WO2022201755A1 - Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery - Google Patents

Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery Download PDF

Info

Publication number
WO2022201755A1
WO2022201755A1 PCT/JP2022/000842 JP2022000842W WO2022201755A1 WO 2022201755 A1 WO2022201755 A1 WO 2022201755A1 JP 2022000842 W JP2022000842 W JP 2022000842W WO 2022201755 A1 WO2022201755 A1 WO 2022201755A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
electrode
mol
state battery
Prior art date
Application number
PCT/JP2022/000842
Other languages
French (fr)
Japanese (ja)
Inventor
織茂洋子
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2022201755A1 publication Critical patent/WO2022201755A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators

Definitions

  • the present invention relates to a solid electrolyte, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery.
  • oxide-based solid electrolyte that is stable in the atmosphere rather than a sulfide-based solid electrolyte that generates toxic gas even when exposed to the atmosphere.
  • oxide-based solid electrolytes are required to be sintered at a high temperature in order to develop ionic conduction and form a good interface with the electrode active material. In high-temperature sintering, interdiffusion reaction between the solid electrolyte and the electrode active material poses a problem.
  • a Li--La--Zr--O-based compound having a garnet-type structure or an element-substituted product thereof, a Li--Al--Ti--P--O system having a NASICON-type crystal structure, or a Li--Al--Ge-- PO-based compounds, Li-La-Ti-O-based compounds having a perovskite crystal structure, and the like are known.
  • Li-Ta-P-O-based compounds have also been reported, but all of them require heat treatment (firing) at relatively high temperatures, and there is concern about interdiffusion reactions when forming interfaces with electrode active materials. .
  • Patent Document 1 an oxide crystal is used as a first lithium ion conductor and mixed with a second lithium ion conductor, which is a glass material that can be sintered at 600 ° C. or lower, to obtain a lithium ion conductor of 600 ° C. or lower. High lithium ion conductivity is obtained at the sintering temperature of .
  • Patent Document 1 it is proposed that a solid electrolyte having high lithium ion conductivity can be obtained by heat-treating a first lithium ion conductor and a second lithium ion conductor at 600° C. or lower.
  • the heat treatment is performed at a relatively low temperature of 600° C. or less, and if it is desired to further densify the electrolyte layer and the solid electrolyte layer or reduce the interfacial resistance between both layers, heat treatment at a higher temperature is required. Therefore, the reaction due to the diffusion of both components is a matter of concern.
  • interdiffusion reaction of lithium is particularly likely to occur, and there are concerns about changes in the crystal structure of the solid electrolyte with high crystallinity and high ion conductivity and a decrease in ion conductivity.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a solid electrolyte that exhibits high ion conductivity and that can be fired at a low temperature, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery.
  • the solid electrolyte according to the present invention is an oxide-type solid electrolyte containing Li, Ta, and P, the ratio of Li content to 1 mol of P is 0.5 mol or more and 0.95 mol or less, and the result of XRD measurement It is characterized by being confirmed to have a crystal structure belonging to a monoclinic system.
  • the Ta/P molar ratio may be 1.7 or more and 2.3 or less.
  • An all-solid-state battery according to the present invention includes any one of the solid electrolytes according to the present invention as a first solid electrolyte, and a lithium-containing material having a sintering initiation temperature lower than that of the first solid electrolyte as a second solid electrolyte.
  • a first electrode including a solid electrolyte layer and an electrode active material and formed on a first main surface of the solid electrolyte layer; and a first electrode including an electrode active material and facing the first main surface of the solid electrolyte layer. and second electrodes formed on the two main surfaces.
  • a plurality of units may be stacked, with the solid electrolyte layer, the first electrode, and the second electrode forming one unit.
  • one of the first electrode and the second electrode may contain a positive electrode active material, and the other may contain a negative electrode active material.
  • the average crystal grain size of the first solid electrolyte in the solid electrolyte layer may be 1 ⁇ m or more and 20 ⁇ m or less.
  • the lithium-containing material includes Li—Ge—P—O based compounds, Li—Zr—P—O based compounds, Li—P—O based compounds, Li—B—O based compounds, Li— Si—O based compound, Li—Ge—Zr—P—O based compound, Li—Si—B—O based compound, Li—Al—Ge—P—O based compound, Li—La—Zr—P—O based It may be at least one of compounds and Li--Al--P--O based compounds.
  • a solid electrolyte according to the present invention from a raw material containing Li, Ta, and P, and having a Li content of 0.5 mol or more and 0.95 mol or less per 1 mol of P, at a temperature of 950 ° C. or more and 1300 ° C. or less, It is characterized by synthesizing an oxide-type solid electrolyte that is confirmed to have a crystal structure attributed to a monoclinic crystal by XRD measurement results.
  • the method for producing an all-solid-state battery according to the present invention contains Li, Ta, and P, the Li content relative to 1 mol of P is 0.5 mol or more and 0.95 mol or less, and the result of XRD measurement is that it is a monoclinic crystal.
  • a powder of a lithium-containing material having a sintering start temperature lower than that of the first solid electrolyte powder is used as a second solid electrolyte powder.
  • the firing temperature in the firing step may be 500°C or higher and 900°C or lower.
  • the present invention it is possible to provide a solid electrolyte that exhibits high ion conductivity and that can be fired at a low temperature, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery.
  • FIG. 1 is a schematic cross-sectional view of an all-solid-state battery according to an embodiment
  • FIG. 4 is a schematic cross-sectional view of another all-solid-state battery
  • It is a figure which illustrates the flow of the manufacturing method of an all-solid-state battery.
  • It is a figure which illustrates a lamination process.
  • FIG. 10 is a diagram illustrating the flow of another method for manufacturing an all-solid-state battery;
  • FIG. 1(a) is a schematic cross-sectional view showing the basic structure of an all-solid-state battery 100.
  • the all-solid battery 100 has a structure in which a solid electrolyte layer 30 is sandwiched between a first electrode 10 and a second electrode 20 .
  • the first electrode 10 is formed on the first main surface of the solid electrolyte layer 30 and has a structure in which the first electrode layer 11 and the first current collector layer 12 are laminated.
  • a first electrode layer 11 is provided.
  • the second electrode 20 is formed on the second main surface of the solid electrolyte layer 30, has a structure in which a second electrode layer 21 and a second current collector layer 22 are laminated, and is provided on the solid electrolyte layer 30 side. A second electrode layer 21 is provided.
  • one of the first electrode 10 and the second electrode 20 is used as a positive electrode, and the other is used as a negative electrode.
  • the first electrode 10 is used as a positive electrode
  • the second electrode 20 is used as a negative electrode.
  • the solid electrolyte layer 30 is mainly composed of a solid electrolyte having ionic conductivity. As illustrated in FIG. 1B, the solid electrolyte of the solid electrolyte layer 30 has a structure in which a plurality of first solid electrolyte particles 31 and a plurality of second solid electrolyte particles 32 are mixed.
  • the first solid electrolyte particles 31 are oxide crystals containing Li, Ta, and P, such as Li--Ta--P--O compounds.
  • XRD X-ray diffraction
  • the first solid electrolyte particles 31 are confirmed to have a monoclinic crystal structure.
  • the first solid electrolyte particles 31 are LiTa 2 PO 8 based compounds.
  • the second solid electrolyte particles 32 are a lithium-containing material and have a sintering initiation temperature lower than that of the first solid electrolyte particles 31 .
  • the first solid electrolyte particles 31 have a Li-poor structure instead of having a Li:Ta:P molar ratio of 1:2:1. That is, in the first solid electrolyte particles 31, the ratio of the Li content to 1 mol of P is less than 1 mol. Since the first solid electrolyte particles 31 have the Li-poor structure, the monoclinic crystal structure is easily stabilized. Therefore, even if it is mixed with a lithium-containing material that can be sintered at a low temperature and fired, the reaction between the two components is suppressed, and a heterogeneous phase that can become a high-resistance component is less likely to be formed at the interface between the two, resulting in high ionic conductivity. As described above, the solid electrolyte layer 30 exhibits high ion conductivity and can be fired at a low temperature.
  • the ratio of the Li content to 1 mol of P is 0.5 mol or more, preferably 0.6 or more, and more preferably 0.7 or more.
  • the ratio of the Li content to 1 mol of P in the first solid electrolyte particles 31 is 0.95 or less, preferably 0.9 or less, and more preferably 0.8 or less.
  • the Ta/P molar ratio is preferably 1.7 or more, more preferably 1.8 or more, and even more preferably 1.9 or more.
  • the Ta/P molar ratio is preferably 2.3 or less, more preferably 2.2 or less, and even more preferably 2.1 or less.
  • the average crystal grain size of the first solid electrolyte particles 31 is small, the densification of the solid electrolyte layer is hindered, and the filling rate of the first solid electrolyte cannot be increased. It may not be possible to fully demonstrate it. Therefore, it is preferable to set a lower limit for the average crystal grain size of the first solid electrolyte particles 31 .
  • the average crystal grain size of the first solid electrolyte particles 31 is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 3 ⁇ m or more.
  • the average crystal grain size of the first solid electrolyte particles 31 is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 7 ⁇ m or less.
  • the average crystal grain size of the first solid electrolyte particles 31 is, for example, the horizontal or vertical Ferret diameter of 50 first solid electrolyte particles 31 specified by EDS mapping in the cross section of the solid electrolyte layer 30. It can be measured by measuring the length and calculating the average value.
  • the ratio of the first solid electrolyte particles 31 in the solid electrolyte layer 30 is high, it may become difficult to bake the solid electrolyte layer 30 at a sufficiently low temperature. Therefore, it is preferable to set an upper limit for the ratio of the first solid electrolyte particles 31 in the solid electrolyte layer 30 .
  • the area ratio of the first solid electrolyte particles 31 is preferably 70% or less, more preferably 60% or less, and even more preferably 50% or less.
  • the ratio of the second solid electrolyte particles 32 in the solid electrolyte layer 30 is high, there is a risk that sufficiently high ion conduction cannot be obtained. Therefore, it is preferable to set an upper limit for the ratio of the second solid electrolyte particles 32 in the solid electrolyte layer 30 .
  • the area ratio of the second solid electrolyte particles 32 is preferably 80% or less, more preferably 70% or less, and 60% or less. More preferred.
  • the area ratio between the first solid electrolyte particles 31 and the second solid electrolyte particles 32 is preferably 20:80 to 70:30, more preferably 30:70 to 60:40. is more preferred, and 40:60 to 50:50 is even more preferred.
  • the area ratio between the first solid electrolyte particles 31 and the second solid electrolyte particles 32 in the cross section of the solid electrolyte layer 30 can be measured, for example, by observing the cross section with an SEM and performing EDS elemental mapping analysis.
  • the second solid electrolyte particles 32 are not particularly limited as long as they contain lithium and have a sintering start temperature lower than that of the first solid electrolyte particles 31 .
  • the second solid electrolyte particles 32 are Li—Ge—P—O based compounds, Li—Zr—P—O based compounds, Li—P—O based compounds, Li—BO based compounds, Li—Si—
  • One or a plurality of O-based compounds may be used, or these elements may be combined, and these may contain Al, Y, La, and the like.
  • Li—Ge—Zr—P—O based compounds Li—Si—B—O based compounds, Li—Al—Ge—P—O based compounds, Li—La—Zr—P—O based compounds, Li—Al A —PO-based compound or the like may be used.
  • Li--Al--Ge--P--O compounds are preferably used as the second solid electrolyte particles 32 from the viewpoint of ion conductivity.
  • the thickness of the solid electrolyte layer 30 is, for example, in the range of 2 ⁇ m to 25 ⁇ m, in the range of 4 ⁇ m to 20 ⁇ m, and in the range of 6 ⁇ m to 15 ⁇ m.
  • the positive electrode active material of the first electrode 10 is not particularly limited. 7 ) 4 etc. are mentioned.
  • the negative electrode active material of the second electrode 20 prior art in secondary batteries can be referred to as appropriate. compounds such as
  • a solid electrolyte having ionic conductivity, a conductive material (conductive aid) such as carbon or metal, and the like are further added.
  • a conductive material such as carbon or metal, and the like.
  • an electrode layer paste can be obtained by uniformly dispersing a binder and a plasticizer in water or an organic solvent.
  • the metal of the conductive aid include Pd, Ni, Cu, Fe, and alloys containing these.
  • the first current collector layer 12 and the second current collector layer 22 are mainly composed of a conductive material.
  • a conductive material for example, metal, carbon, or the like can be used as the conductive material of the first current collector layer 12 and the second current collector layer 22 .
  • FIG. 2 is a schematic cross-sectional view of a stacked all-solid-state battery 100a in which a plurality of battery units are stacked.
  • the all-solid-state battery 100a includes a laminated chip 60 having a substantially rectangular parallelepiped shape.
  • the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces of the four surfaces other than the top surface and the bottom surface of the stacking direction end.
  • the two side surfaces may be two adjacent side surfaces or two side surfaces facing each other.
  • the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces (hereinafter referred to as two end surfaces) facing each other.
  • a plurality of first collector layers 12 and a plurality of second collector layers 22 are alternately laminated. Edges of the plurality of first current collector layers 12 are exposed on the first end face of the laminated chip 60 and are not exposed on the second end face. Edges of the plurality of second current collector layers 22 are exposed on the second end surface of the laminated chip 60 and are not exposed on the first end surface. Thereby, the first current collector layer 12 and the second current collector layer 22 are alternately connected to the first external electrode 40a and the second external electrode 40b.
  • a first electrode layer 11 is laminated on the first collector layer 12 .
  • a solid electrolyte layer 30 is laminated on the first electrode layer 11 .
  • the solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b.
  • a second electrode layer 21 is laminated on the solid electrolyte layer 30 .
  • a second collector layer 22 is laminated on the second electrode layer 21 .
  • Another second electrode layer 21 is laminated on the second collector layer 22 .
  • Another solid electrolyte layer 30 is laminated on the second electrode layer 21 .
  • the solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b.
  • a first electrode layer 11 is laminated on the solid electrolyte layer 30 .
  • the first current collector layer 12 and the two first electrode layers 11 sandwiching it are regarded as one electrode
  • the second current collector layer 22 and the two second electrode layers 21 sandwiching it are regarded as one electrode.
  • the laminated chip 60 can be said to have a structure in which a plurality of internal electrodes and a plurality of solid electrolyte layers are alternately laminated.
  • the all-solid-state battery 100a does not have to have a collector layer.
  • the first current collector layer 12 and the second current collector layer 22 may not be provided.
  • only the first electrode layer 11 constitutes the first electrode 10
  • only the second electrode layer 21 constitutes the second electrode 20 .
  • FIG. 4 is a diagram illustrating the flow of the method for manufacturing the all-solid-state battery 100a.
  • powder of the solid electrolyte that constitutes the solid electrolyte layer 30 is prepared.
  • the raw material powder of the first solid electrolyte particles 31 is synthesized, for example, by a solid-phase synthesis method.
  • Li 3 PO 4 , Ta 2 O 5 and NH 4 H 2 PO 4 are mixed in a molar ratio of 0.4:1.4:1 and heat-treated at about 900° C. in air.
  • LiOH.H 2 O is added to the reactant so that Li is in excess and mixed, and the main heat treatment is performed at 950 ° C. to 1300 ° C. to obtain an XRD measurement.
  • a Li--Ta--P--O-based compound is synthesized so that the results confirm that it has a crystal structure belonging to the monoclinic system.
  • the ratio of Li content to 1 mol of P in the synthesized Li--Ta--P--O compound is set to 0.50 mol or more and 0.95 mol or less.
  • the Li--Ta--P--O compound is pulverized to a desired particle size with a wet ball mill.
  • a vitreous precursor which is a lithium-containing material and has a sintering initiation temperature lower than that of the first solid electrolyte particles 31 is obtained by a conventional melting and quenching method.
  • a conventional melting and quenching method Li 2 CO 3 , Al 2 O 3 , GeO 2 and P 2 O 5 as raw materials are mixed to form a glass melt at 1400° C., and the glass is produced by casting, and the desired particles are obtained by a dry ball mill. Grind to diameter.
  • Solid electrolyte green sheet manufacturing process Next, the obtained powder is uniformly dispersed in an aqueous solvent or an organic solvent together with a binder, a dispersant, a plasticizer, etc., and wet pulverized to obtain a solid electrolyte slurry having a desired average particle size.
  • a bead mill, a wet jet mill, various kneaders, a high-pressure homogenizer, or the like can be used, and it is preferable to use a bead mill from the viewpoint of being able to simultaneously adjust the particle size distribution and disperse.
  • a binder is added to the obtained solid electrolyte slurry to obtain a solid electrolyte paste.
  • a solid electrolyte green sheet By applying the obtained solid electrolyte paste, a solid electrolyte green sheet can be produced.
  • the coating method is not particularly limited, and a slot die method, a reverse coating method, a gravure coating method, a bar coating method, a doctor blade method, or the like can be used.
  • the particle size distribution after wet pulverization can be measured, for example, using a laser diffraction measurement device using a laser diffraction scattering method.
  • an internal electrode paste for producing the above-described first electrode layer 11 and second electrode layer 21 is produced.
  • an internal electrode paste can be obtained by uniformly dispersing a conductive aid, an electrode active material, a solid electrolyte material, a binder, a plasticizer, and the like in water or an organic solvent.
  • the solid electrolyte material the solid electrolyte paste described above may be used.
  • Pd, Ni, Cu, Fe, alloys containing these, various carbon materials, and the like may further be used as conductive aids.
  • each internal electrode paste may be prepared separately.
  • a current collector paste for manufacturing the above-described first current collector layer 12 and second current collector layer 22 is prepared.
  • a current collector paste can be obtained by uniformly dispersing Pd powder, carbon black, plate-like graphite carbon, a binder, a dispersant, a plasticizer, and the like in water or an organic solvent.
  • an external electrode paste for producing the first external electrode 40a and the second external electrode 40b is prepared.
  • an external electrode paste can be obtained by uniformly dispersing a conductive material, an electrode active material, a solid electrolyte, a binder, a plasticizer, and the like in water or an organic solvent.
  • a laminate process As illustrated in FIG. 5A, on one surface of a solid electrolyte green sheet 51, an internal electrode paste 52, a current collector paste 53, and an internal electrode paste 52 are printed.
  • a reverse pattern 54 is printed on a region of the solid electrolyte green sheet 51 where the internal electrode paste 52 and the current collector paste 53 are not printed. As the reverse pattern 54, the same one as the solid electrolyte green sheet 51 can be used.
  • a laminate is obtained by stacking a plurality of solid electrolyte green sheets 51 alternately after printing, and crimping a cover sheet 55 in which a plurality of solid electrolyte green sheets are bonded together from above and below in the stacking direction.
  • a substantially rectangular parallelepiped laminate is obtained so that pairs of the internal electrode paste 52 and the current collector paste 53 are alternately exposed on the two end surfaces of the laminate.
  • an external electrode paste 56 is applied to each of the two end faces by a dipping method or the like and dried. Thereby, a molding for forming the all-solid-state battery 100a is obtained.
  • the firing conditions include, without particular limitation, an oxidizing atmosphere or a non-oxidizing atmosphere and a maximum temperature of preferably 500°C to 900°C, more preferably 600°C to 800°C.
  • a step of holding below the maximum temperature in an oxidizing atmosphere may be provided to sufficiently remove the binder until the maximum temperature is reached.
  • reoxidation treatment may be performed.
  • the step of applying the current collector paste 53 in the step of FIG. 5(a) may be omitted.
  • FIG. 6 is a flowchart illustrating the manufacturing method in this case.
  • the external electrode paste 56 is not applied in the stacking process, and the external electrode paste 56 is applied to the two end faces of the laminated chip 60 obtained in the firing process and baked. Thereby, the first external electrode 40a and the second external electrode 40b can be formed.
  • Li-poor powder is used as the raw material powder synthesized for the first solid electrolyte particles 31 .
  • the monoclinic crystal structure is easily stabilized. Therefore, even if it is mixed with a lithium-containing material that can be sintered at a low temperature and fired, the reaction between the two components is suppressed, and a heterogeneous phase that can become a high-resistance component is less likely to be formed at the interface between the two, resulting in high ionic conductivity.
  • the solid electrolyte layer 30 exhibiting high ionic conductivity can be fired at a low temperature.
  • a Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
  • the ion conductivity of the sintered body was 6.0 ⁇ 10 ⁇ 5 S/cm.
  • the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of the Li—Ta—P—O compound and the Li—Al—Ge—P—O compound was approximately It was 20:80. No reaction product was observed at the particle interface between these compounds.
  • a Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
  • the ion conductivity of the sintered body was 8.0 ⁇ 10 ⁇ 5 S/cm.
  • the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of the Li—Ta—P—O compound and the Li—Al—Ge—P—O compound was approximately It was 20:80. No reaction product was observed at the particle interface between these compounds.
  • Example 3 a crystalline Li--Ta--P--O compound was synthesized and pulverized in the same manner as in Example 1.
  • a Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
  • the ion conductivity of the sintered body was 2.0 ⁇ 10 ⁇ 5 S/cm.
  • the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
  • a Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
  • the ion conductivity of the sintered body was 8.5 ⁇ 10 ⁇ 5 S/cm.
  • the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
  • Example 5 a crystalline Li--Ta--P--O compound was synthesized and pulverized in the same manner as in Example 4.
  • a Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
  • the ion conductivity of the sintered body was 5.3 ⁇ 10 ⁇ 5 S/cm.
  • the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
  • a Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
  • the ion conductivity of the sintered body was 9.1 ⁇ 10 ⁇ 5 S/cm.
  • the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
  • Example 7 a crystalline Li--Ta--P--O compound was synthesized and pulverized in the same manner as in Example 1.
  • Li--Ta--P--O compound and the non-stoichiometric Li--Al--Ge--P--O-based glassy precursor material are ground and mixed in a weight ratio of 30:70, 2 wt % of Li 3 PO 4 was added to the Li—Al—Ge—P—O based glassy precursor (LAGP-g).
  • LAGP-g Li—Al—Ge—P—O based glassy precursor
  • the ion conductivity of the sintered body was 9.2 ⁇ 10 ⁇ 5 S/cm.
  • the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
  • a Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
  • the ionic conductivity of the sintered body was 5.0 ⁇ 10 ⁇ 6 S/cm.
  • the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. A reaction product was formed at the particle interface between these compounds.
  • a Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
  • the ionic conductivity of the sintered body was 8.0 ⁇ 10 ⁇ 6 S/cm.
  • the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. A reaction product was formed at the particle interface between these compounds.
  • Table 1 shows the results of Examples 1 to 7 and Comparative Examples 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

