WO2022196806A1 - Apparatus and method for producing structure - Google Patents

Apparatus and method for producing structure Download PDF

Info

Publication number
WO2022196806A1
WO2022196806A1 PCT/JP2022/012743 JP2022012743W WO2022196806A1 WO 2022196806 A1 WO2022196806 A1 WO 2022196806A1 JP 2022012743 W JP2022012743 W JP 2022012743W WO 2022196806 A1 WO2022196806 A1 WO 2022196806A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous substrate
end surface
slurry
face
plate
Prior art date
Application number
PCT/JP2022/012743
Other languages
French (fr)
Japanese (ja)
Inventor
信吾 小林
善洋 原
岳史 鍋本
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN202280021620.6A priority Critical patent/CN117043124A/en
Priority to JP2023507204A priority patent/JPWO2022196806A1/ja
Publication of WO2022196806A1 publication Critical patent/WO2022196806A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Definitions

  • the present invention produces a structure (e.g., an exhaust gas purifying catalyst or its precursor) comprising a porous substrate and a functional layer (e.g., a catalyst layer or its precursor layer) provided on the porous substrate.
  • a structure e.g., an exhaust gas purifying catalyst or its precursor
  • a functional layer e.g., a catalyst layer or its precursor layer
  • a slurry containing a raw material for a catalyst layer is supplied to one end surface of a base material, and the supplied slurry is sucked from the other end surface side of the base material to form a slurry layer on the base material.
  • a manufacturing apparatus and a manufacturing method for a catalyst for industrial use are known (for example, Patent Document 1).
  • wall-flow type substrates are known as substrates for exhaust gas purification catalysts.
  • the wall-flow type substrate includes a porous tubular portion, porous partition walls provided in the tubular portion, and cells partitioned by the partition walls.
  • the cells in the wall flow type substrate are divided into an exhaust gas inflow side cell whose end on the exhaust gas inflow side is open and an end on the exhaust gas outflow side is closed, and an exhaust gas inflow side cell whose end is open on the exhaust gas outflow side and is closed on the exhaust gas inflow side. It is composed of an exhaust gas outflow side cell that is closed.
  • the wall flow type substrate In the wall-flow type substrate, the exhaust gas that has flowed in from the exhaust gas inflow side end (opening) of the exhaust gas inflow side cell passes through the porous partition wall and reaches the exhaust gas outflow side end of the exhaust gas outflow side cell ( opening). At this time, particulate matter (PM) in the exhaust gas is trapped in the pores of the partition wall. Therefore, the wall flow type substrate is useful as a filter having a PM collection function, for example, a particulate filter for gasoline engines (GPF: Gasoline Particulate Filter) or a particulate filter for diesel engines (DPF: Diesel Particulate Filter). is.
  • GPF Gasoline Particulate Filter
  • DPF Diesel Particulate Filter
  • both the tubular portion and the partition wall portion are porous. Therefore, when slurry is supplied to one end surface of the wall-flow substrate and the supplied slurry is sucked from the other end surface of the wall-flow substrate, the outer peripheral surface of the cylindrical portion of the wall-flow substrate Air flows in and the suction force at the radially outer portion of the wall-flow substrate is less than the suction force at the radially inner portion of the wall-flow substrate.
  • the slurry is supplied to the end surface of the wall flow type substrate on the exhaust gas inflow side.
  • the ends of the exhaust gas inflow side cells are open, but the ends of the exhaust gas outflow side cells are closed.
  • the present invention provides a structure (e.g., an exhaust gas purification catalyst or its precursor) comprising a porous substrate and a functional layer (e.g., a catalyst layer or its precursor layer) provided on the porous substrate.
  • a structure e.g., an exhaust gas purification catalyst or its precursor
  • a functional layer e.g., a catalyst layer or its precursor layer
  • the present invention provides an apparatus for manufacturing a structure
  • the structure is an axially extending porous substrate; and a functional layer provided on the porous substrate
  • the porous substrate is a first end face positioned on one side in the axial direction; a second end face located on the other side in the axial direction; a first cell extending in the axial direction and having an open end on the first end surface side and a closed end on the second end surface side; a second cell extending in the axial direction, having an open end on the second end face side and a closed end on the first end face side;
  • the device comprises: a slurry supply unit that supplies a slurry containing raw materials for the functional layer to the first end face side; a slurry suction part that sucks the slurry supplied to the first end face side from the second end face side and forms a slurry layer that does not reach the second end face on the inner wall of the first cell; When the slurry supplied to the first end face side is sucked from
  • the present invention also provides a method of manufacturing a structure, comprising:
  • the structure is an axially extending porous substrate; and a functional layer provided on the porous substrate,
  • the porous substrate is a first end face positioned on one side in the axial direction; a second end face located on the other side in the axial direction; a first cell extending in the axial direction and having an open end on the first end surface side and a closed end on the second end surface side; a second cell extending in the axial direction, having an open end on the second end face side and a closed end on the first end face side;
  • the method comprises the steps of: (a) supplying a slurry containing raw materials for the functional layer to the first end face; and (b) sucking the slurry supplied to the first end face from the second end face, forming a slurry layer that does not reach the second end surface on the inner wall of the first cell; In step (b), when sucking the slurry supplied to the first end face side from the second end
  • a structure e.g., an exhaust gas purification catalyst or its precursor
  • a functional layer e.g., a catalyst layer or its precursor layer
  • An apparatus and method for manufacturing wherein the length of the slurry layer formed on the radially inner portion of the wall-flow substrate and the length of the slurry layer formed on the radially outer portion of the wall-flow substrate Apparatus and methods are provided that can reduce the difference in .
