which ejection holes for the first raw material and ejection holes for the eighth raw material are alternately arranged. The nozzle diameter was 0.60 mmφ, and the ratio of the number of nozzles was 40:60.
When the mixed fiber spunbonded web 7 was visually observed, the color tone of the mixed fiber spunbonded web 7 was colorless, like the color tone of the fibers composed only of the propylene homopolymer.
Next, in the same manner as in Comparative Example 7, a fused portion was formed in a part of the mixed fiber spunbond web 7 to obtain a 14th composite resin molding.
When the fused portion and the non-fused portion of the fourteenth composite resin molding were visually observed, the color tone of the fused portion was blue, unlike the color tone of the non-fused portion (colorless and transparent). In other words, only the portion (fused portion) where the engraving of the embossing roll 51 of the 14th composite resin molding was transferred was blue.
 実施例1~実施例14、及び比較例1~比較例9における、目視による融着部の色調と非融着部の色調を表1及び表2に示す。 Tables 1 and 2 show the color tone of the fused portion and the color tone of the non-fused portion visually observed in Examples 1 to 14 and Comparative Examples 1 to 9.
<実施例15>
 実施例2と同様にして、青色ロイコ色素を含むシートと呈色剤を含むシートが重なった、積層シートを得た。比較例1と同様にして、第3積層シートの一部に融着部を形成して、幅10mmの帯状の融着部を形成した。
<Example 15>
In the same manner as in Example 2, a laminated sheet was obtained in which a sheet containing a blue leuco dye and a sheet containing a colorant were laminated. In the same manner as in Comparative Example 1, a fused portion was formed in a portion of the third laminated sheet to form a strip-shaped fused portion having a width of 10 mm.
<実施例16>
 実施例13と同様にして、青色ロイコ色素を含むウェブと呈色剤を含むウェブが重なった、総目付20g/mのウェブ積層体を得た。比較例7と同様にして、ウェブ積層体の一部に融着部を形成して、幅10mmの帯状の融着部を形成した。
<Example 16>
In the same manner as in Example 13, a web laminate having a total basis weight of 20 g/m 2 was obtained by overlapping a web containing a blue leuco dye and a web containing a colorant. In the same manner as in Comparative Example 7, a band-shaped fused portion having a width of 10 mm was formed by forming a fused portion in a part of the web laminate.
 実施例15及び実施例16における、融着部の色調と非融着部の色差を表3に示す。 Table 3 shows the color tone of the fused portion and the color difference of the non-fused portion in Examples 15 and 16.
<実施例17>
 実施例16と同様にして、融着部が形成されたウェブ積層体を得た。
<Example 17>
A web laminate having a fused portion was obtained in the same manner as in Example 16.
<比較例10>
 第1原料の代わりに、プロピレン単独重合体のみを原料として用いた他は、比較例7と同様にして、プロピレン単独重合体からなる目付10g/mの第4ウェブを得た。第4ウェブを2枚重ねて総目付20g/mのウェブ積層体を得た。
 このウェブ積層体の一部をバッチ式シーラーに挟み込み、積層された第4ウェブ同士を熱圧着して幅10mmの帯状の融着部を形成した。バッチ式シーラーの一対の金属板の各々の表面温度は、190℃であった。積層ウェブに掛かる圧力は、3MPaであった。
 融着部が形成されたウェブ積層体の融着部に対して、実施例17の融着部と同様の色調となるよう、青色油性塗料を塗布・乾燥した。これにより、融着部に青色塗膜を形成した。
<Comparative Example 10>
A fourth web having a basis weight of 10 g/m 2 made of a propylene homopolymer was obtained in the same manner as in Comparative Example 7, except that only a propylene homopolymer was used as a raw material instead of the first raw material. Two sheets of the fourth web were laminated to obtain a web laminate having a total basis weight of 20 g/m 2 .
A portion of this web laminate was sandwiched between batch-type sealers, and the laminated fourth webs were thermocompression bonded to each other to form a band-shaped fused portion having a width of 10 mm. The surface temperature of each of the pair of metal plates of the batch sealer was 190°C. The pressure on the laminated web was 3 MPa.