This solid electrolyte is an oxide-type solid electrolyte containing Li, Ta, and P, and is characterized in that: the ratio of the Li content to 1 mol of P is 0.5-0.95 mol, inclusive; and, an XRD measurement result confirms the presence of a crystal structure belonging to a monoclinic crystal. 

Description

固体電解質、全固体電池、固体電解質の製造方法、および全固体電池の製造方法Solid electrolyte, all-solid battery, method for producing solid electrolyte, and method for producing all-solid battery
 本発明は、固体電解質、全固体電池、固体電解質の製造方法、および全固体電池の製造方法に関する。 The present invention relates to a solid electrolyte, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery.
 近年、二次電池の需要が急速に拡大しており、電解質に有機電解液を使用したリチウムイオン二次電池が実用化されている。しかしながら、電解液の液漏れなどの点から、より安全性の高い固体電解質への期待が高まり、固体電解質を用いた全固体電池の開発が盛んに進められている(例えば、特許文献1参照)。  In recent years, the demand for secondary batteries has increased rapidly, and lithium-ion secondary batteries that use an organic electrolyte as the electrolyte have been put to practical use. However, from the viewpoint of leakage of the electrolyte solution, expectations for a more safe solid electrolyte have increased, and the development of all-solid-state batteries using solid electrolytes is actively progressing (see, for example, Patent Document 1). .
国際公開第2016/157751号WO2016/157751
 安全性を考慮すると、大気に暴露されても有毒なガスを発生する硫化物系固体電解質よりも、大気中で安定な酸化物系固体電解質を用いることが望ましい。一方、酸化物系固体電解質は、イオン伝導発現や電極活物質との良好な界面形成のために、高温での焼結が求められている。高温焼結では、固体電解質と電極活物質との間の相互拡散反応が課題となる。 Considering safety, it is preferable to use an oxide-based solid electrolyte that is stable in the atmosphere rather than a sulfide-based solid electrolyte that generates toxic gas even when exposed to the atmosphere. On the other hand, oxide-based solid electrolytes are required to be sintered at a high temperature in order to develop ionic conduction and form a good interface with the electrode active material. In high-temperature sintering, interdiffusion reaction between the solid electrolyte and the electrode active material poses a problem.
 酸化物系固体電解質としては、ガーネット型構造を有するLi-La-Zr-O系化合物やその元素置換体、NASICON型結晶構造のLi-Al-Ti-P-O系やLi-Al-Ge-P-O系の化合物、ペロブスカイト型結晶構造を有するLi-La-Ti-O系の化合物などが知られている。近年、Li-Ta-P-O系化合物も報告されているが、いずれも比較的高い温度での熱処理(焼成)が求められ、電極活物質との界面形成時の相互拡散反応が懸念される。 As the oxide-based solid electrolyte, a Li--La--Zr--O-based compound having a garnet-type structure or an element-substituted product thereof, a Li--Al--Ti--P--O system having a NASICON-type crystal structure, or a Li--Al--Ge-- PO-based compounds, Li-La-Ti-O-based compounds having a perovskite crystal structure, and the like are known. In recent years, Li-Ta-P-O-based compounds have also been reported, but all of them require heat treatment (firing) at relatively high temperatures, and there is concern about interdiffusion reactions when forming interfaces with electrode active materials. .
 このような課題から、酸化物系固体電解質の焼結温度を低温化させるためにガラス材料と混合させる手法が検討されている。例えば、特許文献1では、酸化物結晶を第一のリチウムイオン伝導体とし、600℃以下での焼結が可能なガラス材料である第二のリチウムイオン伝導体と混合することで、600℃以下の焼結温度において高いリチウムイオン伝導性を得ている。 Due to these issues, a method of mixing with a glass material is being studied in order to lower the sintering temperature of the oxide-based solid electrolyte. For example, in Patent Document 1, an oxide crystal is used as a first lithium ion conductor and mixed with a second lithium ion conductor, which is a glass material that can be sintered at 600 ° C. or lower, to obtain a lithium ion conductor of 600 ° C. or lower. High lithium ion conductivity is obtained at the sintering temperature of .
 特許文献1によると、第一のリチウムイオン伝導体と第二のリチウムイオン伝導体を用いて600℃以下で熱処理することで、高いリチウムイオン伝導性を有する固体電解質を得られることが提案されている。しかしながら、600℃以下と比較的低い温度での熱処理であり、電解質層および固体電解質層をさらに緻密化させたり、両層の界面抵抗を低減させたりしたい場合、より高温での熱処理が必要となるため、両者の成分拡散による反応が懸念事項として挙げられる。600℃以上の熱処理では、とりわけリチウムの相互拡散反応が起きやすく、高結晶高イオン伝導の固体電解質の結晶構造変化、イオン伝導低下が懸念される。 According to Patent Document 1, it is proposed that a solid electrolyte having high lithium ion conductivity can be obtained by heat-treating a first lithium ion conductor and a second lithium ion conductor at 600° C. or lower. there is However, the heat treatment is performed at a relatively low temperature of 600° C. or less, and if it is desired to further densify the electrolyte layer and the solid electrolyte layer or reduce the interfacial resistance between both layers, heat treatment at a higher temperature is required. Therefore, the reaction due to the diffusion of both components is a matter of concern. In the heat treatment at 600° C. or higher, interdiffusion reaction of lithium is particularly likely to occur, and there are concerns about changes in the crystal structure of the solid electrolyte with high crystallinity and high ion conductivity and a decrease in ion conductivity.
 本発明は、上記課題に鑑みなされたものであり、高いイオン伝導を発現するとともに低温焼成可能な固体電解質、全固体電池、固体電解質の製造方法および全固体電池の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a solid electrolyte that exhibits high ion conductivity and that can be fired at a low temperature, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery. and
 本発明に係る固体電解質は、LiとTaとPを含む酸化物型の固体電解質であって、1molのPに対するLi含有量の比率が0.5mol以上0.95mol以下であり、XRD測定の結果で、単斜晶に帰属する結晶構造を有することが確認されることを特徴とする。 The solid electrolyte according to the present invention is an oxide-type solid electrolyte containing Li, Ta, and P, the ratio of Li content to 1 mol of P is 0.5 mol or more and 0.95 mol or less, and the result of XRD measurement It is characterized by being confirmed to have a crystal structure belonging to a monoclinic system.
 上記固体電解質において、Ta/Pのモル比が1.7以上2.3以下であってもよい。 In the above solid electrolyte, the Ta/P molar ratio may be 1.7 or more and 2.3 or less.
 本発明に係る全固体電池は、本発明に係る上記いずれかの固体電解質を第1固体電解質として含み、前記第1固体電解質よりも焼結開始温度が低いリチウム含有材料を第2固体電解質として含む固体電解質層と、電極活物質を含み、前記固体電解質層の第1主面上に形成された第1電極と、電極活物質を含み、前記固体電解質層の前記第1主面に対向する第2主面上に形成された第2電極と、を備えることを特徴とする。 An all-solid-state battery according to the present invention includes any one of the solid electrolytes according to the present invention as a first solid electrolyte, and a lithium-containing material having a sintering initiation temperature lower than that of the first solid electrolyte as a second solid electrolyte. a first electrode including a solid electrolyte layer and an electrode active material and formed on a first main surface of the solid electrolyte layer; and a first electrode including an electrode active material and facing the first main surface of the solid electrolyte layer. and second electrodes formed on the two main surfaces.
 上記全固体電池において、前記固体電解質層、前記第1電極および前記第2電極を一つの単位として、前記単位が複数積み重ねられていてもよい。 In the above all-solid-state battery, a plurality of units may be stacked, with the solid electrolyte layer, the first electrode, and the second electrode forming one unit.
 上記全固体電池において、前記第1電極および前記第2電極のうち、一方は正極活物質を含み、他方は負極活物質を含んでいてもよい。 In the all-solid-state battery, one of the first electrode and the second electrode may contain a positive electrode active material, and the other may contain a negative electrode active material.
 上記全固体電池において、前記固体電解質層における前記第1固体電解質の平均結晶粒径は、1μm以上20μm以下であってもよい。 In the all-solid-state battery, the average crystal grain size of the first solid electrolyte in the solid electrolyte layer may be 1 μm or more and 20 μm or less.
 上記全固体電池において、前記リチウム含有材料は、Li-Ge-P-O系化合物、Li-Zr-P-O系化合物、Li-P-O系化合物、Li-B-O系化合物、Li-Si-O系化合物、Li-Ge-Zr-P-O系化合物、Li-Si-B-O系化合物、Li-Al-Ge-P-O系化合物、Li-La-Zr-P-O系化合物、Li-Al-P-O系化合物の少なくとも1つであってもよい。 In the all-solid-state battery, the lithium-containing material includes Li—Ge—P—O based compounds, Li—Zr—P—O based compounds, Li—P—O based compounds, Li—B—O based compounds, Li— Si—O based compound, Li—Ge—Zr—P—O based compound, Li—Si—B—O based compound, Li—Al—Ge—P—O based compound, Li—La—Zr—P—O based It may be at least one of compounds and Li--Al--P--O based compounds.
 本発明に係る固体電解質の製造方法は、LiとTaとPを含み、1molのPに対するLi含有量が0.5mol以上0.95mol以下である原料から、950℃以上1300℃以下の温度で、XRD測定の結果で単斜晶に帰属する結晶構造を有することが確認される酸化物型の固体電解質を合成することを特徴とする。 In the method for producing a solid electrolyte according to the present invention, from a raw material containing Li, Ta, and P, and having a Li content of 0.5 mol or more and 0.95 mol or less per 1 mol of P, at a temperature of 950 ° C. or more and 1300 ° C. or less, It is characterized by synthesizing an oxide-type solid electrolyte that is confirmed to have a crystal structure attributed to a monoclinic crystal by XRD measurement results.
 本発明に係る全固体電池の製造方法は、LiとTaとPを含み、1molのPに対するLi含有量が0.5mol以上0.95mol以下であり、XRD測定の結果で、単斜晶に帰属する結晶構造を有することが確認される酸化物型の固体電解質の粉末を第1固体電解質粉末として含み、前記第1固体電解質粉末よりも焼結開始温度が低いリチウム含有材料の粉末を第2固体電解質粉末として含むグリーンシートと、前記グリーンシートの第1主面上に形成された第1電極層用ペースト塗布物と、前記グリーンシートの第2主面上に形成された第2電極層用ペースト塗布物と、を有する積層体を用意する工程と、前記積層体を焼成する焼成工程と、を含むことを特徴とする。 The method for producing an all-solid-state battery according to the present invention contains Li, Ta, and P, the Li content relative to 1 mol of P is 0.5 mol or more and 0.95 mol or less, and the result of XRD measurement is that it is a monoclinic crystal. A powder of a lithium-containing material having a sintering start temperature lower than that of the first solid electrolyte powder is used as a second solid electrolyte powder. A green sheet containing electrolyte powder, a first electrode layer paste coating material formed on the first main surface of the green sheet, and a second electrode layer paste formed on the second main surface of the green sheet. and a step of preparing a layered product having a material to be applied, and a firing step of firing the layered product.
 上記全固体電池の製造方法において、前記焼成工程における焼成温度を、500℃以上900℃以下にしてもよい。 In the method for manufacturing an all-solid-state battery, the firing temperature in the firing step may be 500°C or higher and 900°C or lower.
 本発明によれば、高いイオン伝導を発現するとともに低温焼成可能な固体電解質、全固体電池、固体電解質の製造方法、および全固体電池の製造方法を提供することができる。 According to the present invention, it is possible to provide a solid electrolyte that exhibits high ion conductivity and that can be fired at a low temperature, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery.
(a)は全固体電池の基本構造を示す模式的断面図であり、(b)は固体電解質層の模式的断面図である。(a) is a schematic cross-sectional view showing the basic structure of an all-solid-state battery, and (b) is a schematic cross-sectional view of a solid electrolyte layer. 実施形態に係る全固体電池の模式的断面図である。1 is a schematic cross-sectional view of an all-solid-state battery according to an embodiment; FIG. 他の全固体電池の模式的断面図である。FIG. 4 is a schematic cross-sectional view of another all-solid-state battery; 全固体電池の製造方法のフローを例示する図である。It is a figure which illustrates the flow of the manufacturing method of an all-solid-state battery. 積層工程を例示する図である。It is a figure which illustrates a lamination process. 全固体電池の他の製造方法のフローを例示する図である。FIG. 10 is a diagram illustrating the flow of another method for manufacturing an all-solid-state battery;
 以下、図面を参照しつつ、実施形態について説明する。 Embodiments will be described below with reference to the drawings.
(実施形態)
 図1(a)は、全固体電池100の基本構造を示す模式的断面図である。図1(a)で例示するように、全固体電池100は、第1電極10と第2電極20とによって、固体電解質層30が挟持された構造を有する。第1電極10は、固体電解質層30の第1主面上に形成されており、第1電極層11および第1集電体層12が積層された構造を有し、固体電解質層30側に第1電極層11を備える。第2電極20は、固体電解質層30の第2主面上に形成されており、第2電極層21および第2集電体層22が積層された構造を有し、固体電解質層30側に第2電極層21を備える。
(embodiment)
