WO2022202058A1 - Molding system, method for manufacturing molded object, and molded object - Google Patents

Molding system, method for manufacturing molded object, and molded object Download PDF

Info

Publication number
WO2022202058A1
WO2022202058A1 PCT/JP2022/007225 JP2022007225W WO2022202058A1 WO 2022202058 A1 WO2022202058 A1 WO 2022202058A1 JP 2022007225 W JP2022007225 W JP 2022007225W WO 2022202058 A1 WO2022202058 A1 WO 2022202058A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion layer
electromagnetic wave
heat conversion
layer
heat
Prior art date
Application number
PCT/JP2022/007225
Other languages
French (fr)
Japanese (ja)
Inventor
郷史 三井
秀樹 高橋
Original Assignee
カシオ計算機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カシオ計算機株式会社 filed Critical カシオ計算機株式会社
Publication of WO2022202058A1 publication Critical patent/WO2022202058A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/06Veined printings; Fluorescent printings; Stereoscopic images; Imitated patterns, e.g. tissues, textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/36Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties

Definitions

  • the present invention relates to a modeling system, a modeled article manufacturing method, and a modeled article.
  • Patent Document 1 an image (toner image) with excellent light absorption properties is formed on a peelable film layer provided on the back surface of a thermally expandable sheet.
  • the toner image is removed from the stereo imaged thermally expandable sheet along with the film layer.
  • Patent Document 1 since the toner image is removed from the thermally expandable sheet together with the film layer, the stereoscopic image can be easily colored.
  • the film layer is provided on the back surface of the thermally expandable sheet, the manufacturing cost of the thermally expandable sheet, that is, the cost for forming a stereoscopic image increases. Moreover, man-hours are required for peeling off the film layer.
  • the present invention has been made in view of the above circumstances, and aims to provide a modeling system, a method for manufacturing a model, and a model that can easily be colored and can be manufactured at low cost.
  • the modeling system includes: a printing apparatus for forming a thermal conversion layer for converting electromagnetic wave energy of the first electromagnetic wave into thermal energy on a thermal expansion layer that expands with thermal energy; and an irradiation device that decolorizes the heat conversion layer when the heat conversion layer is expanded by being heated by irradiating the heat conversion layer with the first electromagnetic wave.
  • a method for manufacturing a modeled object according to a second aspect of the present invention includes: The first electromagnetic wave is applied to the heat conversion layer of a medium in which a heat conversion layer that converts the electromagnetic wave energy of the first electromagnetic wave into heat energy and a thermal expansion layer that expands due to the heat energy are laminated, and the heat is an expansion step of heating the expansion layer to expand it; and a decoloring step of decolorizing the thermal conversion layer when the thermal expansion layer is expanded by the expansion step.
  • a modeled object includes: a substrate; an expanded thermal expansion layer formed on the first main surface of the base material and having unevenness on the surface opposite to the base material; a decolorized heat conversion layer formed in a pattern corresponding to the unevenness on a second main surface of the substrate opposite to the first main surface or on the expanded thermal expansion layer; characterized by comprising
  • the heat conversion layer is decolored, it is easy to color and can be manufactured at low cost.
  • FIG. 1 is a schematic diagram showing a cross section of a molded sheet according to Embodiment 1.
  • FIG. 1 is a perspective view showing a modeled object according to Embodiment 1.
  • FIG. FIG. 3 is a cross-sectional view of the modeled object shown in FIG. 2 taken along line AA.
  • 1 is a diagram showing the configuration of a modeling system according to Embodiment 1;
  • FIG. 3 is a block diagram showing the configuration of a control unit according to Embodiment 1;
  • FIG. 3 is a diagram showing a hardware configuration of a control unit according to Embodiment 1;
  • FIG. 1 is a schematic diagram showing an irradiation device according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing an irradiation device according to Embodiment 1.
  • FIG. 4 is a flow chart showing a method for manufacturing a modeled object according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing a cross section of a molded sheet having a heat conversion layer formed thereon according to Embodiment 1.
  • FIG. 10 is a schematic diagram showing an irradiation device according to Embodiment 3; It is a schematic diagram which shows the irradiation apparatus which concerns on a modification. It is a schematic diagram which shows the irradiation apparatus which concerns on a modification.
  • the modeling system 1 manufactures the modeled object 50 from the thermally expanding molded sheet 10 .
  • the modeled object 50 is used as a decorative sheet, wallpaper, or the like.
  • a "modeled object” is a sheet having irregularities molded (formed) on a predetermined surface, and the irregularities constitute geometric shapes, characters, patterns, decorations, and the like.
  • decoration is something that evokes a sense of beauty through sight and/or touch.
  • Molding (or molding)” means creating something with a shape, and includes concepts such as decoration that adds decoration and decoration that forms decoration.
  • the modeled object 50 of the present embodiment is a three-dimensional object having unevenness on a predetermined surface. (2.5D) objects or pseudo-three-dimensional (Pseudo-3D) objects.
  • the technology for manufacturing the modeled object 50 of the present embodiment can also be called 2.5D printing technology or Pseudo-3D printing technology.
  • molded sheet First, the molded sheet 10 will be described with reference to FIG.
  • the molded sheet 10 expands when heated.
  • a modeled object 50 is formed by expanding the molded sheet 10 .
  • the molded sheet 10 includes a substrate 12 and a thermal expansion layer 20 formed on the first main surface 12a of the substrate 12, as shown in FIG.
  • the thermal expansion layer 20 is formed on the entire surface of the first main surface 12a.
  • the base material 12 of the molded sheet 10 has a first main surface 12a on which the thermal expansion layer 20 is formed, and a second main surface 12b opposite to the first main surface 12a.
  • Substrate 12 supports thermal expansion layer 20 .
  • the base material 12 is formed, for example, in a sheet shape (for example, A4 paper size).
  • Materials constituting the base material 12 are, for example, thermoplastic resins such as polyolefin resins (polyethylene (PE), polypropylene (PP), etc.) and polyester resins (polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc.). is.
  • the type of material forming the base material 12 and the thickness of the base material 12 are selected according to the application of the modeled object 50 .
  • the thermal expansion layer 20 of the molded sheet 10 is formed on the first major surface 12a of the substrate 12.
  • the thermal expansion layer 20 includes a binder (not shown) and a thermal expansion material (not shown) dispersed in the binder.
  • the binder is any thermoplastic resin such as vinyl acetate-based polymer, acrylic-based polymer, and the like.
  • the thermal expansion material has a size corresponding to the amount of heat (specifically, heating temperature, heating time, etc.) to be heated when heated from the expansion start temperature (eg, 80 to 120 ° C.) to the maximum expansion temperature. Inflate.
  • the expansion start temperature is the temperature at which the thermally expandable material starts to expand
  • the maximum expansion temperature is the temperature at which the thermally expandable material expands to the maximum particle size.
  • the thermally expandable material is, for example, thermally expandable microcapsules.
  • Thermally expandable microcapsules are microcapsules in which a foaming agent made of propane, butane, or other low-boiling substances is wrapped in a shell made of thermoplastic resin.
  • the heat-expandable microcapsule shells are made of thermoplastic resins such as polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyacrylate, polyacrylonitrile, polybutadiene, and copolymers thereof.
  • the thermally expandable microcapsules When the thermally expandable microcapsules are heated to a temperature equal to or higher than the expansion start temperature, the shell softens and the foaming agent vaporizes, and the shell expands into a balloon shape due to the pressure of the vaporized foaming agent.
  • Thermally expandable microcapsules expand to about five times the particle size before expansion.
  • the average particle size of the thermally expandable microcapsules before expansion is, for example, 5 ⁇ m to 50 ⁇ m
  • the thermally expandable layer 20 of the molded sheet 10 expands due to the expansion of the thermally expandable material, and the unevenness 60 described later is formed on the surface 20a opposite to the base material 12 .
  • FIG. A shaped article 50 is formed from the shaped sheet 10 .
  • the modeled object 50 includes a substrate 12, an expanded thermal expansion layer 22, and a decolorized heat conversion layer 72, as shown in FIGS.
  • the expanded thermal expansion layer 22 is formed on the first main surface 12a of the substrate 12 and has irregularities 60 on the opposite side of the substrate 12 .
  • the decolorized thermal conversion layer 72 is formed on the expanded thermal expansion layer 22 in a pattern corresponding to the irregularities 60 . That is, the decolorized heat conversion layer 72 is formed on the projections 62 of the unevenness 60 to be described later.
  • the modeled object 50 is a sheet-like modeled object, and has unevenness 60 on its surface.
  • the structure of the base material 12 of the modeled article 50 is the same as that of the base material 12 of the molded sheet 10 .
  • the expanded thermal expansion layer 22 and the decolored heat conversion layer 72 of the modeled article 50 will be described.
  • the expanded thermal expansion layer 22 of the molded article 50 is a layer obtained by expanding a part of the thermal expansion layer 20 of the molded sheet 10 .
  • the expanded thermal expansion layer 22 includes a binder, a thermal expansion material (a thermal expansion material before expansion), and an expanded thermal expansion material (not shown).
  • the binder for expanded thermal expansion layer 22 is similar to the binder for thermal expansion layer 20 of molded sheet 10 .
  • the thermal expansion material of the expanded thermal expansion layer 22 (thermal expansion material before expansion) is also the same as the thermal expansion material of the thermal expansion layer 20 of the molded sheet 10 .
  • the expanded thermally expandable material is a thermally expandable material that has been expanded by being heated to an expansion start temperature or higher by heat (that is, thermal energy) released from the heat conversion layer 70 described later.
  • the unevenness 60 of the expanded thermal expansion layer 22 is unevenness due to the protrusions 62 formed by the expansion of the thermal expansion material of the thermal expansion layer 20 of the molded sheet 10 .
  • the unevenness 60 is composed of a convex portion 62 containing the expanded thermal expansion material and a concave portion 64 containing the thermal expansion material before expansion.
  • the decolored heat conversion layer 72 is a layer obtained by decoloring the heat conversion layer 70 provided to form the unevenness 60 on the thermal expansion layer 20 of the molded sheet 10 .
  • the heat conversion layer 70 and decolorization of the heat conversion layer 70 will be described later.
  • the heat conversion layer 70 and the decolored heat conversion layer 72 may not have a layer structure with a clear boundary.
  • the heat conversion layer 70 and the colorless heat conversion layer 72 are illustrated as layers having a clear boundary for easy understanding.
  • the modeling system 1 that manufactures the modeled object 50 from the molded sheet 10 will be described.
  • the modeling system 1 includes a control unit 100, a printing device 200, and an irradiation device 300, as shown in FIG.
  • the printing device 200 forms the heat conversion layer 70 on the molded sheet 10 .
  • the molded sheet 10 on which the heat conversion layer 70 is formed is used as a medium to be expanded by the irradiation device 300 .
  • the irradiation device 300 irradiates the thermal conversion layer 70 with the first electromagnetic wave to heat the thermal expansion layer 20 of the molded sheet 10, thereby expanding the thermal expansion layer 20 and forming the projections 62 (that is, the irregularities 60). do.
  • the irradiation device 300 irradiates the heat conversion layer 70 with the first electromagnetic wave to decolor the heat conversion layer 70 .
  • “discoloration” in this specification means not only a change from a colored state to a colorless state, but also a change from a colored state to a light-colored state within a range that does not impair the coloring of the modeled object 50. include. Note that the medium only needs to have the thermal expansion layer 20 and the heat conversion layer 70 laminated, and the medium does not have to include the base material 12 .
  • the control unit 100 controls the printing device 200 and the irradiation device 300 .
  • the control unit 100 includes a control section 110, a storage section 112, a communication section 114, an operation section 116, and a display section 118, as shown in FIG.
  • the control unit 100 or the control section 110 functions as control means.
  • the control section 110 of the control unit 100 controls each section of the control unit 100 and controls the operations of the printing device 200 and the irradiation device 300 .
  • the storage unit 112 of the control unit 100 stores data and programs used for controlling the printing device 200 and the irradiation device 300 .
  • a communication unit 114 of the control unit 100 communicates with the printing device 200 and the irradiation device 300 .
  • the operation section 116 of the control unit 100 receives operations from the user. The user can input commands to the control unit 100 by operating the operation section 116 .
  • the display unit 118 of the control unit 100 displays data, information representing the states of the printing device 200 and the irradiation device 300, and the like.
  • FIG. 6 shows the hardware configuration of the control unit 100.
  • the control unit 110 is composed of a CPU (Central Processing Unit) 131 and a RAM (Random Access Memory) 132 .
  • the functions of control unit 110 are implemented by CPU 131 executing a program stored in storage unit 112 .
  • the storage unit 112 includes a ROM (Read Only Memory) 133 and a hard disk 134 .
  • the communication unit 114 is the communication interface 135 .
  • the operation unit 116 is, for example, a touch panel 136, a keyboard, and a mouse.
  • the display unit 118 is, for example, a liquid crystal display 137 .
  • the CPU 131 and each unit are connected via a bus 139 .
  • the printing device 200 is controlled by the control unit 100 .
  • the printing device 200 prints the thermal conversion layer 70 on the thermal expansion layer 20 based on the unevenness data representing the unevenness 60 of the modeled object 50 (expanded thermal expansion layer 22).
  • the heat conversion layer 70 is provided to form the irregularities 60 on the thermal expansion layer 20 of the molded sheet 10 .
  • the thermal conversion layer 70 is formed on the thermal expansion layer 20 of the molded sheet 10 in a pattern corresponding to the unevenness 60 of the modeled article 50 .
  • the heat conversion layer 70 converts the irradiated first electromagnetic wave (ie, electromagnetic wave energy) into heat (ie, thermal energy) and emits the converted heat (thermal energy).
  • the heat released from the heat conversion layer 70 heats the thermally expandable material of the thermally expandable layer 20 of the molded sheet 10 .
  • the heated thermal expansion material expands to a size corresponding to the heating temperature, heating time, and the like.
  • the temperature at which the thermal expansion material is heated depends on the density of the heat conversion layer 70 (the density of the decolorable ink described later), and the energy amount per unit area and unit time of the first electromagnetic wave irradiated to the heat conversion layer 70 (that is, , intensity of the first electromagnetic wave). Therefore, the height of the convex portion 62 of the unevenness 60 can be controlled by the density of the heat conversion layer 70 and the intensity of the first electromagnetic wave.
  • the first electromagnetic wave is, for example, an electromagnetic wave in the near-infrared region (wavelength 750 nm to 1400 nm).
  • the heat conversion layer 70 emits heat and is decolored to form a decolored heat conversion layer 72 .
  • the heat conversion layer 70 contains decolorable ink that is decolorized by heating.
  • the decolorizing ink of the heat conversion layer 70 converts the irradiated first electromagnetic wave (electromagnetic wave energy) into heat (thermal energy), emits the converted heat, and decolors with the converted heat. That is, the decolorizing ink of the heat conversion layer 70 is decolorized by the thermal energy that heats the thermal expansion layer 20 of the molded sheet 10 .
  • the color erasable ink of the heat conversion layer 70 contains, for example, leuco dye, color developer, color erasing agent, and the like.
  • the leuco dye develops color when bound to the developer and turns colorless when the developer is separated from the leuco dye by heating.
  • the leuco dye is bound to the developer.
  • a developer is an auxiliary agent for developing the color of the leuco dye. The decolorant traps the developer that has separated from the leuco dye and prevents recombination of the leuco dye and the developer.
  • the decolorizing ink of the heat conversion layer 70 preferably decolors at a temperature lower than the maximum expansion temperature of the thermally expansive material in order to prevent color residue on the modeled object 50 .
  • the colorless ink of the thermally expandable layer 70 is erased at a temperature that is 20° C. lower than the expansion start temperature of the thermally expandable material.
  • the printing device 200 is, for example, an inkjet printer that uses erasable ink.
  • the printing apparatus 200 includes a control unit composed of a CPU and a storage unit composed of a ROM and a RAM (not shown).
  • the printing device 200 functions as printing means.
  • the irradiation device 300 is controlled by the control unit 100 .
  • the thermal expansion layer 20 of the molded sheet 10 is heated, and the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) is heated. Discolor.
  • the thermally expandable layer 20 of the molded sheet 10 expands to form the expanded thermally expandable layer 22 (unevenness 60).
  • the heat conversion layer 70 is decolored to form a decolored heat conversion layer 72 .
  • the irradiation device 300 includes supply rollers 301a and 301b, supply guides 302a and 302b, transport rollers 303a, 303b, 304a and 304b, discharge guides 305a and 305b, and a first irradiation device in a housing. and a section 310 .
  • the irradiation device 300 includes a control unit composed of a CPU and a storage unit composed of a ROM and a RAM (not shown).
  • the irradiation device 300 or the first irradiation section 310 functions as irradiation means.
  • the longitudinal right direction (right direction on the paper surface) of the irradiation device 300 in FIG. A direction perpendicular to the direction and the +Z-axis direction (the front direction of the paper surface) will be described as the +Y-axis direction.
  • the supply rollers 301a and 301b sandwich the formed sheet 10 on which the heat conversion layer 70 is formed.
  • the supply rollers 301a and 301b rotate to supply the molded sheet 10 with the heat conversion layer 70 formed thereon into the housing.
  • the supply guides 302a and 302b guide the supply of the molded sheet 10 on which the heat conversion layer 70 is formed between the supply rollers 301a and 301b and the transport rollers 303a and 303b.
  • the conveying roller 303a and the conveying roller 303b sandwich the molded sheet 10 on which the heat conversion layer 70 is formed. Further, the conveying roller 304a and the conveying roller 304b sandwich the molded sheet 10 on which the heat conversion layer 70 is formed. Conveying rollers 303a, 303b, 304a, and 304b rotate to convey the molded sheet 10 on which the heat conversion layer 70 is formed from the -X side to the +X axis direction. Conveying rollers 303a, 303b, 304a, and 304b function as conveying means. Ejection guides 305a and 305b guide ejection of the manufactured object 50 .
  • the molded sheet 10 on which the heat conversion layer 70 is formed is guided by a conveying guide 306 arranged between conveying rollers 303a, 303b and conveying rollers 304a, 304b, and is moved from the -X side to the +X axis. direction. Further, the molded sheet 10 on which the heat conversion layer 70 is formed is conveyed with the heat conversion layer 70 (thermal expansion layer 20) directed in the +Z-axis direction and the second main surface 12b of the base material 12 directed in the -Z-axis direction. be done.
  • the irradiation device 300 irradiates the heat conversion layer 70 with the first electromagnetic wave while conveying the molded sheet 10 on which the heat conversion layer 70 is formed.
  • the first irradiation unit 310 irradiates the heat conversion layer 70 formed on the molded sheet 10 with a first electromagnetic wave that the heat conversion layer 70 converts into heat.
  • the first irradiation section 310 is arranged on the +Z side of the conveying path of the molded sheet 10 on which the heat conversion layer 70 is formed.
  • the first irradiation unit 310 irradiates the heat conversion layer 70 from the +Z side with the first electromagnetic wave that the heat conversion layer 70 converts into heat. As a result, the heat conversion layer 70 converts the irradiated first electromagnetic waves into heat.
  • the converted heat causes the thermal expansion layer 20 of the molded sheet 10 to expand, and the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) to decolor.
  • the first irradiation unit 310 irradiation device 300
  • the first irradiation unit 310 heats the thermal conversion layer 70 at a temperature lower than the expansion start temperature of the thermal expansion material by 20°C or higher. Decoloring is preferred.
  • the first irradiation unit 310 includes, for example, a cover 311, a lamp 312, a reflector 313, and a fan 314.
  • Cover 311 accommodates lamp 312 , reflector 313 and fan 314 .
  • the lamp 312 is composed of, for example, a halogen lamp.
  • the lamp 312 irradiates the molded sheet 10 with a first electromagnetic wave (for example, an electromagnetic wave in the near-infrared region).
  • the reflector 313 reflects the electromagnetic waves emitted from the lamp 312 toward the molded sheet 10 .
  • Fan 314 cools lamp 312 and reflector 313 .
  • the modeled object 50 is manufactured from the sheet-like molded sheet 10 .
  • FIG. 8 is a flow chart showing the manufacturing method of the modeled object 50.
  • the method for manufacturing the modeled object 50 includes a preparation step (step S10) of preparing the molded sheet 10 and the unevenness data, and forming a heat conversion layer 70 on the molded sheet 10 that decolorizes and converts the first electromagnetic waves into heat. a step (step S20); an expansion step (step S30) of expanding the thermal expansion layer 20 by irradiating the thermal conversion layer 70 with the first electromagnetic wave to heat the thermal expansion layer 20 of the molded sheet 10; and a decoloring step of decolorizing the layer 70 (step S40).
