WO2022201373A1 - Electromagnetic actuator - Google Patents

Electromagnetic actuator Download PDF

Info

Publication number
WO2022201373A1
WO2022201373A1 PCT/JP2021/012335 JP2021012335W WO2022201373A1 WO 2022201373 A1 WO2022201373 A1 WO 2022201373A1 JP 2021012335 W JP2021012335 W JP 2021012335W WO 2022201373 A1 WO2022201373 A1 WO 2022201373A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
core
yoke
magnetic
fixed
Prior art date
Application number
PCT/JP2021/012335
Other languages
French (fr)
Japanese (ja)
Inventor
康宏 神納
真也 渡邉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/012335 priority Critical patent/WO2022201373A1/en
Priority to JP2023508271A priority patent/JP7435899B2/en
Publication of WO2022201373A1 publication Critical patent/WO2022201373A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/42Auxiliary magnetic circuits, e.g. for maintaining armature in, or returning armature to, position of rest, for damping or accelerating movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays

Definitions

  • the present invention relates to an electromagnetic actuator that attracts a movable core with the magnetic flux of a permanent magnet and releases the movable core with coil excitation.
  • a mechanism using an electromagnetic actuator is used to trip the contacts.
  • the coil of the electromagnetic actuator is excited by an external power supply, and the movable iron core of the electromagnetic actuator is released. , the contact opens.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-128436
  • This electromagnetic actuator includes a drive spring, a permanent magnet, a coil that cancels the magnetic flux of the permanent magnet, a yoke that surrounds the coil, a movable iron core, and a magnetic flux diverter.
  • a flux diverter is connected to the yoke and serves to divert a portion of the magnetic flux of the permanent magnet to the yoke.
  • the magnetic flux of the permanent magnet passes through the magnetic attraction magnetic path, which is the magnetic path that passes through the attraction surface of the movable iron core, thereby exerting a magnetic attraction force on the movable iron core.
  • the attraction magnetic path is a magnetic path that produces a magnetic attraction force.
  • the magnetic flux of the permanent magnet passes through a shunt magnetic path, which is a magnetic path that does not pass through the attracting surface of the movable iron core.
  • a shunt magnetic path is a magnetic path that does not generate a magnetic attraction force.
  • the magnetic flux passing through the movable core is canceled, and most of the magnetic flux of the permanent magnet bypasses the shunt magnetic path, thereby reducing the magnetic attraction force applied to the movable core.
  • the magnetic attraction force applied to the movable iron core falls below the spring force of the drive spring, the movable iron core is released and driven.
  • the magnetic resistance of the shunt magnetic path is determined by the magnetic path width, which is the width of the magnetic path of the magnetic flux diverter, the magnetic path length, which is the length of the magnetic path of the magnetic flux diverter, and the contact portion between the magnetic flux diverter and the yoke.
  • the width of the contact portion between the magnetic flux diverter and the yoke is small, there is a problem that the magnetic gap variation at the contact portion between the magnetic flux diverter and the yoke increases the variation in the reluctance of the shunt magnetic path. .
  • the amount of magnetic flux flowing through the shunt magnetic path tends to vary in the attracting and holding state, and the magnetic attraction force of the movable iron core also varies greatly.
  • the present invention has been made in view of the above problems, and its object is to reduce variations in the magnetic resistance of the shunt magnetic path and to provide an electromagnetic actuator with small variations in the magnetic attraction force.
  • An electromagnetic actuator includes a cylindrical coil, a movable iron core disposed on the inner peripheral side of the coil, protruding toward one end of the coil and movable along the central axis of the coil, and the other end of the coil.
  • a magnetic yoke that surrounds the outer periphery of the coil and is in contact with the fixed core on the inside; a drive spring that applies a spring force toward one end of the movable core;
  • the fixed core has a first narrow passage portion whose one end direction is narrower than the one end direction width of the portion where the fixed core and the yoke come into contact with each other.
  • the shunt magnetic path has a narrow path, and the width of the contact portion between the fixed core and the yoke in the shunt magnetic path is larger than the width of the narrow path.
  • the magnetic resistance at the narrow path is greater than that at the contact between the yoke and the yoke. Therefore, variations in the magnetic resistance of the shunt magnetic path are reduced, and variations in the magnetic attractive force are reduced. This makes it possible to obtain an electromagnetic actuator with stable performance.
  • FIG. 1 is an overall view of an electromagnetic actuator according to Embodiment 1;
  • FIG. 1 is a cross-sectional perspective view of an electromagnetic actuator according to a first embodiment;
  • FIG. 1 is a cross-sectional front view of an electromagnetic actuator according to a first embodiment;
  • FIG. 7 is a cross-sectional front view of an electromagnetic actuator according to a second embodiment;
  • FIG. 11 is a cross-sectional front view of an electromagnetic actuator according to a third embodiment;
  • FIG. 11 is an overall view of an electromagnetic actuator according to a fourth embodiment;
  • FIG. 11 is a cross-sectional perspective view of an electromagnetic actuator according to a fourth embodiment;
  • FIG. 11 is a cross-sectional front view of an electromagnetic actuator according to a fifth embodiment;
  • FIG. 11 is a cross-sectional front view of an electromagnetic actuator according to a sixth embodiment;
  • FIG. 11 is an overall view of an electromagnetic actuator according to Embodiment 7;
  • FIG. 1 is an overall outline view of an electromagnetic actuator according to Embodiment 1.
  • FIG. 2 is a cross-sectional perspective view of the electromagnetic actuator according to the first embodiment.
  • FIG. 3 is a cross-sectional front view of the electromagnetic actuator according to the first embodiment.
  • the electromagnetic actuator includes a movable core 1 movable along the central axis of the coil 5, a yoke 2, a fixed core 3, a permanent magnet 4, a coil 5, and a drive spring 6.
  • the yoke 2 is arranged so as to surround the coil 5 and forms a magnetic circuit together with the movable core 1, the fixed core 3 and the permanent magnet 4.
  • the movable iron core 1 is arranged on the inner peripheral side of the coil 5 , protrudes toward one end of the coil 5 , and is movable along the central axis direction of the coil 5 .
  • the yoke 2 has an upper yoke 2a and an outer yoke 2b.
  • the magnetic circuit of the electromagnetic actuator has an attraction magnetic path M2 and a shunt magnetic path M3.
  • the attraction magnetic path M2 passes through the permanent magnet 4, the fixed core 3, the movable core 1, the upper yoke 2a and the outer yoke 2b.
  • the branch magnetic path M3 passes through the permanent magnet 4, the fixed core 3, and the outer yoke 2b, and bypasses the fixed core 3 to the outer yoke 2b without passing through the movable core 1.
  • the magnetic path in which the attracting magnetic path M2 and the shunt magnetic path M3 are common is shown in the drawing as a common magnetic path M1.
  • the common magnetic path M1 is not closed as a magnetic path.
  • the movable iron core 1 In the attracting and holding state of the electromagnetic actuator, the movable iron core 1 is in a state of being attracted to the fixed iron core 3 by the magnetic attraction force due to the magnetic flux of the attracting magnetic path M2.
  • the magnetic flux generated by the permanent magnet 4 is divided by the magnetic resistance of the attracting magnetic path M2 and the magnetic resistance of the shunt magnetic path M3.
  • the coil 5 has a bobbin 5a and a coil winding 5b.
  • the drive spring 6 is installed so as to apply a force in the opposite direction to the magnetic attraction force applied to the movable iron core 1 in the attracting and holding state.
  • the magnetic attraction force applied to the movable iron core 1 is greater than the elastic force of the drive spring 6 , and the movable iron core 1 is attracted to the fixed iron core 3 .