A blue oil-based paint was applied to the fused portion of the web laminate having the fused portion formed thereon so as to have the same color tone as that of the fused portion of Example 17, and then dried. As a result, a blue coating film was formed on the fused portion.
 実施例17及び比較例10について、摩耗性試験を行った。摩耗性試験の評価結果を表4に示す。 An abrasion test was conducted on Example 17 and Comparative Example 10. Table 4 shows the evaluation results of the abrasion test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~実施例14の複合樹脂成形体は、第1樹脂成形体と、第2樹脂成形体と、融着部と、を備える。第1樹脂成形体は、主成分であるプロピレン単独重合体、及びロイコ色素を含有し、呈色剤を含有しない。第2樹脂成形体は、主成分であるプロピレン単独重合体、及び呈色剤を含有し、ロイコ色素を含有しない。融着部は、第1樹脂成形体の一部と第2樹脂成形体の一部とが融着している。そのため、融着部の色調と、非融着部の色調とは、異なっていた。その結果、実施例1~実施例14の複合樹脂成形体では、融着部は外部から着色されていなくても色調によって視認されやすいことがわかった。 The composite resin molded bodies of Examples 1 to 14 each include a first resin molded body, a second resin molded body, and a fused portion. The first resin molding contains a propylene homopolymer as a main component and a leuco dye, and does not contain a color former. The second resin molding contains a propylene homopolymer as a main component and a colorant, but does not contain a leuco dye. In the fused part, a part of the first resin molded body and a part of the second resin molded body are fused together. Therefore, the color tone of the fused portion was different from the color tone of the non-fused portion. As a result, it was found that in the composite resin moldings of Examples 1 to 14, the fused portion was easily visible due to its color tone even if it was not colored from the outside.
 第1呈色剤の融点は、融着温度よりも高かった。第2呈色剤の融点は、融着温度よりも低かった。第2呈色剤を含む実施例2、実施例5、実施例8、及び実施例11の複合樹脂成形体の融着部は、第1呈色剤を含む実施例1、実施例4、実施例7、及び実施例10の複合樹脂成形体の融着部よりも強く発色していた。これにより、融点が融着温度よりも低い呈色剤を用いることで、複合樹脂成形体において、融着部はより強く発色し得ることがわかった。 The melting point of the first colorant was higher than the fusion temperature. The melting point of the second colorant was lower than the fusing temperature. The fused parts of the composite resin moldings of Examples 2, 5, 8, and 11 containing the second colorant are the first colorant containing the first colorant, Example 4, and Example The color developed more strongly than the fused portions of the composite resin moldings of Examples 7 and 10. From this, it was found that by using a coloring agent whose melting point is lower than the fusion temperature, the fused portion can develop a stronger color in the composite resin molded article.
 第1呈色剤の酸性度は、第3呈色剤の酸性度よりも高かった。第1呈色剤の融点は、融着温度よりも高かった。第3呈色剤の融点は、融着温度よりも低かった。第1呈色剤を含む実施例1、実施例4、実施例7、及び実施例10の複合樹脂成形体の融着部は、第3呈色剤を含む実施例3、実施例6、実施例9、及び実施例12の複合樹脂成形体の融着部よりも強く発色していた。これにより、融点が熱融着温度よりも低い呈色剤であっても、呈色剤の酸性度が高いと、融着部は、酸性度が低い呈色剤を用いた場合より強く発色し得ることがわかった。 The acidity of the first colorant was higher than that of the third colorant. The melting point of the first colorant was higher than the fusing temperature. The melting point of the third colorant was lower than the fusing temperature. The fused portion of the composite resin moldings of Examples 1, 4, 7, and 10 containing the first colorant contains the third colorant in Examples 3, 6, and 10. The color developed more strongly than the fused portions of the composite resin moldings of Examples 9 and 12. As a result, even if the coloring agent has a melting point lower than the heat-sealing temperature, if the acidity of the coloring agent is high, the fused portion develops a stronger color than when a coloring agent having a low acidity is used. found to get