  • the molded sheet 10 and unevenness data representing the unevenness 60 of the modeled object 50 are prepared.
  • the molded sheet 10 is manufactured, for example, by screen-printing a coating liquid, which is a mixture of a binder and a thermal expansion material, on the first main surface 12a of the substrate 12, and drying the printed coating liquid.
  • Concavo-convex data is generated from CAD (Computer-Aided Design) data of the modeled object 50 .
  • the unevenness data is stored in the storage section 112 of the control unit 100 .
  • the printing device 200 prints a thermal conversion layer containing erasable ink on the thermal expansion layer 20 of the molding sheet 10 in a pattern corresponding to the unevenness 60 of the modeled object 50 based on the unevenness data. 70 is printed. Thereby, as shown in FIG. 9, a thermal conversion layer 70 containing erasable ink is formed on the thermal expansion layer 20 .
  • the irradiation device 300 irradiates the heat conversion layer 70 formed on the molded sheet 10 with the first electromagnetic wave that the heat conversion layer 70 converts into heat.
  • the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) converts the first electromagnetic waves into heat and emits the converted heat (thermal energy).
  • the thermal expansion layer 20 is heated and expanded by the heat released from the thermal conversion layer 70 to form the expanded thermal expansion layer 22 (that is, the unevenness 60).
  • the color erasable ink of the heat conversion layer 70 is heated by the converted heat (thermal energy), and becomes colorless. That is, the decolorizing ink of the heat conversion layer 70 is decolored by the thermal energy that heats the thermal expansion layer 20 of the molded sheet 10 .
  • the decolorizing ink of the heat conversion layer 70 in order to prevent color residue on the modeled object 50, it is preferable to decolor the decolorizing ink of the heat conversion layer 70 at a temperature lower than the maximum expansion temperature of the thermally expansive material.
  • the developer that binds to the leuco dye of the decolorizing ink is separated from the leuco dye by heating (thermal energy), and the leuco dye changes from colored to colorless.
  • the heat conversion layer 70 is decolored, and a decolored heat conversion layer 72 containing decolored ink is formed.
  • the modeled object 50 can be manufactured.
  • the printing device 200 of the modeling system 1 forms the heat conversion layer 70 on the molded sheet 10 .
  • the heat conversion layer 70 contains decolorable ink that is decolorized by heating, and converts the first electromagnetic waves into heat.
  • the irradiation device 300 of the modeling system 1 irradiates the heat conversion layer 70 with the first electromagnetic wave, expands the thermal expansion layer 20 of the molded sheet 10 with the heat converted from the first electromagnetic wave, and converts the heat from the first electromagnetic wave into The heat converts the heat conversion layer 70 (discolorable ink of the heat conversion layer 70) to decolor.
  • the modeling system 1 can manufacture the modeled object 50 in which the heat conversion layer 70 provided for forming the unevenness 60 is decolored (that is, the modeled object 50 including the decolorized heat conversion layer 72).
  • the heat conversion layer 70 is formed on the peelable film layer, and it is not necessary to remove the heat conversion layer 70 together with the film layer, so that the modeled object 50 can be manufactured at low cost.
  • the modeled object 50 can be manufactured with a small number of man-hours.
  • the thermal conversion layer 70 of Embodiment 1 is decolored by thermal energy that heats the thermal expansion layer 20 of the molded sheet 10 .
  • the heat conversion layer 70 may be bleached by electromagnetic wave energy.
  • the configuration of the heat conversion layer 70 is different from that of the heat conversion layer 70 of the first embodiment. Since other configurations are the same as those of the first embodiment, a method for manufacturing the heat conversion layer 70 and the modeled article 50 will be described here.
  • the heat conversion layer 70 of the present embodiment contains decolorable ink, releases heat and decolors to form a decolorized heat conversion layer 72, like the heat conversion layer 70 of the first embodiment.
  • the decolorizing ink of the heat conversion layer 70 of the present embodiment converts the first electromagnetic wave (electromagnetic wave energy) into heat (thermal energy), releases the converted heat, and converts the first electromagnetic wave (electromagnetic wave energy) into heat. ) to erase the color.
  • the decolorizing ink of the heat conversion layer 70 of this embodiment contains, for example, a near-infrared absorbing pigment and a decolorizing agent.
  • the near-infrared absorbing dye absorbs electromagnetic waves (first electromagnetic waves) in the near-infrared region, converts them into heat, and releases the converted heat.
  • Examples of near-infrared absorbing dyes include naphthalocyanine-based dyes, cyanine-based dyes, diimmonium-based dyes, and the like.
  • IRT trade name
  • Showa Denko K.K Showa Denko K.K.
  • the decolorizing agent decolorizes the near-infrared absorbing pigment.
  • decolorizing agents include known quaternary ammonium boron complexes (for example, P3B (trade name) manufactured by Showa Denko KK). Decolorization occurs when a near-infrared absorbing dye (dye cation) excited by absorbing near-infrared rays is combined with an alkyl radical derived from the decolorizing agent.
  • the heat conversion layer 70 of the present embodiment is printed on the thermal expansion layer 20 by the printer 200 of the modeling system 1 in a pattern corresponding to the unevenness 60 of the modeled object 50. be.
  • the decolorizing ink may be mixed with an acrylic resin-based coloring material, a urethane resin-based coloring material, or the like. Especially, a white or transparent colorant is preferable because it is less likely to cause color residue after decolorization.
  • the method for manufacturing the modeled object 50 of the present embodiment includes a preparation step (step S10), a forming step (step S20), an expansion step (step S30), and a decoloring step (step S40). and including. Since the preparation process (step S10), the formation process (step S20), and the expansion process (step S30) of this embodiment are the same as those of the first embodiment, the decoloring process (step S40) will be described.
  • the decoloring ink of the heat conversion layer 70 of the present embodiment is irradiated from the irradiation device 300 and converted into heat in the expansion step (step S30). energy) to decolorize.
  • the decolorizing ink of the heat conversion layer 70 the near-infrared absorbing dye excited by the irradiation of the first electromagnetic wave (the electromagnetic wave in the near-infrared region) and the alkyl group radical generated from the decolorizing agent are bonded.
  • the decolorable ink of the heat conversion layer 70 is decolored.
  • a xenon lamp, a halogen lamp, or the like may be used as the light source for generating the first electromagnetic wave.
  • the decolored heat conversion layer 72 is formed.
  • the modeled object 50 of the present embodiment can be manufactured.
  • the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) of the present embodiment converts the first electromagnetic wave into heat, releases the converted heat, and converts the first electromagnetic wave into heat.
  • the color is erased by The irradiation device 300 of the modeling system 1 irradiates the heat conversion layer 70 with the first electromagnetic waves that the heat conversion layer 70 converts into heat, and the heat converted from the first electromagnetic waves irradiates the thermal expansion layer 20 of the molded sheet 10.
  • the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) is decolored by the first electromagnetic waves that are expanded and converted into heat by the heat conversion layer 70.
  • the modeling system 1 can manufacture the modeled object 50 of the present embodiment in which the heat conversion layer 70 is decolored.
  • the heat conversion layer 72 that has been decolored is colored, the external appearance of the modeled article 50 is not impaired, and the modeled article 50 can be easily colored.
  • the modeled object 50 of the present embodiment can be manufactured at low cost.
  • the heat conversion layer 70 converts the first electromagnetic wave into heat, emits the converted heat, and decolors due to the first electromagnetic wave converted into heat.
  • the heat conversion layer 70 may be decolored by an electromagnetic wave different from the first electromagnetic wave converted into heat.
  • the irradiation device 300 may irradiate the heat conversion layer 70 with the first electromagnetic wave that the heat conversion layer 70 converts into heat and the second electromagnetic wave that causes the heat conversion layer 70 to be decolored.
  • the configurations of the heat conversion layer 70 and the irradiation device 300 are different from those of the heat conversion layer 70 and the irradiation device 300 of the first embodiment.
  • Other configurations are the same as those of the first embodiment, so here, a method for manufacturing the heat conversion layer 70, the irradiation device 300, and the modeled object 50 will be described.
  • the heat conversion layer 70 of the present embodiment contains erasable ink, like the heat conversion layer 70 of the first embodiment.
  • the decolorizing ink of the heat conversion layer 70 of the present embodiment converts the first electromagnetic wave (electromagnetic wave energy) into heat (thermal energy) and emits the converted heat. Also, the decolorizing ink of the heat conversion layer 70 of the present embodiment is decolorized by a second electromagnetic wave (electromagnetic wave energy) different from the first electromagnetic wave.
  • the decolorizing ink of the heat conversion layer 70 of the present embodiment for example, absorbs electromagnetic waves in the visible light region (wavelength 380 nm to 750 nm) or near infrared region and converts them into heat, and absorbs electromagnetic waves in the ultraviolet region (wavelength 100 nm to 380 nm).
  • Contains dyes that decompose by eg, cyanine dyes).
  • the heat conversion layer 70 of the present embodiment is formed on the thermal expansion layer 20 by the printing apparatus 200 of the modeling system 1 in a pattern corresponding to the unevenness 60 of the object 50 . printed.
  • the irradiation device 300 of the present embodiment heats the thermal expansion layer 20 of the molded sheet 10 by irradiating the heat conversion layer 70 formed on the molded sheet 10 with the first electromagnetic wave. As a result, the thermally expandable layer 20 of the molded sheet 10 expands to form the expanded thermally expandable layer 22 (unevenness 60). Further, the irradiation device 300 of the present embodiment decolorizes the heat conversion layer 70 by irradiating the heat conversion layer 70 formed on the molded sheet 10 with the second electromagnetic waves.
  • the irradiation device 300 of the present embodiment includes supply rollers 301a and 301b, supply guides 302a and 302b, transport rollers 303a, 303b, 304a and 304b, and discharge guides 305a and 305b in a housing. , a first irradiation unit 310 and a second irradiation unit 320 .
  • the configuration of supply rollers 301a and 301b to discharge guides 305a and 305b is the same as that of the first embodiment.
  • the first irradiation unit 310 of the present embodiment applies a first electromagnetic wave (for example, near-infrared area of electromagnetic waves).
  • a first electromagnetic wave for example, near-infrared area of electromagnetic waves.
  • the second irradiation unit 320 irradiates the heat conversion layer 70 with a second electromagnetic wave (for example, an electromagnetic wave in the ultraviolet region) that decolorizes the heat conversion layer 70 unlike the first electromagnetic wave.
  • a second electromagnetic wave for example, an electromagnetic wave in the ultraviolet region
  • the second irradiation section 320 like the first irradiation section 310, is arranged on the +Z side of the conveying path of the molded sheet 10 on which the heat conversion layer 70 is formed, and applies the second electromagnetic wave to the heat conversion layer 70 from the +Z side. Irradiate.
  • the second irradiation section 320 is arranged on the +X side of the first irradiation section 310, and after the thermal expansion layer 20 of the molded sheet 10 expands and the irregularities 60 are formed, the heat conversion layer 70 receives the second irradiation. Irradiate electromagnetic waves.
  • the second irradiation unit 320 includes, for example, an ultraviolet lamp (eg, high-pressure mercury lamp), a fan, and the like.
  • an ultraviolet lamp eg, high-pressure mercury lamp
  • the configuration of the second irradiation section 320 is the same as that of the first irradiation section 310 except for the ultraviolet lamp.
  • the method for manufacturing the modeled object 50 of the present embodiment includes a preparation step (step S10), a forming step (step S20), an expansion step (step S30), and a decoloring step (step S40). and including. Since the preparation process (step S10), the formation process (step S20), and the expansion process (step S30) of this embodiment are the same as those of the first embodiment, the decoloring process (step S40) will be described.
  • the second electromagnetic wave (ultraviolet rays region) is applied to the heat conversion layer 70 of the present embodiment.
  • the heat conversion layer 70 of the present embodiment is decolored, and a decolored heat conversion layer 72 is formed.
  • the modeled object 50 of the present embodiment can be manufactured.
  • the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) of the present embodiment converts the first electromagnetic wave into heat and emits the converted heat. Moreover, the heat conversion layer 70 of the present embodiment is decolored by the second electromagnetic wave (electromagnetic wave energy).
  • the irradiation device 300 of the modeling system 1 of the present embodiment irradiates the thermal conversion layer 70 with the first electromagnetic wave to expand the thermal expansion layer 20 of the molded sheet 10, and after expanding the thermal expansion layer 20, the thermal conversion layer 70 is irradiated with the second electromagnetic wave to decolor the heat conversion layer 70 .
  • the modeling system 1 of the present embodiment can manufacture the modeled object 50 in which the heat conversion layer 70 is decolored.
  • the modeled object 50 of the present embodiment can be manufactured at low cost.
  • the electromagnetic wave (first electromagnetic wave) that the heat conversion layer 70 converts into heat and the electromagnetic wave (second electromagnetic wave) that decolorizes the heat conversion layer 70 are different.
  • the conditions for heating (intensity of the first electromagnetic wave, irradiation time, etc.) and the conditions for decoloring the heat conversion layer 70 (intensity of the second electromagnetic wave, irradiation time, etc.) can be set individually.
  • a model 50 can be manufactured.
  • the modeled object 50 may be manufactured in a roll form from the roll-shaped formed sheet 10 .
  • the material constituting the base material 12 is not limited to thermoplastic resin, and may be paper, cloth, or the like.
  • the thermoplastic resin forming the base material 12 is not limited to polyolefin resin and polyester resin, and may be polyamide resin, polyvinyl chloride (PVC) resin, polyimide resin, or the like.
  • the heat conversion layer 70 is formed on the thermal expansion layer 20 in Embodiments 1 to 3, the heat conversion layer 70 may be formed on the second main surface 12b of the substrate 12.
  • the heat conversion layer 70 of Embodiment 1 is bleached by heat energy
  • the heat conversion layer 70 of Embodiments 2 and 3 is bleached by electromagnetic wave energy, but the heat conversion layer 70 is bleached by heat energy and electromagnetic wave energy.
  • the molded sheet 10 and the modeled object 50 may have layers made of any other material between the layers.
  • an adhesion layer may be formed between the base material 12 and the thermal expansion layer 20 to make the base material 12 and the thermal expansion layer 20 more closely adhere to each other.
  • the adhesion layer is formed from, for example, a surface modifier.
  • the modeled object 50 may be printed with a color image.
  • the modeled object 50 may be configured with four color inks of cyan, magenta, yellow, and black to form a color ink layer representing a color image on the thermal expansion layer 20 . Since the modeled article 50 has the heat conversion layer 70 decolored, a clear color image can be printed on the modeled article 50 .
  • the printing device 200 is not limited to an inkjet printer.
  • printing device 200 may be a laser printer. Further, the printing device 200 may print a color image on the modeled object 50 .
  • the first irradiation section 310 and the second irradiation section 320 of the irradiation device 300 may irradiate laser light as the first electromagnetic wave or the second electromagnetic wave.
  • the first irradiator 310 and the second irradiator 320 may be laser irradiators including laser oscillators, polygon mirrors, lenses, and the like.
  • the irradiation device 300 of Embodiment 1 and Embodiment 2 heats and expands the thermal expansion layer 20 of the molded sheet 10 by irradiating the heat conversion layer 70 with the first electromagnetic wave from one first irradiation unit 310, The heat conversion layer 70 is decolored.
  • the irradiation device 300 of Embodiments 1 and 2 includes a first irradiation section 310 that preferentially heats the thermal expansion layer 20 of the molded sheet 10 and a third irradiation section 330 that sufficiently decolorizes the heat conversion layer 70. You may prepare.
  • the time required to decolorize the heat conversion layer 70 (that is, the reaction time of the decolorization reaction) is longer than the time to heat the thermal expansion layer 20 of the molded sheet 10, one first irradiation section 310
  • the thermal expansion layer 20 may remain colored, or the thermal expansion layer 20 may expand excessively and the edges of the protrusions 62 may become dull. (Hemming) may occur.
  • the irradiation apparatus 300 of Embodiments 1 and 2 includes a first irradiation section 310 and a third irradiation section 330 arranged on the +X side of the first irradiation section 310.
  • the first irradiation unit 310 irradiates the thermal conversion layer 70 with the first electromagnetic waves in an amount of energy required for expansion of the thermal expansion layer 20 , thereby heating the thermal expansion layer 20 of the molded sheet 10 and expanding the thermal expansion layer 20 . Inflate as needed.
  • the heat conversion layer 70 loses its color after being irradiated with the first electromagnetic wave from the first irradiation section 310 , but the heat conversion layer 70 may remain colored.
  • the third irradiation section 330 irradiates the thermal conversion layer 70 with the first electromagnetic wave, thereby removing the remaining color of the thermal conversion layer 70 .
  • the third irradiation unit 330 irradiates the heat conversion layer 70 with the first electromagnetic wave having an energy amount sufficient to decolorize the heat conversion layer 70 . According to these configurations, it is possible to sufficiently decolor the heat conversion layer 70 while suppressing dulling of the edge portions of the projections 62 .
  • the irradiation device 300 of Embodiment 3 includes a first irradiation section 310 that irradiates the heat conversion layer 70 with the first electromagnetic wave and a second irradiation section 320 that irradiates the heat conversion layer 70 with the second electromagnetic wave.
  • the irradiation device 300 of Embodiment 3 may include a fourth irradiation section 340 that irradiates the heat conversion layer 70 with the first electromagnetic waves and the second electromagnetic waves, as shown in FIG. 12 .
  • the heat conversion layer 70 converts the first electromagnetic wave into heat by irradiation of the first electromagnetic wave from the fourth irradiation unit 340 and emits the converted heat, and also emits the converted heat by irradiation of the second electromagnetic wave from the fourth irradiation unit 340 Discolor.
  • the control unit 100 includes a CPU, and controls the printing device 200 and the irradiation device 300 by the functions of the CPU.
  • the control unit 100 may include dedicated hardware such as ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), control circuit, etc., instead of the CPU.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • control circuit etc.
  • each of the processes may be performed by separate hardware.
  • each of the processes may be collectively executed by a single piece of hardware. Part of the processing may be performed by dedicated hardware, and another part of the processing may be performed by software or firmware.
  • the functions realized by the control section 110 of the control unit 100 may be realized by the control section of the printing device 200 or the control section of the irradiation device 300 .
  • each functional configuration can also be realized by the printing device 200 or the irradiation device 300 illustrated in the example.
  • a program for realizing each functional configuration of the printing apparatus 200 or the irradiation apparatus 300 illustrated in the above embodiment and modification can be applied so that a CPU or the like that controls an existing information processing apparatus or the like can execute it. can be done.
  • the method of applying such a program is arbitrary.
  • the program can be applied by storing it in a computer-readable storage medium such as a flexible disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory), memory card, and the like.
  • a program can be superimposed on a carrier wave and applied via a communication medium such as the Internet.
  • the program may be posted and distributed on a bulletin board (BBS: Bulletin Board System) on a communication network.
  • BSS Bulletin Board System
  • this program may be configured to execute the above processing by starting up and executing it in the same manner as other application programs under the control of an OS (Operating System).
  • OS Operating System
  • the present invention is particularly useful in obtaining a low-cost model that is easy to color.
  • REFERENCE SIGNS LIST 1 modeling system 10 molded sheet, 12 base material, 12a first main surface of base material, 12b second main surface of base material, 20 heat Expansion layer 20a...Surface of the thermal expansion layer opposite to the base material 22...Expanded thermal expansion layer 50...Modeled object 60...Unevenness 62...Protrusion 64 ... Recess 70 ... Heat conversion layer 72 ... Erased heat conversion layer 100 ... Control unit 110 ... Control unit 112 ... Storage unit 114 ...
  • Communication Unit 116 Operation unit 118 Display unit 131 CPU 132 RAM 133 ROM 134 Hard disk 135 Communication interface 136 Touch panel 137 Liquid crystal display 139 Bus 200 Printing device 300 Irradiation device 301a, 301b Supply rollers 302a, 302b Supply guide 303a, 303b, 304a, 304b Conveyance rollers 305a, 305b Discharge guide 306 Conveyance guide 310 First irradiation unit 311 Cover 312 Lamp 313. ... reflector, 314 ... fan, 320 ... second irradiation section, 330 ... third irradiation section, 340 ... fourth irradiation section