  • FIG. 1 is a side view of a porous substrate according to one embodiment.
  • FIG. 2 is an end view taken along the line AA of FIG. 1.
  • FIG. 3 is an enlarged view of the area indicated by symbol R in FIG. 4 is an end view taken along the line BB of FIG. 1.
  • FIG. 5 is a schematic diagram showing the configuration of a structure manufacturing apparatus according to one embodiment.
  • FIG. 6 is a schematic plan view showing the configuration of a base material processing section according to one embodiment.
  • FIG. 7 is a schematic partial end view showing the configuration of the coating processing section according to one embodiment. In addition, FIG. 7 shows the state before the coating process is performed on the porous substrate.
  • FIG. 8 is a schematic partial end view showing the configuration of the coating processing section according to one embodiment. In addition, FIG.
  • FIG. 8 shows the state when the coating process is performed on the porous substrate.
  • FIG. 9 is a plan view of the second end surface of the porous substrate according to one embodiment.
  • FIG. 10 is an end view (end view corresponding to FIG. 4) of the porous substrate after coating treatment according to one embodiment.
  • FIG. 11 is an enlarged view of the inside of the suction tube provided with the straightening member according to the first embodiment.
  • FIG. 12 is a plan view of a rectifying plate included in the rectifying member according to the first embodiment;
  • FIG. 13 is an enlarged view of the inside of a suction tube provided with a straightening member according to the second embodiment.
  • FIG. 14 is a plan view of a first straightening vane included in the straightening member according to the second embodiment.
  • FIG. 15 is a plan view of a second rectifying plate included in the rectifying member according to the second embodiment.
  • 16 is a plan view showing an embodiment in which a through hole is formed in the second portion of the rectifying plate shown in FIG. 12.
  • FIG. 17 is a plan view showing an embodiment in which through holes are formed in the second current plate shown in FIG. 15.
  • FIG. 18 is a plan view of a current plate according to a modification.
  • FIG. 19 is an end view for explaining a modification in which a gap is formed between the suction tube and the end portion of the porous substrate on the second end surface side that has entered the suction tube.
  • FIG. 20 is a schematic partial end view showing the configuration of a coating processing section according to a modification.
  • FIG. 20 is a schematic partial end view showing the configuration of a coating processing section according to a modification.
  • FIG. 20 is a schematic partial end view showing the configuration of a coating processing section according to a modification.
  • FIG. 20 is a schematic partial end view showing the
  • FIG. 20 shows the state when the coating process is performed on the porous substrate.
  • FIG. 21 is a plan view of the first end surface of the porous base material according to the modification.
  • FIG. 22 is a plan view of a current plate according to a modification.
  • FIG. 23 is a schematic partial end view showing the configuration of a coating processing section according to a modification. In addition, FIG. 23 shows the state before the slurry supply process and the coating process are performed on the porous substrate.
  • FIG. 24 is a schematic partial end view showing the configuration of a coating processing section according to a modification. In addition, FIG. 24 shows the state when the slurry supply process is performed on the porous substrate.
  • FIG. 25 is a schematic partial end view showing the configuration of a coating processing section according to a modification. In addition, FIG. 25 shows the state when the coating process is performed on the porous substrate.
  • FIG. 26 is a diagram for explaining the radial outer portion and inner portion of the porous substrate.
  • FIG. 1 is a side view of the porous substrate 1
  • FIG. 2 is an end view of the AA line in FIG. 1
  • FIG. 3 is an enlarged view of the region indicated by symbol R in FIG. 4 is an end view taken along the line BB of FIG. 1.
  • FIG. 1 is a side view of the porous substrate 1
  • FIG. 2 is an end view of the AA line in FIG. 1
  • FIG. 3 is an enlarged view of the region indicated by symbol R in FIG. 4 is an end view taken along the line BB of FIG. 1.
  • the porous substrate 1 has a porous structure through which air can pass.
  • the material constituting the porous substrate 1 is not particularly limited, and can be appropriately selected from materials commonly used in the field of exhaust gas purification catalysts.
  • the constituent material is preferably capable of stably maintaining the shape of the porous substrate 1 even when exposed to high-temperature (for example, 400° C. or higher) exhaust gas.
  • constituent materials include ceramics. Examples of ceramics include alumina, zirconia, mullite, zircon, cordierite, aluminum titanate, silicon carbide, silicon nitride, and boron nitride.
  • the porous substrate 1 extends in the axial direction X and has an end surface S1 located on one side in the axial direction X and an end surface S2 located on the other side in the axial direction X.
  • the length P1 of the porous substrate 1 is, for example, 40 mm or more and 300 mm or less, and the diameter P2 of the end surfaces S1 and S2 of the porous substrate 1 is, for example, 30 mm or more and 250 mm or less.