FIG. 1(a) is a schematic cross-sectional view showing the basic structure of an all-solid-state battery 100. FIG. As illustrated in FIG. 1( a ), the all-solid battery 100 has a structure in which a solid electrolyte layer 30 is sandwiched between a first electrode 10 and a second electrode 20 . The first electrode 10 is formed on the first main surface of the solid electrolyte layer 30 and has a structure in which the first electrode layer 11 and the first current collector layer 12 are laminated. A first electrode layer 11 is provided. The second electrode 20 is formed on the second main surface of the solid electrolyte layer 30, has a structure in which a second electrode layer 21 and a second current collector layer 22 are laminated, and is provided on the solid electrolyte layer 30 side. A second electrode layer 21 is provided.
 全固体電池100を二次電池として用いる場合には、第1電極10および第2電極20の一方を正極として用い、他方を負極として用いる。本実施形態においては、一例として、第1電極10を正極として用い、第2電極20を負極として用いるものとする。 When using the all-solid-state battery 100 as a secondary battery, one of the first electrode 10 and the second electrode 20 is used as a positive electrode, and the other is used as a negative electrode. In this embodiment, as an example, the first electrode 10 is used as a positive electrode, and the second electrode 20 is used as a negative electrode.
 固体電解質層30は、イオン伝導性を有する固体電解質を主成分とする。図1(b)で例示するように、固体電解質層30の固体電解質は、複数の第1固体電解質粒子31と、複数の第2固体電解質粒子32とが混在する構造を有している。第1固体電解質粒子31は、LiとTaとPとを含む酸化物系結晶であって、例えばLi-Ta-P-O系化合物である。第1固体電解質粒子31は、XRD(X線回折)測定の結果として、単斜晶の結晶構造に帰属することが確認される。例えば、第1固体電解質粒子31は、LiTaPO系化合物である。第2固体電解質粒子32は、リチウム含有材料であって、第1固体電解質粒子31よりも低い焼結開始温度を有している。 The solid electrolyte layer 30 is mainly composed of a solid electrolyte having ionic conductivity. As illustrated in FIG. 1B, the solid electrolyte of the solid electrolyte layer 30 has a structure in which a plurality of first solid electrolyte particles 31 and a plurality of second solid electrolyte particles 32 are mixed. The first solid electrolyte particles 31 are oxide crystals containing Li, Ta, and P, such as Li--Ta--P--O compounds. As a result of XRD (X-ray diffraction) measurement, the first solid electrolyte particles 31 are confirmed to have a monoclinic crystal structure. For example, the first solid electrolyte particles 31 are LiTa 2 PO 8 based compounds. The second solid electrolyte particles 32 are a lithium-containing material and have a sintering initiation temperature lower than that of the first solid electrolyte particles 31 .
 なお、「XRD測定で単斜晶の結晶構造に帰属することが確認される」とは、Cu Kαを線源とするXRD測定で少なくとも25.2°~25.7°にメインピークが観測され、さらに20.2°~20.7°と24.6°~25.1°と34.6°~35.1°の三範囲にメインピーク強度の30%~70%の回折ピーク強度のサブピークが観測されるというような結果が得られることを意味している。 In addition, "confirmed by XRD measurement that it belongs to a monoclinic crystal structure" means that the main peak is observed at least at 25.2 ° to 25.7 ° in XRD measurement using Cu Kα as a radiation source. , and subpeaks of diffraction peak intensity of 30% to 70% of the main peak intensity in the three ranges of 20.2 ° to 20.7 °, 24.6 ° to 25.1 ° and 34.6 ° to 35.1 ° is observed.
 第1固体電解質粒子31は、Li:Ta:Pのモル比を1:2:1とするのではなく、Liプアの構造を有している。すなわち、第1固体電解質粒子31において、1molのPに対して、Li含有量の比率が1mol未満となっている。第1固体電解質粒子31がLiプアの構造を有していることで、単斜晶の結晶構造が安定化しやすくなる。したがって、低温焼結可能なリチウム含有材料と混合して焼成しても両者の成分の反応が抑制され、高抵抗成分となり得る異相が両者の界面に形成されにくく、高いイオン伝導性が得られる。以上のことから、固体電解質層30は、高いイオン伝導を発現するとともに低温焼成可能である。 The first solid electrolyte particles 31 have a Li-poor structure instead of having a Li:Ta:P molar ratio of 1:2:1. That is, in the first solid electrolyte particles 31, the ratio of the Li content to 1 mol of P is less than 1 mol. Since the first solid electrolyte particles 31 have the Li-poor structure, the monoclinic crystal structure is easily stabilized. Therefore, even if it is mixed with a lithium-containing material that can be sintered at a low temperature and fired, the reaction between the two components is suppressed, and a heterogeneous phase that can become a high-resistance component is less likely to be formed at the interface between the two, resulting in high ionic conductivity. As described above, the solid electrolyte layer 30 exhibits high ion conductivity and can be fired at a low temperature.
 なお、第1固体電解質粒子31において、1molのPに対して、Li含有量の比率が小さすぎると、イオン伝導性低下のおそれがある。そこで、1molのPに対するLi含有量の比率に下限を設ける。本実施形態においては、1molのPに対して、Li含有量の比率は、0.5mol以上であり、0.6以上であることが好ましく、0.7以上であることがより好ましい。 In addition, in the first solid electrolyte particles 31, if the ratio of the Li content to 1 mol of P is too small, the ionic conductivity may decrease. Therefore, a lower limit is set for the ratio of the Li content to 1 mol of P. In the present embodiment, the ratio of the Li content to 1 mol of P is 0.5 mol or more, preferably 0.6 or more, and more preferably 0.7 or more.
 一方、第1固体電解質粒子31において、1molのPに対して、Li含有量の比率が大きすぎると、単斜晶の結晶構造が十分に安定化しないおそれがある。そこで、そこで、1molのPに対するLi含有量の比率に上限を設ける。本実施形態においては、1molのPに対して、Li含有量の比率は、0.95以下であり、0.9以下であることが好ましく、0.8以下であることがより好ましい。 On the other hand, if the ratio of the Li content to 1 mol of P in the first solid electrolyte particles 31 is too large, the monoclinic crystal structure may not be sufficiently stabilized. Therefore, an upper limit is set for the ratio of the Li content to 1 mol of P. In the present embodiment, the ratio of Li content to 1 mol of P is 0.95 or less, preferably 0.9 or less, and more preferably 0.8 or less.
 第1固体電解質粒子31において、Ta/Pのモル比が小さいと、二次相生成のおそれがある。そこで、第1固体電解質粒子31において、Ta/Pのモル比に下限を設けることが好ましい。例えば、Ta/Pのモル比は、1.7以上であることが好ましく、1.8以上であることがより好ましく、1.9以上であることがさらに好ましい。 In the first solid electrolyte particles 31, if the Ta/P molar ratio is small, there is a risk of secondary phase formation. Therefore, it is preferable to set a lower limit to the Ta/P molar ratio in the first solid electrolyte particles 31 . For example, the Ta/P molar ratio is preferably 1.7 or more, more preferably 1.8 or more, and even more preferably 1.9 or more.
 第1固体電解質粒子31において、Ta/Pのモル比が大きいと、二次相生成とイオン伝導性低下のおそれがある。そこで、第1固体電解質粒子31において、Ta/Pのモル比に上限を設けることが好ましい。例えば、Ta/Pのモル比は、2.3以下であることが好ましく、2.2以下であることがより好ましく、2.1以下であることがさらに好ましい。 In the first solid electrolyte particles 31, if the Ta/P molar ratio is large, there is a risk of secondary phase formation and reduced ionic conductivity. Therefore, it is preferable to set an upper limit to the Ta/P molar ratio in the first solid electrolyte particles 31 . For example, the Ta/P molar ratio is preferably 2.3 or less, more preferably 2.2 or less, and even more preferably 2.1 or less.
 固体電解質層30において、第1固体電解質粒子31の平均結晶粒径が小さいと、固体電解質層の緻密化が阻害され、第1固体電解質の充填率を高くすることができないため、イオン伝導性を十分に発揮できないおそれがある。そこで、第1固体電解質粒子31の平均結晶粒径に下限を設けることが好ましい。例えば、第1固体電解質粒子31の平均結晶粒径は、1μm以上であることが好ましく、2μm以上であることがより好ましく、3μm以上であることがさらに好ましい。 In the solid electrolyte layer 30, if the average crystal grain size of the first solid electrolyte particles 31 is small, the densification of the solid electrolyte layer is hindered, and the filling rate of the first solid electrolyte cannot be increased. It may not be possible to fully demonstrate it. Therefore, it is preferable to set a lower limit for the average crystal grain size of the first solid electrolyte particles 31 . For example, the average crystal grain size of the first solid electrolyte particles 31 is preferably 1 μm or more, more preferably 2 μm or more, and even more preferably 3 μm or more.
 固体電解質層30において、第1固体電解質粒子31の平均結晶粒径が大きいと、固体電解質層30の層厚を薄くすることができないため、十分なエネルギー密度や応答性を確保することが難しくなるおそれがある。そこで、第1固体電解質粒子31の平均結晶粒径に上限を設けることが好ましい。例えば、第1固体電解質粒子31の平均結晶粒径は、20μm以下であることが好ましく、10μm以下であることがより好ましく、7μm以下であることがさらに好ましい。 In the solid electrolyte layer 30, if the average crystal grain size of the first solid electrolyte particles 31 is large, the thickness of the solid electrolyte layer 30 cannot be reduced, making it difficult to ensure sufficient energy density and responsiveness. There is a risk. Therefore, it is preferable to set an upper limit for the average crystal grain size of the first solid electrolyte particles 31 . For example, the average crystal grain size of the first solid electrolyte particles 31 is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 7 μm or less.
 第1固体電解質粒子31の平均結晶粒径は、例えば、固体電解質層30の断面におけるEDSマッピングで特定される第1固体電解質粒子31の50個について、水平あるいは垂直フェレ―径(Ferret Diameter)を測長し、平均値を出すというように測定することができる。 The average crystal grain size of the first solid electrolyte particles 31 is, for example, the horizontal or vertical Ferret diameter of 50 first solid electrolyte particles 31 specified by EDS mapping in the cross section of the solid electrolyte layer 30. It can be measured by measuring the length and calculating the average value.
 固体電解質層30における第1固体電解質粒子31の比率が高いと、十分に低い温度での固体電解質層30の焼成が困難となるおそれがある。そこで、固体電解質層30における第1固体電解質粒子31の比率に上限を設けることが好ましい。例えば、固体電解質層30の断面において、第1固体電解質粒子31の面積比率は、70%以下であることが好ましく、60%以下であることがより好ましく、50%以下であることがさらに好ましい。 If the ratio of the first solid electrolyte particles 31 in the solid electrolyte layer 30 is high, it may become difficult to bake the solid electrolyte layer 30 at a sufficiently low temperature. Therefore, it is preferable to set an upper limit for the ratio of the first solid electrolyte particles 31 in the solid electrolyte layer 30 . For example, in the cross section of the solid electrolyte layer 30, the area ratio of the first solid electrolyte particles 31 is preferably 70% or less, more preferably 60% or less, and even more preferably 50% or less.
 一方、固体電解質層30における第2固体電解質粒子32の比率が高いと、十分高いイオン伝導が得られないおそれがある。そこで、固体電解質層30における第2固体電解質粒子32の比率に上限を設けることが好ましい。本実施形態においては、固体電解質層30の断面において、第2固体電解質粒子32の面積比率は80%以下であることが好ましく、70%以下であることがより好ましく、60%以下であることがさらに好ましい。 On the other hand, if the ratio of the second solid electrolyte particles 32 in the solid electrolyte layer 30 is high, there is a risk that sufficiently high ion conduction cannot be obtained. Therefore, it is preferable to set an upper limit for the ratio of the second solid electrolyte particles 32 in the solid electrolyte layer 30 . In the present embodiment, in the cross section of the solid electrolyte layer 30, the area ratio of the second solid electrolyte particles 32 is preferably 80% or less, more preferably 70% or less, and 60% or less. More preferred.
 固体電解質層30の断面において、第1固体電解質粒子31と第2固体電解質粒子32との面積比は、20:80~70:30であることが好ましく、30:70~60:40であることがより好ましく、40:60~50:50であることがさらに好ましい。 In the cross section of the solid electrolyte layer 30, the area ratio between the first solid electrolyte particles 31 and the second solid electrolyte particles 32 is preferably 20:80 to 70:30, more preferably 30:70 to 60:40. is more preferred, and 40:60 to 50:50 is even more preferred.
 固体電解質層30の断面における第1固体電解質粒子31と第2固体電解質粒子32との面積比は、例えば、断面についてSEM観察を行い、EDS元素マッピング分析を行うことによって測定することができる。 The area ratio between the first solid electrolyte particles 31 and the second solid electrolyte particles 32 in the cross section of the solid electrolyte layer 30 can be measured, for example, by observing the cross section with an SEM and performing EDS elemental mapping analysis.
 第2固体電解質粒子32は、リチウムを含み、第1固体電解質粒子31よりも焼結開始温度の低い材料であれば特に限定されるものではない。例えば、第2固体電解質粒子32は、Li-Ge-P-O系化合物、Li-Zr-P-O系化合物、Li-P-O系化合物、Li-B-O系化合物、Li-Si-O系化合物などのうちの1つあるいは複数使用してもよく、また、これらの元素を組み合わせてもよく、さらに、これらにAl、Y、Laなどを含んでもよい。例えばLi-Ge-Zr-P-O系化合物、Li-Si-B-O系化合物、Li-Al-Ge-P-O系化合物、Li-La-Zr-P-O系化合物、Li-Al-P-O系化合物などとしてもよい。これらの中で、イオン伝導性の観点から、Li-Al-Ge-P-O系化合物を第2固体電解質粒子32として用いることが好ましい。 The second solid electrolyte particles 32 are not particularly limited as long as they contain lithium and have a sintering start temperature lower than that of the first solid electrolyte particles 31 . For example, the second solid electrolyte particles 32 are Li—Ge—P—O based compounds, Li—Zr—P—O based compounds, Li—P—O based compounds, Li—BO based compounds, Li—Si— One or a plurality of O-based compounds may be used, or these elements may be combined, and these may contain Al, Y, La, and the like. For example Li—Ge—Zr—P—O based compounds, Li—Si—B—O based compounds, Li—Al—Ge—P—O based compounds, Li—La—Zr—P—O based compounds, Li—Al A —PO-based compound or the like may be used. Among these, Li--Al--Ge--P--O compounds are preferably used as the second solid electrolyte particles 32 from the viewpoint of ion conductivity.