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Vascular Medicine (AREA)
  • Printing Methods (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

This molding system (1) comprises: a print device (200) which forms a thermal conversion layer for converting electromagnetic energy of a first electromagnetic wave into thermal energy, on a thermally expansive layer that is expanded by thermal energy; and an irradiation device (300) which decolors the thermal conversion layer when the thermally expansive layer is expanded by heating upon irradiation of the thermal conversion layer with the first electromagnetic wave.

Description

造形システム、造形物の製造方法及び造形物Modeling system, modeled object manufacturing method, and modeled object
 本発明は、造形システム、造形物の製造方法及び造形物に関する。 The present invention relates to a modeling system, a modeled article manufacturing method, and a modeled article.
 光吸収特性に優れた画像を形成された熱膨張性シートに光を照射して、熱膨張性シートの被覆層を加熱することにより、立体画像を形成する技術が知られている(例えば、特許文献1)。 There is known a technique for forming a three-dimensional image by irradiating a thermally expandable sheet on which an image with excellent light absorption properties is formed and heating the coating layer of the thermally expandable sheet (for example, patent Reference 1).
特開昭64-28660号公報JP-A-64-28660
 特許文献1では、光吸収特性に優れた画像(トナー画像)は、熱膨張性シートの裏面に設けられた剥離可能なフィルム層の上に形成される。トナー画像は、フィルム層と共に、立体画像を形成された熱膨張性シートから除かれる。 In Patent Document 1, an image (toner image) with excellent light absorption properties is formed on a peelable film layer provided on the back surface of a thermally expandable sheet. The toner image is removed from the stereo imaged thermally expandable sheet along with the film layer.
 特許文献1では、トナー画像がフィルム層と共に熱膨張性シートから除かれるので、立体画像に容易に彩色できる。一方、フィルム層が熱膨張性シートの裏面に設けられるので、熱膨張性シートの製造コスト、すなわち立体画像を形成するためのコストが上昇する。また、フィルム層を剥離する工数が必要となる。 In Patent Document 1, since the toner image is removed from the thermally expandable sheet together with the film layer, the stereoscopic image can be easily colored. On the other hand, since the film layer is provided on the back surface of the thermally expandable sheet, the manufacturing cost of the thermally expandable sheet, that is, the cost for forming a stereoscopic image increases. Moreover, man-hours are required for peeling off the film layer.
 本発明は、上記実情に鑑みてなされたものであり、彩色が容易で、低コストの造形物を製造できる造形システム、造形物の製造方法及び造形物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to provide a modeling system, a method for manufacturing a model, and a model that can easily be colored and can be manufactured at low cost.
 上記目的を達成するため、本発明の第1の観点に係る造形システムは、
 熱エネルギーによって膨張する熱膨張層に、第1電磁波の電磁波エネルギーを熱エネルギーに変換する熱変換層を形成する印刷装置と、
 前記熱変換層に前記第1電磁波を照射して、前記熱膨張層を加熱することにより膨張させる場合に、前記熱変換層を消色させる照射装置と、を備えることを特徴とする。
In order to achieve the above object, the modeling system according to the first aspect of the present invention includes:
a printing apparatus for forming a thermal conversion layer for converting electromagnetic wave energy of the first electromagnetic wave into thermal energy on a thermal expansion layer that expands with thermal energy;
and an irradiation device that decolorizes the heat conversion layer when the heat conversion layer is expanded by being heated by irradiating the heat conversion layer with the first electromagnetic wave.
 本発明の第2の観点に係る造形物の製造方法は、
 第1電磁波の電磁波エネルギーを熱エネルギーに変換する熱変換層と、熱エネルギーによって膨張する熱膨張層と、が積層された媒体の前記熱変換層に、前記第1電磁波を照射して、前記熱膨張層を加熱することにより膨張させる膨張工程と、
 前記膨張工程により前記熱膨張層を膨張させる場合に、前記熱変換層を消色させる消色工程と、を含むことを特徴とする。
A method for manufacturing a modeled object according to a second aspect of the present invention includes:
The first electromagnetic wave is applied to the heat conversion layer of a medium in which a heat conversion layer that converts the electromagnetic wave energy of the first electromagnetic wave into heat energy and a thermal expansion layer that expands due to the heat energy are laminated, and the heat is an expansion step of heating the expansion layer to expand it;
and a decoloring step of decolorizing the thermal conversion layer when the thermal expansion layer is expanded by the expansion step.
 本発明の第3の観点に係る造形物は、
 基材と、
 前記基材の第1主面に形成され、前記基材と反対側の面に凹凸を有する膨張済み熱膨張層と、
 前記基材の前記第1主面の反対側の第2主面の上、又は、前記膨張済み熱膨張層の上に、前記凹凸に対応したパターンで形成された消色済み熱変換層と、を備えることを特徴とする。
A modeled object according to a third aspect of the present invention includes:
a substrate;
an expanded thermal expansion layer formed on the first main surface of the base material and having unevenness on the surface opposite to the base material;
a decolorized heat conversion layer formed in a pattern corresponding to the unevenness on a second main surface of the substrate opposite to the first main surface or on the expanded thermal expansion layer; characterized by comprising
 熱変換層を消色するので、彩色が容易で、低コストの造形物を製造できる。 Since the heat conversion layer is decolored, it is easy to color and can be manufactured at low cost.
実施形態1に係る成形シートの断面を示す模式図である。1 is a schematic diagram showing a cross section of a molded sheet according to Embodiment 1. FIG. 実施形態1に係る造形物を示す斜視図である。1 is a perspective view showing a modeled object according to Embodiment 1. FIG. 図2に示す造形物をA-A線で矢視した断面図である。FIG. 3 is a cross-sectional view of the modeled object shown in FIG. 2 taken along line AA. 実施形態1に係る造形システムの構成を示す図である。1 is a diagram showing the configuration of a modeling system according to Embodiment 1; FIG. 実施形態1に係る制御ユニットの構成を示すブロック図である。3 is a block diagram showing the configuration of a control unit according to Embodiment 1; FIG. 実施形態1に係る制御ユニットのハードウェアの構成を示す図である。3 is a diagram showing a hardware configuration of a control unit according to Embodiment 1; FIG. 実施形態1に係る照射装置を示す模式図である。1 is a schematic diagram showing an irradiation device according to Embodiment 1. FIG. 実施形態1に係る造形物の製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing a modeled object according to Embodiment 1. FIG. 実施形態1に係る熱変換層を形成された成形シートの断面を示す模式図である。1 is a schematic diagram showing a cross section of a molded sheet having a heat conversion layer formed thereon according to Embodiment 1. FIG. 実施形態3に係る照射装置を示す模式図である。FIG. 10 is a schematic diagram showing an irradiation device according to Embodiment 3; 変形例に係る照射装置を示す模式図である。It is a schematic diagram which shows the irradiation apparatus which concerns on a modification. 変形例に係る照射装置を示す模式図である。It is a schematic diagram which shows the irradiation apparatus which concerns on a modification.
 以下、本発明の実施形態に係る造形システムについて、図面を参照して説明する。 A modeling system according to an embodiment of the present invention will be described below with reference to the drawings.
<実施形態1>
 本実施形態では、造形システム1は、熱膨張する成形シート10から造形物50を製造する。造形物50は、加飾シート、壁紙等として使用される。本明細書において、「造形物」は所定の面に凹凸を造型(形成)されているシートであり、凹凸は、幾何学形状、文字、模様、装飾等を構成する。ここで、「装飾」とは、視覚及び/又は触覚を通じて美感を想起させるものである。「造形(又は造型)」は、形のあるものを作り出すことを意味し、装飾を加える加飾、装飾を形成する造飾のような概念をも含む。また、本実施形態の造形物50は、所定の面に凹凸を有する立体物であるが、いわゆる3Dプリンタにより製造された立体物と区別するため、本実施形態の造形物50を2.5次元(2.5D)オブジェクト又は疑似三次元(Pseudo-3D)オブジェクトとも呼ぶ。本実施形態の造形物50を製造する技術は、2.5D印刷技術又はPseudo-3D印刷技術とも呼べる。
<Embodiment 1>
In the present embodiment, the modeling system 1 manufactures the modeled object 50 from the thermally expanding molded sheet 10 . The modeled object 50 is used as a decorative sheet, wallpaper, or the like. In the present specification, a "modeled object" is a sheet having irregularities molded (formed) on a predetermined surface, and the irregularities constitute geometric shapes, characters, patterns, decorations, and the like. Here, "decoration" is something that evokes a sense of beauty through sight and/or touch. "Molding (or molding)" means creating something with a shape, and includes concepts such as decoration that adds decoration and decoration that forms decoration. In addition, the modeled object 50 of the present embodiment is a three-dimensional object having unevenness on a predetermined surface. (2.5D) objects or pseudo-three-dimensional (Pseudo-3D) objects. The technology for manufacturing the modeled object 50 of the present embodiment can also be called 2.5D printing technology or Pseudo-3D printing technology.
(成形シート)
 まず、図1を参照して、成形シート10を説明する。成形シート10は、加熱されることにより膨張する。成形シート10が膨張することによって、造形物50が形成される。
(molded sheet)
First, the molded sheet 10 will be described with reference to FIG. The molded sheet 10 expands when heated. A modeled object 50 is formed by expanding the molded sheet 10 .
 成形シート10は、図1に示すように、基材12と、基材12の第1主面12aの上に形成された熱膨張層20とを備える。本実施形態では、熱膨張層20は第1主面12aの全面に形成されている。 The molded sheet 10 includes a substrate 12 and a thermal expansion layer 20 formed on the first main surface 12a of the substrate 12, as shown in FIG. In this embodiment, the thermal expansion layer 20 is formed on the entire surface of the first main surface 12a.
 成形シート10の基材12は、熱膨張層20を形成される第1主面12aと、第1主面12aと反対側の第2主面12bとを有する。基材12は熱膨張層20を支持する。基材12は、例えば、シート状(例えばA4用紙サイズ)に形成される。基材12を構成する材料は、例えば、ポリオレフィン系樹脂(ポリエチレン(PE)、ポリプロピレン(PP)等)、ポリエステル系樹脂(ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等)等の熱可塑性樹脂である。基材12を構成する材料の種類と基材12の厚さは、造形物50の用途に応じて選択される。 The base material 12 of the molded sheet 10 has a first main surface 12a on which the thermal expansion layer 20 is formed, and a second main surface 12b opposite to the first main surface 12a. Substrate 12 supports thermal expansion layer 20 . The base material 12 is formed, for example, in a sheet shape (for example, A4 paper size). Materials constituting the base material 12 are, for example, thermoplastic resins such as polyolefin resins (polyethylene (PE), polypropylene (PP), etc.) and polyester resins (polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc.). is. The type of material forming the base material 12 and the thickness of the base material 12 are selected according to the application of the modeled object 50 .
 成形シート10の熱膨張層20は、基材12の第1主面12aの上に形成される。熱膨張層20は、図示しないバインダと、バインダ中に分散された図示しない熱膨張材料とを含む。バインダは、酢酸ビニル系ポリマー、アクリル系ポリマー等の任意の熱可塑性樹脂である。熱膨張材料は、膨張開始温度(例えば80℃~120℃)以上最大膨張温度以下に加熱された場合、加熱される熱量(具体的には、加熱温度、加熱時間等)に応じた大きさに膨張する。膨張開始温度は、熱膨張材料が膨張を開始する温度であり、最大膨張温度は、熱膨張材料が最大の粒径を有する状態に膨張する温度である。
 熱膨張材料は、例えば、熱膨張性マイクロカプセルである。
The thermal expansion layer 20 of the molded sheet 10 is formed on the first major surface 12a of the substrate 12. As shown in FIG. The thermal expansion layer 20 includes a binder (not shown) and a thermal expansion material (not shown) dispersed in the binder. The binder is any thermoplastic resin such as vinyl acetate-based polymer, acrylic-based polymer, and the like. The thermal expansion material has a size corresponding to the amount of heat (specifically, heating temperature, heating time, etc.) to be heated when heated from the expansion start temperature (eg, 80 to 120 ° C.) to the maximum expansion temperature. Inflate. The expansion start temperature is the temperature at which the thermally expandable material starts to expand, and the maximum expansion temperature is the temperature at which the thermally expandable material expands to the maximum particle size.
The thermally expandable material is, for example, thermally expandable microcapsules.
 熱膨張性マイクロカプセルは、プロパン、ブタン、その他の低沸点物質から構成された発泡剤を、熱可塑性樹脂製の殻の内に包み込んだマイクロカプセルである。熱膨張性マイクロカプセルの殻は、例えば、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリアクリル酸エステル、ポリアクリロニトリル、ポリブタジエン、これらの共重合体等の熱可塑性樹脂から形成される。熱膨張性マイクロカプセルは、膨張開始温度以上に加熱されると、殻が軟化すると共に発泡剤が気化し、発泡剤が気化した圧力により、殻がバルーン状に膨張する。熱膨張性マイクロカプセルは、膨張前の粒径の5倍程度まで膨張する。膨張前の熱膨張性マイクロカプセルの平均粒径は、例えば、5μm~50μmである。 Thermally expandable microcapsules are microcapsules in which a foaming agent made of propane, butane, or other low-boiling substances is wrapped in a shell made of thermoplastic resin. The heat-expandable microcapsule shells are made of thermoplastic resins such as polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyacrylate, polyacrylonitrile, polybutadiene, and copolymers thereof. When the thermally expandable microcapsules are heated to a temperature equal to or higher than the expansion start temperature, the shell softens and the foaming agent vaporizes, and the shell expands into a balloon shape due to the pressure of the vaporized foaming agent. Thermally expandable microcapsules expand to about five times the particle size before expansion. The average particle size of the thermally expandable microcapsules before expansion is, for example, 5 μm to 50 μm.
 成形シート10の熱膨張層20は、熱膨張材料の膨張により膨張し、基材12と反対側の面20aに後述する凹凸60を形成される。 The thermally expandable layer 20 of the molded sheet 10 expands due to the expansion of the thermally expandable material, and the unevenness 60 described later is formed on the surface 20a opposite to the base material 12 .
(造形物)
 次に、図2、図3を参照して、造形物50を説明する。造形物50は成形シート10から形成される。造形物50は、図2、図3に示すように、基材12と、膨張済み熱膨張層22と、消色済み熱変換層72とを備える。膨張済み熱膨張層22は、基材12の第1主面12aの上に形成され、基材12と反対側に凹凸60を有する。消色済み熱変換層72は、膨張済み熱膨張層22の上に、凹凸60に対応するパターンで形成されている。すなわち、消色済み熱変換層72は、後述する凹凸60の凸部62の上に形成されている。
(modeled object)
Next, the modeled object 50 will be described with reference to FIGS. 2 and 3. FIG. A shaped article 50 is formed from the shaped sheet 10 . The modeled object 50 includes a substrate 12, an expanded thermal expansion layer 22, and a decolorized heat conversion layer 72, as shown in FIGS. The expanded thermal expansion layer 22 is formed on the first main surface 12a of the substrate 12 and has irregularities 60 on the opposite side of the substrate 12 . The decolorized thermal conversion layer 72 is formed on the expanded thermal expansion layer 22 in a pattern corresponding to the irregularities 60 . That is, the decolorized heat conversion layer 72 is formed on the projections 62 of the unevenness 60 to be described later.
 造形物50は、シート状の造形物であり、表面に凹凸60を有している。造形物50の基材12の構成は成形シート10の基材12と同様である。ここでは、造形物50の膨張済み熱膨張層22と消色済み熱変換層72について説明する。 The modeled object 50 is a sheet-like modeled object, and has unevenness 60 on its surface. The structure of the base material 12 of the modeled article 50 is the same as that of the base material 12 of the molded sheet 10 . Here, the expanded thermal expansion layer 22 and the decolored heat conversion layer 72 of the modeled article 50 will be described.
 造形物50の膨張済み熱膨張層22は、成形シート10の熱膨張層20の一部が膨張した層である。膨張済み熱膨張層22は、図示しない、バインダと熱膨張材料(膨張前の熱膨張材料)と膨張済みの熱膨張材料とを含んでいる。膨張済み熱膨張層22のバインダは、成形シート10の熱膨張層20のバインダと同様である。膨張済み熱膨張層22の熱膨張材料(膨張前の熱膨張材料)も、成形シート10の熱膨張層20の熱膨張材料と同様である。膨張済みの熱膨張材料は、後述する熱変換層70から放出された熱(すなわち、熱エネルギー)により、熱膨張材料が膨張開始温度以上に加熱されて膨張した熱膨張材料である。 The expanded thermal expansion layer 22 of the molded article 50 is a layer obtained by expanding a part of the thermal expansion layer 20 of the molded sheet 10 . The expanded thermal expansion layer 22 includes a binder, a thermal expansion material (a thermal expansion material before expansion), and an expanded thermal expansion material (not shown). The binder for expanded thermal expansion layer 22 is similar to the binder for thermal expansion layer 20 of molded sheet 10 . The thermal expansion material of the expanded thermal expansion layer 22 (thermal expansion material before expansion) is also the same as the thermal expansion material of the thermal expansion layer 20 of the molded sheet 10 . The expanded thermally expandable material is a thermally expandable material that has been expanded by being heated to an expansion start temperature or higher by heat (that is, thermal energy) released from the heat conversion layer 70 described later.
 膨張済み熱膨張層22の凹凸60は、成形シート10の熱膨張層20の熱膨張材料が膨張することにより形成される凸部62による凹凸である。凹凸60は、膨張済みの熱膨張材料を含む凸部62と、膨張前の熱膨張材料を含む凹部64とから構成されている。 The unevenness 60 of the expanded thermal expansion layer 22 is unevenness due to the protrusions 62 formed by the expansion of the thermal expansion material of the thermal expansion layer 20 of the molded sheet 10 . The unevenness 60 is composed of a convex portion 62 containing the expanded thermal expansion material and a concave portion 64 containing the thermal expansion material before expansion.
 消色済み熱変換層72は、成形シート10の熱膨張層20に凹凸60を形成するために設けられた熱変換層70が消色した層である。熱変換層70と熱変換層70の消色については後述する。なお、熱変換層70と消色済み熱変換層72は、明確な境界を有する層構造を有しない場合もある。本明細書では、理解を容易にするために、熱変換層70と消色済み熱変換層72とを明確な境界を有する層として図示する。 The decolored heat conversion layer 72 is a layer obtained by decoloring the heat conversion layer 70 provided to form the unevenness 60 on the thermal expansion layer 20 of the molded sheet 10 . The heat conversion layer 70 and decolorization of the heat conversion layer 70 will be described later. Note that the heat conversion layer 70 and the decolored heat conversion layer 72 may not have a layer structure with a clear boundary. In this specification, the heat conversion layer 70 and the colorless heat conversion layer 72 are illustrated as layers having a clear boundary for easy understanding.
 次に、成形シート10から造形物50を製造する造形システム1を説明する。造形システム1は、図4に示すように、制御ユニット100と印刷装置200と照射装置300とを備える。印刷装置200は、成形シート10に熱変換層70を形成する。成形シート10に熱変換層70が形成されたものを、照射装置300によって膨張される媒体とする。照射装置300は、熱変換層70に第1電磁波を照射して、成形シート10の熱膨張層20を加熱することにより、熱膨張層20を膨張させて凸部62(すなわち凹凸60)を形成する。また、照射装置300は、熱変換層70に第1電磁波を照射して熱変換層70を消色する。なお、本明細書の「消色」は、発色した状態から無色の状態へ変化することだけでなく、発色した状態から造形物50への彩色を損なわない範囲の淡色の状態へ変化することも含む。なお、媒体は、熱膨張層20と熱変換層70とが積層されていればよく、媒体は、基材12を備えなくともよい。 Next, the modeling system 1 that manufactures the modeled object 50 from the molded sheet 10 will be described. The modeling system 1 includes a control unit 100, a printing device 200, and an irradiation device 300, as shown in FIG. The printing device 200 forms the heat conversion layer 70 on the molded sheet 10 . The molded sheet 10 on which the heat conversion layer 70 is formed is used as a medium to be expanded by the irradiation device 300 . The irradiation device 300 irradiates the thermal conversion layer 70 with the first electromagnetic wave to heat the thermal expansion layer 20 of the molded sheet 10, thereby expanding the thermal expansion layer 20 and forming the projections 62 (that is, the irregularities 60). do. Further, the irradiation device 300 irradiates the heat conversion layer 70 with the first electromagnetic wave to decolor the heat conversion layer 70 . It should be noted that "discoloration" in this specification means not only a change from a colored state to a colorless state, but also a change from a colored state to a light-colored state within a range that does not impair the coloring of the modeled object 50. include. Note that the medium only needs to have the thermal expansion layer 20 and the heat conversion layer 70 laminated, and the medium does not have to include the base material 12 .