 一方、比較例1~比較例6の樹脂シート、及び比較例7~比較例9のウェブは、第1樹脂成形体及び第2樹脂成形体の一方を備えていなかった。そのため、融着部の色調と、非融着部の色調とは、同一であった。比較例1~比較例6の樹脂シート、及び比較例7~比較例9のウェブでは、融着部は、外部から着色されていなくても色調によって視認されやすいものではないことがわかった。 On the other hand, the resin sheets of Comparative Examples 1 to 6 and the webs of Comparative Examples 7 to 9 did not include either the first resin molded body or the second resin molded body. Therefore, the color tone of the fused portion and the color tone of the non-fused portion were the same. It was found that in the resin sheets of Comparative Examples 1 to 6 and the webs of Comparative Examples 7 to 9, the fused portion is not easily visible due to the color tone even if it is not colored from the outside.
 実施例15の複合樹脂成形体の形態は、積層シートである。実施例16の複合成形体は、その形態が多層スパンボンド不織布であることの他は、実施例15と同様である。
 実施例15と実施例16とを対比すると、実施例16の多層スパンボンド不織布の色差(ΔE)は23.37であったのに対し、実施例15の積層シートの色差(ΔE)は5.85であった。この結果から、実施例16の多層スパンボンド不織布は、実施例15の積層シートよりも非融着部と融着部の視覚的なコントラストは向上したことがわかった。
 実施例16の多層スパンボンド不織布の融着前後のL値の変化量は、実施例15の積層シートの融着前後のL値の変化量よりも大きかった。これは、スパンボンド不織布の非融着部は繊維で構成されていることが主要因であると推測される。詳しくは、繊維は可視光を散乱しやすいため、繊維で構成された非融着部のL値は、比較的大きい。その結果、繊維で構成された非融着部のL値と、樹脂が融解しフィルム化された融着部とのLとの差が大きくなると推測される。
 実施例16の多層スパンボンド不織布の融着前後のb値の変化量は、実施例15の積層シートの融着前後のb値の変化量よりも大きかった。これは、実施例16では、発色剤を含む第1樹脂成形体の形態及び呈色剤を含む第2樹脂成形体の形態が共に繊維であるため、融着の際に、溶融・混合が起こりやすいことが主要因であると推測される。
The form of the composite resin molded article of Example 15 is a laminated sheet. The composite molded article of Example 16 is the same as that of Example 15 except that its form is a multi-layered spunbond nonwoven fabric.
Comparing Example 15 and Example 16, the color difference (ΔE) of the multilayer spunbond nonwoven fabric of Example 16 was 23.37, while the color difference (ΔE) of the laminated sheet of Example 15 was 5.37. was 85. From these results, it was found that the multi-layered spunbond nonwoven fabric of Example 16 had improved visual contrast between the non-fused portion and the fused portion compared to the laminated sheet of Example 15.
The amount of change in the L * value of the multilayer spunbond nonwoven fabric of Example 16 before and after fusion bonding was greater than the amount of change in the L * value of the laminated sheet of Example 15 before and after fusion bonding. It is presumed that the main reason for this is that the non-fused portion of the spunbond nonwoven fabric is composed of fibers. Specifically, since fibers tend to scatter visible light, the L * value of the non-fused portion made up of fibers is relatively large. As a result, it is presumed that the difference between the L * value of the non-fused portion composed of fibers and the L * value of the fused portion formed into a film by melting the resin increases.
The amount of change in the b * value of the multilayer spunbond nonwoven fabric of Example 16 before and after fusion bonding was greater than the amount of change in the b * value of the laminated sheet of Example 15 before and after fusion bonding. This is because, in Example 16, both the form of the first resin molded body containing the color former and the form of the second resin molded body containing the color former are fibers, so melting and mixing occur during fusion bonding. It is speculated that the main factor is ease of use.
 2021年3月25日に出願された日本国特許出願2021-051587の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application 2021-051587 filed on March 25, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (8)

