WO2022198840A1 - 模拟隧道工程***的脉冲声源及***噪声测试装置和方法 - Google Patents

模拟隧道工程***的脉冲声源及***噪声测试装置和方法 Download PDF

Info

Publication number
WO2022198840A1
WO2022198840A1 PCT/CN2021/105886 CN2021105886W WO2022198840A1 WO 2022198840 A1 WO2022198840 A1 WO 2022198840A1 CN 2021105886 W CN2021105886 W CN 2021105886W WO 2022198840 A1 WO2022198840 A1 WO 2022198840A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
tunnel
blasting
detonator
noise
Prior art date
Application number
PCT/CN2021/105886
Other languages
English (en)
French (fr)
Inventor
王海亮
赵琛
闫莎莎
于建新
徐新强
张勇
张文明
李晨睿
周华荣
郭守坤
王海涛
Original Assignee
山东科技大学
青岛市政空间开发责任有限公司
陕西陕煤韩城矿业有限公司桑树坪煤矿
河南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学, 青岛市政空间开发责任有限公司, 陕西陕煤韩城矿业有限公司桑树坪煤矿, 河南理工大学 filed Critical 山东科技大学
Publication of WO2022198840A1 publication Critical patent/WO2022198840A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/227Explosives, e.g. combustive properties thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests

