WO2022198374A1 - 显示基板及其制备方法、显示装置、彩膜基板 - Google Patents

显示基板及其制备方法、显示装置、彩膜基板 Download PDF

Info

Publication number
WO2022198374A1
WO2022198374A1 PCT/CN2021/082050 CN2021082050W WO2022198374A1 WO 2022198374 A1 WO2022198374 A1 WO 2022198374A1 CN 2021082050 W CN2021082050 W CN 2021082050W WO 2022198374 A1 WO2022198374 A1 WO 2022198374A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light adjustment
color filter
sub
Prior art date
Application number
PCT/CN2021/082050
Other languages
English (en)
French (fr)
Inventor
卿万梅
王百强
孔超
张伟
戴灵均
于天成
孙振
严子迪
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to GB2215465.2A priority Critical patent/GB2609579A/en
Priority to PCT/CN2021/082050 priority patent/WO2022198374A1/zh
Priority to CN202180000552.0A priority patent/CN115398633A/zh
Priority to US17/637,457 priority patent/US20240122047A1/en
Publication of WO2022198374A1 publication Critical patent/WO2022198374A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • This article relates to, but is not limited to, the field of display technology, especially a display substrate and its manufacturing method, a display device, and a color filter substrate.
  • OLED Organic Light Emitting Diode
  • TFT Thin Film Transistor
  • Embodiments of the present disclosure provide a display substrate and a method for manufacturing the same, a display device, and a color filter substrate.
  • an embodiment of the present disclosure provides a display substrate, comprising: a base substrate, a display structure layer disposed on the base substrate, and a light adjustment layer disposed on a light exit side of the display structure layer.
  • the display structure layer includes a plurality of sub-pixels; the orthographic projection of the light-adjusting layer on the base substrate does not overlap with the opening regions of the plurality of sub-pixels; the light-adjusting layer is configured to adjust the distance from the display The outgoing direction of at least one color light emitted from the structural layer.
  • the display structure layer further includes: a color filter layer on the light-emitting side of the plurality of sub-pixels.
  • the color filter layer includes a black matrix and a plurality of periodically arranged color filter units, and the black matrix is located between adjacent color filter units.
  • the light adjustment layer is located on a side of the black matrix away from the base substrate.
  • the orthographic projection of the black matrix on the base substrate covers the orthographic projection of the light modulation layer on the base substrate.
  • the light adjustment layer includes at least one light adjustment part located on at least one side of the at least one color filter unit.
  • the luminance ratios of different colors of light of the display substrate at a target viewing angle are adjusted by at least one of the following: the distance from the light adjustment part to the corresponding sub-pixel, the first degree of the light adjustment part a length, the second length of the light adjustment part.
  • the first length is a dimension of the light adjusting portion along a first direction, and the first direction is perpendicular to the plane where the display substrate is located.
  • the second length is the dimension of the light adjusting part along a second direction, the second direction being parallel to the plane of the display substrate and intersecting with the center line of the sub-pixel corresponding to the light adjusting part.
  • the second length of the light adjustment portion is greater than or equal to the critical width D
  • d 0 is the vertical distance from the light adjusting part to the center line of the corresponding sub-pixel
  • is the oblique viewing angle
  • n 1 is the refractive index of the first medium
  • n 2 is the refractive index of the light adjusting part.
  • the vertical distance d 0 a 1 /2+d from the light adjustment part to the center line of the corresponding sub-pixel
  • a 1 is the size of the sub-pixel corresponding to the light adjustment part
  • d is The distance from the light adjusting part to the corresponding sub-pixel, wherein d is greater than 0 and less than the difference between the distance between adjacent sub-pixels and the second length of the light adjusting part between the adjacent sub-pixels.
  • the cross section of the light adjustment part in a plane passing through the center line of the sub-pixel corresponding to the light adjustment part and perpendicular to the base substrate, is rectangular, or the light adjustment part
  • the second length of the bottom portion of the portion is greater than the second length of the top portion.
  • the color filter layer includes: a first color filter unit, a second color filter unit and a third color filter unit which are periodically arranged.
  • the light adjustment layer includes at least one of the following: a first light adjustment part located on the side of the first color filter unit away from the second color filter unit; a fourth light adjusting part on the side of the light unit, a second light adjusting part on the side of the second color filter unit close to the first color filter unit, and a second light adjusting part on the side of the second color filter unit close to the third color filter unit The third light adjustment part on one side of the light unit.
  • the second light adjusting part and the fourth light adjusting part are integrally formed.
  • the second length of the integrated structure formed by the second light adjusting part and the fourth light adjusting part is greater than or equal to the critical width of the second light adjusting part and the fourth light adjusting part the largest of the critical widths.
  • the second length is the dimension of the light adjustment part along a second direction, the second direction is parallel to the plane where the display substrate is located, and intersects the center line of the sub-pixel corresponding to the light adjustment part.
  • the first color filter unit is a red filter unit
  • the second color filter unit is a green filter unit
  • the third color filter unit is a blue filter unit .
  • the first light adjustment part and the fourth light adjustment part are configured to adjust the exit direction of the first color light emitted from the first color filter unit; the second light adjustment part and the third light adjustment part are configured as The exit direction of the second color light exiting from the second color filter unit is adjusted.
  • the first length of the first light adjustment part and the fourth light adjustment part is greater than or equal to the first length of the second light adjustment part, and is greater than or equal to the first length of the third light adjustment part.
  • the first length is a dimension of the light adjusting portion along a first direction, and the first direction is perpendicular to the plane where the display substrate is located.
  • the first length of the first light adjustment part and the fourth light adjustment part is about 0.7 micrometers to 1.2 micrometers, and the first length of the second light adjustment part is about 0.1 micrometers to 0.5 micrometers ⁇ m, the first length of the third light adjustment part is about 0.01 ⁇ m to 0.3 ⁇ m.
  • the second lengths of the first light adjusting portion, the second light adjusting portion, the third light adjusting portion, and the fourth light adjusting portion are substantially the same.
  • the second length is the dimension of the light adjusting portion along a second direction, the second direction being parallel to the plane of the display substrate and intersecting with the center line of the sub-pixel corresponding to the light adjusting portion.
  • the material of the light adjustment layer is a negative refractive index material.
  • the sub-pixel includes a light-emitting element and a driving circuit for driving the light-emitting element to emit light.
  • the light-emitting element comprises: a first electrode, a second electrode and an organic light-emitting layer arranged between the first electrode and the second electrode, the first electrode is located on the side of the second electrode close to the base substrate . There is an inclination angle between the plane where the first electrode is located and the plane where the base substrate is located.
  • an embodiment of the present disclosure provides a display device including the above-mentioned display substrate.
  • an embodiment of the present disclosure provides a method for preparing a display substrate, which is used for preparing the above-mentioned display substrate.
  • the preparation method includes: forming a display structure layer on a base substrate; and forming a light adjustment layer on the light emitting side of the display structure layer.
  • the display structure layer includes a plurality of sub-pixels. The orthographic projection of the light adjustment layer on the base substrate does not overlap with the opening areas of the plurality of sub-pixels; the light adjustment layer is configured to adjust the exit direction of at least one color light emitted from the display structure layer .
  • an embodiment of the present disclosure provides a color filter substrate, including: a substrate, a color filter layer disposed on the substrate, and a light adjustment layer.
  • the color filter layer includes a black matrix and a plurality of color filter units arranged periodically, and the light adjustment layer is disposed on the side of the black matrix away from the substrate; the light adjustment layer is configured to adjust from The outgoing direction of at least one color light emitted from the color filter layer.
  • 1 is a schematic diagram of a spectrum of a display substrate at a viewing angle of 0° and a viewing angle of 60°;
  • FIG. 2 is a schematic diagram of a display substrate with a yellowish color cast at an oblique viewing angle
  • FIG. 3 is a schematic plan view of a plurality of sub-pixels in a display area according to at least one embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a partial structure of a display substrate according to at least one embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • Fig. 6 is the characteristic schematic diagram of light refraction material
  • FIG. 7A and 7B are schematic diagrams showing the relationship between the first length and the second length of the light adjusting portion according to at least one embodiment of the present disclosure
  • FIG. 8 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the light intensity control of the light adjustment layer at different viewing angles according to at least one embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating the effect of improving color shift of the display substrate at an oblique viewing angle according to at least one embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of luminance attenuation of a display substrate according to at least one embodiment of the disclosure.
  • FIG. 12 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • 13 to 15 are three-dimensional and cross-sectional structural schematic diagrams of a light adjusting portion of at least one embodiment of the disclosure.
  • 16 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • 17 is a schematic diagram of a display device according to at least one embodiment of the disclosure.
  • FIG. 18 is a schematic diagram of a color filter substrate according to at least one embodiment of the disclosure.
  • ordinal numbers such as “first”, “second”, and “third” are set to avoid confusion of constituent elements, rather than to limit the quantity.
  • "Plurality” in this disclosure includes two and the quantity of two or more.
  • the terms “installed”, “connected” and “connected” should be construed broadly unless otherwise expressly specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • installed should be construed broadly unless otherwise expressly specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • a transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode .
  • the channel region refers to a region through which current mainly flows.
  • the functions of the "source electrode” and the “drain electrode” may be interchanged when using transistors of opposite polarities or when the direction of the current changes during circuit operation. Therefore, in the present disclosure, “source electrode” and “drain electrode” may be interchanged with each other.
  • electrically connected includes the case where constituent elements are connected together by elements having some electrical function.
  • the "element having a certain electrical effect” is not particularly limited as long as it can transmit and receive electrical signals between the connected constituent elements.
  • Examples of “elements having some electrical function” include not only electrodes and wirings, but also switching elements such as transistors, resistors, inductors, capacitors, other elements having one or more functions, and the like.
  • parallel refers to a state in which the angle formed by two straight lines is -10° or more and 10° or less, and thus can include a state in which the angle is -5° or more and 5° or less.
  • perpendicular refers to a state in which the angle formed by two straight lines is 80° or more and 100° or less, and therefore can include a state in which an angle of 85° or more and 95° or less is included.
  • film and “layer” are interchangeable.
  • conductive layer may be replaced by “conductive film” in some cases.
  • insulating film may be replaced with “insulating layer” in some cases.
  • OLED display substrates use the microcavity effect to improve the luminous efficiency and color purity of displayed images.
  • the microcavity effect is that the light emitted from the organic light-emitting layer (EL, Electro-Luminescence) is repeatedly and selectively reflected between specific layers, and transmits through the first electrode layer or the second electrode layer with increased optical intensity, thereby Improve the brightness and color purity of the final output light.
  • EL organic light-emitting layer
  • the light in the OLED display substrate undergoes interference superposition and interference cancellation, which will cause the OLED display substrate to have a problem of viewing angle polarization.
  • FIG. 1 is a schematic diagram of the spectrum of a display substrate at a viewing angle of 0° (ie, a front viewing angle) and a viewing angle of 60°. As shown in FIG. 1 , the RGB spectral light intensity at a viewing angle of 60° is reduced compared to the red-green-blue (RGB) spectral light intensity at a viewing angle of 0°.
  • RGB red-green-blue
  • the intensities of red light and blue light decrease rapidly, and the RGB spectrum at a viewing angle of 60° is blue-shifted compared to the RGB spectrum at a normal viewing angle, which makes the brightness ratio of RGB synthesized white light different at a viewing angle of 60°
  • the brightness ratio of the RGB synthesized white light at a positive viewing angle shows that the image quality of the OLED display substrate is abnormal at a viewing angle of 60°, and there is an abnormal state of blue or yellow.
  • FIG. 2 is a schematic diagram of a display substrate having a yellowish color cast at an oblique viewing angle (ie, a viewing angle other than 0°).
  • Figure 2 shows the CIE1931 chromaticity diagram.
  • the X-axis chromaticity coordinates represent the proportion of the red primary color
  • the Y-axis chromaticity coordinates represent the proportion of the green primary color.
  • the synthesized white light corresponds to point S1 under a frontal viewing angle
  • the synthesized white light corresponds to point S2 under an oblique viewing angle (eg, a viewing angle greater than 60°). It can be seen from FIG. 2 that, compared with the case of the frontal viewing angle, the display substrate has a yellowing phenomenon under the oblique viewing angle.
  • At least one embodiment of the present disclosure provides a display substrate, comprising: a base substrate, a display structure layer disposed on the base substrate, and a light adjustment layer disposed on a light exit side of the display structure layer.
  • the display structure layer includes a plurality of sub-pixels. The orthographic projection of the light adjustment layer on the base substrate does not overlap with the opening regions of the plurality of sub-pixels.
  • the light adjustment layer is configured to adjust the exit direction of at least one color light exiting from the display structure layer.
  • the light-adjusting layer provided on the light-emitting side of the display structure layer can adjust the output direction of at least one color light, and by changing the light path, the light intensity of different colors of light entering the human eye can be adjusted, Further, the viewing angle deviation existing in the display substrate is improved.
  • the light adjustment layer is configured to adjust the exit direction of at least one of the following colors of light emitted from the display structure layer: red light, green light, blue light.
  • the light adjustment layer only adjusts the exit direction of red light, or only adjusts the exit direction of green light, or only adjusts the exit direction of blue light, or adjusts the exit direction of at least two colors of red, green and blue light.
  • this embodiment does not limit this.
  • the display structure layer further includes: a color filter layer on the light-emitting side of the plurality of sub-pixels.
  • the color filter layer includes a black matrix and a plurality of periodically arranged color filter units, and the black matrix is located between adjacent color filter units.
  • the light adjustment layer is located on the side of the black matrix away from the base substrate.
  • a plurality of color filter units may correspond to a plurality of sub-pixels one-to-one.
  • the orthographic projection of the color filter unit on the base substrate covers the opening area of the corresponding sub-pixel.
  • the orthographic projection of the black matrix on the base substrate covers the orthographic projection of the light adjustment layer on the base substrate.
  • the orthographic projection of the color filter unit on the base substrate does not overlap with the orthographic projection of the light adjustment layer on the base substrate.
  • the display substrate may be a display substrate of a COE (CF on Encapsulation, a color filter layer is formed on a thin film encapsulated organic electroluminescent device) structure.
  • COE CF on Encapsulation, a color filter layer is formed on a thin film encapsulated organic electroluminescent device
  • the light adjustment layer includes at least one light adjustment part located on at least one side of the at least one color filter unit.
  • the at least one light adjustment part may be disposed on the periphery of the at least one color filter unit, for example, the light adjustment part may be located on one side of the color filter unit, or on opposite sides, or around the color filter unit.
  • the light adjustment layer includes a plurality of light adjustment parts, and the plurality of light adjustment parts may be independent of each other, or a part of the light adjustment parts may be connected with each other to form an integrated structure, or all the light adjustment parts may be connected with each other to form an integrated structure.
  • this embodiment does not limit this.
  • the ratio of brightness of light of different colors of the display substrate at a target viewing angle can be adjusted by at least one of the following: the distance from the light adjustment part to the corresponding sub-pixel, the first length of the light adjustment part, the light adjustment the second length of the section.
  • the first length is the dimension of the light adjusting portion along the first direction, and the first direction is perpendicular to the plane where the display substrate is located.
  • the second length is the dimension of the light adjustment part along the second direction, the second direction is parallel to the plane of the display substrate and intersects the center line of the sub-pixel corresponding to the light adjustment part.
  • the first length may be referred to as thickness or height
  • the second length may be referred to as width.
  • the distance from the light adjustment part to the corresponding sub-pixel may be the vertical distance from the edge of the light adjustment part close to the corresponding sub pixel to the edge of the opening area of the sub pixel close to the light adjustment part.
  • the brightness ratio of the light of different colors of the display substrate under the target viewing angle can be adjusted by adjusting the distance from the light adjusting part to the corresponding sub-pixel, so as to improve the viewing angle deviation.
  • the RGB luminance ratio under the viewing angle bias is adjusted to the optimal luminance ratio under the target viewing angle.
  • the dimensions (including the first length and the second length) of the different light adjusting parts may be the same. However, this embodiment does not limit this.
  • the brightness ratio of the light of different colors of the display substrate under the target viewing angle can be adjusted, so as to improve the viewing angle deviation.
  • the second length of the light adjustment part is determined according to the vertical distance from the light adjustment part to the center line of the corresponding sub-pixel and the target viewing angle; the second length of the light adjustment part is determined according to the RGB brightness ratio under the viewing angle bias and the optimal brightness ratio as the adjustment target Adjustment factors for light of different colors, and based on the adjustment factors, determine the first length of the light adjustment portion, so as to achieve the optimal brightness ratio under the target viewing angle.
  • the brightness ratio of different colors of light of the display substrate under the target viewing angle can be adjusted, thereby improving the viewing angle partial.
  • the second length of the light adjusting part is determined according to the vertical distance from the light adjusting part to the center line of the corresponding sub-pixel and the target viewing angle;
  • the optimal brightness ratio of the target is determined, and the adjustment factors of different colors of light are determined, and based on the adjustment factors, the first length of the light adjustment part is determined, so as to achieve the optimal brightness ratio under the left target viewing angle.
  • the dimensions of the remaining light adjustment parts are set to be the same as those of the aforementioned light adjustment parts (including the first length and the second length). By adjusting the distances from the remaining light adjustment parts to the corresponding sub-pixels, the RGB luminance ratio under the right viewing angle is adjusted to the optimal luminance ratio under the target viewing angle.
  • the second length of the light adjustment portion is greater than or equal to the critical width D
  • d 0 is the vertical distance from the light adjustment part to the center line of the corresponding sub-pixel
  • is the oblique viewing angle