  1.  第1熱可塑性樹脂、及び発色剤を含有する第1樹脂成形体と、
     第2熱可塑性樹脂、及び前記発色剤の発色又は変色を促す呈色剤を含有する第2樹脂成形体と、
     前記第1樹脂成形体の一部と前記第2樹脂成形体の一部とが融着した融着部と、を備える、複合樹脂成形体。
    A first resin molding containing a first thermoplastic resin and a coloring agent;
    a second resin molding containing a second thermoplastic resin and a coloring agent that promotes color development or discoloration of the coloring agent;
    A composite resin molded body, comprising: a fused portion in which a part of the first resin molded body and a part of the second resin molded body are fused together.
  2.  前記第1樹脂成形体は、前記呈色剤を含有せず、
     前記第2樹脂成形体は、前記発色剤を含有しない、請求項1に記載の複合樹脂成形体。
    The first resin molded body does not contain the colorant,
    2. The composite resin molded article according to claim 1, wherein said second resin molded article does not contain said coloring agent.
  3.  前記第1樹脂成形体は、第1繊維を含み、
     前記第2樹脂成形体は、第2繊維を含む、請求項1又は請求項2に記載の複合樹脂成形体。
    The first resin molded body includes a first fiber,
    3. The composite resin molded article according to claim 1, wherein said second resin molded article contains second fibers.
  4.  前記第1樹脂成形体は、前記第1繊維を含む第1スパンボンドウェブであり、
     前記第2樹脂成形体は、前記第2繊維を含む第2スパンボンドウェブであり、
     前記第1スパンボンドウェブは、前記第2スパンボンドウェブの一方の主面上に積層されている、請求項3に記載の複合樹脂成形体。
    The first resin molded body is a first spunbond web containing the first fibers,
    The second resin molded body is a second spunbond web containing the second fibers,
    4. The composite resin molded article according to claim 3, wherein said first spunbond web is laminated on one main surface of said second spunbond web.
  5.  前記第1樹脂成形体は、第1繊維であり、
     前記第2樹脂成形体は、第2繊維であり、
     前記第1繊維及び前記第2繊維は、混繊スパンボンドウェブを構成する、請求項3に記載の複合樹脂成形体。
    The first resin molding is a first fiber,
    The second resin molded body is a second fiber,
    4. The composite resin molded article according to claim 3, wherein said first fibers and said second fibers constitute a mixed fiber spunbond web.
  6.  前記発色剤は、前記第1繊維内に含まれ、
     前記呈色剤は、前記第2繊維内に含まれる、請求項3~請求項5のいずれか1項に記載の複合樹脂成形体。
    The coloring agent is contained in the first fiber,
    The composite resin molded article according to any one of claims 3 to 5, wherein the coloring agent is contained in the second fibers.
  7.  前記融着部は、少なくともその内部に、前記発色剤と前記呈色剤との発色化合物を含む、請求項1~請求項6のいずれか1項に記載の複合樹脂成形体。 The composite resin molded article according to any one of claims 1 to 6, wherein the fused portion contains, at least inside, a coloring compound of the coloring agent and the coloring agent.
  8.  前記発色剤は、ロイコ色素を含む、請求項1~請求項7のいずれか1項に記載の複合樹脂成形体。 The composite resin molded article according to any one of claims 1 to 7, wherein the coloring agent contains a leuco dye.
PCT/JP2022/009446 2021-03-25 2022-03-04 Composite resin molded body WO2022202229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508909A JPWO2022202229A1 (en) 2021-03-25 2022-03-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021051587 2021-03-25
JP2021-051587 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022202229A1 true WO2022202229A1 (en) 2022-09-29