Definitions

  • the invention relates to the technical field of sound wave simulation measurement of blasting noise in tunnel engineering, in particular to a pulse sound source and explosion noise testing device for simulating urban tunnel engineering blasting, and a testing method for explosion noise.
  • the pulse sound wave caused by the explosion of the explosive produces noise disturbance, which has an impact on the surrounding environment of the construction.
  • the methods to control the noise caused by blasting in tunnel engineering include: strengthening the coverage of blasting quilts or steel plates in the blasting area, setting obstacles or blocking objects (such as anti-noise doors, anti-noise trolleys) on the noise propagation path to block noise transmission, etc.
  • the evaluation methods for the noise reduction and noise reduction effects of these measures include numerical simulation, theoretical calculation, field test and indoor experiment. Numerical simulation and theoretical calculation are difficult to match with the actual field environment, and can only be used as verification aids; the field test is large in scale, high in cost, and will affect the excavation construction.
  • the key to the reliability of the indoor experiment lies in the selection of the sound source of the simulated explosive explosion and the design of the experimental device and method.
  • the Chinese utility model (CN2460966Y) provides a millisecond delay detonator, which transfers the millisecond delay function from the detonator to the generator On the detonator, no less than two delay detonation controllers are set on the detonator. By adjusting the delay control circuit in the delay detonator, the ordinary instant detonator can achieve millisecond delayed detonation.
  • the Chinese invention patent (CN108716985A) provides a sound source simulation measurement device, which is used to simulate the sound source of automobile exhaust noise and measure the noise reduction effect.
  • the Chinese invention patent (CN109238436B) provides a method for measuring the characteristics of transient sound sources in reverberation pools, and proposes to obtain the characteristics of transient sound sources by means of digital signal processing.
  • the Chinese utility model (CN209264108U) provides an assembled model for the experiment of the propagation law of an explosion shock wave in a tunnel.
  • the model is a hollow cuboid formed by connecting four hollow cubes with openings at both ends, which is used to simulate and study the explosion shock wave in the tunnel. the law of propagation.
  • the Chinese invention patent (CN109882211A) provides a sound-absorbing device for tunnel noise elimination, which is used to reduce or eliminate the noise generated by vehicles passing through the tunnel in a short time.
  • Zhao Yueying (Acoustics Technology, 2003, 76-79) made a comparative analysis of the performance of three commonly used experimental sound sources such as balloon burst, electric spark and white noise.
  • Broadband noise source, white noise generated by electro-acoustic system can meet the requirements of steady-state sound field as a sound source.
  • Chen Qingkai (Blasting Equipment, 2008, 37(06), pp. 30 ⁇ 33) collected the characteristic data of explosion noise with a noise data meter, and analyzed the sound pressure waveform, vibration intensity and frequency spectrum of the explosion noise.
  • Afeni Thomas B (Mining Science and Technology, 2009, 19(04), pp. 420-424) collected noise data from explosions in a quarry in Nigeria to predict peak sound pressure levels in surrounding areas.
  • Zhang Jifeng (Criminal Technology, 2018, 43(05), pp. 369-372) simulates blocking the wall by stacking and sealing with sandbags through simulation experiments, and selects TNT explosives with different charges to test the resistance of the simulated wall to explosion noise. break and decay effects.
  • the sound source simulation measurement device provided by the Chinese invention patent (CN108716985A) is used to simulate the exhaust noise of automobiles, and cannot be used to simulate the impulse noise generated by tunnel blasting.
  • the Chinese invention patent (CN109238436B) proposes a method for measuring transient acoustic characteristics by using a reverberation pool, which cannot be used to measure the pulse sound waves generated by the explosion of explosives in the tunnel.
  • the Chinese utility model (CN209264108U) is used to study the propagation law of explosion shock waves in tunnels.
  • the explosion source is the explosion of real explosives, and the research object is shock waves instead of sound waves.
  • This utility model belongs to a medium-scale experimental device, not a simulated experimental device.
  • the Chinese invention patent (CN109882211A) provides a sound-absorbing device for noise reduction in tunnels, but it cannot be used to study the propagation law of explosive noise in tunnels or evaluate the noise reduction effect of noise reduction and noise reduction facilities in tunnels.
  • the balloon is greatly affected by the ambient temperature and pressure, and the acoustic data is unstable and has poor repeatability.
  • white noise has stable and repeatable acoustic signals, it is quite different from the transient impulse acoustic signals produced by explosive explosions. Explosion experiments of explosives carried out outdoors have high safety requirements, and have the disadvantages of poor repeatability and high cost.
  • the present invention provides a simulated sound source with high safety, strong stability and pulse acoustic characteristics, and an explosion noise measurement device and method in the tunnel, which are used to simulate the noise generated by the explosion of explosives in the tunnel, measure and study the noise in the tunnel.
  • the propagation law of blasting noise, and the effect of setting up noise reduction and noise reduction facilities in the tunnel is evaluated.
  • the pulse sound wave generated when the simulated sound source detonates is highly similar to the acoustic characteristics of the explosive explosion noise, has good stability and repeatability, and is safe in experimental operation, low in cost, and easy to implement.
  • the shock wave generated by the explosion of explosives propagates in the air for a certain distance and then attenuates into a pulse sound wave that continues to propagate in the air and causes sound pollution to the surrounding environment.
  • Blasting noise is different from ordinary industrial noise, with high intensity and instantaneous characteristics, accompanied by strong disturbance of air flow. Therefore, to simulate the noise generated by tunnel blasting, it is first necessary to select a pulse sound source with similar pulse sound characteristics to tunnel blasting noise.
  • the generation process of the pulse sound source should be similar to that of blasting noise, which can simulate multi-point initiation in tunnel blasting.
  • the explosion noise test device and test method are further developed.
  • the safety of the pulsed sound source, the stability and repeatability of the pulsed sound wave, the similarity with the sound wave characteristics of the explosive explosion noise, the simulation of multi-point initiation in tunnel blasting, the experimental cost, etc. are the main factors that need to be considered when screening the simulated sound source question.
  • the transient sound source that can simulate the shock wave generated by the explosion of explosives attenuating into pulse sound waves with the propagation distance, and provide a standard sound source with low cost, safe use, convenient operation, good repeatability and stable acoustic characteristics for small-scale model experiments , select a device or product that can generate a pulsed sound source for comparison.
  • Common devices or products that can generate pulsed sound sources include balloons, electric sparks, starting guns, detonators, firecrackers, and detonators.
  • EDM noise has the characteristics of pulse sound wave, but its formation mechanism is different from that of explosive explosion, and the sound wave characteristics are quite different. It is difficult to establish a quantitative relationship between the energy released by the electric spark and the explosive energy.
  • the starting gun the trigger of the starting gun hits the rear of the bullet, which excites the gunpowder in the bullet to explode, producing pulse transient noise with the characteristics of pulse sound waves.
  • the starting gun takes up a lot of space, so it is not suitable to realize automatic control, and it is impossible to simulate the working condition characteristics of tunnel delayed blasting.
  • Firecrackers the pulse sound waves generated by firecrackers are highly similar to the explosion noise of explosives.
  • the acoustic characteristics of the explosion noise are affected by various factors such as the formula of the charge, the amount of charge, the material and thickness of the covering paper shell, and the production process. Even for products of the same manufacturer, the acoustic indicators of explosions are quite different.
  • firecrackers have high requirements on the storage environment, are prone to moisture failure, and the explosion acoustic indicators will change greatly after exposure to moisture.
  • the pulse sound waves generated by the detonation of the detonator are highly similar to the sound waves of the explosion noise of the explosive, but the detonator is an explosive dangerous substance and belongs to the controlled product, which requires higher experiment safety and the qualification of the experiment operator.
  • the explosive power of the detonator is large, which will destroy the experimental device. Its ultra-high noise intensity will exceed the range of acoustic instruments such as common microphones, and it is not suitable for small-scale model tunnel experiments.
  • the pulse sound waves of the explosive explosion can also be formed by recording or computer synthesis.
  • the acoustic characteristics of this kind of sound wave are stable and repeatable, but it cannot simulate the working conditions of multi-point initiation in tunnel blasting, such as the difference in acoustic effects due to the different positions of the blasting holes.
  • recording or computer synthesis also has great difficulties in technology, time and cost for various changes in parameters such as tunnel section size, blast hole location and quantity, and amount of priming charge.
  • the detonator As a common civilian explosive, the detonator itself does not have the danger of explosion, and cannot be detonated under the action of flame and mechanical collision.
  • the production and acceptance of the detonator are strictly controlled by national standards. Its detonation performance is stable, the operation is simple, and the use is safe. It can still maintain stable detonation performance and explosion acoustic characteristics after long-term storage.
  • the excitation and explosion process of the detonator is the stable detonation process of the explosive detonation, which has the basic characteristics of the propagation of the explosive detonation wave.
  • the weak detonation wave At the end of the detonator, the weak detonation wave is attenuated to a weak shock wave, and then the weak shock wave is attenuated to a sound wave.