  • n 1 is the refractive index of the first medium
  • n 2 is the refractive index of the light adjustment part.
  • the first medium is a medium through which light passes before entering the light adjustment part.
  • the vertical distance d 0 a 1 /2+d from the light adjusting part to the center line of the corresponding sub-pixel
  • a 1 is the size of the sub-pixel corresponding to the light adjusting part
  • d is the distance between the light adjusting part and the corresponding sub-pixel.
  • the distance between the corresponding sub-pixels, d is greater than 0 and smaller than the difference between the distance between adjacent sub-pixels and the second length of the light adjustment portion between the adjacent sub-pixels.
  • the size of the sub-pixel corresponding to the light adjustment part may refer to the size of the opening area of the sub-pixel corresponding to the light adjustment part.
  • the cross section of the light adjustment part in a plane passing through the center line of the sub-pixel corresponding to the light adjustment part and perpendicular to the base substrate, the cross section of the light adjustment part is rectangular, or the bottom of the light adjustment part has a rectangular shape.
  • the second length is greater than the second length of the top.
  • the cross section of the light adjustment part is rectangular, the height of the light adjustment part may be less than or equal to h 0 , and the width may be greater than or equal to D.
  • the cross-section of the light-adjusting portion may be non-rectangular, wherein the second length of the bottom of the light-adjusting portion is greater than the second length of the top, and the second length of the portion between the bottom and the top may vary, eg, Gradually decrease, first decrease and then increase, etc.
  • the cross-section of the light adjusting portion may be a trapezoid, a triangle, or a structure having an arc top surface (eg, the top surface is convex or concave).
  • the maximum height of the light adjustment portion may be less than or equal to h 0
  • the minimum width of the light adjustment portion may be greater than or equal to D.
  • the height of the trapezoid may be less than or equal to h 0 , and the length of the upper base (ie, the second length of the top) of the trapezoid may be greater than or equal to D.
  • the cross section of the light adjusting part is a triangle
  • the maximum height of the triangle may be less than or equal to h 0
  • the minimum width may be greater than or equal to D.
  • this embodiment does not limit this.
  • the color filter layer may include: a first color filter unit, a second color filter unit, and a third color filter unit that are periodically arranged.
  • the light adjustment layer may include at least one of the following: a first light adjustment part located on a side of the first color filter unit away from the second color filter unit, a first light adjustment part located on a side of the first color filter unit close to the second color filter unit a fourth light adjustment part, a second light adjustment part located on the side of the second color filter unit close to the first color filter unit, and a third light adjustment part located on the side of the second color filter unit close to the third color filter unit department.
  • this embodiment does not limit this.
  • the second light adjusting part and the fourth light adjusting part may be an integral structure. Wherein, the second light adjusting part and the fourth light adjusting part are both located between the first color filter unit and the second color filter unit. However, this embodiment does not limit this.
  • the second length of the integrated structure formed by the second light adjusting part and the fourth light adjusting part is greater than or equal to the largest of the critical width of the second light adjusting part and the critical width of the fourth light adjusting part By.
  • the critical width of the second light adjusting portion is greater than the critical width of the fourth light adjusting portion
  • the second length of the integrated structure formed by the second light adjusting portion and the fourth light adjusting portion is greater than or equal to the critical width of the second light adjusting portion width.
  • this embodiment does not limit this.
  • the first color filter unit is a red filter unit
  • the second color filter unit is a green filter unit
  • the third color filter unit is a blue filter unit.
  • the first light adjusting part and the fourth light adjusting part are configured to adjust the exit direction of the first color light emitted from the first color filter unit; the second light adjusting part and the third light adjusting part are configured to adjust the light from the second color filter unit.
  • the first length of the first light adjustment part and the fourth adjustment part is greater than or equal to the first length of the second light adjustment part, and is greater than or equal to the first length of the third light adjustment part.
  • the first length of the light adjusting portion that adjusts the exit direction of the first color light is greater than or equal to the light adjusting portion that adjusts the exit direction of the second color light.
  • the first light adjustment part and the fourth light adjustment part are located on opposite sides of the first color filter unit, and the second light adjustment part and the third light adjustment part are located on opposite sides of the second color filter unit .
  • this embodiment does not limit this.
  • the first length of the first light adjustment portion and the fourth light adjustment portion are about 0.7 to 1.2 microns
  • the first length of the second light adjustment portion is about 0.1 to 0.5 microns
  • the third light adjustment portion has a first length of about 0.1 to 0.5 microns.
  • the first length of the light adjustment portion is about 0.01 to 0.3 microns.
  • the light adjustment layer provided by this exemplary embodiment can improve the color shift when the oblique viewing angle is greater than or equal to 60°.
  • the second lengths of the first light adjusting portion, the second light adjusting portion, the third light adjusting portion, and the fourth light adjusting portion are substantially the same.
  • this embodiment does not limit this.
  • the second lengths of the first light adjusting portion, the second light adjusting portion, the third light adjusting portion, and the fourth light adjusting portion may be different from each other, or partially the same.
  • the second lengths of the different light adjustment parts need to be greater than or equal to the corresponding critical widths.
  • the material of the light adjustment layer is a negative refractive index material.
  • the material of the light adjustment layer may include at least one of the following: a photonic crystal material, a bi-medium negative refraction material. However, this embodiment does not limit this.
  • a sub-pixel includes a light-emitting element and a driving circuit that drives the light-emitting element to emit light.
  • the light-emitting element includes: a first electrode, a second electrode and an organic light-emitting layer arranged between the first electrode and the second electrode, the first electrode is located on the side of the second electrode close to the base substrate; the plane where the first electrode is located is connected to the substrate There is an inclination angle between the planes where the base substrate is located. In some examples, the inclination angles between the plane where the first electrodes of different sub-pixels are located and the plane where the base substrate is located are different.
  • the orthographic projection of the light adjustment portion corresponding to the sub-pixel on the base substrate may be located on the side of the inclination angle of the first electrode facing the sub-pixel.
  • the right side of the first electrode of the sub-pixel is raised so that an inclined angle is formed between the plane where the first electrode is located and the plane where the base substrate is located, and the orthographic projection of the light adjustment portion corresponding to the sub-pixel on the substrate substrate may be located to the left of the sub-pixel.
  • this embodiment does not limit this.
  • the display substrate of the present exemplary embodiment can improve the large variation of the monochromatic ratio of synthesized white light at different viewing angles due to the inclined angle of the first electrode, resulting in asymmetric luminance attenuation (L-Decay) in the positive and negative viewing angles. , thereby improving the viewing role bias caused by it.
  • the display substrate of the present embodiment will be illustrated below through a plurality of examples.
  • the display substrate is an OLED display substrate with a top emission structure as an example for description. Wherein, the light emitting side of the display structure layer is away from the base substrate.
  • the display substrate may be an OLED display substrate of a bottom emission structure. Wherein, the light emitting side of the display structure layer is close to the base substrate.
  • the display substrate may include a display area and a non-display area around the display area. Multiple pixel units can be regularly arranged in the display area. At least one of the plurality of pixel units includes a plurality of sub-pixels, for example, may include: a first sub-pixel emitting light of a first color, a second sub-pixel emitting light of a second color, and a third sub-pixel emitting light of a third color . However, this embodiment does not limit this. For example, at least one pixel unit may include a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel.
  • At least one sub-pixel includes a light-emitting element and a pixel driving circuit for driving the light-emitting element to emit light.
  • the pixel driving circuit in at least one sub-pixel is respectively connected with the scanning signal line, the data signal line and the light-emitting signal line, and the pixel driving circuit is configured to receive the data voltage transmitted by the data signal line under the control of the scanning signal line and the light-emitting signal line , and output the corresponding current to the corresponding light-emitting element.
  • the light-emitting element in at least one sub-pixel is connected to the corresponding pixel driving circuit, and the light-emitting element is configured to emit light with corresponding brightness in response to the current output by the pixel driving circuit of the sub-pixel.
  • FIG. 3 is a schematic plan view of a plurality of sub-pixels in a display area according to at least one embodiment of the present disclosure.
  • a plurality of sub-pixels in the display area may be arranged in the following manner: one first sub-pixel P1, two second sub-pixels P2 and one first sub-pixel P2 on each row
  • the repeating unit of the three sub-pixels P3 is arranged, and the two second sub-pixels P2 in the repeating unit are arranged along the column direction.
  • the first sub-pixel P1 emits light of the first color
  • the second sub-pixel P2 emits light of the second color
  • the third sub-pixel P3 emits light of the third color.
  • the spacing in the row direction of the sub-pixels emitting the same color light may be approximately equal to 1 to 2 times the width of the sub-pixels, eg, 1.5 times.
  • the two second sub-pixels P2 may be pentagons (eg, rounded pentagons), the two second sub-pixels P2 are symmetrical with each other, and the symmetry axis is parallel to the row direction.
  • the first subpixel P1 and the third subpixel P3 are respectively hexagonal (eg, rounded hexagons).
  • the length of the first subpixel P1 in the column direction may be greater than the length of the third subpixel P3 in the column direction, and the length of the third subpixel P3 in the column direction may be greater than the length of the second subpixel P2 in the column direction.
  • the first subpixel P1 may be a red (R) subpixel
  • the second subpixel P2 may be a green (G) subpixel
  • the third subpixel P3 may be a blue (B) subpixel.
  • the first color light may be red light
  • the second color light may be green light
  • the third color light may be blue light.
  • the three sub-pixels of one pixel unit are arranged in a pattern.
  • this embodiment does not limit the shape and arrangement of the plurality of sub-pixels in the display area.
  • the sub-pixels may be rectangular, diamond, pentagon or hexagonal.
  • the three sub-pixels can be arranged horizontally or vertically; when a pixel unit includes four sub-pixels, the four sub-pixels can be arranged horizontally, vertically or squarely.
  • FIG. 4 is a schematic diagram of a partial structure of a display substrate according to at least one embodiment of the present disclosure.
  • FIG. 4 illustrates by taking a repeating unit of the display area as an example, and a color filter layer is provided on the light-emitting side of the sub-pixel.
  • the color filter layer includes: a black matrix 501 and a first color filter unit 502a, a second color filter unit 502b and a third color filter unit 502c which are periodically arranged.
  • the black matrix 501 is located between adjacent color filter units.
  • the first color filter unit 502a is located on the light-emitting side of the first sub-pixel P1, and the orthographic projection of the first color filter unit 502a on the base substrate covers the opening area of the first sub-pixel P1.
  • the second color filter unit 502b is located on the light-emitting side of the second sub-pixel P2, and the orthographic projection of the second color filter unit 502b on the base substrate covers the opening area of the second sub-pixel P2.
  • the third color filter unit 502c is located on the light-emitting side of the third sub-pixel P3, and the orthographic projection of the third color filter unit 502c on the base substrate covers the opening area of the third sub-pixel P3.
  • At least one sub-pixel includes an open area and a non-open area surrounding the open area.
  • the opening area of the sub-pixel is configured for display and is not blocked by the black matrix 501 ; the non-opening area surrounds the opening area and is blocked by the black matrix 501 and is not displayed.
  • the first color filter unit 502a is a red filter unit
  • the second color filter unit 502b is a green filter unit
  • the third color filter unit 502c is a blue filter unit.
  • a light adjustment layer is provided on the side of the black matrix 501 away from the base substrate.
  • the orthographic projection of the black matrix 501 on the base substrate covers the orthographic projection of the light adjustment layer on the base substrate.
  • the orthographic projection of the light adjustment layer on the base substrate does not overlap with the orthographic projection of the color filter unit on the base substrate.
  • the orthographic projection of the light adjustment layer on the base substrate does not overlap with the opening regions of the plurality of sub-pixels. In other words, the light adjustment layer will not block the opening area of the sub-pixel.
  • the light adjustment layer includes a plurality of light adjustment parts, such as a first light adjustment part 601 , a second light adjustment part 602 and a third light adjustment part 603 .
  • the first light adjustment part 601 is located on the side of the first color filter unit 502a away from the adjacent second color filter unit 502b, and the second light adjustment part 602 is located between the first color filter unit 502a and the adjacent second color filter unit 502b. Between the filter units 502b, the third light adjustment part 603 is located between the second color filter unit 502b and the adjacent third color filter unit 502c.
  • the first light adjusting part 601 is configured to adjust the exit direction of the first color light emitted from the first color filter unit 502a
  • the second light adjusting part 602 and the third light adjusting part 603 are configured to adjust the light from the second color filter unit 502a.
  • the emission direction of the second color light emitted by the light unit 502b is configured to adjust the light from the second color filter unit 502a.
  • the present embodiment does not limit the number and arrangement positions of the light adjustment parts of the light adjustment layer.
  • the light adjusting part may be provided only on the periphery of the first color filter unit 502a (eg, one side, or opposite sides, or all around the first color filter unit 502a) to adjust the light from the first color filter unit 502a.
  • the light adjustment part may be provided only on the periphery of the second color filter unit 502b (for example, one side, or opposite sides or around the second color filter unit 502b) , to adjust the exit direction of the second color light emitted from the second color filter unit 502b; Opposite sides or four sides) are provided with light adjustment parts to adjust the exit direction of the third color light emitted from the third color filter unit 502c; Adjust the output direction of the light emitted from the corresponding color filter unit.
  • the light adjustment part of the light adjustment layer may have a unitary structure.
  • the second light adjusting portion 602 of two adjacent second color filter units 502b on the side close to the first color filter unit 502a may have an integrated structure
  • two adjacent second color filter units 502b may have an integrated structure
  • the third light adjusting part 603 of the 502b on the side close to the third color filter unit 502c may have an integrated structure.
  • all of the light-modulating portions in the light-modulating layer may be independent of each other.
  • the light adjustment parts corresponding to different color filter units are independent from each other and not connected.
  • At least one light adjustment part of the light adjustment layer may be a strip-like structure.
  • the extending direction of the light adjustment part may be perpendicular to the sub-pixel row direction and parallel to the sub-pixel column direction.
  • the extension length of the light adjustment part in the column direction of the sub-pixels may be greater than the length of the opening region of the corresponding sub-pixels in the column direction.
  • the extension length of the first light adjusting part 601 along the sub-pixel column direction is greater than the length of the opening region of the first sub-pixel P1 along the column direction, and also greater than the length of the first color filter unit 502a along the sub-pixel column direction.
  • the respective extension lengths of the second light adjusting portion 602 and the third light adjusting portion 603 along the sub-pixel column direction are greater than the length of the opening region of the second sub-pixel P2 along the column direction, and are also greater than the second color filter unit 502b along the sub-pixel column. the length of the direction.
  • this embodiment does not limit this.
  • the extension length of the at least one light adjustment part in the column direction of the sub-pixels may be equal to or smaller than the length of the opening area of the corresponding sub-pixel in the column direction.
  • the extending direction of the light adjusting portion may be perpendicular to the sub-pixel column direction and parallel to the sub-pixel row direction.
  • FIG. 5 is a schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • FIG. 5 is a schematic partial cross-sectional view along the R-R direction in FIG. 4 .
  • the display substrate in a plane perpendicular to the display substrate, includes: a base substrate 101 , a display structure layer disposed on the base substrate 101 , a display structure layer located away from the substrate The encapsulation layer 104 on the side of the base substrate 101, the color filter layer 105 and the light adjustment layer 106 on the side of the encapsulation layer 104 away from the base substrate 101, the flat layer 107 and the cover on the side of the light adjustment layer 106 away from the base substrate 101 layer 108.
  • the display substrate may include other film layers, such as spacer columns and the like. However, this embodiment does not limit this.
  • the base substrate 101 may be a flexible substrate or a rigid substrate.
  • the display structure layer includes: a driving structure layer 102 disposed on the base substrate 101 , and a light emitting structure layer 103 located on the side of the driving structure layer 102 away from the base substrate 101 .
  • the driving structure layer 102 includes a plurality of pixel driving circuits. At least one pixel drive circuit includes a plurality of transistors and at least one storage capacitor.
  • the pixel driving circuit may be a 3T1C, 4T1C, 5T1C, 5T2C, 6T1C or 7T1C structure.
  • FIG. 5 takes one transistor 211 and one storage capacitor 210 included in each sub-pixel as an example for illustration.
  • the driving structure layer 102 includes: a semiconductor layer, a first gate metal layer, a second gate metal layer, and a source-drain metal layer, which are sequentially disposed on the base substrate 101 .
  • a first insulating layer 201 is arranged between the semiconductor layer and the base substrate 101
  • a second insulating layer 202 is arranged between the semiconductor layer and the first gate metal layer
  • a second insulating layer 202 is arranged between the first gate metal layer and the second gate metal layer.
  • a fourth insulating layer 204 is provided between the third insulating layer 203 , the second gate metal layer and the source-drain metal layer
  • a fifth insulating layer 205 is provided on the side of the source-drain metal layer away from the base substrate 101 .
  • the semiconductor layer at least includes the active layer of the transistor 211, the first gate metal layer at least includes the gate electrode of the transistor 211 and the first capacitor electrode of the storage capacitor 210, the second gate metal layer at least includes the second capacitor electrode of the storage capacitor 210, the source
  • the drain metal layer includes at least the source electrode and the drain electrode of the transistor 211 .
  • the first to fourth insulating layers 201 to 204 may be inorganic insulating layers, and the fifth insulating layer 205 may be an organic insulating layer. However, this embodiment does not limit this.
  • the light emitting structure layer 103 includes a plurality of light emitting elements.
  • the light emitting structure layer 103 may include: a pixel definition layer 302, a first electrode layer, a second electrode layer, and an organic light emitting layer disposed between the first electrode layer and the second electrode layer.
  • the first electrode layer is located on the side of the second electrode layer close to the base substrate 101 .
  • the first electrode layer includes a plurality of first electrodes (eg, first electrodes 301 a , 301 b and 301 c ), and the second electrode layer includes a second electrode 304 .
  • the first electrode may be a reflective electrode