  • the flow for releasing the movable core 1 is as follows. First, when the coil 5 is energized, the magnetic flux generated by the permanent magnet 4 passing through the attracting magnetic path M2 is canceled, and the magnetic flux generated by the permanent magnet 4 is bypassed to the shunt magnetic path M3. As a result, the magnetic attraction force applied to the movable iron core 1 is reduced, and the magnetic attraction force falls below the spring force of the drive spring 6 . Therefore, the movable iron core 1 is driven upward in FIGS. 1, 2 and 3 by the spring force. That is, the driving direction is the upward direction as indicated by the arrow in FIG. 1, which is the extension direction of the driving spring. Further, the driving direction is the one end direction of the coil 5 . The above operation releases the movable core 1 . In other words, during the releasing operation in which the movable core 1 and the fixed core 3 are separated, a shunt magnetic path M3 is generated from the permanent magnet 4 through the first narrow path portion and the outer yoke 2b.
  • a slit 3a which is an air gap provided in the fixed core 3, is provided in a portion forming the shunt magnetic path M3 of the fixed core 3, and a first narrow path portion 3b is formed.
  • the slit 3a is provided so as to reduce the width of the fixed core in the driving direction.
  • the slits 3 a may be formed by cutting grooves in the fixed core 3 or by drilling holes in the fixed core 3 .
  • the slit 3a may be formed by bending the outer circumference of the fixed core 3. As shown in FIG.
  • the first narrow passage portion 3b becomes a portion with high magnetic resistance due to magnetic saturation.
  • Width W1 in the drive direction at contact portion 8 between fixed core 3 and outer yoke 2b is larger than width W2 of the first narrow path portion of which the width in the drive direction is reduced as slit 3a. Therefore, the magnetic resistance of the contact portion 8 between the fixed core 3 and the outer yoke 2b can be made sufficiently smaller than the magnetic resistance of the first narrow path portion 3b. Therefore, the magnetic resistance of the shunt magnetic path M3 is mainly defined by the magnetic resistance of the first narrow path portion 3b.
  • the influence of variations in the magnetic resistance of the contact portion 8 caused by variations in the contact surface between the fixed core 3 and the outer yoke 2b on the magnetic resistance of the shunt magnetic path can be reduced.
  • the magnetic resistance of the first narrow passage portion 3b can be defined by the length G1 of the first narrow passage portion 3b.
  • FIG. 4 is a sectional front view of an electromagnetic actuator according to Embodiment 2 of the present invention, which corresponds to FIG. 3 according to Embodiment 1.
  • the fixed core 3 is formed with a slit 3a by a wedge-shaped groove. Since the wedge-shaped grooves can be easily manufactured by press working or the like, it is possible to simultaneously realize a reduction in processing cost and a stable suction force.
  • Embodiment 3 An electromagnetic actuator according to a third embodiment of the present invention will be described below with reference to FIG. 5 is a cross-sectional front view of an electromagnetic actuator according to Embodiment 3 of the present invention, which corresponds to FIG. 3 according to Embodiment 1.
  • the fixed core 3 is provided with slits 3a from both upper and lower directions to form a first narrow passage portion 3b.
  • slits 3a from both the upper and lower sides of the fixed core 3, it is possible to form the first narrow passage portion 3b with a slit having a small depth. Therefore, the fixed core 3 can be easily processed. As a result, it is possible to simultaneously achieve a reduction in processing costs and a stable suction force.
  • both the vertical direction in the above description is the direction in which the driving direction is the upward direction and the direction opposite to the driving direction is the downward direction.
  • FIG. 6 is an overall outline view of an electromagnetic actuator according to Embodiment 4 of the present invention, and corresponds to FIG. 1 according to Embodiment 1.
  • FIG. 7 is a cross-sectional perspective view of an electromagnetic actuator according to Embodiment 4, and corresponds to FIG. 2 according to Embodiment 1.
  • FIG. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the driving direction is upward as indicated by the arrow in FIG. 6, which is the extension direction of the driving spring.
  • the yoke 2 has an upper yoke 2a, an outer yoke 2b having a tubular magnetic pipe, and a lower yoke 2c having a magnetic material.
  • the fixed iron core 3 and the outer yoke 2b can be connected with good accuracy by fitting by forming the outer yoke 2b of a pipe.
  • variations in the magnetic resistance of the contact portion 8 between the fixed core 3 and the outer yoke 2b can be reduced, and a more stable attractive force can be obtained.
  • Embodiment 5 An electromagnetic actuator according to Embodiment 5 of the present invention will be described below with reference to FIG. 8 is a cross-sectional front view of an electromagnetic actuator according to Embodiment 5, and corresponds to FIG. 4 according to Embodiment 2. FIG. Since other configurations are the same as those of the second embodiment, description thereof is omitted.
  • the fixed core 3 is provided with a second narrow passage portion 7 between the branch magnetic path M3 and the permanent magnet 4.
  • the diameter D2 of the second narrow passage is smaller than the diameter D1 of the permanent magnet 4 .
  • the second narrow passage portion 7 becomes magnetically saturated. Magnetic saturation of the second narrow passage limits the magnetic flux supplied to the magnetic circuit. Therefore, even if the magnetic flux generated by the permanent magnet 4 fluctuates due to thermal demagnetization or the like, the amount of magnetic flux flowing through the attraction magnetic path M2 and the shunt magnetic path M3 does not change.
  • Thermal demagnetization is a phenomenon in which magnetic flux decreases due to fluctuation or reversal of magnetic moment due to thermal vibration when a magnet magnetized at room temperature is exposed to high temperature. As a result, the magnetic attraction force applied to the movable iron core 1 can be further stabilized, and an electromagnetic actuator with stable performance against thermal demagnetization of the magnet can be obtained.
  • Embodiment 6 An electromagnetic actuator according to a sixth embodiment of the present invention will be described below with reference to FIG. 9 is a cross-sectional front view of an electromagnetic actuator according to Embodiment 6, and corresponds to FIG. 4 according to Embodiment 2. FIG. Since other configurations are the same as those of the second embodiment, description thereof is omitted.
  • the stationary core 3 is configured by combining a sub-stationary core 31 and a magnetic ring 32 .
  • the magnetic ring 32 has a hole in the center and is connected by fitting with the protrusion of the sub-stationary core 31 .
  • the sub-stationary core 31 and the magnetic ring 32 have a gap at least partially to form the slit 3a.
  • a first narrow passage portion 3b is formed at a position corresponding to the position of the slit 3a.
  • the magnetic ring 32 is connected to the outer yoke 2b, and the width of the contact portion 8 is larger than the width of the narrow passage portion 3b.
  • the slit 3a is formed and the first narrow passage portion 3b is formed without forming a groove in the fixed core 3 by machining. For this reason, a processing step for carving grooves becomes unnecessary, and processing costs can be reduced. As a result, it is possible to reduce the processing cost and stabilize the suction force at the same time.
  • FIG. 10 is an overall view of an electromagnetic actuator according to Embodiment 7, and corresponds to FIG. 1 according to Embodiment 1.
  • FIG. 10 the coil 5 is not shown. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the fixed core 3 is provided with a hole 3c to form the first narrow passage portion 3b.
  • the hole 3c is a hole provided in a plane perpendicular to the driving direction of the fixed core 3, and extends in a direction parallel to the surface where the fixed core 3 and the outer yoke 2b contact each other.
  • a width W3 of the contact portion 8 where the surface of the fixed core contacts the yoke is larger than a width W4 of the first narrow path portion in the direction parallel to the contact portion 8 . Therefore, the magnetic resistance of the contact portion 8 between the fixed core 3 and the outer yoke 2b can be made sufficiently smaller than the magnetic resistance of the first narrow path portion 3b.
  • the first narrow passage portion 3b can be formed without grooving, processing becomes easier. As a result, it is possible to simultaneously achieve a reduction in processing costs and a stable suction force.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within a consistent range.
  • Second narrow passage 8 Contact portion 31 Substationary iron core 32 Magnetic ring W1 Width of contact portion W2 Width of first narrow passage D1 Diameter of permanent magnet D2 is the diameter of the second narrow path portion, M1 is the common magnetic path, M2 is the attraction magnetic path, and M3 is the shunt magnetic path.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)