Family

ID=83396990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009446 WO2022202229A1 (en) 2021-03-25 2022-03-04 Composite resin molded body

Country Status (2)

Country Link
JP (1) JPWO2022202229A1 (en)
WO (1) WO2022202229A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827653A (en) * 1994-07-08 1996-01-30 Pilot Ink Co Ltd Thermally color-changing nonwoven fabric
JPH0911622A (en) * 1995-06-30 1997-01-14 Tokin Corp Plastic card and production thereof
US20030087566A1 (en) * 2001-10-23 2003-05-08 Polymer Group, Inc. Meltspun thermochromic fabrics
JP2009507556A (en) * 2005-09-13 2009-02-26 エスセーアー・ハイジーン・プロダクツ・アーベー Absorbent articles and laminates containing bonding patterns
JP2013119924A (en) * 2011-12-08 2013-06-17 Toyota Motor Corp Method for manufacturing high-pressure tank
WO2018221169A1 (en) * 2017-05-31 2018-12-06 富士フイルム株式会社 Pressure measurement material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827653A (en) * 1994-07-08 1996-01-30 Pilot Ink Co Ltd Thermally color-changing nonwoven fabric
JPH0911622A (en) * 1995-06-30 1997-01-14 Tokin Corp Plastic card and production thereof
US20030087566A1 (en) * 2001-10-23 2003-05-08 Polymer Group, Inc. Meltspun thermochromic fabrics
JP2009507556A (en) * 2005-09-13 2009-02-26 エスセーアー・ハイジーン・プロダクツ・アーベー Absorbent articles and laminates containing bonding patterns
JP2013119924A (en) * 2011-12-08 2013-06-17 Toyota Motor Corp Method for manufacturing high-pressure tank
WO2018221169A1 (en) * 2017-05-31 2018-12-06 富士フイルム株式会社 Pressure measurement material

Also Published As

Publication number Publication date
JPWO2022202229A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
CA2616853C (en) Bicomponent sheet material having liquid barrier properties
EP1189748B1 (en) Composite sheet material
US5947944A (en) Stretched-thinned films comprising low crystallinity polymers and laminates thereof
CN105431123B (en) Tape including microporous film
CA2732379C (en) Breathable laminate and method of making same
CN103370191B (en) Non-weaving cloth laminated body
RU2435882C2 (en) Lighter spunbonded web with special mechanical properties
KR20000075962A (en) Improved Flash-Spun Sheet Material
US20030087566A1 (en) Meltspun thermochromic fabrics
KR102479098B1 (en) A package comprising a sealed contact area comprising a non-woven fabric having a bonding surface of an embossed printed pattern
AU2058800A (en) Transversely extensible and retractable necked laminate of non-elastic sheet layers
CN105283161A (en) Personal hygiene article and container for the same
JP2022079459A5 (en)
WO2000038915A1 (en) Pattern embossed multilayer microporous films
JP2017105032A (en) Moisture permeable laminate
CN112020430A (en) Method for producing printed nonwoven fabric-film laminates
ZA200104368B (en) Transversely extensible and retractable necked laminate of non-elastic sheet layers.
WO2022202229A1 (en) Composite resin molded body
WO2021145049A1 (en) Inorganic material powder-mixed spun-bonded nonwoven fabric
US20020004351A1 (en) Packaging product
JP2005007756A (en) Composite sheet
KR20210036683A (en) Spunlace Nonwoven Fabric Sheet For Mask Pack With A Layered Structure And Method For Manufacturing The Same
KR102488660B1 (en) Gas sensitive and color changeable spunlaid nonwoven web, manufacturing method of the same, and products including the same
US20030054720A1 (en) Laminated sheet and its manufacturing
JP3646880B2 (en) Disposable heating equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775025

Country of ref document: EP

Kind code of ref document: A1