 制御ユニット100は、印刷装置200と照射装置300とを制御する。制御ユニット100は、図5に示すように、制御部110と記憶部112と通信部114と操作部116と表示部118とを備える。制御ユニット100又は制御部110は、制御手段として機能する。 The control unit 100 controls the printing device 200 and the irradiation device 300 . The control unit 100 includes a control section 110, a storage section 112, a communication section 114, an operation section 116, and a display section 118, as shown in FIG. The control unit 100 or the control section 110 functions as control means.
 制御ユニット100の制御部110は、制御ユニット100の各部を制御すると共に、印刷装置200と照射装置300の動作を制御する。制御ユニット100の記憶部112は、印刷装置200と照射装置300の制御に用いられる、データとプログラムとを記憶する。制御ユニット100の通信部114は、印刷装置200と照射装置300と通信する。制御ユニット100の操作部116は、使用者から操作を受け付ける。使用者は、操作部116を操作することによって、制御ユニット100に指令を入力できる。制御ユニット100の表示部118は、データ、印刷装置200と照射装置300の状態を表す情報等を表示する。 The control section 110 of the control unit 100 controls each section of the control unit 100 and controls the operations of the printing device 200 and the irradiation device 300 . The storage unit 112 of the control unit 100 stores data and programs used for controlling the printing device 200 and the irradiation device 300 . A communication unit 114 of the control unit 100 communicates with the printing device 200 and the irradiation device 300 . The operation section 116 of the control unit 100 receives operations from the user. The user can input commands to the control unit 100 by operating the operation section 116 . The display unit 118 of the control unit 100 displays data, information representing the states of the printing device 200 and the irradiation device 300, and the like.
 図6は、制御ユニット100のハードウェアの構成を示す。制御部110は、CPU(Central Processing Unit)131とRAM(Random Access Memory)132から構成される。制御部110の機能は、CPU131が記憶部112に記憶されたプログラムを実行することによって実現される。記憶部112は、ROM(Read Only Memory)133とハードディスク134とを備える。通信部114は通信インタフェース135である。操作部116は、例えば、タッチパネル136、キーボード、マウスである。表示部118は、例えば、液晶ディスプレイ137である。CPU131と各部は、バス139を介して接続する。 6 shows the hardware configuration of the control unit 100. FIG. The control unit 110 is composed of a CPU (Central Processing Unit) 131 and a RAM (Random Access Memory) 132 . The functions of control unit 110 are implemented by CPU 131 executing a program stored in storage unit 112 . The storage unit 112 includes a ROM (Read Only Memory) 133 and a hard disk 134 . The communication unit 114 is the communication interface 135 . The operation unit 116 is, for example, a touch panel 136, a keyboard, and a mouse. The display unit 118 is, for example, a liquid crystal display 137 . The CPU 131 and each unit are connected via a bus 139 .
 図4に戻り、印刷装置200は制御ユニット100により制御される。印刷装置200は、造形物50(膨張済み熱膨張層22)の凹凸60を表す凹凸データに基づいて、熱膨張層20の上に熱変換層70を印刷する。 Returning to FIG. 4 , the printing device 200 is controlled by the control unit 100 . The printing device 200 prints the thermal conversion layer 70 on the thermal expansion layer 20 based on the unevenness data representing the unevenness 60 of the modeled object 50 (expanded thermal expansion layer 22).
 ここで、熱変換層70について説明する。熱変換層70は、成形シート10の熱膨張層20に凹凸60を形成するために、設けられる。熱変換層70は、造形物50の凹凸60に対応したパターンで、成形シート10の熱膨張層20の上に形成される。熱変換層70は、照射された第1電磁波(すなわち電磁波エネルギー)を熱(すなわち熱エネルギー)に変換し、変換された熱(熱エネルギー)を放出する。熱変換層70から放出された熱が成形シート10の熱膨張層20の熱膨張材料を加熱する。加熱された熱膨張材料は、加熱温度、加熱時間等に応じた大きさに膨張する。これにより、膨張済みの熱膨張材料が形成され、成形シート10の熱膨張層20が膨張する。熱膨張材料が加熱される温度は、熱変換層70の濃淡(後述する消色インクの濃淡)と、熱変換層70に照射される第1電磁波の単位面積と単位時間当たりのエネルギー量(すなわち、第1電磁波の強度)とにより制御できる。したがって、凹凸60の凸部62の高さは、熱変換層70の濃淡と第1電磁波の強度とにより制御できる。第1電磁波は、例えば、近赤外領域(波長750nm~1400nm)の電磁波である。 Here, the heat conversion layer 70 will be described. The heat conversion layer 70 is provided to form the irregularities 60 on the thermal expansion layer 20 of the molded sheet 10 . The thermal conversion layer 70 is formed on the thermal expansion layer 20 of the molded sheet 10 in a pattern corresponding to the unevenness 60 of the modeled article 50 . The heat conversion layer 70 converts the irradiated first electromagnetic wave (ie, electromagnetic wave energy) into heat (ie, thermal energy) and emits the converted heat (thermal energy). The heat released from the heat conversion layer 70 heats the thermally expandable material of the thermally expandable layer 20 of the molded sheet 10 . The heated thermal expansion material expands to a size corresponding to the heating temperature, heating time, and the like. As a result, an expanded thermally expandable material is formed, and the thermally expandable layer 20 of the molded sheet 10 expands. The temperature at which the thermal expansion material is heated depends on the density of the heat conversion layer 70 (the density of the decolorable ink described later), and the energy amount per unit area and unit time of the first electromagnetic wave irradiated to the heat conversion layer 70 (that is, , intensity of the first electromagnetic wave). Therefore, the height of the convex portion 62 of the unevenness 60 can be controlled by the density of the heat conversion layer 70 and the intensity of the first electromagnetic wave. The first electromagnetic wave is, for example, an electromagnetic wave in the near-infrared region (wavelength 750 nm to 1400 nm).
 本実施形態では、熱変換層70は、熱を放出すると共に消色し、消色済み熱変換層72を形成する。具体的には、熱変換層70は、加熱により消色する消色インクを含む。熱変換層70の消色インクは、照射された第1電磁波(電磁波エネルギー)を熱(熱エネルギー)に変換して変換した熱を放出すると共に、変換した熱により消色する。すなわち、熱変換層70の消色インクは、成形シート10の熱膨張層20を加熱する熱エネルギーにより消色する。 In this embodiment, the heat conversion layer 70 emits heat and is decolored to form a decolored heat conversion layer 72 . Specifically, the heat conversion layer 70 contains decolorable ink that is decolorized by heating. The decolorizing ink of the heat conversion layer 70 converts the irradiated first electromagnetic wave (electromagnetic wave energy) into heat (thermal energy), emits the converted heat, and decolors with the converted heat. That is, the decolorizing ink of the heat conversion layer 70 is decolorized by the thermal energy that heats the thermal expansion layer 20 of the molded sheet 10 .
 熱変換層70の消色インクは、例えば、ロイコ染料、顕色剤、消色剤等を含む。ロイコ染料は、顕色剤と結合した状態で発色し、顕色剤が加熱によりロイコ染料から分離すると無色に変化する。消色前の消色インクでは、ロイコ染料は顕色剤と結合している。顕色剤は、ロイコ染料を発色させる助剤である。消色剤は、ロイコ染料から分離した顕色剤をトラップして、ロイコ染料と顕色剤との再結合を防ぐ。 The color erasable ink of the heat conversion layer 70 contains, for example, leuco dye, color developer, color erasing agent, and the like. The leuco dye develops color when bound to the developer and turns colorless when the developer is separated from the leuco dye by heating. In the decolorized ink before decolorization, the leuco dye is bound to the developer. A developer is an auxiliary agent for developing the color of the leuco dye. The decolorant traps the developer that has separated from the leuco dye and prevents recombination of the leuco dye and the developer.
 熱変換層70の消色インクは、造形物50における色残りを防ぐために、熱膨張材料の最大膨張温度よりも低い温度で、消色することが好ましい。また、熱変換層70の消色インクは、熱膨張層20の熱膨張材料を十分に加熱するために、熱膨張材料の膨張開始温度よりも20℃低い温度以上で消色することが好ましい。 The decolorizing ink of the heat conversion layer 70 preferably decolors at a temperature lower than the maximum expansion temperature of the thermally expansive material in order to prevent color residue on the modeled object 50 . In order to sufficiently heat the thermally expandable material of the thermally expandable layer 20, it is preferable that the colorless ink of the thermally expandable layer 70 is erased at a temperature that is 20° C. lower than the expansion start temperature of the thermally expandable material.
 印刷装置200は、例えば、消色インクを使用するインクジェットプリンタである。なお、印刷装置200は、図示しない、CPUから構成される制御部とROMとRAMから構成される記憶部とを備えている。印刷装置200は印刷手段として機能する。 The printing device 200 is, for example, an inkjet printer that uses erasable ink. The printing apparatus 200 includes a control unit composed of a CPU and a storage unit composed of a ROM and a RAM (not shown). The printing device 200 functions as printing means.
 照射装置300は、制御ユニット100により制御される。成形シート10に形成された熱変換層70に第1電磁波を照射することにより、成形シート10の熱膨張層20を加熱し、また、熱変換層70(熱変換層70の消色インク)を消色する。これにより、成形シート10の熱膨張層20が膨張して、膨張済み熱膨張層22(凹凸60)が形成される。また、熱変換層70が消色して、消色済み熱変換層72が形成される。 The irradiation device 300 is controlled by the control unit 100 . By irradiating the heat conversion layer 70 formed on the molded sheet 10 with the first electromagnetic wave, the thermal expansion layer 20 of the molded sheet 10 is heated, and the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) is heated. Discolor. As a result, the thermally expandable layer 20 of the molded sheet 10 expands to form the expanded thermally expandable layer 22 (unevenness 60). Also, the heat conversion layer 70 is decolored to form a decolored heat conversion layer 72 .
 照射装置300は、図7に示すように、筐体内に、供給ローラ301a、301bと、供給ガイド302a、302b、搬送ローラ303a、303b、304a、304bと、排出ガイド305a、305bと、第1照射部310とを備える。また、照射装置300は、図示しない、CPUから構成される制御部とROMとRAMから構成される記憶部とを備えている。照射装置300又は第1照射部310は、照射手段として機能する。なお、理解を容易にするため、本明細書では、図7における照射装置300の長手右方向(紙面の右方向)を+X軸方向、上方向(紙面の上方向)を+Z軸方向、+X軸方向と+Z軸方向に垂直な方向(紙面の手前方向)を+Y軸方向として説明する。 As shown in FIG. 7, the irradiation device 300 includes supply rollers 301a and 301b, supply guides 302a and 302b, transport rollers 303a, 303b, 304a and 304b, discharge guides 305a and 305b, and a first irradiation device in a housing. and a section 310 . In addition, the irradiation device 300 includes a control unit composed of a CPU and a storage unit composed of a ROM and a RAM (not shown). The irradiation device 300 or the first irradiation section 310 functions as irradiation means. In order to facilitate understanding, in this specification, the longitudinal right direction (right direction on the paper surface) of the irradiation device 300 in FIG. A direction perpendicular to the direction and the +Z-axis direction (the front direction of the paper surface) will be described as the +Y-axis direction.
 供給ローラ301a、301bは、熱変換層70を形成された成形シート10を挟持する。供給ローラ301a、301bは、回転して、熱変換層70を形成された成形シート10を筐体内に供給する。
 供給ガイド302a、302bは、供給ローラ301a、301bと搬送ローラ303a、303bとの間で、熱変換層70を形成された成形シート10の供給をガイドする。
The supply rollers 301a and 301b sandwich the formed sheet 10 on which the heat conversion layer 70 is formed. The supply rollers 301a and 301b rotate to supply the molded sheet 10 with the heat conversion layer 70 formed thereon into the housing.
The supply guides 302a and 302b guide the supply of the molded sheet 10 on which the heat conversion layer 70 is formed between the supply rollers 301a and 301b and the transport rollers 303a and 303b.
 搬送ローラ303aと搬送ローラ303bは、熱変換層70を形成された成形シート10を挟持する。また、搬送ローラ304aと搬送ローラ304bは、熱変換層70を形成された成形シート10を挟持する。搬送ローラ303a、303b、304a、304bは、回転して、熱変換層70を形成された成形シート10を-X側から+X軸方向に搬送する。搬送ローラ303a、303b、304a、304bは搬送手段として機能する。
 排出ガイド305a、305bは、製造された造形物50の排出をガイドする。
The conveying roller 303a and the conveying roller 303b sandwich the molded sheet 10 on which the heat conversion layer 70 is formed. Further, the conveying roller 304a and the conveying roller 304b sandwich the molded sheet 10 on which the heat conversion layer 70 is formed. Conveying rollers 303a, 303b, 304a, and 304b rotate to convey the molded sheet 10 on which the heat conversion layer 70 is formed from the -X side to the +X axis direction. Conveying rollers 303a, 303b, 304a, and 304b function as conveying means.
Ejection guides 305a and 305b guide ejection of the manufactured object 50 .
 本実施形態では、熱変換層70を形成された成形シート10が、搬送ローラ303a、303bと搬送ローラ304a、304bとの間に配置された搬送ガイド306に導かれて、-X側から+X軸方向に搬送される。また、熱変換層70を形成された成形シート10は、熱変換層70(熱膨張層20)を+Z軸方向に向け、基材12の第2主面12bを-Z軸方向に向けて搬送される。照射装置300は、熱変換層70を形成された成形シート10を搬送しつつ、熱変換層70に第1電磁波を照射する。 In the present embodiment, the molded sheet 10 on which the heat conversion layer 70 is formed is guided by a conveying guide 306 arranged between conveying rollers 303a, 303b and conveying rollers 304a, 304b, and is moved from the -X side to the +X axis. direction. Further, the molded sheet 10 on which the heat conversion layer 70 is formed is conveyed with the heat conversion layer 70 (thermal expansion layer 20) directed in the +Z-axis direction and the second main surface 12b of the base material 12 directed in the -Z-axis direction. be done. The irradiation device 300 irradiates the heat conversion layer 70 with the first electromagnetic wave while conveying the molded sheet 10 on which the heat conversion layer 70 is formed.
 第1照射部310は、成形シート10に形成された熱変換層70に、熱変換層70が熱に変換する第1電磁波を照射する。本実施形態では、第1照射部310は、熱変換層70を形成された成形シート10の搬送経路よりも+Z側に配置される。第1照射部310は、+Z側から熱変換層70に、熱変換層70が熱に変換する第1電磁波を照射する。これにより、熱変換層70が照射された第1電磁波を熱に変換する。変換された熱により、成形シート10の熱膨張層20が膨張し、熱変換層70(熱変換層70の消色インク)が消色する。造形物50における色残りを防ぐために、第1照射部310(照射装置300)は、熱膨張材料の最大膨張温度よりも低い温度で、熱変換層70を消色させることが好ましい。また、熱膨張層20の熱膨張材料を十分に加熱するために、第1照射部310(照射装置300)は、熱膨張材料の膨張開始温度よりも20℃低い温度以上で熱変換層70を消色させることが好ましい。 The first irradiation unit 310 irradiates the heat conversion layer 70 formed on the molded sheet 10 with a first electromagnetic wave that the heat conversion layer 70 converts into heat. In this embodiment, the first irradiation section 310 is arranged on the +Z side of the conveying path of the molded sheet 10 on which the heat conversion layer 70 is formed. The first irradiation unit 310 irradiates the heat conversion layer 70 from the +Z side with the first electromagnetic wave that the heat conversion layer 70 converts into heat. As a result, the heat conversion layer 70 converts the irradiated first electromagnetic waves into heat. The converted heat causes the thermal expansion layer 20 of the molded sheet 10 to expand, and the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) to decolor. In order to prevent color residue on the modeled object 50, the first irradiation unit 310 (irradiation device 300) preferably decolors the heat conversion layer 70 at a temperature lower than the maximum expansion temperature of the thermal expansion material. In addition, in order to sufficiently heat the thermal expansion material of the thermal expansion layer 20, the first irradiation unit 310 (irradiation device 300) heats the thermal conversion layer 70 at a temperature lower than the expansion start temperature of the thermal expansion material by 20°C or higher. Decoloring is preferred.
 第1照射部310は、例えば、カバー311とランプ312と反射板313とファン314とを備える。カバー311は、ランプ312と反射板313とファン314とを収納する。ランプ312は、例えば、ハロゲンランプから構成される。ランプ312は、成形シート10に、第1電磁波(例えば、近赤外領域の電磁波)を照射する。反射板313は、ランプ312から照射された電磁波を成形シート10に向けて反射する。ファン314は、ランプ312と反射板313とを冷却する。 The first irradiation unit 310 includes, for example, a cover 311, a lamp 312, a reflector 313, and a fan 314. Cover 311 accommodates lamp 312 , reflector 313 and fan 314 . The lamp 312 is composed of, for example, a halogen lamp. The lamp 312 irradiates the molded sheet 10 with a first electromagnetic wave (for example, an electromagnetic wave in the near-infrared region). The reflector 313 reflects the electromagnetic waves emitted from the lamp 312 toward the molded sheet 10 . Fan 314 cools lamp 312 and reflector 313 .
(造形物の製造方法)
 次に、図8、図9を参照して、造形物50の製造方法を説明する。本実施形態では、シート状の成形シート10から、造形物50を製造する。
(Manufacturing method of shaped article)
Next, a method for manufacturing the molded article 50 will be described with reference to FIGS. 8 and 9. FIG. In the present embodiment, the modeled object 50 is manufactured from the sheet-like molded sheet 10 .
 図8は、造形物50の製造方法を示すフローチャートである。造形物50の製造方法は、成形シート10と凹凸データとを準備する準備工程(ステップS10)と、成形シート10に、消色し第1電磁波を熱に変換する熱変換層70を形成する形成工程(ステップS20)と、熱変換層70に第1電磁波を照射して成形シート10の熱膨張層20を加熱することにより、熱膨張層20を膨張させる膨張工程(ステップS30)と、熱変換層70を消色させる消色工程(ステップS40)と、を含む。 FIG. 8 is a flow chart showing the manufacturing method of the modeled object 50. FIG. The method for manufacturing the modeled object 50 includes a preparation step (step S10) of preparing the molded sheet 10 and the unevenness data, and forming a heat conversion layer 70 on the molded sheet 10 that decolorizes and converts the first electromagnetic waves into heat. a step (step S20); an expansion step (step S30) of expanding the thermal expansion layer 20 by irradiating the thermal conversion layer 70 with the first electromagnetic wave to heat the thermal expansion layer 20 of the molded sheet 10; and a decoloring step of decolorizing the layer 70 (step S40).
 準備工程(ステップS10)では、成形シート10と、造形物50の凹凸60を表す凹凸データとを準備する。成形シート10は、例えば、基材12の第1主面12aに、バインダと熱膨張材料とを混合した塗布液をスクリーン印刷し、印刷された塗布液を乾燥することにより製造される。凹凸データは造形物50のCAD(Computer-Aided Design)データから生成される。凹凸データは制御ユニット100の記憶部112に記憶される。 In the preparation step (step S10), the molded sheet 10 and unevenness data representing the unevenness 60 of the modeled object 50 are prepared. The molded sheet 10 is manufactured, for example, by screen-printing a coating liquid, which is a mixture of a binder and a thermal expansion material, on the first main surface 12a of the substrate 12, and drying the printed coating liquid. Concavo-convex data is generated from CAD (Computer-Aided Design) data of the modeled object 50 . The unevenness data is stored in the storage section 112 of the control unit 100 .
 形成工程(ステップS20)では、印刷装置200によって、凹凸データに基づいて、成形シート10の熱膨張層20の上に造形物50の凹凸60に対応したパターンで、消色インクを含む熱変換層70を印刷する。これにより、図9に示すように、消色インクを含む熱変換層70が、熱膨張層20の上に形成される。 In the forming step (step S20), the printing device 200 prints a thermal conversion layer containing erasable ink on the thermal expansion layer 20 of the molding sheet 10 in a pattern corresponding to the unevenness 60 of the modeled object 50 based on the unevenness data. 70 is printed. Thereby, as shown in FIG. 9, a thermal conversion layer 70 containing erasable ink is formed on the thermal expansion layer 20 .