Abstract

This electromagnetic actuator comprises: a cylindrical coil (5); a movable core (3) that is disposed circumferentially inward of the coil, projects in the direction of one end of the coil, and is freely movable along the central axis direction of the coil; a fixed core (1) that is disposed on another end side of the coil; a magnetic yoke (2) that is disposed so as to surround the outer periphery of the coil and that makes contact with the fixed core on the inner side; a drive spring (6) that imparts a spring force to the movable core in one direction; and a permanent magnet (4) that generates a magnetic flux for adsorbing the movable core to the fixed core. The fixed core includes a first narrow path portion one end direction of which is narrower than the width in one end direction at a site where the fixed core and the yoke make contact with each other, and during a release operation when the movable core and the fixed become separated, a branch flow magnetic path is generated that passes through the yoke, by way of the first narrow path portion, from the permanent magnet. 

Description

電磁アクチュエータelectromagnetic actuator
 本発明は、永久磁石の磁束により可動鉄心を吸着しコイル励磁によって可動鉄心を釈放する電磁アクチュエータに関する。 The present invention relates to an electromagnetic actuator that attracts a movable core with the magnetic flux of a permanent magnet and releases the movable core with coil excitation.
 配電系統用遮断器では、接点の引外しのために電磁アクチュエータを用いた機構が使われている。この電磁アクチュエータを用いた遮断器は、外部電源によって電磁アクチュエータのコイルが励磁され、電磁アクチュエータの可動鉄心が釈放されることにより機構が動作し、接点の閉極状態を保持するラッチが引外され、接点が開極する。  In distribution system circuit breakers, a mechanism using an electromagnetic actuator is used to trip the contacts. In a circuit breaker using this electromagnetic actuator, the coil of the electromagnetic actuator is excited by an external power supply, and the movable iron core of the electromagnetic actuator is released. , the contact opens.
 電磁アクチュエータの構成を開示した先行文献として、たとえば特開昭61-128436号公報(特許文献1)がある。この電磁アクチュエータは、駆動ばねと、永久磁石と、永久磁石の磁束を打ち消すコイルと、コイル外周を囲うヨークと、可動鉄心と、磁束ダイバータを備える。磁束ダイバータは、ヨークと接続され、永久磁石の磁束の一部をヨークに分流させる役割を担う。 As a prior document disclosing the configuration of an electromagnetic actuator, there is, for example, Japanese Patent Application Laid-Open No. 61-128436 (Patent Document 1). This electromagnetic actuator includes a drive spring, a permanent magnet, a coil that cancels the magnetic flux of the permanent magnet, a yoke that surrounds the coil, a movable iron core, and a magnetic flux diverter. A flux diverter is connected to the yoke and serves to divert a portion of the magnetic flux of the permanent magnet to the yoke.
 可動鉄心が永久磁石にて吸引された状態で保持された状態では、永久磁石の磁束は、可動鉄心の吸着面を通る磁路である吸着磁路を通ることにより、可動鉄心に磁気吸着力が発生する。また、吸着磁路とは、磁気吸着力を生じる磁路である。また、永久磁石の磁束は、可動鉄心の吸着面を通らない磁路である分流磁路を通っている。また、分流磁路とは、磁気吸着力を生じない磁路である。このとき、吸着磁路の磁束と分流磁路の磁束の比は、吸着磁路と分流磁路の磁気抵抗の比によって決まる。 When the movable iron core is held in an attracted state by the permanent magnet, the magnetic flux of the permanent magnet passes through the magnetic attraction magnetic path, which is the magnetic path that passes through the attraction surface of the movable iron core, thereby exerting a magnetic attraction force on the movable iron core. Occur. Also, the attraction magnetic path is a magnetic path that produces a magnetic attraction force. Also, the magnetic flux of the permanent magnet passes through a shunt magnetic path, which is a magnetic path that does not pass through the attracting surface of the movable iron core. A shunt magnetic path is a magnetic path that does not generate a magnetic attraction force. At this time, the ratio of the magnetic flux of the attraction magnetic path and the magnetic flux of the shunt magnetic path is determined by the ratio of the magnetic resistances of the attraction magnetic path and the shunt magnetic path.
 ここで、この吸引状態においてコイルに通電されると、可動鉄心を通る磁束が打ち消され、永久磁石の磁束の多くが分流磁路にバイパスすることで、可動鉄心に加わる磁気吸着力が減じられる。可動鉄心に加わる磁気吸着力が駆動ばねのばね力を下回ることで、可動鉄心が釈放され、駆動される。 Here, when the coil is energized in this attraction state, the magnetic flux passing through the movable core is canceled, and most of the magnetic flux of the permanent magnet bypasses the shunt magnetic path, thereby reducing the magnetic attraction force applied to the movable core. When the magnetic attraction force applied to the movable iron core falls below the spring force of the drive spring, the movable iron core is released and driven.
特開昭61-128436号公報JP-A-61-128436
 上記公報の電磁アクチュエータでは、分流磁路の磁気抵抗は、磁束ダイバータの磁路の幅である磁路幅、磁束ダイバータの磁路の長さである磁路長および、磁束ダイバータとヨークの接触部の磁気ギャップによって決まるが、磁束ダイバータとヨークとの接触部の幅が小さいため、磁束ダイバータとヨークの接触部の磁気ギャップのばらつきにより、分流磁路の磁気抵抗のばらつきが大きくなるという問題がある。結果として、吸引保持状態において分流磁路に流れる磁束量がばらつきやすく、可動鉄心の磁気吸引力のばらつきも大きくなるという問題がある。 In the electromagnetic actuator of the above publication, the magnetic resistance of the shunt magnetic path is determined by the magnetic path width, which is the width of the magnetic path of the magnetic flux diverter, the magnetic path length, which is the length of the magnetic path of the magnetic flux diverter, and the contact portion between the magnetic flux diverter and the yoke. However, since the width of the contact portion between the magnetic flux diverter and the yoke is small, there is a problem that the magnetic gap variation at the contact portion between the magnetic flux diverter and the yoke increases the variation in the reluctance of the shunt magnetic path. . As a result, there is a problem that the amount of magnetic flux flowing through the shunt magnetic path tends to vary in the attracting and holding state, and the magnetic attraction force of the movable iron core also varies greatly.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、分流磁路の磁気抵抗のばらつきを低減し、磁気吸引力のばらつきが小さい電磁アクチュエータを提供することである。 The present invention has been made in view of the above problems, and its object is to reduce variations in the magnetic resistance of the shunt magnetic path and to provide an electromagnetic actuator with small variations in the magnetic attraction force.
 本発明に基づく電磁アクチュエータは、筒状のコイルと、コイルの内周側に配置され、コイルの一端方向へ突出し、コイルの中心軸方向に沿って可動自在な可動鉄心と、コイルのもう一端側に配置される固定鉄心と、コイルの外周を囲んで配置され、内側で固定鉄心と接触する磁性体のヨークと、可動鉄心を一端方向へばね力を印加する駆動ばねと、可動鉄心を固定鉄心に吸着する磁束を発生する永久磁石とを備え、固定鉄心は、固定鉄心とヨークとが接触する部位の一端方向の幅より、その一端方向が狭い第一の狭路部を有する。 An electromagnetic actuator according to the present invention includes a cylindrical coil, a movable iron core disposed on the inner peripheral side of the coil, protruding toward one end of the coil and movable along the central axis of the coil, and the other end of the coil. a magnetic yoke that surrounds the outer periphery of the coil and is in contact with the fixed core on the inside; a drive spring that applies a spring force toward one end of the movable core; The fixed core has a first narrow passage portion whose one end direction is narrower than the one end direction width of the portion where the fixed core and the yoke come into contact with each other.