  • the diameter P2 of the end surfaces S1 and S2 of the porous substrate 1 means the diameter of the circle when the end surfaces S1 and S2 of the porous substrate 1 are circular.
  • S1 and S2 are shapes other than circles (for example, polygons such as squares), they refer to diameters of circles circumscribing the shapes.
  • the porous substrate 1 includes a porous tubular portion 11 that defines the outer shape of the porous substrate 1, and a porous partition wall portion 12 provided in the tubular portion 11. and cells 13 partitioned by partition walls 12 .
  • Both the tubular portion 11 and the partition wall portion 12 have a porous structure through which air can pass.
  • the tubular portion 11 and the partition wall portion 12 are integrally molded.
  • the tubular portion 11 and the partition portion 12 are separate and joined together.
  • the porosity of the tubular portion 11 and the porosity of the partition wall portion 12 may or may not be the same.
  • the thickness of the cylindrical portion 11 and the partition wall portion 12 can be adjusted as appropriate.
  • the thickness of the cylindrical portion 11 is, for example, 100 ⁇ m or more and 3000 ⁇ m or less, and the thickness of the partition wall portion 12 is, for example, 20 ⁇ m or more and 1500 ⁇ m or less. .
  • the cylindrical portion 11 is cylindrical, but the shape of the cylindrical portion 11 can be changed as appropriate.
  • the tubular portion 11 may be, for example, an elliptical tubular shape, a rectangular tubular shape, or the like.
  • planar view shape of the cell 13 is square, but the planar view shape of the cell 13 can be changed as appropriate.
  • the planar shape of the cell 13 may be, for example, a quadrangle other than a square, a triangle such as a regular triangle, a hexagon such as a regular hexagon, an octagon such as a regular octagon, a circle, or an oval.
  • partition walls 12 exist between adjacent cells 13, and the adjacent cells 13 are partitioned by the partition walls 12.
  • the partition 12 and the cells 13 extend in the axial direction X.
  • the porous substrate 1 is a wall flow type substrate. That is, the porous substrate 1 includes a sealing portion 14 that seals the ends of some of the cells 13 on the side of the end surface S2 and a sealing portion 15 that seals the ends of the remaining cells 13 on the side of the end surface S1. and As a result, some of the cells 13 extend in the axial direction X and form cells 13a whose ends on the side of the end face S1 are open and whose ends on the side of the end face S2 are closed by the sealing portion 14. The cell 13 extends in the axial direction X and is a cell 13 b whose end on the side of the end surface S2 is open and whose end on the side of the end surface S1 is closed by the sealing portion 15 .
  • the cells 13a and 13b are arranged such that a plurality of (for example, four) cells 13b are adjacent to one cell 13a.
  • the cell 13b is partitioned by the partition wall portion 12. As shown in FIG. 4, the cells 13a and 13b are arranged such that a plurality of (for example, four) cells 13b are adjacent to one cell 13a.
  • the cell 13b is partitioned by the partition wall portion 12. As shown in FIG. 4,
  • the number of cells 13 per square inch of the porous substrate 1 can be adjusted as appropriate, but is, for example, 100 cells/inch 2 or more and 1000 cells/inch 2 or less.
  • the number of cells 13 per square inch of the porous substrate 1 is the number of cells 13a and cells 13b per square inch on a cut surface obtained by cutting the porous substrate 1 along a plane perpendicular to the axial direction X. total number.
  • FIG. 5 is a schematic diagram showing the configuration of the structure manufacturing apparatus 100. As shown in FIG.
  • the structure manufacturing apparatus 100 includes a base material processing section 2 and a control section 3 that controls the operation of the base material processing section 2 .
  • the base material treatment section 2 performs various treatments on the porous base material 1 . Various processes performed by the base material processing section 2 will be described later.
  • the control unit 3 is, for example, a computer, and includes a main control unit and a storage unit.
  • the main control section is composed of, for example, a CPU (Central Processing Unit), and controls the operation of the base material processing section 2 by reading and executing a program stored in the storage section.
  • CPU Central Processing Unit
  • FIG. 6 is a schematic plan view showing the configuration of the base material processing section 2. As shown in FIG. A dotted line in FIG. 6 represents the porous substrate 1 .
  • the base material processing section 2 includes a loading/unloading station 21 and a processing station 22 provided adjacent to the loading/unloading station 21 .
  • the loading/unloading station 21 includes a placement section 211 .
  • the porous substrate 1 is mounted on the mounting portion 211 .
  • the processing station 22 includes a transport path 221 extending in a predetermined direction, and a transport mechanism 222 provided on the transport path 221 .
  • the transport mechanism 222 includes a holding mechanism that holds the porous substrate 1, and is configured to be capable of horizontal and vertical movement and rotation about the vertical axis.
  • the processing station 22 includes a coating processing section 4 .
  • the processing station 22 may include a baking processing section.
  • the baking treatment section dries the porous substrate 1 coated by the coating treatment section 4 as necessary, and then bakes it.
  • the transport mechanism 222 transports the porous substrate 1 between the placing section 211 and the coating processing section 4 .
  • the transport mechanism 222 carries the porous substrate 1 placed on the placement unit 211 into the coating processing unit 4, carries out the coated porous substrate 1 from the coating processing unit 4, and places it. It is placed on the part 211 .