 図8に戻り、膨張工程(ステップS30)では、照射装置300によって、成形シート10に形成された熱変換層70に、熱変換層70が熱に変換する第1電磁波を照射する。熱変換層70(熱変換層70の消色インク)は、第1電磁波を熱に変換し、変換された熱(熱エネルギー)を放出する。本実施形態では、熱変換層70から放出された熱により、熱膨張層20が加熱されて膨張し、膨張済み熱膨張層22(すなわち凹凸60)が形成される。 Returning to FIG. 8, in the expansion step (step S30), the irradiation device 300 irradiates the heat conversion layer 70 formed on the molded sheet 10 with the first electromagnetic wave that the heat conversion layer 70 converts into heat. The heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) converts the first electromagnetic waves into heat and emits the converted heat (thermal energy). In this embodiment, the thermal expansion layer 20 is heated and expanded by the heat released from the thermal conversion layer 70 to form the expanded thermal expansion layer 22 (that is, the unevenness 60).
 消色工程(ステップS40)では、熱変換層70の消色インクが、変換した熱(熱エネルギー)により加熱され、消色する。すなわち、熱変換層70の消色インクは、成形シート10の熱膨張層20を加熱する熱エネルギーにより消色される。本工程では、造形物50における色残りを防ぐために、熱変換層70の消色インクを、熱膨張材料の最大膨張温度よりも低い温度で、消色させることが好ましい。また、熱膨張層20の熱膨張材料を十分に加熱するために、熱変換層70の消色インクを、熱膨張材料の膨張開始温度よりも20℃低い温度以上で消色させることが好ましい。 In the color erasing step (step S40), the color erasable ink of the heat conversion layer 70 is heated by the converted heat (thermal energy), and becomes colorless. That is, the decolorizing ink of the heat conversion layer 70 is decolored by the thermal energy that heats the thermal expansion layer 20 of the molded sheet 10 . In this step, in order to prevent color residue on the modeled object 50, it is preferable to decolor the decolorizing ink of the heat conversion layer 70 at a temperature lower than the maximum expansion temperature of the thermally expansive material. Moreover, in order to sufficiently heat the thermal expansion material of the thermal expansion layer 20, it is preferable to decolor the decolorable ink of the thermal expansion layer 70 at a temperature 20° C. lower than the expansion start temperature of the thermal expansion material.
 具体的には、消色インクのロイコ染料に結合している顕色剤が、加熱(熱エネルギー)によりロイコ染料から分離し、ロイコ染料が有色から無色へ変化する。これにより、熱変換層70は消色して、消色した消色インクを含む消色済み熱変換層72が形成される。以上により、造形物50を製造できる。 Specifically, the developer that binds to the leuco dye of the decolorizing ink is separated from the leuco dye by heating (thermal energy), and the leuco dye changes from colored to colorless. As a result, the heat conversion layer 70 is decolored, and a decolored heat conversion layer 72 containing decolored ink is formed. As described above, the modeled object 50 can be manufactured.
 以上のように、造形システム1の印刷装置200は、成形シート10に熱変換層70を形成する。熱変換層70は、加熱により消色する消色インクを含み、第1電磁波を熱に変換する。造形システム1の照射装置300は、熱変換層70に第1電磁波を照射して、第1電磁波から変換された熱により成形シート10の熱膨張層20を膨張させ、第1電磁波から変換された熱により熱変換層70(熱変換層70の消色インク)を消色する。これにより、造形システム1は、凹凸60を形成するために設けられる熱変換層70が消色された造形物50(すなわち、消色済み熱変換層72を備える造形物50)を製造できる。造形物50では、消色済み熱変換層72の上に彩色しても、造形物50の外観は損なわれず、造形物50に容易に彩色できる。また、本実施形態では、剥離可能なフィルム層の上に熱変換層70を形成して、フィルム層と共に熱変換層70を除く必要がなく、低コストで造形物50を製造できる。さらに、少ない工数で造形物50を製造できる。 As described above, the printing device 200 of the modeling system 1 forms the heat conversion layer 70 on the molded sheet 10 . The heat conversion layer 70 contains decolorable ink that is decolorized by heating, and converts the first electromagnetic waves into heat. The irradiation device 300 of the modeling system 1 irradiates the heat conversion layer 70 with the first electromagnetic wave, expands the thermal expansion layer 20 of the molded sheet 10 with the heat converted from the first electromagnetic wave, and converts the heat from the first electromagnetic wave into The heat converts the heat conversion layer 70 (discolorable ink of the heat conversion layer 70) to decolor. Thereby, the modeling system 1 can manufacture the modeled object 50 in which the heat conversion layer 70 provided for forming the unevenness 60 is decolored (that is, the modeled object 50 including the decolorized heat conversion layer 72). In the modeled article 50, even if the decolorized heat conversion layer 72 is colored, the appearance of the modeled article 50 is not impaired, and the modeled article 50 can be easily colored. In addition, in the present embodiment, the heat conversion layer 70 is formed on the peelable film layer, and it is not necessary to remove the heat conversion layer 70 together with the film layer, so that the modeled object 50 can be manufactured at low cost. Furthermore, the modeled object 50 can be manufactured with a small number of man-hours.
<実施形態2>
 実施形態1の熱変換層70は、成形シート10の熱膨張層20を加熱する熱エネルギーにより消色される。熱変換層70は、電磁波エネルギーにより消色されてもよい。
<Embodiment 2>
The thermal conversion layer 70 of Embodiment 1 is decolored by thermal energy that heats the thermal expansion layer 20 of the molded sheet 10 . The heat conversion layer 70 may be bleached by electromagnetic wave energy.
 本実施形態では、熱変換層70の構成が実施形態1の熱変換層70の構成と異なる。その他の構成は実施形態1の構成と同様であるので、ここでは、熱変換層70と造形物50の製造方法について説明する。 In this embodiment, the configuration of the heat conversion layer 70 is different from that of the heat conversion layer 70 of the first embodiment. Since other configurations are the same as those of the first embodiment, a method for manufacturing the heat conversion layer 70 and the modeled article 50 will be described here.
 本実施形態の熱変換層70は、実施形態1の熱変換層70と同様に、消色インクを含み、熱を放出すると共に消色して消色済み熱変換層72を形成する。本実施形態の熱変換層70の消色インクは、第1電磁波(電磁波エネルギー)を熱(熱エネルギー)に変換して、変換した熱を放出すると共に、熱に変換する第1電磁波(電磁波エネルギー)により消色する。 The heat conversion layer 70 of the present embodiment contains decolorable ink, releases heat and decolors to form a decolorized heat conversion layer 72, like the heat conversion layer 70 of the first embodiment. The decolorizing ink of the heat conversion layer 70 of the present embodiment converts the first electromagnetic wave (electromagnetic wave energy) into heat (thermal energy), releases the converted heat, and converts the first electromagnetic wave (electromagnetic wave energy) into heat. ) to erase the color.
 本実施形態の熱変換層70の消色インクは、例えば、近赤外線吸収色素と消色剤とを含む。近赤外線吸収色素は、近赤外線領域の電磁波(第1電磁波)を吸収して熱に変換し、変換した熱を放出する。近赤外線吸収色素としては、ナフタロシアニン系色素、シアニン系色素、ジイモニウム系色素等が挙げられる。近赤外線吸収色素の具体例としては、昭和電工株式会社製のIRT(商品名)が挙げられる。 The decolorizing ink of the heat conversion layer 70 of this embodiment contains, for example, a near-infrared absorbing pigment and a decolorizing agent. The near-infrared absorbing dye absorbs electromagnetic waves (first electromagnetic waves) in the near-infrared region, converts them into heat, and releases the converted heat. Examples of near-infrared absorbing dyes include naphthalocyanine-based dyes, cyanine-based dyes, diimmonium-based dyes, and the like. A specific example of the near-infrared absorbing dye is IRT (trade name) manufactured by Showa Denko K.K.
 消色剤は、近赤外線吸収色素を消色する。消色剤としては、公知の4級アンモニウムホウ素錯体(例えば、昭和電工株式会社製のP3B(商品名))が挙げられる。消色は、近赤外線を吸収して励起した近赤外線吸収色素(色素カチオン)と、消色剤由来のアルキル基ラジカルとが結合することにより、生じる。 The decolorizing agent decolorizes the near-infrared absorbing pigment. Examples of decolorizing agents include known quaternary ammonium boron complexes (for example, P3B (trade name) manufactured by Showa Denko KK). Decolorization occurs when a near-infrared absorbing dye (dye cation) excited by absorbing near-infrared rays is combined with an alkyl radical derived from the decolorizing agent.
 本実施形態の熱変換層70は、実施形態1の熱変換層70と同様に、造形システム1の印刷装置200によって、熱膨張層20上に造形物50の凹凸60に対応したパターンで印刷される。なお、熱膨張層20上に印刷された熱変換層70の滲みを防ぐため、消色インクには、アクリル樹脂系色材、ウレタン樹脂系色材等を混合しても良く、混合する色材としては、特に、消色後に色残りが発生しにくい、白色又は透明の色材が好ましい。 As with the heat conversion layer 70 of the first embodiment, the heat conversion layer 70 of the present embodiment is printed on the thermal expansion layer 20 by the printer 200 of the modeling system 1 in a pattern corresponding to the unevenness 60 of the modeled object 50. be. In order to prevent bleeding of the thermal conversion layer 70 printed on the thermal expansion layer 20, the decolorizing ink may be mixed with an acrylic resin-based coloring material, a urethane resin-based coloring material, or the like. Especially, a white or transparent colorant is preferable because it is less likely to cause color residue after decolorization.
 次に、本実施形態の造形物50の製造方法を説明する。本実施形態の造形物50の製造方法は、実施形態1と同様に、準備工程(ステップS10)と、形成工程(ステップS20)と、膨張工程(ステップS30)と、消色工程(ステップS40)と、を含む。本実施形態の準備工程(ステップS10)と形成工程(ステップS20)と膨張工程(ステップS30)は、実施形態1と同様であるので、消色工程(ステップS40)について説明する。 Next, a method for manufacturing the modeled object 50 of this embodiment will be described. As in the first embodiment, the method for manufacturing the modeled object 50 of the present embodiment includes a preparation step (step S10), a forming step (step S20), an expansion step (step S30), and a decoloring step (step S40). and including. Since the preparation process (step S10), the formation process (step S20), and the expansion process (step S30) of this embodiment are the same as those of the first embodiment, the decoloring process (step S40) will be described.
 本実施形態の消色工程(ステップS40)では、本実施形態の熱変換層70の消色インクが、膨張工程(ステップS30)において照射装置300から照射されて熱に変換する第1電磁波(電磁波エネルギー)により、消色する。具体的には、熱変換層70の消色インク中において、第1電磁波(近赤外線領域の電磁波)の照射により励起された近赤外線吸収色素と、消色剤から生じるアルキル基ラジカルとが結合することにより、熱変換層70の消色インクが消色される。第1電磁波を発生させる光源としては、キセノンランプ、ハロゲンランプ等が挙げられる。これにより、消色済み熱変換層72が形成される。以上により、本実施形態の造形物50が製造できる。 In the decoloring step (step S40) of the present embodiment, the decoloring ink of the heat conversion layer 70 of the present embodiment is irradiated from the irradiation device 300 and converted into heat in the expansion step (step S30). energy) to decolorize. Specifically, in the decolorizing ink of the heat conversion layer 70, the near-infrared absorbing dye excited by the irradiation of the first electromagnetic wave (the electromagnetic wave in the near-infrared region) and the alkyl group radical generated from the decolorizing agent are bonded. As a result, the decolorable ink of the heat conversion layer 70 is decolored. A xenon lamp, a halogen lamp, or the like may be used as the light source for generating the first electromagnetic wave. As a result, the decolored heat conversion layer 72 is formed. As described above, the modeled object 50 of the present embodiment can be manufactured.
 以上のように、本実施形態の熱変換層70(熱変換層70の消色インク)は、第1電磁波を熱に変換して、変換した熱を放出すると共に、熱に変換する第1電磁波により消色する。造形システム1の照射装置300は、熱変換層70に、熱変換層70が熱に変換する第1電磁波を照射して、第1電磁波から変換された熱により成形シート10の熱膨張層20を膨張させ、熱変換層70が熱に変換する第1電磁波により熱変換層70(熱変換層70の消色インク)を消色する。これにより、造形システム1は、熱変換層70が消色された本実施形態の造形物50を製造できる。本実施形態では、消色済み熱変換層72の上に彩色しても、造形物50の外観は損なわれず、造形物50に容易に彩色できる。また、実施形態1と同様に、低コストで本実施形態の造形物50を製造できる。 As described above, the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) of the present embodiment converts the first electromagnetic wave into heat, releases the converted heat, and converts the first electromagnetic wave into heat. The color is erased by The irradiation device 300 of the modeling system 1 irradiates the heat conversion layer 70 with the first electromagnetic waves that the heat conversion layer 70 converts into heat, and the heat converted from the first electromagnetic waves irradiates the thermal expansion layer 20 of the molded sheet 10. The heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) is decolored by the first electromagnetic waves that are expanded and converted into heat by the heat conversion layer 70. FIG. Thereby, the modeling system 1 can manufacture the modeled object 50 of the present embodiment in which the heat conversion layer 70 is decolored. In this embodiment, even if the heat conversion layer 72 that has been decolored is colored, the external appearance of the modeled article 50 is not impaired, and the modeled article 50 can be easily colored. Further, similarly to the first embodiment, the modeled object 50 of the present embodiment can be manufactured at low cost.
<実施形態3>
 実施形態2では、熱変換層70は、第1電磁波を熱に変換して、変換した熱を放出すると共に、熱に変換する第1電磁波により消色する。熱変換層70は、熱に変換する第1電磁波と異なる電磁波により消色してもよい。また、照射装置300は、熱変換層70が熱に変換する第1電磁波と、熱変換層70を消色させる第2電磁波とを、熱変換層70に照射してもよい。
<Embodiment 3>
In the second embodiment, the heat conversion layer 70 converts the first electromagnetic wave into heat, emits the converted heat, and decolors due to the first electromagnetic wave converted into heat. The heat conversion layer 70 may be decolored by an electromagnetic wave different from the first electromagnetic wave converted into heat. Further, the irradiation device 300 may irradiate the heat conversion layer 70 with the first electromagnetic wave that the heat conversion layer 70 converts into heat and the second electromagnetic wave that causes the heat conversion layer 70 to be decolored.
 本実施形態では、熱変換層70と照射装置300の構成が、実施形態1の熱変換層70と照射装置300の構成と異なる。その他の構成は実施形態1の構成と同様であるので、ここでは、熱変換層70と照射装置300と造形物50の製造方法について説明する。 In this embodiment, the configurations of the heat conversion layer 70 and the irradiation device 300 are different from those of the heat conversion layer 70 and the irradiation device 300 of the first embodiment. Other configurations are the same as those of the first embodiment, so here, a method for manufacturing the heat conversion layer 70, the irradiation device 300, and the modeled object 50 will be described.
 本実施形態の熱変換層70は、実施形態1の熱変換層70と同様に、消色インクを含む。本実施形態の熱変換層70の消色インクは、第1電磁波(電磁波エネルギー)を熱(熱エネルギー)に変換して、変換した熱を放出する。また、本実施形態の熱変換層70の消色インクは、第1電磁波と異なる第2電磁波(電磁波エネルギー)により消色する。本実施形態の熱変換層70の消色インクは、例えば、可視光領域(波長380nm~750nm)又は近赤外線領域の電磁波を吸収して熱に変換し、紫外線領域(波長100nm~380nm)の電磁波により分解する色素(例えば、シアニン系色素)を含む。 The heat conversion layer 70 of the present embodiment contains erasable ink, like the heat conversion layer 70 of the first embodiment. The decolorizing ink of the heat conversion layer 70 of the present embodiment converts the first electromagnetic wave (electromagnetic wave energy) into heat (thermal energy) and emits the converted heat. Also, the decolorizing ink of the heat conversion layer 70 of the present embodiment is decolorized by a second electromagnetic wave (electromagnetic wave energy) different from the first electromagnetic wave. The decolorizing ink of the heat conversion layer 70 of the present embodiment, for example, absorbs electromagnetic waves in the visible light region (wavelength 380 nm to 750 nm) or near infrared region and converts them into heat, and absorbs electromagnetic waves in the ultraviolet region (wavelength 100 nm to 380 nm). Contains dyes that decompose by (eg, cyanine dyes).
 本実施形態の熱変換層70は、実施形態1、2の熱変換層70と同様に、造形システム1の印刷装置200によって、熱膨張層20上に造形物50の凹凸60に対応したパターンで印刷される。 As with the heat conversion layers 70 of Embodiments 1 and 2, the heat conversion layer 70 of the present embodiment is formed on the thermal expansion layer 20 by the printing apparatus 200 of the modeling system 1 in a pattern corresponding to the unevenness 60 of the object 50 . printed.
 次に、本実施形態の照射装置300について説明する。本実施形態の照射装置300は、成形シート10に形成された熱変換層70に第1電磁波を照射することにより、成形シート10の熱膨張層20を加熱する。これにより、成形シート10の熱膨張層20が膨張して、膨張済み熱膨張層22(凹凸60)が形成される。また、本実施形態の照射装置300は、成形シート10に形成された熱変換層70に第2電磁波を照射することにより、熱変換層70を消色する。 Next, the irradiation device 300 of this embodiment will be described. The irradiation device 300 of the present embodiment heats the thermal expansion layer 20 of the molded sheet 10 by irradiating the heat conversion layer 70 formed on the molded sheet 10 with the first electromagnetic wave. As a result, the thermally expandable layer 20 of the molded sheet 10 expands to form the expanded thermally expandable layer 22 (unevenness 60). Further, the irradiation device 300 of the present embodiment decolorizes the heat conversion layer 70 by irradiating the heat conversion layer 70 formed on the molded sheet 10 with the second electromagnetic waves.
 本実施形態の照射装置300は、図10に示すように、筐体内に、供給ローラ301a、301bと、供給ガイド302a、302b、搬送ローラ303a、303b、304a、304bと、排出ガイド305a、305bと、第1照射部310、第2照射部320とを備える。供給ローラ301a、301b~排出ガイド305a、305bの構成は、実施形態1と同様である。 As shown in FIG. 10, the irradiation device 300 of the present embodiment includes supply rollers 301a and 301b, supply guides 302a and 302b, transport rollers 303a, 303b, 304a and 304b, and discharge guides 305a and 305b in a housing. , a first irradiation unit 310 and a second irradiation unit 320 . The configuration of supply rollers 301a and 301b to discharge guides 305a and 305b is the same as that of the first embodiment.
 本実施形態の第1照射部310は、実施形態1の第1照射部310と同様に、+Z側から熱変換層70に、熱変換層70が熱に変換する第1電磁波(例えば、近赤外線領域の電磁波)を照射する。これにより、熱変換層70が照射された第1電磁波を熱に変換し、成形シート10の熱膨張層20が変換された熱により膨張する。 Similar to the first irradiation unit 310 of the first embodiment, the first irradiation unit 310 of the present embodiment applies a first electromagnetic wave (for example, near-infrared area of electromagnetic waves). As a result, the heat conversion layer 70 converts the irradiated first electromagnetic wave into heat, and the thermal expansion layer 20 of the molded sheet 10 expands due to the converted heat.
 第2照射部320は、熱変換層70に、第1電磁波と異なり熱変換層70を消色する第2電磁波(例えば、紫外線領域の電磁波)を照射する。これにより、熱変換層70が消色して、消色済み熱変換層72が形成される。第2照射部320は、第1照射部310と同様に、熱変換層70を形成された成形シート10の搬送経路よりも+Z側に配置され、+Z側から熱変換層70に第2電磁波を照射する。また、第2照射部320は、第1照射部310よりも+X側に配置されて、成形シート10の熱膨張層20が膨張して凹凸60が形成された後に、熱変換層70に第2電磁波を照射する。 The second irradiation unit 320 irradiates the heat conversion layer 70 with a second electromagnetic wave (for example, an electromagnetic wave in the ultraviolet region) that decolorizes the heat conversion layer 70 unlike the first electromagnetic wave. As a result, the heat conversion layer 70 is decolored, and a decolored heat conversion layer 72 is formed. The second irradiation section 320, like the first irradiation section 310, is arranged on the +Z side of the conveying path of the molded sheet 10 on which the heat conversion layer 70 is formed, and applies the second electromagnetic wave to the heat conversion layer 70 from the +Z side. Irradiate. Further, the second irradiation section 320 is arranged on the +X side of the first irradiation section 310, and after the thermal expansion layer 20 of the molded sheet 10 expands and the irregularities 60 are formed, the heat conversion layer 70 receives the second irradiation. Irradiate electromagnetic waves.