 本発明に基づく電磁アクチュエータによれば、分流磁路に狭路部を有し、分流磁路における固定鉄心とヨークの接触部の幅が狭路部の幅より大きいため、分流磁路において固定鉄心とヨークの接触部における磁気抵抗よりも狭路部の磁気抵抗が大きい。このため、分流磁路の磁気抵抗のばらつきが軽減され、磁気吸引力のばらつきが軽減される。これにより、安定した性能の電磁アクチュエータを得ることができる。 According to the electromagnetic actuator according to the present invention, the shunt magnetic path has a narrow path, and the width of the contact portion between the fixed core and the yoke in the shunt magnetic path is larger than the width of the narrow path. The magnetic resistance at the narrow path is greater than that at the contact between the yoke and the yoke. Therefore, variations in the magnetic resistance of the shunt magnetic path are reduced, and variations in the magnetic attractive force are reduced. This makes it possible to obtain an electromagnetic actuator with stable performance.
実施の形態1にかかる電磁アクチュエータの全体図である。1 is an overall view of an electromagnetic actuator according to Embodiment 1; FIG. 実施の形態1にかかる電磁アクチュエータの断面斜視図である。1 is a cross-sectional perspective view of an electromagnetic actuator according to a first embodiment; FIG. 実施の形態1にかかる電磁アクチュエータの断面正面図である。1 is a cross-sectional front view of an electromagnetic actuator according to a first embodiment; FIG. 実施の形態2にかかる電磁アクチュエータの断面正面図である。FIG. 7 is a cross-sectional front view of an electromagnetic actuator according to a second embodiment; 実施の形態3にかかる電磁アクチュエータの断面正面図である。FIG. 11 is a cross-sectional front view of an electromagnetic actuator according to a third embodiment; 実施の形態4にかかる電磁アクチュエータの全体図である。FIG. 11 is an overall view of an electromagnetic actuator according to a fourth embodiment; FIG. 実施の形態4にかかる電磁アクチュエータの断面斜視図である。FIG. 11 is a cross-sectional perspective view of an electromagnetic actuator according to a fourth embodiment; 実施の形態5にかかる電磁アクチュエータの断面正面図である。FIG. 11 is a cross-sectional front view of an electromagnetic actuator according to a fifth embodiment; 実施の形態6にかかる電磁アクチュエータの断面正面図である。FIG. 11 is a cross-sectional front view of an electromagnetic actuator according to a sixth embodiment; 実施の形態7にかかる電磁アクチュエータの全体図である。FIG. 11 is an overall view of an electromagnetic actuator according to Embodiment 7;
 以下、本発明の実施の形態に係る電磁アクチュエータについて図面を参照して説明する。以下の実施の形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 An electromagnetic actuator according to an embodiment of the present invention will be described below with reference to the drawings. In the following description of the embodiments, the same reference numerals are given to the same or corresponding parts in the drawings, and the description thereof will not be repeated.
実施の形態1.
 図1は、実施の形態1にかかる電磁アクチュエータの全体外形図である。図2は、実施の形態1にかかる電磁アクチュエータの断面斜視図である。図3は、実施の形態1にかかる電磁アクチュエータの断面正面図である。
Embodiment 1.
FIG. 1 is an overall outline view of an electromagnetic actuator according to Embodiment 1. FIG. 2 is a cross-sectional perspective view of the electromagnetic actuator according to the first embodiment. FIG. 3 is a cross-sectional front view of the electromagnetic actuator according to the first embodiment. FIG.
 電磁アクチュエータは、コイル5の中心軸方向に沿って可動自在な可動鉄心1と、ヨーク2と、固定鉄心3と、永久磁石4と、コイル5と、駆動ばね6とを備える。ヨーク2は、コイル5を囲うように配置されており、可動鉄心1と固定鉄心3と永久磁石4とともに磁気回路を形成する。可動鉄心1は、コイル5の内周側に配置され、コイル5の一端方向へ突出し、コイル5の中心軸方向に沿って可動自在である。ヨーク2は、上部ヨーク2aと、外周ヨーク2bとを有する。電磁アクチュエータの磁気回路は、吸着磁路M2と、分流磁路M3とを有する。吸着磁路M2は、永久磁石4と固定鉄心3と可動鉄心1と上部ヨーク2aと外周ヨーク2bとを通る。分流磁路M3は、永久磁石4と固定鉄心3と外周ヨーク2bとを通り、可動鉄心1を通らずに固定鉄心3から外周ヨーク2bにバイパスする。また、吸着磁路M2と分流磁路M3とが共通する磁路を共通磁路M1として図に示す。共通磁路M1は、磁路として閉じるものではない。 The electromagnetic actuator includes a movable core 1 movable along the central axis of the coil 5, a yoke 2, a fixed core 3, a permanent magnet 4, a coil 5, and a drive spring 6. The yoke 2 is arranged so as to surround the coil 5 and forms a magnetic circuit together with the movable core 1, the fixed core 3 and the permanent magnet 4. The movable iron core 1 is arranged on the inner peripheral side of the coil 5 , protrudes toward one end of the coil 5 , and is movable along the central axis direction of the coil 5 . The yoke 2 has an upper yoke 2a and an outer yoke 2b. The magnetic circuit of the electromagnetic actuator has an attraction magnetic path M2 and a shunt magnetic path M3. The attraction magnetic path M2 passes through the permanent magnet 4, the fixed core 3, the movable core 1, the upper yoke 2a and the outer yoke 2b. The branch magnetic path M3 passes through the permanent magnet 4, the fixed core 3, and the outer yoke 2b, and bypasses the fixed core 3 to the outer yoke 2b without passing through the movable core 1. Also, the magnetic path in which the attracting magnetic path M2 and the shunt magnetic path M3 are common is shown in the drawing as a common magnetic path M1. The common magnetic path M1 is not closed as a magnetic path.
 電磁アクチュエータの吸引保持状態では、可動鉄心1は、吸着磁路M2の磁束による磁気吸引力により、固定鉄心3に吸着された状態となる。永久磁石4の発生する磁束は、吸着磁路M2の磁気抵抗と、分流磁路M3の磁気抵抗とによって分配される。 In the attracting and holding state of the electromagnetic actuator, the movable iron core 1 is in a state of being attracted to the fixed iron core 3 by the magnetic attraction force due to the magnetic flux of the attracting magnetic path M2. The magnetic flux generated by the permanent magnet 4 is divided by the magnetic resistance of the attracting magnetic path M2 and the magnetic resistance of the shunt magnetic path M3.
 コイル5は、ボビン5aとコイル巻線5bとを有する。 The coil 5 has a bobbin 5a and a coil winding 5b.
 駆動ばね6は、吸引保持状態において、可動鉄心1に加わる磁気吸引力と逆向きの力を印加するよう設置される。吸引保持状態においては、可動鉄心1に加わる磁気吸引力は駆動ばね6のばねの弾性力よりも大きく、可動鉄心1は固定鉄心3に吸着された状態となっている。 The drive spring 6 is installed so as to apply a force in the opposite direction to the magnetic attraction force applied to the movable iron core 1 in the attracting and holding state. In the attracting and holding state, the magnetic attraction force applied to the movable iron core 1 is greater than the elastic force of the drive spring 6 , and the movable iron core 1 is attracted to the fixed iron core 3 .