  • the transport mechanism 222 may transport the porous substrate 1 between the coating processing section 4 and the firing processing section and between the firing processing section and the placing section 211 .
  • the transport mechanism 222 carries the porous substrate 1 placed on the placement unit 211 into the coating processing unit 4, carries out the coated porous substrate 1 from the coating processing unit 4, and bakes it.
  • the porous substrate 1 after the baking treatment may be carried out from the baking treatment part and placed on the placing part 211 .
  • FIG. 7 and 8 are schematic partial end views showing the configuration of the coating processing section 4
  • FIG. 9 is a plan view of the second end surface T2 of the porous substrate 1
  • FIG. 5 is an end view of the porous substrate 1 (end view corresponding to FIG. 4).
  • FIG. 7 shows the state before the coating process is performed on the porous substrate 1
  • FIG. 8 shows the state when the coating process is performed on the porous substrate 1.
  • the coating processing unit 4 performs coating processing on the porous substrate 1 .
  • the porous substrate 1 is coated with the slurry M to form a slurry layer N on the porous substrate 1 (see FIG. 10).
  • the slurry layer N becomes a catalyst layer by being dried as necessary and then calcined.
  • the coating processing section 4 includes a chamber C.
  • a coating process for the porous substrate 1 is performed in the chamber C. As shown in FIG.
  • the coating processing section 4 includes a substrate holding section 41 that holds the porous substrate 1 .
  • the coating process for the porous substrate 1 is performed while the porous substrate 1 is held by the substrate holder 41 .
  • the substrate holding part 41 has a holding mechanism that holds the porous substrate 1 .
  • the substrate holding unit 41 has, for example, a chuck mechanism such as a hand chuck, and holds the porous substrate 1 by gripping the central portion of the cylindrical portion 11 of the porous substrate 1 with the chuck mechanism.
  • the substrate holding unit 41 is configured so that the held porous substrate 1 can be moved in horizontal and vertical directions, rotated around the vertical axis, rotated around the horizontal axis, and the like. may
  • the substrate holding portion 41 is configured such that the first end surface T1 of the porous substrate 1 faces the nozzle 422 side of the slurry supply portion 42 (upper side in FIGS. 7 and 8), and the porous substrate The porous substrate 1 is held so that the second end face T2 of the substrate 1 faces the suction pipe 461 side of the slurry suction part 46 (lower side in FIGS. 7 and 8).
  • the first end surface T1 of the porous substrate 1 is one of the end surfaces S1 and S2 of the porous substrate 1, and the second end surface T2 of the porous substrate 1 is the end surface S1 and S2 of the porous substrate 1.
  • the end surface S2 corresponds to the second end surface T2.
  • the end surface S1 corresponds to the second end surface T2.
  • the end surface S1 corresponds to the second end surface T2.
  • the end surface S1 is the first end surface T1
  • the end surface S2 is the second end surface T2.
  • the second end face T2 of the porous substrate 1 includes an annular (for example, annular) outer edge region T21 located radially outside the second end face T2 and an outer edge region T21 located radially outward of the second end face T2. It is partitioned into a central region T22 located inside T21. Boundary line L2 is a virtual line. In FIG. 9, the openings of the cells 13b present on the second end surface T2 are omitted.
  • the area of the central region T22 is preferably 40% or more and 90% or less of the area of the second end surface T2, and more preferably 65% or more and 85% or less.
  • the shape of the central region T22 and the shape of the second end face T2 are preferably similar shapes.
  • the shape of the central region T22 means the shape defined by the outline of the central region T22 (that is, the boundary line L2), and the shape of the second end surface T2 means the shape defined by the outline of the second end surface T2. means.
  • the outer edge region T21 is preferably formed with a predetermined width along the outline of the second end face T2 so that the shape of the central region T22 and the shape of the second end face T2 are similar. As long as the shape of the central region T22 and the shape of the second end surface T2 are similar, the width of the outer edge region T21 may or may not be constant.
  • the porous substrate 1 carried into the coating processing section 4 by the transport mechanism 222 may be held by the transport mechanism 222 as it is.
  • the transport mechanism 222 functions as the substrate holder 41 .
  • the coating processing section 4 includes a slurry supply section 42 that supplies the slurry M to the first end surface T1 side of the porous substrate 1 .
  • the slurry supply unit 42 includes a storage tank 421 in which the slurry M is stored, a nozzle 422 for discharging the slurry M toward the first end surface T1 of the porous substrate 1, and a storage and a supply pipe 423 for supplying the slurry M in the tank 421 to the nozzle 422 .
  • the slurry supply unit 42 supplies the slurry M in the storage tank 421 to the nozzle 422 through the supply pipe 423 and discharges the slurry M from the nozzle 422 onto the first end surface T1 of the porous substrate 1, whereby the porous substrate 1 is A slurry M is supplied to the first end face T1.
  • the slurry M contains raw materials for the functional layer provided on the porous substrate 1 .
  • the viscosity of the slurry M is, for example, 100 mPa s or more and 1000 mPa s or less when measured using a cone and plate type viscometer at a temperature of 25 ° C. and a shear rate of 380 s -1 .
  • the velocity is measured as 4 s ⁇ 1 , it is, for example, 1000 mPa ⁇ s or more and 10000 mPa ⁇ s or less.