  • the formation process of the blasting sound wave of the detonator is exactly the same as the formation process of the blasting sound wave of the explosive, that is, it has experienced the attenuation process from the detonation wave to the shock wave and then to the sound wave.
  • the explosion process of detonators is safe, stable and controllable.
  • the detonation wave and shock wave formed by the explosion of the detonator do not harm the personnel, microphones and other precision instruments, experimental molds and experimental equipment, and are especially suitable as a standard simulated sound source for small-scale model tunnel experiments.
  • the present invention proposes to use a detonator to excite the pulse generated by the detonator explosion.
  • the sound wave simulates the pulse sound source of tunnel engineering blasting, and on this basis, the corresponding measuring device and measuring method are invented.
  • the pulsed sound waves generated by the detonator exploding the detonator can be used as the standard sound source for small-scale model tunnel experiments.
  • the blasting noise of different charges in the blasthole can be simulated by adjusting the number of detonators excited at the same blasthole point in the model tunnel at the same time.
  • the use of millisecond delay detonators can simulate the acoustic effects of delayed blasting between blastholes in tunnels.
  • the detonating tubes with lengths of 30cm, 50cm, 70cm, and 110cm are respectively carried out for 5 experiments, and the average value is taken as the length of the detonator when the detonation speed is stable;
  • the burst tube length is 36.29cm.
  • the minimum length of the detonator to reach the stable detonation speed is 36.29cm.
  • the basic length of the detonator should be greater than 36.29cm.
  • the acoustic stability of the explosion noise of the detonator with a length of 50 cm was tested.
  • the sound wave receiving end of the microphone is flush with the installation height of the end of the detonator, and each microphone is connected to the data acquisition instrument through a data cable;
  • a3 Use the detonator to excite the detonator to explode, collect and process the acoustic data of each measuring point by the microphone and the data acquisition device, and obtain the acoustic characteristic curve of the detonator to simulate the explosion of the explosive, including the time-domain characteristic spectrum line and the frequency-domain characteristic Spectral lines and 1/3 octave curves, etc.
  • the present invention provides a pulse sound source and an explosion noise testing device and method for simulating tunnel engineering blasting.
  • the specific technical solutions are as follows.
  • a pulse sound source and an explosion noise test device for simulating tunnel engineering blasting are provided.
  • the explosion noise measurement device includes a model tunnel, a detonator, a detonator, a microphone and a data acquisition instrument.
  • a model tunnel consists of multiple model elements.
  • the model unit consists of a metal sleeve, a lining body, a detection hole, a connecting part and a handle part.
  • the inner lining body is nested inside the metal sleeve, the two ends in the axial direction of the metal sleeve are respectively provided with connecting parts, and the handle parts are symmetrically arranged on the outside of the metal sleeve cylinder.
  • a plurality of the model units are connected by a connecting portion.
  • the initial end of the detonating tube is connected to the detonator, which is excited and detonated by an excitation needle, and the end is connected to the model unit through the metal tube.
  • the microphones are respectively installed on a plurality of model units, and the data acquisition instrument is connected to each microphone through a data cable.
  • the end of the model unit at the end of the model tunnel is provided with a blocking baffle, the blocking baffle is provided with a perforation, and a metal pipe is arranged in the perforation, and the detonating pipe passes through the metal pipe and enters the end block inside of the board.
  • the end of the detonating tube entering the inner side of the end baffle is flush with the end of the metal tube, and the length of the detonating tube is greater than or equal to 50 cm.
  • the blocking baffle is provided with a plurality of perforations, the perforations are respectively equipped with metal pipes, and the plurality of detonating pipes pass through the metal pipes and enter the inner side of the end baffle respectively;
  • the delay detonator is connected to realize the delayed excitation of the detonator through the control of the millisecond delay detonator.
  • the diameters of the perforations provided on the blocking baffle are not identical, the large-diameter perforations are provided with matching large-diameter metal pipes, and two or more detonating tubes pass through the large-diameter metal pipes. ; Simulate the blasting noise produced by different charges in the blast hole by exciting different numbers of detonators in the same large diameter metal tube at the same time.
  • a detection hole is provided above the model unit, the microphone extends into the model unit from the detection hole, and the sound wave receiving end of the microphone is flush with the installation height of the end of the detonator.
  • the cross-sectional inner wall of the model unit is in the shape of a rectangle, a semicircular arch, a trapezoid, a circle or a horseshoe.
  • plug-in units are arranged between the model units.
  • the plug-in unit is composed of a plug-in metal sleeve, a plug-in lining body, a test unit, a connecting part and a handle part.
  • the test unit is located inside the plug-in unit.
  • the test unit is the sound-absorbing and noise-reducing material or device to be measured.
  • the inserting lining body is nested inside the inserting metal sleeve, the inserting metal sleeve and the inserting lining body are provided with inserting holes; the testing unit is provided with inserting screws, and the inserting screws It is inserted into the socket hole and connected with the socket metal sleeve by bolts.
  • a buffer or noise-absorbing pad is provided between adjacent model units, between adjacent model units and the plug-in unit, between the metal sleeve and the lining body, and between the plug-in metal sleeve and the lining body.
  • An explosion noise measurement method for simulating tunnel engineering blasting using the above-mentioned pulse sound source and explosion noise testing device for simulating tunnel engineering blasting, the steps include:
  • a blocking baffle is set at the end of the model unit at the end of the model tunnel, and perforations are set on the blocking baffle, and the metal pipe enters the model unit at the end through the perforation;
  • the plug-in units are fixed with connectors between the selected model units to form a model tunnel with the plug-in units.
  • the plug-in unit is composed of a plug-in metal sleeve, a plug-in lining body, a test unit, a connecting part and a handle part.
  • the test unit is located inside the plug-in unit.
  • the test unit is the noise reduction material or device that needs to be measured;
  • Steps S4 to S6 are repeated to obtain the acoustic characteristic data and curve of the noise of the explosive explosion simulated by the detonator after passing through the test unit, and the noise reduction and noise reduction effect of the test unit is judged.
  • the present invention provides an alternative pulse sound source for simulating the explosion noise of explosives, that is, the detonator excites the pulse sound wave generated by the explosion of the detonator, and the minimum length of the detonator of the experimental standard sound source is determined as: 50cm, which can be used as a standard sound source for studying the explosion noise of explosives and evaluating the effectiveness of noise reduction and noise reduction facilities in this professional field.
  • the pulse sound wave generated by the detonator to excite the detonating tube explosion is similar to the acoustic characteristics of the explosive explosion noise.
  • As a sound source for simulating blasting in tunnel engineering it has the advantages of stable acoustic characteristics, repeatable reproduction, safe operation and low cost.
  • the model tunnel provided by the present invention is provided with a tunnel lining body.
  • a tunnel lining body By selecting the material of the lining body, tunnels with various lining structures can be simulated; using sound-absorbing materials as the lining body can study the tunnel under the condition of no sound wave reflection. Propagation law of sound waves in internal explosions.
  • the model tunnel provided by the present invention has small volume, convenient and flexible disassembly and assembly, and can simulate explosion sound waves propagating in tunnels of different lengths and different cross-sectional shapes through the combination of multiple model units.
  • the explosion noise measurement method for simulating tunnel engineering blasting proposed by the present invention can be used to evaluate the effect of setting up noise reduction and noise reduction facilities in the tunnel, and can be used as a standard experimental evaluation method.
  • Fig. 1 is the schematic diagram of explosion noise test device
  • Fig. 2 is the A-A cross-sectional schematic diagram of the explosion noise test device in Fig. 1;
  • Fig. 3 is the B-B cross-sectional schematic diagram of the explosion noise test device in Fig. 1;
  • Fig. 4 is a schematic diagram of a plurality of metal pipes and detonators arranged on the baffle at the end of the model unit;
  • FIG. 5 is a schematic diagram of a device for testing the detonation noise of multiple detonators
  • FIG. 6 is a schematic diagram of an explosion noise testing device with a plug-in unit installed
  • Fig. 7 is the C-C cross-sectional schematic diagram of adding the plug-in unit explosion noise testing device in Fig. 6;
  • FIG. 8 is a D-D cross-sectional schematic diagram of the device for testing the explosion noise of the plug-in unit added in FIG. 6 .
  • the invention provides a pulse sound source and an explosion noise testing device and method for simulating tunnel engineering blasting.
  • a detonating tube is proposed as a standard for simulating engineering blasting or explosive explosion noise in a tunnel.
  • Sound source invented a splicable model tunnel with lining body.
  • Using the standard sound source and model tunnel provided by the present invention it is more convenient to carry out acoustic research on the explosion noise of explosives in the tunnel, conduct simulated experimental research on noise reduction and noise reduction facilities or materials in the tunnel, and scientifically evaluate the noise reduction and noise reduction effect.
  • Impulse sound source and explosion noise test device for simulating tunnel blasting, including model tunnel, detonator, detonator, microphone and data acquisition instrument.
  • the pulsed sound waves generated by the explosion of the detonating tube 1 are used to simulate the pulsed sound source of blasting in tunnel engineering.
  • the model tunnel is composed of multiple model units; the model unit is composed of a metal sleeve 4, an inner lining body 5, a detection hole 8, a connecting part 6 and a handle part 7; the inner lining body 5 is nested inside the metal sleeve, and the metal sleeve