 可動鉄心1を釈放する動作の際は、以下の流れとなる。まず、コイル5に通電されることにより、吸着磁路M2を通る永久磁石4による磁束が打ち消され、永久磁石4の発生する磁束が分流磁路M3にバイパスされる。これにより、可動鉄心1に加わる磁気吸引力が減じ、磁気吸引力が駆動ばね6のばね力を下回る。このため、可動鉄心1がばね力により、図1、図2、および図3における上方向に駆動される。つまり、駆動方向は図1で示す矢印のように上方向であり、駆動ばねの延伸方向である。また、駆動方向はコイル5の一端方向である。上記の動作により、可動鉄心1は釈放される。言いかえると、可動鉄心1と固定鉄心3とが解離する釈放動作時には、永久磁石4から第一の狭路部を経由し、外周ヨーク2bを通る分流磁路M3が発生する。 The flow for releasing the movable core 1 is as follows. First, when the coil 5 is energized, the magnetic flux generated by the permanent magnet 4 passing through the attracting magnetic path M2 is canceled, and the magnetic flux generated by the permanent magnet 4 is bypassed to the shunt magnetic path M3. As a result, the magnetic attraction force applied to the movable iron core 1 is reduced, and the magnetic attraction force falls below the spring force of the drive spring 6 . Therefore, the movable iron core 1 is driven upward in FIGS. 1, 2 and 3 by the spring force. That is, the driving direction is the upward direction as indicated by the arrow in FIG. 1, which is the extension direction of the driving spring. Further, the driving direction is the one end direction of the coil 5 . The above operation releases the movable core 1 . In other words, during the releasing operation in which the movable core 1 and the fixed core 3 are separated, a shunt magnetic path M3 is generated from the permanent magnet 4 through the first narrow path portion and the outer yoke 2b.
 ここで、図3に示すように、固定鉄心3の分流磁路M3をなす部分に、固定鉄心3に設けられた空隙であるスリット3aが設けられ、第一の狭路部3bが形成されている。スリット3aは、固定鉄心の駆動方向の幅を減じるように設けられている。なお、スリット3aは、固定鉄心3に溝を彫ることにより形成してもよいし、固定鉄心3に穴を開けることにより形成してもよい。スリット3aは、固定鉄心3の外周を曲げることにより形成してもよい。 Here, as shown in FIG. 3, a slit 3a, which is an air gap provided in the fixed core 3, is provided in a portion forming the shunt magnetic path M3 of the fixed core 3, and a first narrow path portion 3b is formed. there is The slit 3a is provided so as to reduce the width of the fixed core in the driving direction. The slits 3 a may be formed by cutting grooves in the fixed core 3 or by drilling holes in the fixed core 3 . The slit 3a may be formed by bending the outer circumference of the fixed core 3. As shown in FIG.
 第一の狭路部3bは、磁気飽和することで磁気抵抗の高い部位となる。固定鉄心3と外周ヨーク2bとの接触部8における駆動方向の幅W1は、スリット3aとして駆動方向の幅が減じられた第一の狭路部の幅W2より大きい。このため、固定鉄心3と外周ヨーク2bの接触部8の磁気抵抗は、第一の狭路部3bの磁気抵抗に比べて十分に小さくとることができる。したがって、分流磁路M3の磁気抵抗は、主に第一の狭路部3bの磁気抵抗によって規定される。これにより、固定鉄心3と外周ヨーク2bの接触面のばらつきによる接触部8の磁気抵抗のばらつきが分流磁路の磁気抵抗へ与える影響を小さくすることができる。また、第一の狭路部3bの磁気抵抗は、第一の狭路部3bの長さG1によって規定することができる。 The first narrow passage portion 3b becomes a portion with high magnetic resistance due to magnetic saturation. Width W1 in the drive direction at contact portion 8 between fixed core 3 and outer yoke 2b is larger than width W2 of the first narrow path portion of which the width in the drive direction is reduced as slit 3a. Therefore, the magnetic resistance of the contact portion 8 between the fixed core 3 and the outer yoke 2b can be made sufficiently smaller than the magnetic resistance of the first narrow path portion 3b. Therefore, the magnetic resistance of the shunt magnetic path M3 is mainly defined by the magnetic resistance of the first narrow path portion 3b. As a result, the influence of variations in the magnetic resistance of the contact portion 8 caused by variations in the contact surface between the fixed core 3 and the outer yoke 2b on the magnetic resistance of the shunt magnetic path can be reduced. Further, the magnetic resistance of the first narrow passage portion 3b can be defined by the length G1 of the first narrow passage portion 3b.
 これにより、分流磁路M3の磁気抵抗のばらつきを低減し、吸引保持状態における磁気吸引力を安定させることができる。 As a result, it is possible to reduce variations in the magnetic resistance of the shunt magnetic path M3 and stabilize the magnetic attraction force in the attraction and holding state.
実施の形態2.
 以下、本発明の実施の形態2にかかる電磁アクチュエータについて、図4を参照して説明する。図4は、本発明の実施の形態2における電磁アクチュエータの断面正面図であり、実施の形態1における図3に対応する。その他の構成については実施の形態1と同様であるため、説明を省略する。
Embodiment 2.
An electromagnetic actuator according to a second embodiment of the present invention will be described below with reference to FIG. FIG. 4 is a sectional front view of an electromagnetic actuator according to Embodiment 2 of the present invention, which corresponds to FIG. 3 according to Embodiment 1. FIG. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 図4において、固定鉄心3には、くさび状の溝によりスリット3aが形成されている。くさび状の溝はプレス加工等により簡便に製作することが可能であるため、加工コストの低減と吸引力の安定とを同時に実現することができる。 In FIG. 4, the fixed core 3 is formed with a slit 3a by a wedge-shaped groove. Since the wedge-shaped grooves can be easily manufactured by press working or the like, it is possible to simultaneously realize a reduction in processing cost and a stable suction force.
実施の形態3.
 以下、本発明の実施の形態3にかかる電磁アクチュエータについて、図5を参照して説明する。図5は、本発明の実施の形態3における電磁アクチュエータの断面正面図であり、実施の形態1における図3に対応する。その他の構成については実施の形態1と同様であるため、説明を省略する。
Embodiment 3.
An electromagnetic actuator according to a third embodiment of the present invention will be described below with reference to FIG. 5 is a cross-sectional front view of an electromagnetic actuator according to Embodiment 3 of the present invention, which corresponds to FIG. 3 according to Embodiment 1. FIG. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 図5において、固定鉄心3には、上下両方向からスリット3aが設けられ、第一の狭路部3bが形成される。固定鉄心3は、上下両方向からスリット3aを設けることにより、深さの小さいスリットで第一の狭路部3bを形成することができる。このため、固定鉄心3は、容易な加工が可能になる。これにより、加工コスト低減と吸引力安定とを同時に実現することができる。なお、上述の説明における上下両方向とは、駆動方向を上方向とし、駆動方向の逆方向を下方向としての方向である。 In FIG. 5, the fixed core 3 is provided with slits 3a from both upper and lower directions to form a first narrow passage portion 3b. By providing slits 3a from both the upper and lower sides of the fixed core 3, it is possible to form the first narrow passage portion 3b with a slit having a small depth. Therefore, the fixed core 3 can be easily processed. As a result, it is possible to simultaneously achieve a reduction in processing costs and a stable suction force. It should be noted that both the vertical direction in the above description is the direction in which the driving direction is the upward direction and the direction opposite to the driving direction is the downward direction.
実施の形態4.
 以下、本発明の実施の形態4にかかる電磁アクチュエータについて、図6、図7を参照して説明する。図6は、本発明の実施の形態4における電磁アクチュエータの外形全体図であり、実施の形態1における図1に対応する。図7は、実施の形態4における電磁アクチュエータの断面斜視図であり、実施の形態1における図2に対応する。その他の構成については実施の形態1と同様であるため、説明を省略する。
Embodiment 4.
An electromagnetic actuator according to a fourth embodiment of the present invention will be described below with reference to FIGS. 6 and 7. FIG. FIG. 6 is an overall outline view of an electromagnetic actuator according to Embodiment 4 of the present invention, and corresponds to FIG. 1 according to Embodiment 1. FIG. 7 is a cross-sectional perspective view of an electromagnetic actuator according to Embodiment 4, and corresponds to FIG. 2 according to Embodiment 1. FIG. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 駆動方向は図6で示す矢印のように上方向であり、駆動ばねの延伸方向である。また、図6において、ヨーク2は、上部ヨーク2aと、管状の磁性体であるパイプを有する外周ヨーク2bと、磁性体を有する下部ヨーク2cとを有する。図7において、外周ヨーク2bがパイプで構成されることにより、固定鉄心3と外周ヨーク2bとは嵌めあいにより精度良く接続することができる。これにより、固定鉄心3と外周ヨーク2bとの接触部8の磁気抵抗のばらつきを低減することができ、より安定した吸引力を得ることができる。 The driving direction is upward as indicated by the arrow in FIG. 6, which is the extension direction of the driving spring. 6, the yoke 2 has an upper yoke 2a, an outer yoke 2b having a tubular magnetic pipe, and a lower yoke 2c having a magnetic material. In FIG. 7, the fixed iron core 3 and the outer yoke 2b can be connected with good accuracy by fitting by forming the outer yoke 2b of a pipe. As a result, variations in the magnetic resistance of the contact portion 8 between the fixed core 3 and the outer yoke 2b can be reduced, and a more stable attractive force can be obtained.