  • a functional layer is a layer having a predetermined function, and the type of functional layer is appropriately selected according to the type of structure to be manufactured.
  • the structure to be manufactured is an exhaust gas purifying catalyst or its precursor
  • the functional layer is a catalyst layer or its precursor layer.
  • the catalyst layer is formed by calcining the slurry layer N after drying it if necessary.
  • the precursor layer of the catalyst layer includes the slurry layer N before drying and the slurry layer N after drying.
  • the exhaust gas purifying catalyst is a structure comprising a porous substrate 1 and a catalyst layer provided on the porous substrate 1 .
  • the precursor of the exhaust gas purifying catalyst includes a structure including a porous substrate 1 and a slurry layer N before drying provided on the porous substrate 1, a porous substrate 1, and a porous substrate A structure comprising a slurry layer N after drying provided on the material 1 is included.
  • the slurry M contains a catalytically active component and a dispersion medium.
  • catalytically active components include Au (gold element), Ag (silver element), Pt (platinum element), Pd (palladium element), Rh (rhodium element), Ir (iridium element), Ru (ruthenium element), Noble metal elements such as Os (osmium element) are included.
  • the slurry M contains, for example, a noble metal element in the form of a salt of the noble metal element, which is a supply source of the noble metal element.
  • salts of noble metal elements include nitrates, ammine complex salts, and chlorides. The content of the noble metal element in the slurry M can be adjusted as appropriate.
  • dispersion media examples include water and organic solvents.
  • the dispersion medium may be one solvent or a mixture of two or more solvents.
  • organic solvents include alcohol, acetone, dimethylsulfoxide, dimethylformamide and the like.
  • the slurry M may contain a carrier that supports catalytically active components.
  • the catalytically active component is supported on the carrier by, for example, being physically or chemically adsorbed or retained on the outer surface or inner surface of pores of the carrier.
  • the carrier examples include inorganic oxide particles.
  • the inorganic oxide constituting the inorganic oxide particles may be an inorganic oxide having oxygen storage capacity (OSC: Oxygen Storage Capacity) (hereinafter referred to as “oxygen storage component”), or an inorganic oxide other than the oxygen storage component. It may be an oxide.
  • OSC Oxygen Storage Capacity
  • the oxygen storage component examples include cerium oxide, composite oxides containing cerium element and zirconium element (hereinafter referred to as "CeO 2 —ZrO 2 -based composite oxide"), and the like.
  • the CeO 2 —ZrO 2 -based composite oxide may contain metal elements other than the cerium element and the zirconium element.
  • metal elements other than the cerium element and the zirconium element include rare earth elements other than the cerium element, alkaline earth metals, and transition metals.
  • inorganic oxides other than oxygen storage components include alumina, silica, silica-alumina, alumino-silicate, alumina-zirconia, alumina-chromia, alumina-ceria, alumina-lanthana, and titania.
  • the slurry M may contain a stabilizer.
  • stabilizers include nitrates, carbonates, oxides and sulfates of alkaline earth metal elements.
  • the slurry M may contain a binder component.
  • binder components include inorganic binders such as alumina sol.
  • the coating processing section 4 includes a nozzle moving mechanism 43 that moves the nozzle 422. As shown in FIGS. 7 and 8, the coating processing section 4 includes a nozzle moving mechanism 43 that moves the nozzle 422. As shown in FIGS. 7 and 8, the coating processing section 4 includes a nozzle moving mechanism 43 that moves the nozzle 422. As shown in FIGS. 7 and 8, the coating processing section 4 includes a nozzle moving mechanism 43 that moves the nozzle 422. As shown in FIGS.
  • the nozzle moving mechanism 43 includes a nozzle holding portion 431 that holds the nozzle 422 and a lifting mechanism 432 that lifts and lowers the nozzle holding portion 431 .
  • the nozzle moving mechanism 43 moves the nozzle 422 closer to the porous substrate 1 by lowering the nozzle holding part 431 by the lifting mechanism 432 to the slurry supply position shown in FIG. Further, the nozzle moving mechanism 43 moves the nozzle 422 away from the porous substrate 1 and moves it to the standby position shown in FIG. The nozzle 422 discharges the slurry M toward the first end surface T1 of the porous substrate 1 at the slurry supply position shown in FIG.
  • the relative position between the porous substrate 1 and the nozzle 422 is changed by moving the nozzle 422 with the nozzle moving mechanism 43. By moving , the relative position between the porous substrate 1 and the nozzle 422 may be changed.
  • the coating processing section 4 includes a jig 44. As shown in FIGS. 7 and 8, the coating processing section 4 includes a jig 44. As shown in FIG.
  • the jig 44 has a tubular shape such as a cylindrical shape, and the inner diameter of the jig 44 is larger than the outer diameter of the porous substrate 1 .
  • the jig 44 is attached to the nozzle holder 431 so as to surround the nozzle 422 . Therefore, the jig 44 is moved together with the nozzle 422 by the nozzle moving mechanism 43 .
  • the coating processing section 4 includes a first substrate fixing section 45. As shown in FIG.
  • the first substrate fixing portion 45 is provided at the lower end portion of the jig 44, and the end of the porous substrate 1 entering the jig 44 on the first end surface T1 side The part is fixed in jig 44 .