  • the two ends in the axial direction of 4 are respectively equipped with connecting parts 6, and the handle parts are symmetrically arranged on the outside of the metal sleeve 4 cylinder; a plurality of model units are connected through the connecting parts; Detonation is initiated, and the end is connected to the model unit through the metal tube 10;
  • the end of the tunnel model unit at the end is provided with a blocking baffle, the end blocking baffle is provided with one or more perforations, and the perforation on the end blocking baffle is equipped with a hollow metal tube, and the detonating tube 1 Enter the inside of the end baffle through a hollow metal tube.
  • the diameters of multiple perforations are not the same, and the perforations at the cutting position are large-diameter perforations and are equipped with matching large-diameter metal pipes.
  • One end of multiple detonating tubes enters the inner side of the end baffle through a large-diameter metal tube, which can simulate the blasting noise generated by different charges in the blast hole.
  • the other ends of the multiple detonating tubes 1 are connected to the other end of the detonating tubes connected to the excitation needle of the millisecond delay detonator through the reflection four-way, so as to realize the delayed excitation of the detonating tubes, and simulate the work of delayed detonation in tunnel blasting. condition.
  • a detection hole 8 is provided above the model unit, and the microphone 2 extends into the model unit from the detection hole.
  • the inner wall of the cross-section of the multiple model units is rectangular, semi-circular arch, trapezoid, circular or horseshoe-shaped.
  • a plug-in unit can be arranged between adjacent model units, and the test unit is located inside the plug-in unit.
  • the plug-in unit is composed of a plug-in metal sleeve, a plug-in lining body, a test unit, a connecting part and a handle part.
  • the plug-in lining body is nested inside the plug-in metal sleeve, and the plug-in metal sleeve and the plug-in lining body are provided with plug-in holes;
  • the test unit is the sound-absorbing and noise-reducing material or device to be measured, and is set on the test unit
  • There is a plug-in screw the plug-in screw is inserted into the plug-in hole and connected with the plug-in metal sleeve by bolts.
  • a buffer or sound-absorbing cushion layer is arranged between the adjacent model units of the plurality of model units and the plug-in unit, between the metal sleeve and the lining body, and between the plug-in metal sleeve and the lining body.
  • An explosion noise measurement method for simulating tunnel engineering blasting using the above-mentioned pulse sound source and explosion noise testing device for simulating tunnel engineering blasting, comprising:
  • the model tunnel consists of 5 model units.
  • the model unit consists of a metal sleeve, a lining body, a detection hole, a connecting part and a handle part.
  • the inner lining body is spliced by cement mortar blocks.
  • the metal sleeve is a rectangular section with a height of 400mm, a width of 500mm, a length of 600mm, and is made of A3 steel plate with a thickness of 5mm (as shown in Figure 1).
  • the connection part is processed by equilateral angle steel with a side width of 45mm, in which a screw hole with a diameter of 20mm is set on one side of the angle steel, and the other side is welded on the metal sleeve.
  • the handle part is processed and welded on the metal sleeve with 12mm diameter steel bar. 8 connecting parts and 2 handle parts are symmetrically welded on both ends of the steel plate with a height of 400mm in the metal sleeve.
  • the thickness of the inner lining is 50mm, and it is composed of four rectangular cement mortar blocks with a thickness of 50mm and a length of 600mm along the axis of the model tunnel.
  • the joints are filled with structural glue (as shown in Figure 2).
  • a layer of rubber lining with a thickness of 2mm is laid between the mortar block and the inner wall of the metal sleeve.
  • a detection hole with a diameter of 12mm is set in the center of the steel plate on the top of the metal sleeve and the center of the block on the top of the lining body, and the detection hole penetrates the steel plate on the top of the metal sleeve and the top block of the lining body.
  • Blocking baffles consist of metal casings, mortar blocks, perforations and copper pipes.
  • the metal box is made of A3 steel plate with a thickness of 5mm.
  • the angle steel connection parts corresponding to the position of the metal sleeve connection part are welded on both sides of the metal sleeve box, and the bolts with a diameter of 18mm are used to connect with the metal sleeve.
  • Cement mortar blocks are embedded in the metal sleeve box, and the cement mortar blocks and the metal sleeve box A layer of 2mm thick rubber gasket is laid between the boxes, and a 6.5mm diameter perforation is set at the center of the blocking baffle, and the perforation vertically penetrates the metal sleeve box and the cement mortar block (as shown in Figure 3). Insert a copper tube with an inner diameter of 3.6mm and an outer diameter of 5.6mm into the hole.
  • the number of model units is 1#, 2#, 3#, 4# and 5# from near to far according to the distance from the blocking baffle.
  • the detection holes of 1# ⁇ 5# model units five microphones with a diameter of 10mm are respectively passed through the detection holes and entered into the model unit.
  • a sealing ring is arranged between the detection hole and the microphone.
  • the data acquisition instrument is connected to 5 microphones through data cables. The signal receiving end of the microphone is flush with the end of the detonating tube inside the baffle.
  • S7. Nos. 1-6 in S6 are the perforations in the large-diameter copper pipe, respectively insert three detonating tubes with a length of 50cm into the perforations in the large-diameter copper pipe, enter the inner side of the end baffle and connect with the copper pipe. The inner end is flush, and the other end is connected to one end of the fourth detonating tube through the reflection spool, and the other end of the fourth detonating tube is connected to the detonator, as shown in Figure 4. No. 1-6 perforation.
  • the diameter of the cut hole is 11.1mm, and 6 copper pipes with an inner diameter of 9.2mm and an outer diameter of 10.2mm are inserted into the cut hole.
  • Three detonating tubes with a length of 100cm are inserted into the copper tubes in each undercut hole. One end of the three detonating tubes enters the inner side of the end baffle and is flush with the inner end of the copper tube, and the other end passes through reflection.
  • the spool is connected to the other end of the detonating tube which is connected to the firing needle of the millisecond delay detonator.
  • step S4 the signal receiving end of the microphone is flush with the end of the detonating tube on the central axis of the inner side of the baffle.
  • Step S10 Through the delay detonation control circuit of the millisecond delay detonator, set the delay time of No. 1 ⁇ 6 perforation as 0ms, No. 7 ⁇ 10 perforation delay time as 550ms, No. 11 ⁇ 14 perforation delay time as 1020ms, and No. 15 ⁇ 24th perforation delay time as 1020ms.
  • the perforation delay time is 2000ms.
  • Step S5 is repeated to obtain the acoustic characteristic data of the noise generated after the delayed detonation of the detonator with different charges at different distances from the end of the detonator, and the variation law of these characteristic data in the tunnel along the tunnel axis direction. Including time domain characteristic line, frequency domain characteristic line and 1/3 octave curve.
  • the plug-in unit is composed of a plug-in metal sleeve, a plug-in lining body, a plug-in hole, a test unit, a connecting part and a handle part.
  • the inner lining body is spliced by cement mortar blocks.
  • the plug-in metal sleeve is a rectangular section with an outer contour of 400mm in height, 500mm in width, and 200mm in length, and is made of A3 steel plate with a thickness of 5mm (as shown in Figure 6).
  • the connection part is processed by equilateral angle steel with a side width of 45mm, in which a screw hole with a diameter of 20mm is set on one side of the angle steel, and the other side is welded on the metal sleeve.
  • the handle part is processed and welded on the metal sleeve with 12mm diameter steel bar. 8 connecting parts and 2 handle parts are symmetrically welded at both ends of the steel plate with a height of 400mm for the insertion metal sleeve.
  • the plug-in unit is connected with the 1# and 2# model units on both sides through the connecting part with 8 bolts with a diameter of 18mm.
  • the thickness of the plug-in lining body is 50mm, and it is composed of four rectangular cement mortar blocks with a thickness of 50mm and a thickness of 200mm along the axis of the model tunnel.
  • the joints are filled with structural glue (as shown in Figure 7).
  • a layer of rubber lining with a thickness of 2mm is laid between the mortar block and the inner wall of the metal sleeve.
  • Two insertion holes are arranged on both sides of the insertion unit, and the diameter of the insertion hole is 10mm, and the metal sleeve and the mortar block are inserted through the insertion hole.
  • the test unit is located inside the plug-in unit (as shown in Figure 8).
  • the test units in this embodiment are two silencing doors made of silencing cotton. Two threaded rods are fixed on each side of the two silencing doors that are in contact with the model unit. The screw is passed through the insertion hole to fix the muffler door and the model unit with a nut.
  • the inner section of the lining body can be rectangular, semi-circular arch, trapezoid, circular or horseshoe shape, so as to study the propagation law of blasting noise in tunnels with different cross-sectional shapes and the noise reduction and noise reduction effects of different test units.
  • the material of the inner lining body can be sound-absorbing materials such as cement mortar, rock, organic fiber or inorganic fiber.
  • the pulse sound wave generated by the explosion of the detonating tube is used as the standard sound source for simulating the blasting of tunnel engineering, and the acoustic characteristics of the pulse sound wave of the explosive explosion are fully considered. It has the characteristics of convenient operation, safety and reliability, strong repeatability, low cost, and suitable for small-scale model tests.
  • the invention proposes a splicable measuring device and measuring method suitable for measuring the explosion noise in the tunnel. With the detonating tube as the standard pulse sound source, small-scale model tests can be used in the laboratory to study the blasting noise of tunnel engineering and the explosives in the tunnel.
  • the propagation law of explosion noise in the tunnel, and the noise reduction and noise reduction effect of the muffler facilities and muffler materials in the tunnel is evaluated.
  • Using the explosion noise measuring device provided by the invention is convenient for splicing and simple in operation, and has the advantages of safety, convenience, high repeatability, low cost and the like for the simulation experiment of explosive explosion in the tunnel.