  • the second electrode may be a transparent electrode or a transflective electrode. As shown in FIG.
  • the light-emitting element of the first sub-pixel includes a first electrode 301a, a second electrode 304, and an organic light-emitting layer 303a located between the first electrode 301a and the second electrode 304;
  • the light-emitting element of the second sub-pixel may be including a first electrode 301b, a second electrode 304, and an organic light-emitting layer 303b located between the first electrode 301b and the second electrode 304;
  • the light-emitting element of the third sub-pixel may include a first electrode 301c, a second electrode 304 and an organic light-emitting layer 303b located between the first electrode 301b and the second electrode 304;
  • the organic light-emitting layer 303c between the first electrode 301c and the second electrode 304.
  • the light-emitting element of the first sub-pixel is used as an example for description.
  • the first electrode 301a of the light-emitting element of the first sub-pixel is connected to the drain electrode of the corresponding transistor 211 of the pixel driving circuit through a via hole.
  • the pixel definition layer 302 has a plurality of pixel definition layer openings.
  • Each pixel definition layer opening exposes at least part of the corresponding first electrode 301a
  • the organic light emitting layer 303a is disposed on the side of the first electrode 301a away from the base substrate 101, and is in contact with the first electrode 301a through the pixel definition layer opening
  • the second electrode 304 is disposed on the side of the organic light-emitting layer 303a away from the base substrate 101, and is in contact with the organic light-emitting layer 303a.
  • the organic light emitting layer 303a in the opening of the pixel definition layer emits light of the first color under the driving of the first electrode 301a and the second electrode 304 .
  • the organic light-emitting layer 303b in the opening of the pixel definition layer emits light of the second color under the driving of the first electrode 301b and the second electrode 304
  • the organic light-emitting layer 303c in the opening of the pixel definition layer is driven by the first electrode 301b and the second electrode 304.
  • the third color light is emitted under the driving of the electrode 304 .
  • the orthographic projection of the opening of the pixel definition layer on the base substrate 101 includes the orthographic projection of the opening region of the sub-pixel on the base substrate 101 .
  • the organic light-emitting layer may include a stacked hole injection layer (HIL, Hole Injection Layer), a hole transport layer (HTL, Hole Transport Layer), an electron blocking layer (EBL, Electron Block Layer) , Emission Layer (EML, Emitting Layer), Hole Block Layer (HBL, Hole Block Layer), Electron Transport Layer (ETL, Electron Transport Layer) and Electron Injection Layer (EIL, Electron Injection Layer).
  • HIL Hole Injection Layer
  • HTL Hole Injection Layer
  • HTL Hole Transport Layer
  • EBL Electron Block Layer
  • Emission Layer Emission Layer
  • HBL Hole Block Layer
  • ETL Electron Transport Layer
  • EIL Electron Injection Layer
  • the hole injection layer and electron injection layer of all subpixels may be a common layer connected together
  • the hole transport layer and electron transport layer of all subpixels may be a common layer connected together
  • all subpixels may be a common layer connected together.
  • the hole blocking layer can be a common layer connected together, the light-emitting layer and the electron blocking layer of adjacent sub-pixels can have a small amount of overlap, or can be isolated, the hole blocking layer can be a common layer connected together .
  • this embodiment does not limit this.
  • the encapsulation layer 104 may include a stacked first encapsulation layer, a second encapsulation layer, and a third encapsulation layer.
  • the first encapsulation layer and the third encapsulation layer can be made of inorganic materials, and the second encapsulation layer can be made of organic materials. However, this embodiment does not limit this.
  • the cross-sections of the first light adjustment part 601 , the second light adjustment part 602 and the third light adjustment part 603 of the light adjustment layer 106 can all be rectangles, for example, the cross-sections of the three are rectangles with different sizes.
  • this embodiment does not limit this.
  • the cross-sectional dimensions of the different light adjusting parts may be the same; or, the cross-sectional shapes of the different light adjusting parts may be different.
  • the light adjustment layer 106 may adopt a negative refractive index material, that is, a material with a refractive index less than zero.
  • the material of the light adjustment layer 106 may include at least one of the following: a photonic crystal material, a dual-dielectric negative refractive index material (eg, modified polyimide).
  • FIG. 6 is a schematic diagram of the characteristics of the photorefractive material.
  • FIG. 6( a ) is a schematic diagram of the refraction of light by a general material
  • FIG. 6( b ) is a schematic diagram of the refraction of light by a negative refractive index material.
  • n 0 represents the refractive index of a general material
  • n 2 represents the refractive index of a negative refractive index material
  • n 1 represents the refractive index of air.
  • the negative refractive index material has the property that the incident light and the refracted light are located on the same side of the interface normal. After the light passes through the negative refractive index material, the path of the light changes, and it exits on the same side as the incident direction with respect to the interface normal.
  • the light adjustment layer is designed by utilizing the properties of the negative refractive index material, so that the light path emitted from the color filter layer can be changed, so as to improve the viewing angle polarization existing in the display substrate.
  • FIG. 7A and 7B are schematic diagrams showing the relationship between the first length and the second length of the light adjusting portion according to at least one embodiment of the present disclosure.
  • FIG. 7A and FIG. 7B are partial schematic views that pass through the center line of the sub-pixel corresponding to the light adjustment part and are perpendicular to the plane of the base substrate.
  • the incident light of the light adjusting portion can be made to propagate along the first path I.
  • the first length is the dimension of the light adjustment part along the first direction
  • the second length is the dimension of the light adjustment part along the second direction.
  • the first direction is perpendicular to the plane where the display substrate is located, and the first length may be referred to as the thickness or height of the light adjustment portion.
  • the second direction is parallel to the plane where the display substrate is located, and may intersect with the center line of the sub-pixel corresponding to the light adjustment portion.
  • the second length may be referred to as the width of the light adjustment portion.
  • vv' represents the interface normal of the light incident from the first medium to the light adjustment part 603; ss' represents the interface normal of the light incident from the light adjustment part 603 to the first medium; oo' represents the light incident from the light adjustment part 603 to the black The interface normal of matrix 501.
  • the third light adjusting portion 603 with a rectangular cross-section shown in FIG. 5 is used as an example for description. According to Figure 7A, the following relationship can be obtained:
  • Equation 1 Equation 2 Equation 3 Equation 4
  • the thickness h 0 of the light adjusting portion 603 has a correlation with the oblique viewing angle ⁇ and the vertical distance d 0 from the light adjusting portion 603 to the center line of the corresponding sub-pixel.
  • the critical width D of the light adjusting part 603 and the oblique viewing angle ⁇ , the vertical distance d 0 from the light adjusting part 603 to the center line of the corresponding sub-pixel, the refractive index n 2 of the light adjusting part 603 , and the first medium has a correlation.
  • the light adjustment part 603 is used to change the light path, which can adjust the light color with excessive brightness ratio in the RGB composite white light, thereby improving the viewing angle deviation of the display substrate.
  • the light exit path will propagate along the second path II. Since the width d1 of the light adjusting portion 603 is smaller than the critical width D, the light does not reach the interface between the light adjusting portion 603 and the black matrix 501 and is refracted twice, and the light propagates along the second path II, that is, the initial propagation direction. Under such conditions, the light adjustment section 603 cannot change the light path.
  • the width d 1 of the light adjustment portion of the light adjustment layer needs to be designed to be greater than or equal to the critical width D.
  • the direction of the oblique viewing angle can be adjusted.
  • the light intensity of at least one color light entering the human eye thereby improving the viewing angle deviation of the display substrate.
  • FIG. 8 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • the display substrate in a plane perpendicular to the base substrate, the display substrate includes: a base substrate 101 , a display structure layer disposed on the base substrate 101 , a display structure layer located away from the display structure layer
  • the display structure layer includes: a driving structure layer 102 disposed on the base substrate 101 , and a light emitting structure layer 103 located on a side of the driving structure layer 102 away from the base substrate 101 .
  • the driving structure layer 102 includes: a semiconductor layer, a first gate metal layer, a second gate metal layer and a source-drain metal layer which are sequentially arranged on the base substrate 101 .
  • the first electrode since there are traces of the source-drain metal layer under the light-emitting element, and via holes are provided in the fifth insulating layer 205 to realize the connection between the first electrode and the corresponding pixel driving circuit, the first electrode will be uneven, and there are Inclined, that is, there is an inclined angle between the first electrode and the plane where the base substrate 101 is located.
  • the inclination angle of the first electrode ie, the angle between the plane where the first electrode is located and the plane where the base substrate is located
  • the RGB brightness ratio of the synthetic white light is adjusted to the optimal brightness ratio to effectively improve the viewing angle.
  • n k ⁇ (where k is an integer, d 1 is the optical path, here is the width of the light adjustment part, ⁇ is the wavelength, and n is the light adjustment part Refractive index), it can be seen that since different colors of light enter the same medium and propagate differently, and the ratios that need to be adjusted to synthesize different light colors of white light are also different, therefore, the corresponding adjustment of the output direction of different colors of light of the light adjustment part There will be differences in thickness and width d1 .
  • the light adjustment layer 106 includes: a first light adjustment part 601 and a fourth light adjustment part 604 located on opposite sides of the first color filter unit 502a, and a second light adjustment part 604 located on opposite sides of the first color filter unit 502a
  • the second light adjusting part 602 and the third light adjusting part 603 on opposite sides of the color filter unit 502b.
  • the second light adjusting part 602 and the fourth light adjusting part 604 are located between the first color filter unit 502a and the second color filter unit 502b, the second light adjusting part 602 is close to the second color filter unit 502b, the fourth light The adjusting part 604 is close to the first color filter unit 502a.
  • the third light adjustment part 603 is located between the second color filter unit 502b and the third color filter unit 502c.
  • the first color filter unit 502a is a red filter unit
  • the second color filter unit 502b is a green filter unit
  • the third color filter unit 502c is a blue filter unit.
  • the light adjustment layer 106 can be used to adjust the outgoing directions of the red light and the green light at the same time, so as to adjust the light intensity of the red light and the green light entering the human eye under an oblique viewing angle.
  • FIG. 9 is a schematic diagram of the light intensity control of the light adjustment layer at different viewing angles according to at least one embodiment of the present disclosure. As shown in FIG. 9 , through the adjustment of the light adjustment layer 106 , the light intensity at a smaller viewing angle can be made larger, and when the viewing angle is greater than 30°, the light intensity gradually weakens as the viewing angle increases.
  • FIG. 10 is a schematic diagram illustrating an effect of improving color shift of a display substrate at an oblique viewing angle according to at least one embodiment of the present disclosure.
  • the synthesized white light corresponds to point S1 under the frontal viewing angle, the synthesized white light corresponding to the S2 point under the oblique viewing angle for the display substrate without the light adjustment layer, and the S3 point corresponding to the synthesized white light of the display substrate provided in this embodiment under the oblique viewing angle .
  • the RGB luminance ratio under the oblique viewing angle can reach the ratio under the normal viewing angle to synthesize white light, thereby improving the yellowing of the oblique viewing angle.
  • the display substrate exhibits yellowing at a viewing angle of 70°, the left viewing angle RGB luminance ratio is 3.3:6.1:0.6, and the right viewing angle RGB luminance ratio is 3.2:6.1:0.7
  • the differentiated design of the light adjustment portion of the light adjustment layer of the display substrate to improve the above situation will be described.
  • the oblique viewing angle is ⁇
  • the sub-pixel size is a 1 ⁇ m (um)
  • the distance between adjacent sub-pixels is b 1 um
  • the refractive index of the light adjustment layer to the light beam is n 2
  • the distance from the light adjustment part to the sub-pixel is d um
  • the center line of the first sub-pixel for example, the red sub-pixel
  • d 0 (a 1 /2+d)um.
  • the size of the second sub-pixel (eg, green sub-pixel) is about 5um, the distance between adjacent sub-pixels is 8um, the refractive index of the light adjustment layer relative to the green light is n 2G , and the distance from the light adjustment part to the second sub-pixel is about 1um .
  • the adjustment factor for the brightness of the red light and the green light may be determined based on the actual brightness ratio of RGB to be adjusted, the optimal brightness ratio to be adjusted, and a brightness adjustment algorithm. This embodiment does not limit the implementation of the brightness adjustment algorithm.
  • the first light adjustment part 601 is arranged at the left side of the first subpixel at a distance of 2um from the first subpixel, and the first light adjustment part 601 is arranged at the right side of the first subpixel at a distance of 2um from the first subpixel.
  • Four light adjustment parts 604 .
  • the thickness of the first light adjustment part 601 is about 1.15um and the width is about 5um; the thickness of the fourth light adjustment part 604 is about 0.87um and the width is about 5um.
  • the first light adjusting part 601 can adjust the red light brightness by 45% in the viewing angle range of 70° to 90°
  • the fourth light adjusting part 604 can adjust the red light brightness by 34% in the viewing angle range from 70° to 90°.
  • a second light adjusting part 602 is provided on the left side of the second sub-pixel at a distance of 1 um from the second sub-pixel
  • a third light adjusting part 603 is provided on the right side of the second sub-pixel at a distance of 1 um from the second sub-pixel.
  • the thickness of the second light adjusting part 602 is about 0.52um and the width is about 5um; the thickness of the third light adjusting part 603 is about 0.39um and the width is about 5um.
  • the second light adjusting part 602 can adjust the green light brightness to decrease by 41% within the viewing angle range of 70° to 90°
  • the third light adjusting part 603 can adjust the green light luminance to decrease 31% within the viewing angle range of 70° to 90°.
  • the RGB luminance ratio of the left and right sides at a viewing angle of 70° can be adjusted to 3:6:1, thereby improving the color shift and yellowing of the display substrate at a viewing angle of 70°.
  • the widths of the first light adjusting part 601 to the fourth light adjusting part 604 may all be 5um, so as to simplify the process. However, this embodiment does not limit this.
  • the widths of the first light adjusting portion 601 and the fourth light adjusting portion 604 may be greater than or equal to 4.54um, and the widths of the second light adjusting portion 602 and the third light adjusting portion 603 may be greater than or equal to 1.82um.
  • This example can eliminate the yellowing phenomenon of color cast for a viewing angle of 60°, and can significantly reduce the yellowing phenomenon of color cast at a viewing angle of 70° and 80°.
  • the thickness of the light adjustment part corresponding to the first sub-pixel is the largest value and minimum width, and the maximum thickness and minimum width of the light adjustment portion corresponding to the second sub-pixel.
  • the first subpixel can be determined according to the adjustment factor of the brightness of the red light and the green light on the left, the maximum thickness of the light adjustment portion corresponding to the first subpixel, and the maximum thickness of the light adjustment portion corresponding to the second subpixel
  • the width of the first light adjustment portion 601 on the left side of the first subpixel and the width of the second subpixel can be determined.
  • the width and thickness of the fourth light adjusting part 604 on the right side of the first sub-pixel can be designed to be the same as those of the first light adjusting part 601 , respectively.
  • the width and thickness are the same, and the width and thickness of the third light adjusting part 603 on the right side of the second sub-pixel can be designed to be the same as the width and thickness of the second light adjusting part 602 , respectively.
  • the attenuation of the right red light is adjusted by adjusting the distance from the fourth light adjusting part 604 to the first subpixel, and the right green light is adjusted by adjusting the distance from the third light adjusting part 603 to the second subpixel.
  • the degree of light attenuation to adjust the right RGB brightness ratio to the best brightness ratio does not limit this.
  • the sizes of the first light adjusting part 601 , the second light adjusting part 602 , the third light adjusting part 603 and the fourth light adjusting part 604 may be the same, wherein the cross-sectional shapes of the four light adjusting parts Can be the same, can have the same width and the same thickness.
  • the attenuation degree of the red light on the left side can be adjusted by adjusting the distance from the first light adjusting part 601 to the first sub-pixel, and the right side can be adjusted by adjusting the distance between the fourth light adjusting part 604 and the first sub-pixel
  • the attenuation degree of red light is adjusted by adjusting the distance from the second light adjustment part 602 to the second sub-pixel to adjust the attenuation degree of the green light on the left side
  • the distance from the third light adjustment part 603 to the second sub-pixel is adjusted to adjust the right side
  • the attenuation level of the filter to adjust both the right RGB luminance ratio and the left RGB luminance ratio to the optimal luminance ratio.
  • this embodiment does not limit this.
  • FIG. 11 is a schematic diagram of luminance attenuation of a display substrate according to at least one embodiment of the disclosure.
  • FIG. 11( a ) is a schematic diagram showing the luminance attenuation of the display substrate in which the first electrode is inclined and the light adjustment layer is not provided.
  • FIG. 11( b ) is a schematic diagram of luminance attenuation of the display substrate shown in FIG. 8 .
  • the highest point of the bright spot of the display substrate is at a position of 4° in the negative direction, and the brightness attenuation is asymmetric, the attenuation in the positive direction is faster, and the brightness attenuation deviates in both directions, and the brightness attenuation in the positive and negative 30°
  • the deviation is about 12%, and the deviation at plus or minus 45° is about 10%.
  • the display substrate of the present exemplary embodiment can improve the brightness attenuation deviation existing in the positive and negative viewing angle directions by providing the light adjustment layer.
  • the light intensity attenuation on both sides of the RGB sub-pixels can be regulated with the change of viewing angle by differentially designing the light adjustment parts on both sides of the first color filter unit and the second color filter unit. degree, thereby improving the visual role bias.
  • FIG. 12 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • the second light adjusting part 602 and the fourth light adjusting part 604 between the first color filter unit 502a and the second color filter unit 502b may be an integral structure.
  • the thickness of the integrated structure of the fourth light adjusting part 604 and the second light adjusting part 602 on the side close to the first color filter unit 502 a is greater than the thickness of the side close to the second color filter unit 502 b.
  • the top surface of the second light adjusting part 602 and the side surface close to the second color filter unit 502b are connected by an inclined surface. Based on the example of the embodiment shown in FIG.
  • the thickness of the second light adjusting part 602 on the side close to the first color filter unit 502a is about 0.87um
  • the thickness of the second light adjusting part 602 on the side close to the second color filter unit 502b is about 0.87um.
  • the thickness is about 0.52um.
  • this embodiment does not limit this.
  • the light path is changed by arranging a light adjustment layer, so as to adjust the light intensity of light of different colors entering the human eye under oblique viewing angles, readjust the RGB brightness ratio, and improve the viewing angle deviation of the display substrate.
  • FIG. 13 to 15 are schematic diagrams of three-dimensional and cross-sectional structures of a light adjusting portion of at least one embodiment of the present disclosure.
  • Fig. 13(a), Fig. 14(a) and Fig. 15(a) are schematic diagrams of the three-dimensional structure of the light adjustment part