 第2照射部320は、例えば、紫外線ランプ(例えば、高圧水銀ランプ)、ファン等を備える。第2照射部320の構成は、紫外線ランプを除き、第1照射部310と同様である。 The second irradiation unit 320 includes, for example, an ultraviolet lamp (eg, high-pressure mercury lamp), a fan, and the like. The configuration of the second irradiation section 320 is the same as that of the first irradiation section 310 except for the ultraviolet lamp.
 次に、本実施形態の造形物50の製造方法を説明する。本実施形態の造形物50の製造方法は、実施形態1と同様に、準備工程(ステップS10)と、形成工程(ステップS20)と、膨張工程(ステップS30)と、消色工程(ステップS40)と、を含む。本実施形態の準備工程(ステップS10)と形成工程(ステップS20)と膨張工程(ステップS30)は、実施形態1と同様であるので、消色工程(ステップS40)について説明する。 Next, a method for manufacturing the modeled object 50 of this embodiment will be described. As in the first embodiment, the method for manufacturing the modeled object 50 of the present embodiment includes a preparation step (step S10), a forming step (step S20), an expansion step (step S30), and a decoloring step (step S40). and including. Since the preparation process (step S10), the formation process (step S20), and the expansion process (step S30) of this embodiment are the same as those of the first embodiment, the decoloring process (step S40) will be described.
 本実施形態の消色工程(ステップS40)では、膨張工程(ステップS30)において膨張済み熱膨張層22(凹凸60)が形成された後、本実施形態の照射装置300によって、第2電磁波(紫外線領域の電磁波)を本実施形態の熱変換層70に照射する。これにより、本実施形態の熱変換層70は消色し、消色済み熱変換層72が形成される。以上により、本実施形態の造形物50を製造できる。 In the decoloring step (step S40) of the present embodiment, after the expanded thermal expansion layer 22 (unevenness 60) is formed in the expansion step (step S30), the second electromagnetic wave (ultraviolet rays region) is applied to the heat conversion layer 70 of the present embodiment. As a result, the heat conversion layer 70 of the present embodiment is decolored, and a decolored heat conversion layer 72 is formed. As described above, the modeled object 50 of the present embodiment can be manufactured.
 以上のように、本実施形態の熱変換層70(熱変換層70の消色インク)は、第1電磁波を熱に変換して、変換した熱を放出する。また、本実施形態の熱変換層70は、第2電磁波(電磁波エネルギー)により消色する。本実施形態の造形システム1の照射装置300は、熱変換層70に第1電磁波を照射して成形シート10の熱膨張層20を膨張させ、熱膨張層20を膨張させた後、熱変換層70に第2電磁波を照射して熱変換層70を消色する。これにより、本実施形態の造形システム1は、熱変換層70が消色された造形物50を製造できる。 As described above, the heat conversion layer 70 (the decolorizing ink of the heat conversion layer 70) of the present embodiment converts the first electromagnetic wave into heat and emits the converted heat. Moreover, the heat conversion layer 70 of the present embodiment is decolored by the second electromagnetic wave (electromagnetic wave energy). The irradiation device 300 of the modeling system 1 of the present embodiment irradiates the thermal conversion layer 70 with the first electromagnetic wave to expand the thermal expansion layer 20 of the molded sheet 10, and after expanding the thermal expansion layer 20, the thermal conversion layer 70 is irradiated with the second electromagnetic wave to decolor the heat conversion layer 70 . Thereby, the modeling system 1 of the present embodiment can manufacture the modeled object 50 in which the heat conversion layer 70 is decolored.
 本実施形態では、消色済み熱変換層72の上に彩色しても、造形物50の外観は損なわれず、造形物50に容易に彩色できる。また、実施形態1と同様に、低コストで本実施形態の造形物50を製造できる。さらに、本実施形態では、熱変換層70が熱に変換する電磁波(第1電磁波)と熱変換層70を消色する電磁波(第2電磁波)とが異なるので、成形シート10の熱膨張層20を加熱する条件(第1電磁波の強度、照射時間等)と熱変換層70を消色する条件(第2電磁波の強度、照射時間等)とを個別に設定でき、容易に、本実施形態の造形物50を製造できる。 In the present embodiment, even if the decolorized heat conversion layer 72 is colored, the external appearance of the modeled article 50 is not impaired, and the modeled article 50 can be easily colored. Further, similarly to the first embodiment, the modeled object 50 of the present embodiment can be manufactured at low cost. Furthermore, in the present embodiment, the electromagnetic wave (first electromagnetic wave) that the heat conversion layer 70 converts into heat and the electromagnetic wave (second electromagnetic wave) that decolorizes the heat conversion layer 70 are different. The conditions for heating (intensity of the first electromagnetic wave, irradiation time, etc.) and the conditions for decoloring the heat conversion layer 70 (intensity of the second electromagnetic wave, irradiation time, etc.) can be set individually. A model 50 can be manufactured.
<変形例>
 以上、本発明の実施形態を説明したが、本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
<Modification>
Although the embodiments of the present invention have been described above, the present invention can be modified in various ways without departing from the gist of the present invention.
 例えば、造形物50はロール状の成形シート10からロール状に製造されてもよい。 For example, the modeled object 50 may be manufactured in a roll form from the roll-shaped formed sheet 10 .
 基材12を構成する材料は、熱可塑性樹脂に限らず、紙、布等であってもよい。基材12を構成する熱可塑性樹脂は、ポリオレフィン系樹脂とポリエステル系樹脂に限らず、ポリアミド系樹脂、ポリ塩化ビニル(PVC)系樹脂、ポリイミド系樹脂等であってもよい。 The material constituting the base material 12 is not limited to thermoplastic resin, and may be paper, cloth, or the like. The thermoplastic resin forming the base material 12 is not limited to polyolefin resin and polyester resin, and may be polyamide resin, polyvinyl chloride (PVC) resin, polyimide resin, or the like.
 実施形態1~実施形態3では、熱変換層70は熱膨張層20の上に形成されているが、熱変換層70は基材12の第2主面12bの上に形成されてもよい。実施形態1の熱変換層70は熱エネルギーにより消色し、実施形態2、3の熱変換層70は電磁波エネルギーにより消色するが、熱変換層70は熱エネルギーと電磁波エネルギーとにより消色してもよい。 Although the heat conversion layer 70 is formed on the thermal expansion layer 20 in Embodiments 1 to 3, the heat conversion layer 70 may be formed on the second main surface 12b of the substrate 12. The heat conversion layer 70 of Embodiment 1 is bleached by heat energy, and the heat conversion layer 70 of Embodiments 2 and 3 is bleached by electromagnetic wave energy, but the heat conversion layer 70 is bleached by heat energy and electromagnetic wave energy. may
 成形シート10と造形物50は、各層の間に他の任意の材料による層を形成されてもよい。例えば、基材12と熱膨張層20との間に、基材12と熱膨張層20とをより密着させる密着層が形成されてもよい。密着層は、例えば、表面改質剤から形成される。 The molded sheet 10 and the modeled object 50 may have layers made of any other material between the layers. For example, an adhesion layer may be formed between the base material 12 and the thermal expansion layer 20 to make the base material 12 and the thermal expansion layer 20 more closely adhere to each other. The adhesion layer is formed from, for example, a surface modifier.
 また、造形物50は、カラー画像を印刷されてもよい。例えば、造形物50は、熱膨張層20の上に、シアンとマゼンタとイエローとブラックの4色のインクから構成され、カラー画像を表すカラーインク層を形成されてもよい。造形物50は熱変換層70を消色されているので、鮮明なカラー画像を造形物50に印刷できる。 Also, the modeled object 50 may be printed with a color image. For example, the modeled object 50 may be configured with four color inks of cyan, magenta, yellow, and black to form a color ink layer representing a color image on the thermal expansion layer 20 . Since the modeled article 50 has the heat conversion layer 70 decolored, a clear color image can be printed on the modeled article 50 .
 印刷装置200は、インクジェットプリンタに限られない。例えば、印刷装置200はレーザプリンタであってもよい。また、印刷装置200は、造形物50にカラー画像を印刷してもよい。 The printing device 200 is not limited to an inkjet printer. For example, printing device 200 may be a laser printer. Further, the printing device 200 may print a color image on the modeled object 50 .
 照射装置300の第1照射部310と第2照射部320は、第1電磁波又は第2電磁波としてレーザ光を照射してもよい。例えば、第1照射部310と第2照射部320は、レーザ発振部、ポリゴンミラー、レンズ等を備えるレーザ照射器であってもよい。 The first irradiation section 310 and the second irradiation section 320 of the irradiation device 300 may irradiate laser light as the first electromagnetic wave or the second electromagnetic wave. For example, the first irradiator 310 and the second irradiator 320 may be laser irradiators including laser oscillators, polygon mirrors, lenses, and the like.
 実施形態1と実施形態2の照射装置300は、1つの第1照射部310から第1電磁波を熱変換層70に照射することにより、成形シート10の熱膨張層20を加熱して膨張させ、熱変換層70を消色している。実施形態1と実施形態2の照射装置300は、成形シート10の熱膨張層20の加熱を優先した第1照射部310と、熱変換層70を十分に消色させる第3照射部330とを備えてもよい。 The irradiation device 300 of Embodiment 1 and Embodiment 2 heats and expands the thermal expansion layer 20 of the molded sheet 10 by irradiating the heat conversion layer 70 with the first electromagnetic wave from one first irradiation unit 310, The heat conversion layer 70 is decolored. The irradiation device 300 of Embodiments 1 and 2 includes a first irradiation section 310 that preferentially heats the thermal expansion layer 20 of the molded sheet 10 and a third irradiation section 330 that sufficiently decolorizes the heat conversion layer 70. You may prepare.
 例えば、熱変換層70を消色するために必要な時間(すなわち消色反応の反応時間)が、成形シート10の熱膨張層20を加熱する時間よりも長い場合、1つの第1照射部310によって、熱膨張層20の加熱と熱変換層70の消色とを実行すると、熱変換層70に色残りが生じるか、熱膨張層20が過剰に膨張して凸部62のエッジ部分に鈍り(裾引き)が生じる虞がある。 For example, when the time required to decolorize the heat conversion layer 70 (that is, the reaction time of the decolorization reaction) is longer than the time to heat the thermal expansion layer 20 of the molded sheet 10, one first irradiation section 310 When the thermal expansion layer 20 is heated and the heat conversion layer 70 is decolored, the thermal expansion layer 70 may remain colored, or the thermal expansion layer 20 may expand excessively and the edges of the protrusions 62 may become dull. (Hemming) may occur.
 そこで、実施形態1と実施形態2の照射装置300は、図11に示すように、第1照射部310と、第1照射部310よりも+X側に配置された第3照射部330とを備えてもよい。第1照射部310は、第1電磁波を熱変換層70に熱膨張層20の膨張に必要なエネルギー量だけ照射することにより、成形シート10の熱膨張層20を加熱して熱膨張層20を必要量だけ膨張させる。この場合、熱変換層70は第1照射部310の第1電磁波の照射より消色していくが、色残りが熱変換層70に生じてもよい。第3照射部330は、熱膨張層20の膨張が終了した後に、第1電磁波を熱変換層70に照射することにより、熱変換層70の残りの色を消色する。第3照射部330は、熱変換層70の消色に十分なエネルギー量の第1電磁波を熱変換層70に照射する。これらの構成によれば、凸部62のエッジ部分の鈍りを抑制しつつ、熱変換層70を十分に消色できる。 Therefore, as shown in FIG. 11, the irradiation apparatus 300 of Embodiments 1 and 2 includes a first irradiation section 310 and a third irradiation section 330 arranged on the +X side of the first irradiation section 310. may The first irradiation unit 310 irradiates the thermal conversion layer 70 with the first electromagnetic waves in an amount of energy required for expansion of the thermal expansion layer 20 , thereby heating the thermal expansion layer 20 of the molded sheet 10 and expanding the thermal expansion layer 20 . Inflate as needed. In this case, the heat conversion layer 70 loses its color after being irradiated with the first electromagnetic wave from the first irradiation section 310 , but the heat conversion layer 70 may remain colored. After the expansion of the thermal expansion layer 20 is completed, the third irradiation section 330 irradiates the thermal conversion layer 70 with the first electromagnetic wave, thereby removing the remaining color of the thermal conversion layer 70 . The third irradiation unit 330 irradiates the heat conversion layer 70 with the first electromagnetic wave having an energy amount sufficient to decolorize the heat conversion layer 70 . According to these configurations, it is possible to sufficiently decolor the heat conversion layer 70 while suppressing dulling of the edge portions of the projections 62 .
 実施形態3の照射装置300は、第1電磁波を熱変換層70に照射する第1照射部310と、第2電磁波を熱変換層70に照射する第2照射部320とを備える。実施形態3の照射装置300は、図12に示すように、第1電磁波と第2電磁波とを熱変換層70に照射する第4照射部340を備えてもよい。この場合、熱変換層70は、第4照射部340の第1電磁波の照射により第1電磁波を熱に変換して変換した熱を放出すると共に、第4照射部340の第2電磁波の照射により消色する。 The irradiation device 300 of Embodiment 3 includes a first irradiation section 310 that irradiates the heat conversion layer 70 with the first electromagnetic wave and a second irradiation section 320 that irradiates the heat conversion layer 70 with the second electromagnetic wave. The irradiation device 300 of Embodiment 3 may include a fourth irradiation section 340 that irradiates the heat conversion layer 70 with the first electromagnetic waves and the second electromagnetic waves, as shown in FIG. 12 . In this case, the heat conversion layer 70 converts the first electromagnetic wave into heat by irradiation of the first electromagnetic wave from the fourth irradiation unit 340 and emits the converted heat, and also emits the converted heat by irradiation of the second electromagnetic wave from the fourth irradiation unit 340 Discolor.
 上記の実施形態と変形例において、制御ユニット100は、CPUを備えており、CPUの機能によって、印刷装置200と照射装置300を制御している。本発明では、制御ユニット100は、CPUに代えて、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、制御回路等の専用ハードウェアを備えてもよい。この場合、処理のそれぞれを、個別のハードウェアにより実行してもよい。また、処理のそれぞれをまとめて、単一のハードウェアにより実行してもよい。処理の一部を専用ハードウェアにより実行し、処理の他の一部をソフトウェア又はファームウェアにより実行してもよい。また、制御ユニット100の制御部110が実現する機能は、印刷装置200の制御部又は照射装置300の制御部により実現されてもよい。 In the above embodiment and modification, the control unit 100 includes a CPU, and controls the printing device 200 and the irradiation device 300 by the functions of the CPU. In the present invention, the control unit 100 may include dedicated hardware such as ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), control circuit, etc., instead of the CPU. In this case, each of the processes may be performed by separate hardware. Also, each of the processes may be collectively executed by a single piece of hardware. Part of the processing may be performed by dedicated hardware, and another part of the processing may be performed by software or firmware. Also, the functions realized by the control section 110 of the control unit 100 may be realized by the control section of the printing device 200 or the control section of the irradiation device 300 .
 なお、本発明に係る機能を実現するための構成を予め備えた印刷装置又は照射装置として提供できることはもとより、プログラムの適用により、印刷装置又は照射装置を制御するコンピュータに、上記の実施形態と変形例で例示した印刷装置200又は照射装置300による各機能構成を実現させることもできる。すなわち、上記の実施形態と変形例で例示した印刷装置200又は照射装置300による各機能構成を実現させるためのプログラムを、既存の情報処理装置等を制御するCPU等が実行できるように適用することができる。 It should be noted that it is possible to provide a printing apparatus or an irradiation apparatus having a configuration for realizing the functions according to the present invention in advance. Each functional configuration can also be realized by the printing device 200 or the irradiation device 300 illustrated in the example. In other words, a program for realizing each functional configuration of the printing apparatus 200 or the irradiation apparatus 300 illustrated in the above embodiment and modification can be applied so that a CPU or the like that controls an existing information processing apparatus or the like can execute it. can be done.
 また、このようなプログラムの適用方法は任意である。プログラムを、例えば、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、メモリカード等のコンピュータ読み取り可能な記憶媒体に格納して適用できる。さらに、プログラムを搬送波に重畳し、インターネットなどの通信媒体を介して適用することもできる。例えば、通信ネットワーク上の掲示板(BBS:Bulletin Board System)にプログラムを掲示して配信してもよい。そして、このプログラムを起動し、OS(Operating System)の制御下で、他のアプリケーションプログラムと同様に実行することにより、上記の処理を実行できるように構成してもよい。 Also, the method of applying such a program is arbitrary. The program can be applied by storing it in a computer-readable storage medium such as a flexible disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory), memory card, and the like. Furthermore, a program can be superimposed on a carrier wave and applied via a communication medium such as the Internet. For example, the program may be posted and distributed on a bulletin board (BBS: Bulletin Board System) on a communication network. Then, this program may be configured to execute the above processing by starting up and executing it in the same manner as other application programs under the control of an OS (Operating System).
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 Various embodiments and modifications of the present invention are possible without departing from the broad spirit and scope of the present invention. Moreover, the above-described embodiments are for explaining the present invention, and do not limit the scope of the present invention. That is, the scope of the present invention is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the meaning of the invention equivalent thereto are considered to be within the scope of the present invention.
 本発明は、2021年3月25日に出願された日本国特許出願2021-51033号に基づく。本明細書中に日本国特許出願2021-51033号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 The present invention is based on Japanese Patent Application No. 2021-51033 filed on March 25, 2021. The entire specification, claims, and drawings of Japanese Patent Application No. 2021-51033 are incorporated herein by reference.
産業上の利用の可能性Possibility of industrial use
 本発明は、彩色が容易で低コストの造形物を得る上で、特に有用である。 The present invention is particularly useful in obtaining a low-cost model that is easy to color.
 1・・・造形システム、10・・・成形シート、12・・・基材、12a・・・基材の第1主面、12b・・・基材の第2主面、20・・・熱膨張層、20a・・・熱膨張層の基材と反対側の面、22・・・膨張済み熱膨張層、50・・・造形物、60・・・凹凸、62・・・凸部、64・・・凹部、70・・・熱変換層、72・・・消色済み熱変換層、100・・・制御ユニット、110・・・制御部、112・・・記憶部、114・・・通信部、116・・・操作部、118・・・表示部、131・・・CPU、132・・・RAM、133・・・ROM、134・・・ハードディスク、135・・・通信インタフェース、136・・・タッチパネル、137・・・液晶ディスプレイ、139・・・バス、200・・・印刷装置、300・・・照射装置、301a,301b・・・供給ローラ、302a,302b・・・供給ガイド、303a,303b,304a,304b・・・搬送ローラ、305a,305b・・・排出ガイド、306・・・搬送ガイド、310・・・第1照射部、311・・・カバー、312・・・ランプ、313・・・反射板、314・・・ファン、320・・・第2照射部、330・・・第3照射部、340・・・第4照射部 REFERENCE SIGNS LIST 1 modeling system, 10 molded sheet, 12 base material, 12a first main surface of base material, 12b second main surface of base material, 20 heat Expansion layer 20a...Surface of the thermal expansion layer opposite to the base material 22...Expanded thermal expansion layer 50...Modeled object 60...Unevenness 62...Protrusion 64 ... Recess 70 ... Heat conversion layer 72 ... Erased heat conversion layer 100 ... Control unit 110 ... Control unit 112 ... Storage unit 114 ... Communication Unit 116 Operation unit 118 Display unit 131 CPU 132 RAM 133 ROM 134 Hard disk 135 Communication interface 136 Touch panel 137 Liquid crystal display 139 Bus 200 Printing device 300 Irradiation device 301a, 301b Supply rollers 302a, 302b Supply guide 303a, 303b, 304a, 304b Conveyance rollers 305a, 305b Discharge guide 306 Conveyance guide 310 First irradiation unit 311 Cover 312 Lamp 313. ... reflector, 314 ... fan, 320 ... second irradiation section, 330 ... third irradiation section, 340 ... fourth irradiation section