  • the first base material fixing part 45 has, for example, a chuck mechanism such as a balloon type chuck. When the end of the porous substrate 1 on the side of the first end surface T1 enters the jig 44, the balloon of the balloon-type chuck is not inflated so as not to hinder the entry.
  • the end portion of the porous substrate 1 on the side of the first end surface T1 enters the jig 44 it is expanded by the air pressure, and the end portion of the porous substrate 1 on the side of the first end surface T1 that has entered the jig 44 is removed by the jig. 44.
  • the balloon held by the balloon-type chuck fills the space between the jig 44 and the end of the porous base material 1 on the first end surface T1 side that has entered the jig 44 without any gap, and the balloon is discharged from the storage space V1. Prevent the slurry M from leaking.
  • the coating processing unit 4 sucks the slurry M supplied to the first end surface T1 side of the porous substrate 1 from the second end surface T2 side of the porous substrate 1, A slurry suction part 46 for forming a slurry layer N on the inner wall of the first cell of the substrate 1 is provided.
  • the first cell of the porous substrate 1 is a cell having an opening in the first end surface T1 of the porous substrate 1.
  • the cell 13a is the first cell and the cell 13b is the second cell.
  • the cell 13b is the first cell and the cell 13a is the second cell.
  • the cell 13a is the first cell and the cell 13b is the second cell.
  • the slurry suction unit 46 includes a suction tube 461 and a suction mechanism 462 connected to the lower end of the suction tube 461.
  • the suction tube 461 has a tubular shape such as a cylindrical shape, and the inner diameter of the suction tube 461 is larger than the outer diameter of the porous substrate 1 .
  • the suction tube moving mechanism 47 brings the suction tube 461 closer to the porous substrate 1 and moves it to the slurry suction position shown in FIG. inside the suction tube 461, a suction space V2 is formed in which the slurry M supplied to the first end face T1 side of the porous substrate 1 can be sucked.
  • the suction mechanism 462 includes, for example, a pump, and depressurizes the suction space V2 inside the suction pipe 461. As a result, an air flow is generated from the first end surface T1 of the porous substrate 1 toward the second end surface T2 of the porous substrate 1, and the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked toward the second end surface T2 of the porous substrate 1 . Specifically, the slurry M supplied to the first end surface T1 side of the porous substrate 1 is introduced into the cells 13a and flows along the inner walls of the cells 13a from the first end surface T1 to the second end surface T2. As a result, as shown in FIG.
  • the inner walls of the cells 13 a are formed from the first end surface T1 of the porous substrate 1 to the porous substrate 1 so as not to reach the second end surface T2 of the porous substrate 1 .
  • a slurry layer N extending toward the second end surface T2 of is formed.
  • the coating processing section 4 includes a suction tube moving mechanism 47 that moves the suction tube 461. As shown in FIGS. 7 and 8, the coating processing section 4 includes a suction tube moving mechanism 47 that moves the suction tube 461. As shown in FIGS.
  • the suction tube moving mechanism 47 moves the suction tube 461 to the slurry suction position shown in FIG. Further, the suction tube moving mechanism 47 moves the suction tube 461 to the standby position shown in FIG. 7 by lowering the suction tube 461 away from the porous substrate 1 .
  • the suction mechanism 462 decompresses the suction space V2 inside the suction pipe 461 when the suction pipe 461 is at the slurry suction position shown in FIG.
  • the suction tube moving mechanism 47 moves the suction tube 461 to change the relative position between the porous substrate 1 and the suction tube 461 .
  • the suction tube moving mechanism 47 moves the suction tube 461 to change the relative position between the porous substrate 1 and the suction tube 461 .
  • the relative positions of the porous substrate 1 and the suction tube 461 may be changed.
  • the coating processing section 4 includes a second base material fixing section 48 .
  • the second base material fixing part 48 is provided at the upper end of the suction tube 461 and fixes the second end surface T2 side end of the porous base material 1 that has entered the suction tube 461 inside the suction tube 461 .
  • the second base material fixing portion 48 has, for example, a chuck mechanism such as a balloon type chuck. When the end of the porous substrate 1 on the side of the second end surface T2 enters the suction tube 461, the balloon of the balloon-type chuck is not inflated so as not to hinder the entry.
  • the porous substrate 1 on the second end surface T2 side After the end portion of the porous substrate 1 on the second end surface T2 side enters the suction tube 461 , the porous substrate 1 is expanded by air pressure to fix the end portion on the second end surface T2 side of the porous substrate 1 inside the suction tube 461 .
  • the balloon held by the balloon-type chuck fills the gap between the suction tube 461 and the end portion of the porous substrate 1 on the second end surface T2 side that has entered the suction tube 461, and seals the suction space V2. do.
  • the air outside the suction pipe 461 is It does not flow into the through-hole formed in the rectifying member 40 in the suction tube 461 along the outer peripheral surface of 1 .
  • the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 through holes formed in the straightening plate 49a inside the suction tube 461 (for example, the straightening plate 49a). does not flow into the first through hole G) formed in the first portion 491 of the .