 なお、固体電解質層30の厚みは、例えば、2μm~25μmの範囲であり、4μm~20μmの範囲であり、6μm~15μmの範囲である。 The thickness of the solid electrolyte layer 30 is, for example, in the range of 2 μm to 25 μm, in the range of 4 μm to 20 μm, and in the range of 6 μm to 15 μm.
 第1電極10の正極活物質は、特に限定されないが、第2固体電解質粒子32にリン酸塩系化合物を用いる場合は、LiCoPOやLiCoPやLiCo(P等が挙げられる。第2電極20の負極活物質については、二次電池における従来技術を適宜参照することができ、例えば、チタン酸化物、リチウムチタン複合酸化物、リチウムチタン複合リン酸塩、カーボン、リン酸バナジウムリチウムなどの化合物が挙げられる。 The positive electrode active material of the first electrode 10 is not particularly limited. 7 ) 4 etc. are mentioned. Regarding the negative electrode active material of the second electrode 20, prior art in secondary batteries can be referred to as appropriate. compounds such as
 第1電極層11および第2電極層21の作製においては、これら電極活物質に加えて、イオン伝導性を有する固体電解質や、カーボンや金属といった導電性材料(導電助剤)などをさらに添加してもよい。これらの部材については、バインダと可塑剤を水あるいは有機溶剤に均一分散させることで電極層用ペーストを得ることができる。導電助剤の金属としては、Pd、Ni、Cu、Fe、これらを含む合金などが挙げられる。 In the production of the first electrode layer 11 and the second electrode layer 21, in addition to these electrode active materials, a solid electrolyte having ionic conductivity, a conductive material (conductive aid) such as carbon or metal, and the like are further added. may For these members, an electrode layer paste can be obtained by uniformly dispersing a binder and a plasticizer in water or an organic solvent. Examples of the metal of the conductive aid include Pd, Ni, Cu, Fe, and alloys containing these.
 第1集電体層12および第2集電体層22は、導電性材料を主成分とする。例えば、第1集電体層12および第2集電体層22の導電性材料として、金属、カーボンなどを用いることができる。 The first current collector layer 12 and the second current collector layer 22 are mainly composed of a conductive material. For example, metal, carbon, or the like can be used as the conductive material of the first current collector layer 12 and the second current collector layer 22 .
 図2は、複数の電池単位が積層された積層型の全固体電池100aの模式的断面図である。全固体電池100aは、略直方体形状を有する積層チップ60を備える。積層チップ60において、積層方向端の上面および下面以外の4面のうちの2面である2側面に接するように、第1外部電極40aおよび第2外部電極40bが設けられている。当該2側面は、隣接する2側面であってもよく、互いに対向する2側面であってもよい。本実施形態においては、互いに対向する2側面(以下、2端面と称する)に接するように第1外部電極40aおよび第2外部電極40bが設けられているものとする。 FIG. 2 is a schematic cross-sectional view of a stacked all-solid-state battery 100a in which a plurality of battery units are stacked. The all-solid-state battery 100a includes a laminated chip 60 having a substantially rectangular parallelepiped shape. In the laminated chip 60, the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces of the four surfaces other than the top surface and the bottom surface of the stacking direction end. The two side surfaces may be two adjacent side surfaces or two side surfaces facing each other. In the present embodiment, the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces (hereinafter referred to as two end surfaces) facing each other.
 以下の説明において、全固体電池100と同一の組成範囲、同一の厚み範囲、および同一の粒度分布範囲を有するものについては、同一符号を付すことで詳細な説明を省略する。 In the following description, those having the same composition range, the same thickness range, and the same particle size distribution range as the all-solid-state battery 100 are denoted by the same reference numerals, and detailed description thereof is omitted.
 全固体電池100aにおいては、複数の第1集電体層12と複数の第2集電体層22とが、交互に積層されている。複数の第1集電体層12の端縁は、積層チップ60の第1端面に露出し、第2端面には露出していない。複数の第2集電体層22の端縁は、積層チップ60の第2端面に露出し、第1端面には露出していない。それにより、第1集電体層12および第2集電体層22は、第1外部電極40aと第2外部電極40bとに、交互に導通している。 In the all-solid-state battery 100a, a plurality of first collector layers 12 and a plurality of second collector layers 22 are alternately laminated. Edges of the plurality of first current collector layers 12 are exposed on the first end face of the laminated chip 60 and are not exposed on the second end face. Edges of the plurality of second current collector layers 22 are exposed on the second end surface of the laminated chip 60 and are not exposed on the first end surface. Thereby, the first current collector layer 12 and the second current collector layer 22 are alternately connected to the first external electrode 40a and the second external electrode 40b.
 第1集電体層12上には、第1電極層11が積層されている。第1電極層11上には、固体電解質層30が積層されている。固体電解質層30は、第1外部電極40aから第2外部電極40bにかけて延在している。固体電解質層30上には、第2電極層21が積層されている。第2電極層21上には、第2集電体層22が積層されている。第2集電体層22上には、別の第2電極層21が積層されている。当該第2電極層21上には、別の固体電解質層30が積層されている。当該固体電解質層30は、第1外部電極40aから第2外部電極40bにかけて延在している。当該固体電解質層30上には、第1電極層11が積層されている。全固体電池100aにおいては、これらの積層単位が繰り返されている。それにより、全固体電池100aは、複数の電池単位が積層された構造を有している。 A first electrode layer 11 is laminated on the first collector layer 12 . A solid electrolyte layer 30 is laminated on the first electrode layer 11 . The solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b. A second electrode layer 21 is laminated on the solid electrolyte layer 30 . A second collector layer 22 is laminated on the second electrode layer 21 . Another second electrode layer 21 is laminated on the second collector layer 22 . Another solid electrolyte layer 30 is laminated on the second electrode layer 21 . The solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b. A first electrode layer 11 is laminated on the solid electrolyte layer 30 . These stacking units are repeated in the all-solid-state battery 100a. Thereby, the all-solid-state battery 100a has a structure in which a plurality of battery units are stacked.
 なお、第1集電体層12と、それを挟む2層の第1電極層11を1つの電極と捉え、第2集電体層22と、それを挟む2層の第2電極層21を1つの電極と捉えると、積層チップ60は、複数の内部電極と複数の固体電解質層とが、交互に積層された構造を有していると言える。 The first current collector layer 12 and the two first electrode layers 11 sandwiching it are regarded as one electrode, and the second current collector layer 22 and the two second electrode layers 21 sandwiching it are regarded as one electrode. Considering one electrode, the laminated chip 60 can be said to have a structure in which a plurality of internal electrodes and a plurality of solid electrolyte layers are alternately laminated.
 全固体電池100aは、集電体層を備えていなくてもよい。例えば、図3で例示するように、第1集電体層12および第2集電体層22は設けられていなくてもよい。この場合、第1電極層11だけで第1電極10が構成され、第2電極層21だけで第2電極20が構成される。 The all-solid-state battery 100a does not have to have a collector layer. For example, as illustrated in FIG. 3, the first current collector layer 12 and the second current collector layer 22 may not be provided. In this case, only the first electrode layer 11 constitutes the first electrode 10 , and only the second electrode layer 21 constitutes the second electrode 20 .
 続いて、図2で例示した全固体電池100aの製造方法について説明する。図4は、全固体電池100aの製造方法のフローを例示する図である。 Next, a method for manufacturing the all-solid-state battery 100a illustrated in FIG. 2 will be described. FIG. 4 is a diagram illustrating the flow of the method for manufacturing the all-solid-state battery 100a.
 (セラミック原料粉末作製工程)
 まず、上述の固体電解質層30を構成する固体電解質の粉末を作製する。第1固体電解質粒子31の原料粉末は、例えば、固相合成法にて合成する。例えば、LiPOとTaとNHPOとを0.4:1.4:1のモル比で混合し、大気中900℃程度で熱処理する。得られた反応物を擂潰混合後、反応物に対してLiOH・HOをLiが過剰になるように添加して混合し、950℃~1300℃で本熱処理することにより、XRD測定の結果で、単斜晶に帰属する結晶構造を有することが確認されるようにLi-Ta-P-O系化合物を合成する。合成されるLi-Ta-P-O系化合物において1molのPに対するLi含有量の比率を、0.50mol以上0.95mol以下とする。Li-Ta-P-O系化合物は、湿式ボールミルで所望の粒子径まで粉砕処理する。
(Ceramic raw material powder preparation process)
First, powder of the solid electrolyte that constitutes the solid electrolyte layer 30 is prepared. The raw material powder of the first solid electrolyte particles 31 is synthesized, for example, by a solid-phase synthesis method. For example, Li 3 PO 4 , Ta 2 O 5 and NH 4 H 2 PO 4 are mixed in a molar ratio of 0.4:1.4:1 and heat-treated at about 900° C. in air. After crushing and mixing the obtained reactant, LiOH.H 2 O is added to the reactant so that Li is in excess and mixed, and the main heat treatment is performed at 950 ° C. to 1300 ° C. to obtain an XRD measurement. A Li--Ta--P--O-based compound is synthesized so that the results confirm that it has a crystal structure belonging to the monoclinic system. The ratio of Li content to 1 mol of P in the synthesized Li--Ta--P--O compound is set to 0.50 mol or more and 0.95 mol or less. The Li--Ta--P--O compound is pulverized to a desired particle size with a wet ball mill.
 第2固体電解質粒子32の原料粉末として、リチウム含有材料であって第1固体電解質粒子31よりも低い焼結開始温度を有しているガラス状前駆物質を、従来公知の溶融急冷法により得る。例えば、原料のLiCO、Al、GeO、Pを混合し、1400℃でガラス融液とした後、キャストすることでガラスを作製し、乾式ボールミルで所望の粒子径まで粉砕処理する。 As the raw material powder of the second solid electrolyte particles 32, a vitreous precursor which is a lithium-containing material and has a sintering initiation temperature lower than that of the first solid electrolyte particles 31 is obtained by a conventional melting and quenching method. For example, Li 2 CO 3 , Al 2 O 3 , GeO 2 and P 2 O 5 as raw materials are mixed to form a glass melt at 1400° C., and the glass is produced by casting, and the desired particles are obtained by a dry ball mill. Grind to diameter.
 (固体電解質グリーンシート作製工程)
 次に、得られた粉末を、結着材、分散剤、可塑剤などとともに、水性溶媒あるいは有機溶媒に均一に分散させて、湿式粉砕を行うことで、所望の平均粒径を有する固体電解質スラリを得る。このとき、ビーズミル、湿式ジェットミル、各種混錬機、高圧ホモジナイザーなどを用いることができ、粒度分布の調整と分散とを同時に行うことができる観点からビーズミルを用いることが好ましい。得られた固体電解質スラリにバインダを添加して固体電解質ペーストを得る。得られた固体電解質ペーストを塗工することで、固体電解質グリーンシートを作製することができる。塗工方法は、特に限定されるものではなく、スロットダイ方式、リバースコート方式、グラビアコート方式、バーコート方式、ドクターブレード方式などを用いることができる。湿式粉砕後の粒度分布は、例えば、レーザ回折散乱法を用いたレーザ回折測定装置を用いて測定することができる。
(Solid electrolyte green sheet manufacturing process)
Next, the obtained powder is uniformly dispersed in an aqueous solvent or an organic solvent together with a binder, a dispersant, a plasticizer, etc., and wet pulverized to obtain a solid electrolyte slurry having a desired average particle size. get At this time, a bead mill, a wet jet mill, various kneaders, a high-pressure homogenizer, or the like can be used, and it is preferable to use a bead mill from the viewpoint of being able to simultaneously adjust the particle size distribution and disperse. A binder is added to the obtained solid electrolyte slurry to obtain a solid electrolyte paste. By applying the obtained solid electrolyte paste, a solid electrolyte green sheet can be produced. The coating method is not particularly limited, and a slot die method, a reverse coating method, a gravure coating method, a bar coating method, a doctor blade method, or the like can be used. The particle size distribution after wet pulverization can be measured, for example, using a laser diffraction measurement device using a laser diffraction scattering method.
 (内部電極用ペースト作製工程)
 次に、上述の第1電極層11および第2電極層21の作製用の内部電極用ペーストを作製する。例えば、導電助剤、電極活物質、固体電解質材料、バインダ、可塑剤などを水あるいは有機溶剤に均一分散させることで内部電極用ペーストを得ることができる。固体電解質材料として、上述した固体電解質ペーストを用いてもよい。導電助剤として、Pd、Ni、Cu、Fe、これらを含む合金や各種カーボン材料などをさらに用いてもよい。第1電極層11と第2電極層21とで組成が異なる場合には、それぞれの内部電極用ペーストを個別に作製すればよい。
(Internal electrode paste preparation process)
Next, an internal electrode paste for producing the above-described first electrode layer 11 and second electrode layer 21 is produced. For example, an internal electrode paste can be obtained by uniformly dispersing a conductive aid, an electrode active material, a solid electrolyte material, a binder, a plasticizer, and the like in water or an organic solvent. As the solid electrolyte material, the solid electrolyte paste described above may be used. Pd, Ni, Cu, Fe, alloys containing these, various carbon materials, and the like may further be used as conductive aids. When the compositions of the first electrode layer 11 and the second electrode layer 21 are different, each internal electrode paste may be prepared separately.