Landscapes

  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种模拟隧道工程***的脉冲声源及***噪声测试装置和方法,涉及隧道***声波模拟测量技术领域,模拟隧道工程***的脉冲声源为发爆器(9)激发导爆管(1)***产生的脉冲声波,***噪声测试装置包括模型隧道、导爆管(1)、发爆器(9)、传声器(2)和数据采集仪(3),模型隧道由多个模型单元(1#、2#、3#、4#)组成,模型单元(1#、2#、3#、4#)由金属套筒(4)、内衬体(5)、检测孔(8)、连接部(6)和把手部(7)组成,通过调整模型隧道同一炮孔点位同时激发不同数量的导爆管(1),可以模拟炮孔内不同装药量的***噪声,采用毫秒延时发爆器(9),可以模拟隧道***中延时起爆的工况。具有安全可靠、操作简单、成本低廉的优点。

Description

模拟隧道工程***的脉冲声源及***噪声测试装置和方法 技术领域
本发明涉及隧道工程***噪声声波模拟测量技术领域,尤其是一种模拟城市隧道工程***的脉冲声源和***噪声测试装置,以及***噪声的测试方法。
背景技术
在隧道***工程中,******引发的脉冲声波产生噪声扰动,对施工周边环境产生影响。目前,控制隧道工程***引发噪声的方法有:在爆区范围加强覆盖爆被或钢板,在噪声传播路径上设置障碍物或遮挡物(如防噪声门、防噪声台车)阻隔噪声传播等。对这些措施的消音、降噪效果的评价方法有数值模拟、理论计算、现场试验和室内实验。数值模拟和理论计算很难与现场实际环境相匹配,只能作为验证辅助手段;现场试验规模大、成本较高,而且会影响掘进施工。
室内实验的可靠性关键在于模拟******脉冲声源的选择和实验装置及方法设计,中国实用新型(CN2460966Y)提供了一种毫秒延时发爆器,是将毫秒延时功能由***转移到发爆器上,在发爆器上设置了不少于两个的延时引爆控制器,通过调节延时发爆器中的延时控制电路,使普通瞬发***实现毫秒延时起爆。中国发明专利(CN108716985A),提供了一种声源模拟测量装置,用于模拟汽车排气噪声声源并测量消噪效果。中国发明专利(CN109238436B)提供了混响水池中瞬态声源特性的测量方法,提出用数字信号处理方法获得瞬态声源特性。中国实用新型(CN209264108U)提供了一种***冲击波在隧道中传播规律实验用组装式模型,该模型是4个两端开口的中空正方体连接而成的中空长方体,用于模拟研究***冲击波在隧道中的传播规律。中国发明专利(CN109882211A)提供了一种用于隧道噪声消除的吸音装置,用于降低或消除车辆通过隧道短时间内产生的噪声。赵跃英(声学技术、2003、76-79)对气球破裂、电火花及白噪声等三种常用实验声源的性能对比分析,气球破裂作为声源具有不可重复性,电火花声信号可重复能作为宽频带噪声声源,电声***产生的白噪声作为声源可以满足稳态声场的要求。陈庆凯(***器材,2008,37(06),第30~33页)利用噪声数据仪采集了***噪声特征数据,分析了***噪声的声压波形、振动强度、频谱。Afeni Thomas B(Mining Science and Technology,2009,19(04),第420-424)在尼日利亚的采石场对***产生的噪声数据进行采集,用以预测周围各区域的峰值声压级。张冀峰(刑事技术,2018,43(05),第369-372)通过模拟实验,利用沙袋堆积封堵来模拟阻断墙体,选用不同装药量的TNT ***,测试模拟墙体对***噪声阻断与衰减效应。
综合上述发明及文献研究发现现有技术存在以下不足:
1. 中国发明专利(CN108716985A)提供的声源模拟测量装置用来模拟汽车排气噪声,不能用来模拟隧道***产生的脉冲噪声。中国发明专利(CN109238436B)提出了一种利用混响水池测量瞬态声特性的方法,不能用于测量隧道内******产生的脉冲声波。中国实用新型(CN209264108U)用于研究***冲击波在隧道中的传播规律,其爆源是真实***的***,研究对象是冲击波而不是声波,该实用新型属于中等尺度的实验装置,非模拟实验装置,无法测量消音降噪设施或材料的消音降噪效果。中国发明专利(CN109882211A)提供了一种用于隧道噪声消除的吸音装置,但不能用来研究隧道内******噪声的传播规律或评价隧道内消音降噪设施的消音降噪效果。
2. 气球作为实验声源信号受环境温度、压力的影响较大,声学数据不稳定、可重复性差。白噪声虽有稳定、可重复的声信号,但与******产生的瞬态脉冲声信号存在较大的差异。室外开展的******实验对安全性要求较高,具有可重复性差、成本高的缺点。
为此本发明提供一种安全性高、稳定性强、具有脉冲声学特征的模拟声源以及隧道内的***噪声测量装置和方法,用于模拟隧道内******产生的噪声、测量并研究隧道内***噪声的传播规律,评价隧道内设置消音降噪设施的效果。该模拟声源起爆时产生的脉冲声波与******噪声声学特征相似度高,具有较好的稳定性和可重复性,实验操作安全、成本低、易实施。
技术解决方案
******产生的冲击波在空气中传播一定距离后衰减为脉冲声波继续在空气中传播,并对周围环境产生声污染。***噪声不同于普通的工业噪声,具有高强、瞬发的特征,并伴随有空气气流的强扰动。因此模拟隧道工程***产生的噪声,首先需要选择一种与隧道***噪声具有相似脉冲声波特性的脉冲声源,该脉冲声源的生成过程应该与***噪声具有相似,能够模拟隧道***中多点起爆的工况特征,在此基础上进一步研发***噪声测试装置和测试方法。脉冲声源的安全性、脉冲声波的稳定性和可重复性、与******噪声声波特性的相似度、隧道***中多点起爆的工况模拟、实验成本等是筛选模拟声源需要考虑的主要问题。
为了筛选能够模拟******产生的冲击波随传播距离衰减为脉冲声波的瞬态声源,为小尺度模型实验提供一种成本低廉、使用安全、操作方便、重复性好、声学特性稳定的标准声源,选择能够产生脉冲声源的装置或产品进行对比。
常见的、可以产生脉冲声源的装置或产品有气球、电火花、发令枪、导爆管、鞭炮、***等。
(1)气球,充气气球被刺破时气球内高压空气急剧释放能量产生具有脉冲特征的脉冲声波,是一个物理过程。声学特征受环境温度、大气压力、气球充气量、气球材质等多种因素影响,脉冲声波的稳定性和可重复性差。
(2)电火花,电源的两极在高电压的作用下,击穿两极间空气介质可以产生脉冲瞬态噪声。电火花噪声具有脉冲声波的特征,但其形成机理与******不同,声波特性存在较大的差异,电火花释放的能量与******能量之间较难建立量化关系。
(3)发令枪,发令枪扳机撞击子弹后部,激发子弹中火药***,产生脉冲瞬态噪声,具有脉冲声波的特征。然而发令枪占用空间较大,不宜实现自动控制,无法模拟隧道延时***的工况特征。
(4)鞭炮,鞭炮产生的脉冲声波与******噪声相似度较高。鞭炮的品种繁多,生产标准不统一。其***噪声的声学特性受装药配方、装药量、包覆纸壳材质及厚度、生产工艺等多种因素影响。即使是同一厂家的产品,其***的声学指标也存在较大的差异性。另外,鞭炮对存储环境要求高,易受潮失效,而且受潮后的***声学指标会发生较大的变化。
(5)***,***引爆后产生的脉冲声波与******噪声声波相似度较高,但***为***危险物品,属于管制产品,对实验的安全性和实验操作人员的资质要求较高。另外,***的***威力较大,会破坏实验装置,其超高的噪声强度会超过常见传声器等声学仪器的量程,不适合小尺度模型隧道实验。
另外,还可以通过录音或计算机合成的方式形成******的脉冲声波。这种声波的声学特征具有稳定性和可重复性,但是无法模拟隧道***中多点起爆的工况特征,如由于炮孔位置不同带来的声学效果上的差异。另外,对于隧道断面尺寸、炮孔位置及数量、起爆药量等参量的多种变化,录制或计算机合成也在技术上、时间和成本上存在较大的困难。
导爆管作为常见的民用***物品,本身不具有***危险性,在火焰和机械碰撞的作用下不能起爆。导爆管的生产、验收都受国家标准的严格控制,其传爆性能稳定,操作简单、使用安全,长期储存仍能保持稳定的传爆性能和***声学特征。导爆管的激发***过程是***爆轰的稳定传爆过程,具备******爆轰波传播的基本特征。在导爆管的末端由弱爆轰波衰减为弱冲击波,再由弱冲击波衰减为声波。导爆管***声波的形成过程与******声波的形成过程完全一致,即都经历了由爆轰波到冲击波再到声波的衰减过程。与***、鞭炮不同的是,导爆管的***过程是安全的、稳定的、可控的。导爆管***形成的爆轰波和冲击波对人员、传声器等精密仪器、实验模具和实验设备无伤害,特别适合作为小尺度模型隧道实验的标准模拟声源。
综上分析,为了解决使用气球、电火花、发令枪、鞭炮和***模拟,以及采用录音或计算机合成隧道***脉冲声源存在的技术问题,本发明提出采用发爆器激发导爆管***产生的脉冲声波模拟隧道工程***的脉冲声源,并在此基础上发明了相应的测量装置和测量方法。发爆器激发导爆管***产生的脉冲声波可以作为小尺度模型隧道实验的标准声源。通过调整模型隧道同一炮孔点位同时激发导爆管的数量可以模拟炮孔内不同装药量的***噪声。采用毫秒延时发爆器,可以模拟隧道炮孔之间延时***的声学效果。
按照以下原则确定形成稳定声学特征数据时导爆管的最小长度:(1)确定导爆管达到稳定爆速的最小长度;(2)在满足稳定爆速的基础上,确定导爆管***形成稳定声学特征数据的最小长度。具体操作方法为:
(1)确定导爆管达到稳定爆速时的最小长度
    a1.通过胶带将导爆管固定在木板上,高速摄像机固定在距离导爆管水平距离大于4.7m的位置并对准导爆管,设定高速摄像机的分辨率为1024×512、帧数为11000 fps、曝光时间为90μs;
a2.激发导爆管,以第1次出现爆轰的图片作为零时刻,确定沿导爆管轴向传播的爆轰波在不同时刻的位移,计算爆速。其中每两幅图片间隔时间为1/11000s,即0.09ms。
按照步骤a1-a2对长度分别为30cm、50cm、70cm、110cm的导爆管各进行5次实验测取平均值作为达到爆速稳定值时导爆管的长度;根据实验确定达到爆速稳定值时导爆管长度为36.29cm。
(2)确定导爆管达到稳定声学特征的基本长度。
根据实验确定导爆管到达稳定爆速的最小长度为36.29cm,为保证导爆管***噪声声学稳定,导爆管的基本长度应大于36.29cm。为此对长度50cm导爆管***噪声的声学稳定性进行测试。