Claims (11)

  1.  熱エネルギーによって膨張する熱膨張層に、第1電磁波の電磁波エネルギーを熱エネルギーに変換する熱変換層を形成する印刷装置と、
     前記熱変換層に前記第1電磁波を照射して、前記熱膨張層を加熱することにより膨張させる場合に、前記熱変換層を消色させる照射装置と、を備える、
     ことを特徴とする造形システム。
    a printing apparatus for forming a thermal conversion layer for converting electromagnetic wave energy of the first electromagnetic wave into thermal energy on a thermal expansion layer that expands with thermal energy;
    an irradiation device that decolorizes the thermal conversion layer when the thermal expansion layer is expanded by being heated by irradiating the thermal conversion layer with the first electromagnetic wave,
    A modeling system characterized by:
  2.  前記熱変換層は、前記熱膨張層を加熱する熱エネルギーにより消色する、
     ことを特徴とする請求項1に記載の造形システム。
    The heat conversion layer is decolored by heat energy that heats the thermal expansion layer.
    The modeling system according to claim 1, characterized by:
  3.  前記照射装置は、前記熱膨張層に含まれる熱膨張材料が最大の粒径を有する状態に膨張する最大膨張温度よりも低い温度で前記熱変換層を消色させる、
     ことを特徴とする請求項2に記載の造形システム。
    The irradiation device decolorizes the thermal conversion layer at a temperature lower than a maximum expansion temperature at which the thermal expansion material contained in the thermal expansion layer expands to have the maximum particle size.
    3. The modeling system according to claim 2, characterized in that:
  4.  前記熱変換層は、前記照射装置によって照射される前記第1電磁波の電磁波エネルギーにより消色する、
     ことを特徴とする請求項1乃至3のいずれか1項に記載の造形システム。
    The heat conversion layer is decolored by the electromagnetic wave energy of the first electromagnetic wave irradiated by the irradiation device,
    4. The modeling system according to any one of claims 1 to 3, characterized in that:
  5.  前記照射装置は、前記第1電磁波と波長の異なる第2電磁波を前記熱変換層に照射して、前記第2電磁波の電磁波エネルギーにより前記熱変換層を消色させる、
     ことを特徴とする請求項1乃至3のいずれか1項に記載の造形システム。
    The irradiation device irradiates the heat conversion layer with a second electromagnetic wave having a wavelength different from that of the first electromagnetic wave, and decolorizes the heat conversion layer with the electromagnetic wave energy of the second electromagnetic wave.
    4. The modeling system according to any one of claims 1 to 3, characterized in that:
  6.  第1電磁波の電磁波エネルギーを熱エネルギーに変換する熱変換層と、熱エネルギーによって膨張する熱膨張層と、が積層された媒体の前記熱変換層に、前記第1電磁波を照射して、前記熱膨張層を加熱することにより膨張させる膨張工程と、
     前記膨張工程により前記熱膨張層を膨張させる場合に、前記熱変換層を消色させる消色工程と、を含む、
     ことを特徴とする造形物の製造方法。
    The first electromagnetic wave is applied to the heat conversion layer of a medium in which a heat conversion layer that converts the electromagnetic wave energy of the first electromagnetic wave into heat energy and a thermal expansion layer that expands due to the heat energy are laminated, and the heat is an expansion step of heating the expansion layer to expand it;
    a decoloring step of decolorizing the thermal conversion layer when the thermal expansion layer is expanded by the expansion step;
    A method for manufacturing a modeled object, characterized by:
  7.  前記消色工程では、前記熱膨張層を加熱する熱エネルギーにより前記熱変換層を消色させる、
     ことを特徴とする請求項6に記載の造形物の製造方法。
    In the decoloring step, the heat conversion layer is decolored by heat energy for heating the thermal expansion layer.
    7. The method of manufacturing a model according to claim 6, wherein:
  8.  前記消色工程では、前記熱膨張層に含まれる熱膨張材料が最大の粒径を有する状態に膨張する最大膨張温度よりも低い温度で前記熱変換層を消色させる、
     ことを特徴とする請求項7に記載の造形物の製造方法。
    In the decoloring step, the thermal expansion layer is decolored at a temperature lower than the maximum expansion temperature at which the thermal expansion material contained in the thermal expansion layer expands to have the maximum particle size.
    8. The method of manufacturing a model according to claim 7, characterized in that:
  9.  前記消色工程では、前記第1電磁波の電磁波エネルギーにより前記熱変換層を消色させる、
     ことを特徴とする請求項6乃至8のいずれか1項に記載の造形物の製造方法。
    In the decoloring step, the heat conversion layer is decolored by the electromagnetic wave energy of the first electromagnetic wave.
    9. The method of manufacturing a model according to any one of claims 6 to 8, characterized in that:
  10.  前記消色工程では、前記第1電磁波と波長の異なる第2電磁波を前記熱変換層に照射して、前記第2電磁波の電磁波エネルギーにより前記熱変換層を消色させる、
     ことを特徴とする請求項6乃至8のいずれか1項に記載の造形物の製造方法。
    In the decoloring step, the heat conversion layer is irradiated with a second electromagnetic wave having a wavelength different from that of the first electromagnetic wave, and the heat conversion layer is decolored by the electromagnetic wave energy of the second electromagnetic wave.
    9. The method of manufacturing a model according to any one of claims 6 to 8, characterized in that:
  11.  基材と、
     前記基材の第1主面に形成され、前記基材と反対側の面に凹凸を有する膨張済み熱膨張層と、
     前記基材の前記第1主面の反対側の第2主面の上、又は、前記膨張済み熱膨張層の上に、前記凹凸に対応したパターンで形成された消色済み熱変換層と、を備える、
     ことを特徴とする造形物。
    a substrate;
    an expanded thermal expansion layer formed on the first main surface of the base material and having unevenness on the surface opposite to the base material;
    a decolorized heat conversion layer formed in a pattern corresponding to the unevenness on a second main surface of the substrate opposite to the first main surface or on the expanded thermal expansion layer; comprising
    A modeled object characterized by
PCT/JP2022/007225 2021-03-25 2022-02-22 Molding system, method for manufacturing molded object, and molded object WO2022202058A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021051033 2021-03-25
JP2021-051033 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022202058A1 true WO2022202058A1 (en) 2022-09-29