実施の形態5.
 以下、本発明の実施の形態5にかかる電磁アクチュエータについて、図8を参照して説明する。図8は、実施の形態5における電磁アクチュエータの断面正面図であり、実施の形態2における図4に対応する。その他の構成については実施の形態2と同様であるため、説明を省略する。
Embodiment 5.
An electromagnetic actuator according to Embodiment 5 of the present invention will be described below with reference to FIG. 8 is a cross-sectional front view of an electromagnetic actuator according to Embodiment 5, and corresponds to FIG. 4 according to Embodiment 2. FIG. Since other configurations are the same as those of the second embodiment, description thereof is omitted.
 図8において、固定鉄心3は、分流磁路M3と永久磁石4との間に、第二の狭路部7を備える。第二の狭路部の直径D2は、永久磁石4の直径D1に比べて小さい。これにより、第二の狭路部7は磁気飽和した状態となる。第二の狭路部が磁気飽和することにより、磁気回路に供給される磁束が制限される。したがって、永久磁石4の発生する磁束が熱減磁等によって変動したとしても、吸着磁路M2および分流磁路M3に流れる磁束の量は変わらない。なお、熱減磁とは、室温で着磁した磁石を高温にさらした時、熱振動による磁気モーメントのゆらぎまたは反転によって、磁束が減少する現象のことである。これによって、可動鉄心1に加わる磁気吸引力をさらに安定化することができ、磁石の熱減磁に対して安定した性能の電磁アクチュエータを得ることができる。 In FIG. 8, the fixed core 3 is provided with a second narrow passage portion 7 between the branch magnetic path M3 and the permanent magnet 4. The diameter D2 of the second narrow passage is smaller than the diameter D1 of the permanent magnet 4 . As a result, the second narrow passage portion 7 becomes magnetically saturated. Magnetic saturation of the second narrow passage limits the magnetic flux supplied to the magnetic circuit. Therefore, even if the magnetic flux generated by the permanent magnet 4 fluctuates due to thermal demagnetization or the like, the amount of magnetic flux flowing through the attraction magnetic path M2 and the shunt magnetic path M3 does not change. Thermal demagnetization is a phenomenon in which magnetic flux decreases due to fluctuation or reversal of magnetic moment due to thermal vibration when a magnet magnetized at room temperature is exposed to high temperature. As a result, the magnetic attraction force applied to the movable iron core 1 can be further stabilized, and an electromagnetic actuator with stable performance against thermal demagnetization of the magnet can be obtained.
実施の形態6.
 以下、本発明の実施の形態6にかかる電磁アクチュエータについて、図9を参照して説明する。図9は、実施の形態6における電磁アクチュエータの断面正面図であり、実施の形態2における図4に対応する。その他の構成については実施の形態2と同様であるため、説明を省略する。
Embodiment 6.
An electromagnetic actuator according to a sixth embodiment of the present invention will be described below with reference to FIG. 9 is a cross-sectional front view of an electromagnetic actuator according to Embodiment 6, and corresponds to FIG. 4 according to Embodiment 2. FIG. Since other configurations are the same as those of the second embodiment, description thereof is omitted.
 図9において、固定鉄心3は、副固定鉄心31と、磁性体リング32との組み合わせによって構成される。磁性体リング32は中央に穴を有し、副固定鉄心31の突起部との嵌めあいによって連結される。副固定鉄心31と磁性体リング32とは、少なくとも一部に隙間を有し、スリット3aを形成する。磁性体リング32において、スリット3aの位置に対応する位置に第一の狭路部3bが形成される。また、磁性体リング32は、外周ヨーク2bと接続され、その接触部8の幅は、狭路部3bの幅に比べて大きい。 In FIG. 9, the stationary core 3 is configured by combining a sub-stationary core 31 and a magnetic ring 32 . The magnetic ring 32 has a hole in the center and is connected by fitting with the protrusion of the sub-stationary core 31 . The sub-stationary core 31 and the magnetic ring 32 have a gap at least partially to form the slit 3a. In the magnetic ring 32, a first narrow passage portion 3b is formed at a position corresponding to the position of the slit 3a. Further, the magnetic ring 32 is connected to the outer yoke 2b, and the width of the contact portion 8 is larger than the width of the narrow passage portion 3b.
 この構成により、加工により固定鉄心3に溝を設けることなく、スリット3aが形成され、第一の狭路部3bが形成される。このため、溝を彫る加工工程が不要になり、加工コスト低減を図ることができる。これにより、加工コスト低減と吸引力安定を同時に実現することができる。 With this configuration, the slit 3a is formed and the first narrow passage portion 3b is formed without forming a groove in the fixed core 3 by machining. For this reason, a processing step for carving grooves becomes unnecessary, and processing costs can be reduced. As a result, it is possible to reduce the processing cost and stabilize the suction force at the same time.
実施の形態7.
 以下、本発明の実施の形態7にかかる電磁アクチュエータについて、図10を参照して説明する。図10は、実施の形態7における電磁アクチュエータの全体図であり、実施の形態1における図1に対応する。ここで、コイル5は図示していない。その他の構成については実施の形態1と同様であるため、説明を省略する。
Embodiment 7.
An electromagnetic actuator according to Embodiment 7 of the present invention will be described below with reference to FIG. FIG. 10 is an overall view of an electromagnetic actuator according to Embodiment 7, and corresponds to FIG. 1 according to Embodiment 1. FIG. Here, the coil 5 is not shown. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 図10において、固定鉄心3に穴3cが設けられることにより、第一の狭路部3bが形成される。穴3cは、固定鉄心3の駆動方向に対して垂直な平面に設けられた穴であり、固定鉄心3と外周ヨーク2bとが接する面と平行な方向に延伸している。固定鉄心の表面とヨークとが接触する接触部8の幅W3は、接触部8と平行な方向の第一の狭路部の幅W4に比べて大きい。このため、固定鉄心3と外周ヨーク2bの接触部8の磁気抵抗は、第一の狭路部3bの磁気抵抗に比べて十分に小さくとることができる。また、溝加工を施すことなく第一の狭路部3bを形成することができるため、加工が容易になる。これにより、加工コスト低減と吸引力安定とを同時に実現することができる。 In FIG. 10, the fixed core 3 is provided with a hole 3c to form the first narrow passage portion 3b. The hole 3c is a hole provided in a plane perpendicular to the driving direction of the fixed core 3, and extends in a direction parallel to the surface where the fixed core 3 and the outer yoke 2b contact each other. A width W3 of the contact portion 8 where the surface of the fixed core contacts the yoke is larger than a width W4 of the first narrow path portion in the direction parallel to the contact portion 8 . Therefore, the magnetic resistance of the contact portion 8 between the fixed core 3 and the outer yoke 2b can be made sufficiently smaller than the magnetic resistance of the first narrow path portion 3b. In addition, since the first narrow passage portion 3b can be formed without grooving, processing becomes easier. As a result, it is possible to simultaneously achieve a reduction in processing costs and a stable suction force.
 なお、本発明は、矛盾のない範囲内において、各実施の形態の内容を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 It should be noted that, in the present invention, the contents of each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within a consistent range.
 1 可動鉄心、2 ヨーク、2a 上部ヨーク、2b 外周ヨーク、2c 下部ヨーク、3 固定鉄心、3a スリット、3b 第一の狭路部、3c 穴、4 永久磁石、5 コイル、5a ボビン、5b コイル巻線、6 駆動ばね、7 第二の狭路部、8 接触部、31 副固定鉄心、32 磁性体リング、W1 接触部の幅、W2 第一の狭路部の幅、D1 永久磁石の直径、D2 第二の狭路部の直径、M1 共通磁路、M2 吸着磁路、M3 分流磁路。