  • Fig. 13(b), Fig. 14(b) and Fig. 15(b) are the light adjustment Sectional schematic diagram of the part.
  • the light adjusting portion may be a strip-like structure having different cross-sectional shapes.
  • the cross section of the light adjusting portion may be a trapezoid. As shown in FIG. 14( a ) and FIG. 14( b ), the cross section of the light adjusting portion may be triangular. As shown in FIG. 15( a ) and FIG. 15( b ), the cross section of the light adjusting portion may be in a shape having a rectangular bottom and an arc top surface. Wherein, the top surface may be a convex surface. However, this embodiment does not limit this. For example, the top surface of the light adjustment part may be concave.
  • the thickness of the light adjusting portion may be less than or equal to h 0 , and the thickness of the light adjusting portion may be less than or equal to h 0 .
  • the width may be greater than or equal to the critical width D.
  • the thickness of the light adjusting portion with a trapezoidal cross-section may be less than or equal to h 0
  • the length of the upper base may be greater than or equal to the critical width D.
  • the maximum thickness of the light adjusting portion with a triangular cross-section may be less than or equal to h 0 , and the length of the lower base may be greater than the critical width D.
  • the maximum thickness of the light adjusting portion having an arc top shape in cross section may be less than or equal to h 0 , and the minimum width may be greater than or equal to the critical width D.
  • this embodiment does not limit this.
  • the structure of the display substrate according to the embodiment of the present disclosure will be described below with reference to FIG. 8 through an example of a manufacturing process of the display substrate.
  • the "patterning process" referred to in the present disclosure includes processes such as depositing film layers, coating photoresist, mask exposure, developing, etching and stripping photoresist.
  • Deposition can be selected from any one or more of sputtering, evaporation and chemical vapor deposition
  • coating can be selected from any one or more of spray coating and spin coating
  • etching can be selected from dry etching. and any one or more of wet engraving.
  • “Film” refers to a layer of thin film made by depositing or coating a certain material on a substrate.
  • the “film” can also be referred to as a "layer”.
  • the "film” needs a patterning process in the whole production process, it is called a “film” before the patterning process, and a “layer” after the patterning process.
  • the “layer” after the patterning process contains at least one "pattern”.
  • a and B are arranged in the same layer means that A and B are simultaneously formed through the same patterning process.
  • the same layer does not always mean that the thickness of the layer or the height of the layer is the same in the cross-sectional view.
  • the projection of A includes the projection of B means that the projection of B falls within the projection range of A, or the projection of A covers the projection of B.
  • the preparation process of the display substrate of this embodiment may include the following steps (1) to (6).
  • a flexible display substrate with a top emission structure is taken as an example for description.
  • the base substrate 101 may be a rigid substrate, such as a quartz substrate, or a glass substrate, or may be a flexible substrate, such as an organic resin substrate. However, this embodiment does not limit this.
  • the driver structure layer 102 includes a plurality of driver circuits, each driver circuit including a plurality of transistors and at least one storage capacitor, eg, a 2T1C, 3T1C, or 7T1C design.
  • each driver circuit including a plurality of transistors and at least one storage capacitor, eg, a 2T1C, 3T1C, or 7T1C design.
  • FIG. 8 three sub-pixels are taken as an example for illustration, and the pixel driving circuit of each sub-pixel is illustrated by only one transistor 211 and one storage capacitor 210 as an example.
  • the preparation process of the driving structure layer 102 may refer to the following description.
  • the manufacturing process of the pixel driving circuit of the first sub-pixel is taken as an example for description.
  • a first insulating film and a semiconductor film are sequentially deposited on the base substrate 101 , and the semiconductor film is patterned through a patterning process to form a first insulating layer 201 covering the entire base substrate 101 and a semiconductor film disposed on the first insulating layer 201
  • the layer pattern, the semiconductor layer pattern at least includes the active layer of the transistor 211 .
  • a second insulating film and a first metal film are sequentially deposited, and the first metal film is patterned through a patterning process to form a second insulating layer 202 covering the semiconductor layer pattern, and a first gate disposed on the second insulating layer 202
  • the metal layer pattern, the first gate metal layer pattern at least includes the gate electrode of the transistor 211 and the first capacitor electrode of the storage capacitor 210 .
  • the second gate metal layer pattern includes at least a second capacitor electrode of the storage capacitor 210 , and the position of the second capacitor electrode corresponds to the position of the first capacitor electrode.
  • a fourth insulating film is deposited, and the fourth insulating film is patterned by a patterning process to form a pattern of a fourth insulating layer 204 covering the second gate metal layer, and at least two first via holes are opened on the fourth insulating layer 204, The fourth insulating layer 204, the third insulating layer 203 and the second insulating layer 202 in the two first via holes are etched away, exposing the surface of the active layer.
  • a third metal film is deposited, and the third metal film is patterned by a patterning process, and a source-drain metal layer pattern is formed on the fourth insulating layer 204 , and the source-drain metal layer at least includes the source electrode and the drain electrode of the transistor 211 .
  • the source electrode and the drain electrode may be connected to the active layer through the first via holes, respectively.
  • a fifth insulating film is coated on the base substrate 101 on which the aforementioned pattern is formed to form a fifth insulating layer 205 covering the entire base substrate 101 , and the fifth insulating layer 205 is formed on the fifth insulating layer 205 by masking, exposing and developing processes.
  • a plurality of second vias are formed.
  • the fifth insulating layer 205 in the plurality of second via holes is developed to expose the surface of the drain electrode of the transistor 211 of the pixel driving circuit of the first sub-pixel and the leakage current of the corresponding transistor of the pixel driving circuit of the second sub-pixel respectively.
  • the active layer, the gate electrode, the source electrode and the drain electrode can form a transistor 211
  • the first capacitor electrode and the second capacitor electrode can form a storage capacitor 210 .
  • the pixel driving circuit of the second sub-pixel and the pixel driving circuit of the third sub-pixel can be formed simultaneously.
  • the first insulating layer 201 , the second insulating layer 202 , the third insulating layer 203 and the fourth insulating layer 204 are silicon oxide (SiOx), silicon nitride (SiNx) and silicon oxynitride ( Any one or more of SiON), which may be a single layer, a multi-layer or a composite layer.
  • the first insulating layer 201 is called a buffer layer, which is used to improve the water and oxygen resistance of the base substrate; the second insulating layer 202 and the third insulating layer 203 are called gate insulating (GI, Gate Insulator) layers;
  • the fourth insulating layer 204 is called an Interlayer Dielectric (ILD, Interlayer Dielectric) layer.
  • ILD Interlayer Dielectric
  • the fifth insulating layer 205 may be an organic material such as polyimide, acrylic or polyethylene terephthalate.
  • the fifth insulating layer 205 is called a planarization (PLN, Planarization) layer.
  • the first metal thin film, the second metal thin film and the third metal thin film are made of metal materials such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo).
  • Various, or alloy materials of the above metals such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti and the like.
  • the semiconductor film adopts amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polycrystalline silicon (p-Si), hexathiophene , polythiophene and other materials, that is, the present disclosure is applicable to transistors manufactured based on oxide technology, silicon technology and organic matter technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • hexathiophene polythiophene and other materials
  • a light-emitting element is formed on the base substrate on which the pattern is formed.
  • a conductive thin film is deposited on the base substrate 101 on which the aforementioned patterns are formed, and the conductive thin film is patterned through a patterning process to form a first electrode layer pattern.
  • the first electrode layer includes a plurality of first electrodes.
  • the first electrode is a reflective anode. As shown in FIG.
  • the first electrode 301a of the first sub-pixel is connected to the drain electrode of the transistor 211 through the second via hole, and the first electrode 301b of the second sub-pixel is driven to the pixel of the second sub-pixel through the second via hole
  • the drain electrode of the corresponding transistor of the circuit is connected, and the first electrode 301c of the third sub-pixel is connected to the drain electrode of the corresponding transistor of the pixel driving circuit of the third sub-pixel through the second via hole.
  • the first electrode may employ a metallic material, such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo).
  • a metallic material such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo).
  • Various, or alloy materials of the above metals such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb) can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti, etc., or, a metal and Stacked structures formed of transparent conductive materials, such as reflective materials such as ITO/Ag/ITO, Mo/AlNd/ITO, etc.
  • a pixel definition film is coated on the base substrate 101 forming the aforementioned pattern, and a pixel definition layer (PDL, Pixel Definition Layer) pattern is formed by masking, exposing, and developing processes.
  • the pixel definition layer 302 in the display area includes a plurality of pixel definition layer openings, and the pixel definition layer in the plurality of pixel definition layer openings is developed to expose at least the first electrode 301a of the first sub-pixel respectively. Part of the surface, at least part of the surface of the first electrode 301b of the second subpixel, and at least part of the surface of the first electrode 301c of the third subpixel.
  • the pixel definition layer 302 may employ polyimide, acrylic, polyethylene terephthalate, or the like.
  • a thin film of an organic material is coated on the base substrate 101 on which the aforementioned pattern is formed, and a spacer column pattern is formed by masking, exposing, and developing processes.
  • the spacer posts can act as a support layer configured to support a Fine Metal Mask (FMM, Fine Metal Mask) during the evaporation process.
  • FMM Fine Metal Mask
  • an organic light-emitting layer and a second electrode are sequentially formed on the base substrate 101 on which the aforementioned patterns are formed.
  • the second electrode is a transparent cathode.
  • the light-emitting element can emit light from the side away from the base substrate 101 through the transparent cathode to realize top emission.
  • the organic light emitting layer of the light emitting element includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer.
  • a hole injection layer, a hole transport layer and an electron blocking layer are sequentially formed by vapor deposition on the base substrate 101 on which the aforementioned patterns are formed by using an open mask.
  • the thickness of the hole injection layer is about 0 to 20 nm
  • the thickness of the hole transport layer is about 70 to 200 nm
  • the thickness of the electron blocking layer is about 10 to 70 nm.
  • FMM is used to sequentially evaporate to form light-emitting layers of different colors, such as a blue light-emitting layer, a green light-emitting layer and a red light-emitting layer.
  • the thickness of the light emitting layer is about 10 nm to 50 nm.
  • a hole blocking layer, an electron transport layer and an electron injection layer are formed by successive evaporation using an open mask.
  • the thickness of the hole blocking layer is about 0 to 20 nm
  • the thickness of the electron transport layer is about 10 to 50 nm
  • the thickness of the resistance injection layer is about 0 to 5 nm.
  • this embodiment does not limit this.
  • the organic light-emitting layer is formed in the sub-pixel region to realize the connection between the organic light-emitting layer and the first electrode.
  • the second electrode 304 is formed on the pixel defining layer 302 and connected to the organic light emitting layer.
  • the second electrode may be made of any one or more of magnesium (Mg), silver (Ag), aluminum (Al), or any one or more of the aforementioned metals alloys, or using transparent conductive materials, such as indium tin oxide (ITO), or a multi-layer composite structure of metals and transparent conductive materials.
  • Mg magnesium
  • Ag silver
  • Al aluminum
  • ITO indium tin oxide
  • the ratio of magnesium to silver of the second electrode may be about 1:9 to 8:2.
  • the thickness of the second electrode may be about 5 nm to 30 nm. However, this embodiment does not limit this.
  • a light coupling layer may be formed on the side of the second electrode 304 away from the base substrate 101 , and the light coupling layer may be a common layer of a plurality of sub-pixels.
  • the light coupling layer can cooperate with the transparent cathode to increase the light output.
  • the material of the light coupling layer can be a semiconductor material. However, this embodiment does not limit this.
  • an encapsulation layer 104 is formed on the base substrate 101 on which the aforementioned patterns are formed, and the encapsulation layer 104 may include a stacked first encapsulation layer, a second encapsulation layer, and a third encapsulation layer.
  • the first encapsulation layer is made of inorganic material and covers the second electrode 304 in the display area.
  • the second encapsulation layer adopts an organic material.
  • the third encapsulation layer is made of inorganic material and covers the first encapsulation layer and the second encapsulation layer.
  • the encapsulation layer may adopt a five-layer structure of inorganic/organic/inorganic/organic/inorganic.
  • a black matrix, a light adjustment layer and a color filter unit are sequentially formed.
  • a black pigment or a black chrome (Cr) film is coated on the surface of the encapsulation layer 104 , and the black pigment or black chrome film is patterned through a patterning process to form a black matrix 501 on the encapsulation layer 104 .
  • the black matrix 501 has a plurality of openings, and the black matrix in the plurality of openings is removed to expose the opening regions of the plurality of sub-pixels.
  • a light adjusting material is coated on the surface of the black matrix 501, and a light adjusting layer 106 is formed on the black matrix 501 through a process of masking, exposing and developing.
  • the light modulating material may be a negative refractive index material, eg, a photonic crystal material, a bi-dielectric negative refractive index material. Then, a plurality of first color filter units (eg, red filter units), a plurality of second color filter units (eg, green filter units), and a plurality of third color filter units (eg, blue filter units) are sequentially formed color filter unit). Taking the formation of a red filter unit as an example, red resin is firstly coated on the encapsulation layer 104 on which the black matrix 501 and the light adjustment layer 106 have been formed, and after baking and curing, the red filter unit is formed by exposing and developing through a mask.
  • red resin is firstly coated on the encapsulation layer 104 on which the black matrix 501 and the light adjustment layer 106 have been formed, and after baking and curing, the red filter unit is formed by exposing and developing through a mask.
  • the formation process of the green filter unit and the blue filter unit is similar, so it will not be repeated here.
  • the light adjustment layer is formed between the formation of the color filter unit, which can avoid the influence of the preparation process of the light adjustment layer on the color filter unit.
  • a flat layer 107 and a cover layer 108 are sequentially formed.
  • the outgoing directions of light of different colors can be adjusted, so as to improve the viewing angle polarization of the display substrate.
  • the structure of the display substrate and the manufacturing process of the display substrate according to the embodiments of the present disclosure are merely illustrative. In some exemplary embodiments, corresponding structures may be changed and patterning processes may be increased or decreased according to actual needs.
  • the display substrate may be a display substrate of a bottom emission structure.
  • the display structure layer may include two source-drain metal layers.
  • the color filter unit can be prepared first, and then the light adjustment layer can be formed.
  • this embodiment does not limit this.
  • FIG. 16 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • the display substrate in a plane perpendicular to the display substrate, the display substrate includes: a base substrate 101 , a display structure layer sequentially arranged on the base substrate 101 , an encapsulation layer 104 , a light adjustment layer 106 , a flat layer 107 and Polarizer 109.
  • the display structure layer includes a driving structure layer 102 and a light emitting structure layer 103 sequentially disposed on the base substrate 101 .
  • the light adjustment layer 106 is located on the encapsulation layer 104, and is configured to adjust the exit directions of light of different colors emitted from the sub-pixels.
  • the light adjustment layer 106 may include a plurality of light adjustment parts, eg, the first light adjustment part 601 to the fourth light adjustment part 604 .
  • the first light adjusting part 601 and the fourth light adjusting part 604 are configured to adjust the output direction of the red light emitted by the red sub-pixels
  • the second light adjusting part 602 and the third light adjusting part 603 are configured to adjust the green sub-pixels The direction of the green light emitted by the pixel.
  • this embodiment does not limit this.
  • At least one embodiment of the present disclosure further provides a method for fabricating a display substrate, which is used to fabricate the display substrate described in the above embodiments.
  • the preparation method of this embodiment includes: forming a display structure layer on a base substrate; and forming a light adjustment layer on the light emitting side of the display structure layer.
  • the display structure layer includes a plurality of sub-pixels. The orthographic projection of the light adjustment layer on the base substrate does not overlap with the opening regions of the plurality of sub-pixels; the light adjustment layer is configured to adjust the exit direction of at least one color light emitted from the display structure layer.
  • FIG. 17 is a schematic diagram of a display device according to at least one embodiment of the disclosure.
  • this embodiment provides a display device 91 including: a display substrate 910 .
  • the display substrate 910 is the display substrate provided in the foregoing embodiments.
  • the display substrate 910 may be an OLED display substrate.
  • the display device 91 can be: OLED display device, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame, navigator, vehicle display, watch, wristband, etc. any product or component with display function. However, this embodiment does not limit this.
  • FIG. 18 is a schematic diagram of a color filter substrate according to at least one embodiment of the disclosure.
  • the color filter substrate in a plane perpendicular to the color filter substrate, includes: a substrate 10 , a color filter layer 11 and a light adjustment layer 16 disposed on the substrate 10 , and a color filter layer 16 located on the light adjustment layer 16 away from the substrate 10 .
  • side flat layer 12 and cover layer 13 The color filter layer 11 includes a black matrix 21 and a plurality of color filter units arranged periodically, such as a first color filter unit 22a, a second color filter unit 22b and a third color filter unit 22c.
  • the light adjustment layer 16 is provided on the black matrix 21 .
  • the orthographic projection of the light adjustment layer 16 on the substrate 10 is located within the orthographic projection of the black matrix 21 on the substrate 10 and does not overlap with the orthographic projection of the color filter unit on the substrate 10 .
  • the light adjustment layer 16 is configured to adjust the emission direction of at least one color light emitted from the color filter layer 11 .
  • the light adjustment layer 16 may include a first light adjustment part 601 , a second light adjustment part 602 , a third light adjustment part 603 and a fourth light adjustment part 604 .
  • the first light adjusting part 601 and the fourth light adjusting part 604 are located on opposite sides of the first color filter unit 22a, and are configured to adjust the exit direction of the first color light emitted by the first color filter unit 22a.
  • the second light adjusting part 602 and the third light adjusting part 603 are located on opposite sides of the second color filter unit 22b, and are configured to adjust the exit direction of the second color light emitted by the second color filter unit 22b.
  • the first color filter unit 22a is a red filter unit
  • the second color filter unit 22b is a green filter unit
  • the third color filter unit 22c is a blue filter unit.
  • this embodiment does not limit this.
  • the color filter substrate of this embodiment may be disposed on the light emitting side of the OLED display substrate.
  • the color filter substrate of this embodiment can be arranged in a cell with the array substrate to form a display panel.
  • this embodiment does not limit this.
  • the color filter substrate provided in this embodiment can use the light adjustment layer to adjust the outgoing directions of light of different colors, thereby improving the display viewing angle polarization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板,包括:衬底基板、设置在衬底基板上的显示结构层、以及设置在显示结构层的出光侧的光调节层。显示结构层包括多个子像素。光调节层在衬底基板上的正投影与多个子像素的开口区域没有交叠。光调节层配置为调节从显示结构层射出的至少一种颜色光的出射方向。