  • air outside the suction pipe 461 is formed along the outer peripheral surface of the porous substrate 1 in the first straightening plate 49b and the second straightening plate 50 inside the suction pipe 461.
  • Through holes for example, a first through hole G formed in the first portion 491 of the first straightening plate 49b, a second through hole J formed in the second portion 492 of the first straightening plate 49b, a second straightening plate 50 Do not flow into the through holes, etc. formed in the
  • the coating processing section 4 includes a straightening member 40. As shown in FIGS. 7 and 8, the straightening member 40 is illustrated in a simplified manner.
  • the straightening member 40 is arranged inside the suction tube 461 .
  • the straightening member 40 is fixed inside the suction pipe 461 so that its position does not change even if the suction space V2 inside the suction pipe 461 is decompressed.
  • the straightening member 40 can be fixed within the suction tube 461 by, for example, a holding mechanism or a supporting mechanism.
  • the rectifying member 40 is positioned between the second substrate fixing portion 48 provided at the upper end of the suction tube 461 and the suction mechanism 462 connected to the lower end of the suction tube 461. are placed.
  • the rectifying member 40 moves toward the second end surface T2 of the porous substrate 1. It is located apart from the second end surface T2. That is, when the slurry M supplied to the first end face T1 side of the porous base material 1 is sucked from the second end face T2 side of the porous base material 1, the rectifying member 40 moves toward the second end face T2 of the porous base material 1. It is located on the side of the end face T2 and is spaced apart from the second end face T2 of the porous substrate 1 .
  • the rectifying member 40 moves toward the second end surface T2 of the porous substrate 1. At least part of the central region T22 of the porous substrate 1 is covered, and at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1 is exposed.
  • the rectifying member 40 covers at least a part of the central region T22 of the second end surface T2 of the porous substrate 1
  • the porous substrate is in a state where the suction pipe 461 is at the slurry suction position shown in FIG. 1 and the rectifying member 40 in plan view from the axial direction X of the porous substrate 1, the portion of the rectifying member 40 other than the through holes is the center of the second end surface T2 of the porous substrate 1. It means overlapping with at least part of the region T22.
  • the rectifying member 40 may cover the entire central region T22 of the second end surface T2 of the porous substrate 1, or may cover a part of the central region T22 of the second end surface T2 of the porous substrate 1. good too.
  • the rectifying member 40 may expose the entire outer edge region T21 of the second end surface T2 of the porous substrate 1, or expose a part of the outer edge region T21 of the second end surface T2 of the porous substrate 1. good too.
  • the rectifying member 40 covers at least a part of the central region T22 of the second end surface T2 of the porous substrate 1, it is difficult for air to flow in the radially inner portion of the porous substrate 1. Since the rectifying member 40 exposes at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1, air can easily flow through the radially outer portion of the porous substrate 1.
  • the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
  • FIG. 11 is an enlarged view of the inside of the suction tube 461 provided with the straightening member 40a
  • FIG. 12 is a plan view of the straightening plate 49a provided in the straightening member 40a
  • 11 is an enlarged view of the inside of the suction pipe 461 at the slurry suction position shown in FIG.
  • the rectifying member 40a is used as the rectifying member 40.
  • the straightening member 40a includes a straightening plate 49a.
  • the rectifying member 40a may be composed of the rectifying plate 49a, or may have a member other than the rectifying plate 49a as long as the effect of the rectifying member 40a, which will be described later, is exhibited.
  • the material of the current plate 49a is, for example, resin, ceramics, metal, or the like.
  • the thickness of the current plate 49a can be adjusted as appropriate, and is, for example, 1 mm or more and 15 mm or less, preferably 1 mm or more and 5 mm or less.
  • the thickness of the current plate 49a may be constant or may not be constant.
  • both the minimum value and the maximum value of the thickness of the rectifying plate 49a are preferably within the above ranges.
  • the current plate 49a is arranged inside the suction pipe 461. As shown in FIG. 11, the current plate 49a is arranged inside the suction pipe 461. As shown in FIG. The straightening plate 49a is fixed inside the suction pipe 461 so that its position does not change even if the suction space V2 inside the suction pipe 461 is decompressed.
  • the straightening plate 49a is held by, for example, a holding mechanism (for example, a chuck mechanism (eg, hand chuck) provided on the inner wall of the suction tube 461 that grips the outer edge of the straightening plate 49a), or a supporting mechanism (eg, It can be fixed in the suction tube 461 by a support rod provided between the straightening plate 49 a and the suction mechanism 462 and supporting the surface of the straightening plate 49 a on the side of the suction mechanism 462 .
  • a holding mechanism for example, a chuck mechanism (eg, hand chuck) provided on the inner wall of the suction tube 461 that grips the outer edge of the straightening plate 49a
  • a supporting mechanism eg, It can be fixed in the suction tube 461 by a support rod provided between the straightening plate 49 a and the suction mechanism 462 and supporting the surface of the straightening plate 49 a on the side of the suction mechanism 462 .
  • the straightening plate 49a is arranged between the second substrate fixing portion 48 provided at the upper end of the suction tube 461 and the suction mechanism 462 connected to the lower end of the suction tube 461. ing.