 (集電体用ペースト作製工程)
 次に、上述の第1集電体層12および第2集電体層22の作製用の集電体用ペーストを作製する。例えば、Pdの粉末、カーボンブラック、板状グラファイトカーボン、バインダ、分散剤、可塑剤などを水あるいは有機溶剤に均一分散させることで、集電体用ペーストを得ることができる。
(Current collector paste preparation step)
Next, a current collector paste for manufacturing the above-described first current collector layer 12 and second current collector layer 22 is prepared. For example, a current collector paste can be obtained by uniformly dispersing Pd powder, carbon black, plate-like graphite carbon, a binder, a dispersant, a plasticizer, and the like in water or an organic solvent.
 (外部電極用ペースト作製工程)
 次に、上述の第1外部電極40aおよび第2外部電極40bの作製用の外部電極用ペーストを作製する。例えば、導電性材料、電極活物質、固体電解質、バインダ、可塑剤などを水あるいは有機溶剤に均一分散させることで外部電極用ペーストを得ることができる。
(External electrode paste preparation process)
Next, an external electrode paste for producing the first external electrode 40a and the second external electrode 40b is prepared. For example, an external electrode paste can be obtained by uniformly dispersing a conductive material, an electrode active material, a solid electrolyte, a binder, a plasticizer, and the like in water or an organic solvent.
 (積層工程)
 図5(a)で例示するように、固体電解質グリーンシート51の一面に、内部電極用ペースト52を印刷し、さらに集電体用ペースト53を印刷し、さらに内部電極用ペースト52を印刷する。固体電解質グリーンシート51上で内部電極用ペースト52および集電体用ペースト53が印刷されていない領域には、逆パターン54を印刷する。逆パターン54として、固体電解質グリーンシート51と同様のものを用いることができる。印刷後の複数の固体電解質グリーンシート51を、交互にずらして積層し、積層方向の上下から、複数枚の固体電解質グリーンシートを貼り合わせたカバーシート55を圧着することで、積層体を得る。この場合、当該積層体において、2端面に交互に、内部電極用ペースト52および集電体用ペースト53のペアが露出するように、略直方体形状の積層体を得る。次に、図5(b)で例示するように、2端面のそれぞれに、ディップ法等で外部電極用ペースト56を塗布して乾燥させる。これにより、全固体電池100aを形成するための成型体が得られる。
(Lamination process)
As illustrated in FIG. 5A, on one surface of a solid electrolyte green sheet 51, an internal electrode paste 52, a current collector paste 53, and an internal electrode paste 52 are printed. A reverse pattern 54 is printed on a region of the solid electrolyte green sheet 51 where the internal electrode paste 52 and the current collector paste 53 are not printed. As the reverse pattern 54, the same one as the solid electrolyte green sheet 51 can be used. A laminate is obtained by stacking a plurality of solid electrolyte green sheets 51 alternately after printing, and crimping a cover sheet 55 in which a plurality of solid electrolyte green sheets are bonded together from above and below in the stacking direction. In this case, a substantially rectangular parallelepiped laminate is obtained so that pairs of the internal electrode paste 52 and the current collector paste 53 are alternately exposed on the two end surfaces of the laminate. Next, as exemplified in FIG. 5B, an external electrode paste 56 is applied to each of the two end faces by a dipping method or the like and dried. Thereby, a molding for forming the all-solid-state battery 100a is obtained.
 (焼成工程)
 次に、得られた積層体を焼成する。焼成の条件は酸化性雰囲気下あるいは非酸化性雰囲気下で、最高温度を好ましくは500℃~900℃、より好ましくは600℃~800℃などとすることが特に限定なく挙げられる。最高温度に達するまでにバインダを十分に除去するために酸化性雰囲気において最高温度より低い温度で保持する工程を設けてもよい。プロセスコストを低減するためにはできるだけ低温で焼成することが望ましい。焼成後に、再酸化処理を施してもよい。以上の工程により、全固体電池100aが生成される。
(Baking process)
Next, the obtained laminate is fired. The firing conditions include, without particular limitation, an oxidizing atmosphere or a non-oxidizing atmosphere and a maximum temperature of preferably 500°C to 900°C, more preferably 600°C to 800°C. A step of holding below the maximum temperature in an oxidizing atmosphere may be provided to sufficiently remove the binder until the maximum temperature is reached. In order to reduce process costs, it is desirable to bake at as low a temperature as possible. After firing, reoxidation treatment may be performed. Through the above steps, the all-solid-state battery 100a is produced.
 図2で例示した全固体電池100aについては、図5(a)の工程において集電体用ペースト53を塗布する工程を省略すればよい。 For the all-solid-state battery 100a illustrated in FIG. 2, the step of applying the current collector paste 53 in the step of FIG. 5(a) may be omitted.
 なお、第1外部電極40aおよび第2外部電極40bは、焼成工程後に焼き付けてもよい。図6は、この場合の製造方法を例示するフロー図である。例えば、積層工程で外部電極用ペースト56を塗布せず、焼成工程で得られた積層チップ60の2端面に外部電極用ペースト56を塗布し、焼き付ける。それにより、第1外部電極40aおよび第2外部電極40bを形成することができる。 Note that the first external electrode 40a and the second external electrode 40b may be baked after the baking process. FIG. 6 is a flowchart illustrating the manufacturing method in this case. For example, the external electrode paste 56 is not applied in the stacking process, and the external electrode paste 56 is applied to the two end faces of the laminated chip 60 obtained in the firing process and baked. Thereby, the first external electrode 40a and the second external electrode 40b can be formed.
 本実施形態によれば、第1固体電解質粒子31用に合成された原料粉末に、Liプアのものを用いる。この場合、単斜晶の結晶構造が安定化しやすくなる。したがって、低温焼結可能なリチウム含有材料と混合して焼成しても両者の成分の反応が抑制され、高抵抗成分となり得る異相が両者の界面に形成されにくく、高いイオン伝導性が得られる。以上のことから、高いイオン電導を発現する固体電解質層30を低温焼成することができる。 According to the present embodiment, Li-poor powder is used as the raw material powder synthesized for the first solid electrolyte particles 31 . In this case, the monoclinic crystal structure is easily stabilized. Therefore, even if it is mixed with a lithium-containing material that can be sintered at a low temperature and fired, the reaction between the two components is suppressed, and a heterogeneous phase that can become a high-resistance component is less likely to be formed at the interface between the two, resulting in high ionic conductivity. As described above, the solid electrolyte layer 30 exhibiting high ionic conductivity can be fired at a low temperature.
 以下、実施形態に従って全固体電池を作製し、特性について調べた。 All-solid-state batteries were produced according to the embodiments, and their characteristics were investigated.
 (実施例1)
 実施例1では、結晶性のLi-Ta-P-O系化合物を固相合成法にて合成した。具体的には、LiPOとTaとNHPOとを0.4:1.4:1のモル比で混合し、大気中900℃で熱処理した。得られた反応物を擂潰混合後、反応物に対してLiOH・HOをLiが10mol%過剰になるように添加して混合し、1100℃で本熱処理することにより合成した。合成粉は、XRD測定の結果、単斜晶の単相であることを確認した。また、合成粉をICP分析したところ、1molのPに対するLi含有量の比率は0.88molであった。合成粉は、湿式ボールミルでD50=4μmまで粉砕処理した。
(Example 1)
In Example 1, a crystalline Li--Ta--P--O compound was synthesized by a solid phase synthesis method. Specifically, Li 3 PO 4 , Ta 2 O 5 and NH 4 H 2 PO 4 were mixed in a molar ratio of 0.4:1.4:1 and heat-treated at 900° C. in air. After the obtained reactant was ground and mixed, LiOH.H 2 O was added to the reactant so that Li was in excess of 10 mol %, mixed, and subjected to main heat treatment at 1100° C. to synthesize. As a result of XRD measurement, the synthetic powder was confirmed to be a monoclinic single phase. Further, when the synthetic powder was analyzed by ICP, the ratio of Li content to 1 mol of P was 0.88 mol. The synthetic powder was pulverized to D50=4 μm with a wet ball mill.
 次に、非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質を、従来公知の溶融急冷法により得た。具体的には、原料のLiCO、Al、GeO、Pを混合し、1400℃でガラス融液とした後、キャストすることでガラスを作製し、乾式ボールミルでD50=2μmまで粉砕処理した。このとき、ガラス状物質でのPに対するLiのモル比は、0.63であった。 Next, a non-stoichiometric Li--Al--Ge--P--O based glassy precursor was obtained by a conventional melt quenching method. Specifically, Li 2 CO 3 , Al 2 O 3 , GeO 2 , and P 2 O 5 as raw materials are mixed to form a glass melt at 1400° C., and the glass is produced by casting, followed by a dry ball mill. It was pulverized to D50=2 μm. At this time, the molar ratio of Li to P in the glassy substance was 0.63.
 Li-Ta-P-O系化合物と非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質とを、重量比で30:70となるように擂潰混合し、Φ15mm、厚み0.5mmとなるように一軸プレス機でペレット化し、トップ温度650℃で焼成した。 A Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
 焼結体のイオン伝導は、6.0×10-5S/cmであった。焼結体を破断し、断面のSEM観察を行い、EDS元素マッピング分析を行ったところ、Li-Ta-P-O系化合物とLi-Al-Ge-P-O系化合物の面積比率は、凡そ20:80であった。これらの化合物同士の粒子界面には、反応生成物は認められなかった。 The ion conductivity of the sintered body was 6.0×10 −5 S/cm. When the sintered body was broken, the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of the Li—Ta—P—O compound and the Li—Al—Ge—P—O compound was approximately It was 20:80. No reaction product was observed at the particle interface between these compounds.
 (実施例2)
 実施例2では、結晶性のLi-Ta-P-O系化合物を固相合成法にて合成した。具体的には、LiPOとTaとNHPOとを0.35:1.35:1のモル比で混合し、大気中900℃で熱処理した。得られた反応物を擂潰混合後、反応物に対してLiOH・HOをLiが15mol%過剰になるように添加して混合し、1300℃で本熱処理することにより合成した。合成粉は、XRD測定の結果、単斜晶の単相であることを確認した。また、合成粉をICP分析したところ、1molのPに対するLi含有量の比率は0.79molであった。合成粉は、湿式ボールミルでD50=4μmまで粉砕処理した。
(Example 2)
In Example 2, a crystalline Li--Ta--P--O compound was synthesized by a solid phase synthesis method. Specifically, Li 3 PO 4 , Ta 2 O 5 and NH 4 H 2 PO 4 were mixed in a molar ratio of 0.35:1.35:1 and heat-treated at 900° C. in air. After the obtained reactants were ground and mixed, LiOH.H 2 O was added to the reactants so that Li was in excess of 15 mol %, mixed, and subjected to a main heat treatment at 1300° C. to synthesize. As a result of XRD measurement, the synthetic powder was confirmed to be a monoclinic single phase. Further, when the synthetic powder was analyzed by ICP, the ratio of Li content to 1 mol of P was 0.79 mol. The synthetic powder was pulverized to D50=4 μm with a wet ball mill.
 次に、非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質を、従来公知の溶融急冷法により得た。具体的には、原料のLiCO、Al、GeO、Pを混合し、1400℃でガラス融液とした後、キャストすることでガラスを作製し、乾式ボールミルでD50=2μmまで粉砕処理した。このとき、ガラス状物質でのPに対するLiのモル比は、0.5であった。 Next, a non-stoichiometric Li--Al--Ge--P--O based glassy precursor was obtained by a conventional melt quenching method. Specifically, Li 2 CO 3 , Al 2 O 3 , GeO 2 , and P 2 O 5 as raw materials are mixed to form a glass melt at 1400° C., and the glass is produced by casting, followed by a dry ball mill. It was pulverized to D50=2 μm. At this time, the molar ratio of Li to P in the glassy substance was 0.5.
 Li-Ta-P-O系化合物と非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質とを、重量比で30:70となるように擂潰混合し、Φ15mm、厚み0.5mmとなるように一軸プレス機でペレット化し、トップ温度650℃で焼成した。 A Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
 焼結体のイオン伝導は、8.0×10-5S/cmであった。焼結体を破断し、断面のSEM観察を行い、EDS元素マッピング分析を行ったところ、Li-Ta-P-O系化合物とLi-Al-Ge-P-O系化合物の面積比率は、凡そ20:80であった。これらの化合物同士の粒子界面には、反応生成物は認められなかった。 The ion conductivity of the sintered body was 8.0×10 −5 S/cm. When the sintered body was broken, the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of the Li—Ta—P—O compound and the Li—Al—Ge—P—O compound was approximately It was 20:80. No reaction product was observed at the particle interface between these compounds.
 (実施例3)
 実施例3では、結晶性のLi-Ta-P-O系化合物を実施例1と同様に合成・粉砕処理した。
(Example 3)
In Example 3, a crystalline Li--Ta--P--O compound was synthesized and pulverized in the same manner as in Example 1.
 次に、非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質を、従来公知の溶融急冷法により得た。具体的には、原料のLiCO、Al、GeO、Pを混合し、1400℃でガラス融液とした後、キャストすることでガラスを作製し、乾式ボールミルでD50=2μmまで粉砕処理した。このとき、ガラス状物質でのPに対するLiのモル比は、0.4であった。 Next, a non-stoichiometric Li--Al--Ge--P--O based glassy precursor was obtained by a conventional melt quenching method. Specifically, Li 2 CO 3 , Al 2 O 3 , GeO 2 , and P 2 O 5 as raw materials are mixed to form a glass melt at 1400° C., and the glass is produced by casting, followed by a dry ball mill. It was pulverized to D50=2 μm. At this time, the molar ratio of Li to P in the glassy substance was 0.4.
 Li-Ta-P-O系化合物と非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質とを、重量比で30:70となるように擂潰混合し、Φ15mm、厚み0.5mmとなるように一軸プレス機でペレット化し、トップ温度650℃で焼成した。 A Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
 焼結体のイオン伝導は、2.0×10-5S/cmであった。焼結体を破断し、断面のSEM観察を行い、EDS元素マッピング分析を行ったところ、LiTaPOとLi-Al-Ge-P-O系化合物の面積比率は、凡そ20:80であった。これらの化合物同士の粒子界面には、反応生成物は認められなかった。 The ion conductivity of the sintered body was 2.0×10 −5 S/cm. When the sintered body was broken, the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