Description

显示基板及其制备方法、显示装置、彩膜基板 技术领域
本文涉及但不限于显示技术领域,尤指一种显示基板及其制备方法、显示装置、彩膜基板。
背景技术
有机发光二极管(OLED,Organic Light Emitting Diode)为主动发光显示器件,具有自发光、广视角、高对比度、低耗电、极高反应速度等优点。随着显示技术的不断发展,以OLED为发光器件、由薄膜晶体管(TFT,Thin Film Transistor)进行信号控制的显示装置已成为目前显示领域的主流产品。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种显示基板及其制备方法、显示装置、彩膜基板。
一方面,本公开实施例提供一种显示基板,包括:衬底基板、设置在所述衬底基板上的显示结构层、以及设置在所述显示结构层的出光侧的光调节层。所述显示结构层包括多个子像素;所述光调节层在所述衬底基板上的正投影与所述多个子像素的开口区域没有交叠;所述光调节层配置为调节从所述显示结构层射出的至少一种颜色光的出射方向。
在一些示例性实施方式中,所述显示结构层还包括:位于所述多个子像素的出光侧的彩色滤光层。所述彩色滤光层包括黑矩阵和周期性排布的多个彩色滤光单元,所述黑矩阵位于相邻彩色滤光单元之间。所述光调节层位于所述黑矩阵远离所述衬底基板的一侧。
在一些示例性实施方式中,所述黑矩阵在所述衬底基板上的正投影覆盖所述光调节层在所述衬底基板上的正投影。
在一些示例性实施方式中,所述光调节层包括至少一个光调节部,所述 光调节部位于至少一个彩色滤光单元的至少一侧。
在一些示例性实施方式中,所述显示基板在目标视角下的不同颜色光的亮度比例通过以下至少一项调节:所述光调节部到对应的子像素的距离、所述光调节部的第一长度、所述光调节部的第二长度。所述第一长度为所述光调节部沿第一方向的尺寸,所述第一方向垂直于所述显示基板所在平面。所述第二长度为所述光调节部沿第二方向的尺寸,所述第二方向平行于所述显示基板所在平面,且与所述光调节部对应的子像素的中心线相交。
在一些示例性实施方式中,所述光调节部的第一长度小于或等于h 0,h 0=d 0/tanθ,其中,d 0为所述光调节部至对应的子像素的中心线的垂直距离,θ为斜视角角度。
在一些示例性实施方式中,所述光调节部的第二长度大于或等于临界宽度D,
Figure PCTCN2021082050-appb-000001
其中,d 0为所述光调节部至对应的子像素的中心线的垂直距离,θ为斜视角角度,n 1为第一介质的折射率,n 2为所述光调节部的折射率。
在一些示例性实施方式中,所述光调节部至对应的子像素的中心线的垂直距离d 0=a 1/2+d,a 1为所述光调节部对应的子像素尺寸,d为所述光调节部到对应的子像素的距离,其中,d大于0且小于相邻子像素的间距与所述相邻子像素之间的光调节部的第二长度的差值。
在一些示例性实施方式中,在经过所述光调节部对应的子像素的中心线且垂直于所述衬底基板的平面内,所述光调节部的截面呈矩形,或者,所述光调节部的底部的第二长度大于顶部的第二长度。
在一些示例性实施方式中,所述彩色滤光层包括:周期性排布的第一彩色滤光单元、第二彩色滤光单元和第三彩色滤光单元。所述光调节层包括以下至少之一:位于所述第一彩色滤光单元远离第二彩色滤光单元一侧的第一光调节部、位于所述第一彩色滤光单元靠近第二彩色滤光单元一侧的第四光调节部、位于所述第二彩色滤光单元靠近第一彩色滤光单元一侧的第二光调 节部、位于所述第二彩色滤光单元靠近第三彩色滤光单元一侧的第三光调节部。
在一些示例性实施方式中,所述第二光调节部与第四光调节部为一体结构。
在一些示例性实施方式中,所述第二光调节部和第四光调节部形成的一体结构的第二长度大于或等于所述第二光调节部的临界宽度和所述第四光调节部的临界宽度中的最大者。所述第二长度为光调节部沿第二方向的尺寸,所述第二方向平行于所述显示基板所在平面,且与光调节部对应的子像素的中心线相交。
在一些示例性实施方式中,所述第一彩色滤光单元为红色滤光单元,所述第二彩色滤光单元为绿色滤光单元,所述第三彩色滤光单元为蓝色滤光单元。所述第一光调节部和第四光调节部配置为调节从所述第一彩色滤光单元射出的第一颜色光的出射方向;所述第二光调节部和第三光调节部配置为调节从所述第二彩色滤光单元射出的第二颜色光的出射方向。所述第一光调节部和第四光调节部的第一长度大于或等于所述第二光调节部的第一长度,且大于或等于所述第三光调节部的第一长度。所述第一长度为光调节部沿第一方向的尺寸,所述第一方向垂直于所述显示基板所在平面。
在一些示例性实施方式中,所述第一光调节部和第四光调节部的第一长度约为0.7微米至1.2微米,所述第二光调节部的第一长度约为0.1微米至0.5微米,所述第三光调节部的第一长度约为0.01微米至0.3微米。
在一些示例性实施方式中,所述第一光调节部、第二光调节部、第三光调节部和第四光调节部的第二长度大致相同。所述第二长度为光调节部沿第二方向的尺寸,所述第二方向平行于所述显示基板所在平面,且与所述光调节部对应的子像素的中心线相交。
在一些示例性实施方式中,所述光调节层的材料为负折射率材料。
在一些示例性实施方式中,所述子像素包括:发光元件和驱动所述发光元件发光的驱动电路。所述发光元件包括:第一电极、第二电极以及设置在所述第一电极和第二电极之间的有机发光层,所述第一电极位于第二电极靠 近所述衬底基板的一侧。所述第一电极所在平面与所述衬底基板所在平面之间存在倾斜角度。
另一方面,本公开实施例提供一种显示装置,包括如上所述的显示基板。
另一方面,本公开实施例提供一种显示基板的制备方法,用于制备如上所述的显示基板。所述制备方法,包括:在衬底基板上形成显示结构层;在所述显示结构层的出光侧形成光调节层。所述显示结构层包括多个子像素。所述光调节层在所述衬底基板上的正投影与多个子像素的开口区域没有交叠;所述光调节层配置为调节从所述显示结构层射出的至少一种颜色光的出射方向。
另一方面,本公开实施例提供一种彩膜基板,包括:基底、设置在所述基底上的彩色滤光层、以及光调节层。所述彩色滤光层包括黑矩阵和周期性排布的多个彩色滤光单元,所述光调节层设置在所述黑矩阵远离所述基底的一侧;所述光调节层配置为调节从所述彩色滤光层射出的至少一种颜色光的出射方向。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开的技术方案的限制。附图中一个或多个部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为一种显示基板在0°视角和60°视角下的光谱示意图;
图2为一种显示基板在斜视角下色偏发黄的示意图;
图3为本公开至少一实施例的显示区域的多个子像素的平面结构示意图;
图4为本公开至少一实施例的显示基板的局部结构示意图;
图5为本公开至少一实施例的显示基板的结构示意图;
图6为光折射材料的特性示意图;
图7A和图7B为本公开至少一实施例的光调节部的第一长度和第二长度的关系示意图;
图8为本公开至少一实施例的显示基板的另一结构示意图;
图9为本公开至少一实施例的光调节层在不同视角对光强调控的示意图;
图10为本公开至少一实施例的显示基板在斜视角下对色偏的改善效果示意图;
图11为本公开至少一实施例的显示基板的亮度衰减示意图;
图12为本公开至少一实施例的显示基板的另一结构示意图;
图13至图15为本公开至少一实施例的光调节部的立体和截面结构示意图;
图16为本公开至少一实施例的显示基板的另一结构示意图;
图17为本公开至少一实施例的显示装置的示意图;
图18为本公开至少一实施例的彩膜基板的示意图。
具体实施方式
下面将结合附图对本公开的实施例进行详细说明。实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为一种或多种形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,夸大表示了一个或多个构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中各部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本公开中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。本公开中的“多个”包括两 个以及两个以上的数量。
在本公开中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
在本公开中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。在本公开中,沟道区域是指电流主要流过的区域。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本公开中,“源电极”和“漏电极”可以互相调换。
在本公开中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有一种或多种功能的元件等。
在本公开中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,可以包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,可以包括85°以上且95°以下的角度的状态。
在本公开中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本公开中的“约”、“大致”,是指不严格限定界限,允许工艺和测量误差范围内的情况。
目前,OLED显示基板使用微腔效应提高显示图像的发光效率和色纯度。微腔效应是从有机发光层(EL,Electro-Luminescence)发射的光在特定层之间被反复选择性地反射,并以增加的光学强度透过第一电极层或第二电极层,由此提高最终输出光的亮度和色纯度。然而,由于微腔效应的存在,OLED显示基板内的光通过干涉叠加和干涉相消作用,会使OLED显示基板存在视角色偏问题。
图1为一种显示基板在0°视角(即正视角)和60°视角下的光谱示意图。如图1所示,相较于0°视角下的红绿蓝(RGB)光谱光强,在60°视角下的RGB光谱光强均有降低。其中,红光和蓝光光强下降得较快,且60°视角下的RGB光谱相较于正视角下的RGB光谱发生了蓝移,由此使得60°视角下RGB合成白光的亮度配比不同于正视角下RGB合成白光的亮度配比,表现为OLED显示基板在60°视角下画质异常,存在发青或发黄的异常状态。
图2为一种显示基板在斜视角(即非0°视角)下色偏发黄的示意图。图2所示为CIE1931色度图,X轴色度坐标表示红基色的比例,Y轴色度坐标表示绿基色的比例。如图2所示,正视角下合成白光对应S1点,斜视角(例如,大于60°视角)下合成白光对应S2点。由图2可见,相较于正视角的情况,在斜视角下显示基板存在发黄现象。
本公开至少一实施例提供一种显示基板,包括:衬底基板、设置在衬底基板上的显示结构层、以及设置在显示结构层的出光侧的光调节层。显示结构层包括多个子像素。光调节层在衬底基板上的正投影与多个子像素的开口区域没有交叠。光调节层配置为调节从显示结构层射出的至少一种颜色光的出射方向。
本实施例提供的显示基板,通过在显示结构层的出光侧设置的光调节层,可以调节至少一种颜色光的出射方向,通过改变光的路径,调控不同颜色光进入人眼的光强,进而改善显示基板存在的视角色偏。
在一些示例性实施方式中,光调节层配置为调节从显示结构层射出的以下至少一种颜色光的出射方向:红光、绿光、蓝光。例如,光调节层仅调节红光的出射方向,或者仅调节绿光的出射方向,或者,仅调节蓝光的出射方向,或者调节红光、绿光和蓝光中至少两种颜色光的出射方向。然而,本实施例对此并不限定。
在一些示例性实施方式中,显示结构层还包括:位于多个子像素的出光侧的彩色滤光层。彩色滤光层包括黑矩阵和周期性排布的多个彩色滤光单元,黑矩阵位于相邻彩色滤光单元之间。光调节层位于黑矩阵远离衬底基板的一侧。在一些示例中,多个彩色滤光单元可以与多个子像素一一对应。彩色滤光单元在衬底基板上的正投影覆盖对应的子像素的开口区域。黑矩阵在衬底基板上的正投影覆盖光调节层在衬底基板上的正投影。彩色滤光单元在衬底基板上的正投影与光调节层在衬底基板上的正投影没有交叠。在一些示例中,显示基板可以为COE(CF on Encapsulation,在薄膜封装的有机电致发光器件上形成彩色滤光层)结构的显示基板。然而,本实施例对此并不限定。
在一些示例性实施方式中,光调节层包括至少一个光调节部,光调节部位于至少一个彩色滤光单元的至少一侧。在一些示例中,至少一个光调节部可以设置在至少一个彩色滤光单元的周边,例如,光调节部可以位于彩色滤光单元的一侧,或相对两侧,或四周。在一些示例中,光调节层包括多个光调节部,多个光调节部可以相互独立,或者一部分光调节部可以相互连接形成一体结构,或者,全部光调节部相互连接形成一体结构。然而,本实施例对此并不限定。
在一些示例性实施方式中,显示基板在目标视角下的不同颜色光的亮度比例可以通过以下至少一项调节:光调节部到对应的子像素的距离、光调节部的第一长度、光调节部的第二长度。第一长度为光调节部沿第一方向的尺寸,第一方向垂直于显示基板所在平面。第二长度为光调节部沿第二方向的尺寸,第二方向平行于显示基板所在平面,且与光调节部对应的子像素的中心线相交。在本公开中,第一长度可以称为厚度或高度,第二长度可以称为宽度。在一些示例中,光调节部到对应的子像素的距离可以为光调节部靠近对应的子像素的边缘到该子像素的开口区域靠近光调节部的边缘之间的垂直 距离。
在一些示例中,可以通过调整光调节部到对应的子像素的距离来调节显示基板在目标视角下的不同颜色光的亮度比例,从而改善视角色偏。例如,通过对光调节部到对应的子像素的距离进行调整,将存在视角色偏下的RGB亮度比例调整至目标视角下的最佳亮度比例。其中,不同光调节部的尺寸(包括第一长度和第二长度)可以相同。然而,本实施例对此并不限定。
在一些示例中,可以通过调整光调节部的第一长度和第二长度来调节显示基板在目标视角下的不同颜色光的亮度比例,从而改善视角色偏。例如,根据光调节部至对应的子像素中心线的垂直距离和目标视角,确定光调节部的第二长度;根据存在视角色偏下的RGB亮度比例和作为调整目标的最佳亮度比例,确定不同颜色光的调节因子,并基于调节因子,确定光调节部的第一长度,以达到目标视角下的最佳亮度比例。
在一些示例中,可以通过调整光调节部到对应的子像素的距离、光调节部的第一长度和第二长度来调节显示基板在目标视角下的不同颜色光的亮度比例,从而改善视角色偏。例如,针对一个光调节部,根据光调节部至对应的子像素中心线的垂直距离和目标视角,确定光调节部的第二长度;根据存在左侧视角色偏下的RGB亮度比例和作为调整目标的最佳亮度比例,确定不同颜色光的调节因子,并基于调节因子,确定光调节部的第一长度,以达到左侧目标视角下的最佳亮度比例。设置其余光调节部的尺寸与前述光调节部的尺寸(包括第一长度和第二长度)相同。通过对其余光调节部到对应的子像素的距离进行调整,将存在右侧视角色偏下的RGB亮度比例调整至目标视角下的最佳亮度比例。
在一些示例性实施方式中,光调节部的第一长度小于或等于h 0,h 0=d 0/tanθ,其中,d 0为光调节部至对应的子像素的中心线的垂直距离,θ为斜视角角度。
在一些示例性实施方式中,光调节部的第二长度大于或等于临界宽度D,
Figure PCTCN2021082050-appb-000002
其中,d 0为光调节部至对应的子像素的中心线的垂直距离,θ为斜视角 角度,n 1为第一介质的折射率,n 2为光调节部的折射率。第一介质为光在进入光调节部之前经过的介质。
在一些示例性实施方式中,光调节部至对应的子像素的中心线的垂直距离d 0=a 1/2+d,a 1为光调节部对应的子像素尺寸,d为光调节部到对应的子像素的距离,d大于0且小于相邻子像素的间距与所述相邻子像素之间的光调节部的第二长度的差值。在本示例中,光调节部对应的子像素尺寸可以指光调节部对应的子像素的开口区域的尺寸。
在一些示例性实施方式中,在经过光调节部对应的子像素的中心线且垂直于衬底基板的平面内,所述光调节部的截面呈矩形,或者,所述光调节部的底部的第二长度大于顶部的第二长度。在一些示例中,光调节部的截面为矩形,则光调节部的高度可以小于或等于h 0,宽度可以大于或等于D。在一些示例中,光调节部的截面可以为非矩形,其中,光调节部的底部的第二长度大于顶部的第二长度,在底部与顶部之间部分的第二长度可以发生变化,例如,逐渐减小、先递减后递增等。例如,光调节部的截面可以为梯形、三角形、或者具有弧形顶面(比如,顶面为凸面或凹面)的结构。其中,光调节部的最大高度可以小于或等于h 0,光调节部的最小宽度可以大于或等于D。例如,光调节部的截面为梯形,则该梯形的高度可以小于或等于h 0,该梯形的上底边长度(即顶部的第二长度)可以大于或等于D。例如,光调节部的截面为三角形,则该三角形的最大高度可以小于或等于h 0,最小宽度可以大于或等于D。然而,本实施例对此并不限定。
在一些示例性实施方式中,彩色滤光层可以包括:周期性排布的第一彩色滤光单元、第二彩色滤光单元和第三彩色滤光单元。光调节层可以包括以下至少之一:位于第一彩色滤光单元远离第二彩色滤光单元一侧的第一光调节部、位于第一彩色滤光单元靠近第二彩色滤光单元一侧的第四光调节部、位于第二彩色滤光单元靠近第一彩色滤光单元一侧的第二光调节部、位于第二彩色滤光单元靠近第三彩色滤光单元一侧的第三光调节部。然而,本实施例对此并不限定。
在一些示例性实施方式中,第二光调节部与第四光调节部可以为一体结构。其中,第二光调节部和第四光调节部均位于第一彩色滤光单元和第二彩 色滤光单元之间。然而,本实施例对此并不限定。
在一些示例性实施方式中,第二光调节部和第四光调节部形成的一体结构的第二长度大于或等于第二光调节部的临界宽度和第四光调节部的临界宽度中的最大者。例如,第二光调节部的临界宽度大于第四光调节部的临界宽度,则第二光调节部和第四光调节部形成的一体结构的第二长度大于或等于第二光调节部的临界宽度即可。然而,本实施例对此并不限定。
在一些示例性实施方式中,第一彩色滤光单元为红色滤光单元,第二彩色滤光单元为绿色滤光单元,第三彩色滤光单元为蓝色滤光单元。第一光调节部和第四光调节部配置为调节从第一彩色滤光单元射出的第一颜色光的出射方向;第二光调节部和第三光调节部配置为调节从第二彩色滤光单元射出的第二颜色光的出射方向。第一光调节部和第四调节部的第一长度大于或等于第二光调节部的第一长度,且大于或等于第三光调节部的第一长度。换言之,调节第一颜色光的出射方向的光调节部的第一长度大于或等于调节第二颜色光的出射方向的光调节部。在一些示例中,第一光调节部和第四光调节部位于第一彩色滤光单元的相对两侧,第二光调节部和第三光调节部位于第二彩色滤光单元的相对两侧。然而,本实施例对此并不限定。
在一些示例性实施方式中,第一光调节部和第四光调节部的第一长度约为0.7微米至1.2微米,第二光调节部的第一长度约为0.1微米至0.5微米,第三光调节部的第一长度约为0.01微米至0.3微米。本示例性实施方式提供的光调节层,可以改善斜视角大于或等于60°下的色偏。
在一些示例性实施方式中,第一光调节部、第二光调节部、第三光调节部和第四光调节部的第二长度大致相同。然而,本实施例对此并不限定。例如,第一光调节部、第二光调节部、第三光调节部和第四光调节部的第二长度可以互不相同,或者部分相同。不同光调节部的第二长度需要满足大于或等于对应的临界宽度。
在一些示例性实施方式中,光调节层的材料为负折射率材料。例如,光调节层的材料可以包括以下至少之一:光子晶体材料、双介质负折射材料。然而,本实施例对此并不限定。
在一些示例性实施方式中,子像素包括:发光元件和驱动发光元件发光 的驱动电路。发光元件包括:第一电极、第二电极以及设置在第一电极和第二电极之间的有机发光层,第一电极位于第二电极靠近衬底基板的一侧;第一电极所在平面与衬底基板所在平面之间存在倾斜角度。在一些示例中,不同子像素的第一电极所在平面与衬底基板所在平面之间的倾斜角度不同。在一些示例中,子像素对应的光调节部在衬底基板上的正投影可以位于面对所述子像素的第一电极的倾斜角度的一侧。例如,子像素的第一电极的右侧被垫高,使得第一电极所在平面与衬底基板所在平面之间形成倾斜角度,所述子像素对应的光调节部在衬底基板上的正投影可以位于所述子像素的左侧。然而,本实施例对此并不限定。本示例性实施方式的显示基板可以改善由于第一电极存在倾斜角度而导致不同视角下合成白光的单色配比变化大,导致亮度衰减(L-Decay)在正负两个视角方向存在不对称的情况,进而改善由此引起的视角色偏。
下面通过多个示例对本实施例的显示基板进行举例说明。下述示例中均以显示基板为顶发射结构的OLED显示基板为例进行说明。其中,显示结构层的出光侧远离衬底基板。然而,本实施例对此并不限定。例如,显示基板可以为底发射结构的OLED显示基板。其中,显示结构层的出光侧靠近衬底基板。
在一些示例性实施方式中,显示基板可以包括:显示区域和位于显示区域周边的非显示区域。显示区域可以规则排布多个像素单元。多个像素单元中的至少一个包括多个子像素,例如可以包括:出射第一颜色光的第一子像素、出射第二颜色光的第二子像素、以及出射第三颜色光的第三子像素。然而,本实施例对此并不限定。例如,至少一个像素单元可以包括红色子像素、绿色子像素、蓝色子像素和白色子像素。至少一个子像素包括:发光元件以及驱动发光元件发光的像素驱动电路。至少一个子像素中的像素驱动电路分别与扫描信号线、数据信号线和发光信号线连接,像素驱动电路被配置为在扫描信号线和发光信号线的控制下,接收数据信号线传输的数据电压,向对应的发光元件输出相应的电流。至少一个子像素中的发光元件与对应的像素驱动电路连接,发光元件被配置为响应所在子像素的像素驱动电路输出的电流发出相应亮度的光。