                  
1 movable iron core 2 yoke 2a upper yoke 2b outer yoke 2c lower yoke 3 fixed iron core 3a slit 3b first narrow passage portion 3c hole 4 permanent magnet 5 coil 5a bobbin 5b coil winding Wire 6 Drive spring 7 Second narrow passage 8 Contact portion 31 Substationary iron core 32 Magnetic ring W1 Width of contact portion W2 Width of first narrow passage D1 Diameter of permanent magnet D2 is the diameter of the second narrow path portion, M1 is the common magnetic path, M2 is the attraction magnetic path, and M3 is the shunt magnetic path.

Claims (9)

  1.  筒状のコイルと、
     前記コイルの内周側に配置され、前記コイルの一端方向へ突出し、前記コイルの中心軸方向に沿って可動自在な可動鉄心と、
     前記コイルのもう一端側に配置される固定鉄心と、
     前記コイルの外周を囲んで配置され、内側で前記固定鉄心と接触する磁性体のヨークと、
     前記可動鉄心に対して前記一端方向へばね力を印加する駆動ばねと、
     前記可動鉄心と前記固定鉄心とを吸着させるための磁束を発生する永久磁石とを備え、
     前記固定鉄心は、前記固定鉄心と前記ヨークとが接触する部位の前記一端方向の幅より、その前記一端方向の幅が狭い第一の狭路部を有し、
     前記可動鉄心と前記固定鉄心とが解離する釈放動作時には、前記永久磁石から前記第一の狭路部を経由し、前記ヨークを通る分流磁路が発生する
    ことを特徴とする電磁アクチュエータ。
    a tubular coil;
    a movable iron core disposed on the inner peripheral side of the coil, protruding toward one end of the coil, and movable along the central axis direction of the coil;
    a fixed iron core arranged on the other end side of the coil;
    a magnetic yoke that surrounds the outer periphery of the coil and is in contact with the fixed core on the inner side;
    a drive spring that applies a spring force to the movable iron core in the direction of the one end;
    A permanent magnet that generates a magnetic flux for attracting the movable core and the fixed core,
    The fixed core has a first narrow passage portion whose width in the one end direction is narrower than the width in the one end direction of the portion where the fixed core and the yoke contact,
    An electromagnetic actuator according to claim 1, wherein a shunt magnetic path is generated from said permanent magnet via said first narrow path portion and passing through said yoke during a release operation in which said movable core and said fixed core are separated from each other.
  2.  前記分流磁路は、前記永久磁石と前記固定鉄心と前記ヨークとを通り、かつ前記可動鉄心を通らない磁路である
    ことを特徴とする請求項1に記載の電磁アクチュエータ。
    2. The electromagnetic actuator according to claim 1, wherein the shunt magnetic path is a magnetic path that passes through the permanent magnet, the fixed core, and the yoke, but does not pass through the movable core.
  3.  前記第一の狭路部は、前記固定鉄心に溝または穴を設けることにより形成される
    ことを特徴とする請求項1または2に記載の電磁アクチュエータ。
    3. The electromagnetic actuator according to claim 1, wherein said first narrow passage portion is formed by providing a groove or hole in said fixed iron core.
  4.  前記第一の狭路部は、前記固定鉄心にくさび状の溝を設けることにより形成される
    ことを特徴とする請求項1または2に記載の電磁アクチュエータ。
    3. The electromagnetic actuator according to claim 1, wherein said first narrow passage portion is formed by providing a wedge-shaped groove in said fixed core.
  5.  前記第一の狭路部は、前記固定鉄心に対して駆動方向を上下方向として上下両側から溝を設けることにより形成される
    ことを特徴とする請求項1または2に記載の電磁アクチュエータ。
    3. The electromagnetic actuator according to claim 1, wherein the first narrow passage portion is formed by forming grooves from both upper and lower sides of the fixed iron core with the driving direction being the vertical direction.
  6.  前記ヨークは、上部ヨークと、管状の磁性体であるパイプを有する外周ヨークと、磁性体を有する下部ヨークを有し、
     前記固定鉄心と前記外周ヨークとは、嵌め合いにより接続される
    ことを特徴とする請求項1から5のいずれか一項に記載の電磁アクチュエータ。
    The yoke has an upper yoke, an outer yoke having a tubular magnetic material pipe, and a lower yoke having a magnetic material,
    The electromagnetic actuator according to any one of claims 1 to 5, wherein the fixed core and the outer yoke are connected by fitting.
  7.  前記固定鉄心は、前記分流磁路と前記永久磁石との間に、第二の狭路部を有し、
     前記第二の狭路部の直径は、前記永久磁石の直径に比べて小さい
    ことを特徴とする請求項1から6のいずれか一項に記載の電磁アクチュエータ。
    The fixed core has a second narrow path portion between the shunt magnetic path and the permanent magnet,
    The electromagnetic actuator according to any one of claims 1 to 6, wherein the diameter of the second narrow passage portion is smaller than the diameter of the permanent magnet.
  8.  筒状のコイルと、
     前記コイルの内周側に配置され、前記コイルの一端方向へ突出し、前記コイルの中心軸方向に沿って可動自在な可動鉄心と、
     前記コイルのもう一端側に配置される固定鉄心と、
     前記コイルの外周を囲んで配置され、内側で前記固定鉄心と接触する磁性体のヨークと、
     前記可動鉄心を前記一端方向へばね力を印加する駆動ばねと、
     前記可動鉄心を前記固定鉄心に吸着する磁束を発生する永久磁石とを備え、
     前記磁性体リングは、前記副固定鉄心の突起部との嵌め合いによって第一の狭路部を形成し、
     前記接触部の駆動方向の幅は、前記第一の狭路部の駆動方向の幅に比べて大きい
    ことを特徴とする電磁アクチュエータ。
    a tubular coil;
    a movable iron core disposed on the inner peripheral side of the coil, protruding toward one end of the coil, and movable along the central axis direction of the coil;
    a fixed iron core arranged on the other end side of the coil;
    a magnetic yoke that surrounds the outer periphery of the coil and is in contact with the fixed core on the inner side;