a1.将50cm导爆管的起始端与发爆器相连的激发针连接,末端穿过模拟隧道工程***的脉冲声源及***噪声测试装置中的金属管,进入端部挡板内侧并与金属管端头齐平;
a2. 将3个传声器分别从模型单元的检测孔伸入到模型隧道内部,传声器的声波接收端与所述导爆管末端的安装高度齐平,各传声器通过数据线与数据采集仪连接;
a3. 用发爆器激发导爆管***,由传声器和数据采集仪采集并处理各测点的声学数据,获得导爆管模拟******的声学特征曲线,包括时域特征谱线、频域特征谱线和1/3倍频程曲线等。
对5根长度50cm导爆管测试5次,对比每次实验的时域特征谱线、频域特征谱线和1/3倍频程曲线,发现长度50cm导爆管的声学特征数据已趋于稳定,因此确定实验标准声源导爆管的基本长度为50cm。
本发明提供的一种模拟隧道工程***的脉冲声源及***噪声测试装置和方法,具体的技术方案如下。
一种模拟隧道工程***的脉冲声源及***噪声测试装置,模拟隧道工程***的脉冲声源为发爆器激发导爆管***产生的脉冲声波。***噪声测量装置包括模型隧道、导爆管、发爆器、传声器和数据采集仪等部分。模型隧道由多个模型单元组成。模型单元由金属套筒、内衬体、检测孔、连接部和把手部组成。内衬体嵌套在金属套筒内侧,金属套筒轴线方向上的两端分别配置连接部,金属套筒筒体外侧对称布置把手部。多个所述模型单元通过连接部连接。所述导爆管起始端与发爆器相连,用激发针激发起爆,末端穿过金属管与模型单元连接。所述传声器分别安装在多个模型单元上,数据采集仪通过数据线连接各个传声器。
优选的是,模型隧道端头位置的模型单元端部设有封堵挡板,封堵挡板上设置有穿孔,穿孔中配有金属管,所述导爆管穿过金属管进入端部挡板内侧。
优选的是,进入端部挡板内侧的导爆管末端与金属管端头齐平,导爆管的长度大于或等于50cm。
优选的是,封堵挡板上设置有多个穿孔,穿孔中分别配有金属管,所述多个导爆管分别穿过金属管进入端部挡板内侧;所述的导爆管与毫秒延时发爆器相连接,通过毫秒延时发爆器的控制实现导爆管的延时激发。
优选的是,封堵挡板上设置的穿孔直径不完全相同、大直径的穿孔中配有与之匹配的大直径金属管,大直径金属管内有2根或2根以上的导爆管穿过;通过同时激发同一大直径金属管内不同数量的导爆管,来模拟炮孔中不同装药量产生的***噪声。
优选的是,模型单元的上方设置有检测孔,传声器从检测孔伸入模型单元内,传声器的声波接收端与导爆管末端的安装高度齐平。
还优选的是,模型单元的截面内壁呈矩形、半圆拱形、梯形、圆形或马蹄形。
还优选的是,模型单元之间设置插接单元。插接单元由插接金属套筒、插接内衬体、测试单元、连接部和把手部组成。测试单元位于插接单元内部。测试单元为需要测量的消音降噪材料或装置。
还优选的是,插接内衬体嵌套在插接金属套筒内侧,插接金属套筒、插接内衬体上设置有插接孔;测试单元上设置有插接螺杆,插接螺杆***插接孔用螺栓与插接金属套筒连接为一体。
还优选的是,相邻模型单元之间、相邻模型单元与插接单元之间、金属套筒与内衬体之间、插接金属套筒与内衬体之间设置有缓冲或消音垫层。
一种模拟隧道工程***的***噪声测量方法,利用上述的模拟隧道工程***的脉冲声源及***噪声测试装置,步骤包括:
S1. 制作模型单元,将连接部和把手部固定在金属套筒上,将内衬体嵌套在金属套筒内部,将金属套筒与内衬体上检测孔的中心对齐;
S2. 制作模型隧道,用连接件将多个模型单元通过连接部连接固定在一起;
S3. 在模型隧道端头位置的模型单元端部设置封堵挡板,封堵挡板上设置穿孔,金属管通过穿孔进入端头位置的模型单元内;
S4. 将长度大于或等于50cm的导爆管起始端与发爆器相连的激发针连接,末端穿过金属管进入端部挡板内侧并与金属管端头齐平;
S5. 将多个传声器分别从模型单元的检测孔伸入到模型隧道内部,传声器的声波接收端与所述导爆管末端的安装高度齐平,各传声器通过数据线与数据采集仪连接;
S6. 用发爆器激发导爆管***,由传声器和数据采集仪采集并处理各测点的声学数据,获得导爆管模拟******的声学特征曲线,包括时域特征谱线、频域特征谱线和1/3倍频程曲线等;
S7. 在步骤S3组装的模型隧道的基础上,在选定的模型单元间用连接件固定插接单元,形成带有插接单元的模型隧道。插接单元由插接金属套筒、插接内衬体、测试单元、连接部和把手部组成。测试单元位于插接单元内部。测试单元为需要测量的消音降噪材料或装置;
S8.重复步骤S4至S6,得到用导爆管模拟******的噪声在经过测试单元后的声学特征数据和曲线,判断测试单元的消音降噪效果。
有益效果
本发明提供的一种模拟隧道工程***的脉冲声源及***噪声测试装置和方法,其有益效果包括:
(1)本发明为模拟******噪声提供了一种可供选择的脉冲声源,即发爆器激发导爆管***产生的脉冲声波,并且确定了实验标准声源导爆管的最小长度为50cm,可以作为本专业领域研究******噪声、评价消音降噪设施有效性的标准声源。发爆器激发导爆管***产生的脉冲声波与******噪声的声学特征相似,作为模拟隧道工程***的声源具有声学特征稳定、可重复再现、操作安全、成本低廉的优点。
(2)在封堵挡板上设置多个金属管和导爆管,通过毫秒延时发爆器控制导爆管的激发时间来模拟隧道延时***;通过同时激发同一大直径金属管内不同数量的导爆管,来模拟炮孔中不同装药量产生的声学效果,实现了对隧道延时***、装药量不同等实际工况下***噪声的模拟。
(3)本发明提供的模型隧道,设置了隧道内衬体,通过选择内衬体的材料,可以模拟多种衬砌结构的隧道;采用吸声材料作内衬体可以研究无声波反射条件下隧道内***声波的传播规律。
(4)本发明提供的模型隧道,体积小、拆装方便灵活,通过多个模型单元的组合可以模拟不同长度、不同断面形态隧道内传播的***声波。
(5)本发明提出的模拟隧道工程***的***噪声测量方法可以用评价隧道内设置消音降噪设施的效果,可以作为一种标准的实验评价方法。
附图说明
图1是***噪声测试装置的示意图;
图2是图1中***噪声测试装置的A-A截面示意图;
图3是图1中***噪声测试装置的B-B截面示意图;
图4是模型单元端部挡板设置多个金属管和导爆管的示意图;
图5是多根导爆管起爆噪声测试装置的示意图;
图6是加装插接单元的***噪声测试装置示意图;
图7是图6中加装插接单元***噪声测试装置的C-C截面示意图;
图8是6中加装插接单元***噪声测试装置的D-D截面示意图。
图中:1-导爆管,2-传声器,3-数据采集仪,4-金属套筒,5-内衬体,6-连接部,7-把手部,8-检测孔,9-发爆器,10-金属管,11-插接单元,12-橡胶衬垫水泥砂浆砌块,13-螺杆,14-消音门,15-螺栓。
本发明的实施方式
结合图1至图8所示,对本发明提供的一种模拟隧道工程***的脉冲声源及***噪声测试装置和方法具体实施方式进行说明。
本发明提供了一种模拟隧道工程***的脉冲声源及***噪声测试装置和方法,考虑***脉冲声源的声学特征模拟,提出了将导爆管作为模拟隧道内工程***或******噪声的标准声源;发明了一种带内衬体的可拼接模型隧道。利用本发明提供的标准声源和模型隧道,可以更加方便地开展隧道内******噪声的声学研究、对隧道内消音降噪设施或材料进行模拟实验研究,对消音降噪效果进行科学评价。
模拟隧道工程***的脉冲声源及***噪声测试装置,包括模型隧道、导爆管、发爆器、传声器和数据采集仪。导爆管1爆管***产生的脉冲声波用于模拟隧道工程***的脉冲声源。模型隧道由多个模型单元组成;模型单元由金属套筒4、内衬体5、检测孔8、连接部6和把手部7组成;内衬体5嵌套在金属套筒内侧,金属套筒4轴线方向上的两端分别配置连接部6,金属套筒4筒体外侧对称布置把手部;多个模型单元通过连接部连接;导爆管1起始端与发爆器相连,用激发针激发起爆,末端穿过金属管10与模型单元连接;传声器2分别安装在多个模型单元上,数据采集仪3通过数据线连接各个传声器。
端头位置的隧道模型单元端部设有封堵挡板,端部封堵挡板上设置有一个或多个穿孔,端部封堵挡板上穿孔中配有空心金属管,导爆管1经空心金属管进入端部挡板内侧。多个穿孔的直径不完全相同,掏槽位置的穿孔是大直径穿孔,并配有与之相匹配的大直径金属管。多根导爆管一端头经大直径金属管进入端部挡板内侧,可模拟炮孔中不同装药量产生的***噪声。多根导爆管1另一端头通过反射四通与连接毫秒延时发爆器激发针的导爆管另一端相连接,实现导爆管的延时激发,模拟隧道***中延时起爆的工况。
模型单元的上方设置有检测孔8,传声器2从检测孔伸入模型单元内,传声器2的声波接收端与导爆管1末端的安装高度齐平。
多个模型单元的截面内壁呈矩形、半圆拱形、梯形、圆形或马蹄形,相邻模型单元之间可以设置插接单元,测试单元位于插接单元内部。插接单元由插接金属套筒、插接内衬体、测试单元、连接部和把手部组成。插接内衬体嵌套在插接金属套筒内侧,插接金属套筒、插接内衬体上设置有插接孔;测试单元为需要测量的消音降噪材料或装置,测试单元上设置有插接螺杆,插接螺杆***插接孔用螺栓与插接金属套筒连接为一体。多个模型单元的相邻模型单元与插接单元之间、金属套筒与内衬体之间、插接金属套筒与内衬体之间设置有缓冲或消音垫层。
一种模拟隧道工程***的***噪声测量方法,利用上述的模拟隧道工程***的脉冲声源及***噪声测试装置,包括:
S1. 制作模型隧道。模型隧道由5个模型单元组成。模型单元由金属套筒、内衬体、检测孔、连接部和把手部组成。内衬体由水泥砂浆砌块拼接而成。
金属套筒为外轮廓高400mm、宽500mm的矩形断面,长600mm,采用厚度5mm的A3钢板加工(如图1所示)。连接部使用边宽45mm的等边角钢加工,其中角钢的一个侧边上设一个直径20mm的螺孔,另一边焊接在金属套筒上。把手部采用直径12mm钢筋加工焊接在金属套筒上。在金属套筒高400mm的钢板两端对称焊接8个连接部、2个把手部。
内衬体厚度50mm,由4块厚度50mm、沿模型隧道轴线方向长600mm的矩形水泥砂浆砌块拼接而成,采用结构胶填充拼接缝(如图2所示)。砂浆砌块与金属套筒内壁之间铺设一层厚2mm的橡胶衬垫。
在金属套筒顶部钢板中心、内衬体顶部砌块中心对应位置设置一个直径12mm的检测孔,检测孔贯穿金属套筒顶部钢板和内衬体的顶部砌块。
用直径18mm的螺栓将5个所述模型单元通过连接部连接为一体。