 (実施例4)
 実施例4では、結晶性のLi-Ta-P-O系化合物を固相合成法にて合成した。具体的には、LiPOとTaとNHPOとを0.32:1.32:1のモル比で混合し、大気中900℃で熱処理した。得られた反応物を擂潰混合後、反応物に対してLiOH・HOをLiが10mol%過剰になるように添加して混合し、1300℃で本熱処理することにより合成した。合成粉は、XRD測定の結果、単斜晶の単相であることを確認した。また、合成粉をICP分析したところ、1molのPに対するLi含有量の比率は0.70molであった。合成粉は、湿式ボールミルでD50=4μmまで粉砕処理した。
(Example 4)
In Example 4, a crystalline Li--Ta--P--O compound was synthesized by a solid phase synthesis method. Specifically, Li 3 PO 4 , Ta 2 O 5 and NH 4 H 2 PO 4 were mixed in a molar ratio of 0.32:1.32:1 and heat-treated at 900° C. in air. After the obtained reactant was ground and mixed, LiOH.H 2 O was added to the reactant so that Li was in excess of 10 mol %, mixed, and subjected to a main heat treatment at 1300° C. to synthesize. As a result of XRD measurement, the synthetic powder was confirmed to be a monoclinic single phase. Further, when the synthetic powder was analyzed by ICP, the ratio of Li content to 1 mol of P was 0.70 mol. The synthetic powder was pulverized to D50=4 μm with a wet ball mill.
 次に、非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質を、実施例1と同様の方法で得た。 Next, a non-stoichiometric Li-Al-Ge-P-O-based glassy precursor was obtained in the same manner as in Example 1.
 Li-Ta-P-O系化合物と非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質とを、重量比で30:70となるように擂潰混合し、Φ15mm、厚み0.5mmとなるように一軸プレス機でペレット化し、トップ温度650℃で焼成した。 A Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
 焼結体のイオン伝導は、8.5×10-5S/cmであった。焼結体を破断し、断面のSEM観察を行い、EDS元素マッピング分析を行ったところ、LiTaPOとLi-Al-Ge-P-O系化合物の面積比率は、凡そ20:80であった。これらの化合物同士の粒子界面には、反応生成物は認められなかった。 The ion conductivity of the sintered body was 8.5×10 −5 S/cm. When the sintered body was broken, the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
 (実施例5)
 実施例5では、結晶性のLi-Ta-P-O系化合物を実施例4と同様に合成・粉砕処理した。
(Example 5)
In Example 5, a crystalline Li--Ta--P--O compound was synthesized and pulverized in the same manner as in Example 4.
 次に、非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質を、実施例2と同様の方法で得た。 Next, a non-stoichiometric Li-Al-Ge-P-O-based glassy precursor was obtained in the same manner as in Example 2.
 Li-Ta-P-O系化合物と非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質とを、重量比で30:70となるように擂潰混合し、Φ15mm、厚み0.5mmとなるように一軸プレス機でペレット化し、トップ温度650℃で焼成した。 A Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
 焼結体のイオン伝導は、5.3×10-5S/cmであった。焼結体を破断し、断面のSEM観察を行い、EDS元素マッピング分析を行ったところ、LiTaPOとLi-Al-Ge-P-O系化合物の面積比率は、凡そ20:80であった。これらの化合物同士の粒子界面には、反応生成物は認められなかった。 The ion conductivity of the sintered body was 5.3×10 −5 S/cm. When the sintered body was broken, the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
 (実施例6)
 実施例6では、結晶性のLi-Ta-P-O系化合物を実施例1と同様に合成・粉砕処理した。合成粉に対して、さらにLiOH・HOをLiが7mol%過剰になるように添加して混合し、700℃で熱処理して結晶構造を保持した状態でLiプア分を結晶構造内に含有させた。合成粉は、湿式ボールミルでD50=4μmまで粉砕処理した。
(Example 6)
In Example 6, a crystalline Li--Ta--P--O compound was synthesized and pulverized in the same manner as in Example 1. LiOH.H 2 O is further added to the synthetic powder so that Li is in excess of 7 mol %, mixed, and heat-treated at 700° C. to contain the Li-poor portion in the crystal structure while maintaining the crystal structure. let me The synthetic powder was pulverized to D50=4 μm with a wet ball mill.
 次に、非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質を、実施例1と同様の方法で得た。 Next, a non-stoichiometric Li-Al-Ge-P-O-based glassy precursor was obtained in the same manner as in Example 1.
 Li-Ta-P-O系化合物と非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質とを、重量比で30:70となるように擂潰混合し、Φ15mm、厚み0.5mmとなるように一軸プレス機でペレット化し、トップ温度650℃で焼成した。 A Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
 焼結体のイオン伝導は、9.1×10-5S/cmであった。焼結体を破断し、断面のSEM観察を行い、EDS元素マッピング分析を行ったところ、LiTaPOとLi-Al-Ge-P-O系化合物の面積比率は、凡そ20:80であった。これらの化合物同士の粒子界面には、反応生成物は認められなかった。 The ion conductivity of the sintered body was 9.1×10 −5 S/cm. When the sintered body was broken, the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
 (実施例7)
 実施例7では、結晶性のLi-Ta-P-O系化合物を実施例1と同様に合成・粉砕処理した。
(Example 7)
In Example 7, a crystalline Li--Ta--P--O compound was synthesized and pulverized in the same manner as in Example 1.
 次に、非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質を、実施例1と同様の方法で得た。 Next, a non-stoichiometric Li-Al-Ge-P-O-based glassy precursor was obtained in the same manner as in Example 1.
 Li-Ta-P-O系化合物と非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質とを、重量比で30:70となるように擂潰混合する際に、LiPOをLi-Al-Ge-P-O系ガラス状前駆物質(LAGP-g)に対して2wt%加えた。得られた混合粉末を、Φ15mm、厚み0.5mmとなるように一軸プレス機でペレット化し、トップ温度650℃で焼成した。 When the Li--Ta--P--O compound and the non-stoichiometric Li--Al--Ge--P--O-based glassy precursor material are ground and mixed in a weight ratio of 30:70, 2 wt % of Li 3 PO 4 was added to the Li—Al—Ge—P—O based glassy precursor (LAGP-g). The obtained mixed powder was pelletized with a uniaxial press so as to have a diameter of 15 mm and a thickness of 0.5 mm, and was fired at a top temperature of 650°C.
 焼結体のイオン伝導は、9.2×10-5S/cmであった。焼結体を破断し、断面のSEM観察を行い、EDS元素マッピング分析を行ったところ、LiTaPOとLi-Al-Ge-P-O系化合物の面積比率は、凡そ20:80であった。これらの化合物同士の粒子界面には、反応生成物は認められなかった。 The ion conductivity of the sintered body was 9.2×10 −5 S/cm. When the sintered body was broken, the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. No reaction product was observed at the particle interface between these compounds.
 (比較例1)
 比較例1では、結晶性のLi-Ta-P-O系化合物を固相合成法にて合成した。具体的には、LiPOとTaとNHPOとを0.5:1.5:1のモル比で混合し、大気中900℃で熱処理した。得られた反応物を擂潰混合後、反応物に対してLiOH・HOをLiが20mol%過剰になるように添加して混合し、1300℃で本熱処理することにより合成した。合成粉は、XRD測定の結果、合成粉LiTaPOに加えて、Taが形成されていることを確認した。また、合成粉をICP分析したところ、1molのPに対するLi含有量の比率は1.05molであった。得られた粉末は、湿式ボールミルでD50=4μmまで粉砕処理した。
(Comparative example 1)
In Comparative Example 1, a crystalline Li--Ta--P--O compound was synthesized by a solid phase synthesis method. Specifically, Li 3 PO 4 , Ta 2 O 5 and NH 4 H 2 PO 4 were mixed at a molar ratio of 0.5:1.5:1 and heat-treated at 900° C. in air. After the obtained reactant was ground and mixed, LiOH.H 2 O was added to the reactant so that Li was in excess of 20 mol % and mixed, followed by main heat treatment at 1300° C. to synthesize. As a result of XRD measurement, it was confirmed that Ta 2 O 5 was formed in the synthetic powder in addition to the synthetic powder LiTa 2 PO 8 . Further, when the synthetic powder was analyzed by ICP, the ratio of Li content to 1 mol of P was 1.05 mol. The obtained powder was pulverized to D50=4 μm with a wet ball mill.
 次に、非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質を、従来公知の溶融急冷法により得た。具体的には、原料のLiCO、Al、GeO、Pを混合し、1400℃でガラス融液とした後、キャストすることでガラスを作製し、乾式ボールミルでD50=2μmまで粉砕処理した。このとき、ガラス状物質でのPに対するLiのモル比は、0.63であった。 Next, a non-stoichiometric Li--Al--Ge--P--O based glassy precursor was obtained by a conventional melt quenching method. Specifically, Li 2 CO 3 , Al 2 O 3 , GeO 2 , and P 2 O 5 as raw materials are mixed to form a glass melt at 1400° C., and the glass is produced by casting, followed by a dry ball mill. It was pulverized to D50=2 μm. At this time, the molar ratio of Li to P in the glassy material was 0.63.
 Li-Ta-P-O系化合物と非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質とを、重量比で30:70となるように擂潰混合し、Φ15mm、厚み0.5mmとなるように一軸プレス機でペレット化し、トップ温度650℃で焼成した。 A Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
 焼結体のイオン伝導は、5.0×10-6S/cmであった。焼結体を破断し、断面のSEM観察を行い、EDS元素マッピング分析を行ったところ、LiTaPOとLi-Al-Ge-P-O系化合物の面積比率は、凡そ20:80であった。これらの化合物同士の粒子界面には、反応生成物が形成されていた。 The ionic conductivity of the sintered body was 5.0×10 −6 S/cm. When the sintered body was broken, the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. A reaction product was formed at the particle interface between these compounds.
 (比較例2)
 比較例2では、結晶性のLi-Ta-P-O系化合物を固相合成法にて合成した。具体的には、LiPOとTaとNHPOとを0.46:1.46:1のモル比で混合し、大気中900℃で熱処理した。得られた反応物を擂潰混合後、反応物に対してLiOH・HOをLiが10mol%過剰になるように添加して混合し、1000℃で本熱処理することにより合成した。合成粉は、XRD測定の結果、合成粉LiTaPOに加えて、Li(PO)が形成されていることを確認した。1molのPに対するLi含有量の比率は1.04molであった。得られた粉末は、湿式ボールミルでD50=4μmまで粉砕処理した。
(Comparative example 2)
In Comparative Example 2, a crystalline Li--Ta--P--O compound was synthesized by a solid phase synthesis method. Specifically, Li 3 PO 4 , Ta 2 O 5 and NH 4 H 2 PO 4 were mixed in a molar ratio of 0.46:1.46:1 and heat-treated at 900° C. in air. After the obtained reactants were ground and mixed, LiOH.H 2 O was added to the reactants so that Li was in excess of 10 mol %, mixed, and subjected to main heat treatment at 1000° C. to synthesize. As a result of XRD measurement, it was confirmed that Li(PO 4 ) was formed in the synthetic powder in addition to the synthetic powder LiTa 2 PO 8 . The ratio of Li content to 1 mol of P was 1.04 mol. The obtained powder was pulverized to D50=4 μm with a wet ball mill.
 次に、非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質を、従来公知の溶融急冷法により得た。具体的には、原料のLiCO、Al、GeO、Pを混合し、1400℃でガラス融液とした後、キャストすることでガラスを作製し、乾式ボールミルでD50=2μmまで粉砕処理した。このとき、ガラス状物質でのPに対するLiのモル比は、0.63であった。 Next, a non-stoichiometric Li--Al--Ge--P--O based glassy precursor was obtained by a conventional melt quenching method. Specifically, Li 2 CO 3 , Al 2 O 3 , GeO 2 , and P 2 O 5 as raw materials are mixed to form a glass melt at 1400° C., and the glass is produced by casting, followed by a dry ball mill. It was pulverized to D50=2 μm. At this time, the molar ratio of Li to P in the glassy substance was 0.63.
 Li-Ta-P-O系化合物と非化学量論組成のLi-Al-Ge-P-O系ガラス状前駆物質とを、重量比で30:70となるように擂潰混合し、Φ15mm、厚み0.5mmとなるように一軸プレス機でペレット化し、トップ温度650℃で焼成した。 A Li—Ta—P—O compound and a Li—Al—Ge—P—O glass precursor having a non-stoichiometric composition were ground and mixed in a weight ratio of 30:70. It was pelletized with a uniaxial press so as to have a thickness of 0.5 mm, and fired at a top temperature of 650°C.
 焼結体のイオン伝導は、8.0×10-6S/cmであった。焼結体を破断し、断面のSEM観察を行い、EDS元素マッピング分析を行ったところ、LiTaPOとLi-Al-Ge-P-O系化合物の面積比率は、凡そ20:80であった。これらの化合物同士の粒子界面には、反応生成物が形成されていた。 The ionic conductivity of the sintered body was 8.0×10 −6 S/cm. When the sintered body was broken, the cross section was observed by SEM, and EDS elemental mapping analysis was performed, the area ratio of LiTa 2 PO 8 and the Li—Al—Ge—P—O compound was approximately 20:80. rice field. A reaction product was formed at the particle interface between these compounds.
 実施例1~実施例7および比較例1,2の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the results of Examples 1 to 7 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、実施例1~実施例7では、高いイオン伝導率が得られた。これは、LiTaPO粒子界面に低温焼結可能なLi-Al-Ge-P-O系化合物との反応生成物が形成されなかったからであると考えられる。反応生成物が形成されなかったのは、Li-Ta-P-O系化合物をLiTaPOに対してリチウムプアとしたことで単斜晶の結晶構造が安定化したからであると考えられる。 From the above results, in Examples 1 to 7, high ionic conductivity was obtained. This is probably because no reaction product with the Li--Al--Ge--P--O compound capable of being sintered at a low temperature was formed at the interface of the LiTa 2 PO 8 particles. The reason why no reaction product was formed is considered to be that the monoclinic crystal structure was stabilized by making the Li—Ta—P—O compound lithium-poor to LiTa 2 PO 8 .
 比較例1,2では、高いイオン伝導率が得られなかった。これは、Li-Ta-P-O系化合物をLiTaPOに対してリチウムリッチとしたことで単斜晶の結晶構造が安定化せず、これらの化合物同士の粒子界面に反応生成物が形成されたからであると考えられる。 In Comparative Examples 1 and 2, high ionic conductivity was not obtained. This is because the monoclinic crystal structure is not stabilized by making the Li--Ta--P--O compound more lithium-rich than LiTa.sub.2PO.sub.8 , and the reaction product is generated at the particle interface between these compounds. It is thought that it is because it was formed.
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention described in the scope of claims. Change is possible.