图3为本公开至少一实施例的显示区域的多个子像素的平面结构示意图。如图3所示,在平行于显示基板的平面内,显示区域的多个子像素可以按照以下方式排布:在每一行上按照一个第一子像素P1、两个第二子像素P2和一个第三子像素P3的重复单元排布,且重复单元中的两个第二子像素P2沿列方向排布。其中,第一子像素P1出射第一颜色光,第二子像素P2出射第二颜色光,第三子像素P3出射第三颜色光。出射相同颜色光的子像素在行方向上的间距可以约等于子像素宽度的1至2倍,例如1.5倍。两个第二子像素P2可以为五边形(例如,圆角五边形),两个第二子像素P2相互对称,且对称轴与行方向平行。第一子像素P1和第三子像素P3分别为六边形(例如,圆角六边形)。第一子像素P1沿列方向的长度可以大于第三子像素P3沿列方向的长度,第三子像素P3沿列方向的长度可以大于第二子像素P2沿列方向的长度。在一些示例中,第一子像素P1可以为红色(R)子像素,第二子像素P2可以为绿色(G)子像素,第三子像素P3可以为蓝色(B)子像素。相应地,第一颜色光可以为红光,第二颜色光可以为绿光,第三颜色光可以为蓝光。在本示例中,一个像素单元的三个子像素按照品字方式排列。然而,本实施例对于显示区域的多个子像素的形状以及排布方式并不限定。例如,子像素可以是矩形状、菱形、五边形或六边形。当一个像素单元包括三个子像素,三个子像素可以采用水平并列或竖直并列排列;当一个像素单元包括四个子像素,四个子像素可以采用水平并列、竖直并列或正方形方式排列。
图4为本公开至少一实施例的显示基板的局部结构示意图。图4以显示区域的一个重复单元为例进行示意,而且在子像素的出光侧设置有彩色滤光层。如图4所示,彩色滤光层包括:黑矩阵501和周期性排布的第一彩色滤光单单元502a、第二彩色滤光单元502b和第三彩色滤光单元502c。黑矩阵501位于相邻彩色滤光单元之间。第一彩色滤光单元502a位于第一子像素P1的出光侧,且第一彩色滤光单元502a在衬底基板上的正投影覆盖第一子像素P1的开口区域。第二彩色滤光单元502b位于第二子像素P2的出光侧,且第二彩色滤光单元502b在衬底基板上的正投影覆盖第二子像素P2的开口区域。第三彩色滤光单元502c位于第三子像素P3的出光侧,且第三彩色滤光单元502c在衬底基板上的正投影覆盖第三子像素P3的开口区域。至少一个子像 素包括开口区域和围绕开口区域的非开口区域。子像素的开口区域配置为进行显示,且未被黑矩阵501遮挡;非开口区域围绕开口区域且被黑矩阵501遮挡,不进行显示。在一些示例中,第一彩色滤光单元502a为红色滤光单元,第二彩色滤光单元502b为绿色滤光单元,第三彩色滤光单元502c为蓝色滤光单元。
在一些示例性实施方式中,如图4所示,在黑矩阵501远离衬底基板的一侧设置有光调节层。黑矩阵501在衬底基板上的正投影覆盖光调节层在衬底基板上的正投影。光调节层在衬底基板上的正投影与彩色滤光单元在衬底基板上的正投影没有交叠。光调节层在衬底基板上的正投影与多个子像素的开口区域没有交叠。换言之,光调节层不会对子像素的开口区域进行遮挡。光调节层包括多个光调节部,例如第一光调节部601、第二光调节部602和第三光调节部603。第一光调节部601位于第一彩色滤光单元502a远离相邻的第二彩色滤光单元502b的一侧,第二光调节部602位于第一彩色滤光单元502a和相邻的第二彩色滤光单元502b之间,第三光调节部603位于第二彩色滤光单元502b和相邻的第三彩色滤光单元502c之间。其中,第一光调节部601配置为调节从第一彩色滤光单元502a射出的第一颜色光的出射方向,第二光调节部602和第三光调节部603配置为调节从第二彩色滤光单元502b射出的第二颜色光的出射方向。然而,本实施例对于光调节层的光调节部的数目和设置位置并不限定。例如,可以仅在第一彩色滤光单元502a的周边(比如,第一彩色滤光单元502a的一侧、或相对两侧、或四周)设置光调节部,以调节从第一彩色滤光单元502a射出的第一颜色光的出射方向;或者,可以仅在第二彩色滤光单元502b的周边(比如,第二彩色滤光单元502b的一侧、或相对两侧或四周)设置光调节部,以调节从第二彩色滤光单元502b射出的第二颜色光的出射方向;或者,可以仅在第三彩色滤光单元502c的周边(比如,第三彩色滤光单元502c的一侧、或相对两侧或四周)设置光调节部,以调节从第三彩色滤光单元502c射出的第三颜色光的出射方向;或者,可以在至少两个彩色滤光单元的周边设置光调节部,以调节从对应的彩色滤光单元射出的光的出射方向。
在一些示例性实施方式中,光调节层的至少一部分光调节部可以为一体 结构。如图4所示,相邻两个第二彩色滤光单元502b在靠近第一彩色滤光单元502a一侧的第二光调节部602可以为一体结构,相邻两个第二彩色滤光单元502b在靠近第三彩色滤光单元502c一侧的第三光调节部603可以为一体结构。然而,本实施例对此并不限定。在一些示例中,光调节层中的全部光调节部可以相互独立。例如,不同彩色滤光单元对应的光调节部之间相互独立,并不连接。
在一些示例性实施方式中,如图4所示,光调节层的至少一个光调节部可以为条状结构。光调节部的延伸方向可以垂直于子像素行方向,并平行于子像素列方向。光调节部沿子像素列方向的延伸长度可以大于对应的子像素的开口区域沿列方向的长度。例如,第一光调节部601沿子像素列方向的延伸长度大于第一子像素P1的开口区域沿列方向的长度,也大于第一彩色滤光单元502a沿子像素列方向的长度。第二光调节部602和第三光调节部603各自沿子像素列方向的延伸长度大于第二子像素P2的开口区域沿列方向的长度,也大于第二彩色滤光单元502b沿子像素列方向的长度。然而,本实施例对此并不限定。例如,至少一个光调节部沿子像素列方向的延伸长度可以等于或小于对应的子像素的开口区域沿列方向的长度。或者,光调节部的延伸方向可以垂直于子像素列方向,平行于子像素行方向。
图5为本公开至少一实施例的显示基板的结构示意图。图5为图4中沿R-R方向的局部剖面示意图。在一些示例性实施方式中,如图5所示,在垂直于显示基板的平面内,显示基板包括:衬底基板101、设置在衬底基板101上的显示结构层、位于显示结构层远离衬底基板101一侧的封装层104、位于封装层104远离衬底基板101一侧的彩色滤光层105和光调节层106、位于光调节层106远离衬底基板101一侧的平坦层107和覆盖层108。在一些可能的实现方式中,显示基板可以包括其他膜层,例如隔垫柱等。然而,本实施例对此并不限定。
在一些示例性实施方式中,衬底基板101可以是柔性基底或者是刚性基底。显示结构层包括:设置在衬底基板101上的驱动结构层102、以及位于驱动结构层102远离衬底基板101一侧的发光结构层103。驱动结构层102包括多个像素驱动电路。至少一个像素驱动电路包括多个晶体管和至少一个 存储电容。例如,像素驱动电路可以是3T1C、4T1C、5T1C、5T2C、6T1C或7T1C结构。图5中以每个子像素中包括的一个晶体管211和一个存储电容210为例进行示意。
在一些示例中,驱动结构层102包括:依次设置在衬底基板101上的半导体层、第一栅金属层、第二栅金属层和源漏金属层。半导体层和衬底基板101之间设置有第一绝缘层201,半导体层和第一栅金属层之间设置有第二绝缘层202、第一栅金属层和第二栅金属层之间设置有第三绝缘层203、第二栅金属层和源漏金属层之间设置有第四绝缘层204,源漏金属层远离衬底基板101一侧设置有第五绝缘层205。半导体层至少包括晶体管211的有源层,第一栅金属层至少包括晶体管211的栅电极和存储电容210的第一电容电极,第二栅金属层至少包括存储电容210的第二电容电极,源漏金属层至少包括晶体管211的源电极和漏电极。在一些示例中,第一绝缘层201至第四绝缘层204可以为无机绝缘层,第五绝缘层205可以为有机绝缘层。然而,本实施例对此并不限定。
在一些示例中,发光结构层103包括多个发光元件。发光结构层103可以包括:像素定义层302、第一电极层、第二电极层以及设置在第一电极层和第二电极层之间的有机发光层。第一电极层位于第二电极层靠近衬底基板101的一侧。第一电极层包括多个第一电极(例如,第一电极301a、301b和301c),第二电极层包括第二电极304。例如,第一电极可以为反射电极,第二电极可以为透明电极或者半透半反电极。如图5所示,第一子像素的发光元件包括第一电极301a、第二电极304和位于第一电极301a和第二电极304之间的有机发光层303a;第二子像素的发光元件可以包括第一电极301b、第二电极304和位于第一电极301b和第二电极304之间的有机发光层303b;第三子像素的发光元件可以包括第一电极301c、第二电极304和位于第一电极301c和第二电极304之间的有机发光层303c。以第一子像素的发光元件为例进行说明。第一子像素的发光元件的第一电极301a通过过孔与对应的像素驱动电路的晶体管211的漏电极连接。像素定义层302具有多个像素定义层开口。每个像素定义层开口暴露出对应的第一电极301a的至少部分,有机发光层303a设置在第一电极301a远离衬底基板101的一侧,并通过像素定 义层开口与第一电极301a接触,第二电极304设置在有机发光层303a远离衬底基板101的一侧,并与有机发光层303a接触。像素定义层开口内的有机发光层303a在第一电极301a和第二电极304的驱动下射出第一颜色光。同理,像素定义层开口内的有机发光层303b在第一电极301b和第二电极304的驱动下射出第二颜色光,像素定义层开口内的有机发光层303c在第一电极301c和第二电极304的驱动下射出第三颜色光。像素定义层开口在衬底基板101上的正投影包含子像素的开口区域在衬底基板101上的正投影。
在一些示例性实施方式中,有机发光层可以包括叠设的空穴注入层(HIL,Hole Injection Layer)、空穴传输层(HTL,Hole Transport Layer)、电子阻挡层(EBL,Electron Block Layer)、发光层(EML,Emitting Layer)、空穴阻挡层(HBL,Hole Block Layer)、电子传输层(ETL,Electron Transport Layer)和电子注入层(EIL,Electron Injection Layer)。在一些示例中,所有子像素的空穴注入层和电子注入层可以是连接在一起的共通层,所有子像素的空穴传输层和电子传输层可以是连接在一起的共通层,所有子像素的空穴阻挡层可以是连接在一起的共通层,相邻子像素的发光层和电子阻挡层可以有少量的交叠,或者可以是隔离的,空穴阻挡层可以是连接在一起的共通层。然而,本实施例对此并不限定。
在一些示例性实施方式中,封装层104可以包括叠设的第一封装层、第二封装层和第三封装层。第一封装层和第三封装层可以采用无机材料,第二封装层可以采用有机材料,第二封装层设置在第一封装层和第三封装层之间,可以保证外界水汽无法进入发光元件。然而,本实施例对此并不限定。
在一些示例性实施方式中,如图5所示,在垂直于显示基板的平面内,光调节层106的第一光调节部601、第二光调节部602和第三光调节部603的截面可以均为矩形,例如三者的截面为具有不同尺寸的矩形。然而,本实施例对此并不限定。例如,不同光调节部的截面尺寸可以相同;或者,不同光调节部的截面形状可以不同。
在一些示例性实施方式中,光调节层106可以采用负折射率材料,即折射率小于0的材料。例如,光调节层106的材料可以包括以下至少之一:光子晶体材料、双介质负折射率材料(比如,改性后的聚酰亚胺)。图6为光 折射材料的特性示意图。图6(a)为一般材料对光的折射情况示意图,图6(b)为负折射率材料对光的折射情况示意图。在图6中,n 0表示一般材料的折射率,n 2表示负折射率材料的折射率,n 1表示空气的折射率。如图6(b)所示,负折射率材料具有入射光与折射光位于界面法线同一侧的特性。光经过负折射率材料之后,光的路径会发生改变,相对于界面法线,在与入射方向的相同侧射出。在本示例性实施方式中,利用负折射率材料的特性设计光调节层,可以使得从彩色滤光层射出的光路径发生改变,以改善显示基板存在的视角色偏。
图7A和图7B为本公开至少一实施例的光调节部的第一长度和第二长度的关系示意图。图7A和图7B所示为经过光调节部对应的子像素的中心线且垂直于衬底基板的平面的局部示意图。如图7A所示,在光调节部的第一长度和第二长度满足一定条件下,可以使得光调节部的入射光沿第一路径Ⅰ进行传播。第一长度为光调节部沿第一方向的尺寸,第二长度为光调节部沿第二方向的尺寸。第一方向垂直于显示基板所在平面,第一长度可以称为光调节部的厚度或高度。第二方向平行于显示基板所在平面,且可以与光调节部对应的子像素的中心线相交。第二长度可以称为光调节部的宽度。
其中,θ表示斜视角角度,θ可以不为0°;tt’表示子像素中心线,0°视角的光可以沿tt’射出;A表示子像素中心线tt’与光调节部603的底面(即光调节部603靠近衬底基板一侧的表面)的延伸平面之间的交点;α 1表示光从第一介质入射到光调节部603界面的入射角,α 2表示光在光调节部603界面的折射角;n 2为光调节部603的折射率;n 1为第一介质(例如,空气层或者常规填充层)的折射率;d 0为光调节部603至子像素中心线的垂直距离;h 0为光调节部603的厚度;d 1为光调节部603的宽度;D为光调节部603的临界宽度。vv’表示光从第一介质入射至光调节部603的界面法线;ss’表示光由光调节部603入射至第一介质的界面法线;oo’表示光由光调节部603入射至黑矩阵501的界面法线。
在一些示例性实施方式中,以图5所示的截面为矩形的第三光调节部603为例进行说明。根据图7A可以得到以下关系:
Figure PCTCN2021082050-appb-000003
Figure PCTCN2021082050-appb-000004
Figure PCTCN2021082050-appb-000005
Figure PCTCN2021082050-appb-000006
根据式二可以得到:
Figure PCTCN2021082050-appb-000007
根据式一、式二、式三和式四可以得到:
Figure PCTCN2021082050-appb-000008
根据式五可见,光调节部603的厚度h 0与斜视角角度θ以及光调节部603至对应的子像素中心线的垂直距离d 0具有相关性。
根据式六可见,光调节部603的临界宽度D与斜视角角度θ、光调节部603至对应的子像素中心线的垂直距离d 0、光调节部603的折射率n 2、以及第一介质的折射率n 1具有相关性。
当光调节部603的宽度d 1大于或等于临界宽度D时,光出射路径将沿第一路径Ⅰ进行传播,如图7A所示。即光调节部603的厚度h 0=d 0/tanθ,光调节部603的宽度d 1≥D时,在视角θ为大于0°至90°范围的光,沿着传播路径入射至光调节部603界面,再沿第一路径Ⅰ折射进入黑矩阵501。进入黑矩阵501的光束绝大部分会被黑矩阵501吸收,从而利用光调节部603改变光路径,可以调整RGB合成白光中亮度比例过大的光色,进而改善显示基板的视角色偏。
当光调节部603的宽度d 1小于临界宽度D时,如图7B所示,光出射路径将沿第二路径Ⅱ进行传播。由于光调节部603的宽度d 1小于临界宽度D,使得光没有到达光调节部603与黑矩阵501的界面发生二次折射,光沿第二路径Ⅱ,即初始传播方向进行传播。在这种条件下,光调节部603不能改变光路径。
由图7A和图7B所示,光调节层的光调节部的宽度d 1需要设计为大于 或等于临界宽度D。
本示例性实施方式中,通过设置光调节层对从彩色滤光层射出的至少一种颜色光(例如,第一颜色光和第二颜色光)的出光方向进行调整,可以调控斜视角方向上至少一种颜色光进入人眼的光强,进而改善显示基板的视角色偏。
图8为本公开至少一实施例的显示基板的另一结构示意图。在一些示例性实施方式中,如图8所示,在垂直于衬底基板的平面内,显示基板包括:衬底基板101、设置在衬底基板101上的显示结构层、位于显示结构层远离衬底基板101一侧的封装层104、位于封装层104远离衬底基板101一侧的彩色滤光层105和光调节层106、位于光调节层106远离衬底基板101一侧的平坦层107和覆盖层108。在一些示例中,显示结构层包括:设置在衬底基板101上的驱动结构层102、以及位于驱动结构层102远离衬底基板101一侧的发光结构层103。驱动结构层102包括:依次设置在衬底基板101上的半导体层、第一栅金属层、第二栅金属层和源漏金属层。
在本示例中,由于发光元件下存在源漏金属层的走线,而且在第五绝缘层205设置过孔实现第一电极与对应的像素驱动电路的连接,会导致第一电极不平坦,存在倾斜,即第一电极与衬底基板101所在平面存在倾斜角度。在一些示例中,第一电极的倾斜角度(即第一电极所在平面与衬底基板所在平面之间的夹角)例如为4度。如图8所示,由于受到第一子像素的第一电极301a下方的源漏金属层的影响,第一电极301a的右侧被垫高,造成第一电极301a倾斜;第二子像素的第一电极301b的左侧被垫高,造成第一电极301b倾斜;第三子像素的第一电极301c的右侧被垫高,造成第一电极301c倾斜。由于不同颜色子像素的第一电极的倾斜方向不同,会造成发光元件在不同方向的亮度衰减(L-decay)程度不同,从而造成在不同视角下合成白光的RGB三色单色光配比变化较大,造成严重的色偏。而且,由于不同彩色滤光单元在不同波段的衰减程度不同,也会造成不同颜色光在不同视角下的亮度衰减(L-decay)程度存在差异化,造成严重色偏。
在本示例性实施方式中,通过在黑矩阵上设置光调节层,并对调整不同颜色光的出射方向的光调节部的参数(例如,厚度和宽度)进行差异化设计, 可以调控不同视角下合成白光的RGB亮度配比至最佳亮度配比,以有效改善视角色偏。
在一些示例性实施方式中,根据光程公式2d 1n=kλ(其中,k为整数,d 1为光程,在此即为光调节部的宽度,λ为波长,n为光调节部的折射率)可知,由于不同颜色光进入同一种介质传播的折射率不同,而且合成白光的不同光色所需调整的比例也是不同的,因此,对应调整不同颜色光的出射方向的光调节部的厚度及宽度d 1会存在差异。
在一些示例性实施方式中,如图8所示,光调节层106包括:位于第一彩色滤光单元502a相对两侧的第一光调节部601和第四光调节部604,以及位于第二彩色滤光单元502b相对两侧的第二光调节部602和第三光调节部603。第二光调节部602和第四光调节部604位于第一彩色滤光单元502a和第二彩色滤光单元502b之间,第二光调节部602靠近第二彩色滤光单元502b,第四光调节部604靠近第一彩色滤光单元502a。第三光调节部603位于第二彩色滤光单元502b和第三彩色滤光单元502c之间。本示例性实施方式中,第一彩色滤光单元502a为红色滤光单元,第二彩色滤光单元502b为绿色滤光单元,第三彩色滤光单元502c为蓝色滤光单元。本示例性实施方式可以同时利用光调节层106对红光和绿光的出射方向进行调整,以调控红光和绿光在斜视角下进入人眼的光强。
基于不同颜色的光在同种介质折射率的差异,结合上述式一至式六、以及RGB合成白光的最佳亮度配比约为3:6:1,可以对RGB三原色在斜视角下进入人眼的光强进行调控。图9为本公开至少一实施例的光调节层在不同视角对光强调控的示意图。如图9所示,通过光调节层106的调节,可以使得较小视角下的光强较大,在大于30°视角时,光强随着视角的增大而逐渐减弱。利用光调节层106调整不同颜色光的出射方向,可以得到在不同视角下的光强调控比例,以将显示基板在斜视角下朝发黄偏移拉回白平衡上。图10为本公开至少一实施例的显示基板在斜视角下对色偏的改善效果示意图。如图10所示,正视角下合成白光对应S1点,对于未设置光调节层的显示基板在斜视角下合成白光对应S2点,本实施例提供的显示基板在斜视角下合成白光对应S3点。由此可见,利用本实施例的显示基板的光调节层,可以使 得斜视角下RGB亮度配比能够达到正视角下的比例以合成白光,改善斜视角色偏发黄的情况。
在一些示例性实施方式中,以显示基板在70°视角下存在显示发黄,左侧视角RGB亮度配比为3.3:6.1:0.6,右侧视角RGB亮度配比为3.2:6.1:0.7的情况为例,基于图8所示的显示基板,对改善上述情况的显示基板的光调节层的光调节部的差异化设计进行说明。假设斜视角角度为θ,子像素尺寸为a 1微米(um),邻近子像素间距为b 1um,光调节层对于光束的折射率为n 2,光调节部到子像素的距离(例如,光调节部邻近子像素一侧的边缘与该子像素的开口区域邻近光调节部一侧边缘之间的垂直距离)为d um,则第一子像素(例如,红色子像素)的中心线到光调节部(例如,第一光调节部601或第四光调节部604)的垂直距离d 0=(a 1/2+d)um。根据上述式一至式六可以得到,光调节部的高度h 0与临界宽度D存在以下关系式:
Figure PCTCN2021082050-appb-000009
Figure PCTCN2021082050-appb-000010
在一些示例中,第一子像素(例如,红色子像素)的尺寸约为10um,邻近子像素间距为15um,光调节层对于红光的折射率为n 2R=-0.7,第一介质为空气层,n 1为空气层的折射率,光调节部到第一子像素的距离约为2um。第二子像素(例如,绿色子像素)的尺寸约为5um,邻近子像素间距为8um,光调节层相对绿光的折射率为n 2G,光调节部到第二子像素的距离约为1um。将第一子像素对应的相关数据代入式七和式八可以得到:
Figure PCTCN2021082050-appb-000011
Figure PCTCN2021082050-appb-000012
以位于第一子像素和第二子像素周边的光调节部的宽度相同为例,根据2d 1n=kλ可以得到:
Figure PCTCN2021082050-appb-000013
由此可以得到:n 2G=-0.6。
将第二子像素对应的相关数据代入式七和式八可以得到:
Figure PCTCN2021082050-appb-000014
Figure PCTCN2021082050-appb-000015
针对左侧RGB亮度配比3.3:6.1:0.6,需将其调至最佳亮度配比3:6:1,则红光亮度需调低45%,绿光亮度需调低41%,即调节因子f R=45%,f G=41%。基于此,设置于第一子像素左侧的第一光调节部601的厚度h 0R需乘以调节因子f R=45%,故h 0R=f R×2.55=1.15um;设置在第二子像素左侧的第一光调节部602的厚度h 0G需乘以调节因子f G=41%,故h 0G=f G×1.27=0.52um。
针对右侧RGB亮度配比3.2:6.1:0.7,需将其调至最佳亮度配比3:6:1,则红光亮度需调低34%,绿光亮度需调低31%,即调节因子f R=34%,f G=31%。基于此,设置于第一子像素右侧的第四光调节部604的厚度h 0R需乘以调节因子f R=34%,故h 0R=f R×2.55=0.87um;设置在第二子像素右侧的第三光调节部603的厚度h 0G需乘以调节因子f G=31%,故h 0G=f G×1.27=0.39um。