    a drive spring that applies a spring force toward the one end of the movable iron core;
    a permanent magnet that generates a magnetic flux that attracts the movable core to the fixed core;
    The magnetic ring forms a first narrow passage portion by being fitted with the projection portion of the sub-stationary core,
    The electromagnetic actuator, wherein the width of the contact portion in the driving direction is greater than the width of the first narrow path portion in the driving direction.
  9.  筒状のコイルと、
     前記コイルの内周側に配置され、前記コイルの一端方向へ突出し、前記コイルの中心軸方向に沿って可動自在な可動鉄心と、
     前記コイルのもう一端側に配置される固定鉄心と、
     前記コイルの外周を囲んで配置され、内側で前記固定鉄心と接触する磁性体のヨークと、
     前記可動鉄心を前記一端方向へばね力を印加する駆動ばねと、
     前記可動鉄心を前記固定鉄心に吸着する磁束を発生する永久磁石とを備え、
     前記固定鉄心は、第一の狭路部を有し、
     前記第一の狭路部は、前記コイルの中心軸方向に対して垂直な平面に設けられ、前記固定鉄心の表面と前記ヨークとが接触する接触部と平行な方向に延伸した穴を設けることにより形成され、前記固定鉄心の表面と前記ヨークとが接触する接触部における前記平行な方向の幅より、その前記平行な方向の幅が小さい
    ことを特徴とする電磁アクチュエータ。

                      
    a tubular coil;
    a movable iron core disposed on the inner peripheral side of the coil, protruding toward one end of the coil, and movable along the central axis direction of the coil;
    a fixed iron core arranged on the other end side of the coil;
    a magnetic yoke that surrounds the outer periphery of the coil and is in contact with the fixed core on the inner side;
    a drive spring that applies a spring force toward the one end of the movable iron core;
    a permanent magnet that generates a magnetic flux that attracts the movable core to the fixed core;
    The fixed core has a first narrow passage,
    The first narrow path portion is provided on a plane perpendicular to the direction of the central axis of the coil, and is provided with a hole extending in a direction parallel to a contact portion where the surface of the fixed core and the yoke contact each other. wherein the width in the parallel direction is smaller than the width in the parallel direction at the contact portion where the surface of the fixed iron core and the yoke are in contact with each other.

PCT/JP2021/012335 2021-03-24 2021-03-24 Electromagnetic actuator WO2022201373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/012335 WO2022201373A1 (en) 2021-03-24 2021-03-24 Electromagnetic actuator
JP2023508271A JP7435899B2 (en) 2021-03-24 2021-03-24 electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012335 WO2022201373A1 (en) 2021-03-24 2021-03-24 Electromagnetic actuator

Publications (1)

Publication Number Publication Date
WO2022201373A1 true WO2022201373A1 (en) 2022-09-29

Family

ID=83396619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012335 WO2022201373A1 (en) 2021-03-24 2021-03-24 Electromagnetic actuator

Country Status (2)

Country Link
JP (1) JP7435899B2 (en)
WO (1) WO2022201373A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126531U (en) * 1973-02-28 1974-10-30
JPS61128436A (en) * 1984-11-22 1986-06-16 メルラン、ジエラン Polar electrode relay held magnetically
WO2011033654A1 (en) * 2009-09-18 2011-03-24 三菱電機株式会社 Releasing type electromagnet device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126531U (en) * 1973-02-28 1974-10-30
JPS61128436A (en) * 1984-11-22 1986-06-16 メルラン、ジエラン Polar electrode relay held magnetically
WO2011033654A1 (en) * 2009-09-18 2011-03-24 三菱電機株式会社 Releasing type electromagnet device

Also Published As

Publication number Publication date
JP7435899B2 (en) 2024-02-21
JPWO2022201373A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP4734766B2 (en) Magnet movable electromagnetic actuator
US20070257756A1 (en) Electromagnetic Actuator
JPH03761B2 (en)
US4940958A (en) Polarized electromagnetic apparatus
US4835503A (en) Linear proportional solenoid
JP6658405B2 (en) Electromagnetic drive
JP5124048B2 (en) Release-type electromagnet device
JP2018142529A (en) Electromagnetic relay
WO2022201373A1 (en) Electromagnetic actuator
US2899037A (en) pierce
JP6469325B1 (en) Electromagnetic actuator and hydraulic adjustment mechanism
JP2007258150A (en) Release type electromagnetic device
WO2018030053A1 (en) Solenoid actuator
JP2017169433A (en) Systems and methods for electromagnetic actuator
US3559129A (en) Adjustable electromagnetic relay
JP6554492B2 (en) solenoid
JP2022133913A (en) Bidirectional actuator
JP4328185B2 (en) electromagnet
JPH0246707A (en) Electromagnet
WO2022070444A1 (en) Actuator
JP2002025819A (en) Magnetic force type attraction device using hybrid magnet
JP2023167540A (en) solenoid
JP4052585B2 (en) Plunger
JP2000097267A (en) Armature structure of permanent magnet non-excitation operation type electromagnetic brake
JPS6310595Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932983

Country of ref document: EP

Kind code of ref document: A1