Claims (10)

  1.  LiとTaとPを含む酸化物型の固体電解質であって、
     1molのPに対するLi含有量の比率が0.5mol以上0.95mol以下であり、
     XRD測定の結果で、単斜晶に帰属する結晶構造を有することが確認されることを特徴とする固体電解質。
    An oxide-type solid electrolyte containing Li, Ta, and P,
    The ratio of Li content to 1 mol of P is 0.5 mol or more and 0.95 mol or less,
    A solid electrolyte characterized by being confirmed to have a crystal structure belonging to a monoclinic crystal as a result of XRD measurement.
  2.  Ta/Pのモル比が1.7以上2.3以下であることを特徴とする請求項1に記載の固体電解質。 The solid electrolyte according to claim 1, wherein the molar ratio of Ta/P is 1.7 or more and 2.3 or less.
  3.  請求項1または請求項2に記載の固体電解質を第1固体電解質として含み、前記第1固体電解質よりも焼結開始温度が低いリチウム含有材料を第2固体電解質として含む固体電解質層と、
     電極活物質を含み、前記固体電解質層の第1主面上に形成された第1電極と、
     電極活物質を含み、前記固体電解質層の前記第1主面に対向する第2主面上に形成された第2電極と、を備えることを特徴とする全固体電池。
    A solid electrolyte layer comprising the solid electrolyte according to claim 1 or 2 as a first solid electrolyte and a lithium-containing material having a sintering start temperature lower than that of the first solid electrolyte as a second solid electrolyte;
    a first electrode including an electrode active material and formed on the first main surface of the solid electrolyte layer;
    and a second electrode that includes an electrode active material and is formed on a second main surface of the solid electrolyte layer that faces the first main surface.
  4.  前記固体電解質層、前記第1電極および前記第2電極を一つの単位として、前記単位が複数積み重ねられたことを特徴とする請求項3に記載の全固体電池。 4. The all-solid-state battery according to claim 3, wherein the solid electrolyte layer, the first electrode and the second electrode are used as one unit, and a plurality of the units are stacked.
  5.  前記第1電極および前記第2電極のうち、一方は正極活物質を含み、他方は負極活物質を含むことを特徴とする請求項3または請求項4に記載の全固体電池。 The all-solid-state battery according to claim 3 or 4, wherein one of the first electrode and the second electrode contains a positive electrode active material, and the other contains a negative electrode active material.
  6.  前記固体電解質層において、前記第1固体電解質の平均結晶粒径は、1μm以上20μm以下であることを特徴とする請求項3から請求項5のいずれか一項に記載の全固体電池。 The all-solid-state battery according to any one of claims 3 to 5, characterized in that in the solid electrolyte layer, the average crystal grain size of the first solid electrolyte is 1 µm or more and 20 µm or less.
  7.  前記リチウム含有材料は、Li-Ge-P-O系化合物、Li-Zr-P-O系化合物、Li-P-O系化合物、Li-B-O系化合物、Li-Si-O系化合物、Li-Ge-Zr-P-O系化合物、Li-Si-B-O系化合物、Li-Al-Ge-P-O系化合物、Li-La-Zr-P-O系化合物、Li-Al-P-O系化合物の少なくとも1つであることを特徴とする請求項3から請求項6のいずれか一項に記載の全固体電池。 The lithium-containing material includes Li—Ge—P—O based compounds, Li—Zr—P—O based compounds, Li—P—O based compounds, Li—B—O based compounds, Li—Si—O based compounds, Li—Ge—Zr—P—O based compounds, Li—Si—B—O based compounds, Li—Al—Ge—PO based compounds, Li—La—Zr—P—O based compounds, Li—Al— 7. The all-solid-state battery according to any one of claims 3 to 6, characterized in that it is at least one PO-based compound.
  8.  LiとTaとPを含み、1molのPに対するLi含有量が0.5mol以上0.95mol以下である原料から、950℃以上1300℃以下の温度で、XRD測定の結果で単斜晶に帰属する結晶構造を有することが確認される酸化物型の固体電解質を合成することを特徴とする固体電解質の製造方法。 From a raw material containing Li, Ta, and P, and having a Li content of 0.5 mol or more and 0.95 mol or less per 1 mol of P, at a temperature of 950 ° C. or more and 1300 ° C. or less, the results of XRD measurement belong to monoclinic crystals. A method for producing a solid electrolyte, comprising synthesizing an oxide-type solid electrolyte confirmed to have a crystal structure.
  9.  LiとTaとPを含み、1molのPに対するLi含有量が0.5mol以上0.95mol以下であり、XRD測定の結果で、単斜晶に帰属する結晶構造を有することが確認される酸化物型の固体電解質の粉末を第1固体電解質粉末として含み、前記第1固体電解質粉末よりも焼結開始温度が低いリチウム含有材料の粉末を第2固体電解質粉末として含むグリーンシートと、前記グリーンシートの第1主面上に形成された第1電極層用ペースト塗布物と、前記グリーンシートの第2主面上に形成された第2電極層用ペースト塗布物と、を有する積層体を用意する工程と、
     前記積層体を焼成する焼成工程と、を含むことを特徴とする全固体電池の製造方法。
    An oxide that contains Li, Ta, and P, has a Li content of 0.5 mol or more and 0.95 mol or less per 1 mol of P, and is confirmed to have a crystal structure attributed to a monoclinic crystal as a result of XRD measurement. a green sheet containing, as a first solid electrolyte powder, a powder of a solid electrolyte of the above type, and containing, as a second solid electrolyte powder, a powder of a lithium-containing material having a sintering start temperature lower than that of the first solid electrolyte powder; and preparing a laminate having a first electrode layer paste application formed on a first main surface and a second electrode layer paste application formed on a second main surface of the green sheet; When,
    and a sintering step of sintering the laminate.
  10.  前記焼成工程における焼成温度を、500℃以上900℃以下にすることを特徴とする請求項9に記載の全固体電池の製造方法。
     