在本示例中,红光和绿光亮度的调节因子可以基于所需调整的RGB实际亮度配比、待调整至的最佳亮度配比,并结合亮度调节算法来确定。本实施例对于亮度调节算法的实现并不限定。
根据以上可知,如图8所示,在第一子像素的左侧距离第一子像素2um处设置第一光调节部601,在第一子像素的右侧距离第一子像素2um处设置第四光调节部604。其中,第一光调节部601的厚度约为1.15um,宽度约为5um;第四光调节部604的厚度约为0.87um,宽度约为5um。第一光调节部601可以调控70°视角到90°视角范围内红光亮度降低45%,第四光调节部604可以调控70°视角到90°视角范围内红光亮度降低34%。在第二子像素的左侧距离第二子像素1um处设置第二光调节部602,在第二子像素的右侧距离第二子像素1um处设置第三光调节部603。其中,第二光调节部602的厚度约为0.52um,宽度约为5um;第三光调节部603的厚度约为0.39um,宽度约 为5um。第二光调节部602可以调控70°视角到90°视角范围内绿光亮度降低41%,第三光调节部603可以调控70°视角到90°视角范围内绿光亮度降低31%。本示例性实施方式可以将70°视角下左右两侧的RGB亮度配比调整为3:6:1,从而改善显示基板在70°视角存在的色偏发黄情况。在本示例中,第一光调节部601至第四光调节部604的宽度可以均为5um,以简化工艺。然而,本实施例对此并不限定。例如,第一光调节部601和第四光调节部604的宽度大于或等于4.54um即可,第二光调节部602和第三光调节部603的宽度大于或等于1.82um即可。本示例对于60°视角可以消除色偏发黄现象,可以明显减弱70°视角和80°视角下的色偏发黄现象。
在一些示例性实施方式中,根据光调节部到对应的子像素的距离为初始值(例如2um),并结合式七和式八,可以确定出第一子像素对应的光调节部的厚度最大值和宽度最小值,以及第二子像素对应的光调节部的厚度最大值和宽度最小值。然后,根据左侧的红光和绿光亮度的调节因子、第一子像素对应的光调节部的厚度最大值以及第二子像素对应的光调节部的厚度最大值,可以确定第一子像素左侧的第一光调节部601的厚度和第二子像素左侧的第二光调节部602的厚度。根据第一子像素对应的光调节部的宽度最小值和第二子像素对应的光调节部的宽度最小值,可以确定第一子像素左侧的第一光调节部601的宽度和第二子像素左侧的第二光调节部602的宽度。在确定第一光调节部601和第二光调节部602的宽度和厚度之后,第一子像素右侧的第四光调节部604的宽度和厚度可以设计分别为与第一光调节部601的宽度和厚度相同,第二子像素右侧的第三光调节部603的宽度和厚度可以设计为分别与第二光调节部602的宽度和厚度相同。在本示例中,通过调整第四光调节部604到第一子像素的距离来调整右侧红光的衰减程度,通过调整第三光调节部603到第二子像素的距离来调整右侧绿光的衰减程度,以调节右侧RGB亮度比例至最佳亮度比例。然而,本实施例对此并不限定。
在一些示例性实施方式中,第一光调节部601、第二光调节部602、第三光调节部603和第四光调节部604的尺寸可以相同,其中,四个光调节部的截面形状可以相同,可以具有相同的宽度和相同的厚度。在本示例中,可以通过调整第一光调节部601到第一子像素的距离来调整左侧红光的衰减程度, 通过调整第四光调节部604到第一子像素的距离来调整右侧红光的衰减程度,通过调整第二光调节部602到第二子像素的距离来调整左侧绿光的衰减程度,通过调整第三光调节部603到第二子像素的距离来调整右侧滤光的衰减程度,以将右侧RGB亮度比例和左侧RGB亮度比例均调节至最佳亮度比例。然而,本实施例对此并不限定。
图11为本公开至少一实施例的显示基板的亮度衰减示意图。图11(a)所示为第一电极存在倾斜且未设置光调节层的显示基板的亮度衰减示意图。图11(b)所示为图8所示的显示基板的亮度衰减示意图。如图11(a)所示,显示基板的亮点最高点在负方向4°的位置,且亮度衰减不对称,正方向的衰减较快,亮度衰减在两个方向存在偏差,在正负30°的偏差约为12%,在正负45°下的偏差约为10%。如图11(b)所示,本示例性实施方式的显示基板通过设置光调节层,可以改善正负两个视角方向存在的亮度衰减偏差。
本示例性实施方式提供的显示基板,通过对第一彩色滤光单元和第二彩色滤光单元两侧的光调节部进行差异化设计,可以调控RGB子像素两侧随视角变化的光强衰减程度,进而改善视角色偏。
本示例性实施例的显示基板的其余结构可以参照前述实施例的说明,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图12为本公开至少一实施例的显示基板的另一结构示意图。在一些示例性实施方式中,如图12所示,第一彩色滤光单元502a和第二彩色滤光单元502b之间的第二光调节部602和第四光调节部604可以为一体结构。其中,第四光调节部604和第二光调节部602的一体结构在靠近第一彩色滤光单元502a的一侧的厚度大于靠近第二彩色滤光单元502b一侧的厚度。例如,第二光调节部602的顶面与靠近第二彩色滤光单元502b的侧面之间通过一个斜面连接。基于图8所示实施例的示例,第二光调节部602靠近第一彩色滤光单元502a一侧的厚度约为0.87um,第二光调节部602靠近第二彩色滤光单元502b一侧的厚度约为0.52um。然而,本实施例对此并不限定。
本示例性实施方式提供的显示基板,通过设置光调节层改变光路径,以调控斜视角下不同颜色光进入人眼的光强,重新调配RGB亮度配比,改善 显示基板的视角色偏。
关于本实施例的显示基板的其余结构可以参照前述实施例的说明,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图13至图15为本公开至少一实施例的光调节部的立体和截面结构示意图。图13(a)、图14(a)和图15(a)所示为光调节部的立体结构示意图,图13(b)、图14(b)和图15(b)所示为光调节部的截面示意图。如图13(a)、图14(a)和图15(a)所示,光调节部可以为具有不同截面形状的条状结构。如图13(a)和图13(b)所示,光调节部的截面可以为梯形。如图14(a)和图14(b)所示,光调节部的截面可以为三角形。如图15(a)和图15(b),光调节部的截面可以为具有矩形底部和弧形顶面的形状。其中,顶面可以为凸面。然而,本实施例对此并不限定。例如,光调节部的顶面可以为凹面。
在一些示例性实施方式中,当光调节部的截面形状为非矩形时,参照图7A和图7B的厚度和宽度推导过程可知,光调节部的厚度可以小于或等于h 0,光调节部的宽度可以大于或等于临界宽度D。例如,如图13所示,截面为梯形的光调节部的厚度可以小于或等于h 0,上底边长度可以大于或等于临界宽度D。如图14所示,截面为三角形的光调节部的最大厚度可以小于或等于h 0,下底边长度可以大于临界宽度D。如图15所示,截面为具有弧形顶面形状的光调节部的最大厚度可以小于或等于h 0,最小宽度可以大于或等于临界宽度D。然而,本实施例对此并不限定。
下面参照图8通过显示基板的制备过程的示例说明本公开实施例的显示基板的结构。本公开所说的“构图工艺”包括沉积膜层、涂覆光刻胶、掩模曝光、显影、刻蚀和剥离光刻胶等处理。沉积可以采用选自溅射、蒸镀和化学气相沉积中的任意一种或多种,涂覆可以采用选自喷涂和旋涂中的任意一种或多种,刻蚀可以采用选自干刻和湿刻中的任意一种或多种。“薄膜”是指将某一种材料在衬底基板上利用沉积或涂覆工艺制作出的一层薄膜。若在整个制作过程当中该“薄膜”无需构图工艺,则该“薄膜”还可以称为“层”。当在整个制作过程当中该“薄膜”还需构图工艺,则在构图工艺前称为“薄膜”,构图 工艺后称为“层”。经过构图工艺后的“层”中包含至少一个“图案”。
本公开中所说的“A和B同层设置”是指,A和B通过同一次构图工艺同时形成。“相同层”不总是意味着层的厚度或层的高度在截面图中是相同的。“A的投影包含B的投影”是指,B的投影落入A的投影范围内,或者A的投影覆盖B的投影。
在一些示例性实施方式中,本实施例的显示基板的制备过程可以包括以下步骤(1)至步骤(6)。在本示例性实施例中,以顶发射结构的柔性显示基板为例进行说明。
(1)、提供衬底基板。
在一些示例性实施方式中,衬底基板101可以为刚性基底,例如,石英基底、或玻璃基底,或者,可以为柔性基底,例如有机树脂基底。然而,本实施例对此并不限定。
(2)、在衬底基板上制备驱动结构层。
在一些示例性实施方式中,驱动结构层102包括多个驱动电路,每个驱动电路包括多个晶体管和至少一个存储电容,例如2T1C、3T1C或7T1C设计。如图8所示,以三个子像素为例进行示意,且每个子像素的像素驱动电路仅以一个晶体管211和一个存储电容210为例进行示意。
在一些示例性实施方式中,驱动结构层102的制备过程可以参照以下说明。以第一子像素的像素驱动电路的制备过程为例进行说明。
在衬底基板101上依次沉积第一绝缘薄膜和半导体薄膜,通过构图工艺对半导体薄膜进行构图,形成覆盖整个衬底基板101的第一绝缘层201,以及设置在第一绝缘层201上的半导体层图案,半导体层图案至少包括晶体管211的有源层。
随后,依次沉积第二绝缘薄膜和第一金属薄膜,通过构图工艺对第一金属薄膜进行构图,形成覆盖半导体层图案的第二绝缘层202,以及设置在第二绝缘层202上的第一栅金属层图案,第一栅金属层图案至少包括晶体管211的栅电极和存储电容210的第一电容电极。
随后,依次沉积第三绝缘薄膜和第二金属薄膜,通过构图工艺对第二金 属薄膜进行构图,形成覆盖第一栅金属层的第三绝缘层203,以及设置在第三绝缘层203上的第二栅金属层图案,第二栅金属层图案至少包括存储电容210的第二电容电极,第二电容电极的位置与第一电容电极的位置相对应。
随后,沉积第四绝缘薄膜,通过构图工艺对第四绝缘薄膜进行构图,形成覆盖第二栅金属层的第四绝缘层204图案,第四绝缘层204上开设有至少两个第一过孔,两个第一过孔内的第四绝缘层204、第三绝缘层203和第二绝缘层202被刻蚀掉,暴露出有源层的表面。
随后,沉积第三金属薄膜,通过构图工艺对第三金属薄膜进行构图,在第四绝缘层204上形成源漏金属层图案,源漏金属层至少包括晶体管211的源电极和漏电极。源电极和漏电极可以分别通过第一过孔与有源层连接。
随后,在形成前述图案的衬底基板101上涂覆第五绝缘薄膜,形成覆盖整个衬底基板101的第五绝缘层205,并通过掩膜、曝光、显影工艺,在第五绝缘层205上形成多个第二过孔。多个第二过孔内的第五绝缘层205被显影掉,分别暴露出第一子像素的像素驱动电路的晶体管211的漏电极的表面、第二子像素的像素驱动电路的对应晶体管的漏电极的表面以及第三子像素的像素驱动电路的对应晶体管的漏电极的表面。
如图8所示,第一子像素的像素驱动电路中,有源层、栅电极、源电极和漏电极可以组成晶体管211,第一电容电极和第二电容电极可以组成存储电容210。在上述制备过程中,可以同时形成第二子像素的像素驱动电路以及第三子像素的像素驱动电路。
在一些示例性实施方式中,第一绝缘层201、第二绝缘层202、第三绝缘层203和第四绝缘层204采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种,可以是单层、多层或复合层。第一绝缘层201称之为缓冲(Buffer)层,用于提高衬底基板的抗水氧能力;第二绝缘层202和第三绝缘层203称之为栅绝缘(GI,Gate Insulator)层;第四绝缘层204称之为层间绝缘(ILD,Interlayer Dielectric)层。第五绝缘层205可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等有机材料。第五绝缘层205称之为平坦(PLN,Planarization)层。第一金属薄膜、第二金属薄膜和第三金属薄膜采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti) 和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。半导体薄膜采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩、聚噻吩等一种或多种材料,即本公开适用于基于氧化物(Oxide)技术、硅技术以及有机物技术制造的晶体管。
(3)、在形成前述图案的衬底基板上,形成发光元件。
在一些示例性实施方式中,在形成前述图案的衬底基板101上沉积导电薄膜,通过构图工艺对导电薄膜进行构图,形成第一电极层图案。第一电极层包括多个第一电极。在一些示例中,第一电极为反射阳极。如图8所示,第一子像素的第一电极301a通过第二过孔与晶体管211的漏电极连接,第二子像素的第一电极301b通过第二过孔与第二子像素的像素驱动电路的对应晶体管的漏电极连接,第三子像素的第一电极301c通过第二过孔与第三子像素的像素驱动电路的对应晶体管的漏电极连接。
在一些示例中,第一电极可以采用金属材料,如镁(Mg)、银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等,或者,是金属和透明导电材料形成的堆栈结构,如ITO/Ag/ITO、Mo/AlNd/ITO等反射型材料。
在一些示例性实施例方式中,在形成前述图案的衬底基板101上涂覆像素定义薄膜,通过掩膜、曝光、显影工艺,形成像素定义(PDL,Pixel Definition Layer)层图案。如图8所示,显示区域的像素定义层302包括多个像素定义层开口,多个像素定义层开口内的像素定义层被显影掉,分别暴露出第一子像素的第一电极301a的至少部分表面、第二子像素的第一电极301b的至少部分表面以及第三子像素的第一电极301c的至少部分表面。
在一些示例中,像素定义层302可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等。
在一些示例性实施方式中,在形成前述图案的衬底基板101上涂覆有机材料薄膜,通过掩膜、曝光、显影工艺,形成隔垫柱图案。隔垫柱可以作为 支撑层,配置为在蒸镀过程中支撑精细金属掩模版(FMM,Fine Metal Mask)。
在一些示例性实施方式中,在形成前述图案的衬底基板101上,依次形成有机发光层以及第二电极。在一些示例中,第二电极为透明阴极。发光元件可以通过透明阴极从远离衬底基板101一侧出光,实现顶发射。在一些示例中,发光元件的有机发光层包括:空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层以及电子注入层。
在一些示例性实施方式中,在形成前述图案的衬底基板101上采用开放式掩膜版(Open Mask)依次蒸镀形成空穴注入层、空穴传输层以及电子阻挡层。空穴注入层的厚度约为0至20nm,空穴传输层的厚度约为70nm至200nm,电子阻挡层的厚度约为10nm至70nm。然后,采用FMM依次蒸镀形成不同颜色的发光层,例如蓝色发光层、绿色发光层和红色发光层。在一些示例中,发光层的厚度约为10nm至50nm。然后,采用开放式掩膜版依次蒸镀形成空穴阻挡层、电子传输层以及电子注入层。空穴阻挡层的厚度约为0至20nm,电子传输层的厚度约为10nm至50nm,电阻注入层的厚度约为0至5nm。然而,本实施例对此并不限定。
在一些示例性实施方式中,有机发光层形成在子像素区域内,实现有机发光层与第一电极连接。第二电极304形成在像素定义层302上,并与有机发光层连接。
在一些示例性实施方式中,第二电极可以采用镁(Mg)、银(Ag)、铝(Al)中的任意一种或更多种,或采用上述金属中任意一种或多种制成的合金,或者采用透明导电材料,例如,氧化铟锡(ITO),或者,金属与透明导电材料的多层复合结构。例如,第二电极的镁和银的比例可以约为1:9至8:2。第二电极的厚度可以约为5nm至30nm。然而,本实施例对此并不限定。
在一些示例性实施方式中,可以在第二电极304远离衬底基板101的一侧形成光耦合层,光耦合层可以为多个子像素的共通层。光耦合层可以与透明阴极配合,起到增加光输出的作用。例如,光耦合层的材料可以采用半导体材料。然而,本实施例对此并不限定。
(4)、在形成前述图案的衬底基板上,形成封装层。
在一些示例性实施方式中,在形成前述图案的衬底基板101上形成封装层104,封装层104可以包括叠设的第一封装层、第二封装层和第三封装层。第一封装层采用无机材料,在显示区域覆盖第二电极304。第二封装层采用有机材料。第三封装层采用无机材料,覆盖第一封装层和第二封装层。然而,本实施例对此并不限定。在一些示例中,封装层可以采用无机/有机/无机/有机/无机的五层结构。
(5)、在形成前述图案的衬底基板上,依次形成黑矩阵、光调节层和彩色滤光单元。
在一些示例性实施方式中,在封装层104的表面涂覆黑色颜料或沉积黑铬(Cr)薄膜,通过构图工艺对黑色颜料或黑铬薄膜进行构图,在封装层104上形成黑矩阵501。黑矩阵501具有多个开口,多个开口内的黑矩阵被去掉,暴露出多个子像素的开口区域。随后,在黑矩阵501的表面涂覆光调节材料,通过掩模、曝光、显影工艺,在黑矩阵501上形成光调节层106。在一些示例中,光调节材料可以为负折射率材料,例如,光子晶体材料、双介质负折射材料。随后,依次形成多个第一彩色滤光单元(例如,红色滤光单元)、多个第二彩色滤光单元(例如,绿色滤光单元)和多个第三彩色滤光单元(例如,蓝色滤光单元)。以形成红色滤光单元为例,先在已形成黑矩阵501和光调节层106的封装层104上涂覆红色树脂,经烘烤固化后,通过掩模曝光、显影,形成红色滤光单元。关于绿色滤光单元和蓝色滤光单元的形成过程类似,故于此不再赘述。本示例性实施方式中,在形成彩色滤光单元之间形成光调节层,可以避免光调节层的制备过程对彩色滤光单元造成影响。
(6)、在形成前述图案的衬底基板上,依次形成平坦层107和覆盖层108。
本示例性实施例提供的显示基板,通过在黑矩阵上形成光调节层,实现对不同颜色光的出射方向进行调整,以改善显示基板的视角色偏。
本公开实施例的显示基板的结构及其制备过程仅仅是一种示例性说明。在一些示例性实施方式中,可以根据实际需要变更相应结构以及增加或减少构图工艺。例如,显示基板可以为底发射结构的显示基板。又如,显示结构层可以包括两个源漏金属层。又如,在形成黑矩阵之后,可以先制备彩色滤 光单元,再形成光调节层。然而,本实施例对此并不限定。
图16为本公开至少一实施例的显示基板的另一结构示意图。如图16所示,在垂直于显示基板的平面内,显示基板包括:衬底基板101、依次设置在衬底基板101上的显示结构层、封装层104、光调节层106、平坦层107和偏光片109。显示结构层包括依次设置在衬底基板101上的驱动结构层102和发光结构层103。在本示例性实施方式中,光调节层106位于封装层104上,配置为调整子像素射出的不同颜色光的出射方向。光调节层106可以包括多个光调节部,例如,第一光调节部601至第四光调节部604。在一些示例中,第一光调节部601和第四光调节部604配置为调整红色子像素射出的红光的出射方向,第二光调节部602和第三光调节部603配置为调整绿色子像素射出的绿光的出射方向。然而,本实施例对此并不限定。
关于本实施例的显示基板的相关结构以及光调节层调整光出射方向的原理可以参照前述实施例的说明,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
本公开至少一实施例还提供一种显示基板的制备方法,用于制备如上述实施例所述的显示基板。本实施例的制备方法包括:在衬底基板上形成显示结构层;在显示结构层的出光侧形成光调节层。显示结构层包括多个子像素。光调节层在衬底基板上的正投影与多个子像素的开口区域没有交叠;光调节层配置为调节从显示结构层射出的至少一种颜色光的出射方向。
关于本实施例的制备方法可以参照前述实施例的说明,故于此不再赘述。
图17为本公开至少一实施例的显示装置的示意图。如图17所示,本实施例提供一种显示装置91,包括:显示基板910。显示基板910为前述实施例提供的显示基板。在一些示例中,显示基板910可以为OLED显示基板。显示装置91可以为:OLED显示装置、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、车载显示器、手表、手环等任何具有显示功能的产品或部件。然而,本实施例对此并不限定。
图18为本公开至少一实施例的彩膜基板的示意图。如图18所示,在垂直于彩膜基板上的平面内,彩膜基板包括:基底10、设置在基底10上的彩色滤光层11和光调节层16、位于光调节层16远离基底10一侧的平坦层12 和覆盖层13。彩色滤光层11包括黑矩阵21和周期性排布的多个彩色滤光单元,例如第一彩色滤光单元22a、第二彩色滤光单元22b和第三彩色滤光单元22c。光调节层16设置在黑矩阵21上。光调节层16在基底10上的正投影位于黑矩阵21在基底10上的正投影内,与彩色滤光单元在基底10上的正投影没有交叠。光调节层16配置为调节从彩色滤光层11射出的至少一种颜色光的出射方向。在一些示例中,光调节层16可以包括:第一光调节部601、第二光调节部602、第三光调节部603和第四光调节部604。第一光调节部601和第四光调节部604位于第一彩色滤光单元22a的相对两侧,配置为调节第一彩色滤光单元22a射出的第一颜色光的出射方向。第二光调节部602和第三光调节部603位于第二彩色滤光单元22b的相对两侧,配置为调节第二彩色滤光单元22b射出的第二颜色光的出射方向。在一些示例中,第一彩色滤光单元22a为红色滤光单元,第二彩色滤光单元22b为绿色滤光单元,第三彩色滤光单元22c为蓝色滤光单元。然而,本实施例对此并不限定。
关于本实施例的光调节层的相关说明可以参照前述实施例的描述,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
在一些示例性实施方式中,本实施例的彩膜基板可以设置在OLED显示基板的出光侧。或者,本实施例的彩膜基板可以与阵列基板对盒设置,形成显示面板。然而,本实施例对此并不限定。
本实施例提供的彩膜基板可以利用光调节层调节不同颜色光的出射方向,从而改善显示视角色偏情况。
本公开中的附图只涉及本公开涉及到的结构,其他结构可参考通常设计。在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
本领域的普通技术人员应当理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本申请的权利要求的范围当中。