S2. 在端头模型单元端部设置封堵挡板。封堵挡板由金属套盒、砂浆砌块、穿孔和铜管组成。金属套盒采用厚度5mm的A3钢板加工。金属套盒两侧焊接与金属套筒连接部位置对应的角钢连接部,采用直径18mm的螺栓与金属套筒相连接,金属套盒中嵌套水泥砂浆砌块,水泥砂浆砌块与金属套盒盒体之间铺设一层厚2mm的橡胶衬垫,在封堵挡板中心位置设置一个直径6.5mm的穿孔,穿孔垂直贯穿金属套盒和水泥砂浆砌块(如图3所示)。在穿孔中***一个内径3.6mm、外径5.6mm的铜管。
S3. 将长度为100cm的导爆管一端头与发爆器连接,另一端头经铜管进入端部挡板内侧并与铜管的内侧端头齐平。
S4. 模型单元的编号根据与封堵挡板的距离,由近及远依次为1#、2#、3#、4#和5#。在1#~5#模型单元的检测孔中,分别将5只直径10mm的传声器穿过检测孔进入模型单元内部。检测孔与传声器之间设置密封圈。数据采集仪通过数据线连接5只传声器。传声器的信号接收端与挡板内侧导爆管末端高度齐平。
S5. 起爆导爆管,由数据采集仪采集1#~5#模型单元上5个传声器的噪声数据。获得距离导爆管末端不同距离处***噪声的声学特征数据,从而得到这些特征数据在隧道内沿隧道轴线方向的变化规律。包括时域特征谱线、频域特征谱线和1/3倍频程曲线。
S6. 在上述端头模型单元端部挡板设置6个直径11.1mm的穿孔,如图4所示,穿孔中***6个内径9.2mm,外径10.2mm的铜管。其中端头的模型单元端部挡板设置1~24号穿孔,其中1~6号穿孔模拟掏槽孔,7~10号穿孔模拟辅助孔,11~24号穿孔模拟周边孔。
S7. 在S6中的1-6号为大直径铜管内的穿孔,分别将3根长度为50cm的导爆管***大直径铜管内的穿孔,进入端部挡板内侧并与铜管的内侧端头齐平,另一端头通过反射四通分别与第四根导爆管一端连接,第四根导爆管另一端与发爆器连接,如图4所示1-6号穿孔。
其中掏槽孔直径为11.1mm,掏槽孔中***6个内径9.2mm,外径10.2mm的铜管。每个掏槽孔中的铜管内分别***3根长度为100cm的导爆管,3根导爆管一端进入端部挡板内侧并与铜管的内侧端头齐平,另一端头通过反射四通与连接毫秒延时发爆器激发针的导爆管另一端相连接。
S8. 将7-24号穿孔内的导爆管一端头经铜管进入端部挡板内侧并与铜管的内侧端头齐平,另一端头与毫秒延时发爆器连接(如图5所示),导爆管长度取100cm。其中辅助孔与周边孔直径为6.5mm,在辅助孔与周边孔中分别***一个内径为3.6mm、外径为5.6mm的铜管。导爆管一端头经铜管进入端部挡板内侧并与铜管的内侧端头齐平,另一端头与毫秒延时发爆器连接,如图5所示。
S9. 重复步骤S4,传声器的信号接收端与挡板内侧中轴线上导爆管末端高度齐平。
S10. 通过毫秒延时发爆器的延时引爆控制电路设置1~6号穿孔延期时间为0ms,7~10号穿孔延期时间为550ms,11~14号穿孔延期时间为1020ms,15~24号穿孔延期时间为2000ms。重复步骤S5,从而得到不同装药量导爆管延时起爆后产生的噪声在距离导爆管末端不同距离处***噪声的声学特征数据,这些特征数据在隧道内沿隧道轴线方向的变化规律。包括时域特征谱线、频域特征谱线和1/3倍频程曲线。
S11. 在实施例1所述1#、2#模型单元间加装一个插接单元。插接单元由插接金属套筒、插接内衬体、插接孔、测试单元、连接部和把手部组成。内衬体由水泥砂浆砌块拼接而成。
插接金属套筒为外轮廓高400mm、宽500mm的矩形断面,长200mm,采用厚度5mm的A3钢板加工(如图6所示)。连接部使用边宽45mm的等边角钢加工,其中角钢的一个侧边上设一个直径20mm的螺孔,另一边焊接在金属套筒上。把手部采用直径12mm钢筋加工焊接在金属套筒上。在插接金属套筒高400mm的钢板两端对称焊接8个连接部、2个把手部。所述插接单元通过连接部用8条直径18mm的螺栓与两侧的1#、2#模型单元连接。
插接内衬体厚度50mm,由4块厚度50mm,沿模型隧道轴线方向为200mm的矩形水泥砂浆砌块拼接而成,采用结构胶填充拼接缝(如图7所示)。砂浆砌块与金属套筒内壁之间铺设一层厚2mm的橡胶衬垫。
插接单元的两侧各设置2个插接孔,插接孔的直径10mm贯穿插接金属套筒和砂浆砌块。
测试单元位于插接单元内部(如图8所示)。本实施例的测试单元为2扇采用消音棉制作的消音门。2扇消音门与模型单元相接触的一侧各固定有两条螺杆。螺杆穿过插接孔用螺母将消音门与模型单元固定在一起。
S12. 重复步骤S1~S5,由数据采集仪采集1#~5#模型单元上5个传声器的噪声数据。获得消音门两侧***噪声的声学特征数据,从而对消音门的***噪声的降噪效果进行评价。
其中,内衬体的内截面可以为矩形、半圆拱形、梯形、圆形或马蹄形,从而研究不同断面形状隧道内的***噪声传播规律及不同测试单元的消音、降噪效果。内衬体的材料可以为水泥砂浆、岩石、有机纤维或无机纤维等吸音材料。
本发明通过实验筛选,将导爆管***产生的脉冲声波作为模拟隧道工程***的标准声源,充分考虑了******脉冲声波的声学特征,该声源与******产生噪声的声学特征接近,具有操作方便、安全可靠、可重复性强、成本低廉、适合小尺度模型试验等特点。本发明提出了一种可拼接的适合测量隧道内***噪声的测量装置及测量方法,配合导爆管作为标准脉冲声源,可以在实验室使用小尺度模型试验研究隧道工程***噪声、隧道内******噪声在隧道内的传播规律,评价隧道内消音设施、消音材料的消音降噪效果。使用本发明提出的***噪声测量装置拼接方便、操作简单,用来进行隧道内******的模拟实验具有安全、方便、可重复性强、成本低等优点。
上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 一种模拟隧道工程***的脉冲声源及***噪声测试装置,其特征在于,模拟隧道工程***的脉冲声源为发爆器激发导爆管***产生的脉冲声波;***噪声测试装置包括模型隧道、导爆管、发爆器、传声器和数据采集仪;所述模型隧道包括多个模型单元;模型单元由金属套筒、内衬体、检测孔、连接部和把手部组成;所述内衬体嵌套在金属套筒内侧,金属套筒轴线方向上的两端分别配置连接部,金属套筒筒体外侧对称布置把手部;多个所述模型单元通过连接部连接;所述导爆管起始端与发爆器相连,导爆管用激发针激发起爆,末端穿过金属管与模型单元连接;所述传声器分别安装在多个模型单元上,数据采集仪通过数据线连接各个传声器。
  2. 根据权利要求1所述的一种模拟隧道工程***的脉冲声源及***噪声测试装置,其特征在于,所述模型隧道端头位置的模型单元端部设有封堵挡板,封堵挡板上设置有穿孔,穿孔中配有金属管,所述导爆管穿过金属管进入端部挡板内侧。
  3. 根据权利要求1或2所述的一种模拟隧道工程***的脉冲声源及***噪声测试装置,其特征在于,进入端部挡板内侧的所述导爆管末端与所述金属管端头齐平,导爆管的长度大于或等于50cm。
  4. 根据权利要求2所述的一种模拟隧道工程***的脉冲声源及***噪声测试装置,其特征在于,所述封堵挡板上设置有多个穿孔,穿孔中分别配有金属管,多个所述导爆管分别穿过金属管进入端部挡板内侧;所述的导爆管与毫秒延时发爆器相连接,通过毫秒延时发爆器控制导爆管的延时激发。
  5. 根据权利要求4所述的一种模拟隧道工程***的脉冲声源及***噪声测试装置,其特征在于,所述封堵挡板上设置的穿孔具有多个穿孔直径,穿孔直径与金属管的直径相互配合,2根或2根以上的导爆管穿过金属管;同时激发同一金属管内的导爆管,模拟***噪声。
  6. 根据权利要求5所述的一种模拟隧道工程***的脉冲声源及***噪声测试装置,其特征在于,所述模型单元的上方设置有检测孔,传声器从检测孔伸入模型单元内,传声器的声波接收端与导爆管末端的安装高度齐平。
  7. 根据权利要求6所述的一种模拟隧道工程***的脉冲声源及***噪声测试装置,其特征在于,所述模型单元之间设置插接单元;插接单元由插接金属套筒、插接内衬体、测试单元、连接部和把手部组成;测试单元位于插接单元内部;测试单元为需要测量的消音降噪材料或装置。
  8. 根据权利要求7所述的一种模拟隧道工程***的脉冲声源及***噪声测试装置,其特征在于,所述的插接内衬体嵌套在插接金属套筒内侧,插接金属套筒、插接内衬体上设置有插接孔;测试单元上设置有插接螺杆,插接螺杆***插接孔用螺栓与插接金属套筒连接为一体。
  9. 根据权利要求8所述的一种模拟隧道工程***的脉冲声源及***噪声测试装置,其特征在于,所述相邻模型单元之间、相邻模型单元与插接单元之间、金属套筒与内衬体之间、插接金属套筒与内衬体之间设置有缓冲或消音垫层。
  10. 一种模拟隧道工程***的***噪声测试方法,利用权利要求1至9任一项所述的模拟隧道工程***的脉冲声源及***噪声测试装置,步骤包括:
    S1. 制作模型单元,将连接部和把手部固定在金属套筒上,将内衬体嵌套在金属套筒内部,将金属套筒与内衬体上检测孔的中心对齐;
    S2. 制作模型隧道,用连接件将多个模型单元通过连接部连接固定在一起;
    S3. 在模型隧道端头位置的模型单元端部设置封堵挡板,封堵挡板上设置穿孔,金属管通过穿孔进入端头位置的模型单元内;
    S4. 将长度大于或等于50cm的导爆管起始端与发爆器相连的激发针连接,末端穿过金属管进入端部挡板内侧并与金属管端头齐平;
    S5. 将多个传声器分别从模型单元的检测孔伸入到模型隧道内部,传声器的声波接收端与所述导爆管末端的安装高度齐平,各传声器通过数据线与数据采集仪连接;
    S6. 用发爆器激发导爆管***,由传声器和数据采集仪采集并处理各测点的声学数据,获得导爆管模拟******的声学特征曲线,包括时域特征谱线、频域特征谱线和1/3倍频程曲线;
    S7. 在步骤S3组装的模型隧道的基础上,在选定的模型单元间用连接件固定插接单元,形成带有插接单元的模型隧道;插接单元包括插接金属套筒、插接内衬体、测试单元、连接部和把手部;测试单元位于插接单元内部,测试单元为消音降噪结构;
    S8.重复步骤S4至S6,得到导爆管模拟******的噪声在经过测试单元后的声学特征数据和曲线,判断测试单元的消音降噪效果。
PCT/CN2021/105886 2021-03-23 2021-07-13 模拟隧道工程***的脉冲声源及***噪声测试装置和方法 WO2022198840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110306081.8 2021-03-23
CN202110306081.8A CN113189296B (zh) 2021-03-23 2021-03-23 模拟隧道工程***的脉冲声源及***噪声测试装置和方法