    10. The method for manufacturing an all-solid-state battery according to claim 9, wherein the firing temperature in the firing step is 500[deg.] C. or higher and 900[deg.] C. or lower.
PCT/JP2022/000842 2021-03-26 2022-01-13 Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery WO2022201755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054188 2021-03-26
JP2021054188A JP2022151220A (en) 2021-03-26 2021-03-26 Solid electrolyte, all-solid battery, manufacturing method of solid electrolyte, and manufacturing method of all-solid battery

Publications (1)

Publication Number Publication Date
WO2022201755A1 true WO2022201755A1 (en) 2022-09-29

Family

ID=83396835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000842 WO2022201755A1 (en) 2021-03-26 2022-01-13 Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery

Country Status (2)

Country Link
JP (1) JP2022151220A (en)
WO (1) WO2022201755A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243327A1 (en) * 2022-06-15 2023-12-21 国立研究開発法人産業技術総合研究所 Oxide sintered body and method for producing oxide sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157751A1 (en) * 2015-03-31 2016-10-06 ソニー株式会社 Lithium ion conductor, solid electrolyte layer, electrode, battery and electronic device
JP2020140963A (en) * 2019-02-22 2020-09-03 Tdk株式会社 Solid electrolyte, all-solid secondary battery, and manufacturing method thereof
JP2020194773A (en) * 2019-05-24 2020-12-03 三星電子株式会社Samsung Electronics Co.,Ltd. Solid conductor, manufacturing method thereof, solid electrolyte including the same, and electrochemical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157751A1 (en) * 2015-03-31 2016-10-06 ソニー株式会社 Lithium ion conductor, solid electrolyte layer, electrode, battery and electronic device
JP2020140963A (en) * 2019-02-22 2020-09-03 Tdk株式会社 Solid electrolyte, all-solid secondary battery, and manufacturing method thereof
JP2020194773A (en) * 2019-05-24 2020-12-03 三星電子株式会社Samsung Electronics Co.,Ltd. Solid conductor, manufacturing method thereof, solid electrolyte including the same, and electrochemical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243327A1 (en) * 2022-06-15 2023-12-21 国立研究開発法人産業技術総合研究所 Oxide sintered body and method for producing oxide sintered body

Also Published As

Publication number Publication date
JP2022151220A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
TWI527289B (en) Lithium ion secondary battery and manufacturing method thereof
JP6109672B2 (en) Ceramic cathode-solid electrolyte composite
JP2015041573A (en) Garnet type ion-conducting oxide, complex, lithium secondary battery, method for manufacturing garnet type ion-conducting oxide, and method for manufacturing complex
WO2019044902A1 (en) Co-firing type all-solid state battery
JP7290978B2 (en) All-solid battery
CN110574208A (en) All-solid-state battery
JP2013243111A (en) Method of manufacturing cathode-solid electrolyte assembly
JP6669268B2 (en) Solid electrolyte and all-solid battery
JP6109673B2 (en) Ceramic cathode-solid electrolyte composite
WO2022201755A1 (en) Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery
JP6801778B2 (en) All solid state battery
WO2018181577A1 (en) All-solid-state battery
WO2023032294A1 (en) Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery
CN113745649B (en) Solid electrolyte and method for producing same, and all-solid battery and method for producing same
JP6168690B2 (en) Ceramic cathode-solid electrolyte composite
WO2022185710A1 (en) All-solid-state battery and manufacturing method thereof
CN113363593B (en) All-solid-state battery and method for manufacturing same
JP7328790B2 (en) CERAMIC RAW MATERIAL POWDER, METHOD FOR MANUFACTURING ALL-SOLID BATTERY, AND ALL-SOLID BATTERY
JP6705145B2 (en) Composite and method for producing composite
WO2024070429A1 (en) Negative electrode active material and all-solid-state battery
JP2020113376A (en) Positive electrode material for all-solid-state battery, all-solid-state battery, and manufacturing method of positive-electrode active material for all-solid-state battery
WO2023210188A1 (en) All-solid-state battery and method for manufacturing same
US20230299285A1 (en) Positive electrode active material and lithium-ion secondary battery
CN110890589B (en) All-solid battery, method for producing all-solid battery, and solid electrolyte paste
WO2023013132A1 (en) Negative electrode active material and all-solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774560

Country of ref document: EP

Kind code of ref document: A1