Claims (20)

  1. 一种显示基板,包括:
    衬底基板、设置在所述衬底基板上的显示结构层、以及设置在所述显示结构层的出光侧的光调节层;所述显示结构层包括多个子像素;
    所述光调节层在所述衬底基板上的正投影与所述多个子像素的开口区域没有交叠;
    所述光调节层配置为调节从所述显示结构层射出的至少一种颜色光的出射方向。
  2. 根据权利要求1所述的显示基板,其中,所述显示结构层还包括:位于所述多个子像素的出光侧的彩色滤光层;所述彩色滤光层包括黑矩阵和周期性排布的多个彩色滤光单元,所述黑矩阵位于相邻彩色滤光单元之间;
    所述光调节层位于所述黑矩阵远离所述衬底基板的一侧。
  3. 根据权利要求2所述的显示基板,其中,所述黑矩阵在所述衬底基板上的正投影覆盖所述光调节层在所述衬底基板上的正投影。
  4. 根据权利要求2或3所述的显示基板,其中,所述光调节层包括至少一个光调节部,所述光调节部位于至少一个彩色滤光单元的至少一侧。
  5. 根据权利要求4所述的显示基板,其中,所述显示基板在目标视角下的不同颜色光的亮度比例通过以下至少一项调节:所述光调节部到对应的子像素的距离、所述光调节部的第一长度、所述光调节部的第二长度;
    所述第一长度为所述光调节部沿第一方向的尺寸,所述第一方向垂直于所述显示基板所在平面;
    所述第二长度为所述光调节部沿第二方向的尺寸,所述第二方向平行于所述显示基板所在平面,且与所述光调节部对应的子像素的中心线相交。
  6. 根据权利要求5所述的显示基板,其中,所述光调节部的第一长度小于或等于h 0,h 0=d 0/tanθ,其中,d 0为所述光调节部至对应的子像素的中心线的垂直距离,θ为斜视角角度。
  7. 根据权利要求5至6中任一项所述的显示基板,其中,所述光调节部 的第二长度大于或等于临界宽度D,
    Figure PCTCN2021082050-appb-100001
    其中,d 0为所述光调节部至对应的子像素的中心线的垂直距离,θ为斜视角角度,n 1为第一介质的折射率,n 2为所述光调节部的折射率。
  8. 根据权利要求6或7所述的显示基板,其中,所述光调节部至对应的子像素的中心线的垂直距离d 0=a 1/2+d,a 1为所述光调节部对应的子像素尺寸,d为所述光调节部到对应的子像素的距离,其中,d大于0且小于相邻子像素的间距与所述相邻子像素之间的光调节部的第二长度的差值。
  9. 根据权利要求5所述的显示基板,其中,在经过所述光调节部对应的子像素的中心线且垂直于所述衬底基板的平面内,所述光调节部的截面呈矩形,或者,所述光调节部的底部的第二长度大于顶部的第二长度。
  10. 根据权利要求2或3所述的显示基板,其中,所述彩色滤光层包括:周期性排布的第一彩色滤光单元、第二彩色滤光单元和第三彩色滤光单元;
    所述光调节层包括以下至少之一:位于所述第一彩色滤光单元远离第二彩色滤光单元一侧的第一光调节部、位于所述第一彩色滤光单元靠近第二彩色滤光单元一侧的第四光调节部、位于所述第二彩色滤光单元靠近第一彩色滤光单元一侧的第二光调节部、位于所述第二彩色滤光单元靠近第三彩色滤光单元一侧的第三光调节部。
  11. 根据权利要求10所述的显示基板,其中,所述第二光调节部与第四光调节部为一体结构。
  12. 根据权利要求11所述的显示基板,其中,所述第二光调节部和第四光调节部形成的一体结构的第二长度大于或等于所述第二光调节部的临界宽度和所述第四光调节部的临界宽度中的最大者;
    所述第二长度为光调节部沿第二方向的尺寸,所述第二方向平行于所述显示基板所在平面,且与光调节部对应的子像素的中心线相交。
  13. 根据权利要求10至12中任一项所述的显示基板,其中,所述第一彩色滤光单元为红色滤光单元,所述第二彩色滤光单元为绿色滤光单元,所 述第三彩色滤光单元为蓝色滤光单元;
    所述第一光调节部和第四光调节部配置为调节从所述第一彩色滤光单元射出的第一颜色光的出射方向;所述第二光调节部和第三光调节部配置为调节从所述第二彩色滤光单元射出的第二颜色光的出射方向;
    所述第一光调节部和第四光调节部的第一长度大于或等于所述第二光调节部的第一长度,且大于或等于所述第三光调节部的第一长度;所述第一长度为光调节部沿第一方向的尺寸,所述第一方向垂直于所述显示基板所在平面。
  14. 根据权利要求13所述的显示基板,其中,所述第一光调节部和第四光调节部的第一长度约为0.7微米至1.2微米,所述第二光调节部的第一长度约为0.1微米至0.5微米,所述第三光调节部的第一长度约为0.01微米至0.3微米。
  15. 根据权利要求13所述的显示基板,其中,所述第一光调节部、第二光调节部、第三光调节部和第四光调节部的第二长度大致相同;
    所述第二长度为光调节部沿第二方向的尺寸,所述第二方向平行于所述显示基板所在平面,且与所述光调节部对应的子像素的中心线相交。
  16. 根据权利要求1至15中任一项所述的显示基板,其中,所述光调节层的材料为负折射率材料。
  17. 根据权利要求1至16中任一项所述的显示基板,其中,所述子像素包括:发光元件和驱动所述发光元件发光的驱动电路;所述发光元件包括:第一电极、第二电极以及设置在所述第一电极和第二电极之间的有机发光层,所述第一电极位于第二电极靠近所述衬底基板的一侧;所述第一电极所在平面与所述衬底基板所在平面之间存在倾斜角度。
  18. 一种显示装置,包括如权利要求1至17中任一项所述的显示基板。
  19. 一种显示基板的制备方法,用于制备如权利要求1至17中任一项所述的显示基板,所述制备方法,包括:
    在衬底基板上形成显示结构层,所述显示结构层包括多个子像素;
    在所述显示结构层的出光侧形成光调节层;所述光调节层在所述衬底基 板上的正投影与多个子像素的开口区域没有交叠;所述光调节层配置为调节从所述显示结构层射出的至少一种颜色光的出射方向。
  20. 一种彩膜基板,包括:
    基底、设置在所述基底上的彩色滤光层、以及光调节层;
    所述彩色滤光层包括黑矩阵和周期性排布的多个彩色滤光单元,所述光调节层设置在所述黑矩阵远离所述基底的一侧;
    所述光调节层配置为调节从所述彩色滤光层射出的至少一种颜色光的出射方向。
PCT/CN2021/082050 2021-03-22 2021-03-22 显示基板及其制备方法、显示装置、彩膜基板 WO2022198374A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB2215465.2A GB2609579A (en) 2021-03-22 2021-03-22 Display substrate and preparation method therefor, display device, and color filter substrate
PCT/CN2021/082050 WO2022198374A1 (zh) 2021-03-22 2021-03-22 显示基板及其制备方法、显示装置、彩膜基板
CN202180000552.0A CN115398633A (zh) 2021-03-22 2021-03-22 显示基板及其制备方法、显示装置、彩膜基板
US17/637,457 US20240122047A1 (en) 2021-03-22 2021-03-22 Display Substrate, Preparation Method Therefor, Display apparatus, and Color Film Substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082050 WO2022198374A1 (zh) 2021-03-22 2021-03-22 显示基板及其制备方法、显示装置、彩膜基板

Publications (1)

Publication Number Publication Date
WO2022198374A1 true WO2022198374A1 (zh) 2022-09-29

Family

ID=83395012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082050 WO2022198374A1 (zh) 2021-03-22 2021-03-22 显示基板及其制备方法、显示装置、彩膜基板

Country Status (4)

Country Link
US (1) US20240122047A1 (zh)
CN (1) CN115398633A (zh)
GB (1) GB2609579A (zh)
WO (1) WO2022198374A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150085384A1 (en) * 2013-09-24 2015-03-26 Samsung Display Co., Ltd. Display apparatus
CN107255885A (zh) * 2017-08-16 2017-10-17 京东方科技集团股份有限公司 显示面板及其制造方法
CN108919402A (zh) * 2018-07-24 2018-11-30 京东方科技集团股份有限公司 彩色滤光基板及其制作方法、显示装置
CN110707146A (zh) * 2019-11-22 2020-01-17 京东方科技集团股份有限公司 盖板、有机发光显示面板、显示装置
CN111668384A (zh) * 2020-05-06 2020-09-15 湖北长江新型显示产业创新中心有限公司 一种显示面板及其制作方法和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150085384A1 (en) * 2013-09-24 2015-03-26 Samsung Display Co., Ltd. Display apparatus
CN107255885A (zh) * 2017-08-16 2017-10-17 京东方科技集团股份有限公司 显示面板及其制造方法
CN108919402A (zh) * 2018-07-24 2018-11-30 京东方科技集团股份有限公司 彩色滤光基板及其制作方法、显示装置
CN110707146A (zh) * 2019-11-22 2020-01-17 京东方科技集团股份有限公司 盖板、有机发光显示面板、显示装置
CN111668384A (zh) * 2020-05-06 2020-09-15 湖北长江新型显示产业创新中心有限公司 一种显示面板及其制作方法和显示装置

Also Published As

Publication number Publication date
GB202215465D0 (en) 2022-11-30
GB2609579A (en) 2023-02-08
CN115398633A (zh) 2022-11-25
US20240122047A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US11871634B2 (en) Display device
US10651258B2 (en) Organic light emitting display device with improved aperture ratio
CN107195584B (zh) 一种显示面板的制备方法、显示面板及显示装置
US8080938B2 (en) Organic light emitting display device and method for manufacturing the same
CN109257943B (zh) 有机发光二极管显示面板、设备及其驱动方法和制造方法
WO2016149969A1 (zh) 一种oled显示用基板及显示装置
US11917894B2 (en) Method for preparing organic electroluminescent device, and organic electroluminescent device and display apparatus
CN112928142B (zh) 电致发光显示装置及其制造方法
CN111740035B (zh) 阵列基板、显示面板及制造方法
CN112928141A (zh) 电致发光显示装置
KR20160090176A (ko) 유기발광다이오드 표시장치 및 그 제조방법
JP2022104551A (ja) 透明表示装置
JP5786675B2 (ja) 有機発光装置
CN113035904A (zh) 透明显示装置
US20240155904A1 (en) Display Substrate, Manufacturing Method Thereof, and Display Device
WO2022198374A1 (zh) 显示基板及其制备方法、显示装置、彩膜基板
WO2022226737A1 (zh) 显示基板及其制备方法、显示装置
WO2020228594A1 (zh) 阵列基板及其制作方法、显示装置和掩模板
JP2018116769A (ja) 表示装置
WO2022085749A1 (ja) 表示装置及び電子機器
US11641771B2 (en) Electro-optical device and electronic apparatus
JP2022087011A (ja) 電界発光表示装置
TW202102906A (zh) 畫素結構及顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17637457

Country of ref document: US

ENP Entry into the national phase

Ref document number: 202215465

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210322

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.2024)