Publications (1)

Publication Number Publication Date
WO2022198840A1 true WO2022198840A1 (zh) 2022-09-29

Family

ID=76973586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105886 WO2022198840A1 (zh) 2021-03-23 2021-07-13 模拟隧道工程***的脉冲声源及***噪声测试装置和方法

Country Status (2)

Country Link
CN (1) CN113189296B (zh)
WO (1) WO2022198840A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236404A (zh) * 2014-09-16 2014-12-24 武汉大学 一种基于***振动测试的现场快速测定毫秒***延时精度的方法
CN207336245U (zh) * 2017-09-06 2018-05-08 中国石油天然气股份有限公司 用于管道***试验的数据采集***
CN108592725A (zh) * 2018-05-16 2018-09-28 厦门***工程公司 综合运用***短时差和空孔减振技术的隧道掘进***方法
CN109186386A (zh) * 2018-09-18 2019-01-11 山东大学 一种隧道内***噪声和震动消减装置及方法
CN109507048A (zh) * 2019-01-08 2019-03-22 中国地质大学(武汉) 模拟隧道***开挖对既有衬砌影响的试验***及方法
JP2019108784A (ja) * 2017-12-19 2019-07-04 佐藤工業株式会社 トンネル発破音の低減方法及び低減装置
CN110865171A (zh) * 2019-11-14 2020-03-06 北京龙德时代技术服务有限公司 基于数字噪音检测的***安全分析方法及分析***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162031A (en) * 1978-06-13 1979-12-22 Nippon Soken Inc Ignition time controlling apparatus for internal combustion engine
CN104501942B (zh) * 2014-12-25 2018-09-28 成都泰测科技有限公司 一种***冲击波测量装置
CN108535126A (zh) * 2018-05-07 2018-09-14 洛阳理工学院 一种模拟深埋隧道***开挖的试验模型及试验方法
CN108844621A (zh) * 2018-07-06 2018-11-20 成都泰测科技有限公司 一种***冲击波测试***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236404A (zh) * 2014-09-16 2014-12-24 武汉大学 一种基于***振动测试的现场快速测定毫秒***延时精度的方法
CN207336245U (zh) * 2017-09-06 2018-05-08 中国石油天然气股份有限公司 用于管道***试验的数据采集***
JP2019108784A (ja) * 2017-12-19 2019-07-04 佐藤工業株式会社 トンネル発破音の低減方法及び低減装置
CN108592725A (zh) * 2018-05-16 2018-09-28 厦门***工程公司 综合运用***短时差和空孔减振技术的隧道掘进***方法
CN109186386A (zh) * 2018-09-18 2019-01-11 山东大学 一种隧道内***噪声和震动消减装置及方法
CN109507048A (zh) * 2019-01-08 2019-03-22 中国地质大学(武汉) 模拟隧道***开挖对既有衬砌影响的试验***及方法
CN110865171A (zh) * 2019-11-14 2020-03-06 北京龙德时代技术服务有限公司 基于数字噪音检测的***安全分析方法及分析***

Also Published As

Publication number Publication date
CN113189296B (zh) 2021-11-26
CN113189296A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
Ciccarelli et al. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube
CA2648871C (en) System and method for generating and controlling conducted acoustic waves for geophysical exploration
Bogdanoff Vibration measurements in the damage zone in tunnel blasting
CN108802328B (zh) 一种定量判定***殉爆的方法
CH699617B1 (it) Metodo di detonazione super-compressa e dispositivo per realizzare tale detonazione.
Olsson et al. What causes cracks in rock blasting?
CN112880956B (zh) ***多物理场作用下的防爆装备测试***
Segarra et al. Prediction of near field overpressure from quarry blasting
CN109632327A (zh) 一种固体火箭发动机燃烧转爆轰模拟试验装置及方法
WO2022198840A1 (zh) 模拟隧道工程***的脉冲声源及***噪声测试装置和方法
JPS6411145B2 (zh)
CN104236404A (zh) 一种基于***振动测试的现场快速测定毫秒***延时精度的方法
US2940300A (en) Sound reducing explosives testing facility
CN116294848A (zh) 一种模拟超高速撞击***的装置及方法
Smith et al. Detonation wave propagation in underground mine entries
JP2015203572A (ja) 人工構造物の非破壊検査方法
CN106907139B (zh) ***装置、******及地下气化煤层预松动的方法
RU2801192C1 (ru) Способ испытаний осесимметричного осколочного боеприпаса с осесимметричным полем разлета осколков на зажигательное действие
Singh Mechanism of tracer blasting
RU2814055C1 (ru) Способ комплексных испытаний осесимметричного осколочно-фугасного боеприпаса с осесимметричным полем разлета осколков
JP6408388B2 (ja) 発破工法
CN113916076B (zh) 单临空面岩塞贯通***试验方法
RU2387968C2 (ru) Способ создания воздушной ударной волны (варианты)
CN113175855B (zh) 降低水下***噪音的施工方法
CN112858048B (zh) 一种炮孔填塞物动态力学性能测试装置及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932454

Country of ref document: EP

Kind code of ref document: A1