Family

ID=83396978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007225 WO2022202058A1 (en) 2021-03-25 2022-02-22 Molding system, method for manufacturing molded object, and molded object

Country Status (1)

Country Link
WO (1) WO2022202058A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268615A (en) * 1979-05-23 1981-05-19 Matsumoto Yushi-Seiyaku Co., Ltd. Method for producing relief
JPH0218081A (en) * 1988-07-05 1990-01-22 Brother Ind Ltd Recording medium
JPH1148627A (en) * 1997-07-30 1999-02-23 Dainippon Toryo Co Ltd Regenerating method for printing base and recycling method for printing base
JP2019018464A (en) * 2017-07-18 2019-02-07 カシオ計算機株式会社 Expansion device, three-dimensional image formation system, thermal expansive sheet, three-dimensional object molding method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268615A (en) * 1979-05-23 1981-05-19 Matsumoto Yushi-Seiyaku Co., Ltd. Method for producing relief
JPH0218081A (en) * 1988-07-05 1990-01-22 Brother Ind Ltd Recording medium
JPH1148627A (en) * 1997-07-30 1999-02-23 Dainippon Toryo Co Ltd Regenerating method for printing base and recycling method for printing base
JP2019018464A (en) * 2017-07-18 2019-02-07 カシオ計算機株式会社 Expansion device, three-dimensional image formation system, thermal expansive sheet, three-dimensional object molding method and program

Similar Documents

Publication Publication Date Title
JP6708174B2 (en) Three-dimensional object modeling method and program
US11648714B2 (en) Thermally expandable sheet and method of manufacturing thermally expandable sheet
JPH0825785A (en) Stereoscopic image forming sheet
JP2018089839A (en) Three-dimensional shaped article forming sheet, three-dimensional shaped article and manufacturing method thereof
JP2013220647A (en) Stereoscopic image forming method
CN111283945B (en) Expansion device, molding system, and method for manufacturing molded article
JP2016094003A (en) Method for printing object in inkjet printing method
WO2022202058A1 (en) Molding system, method for manufacturing molded object, and molded object
JP6897636B2 (en) Resin sheet manufacturing method
JP7014200B2 (en) Model manufacturing method and expansion device
JP7196892B2 (en) Expansion device and method for manufacturing model
JP6879274B2 (en) Resin molded sheet, manufacturing method of resin molded sheet, modeled object and manufacturing method of modeled object
JP7013930B2 (en) Irradiation device and modeling system
JP7131125B2 (en) Modeled article and method for manufacturing modeled article
JP6135805B2 (en) Manufacturing method of 3D objects
JP6972669B2 (en) Manufacturing method of heat-expandable sheet
JP7062987B2 (en) Method for manufacturing a heat-expandable sheet and a heat-expandable sheet
JP2019142218A (en) Apparatus for irradiating, apparatus for expanding, and molding system
JP2018140573A (en) Thermally-expandable sheet and method for producing thermally-expandable sheet
JP7095433B2 (en) Manufacturing method of modeled object and modeled object
JP7060117B2 (en) Method for manufacturing a heat-expandable sheet and a heat-expandable sheet
JP7103447B2 (en) Resin molded sheet, manufacturing method of resin molded sheet and manufacturing method of modeled object
JP6923018B2 (en) Manufacturing method of heat-expandable sheet and stereoscopic image
JP2020097128A (en) Manufacturing method of molded article, molded article, and molding system
JP6835040B2 (en) Method of manufacturing resin molded sheet and method of manufacturing shaped object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774858

Country of ref document: EP

Kind code of ref document: A1