  • the rectifying plate 49a moves toward the second end surface T2 of the porous substrate 1 and moves toward the second end surface T2 of the porous substrate 1. As shown in FIG. It is located apart from the end surface T2. That is, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying plate 49a moves toward the second end surface T2 of the porous substrate 1. It is located on the side of the end face T2 and is spaced apart from the second end face T2 of the porous substrate 1 .
  • the distance between the current plate 49a and the second end surface T2 of the porous substrate 1 becomes the distance D2a.
  • the distance D2a is the distance between the second end face T2 side of the current plate 49a and the second end face T2 of the porous substrate 1 .
  • the main surface of the current plate 49a on the second end surface T2 side is substantially parallel to the second end surface T2 of the porous substrate 1.
  • the term “substantially parallel” means that the angle formed by two target surfaces is preferably 0° or more and 10° or less, more preferably 0° or more and 5° or less. In addition, parallel is also included in “substantially parallel.”
  • the rectifying plate 49a includes an annular (for example, annular) first portion 491, a second portion 492 positioned inside the first portion 491, and a second portion 492 positioned outside the first portion 491. and an annular (eg, toric) third portion 493 .
  • the first portion 491 of the straightening plate 49a is formed with an elongated first through hole G extending in the circumferential direction of the first portion 491.
  • a plan view shape of the first through hole G is an elongated shape having a width W.
  • the plan view shape and number of the first through holes G can be changed as appropriate.
  • the planar shape of the first through hole G may be, for example, circular, elliptical, square, rectangular, or a rectangular shape with rounded corners.
  • the number of first through holes G may be one, or two or more.
  • the number of first through holes G in this embodiment is four.
  • the second portion 492 of the rectifying plate 49a is not formed with through holes, but may be formed with through holes (hereinafter referred to as "second through holes").
  • the second portion 492 of the current plate 49a covers at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1, and the first portion 491 of the current plate 49a.
  • the formed first through-hole G exposes at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1 .
  • the second portion 492 of the current plate 49a covers at least part of the central region T22 of the second end surface T2 of the porous substrate 1
  • the suction pipe 461 is in the slurry suction position shown in FIG. , when the second end surface T2 of the porous substrate 1 and the current plate 49a are viewed from the axial direction X of the porous substrate 1 (for example, the second end surface T2 of the porous substrate 1 is shown in the plan view of the current plate 49a). is projected), as shown in FIGS. It means overlapping with a part.
  • the second portion 492 of the straightening plate 49a When the second portion 492 of the straightening plate 49a does not have a second through hole, the second portion 492 of the straightening plate 49a covers the entire central region T22 of the second end surface T2 of the porous substrate 1, When the second portion 492 of the straightening plate 49a has the second through hole, the second portion 492 of the straightening plate 49a covers part of the central region T22 of the second end surface T2 of the porous substrate 1. .
  • the first through holes G formed in the first portion 491 of the rectifying plate 49a expose at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1'' means that the suction tube 461 is 8, when the second end surface T2 of the porous substrate 1 and the rectifying plate 49a are viewed from the axial direction X of the porous substrate 1 (for example, a plan view of the rectifying plate 49a shows a porous structure).
  • the first through hole G formed in the first portion 491 of the rectifying plate 49a is located at the second end surface T2 of the porous substrate 1). It means overlapping with at least part of the outer edge region T21 of the two end surfaces T2.
  • the second portion 492 of the rectifying plate 49a covers at least part of the central region T22 of the second end surface T2 of the porous substrate 1, it is difficult for air to flow through the radially inner portion of the porous substrate 1.
  • the first through holes G formed in the first portion 491 of the current plate 49a expose at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1, the porous substrate The radially outer portion of 1 facilitates air flow.
  • the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
  • FIG. 13 is an enlarged view of the inside of the suction pipe 461 provided with the straightening member 40b
  • FIG. 14 is a plan view of the first straightening plate 49b provided in the straightening member 40b
  • FIG. 15 is a plan view of the straightening member 40b.
  • 2 is a plan view of a second rectifying plate 50 provided in the .
  • 13 is an enlarged view of the inside of the suction pipe 461 at the slurry suction position shown in FIG.
  • a rectifying member 40b is used as the rectifying member 40.
  • the straightening member 40b includes a first straightening plate 49b and a second straightening plate 50.
  • the rectifying member 40b may be composed of the first rectifying plate 49b and the second rectifying plate 50, or other than the first rectifying plate 49b and the second rectifying plate 50 as long as the effect of the rectifying member 40b described later is exhibited. You may have a member of.
  • the material of the first current plate 49b is, for example, resin, ceramics, metal, or the like.
  • the thickness of the first current plate 49b can be adjusted as appropriate, and is, for example, 1 mm or more and 15 mm or less, preferably 1 mm or more and 5 mm or less.
  • the thickness of the first current plate 49b may be constant or may not be constant. If the thickness of the first current plate 49b is not constant, both the minimum value and the maximum value of the thickness of the first current plate 49b are preferably within the above ranges.
  • the first current plate 49b is arranged inside the suction pipe 461.
  • the first straightening plate 49b is fixed inside the suction pipe 461 so that its position does not change even if the pressure in the suction space V2 inside the suction pipe 461 is reduced.
  • the first straightening plate 49b is, for example, supported by a holding mechanism (eg, a chuck mechanism (eg, hand chuck) provided on the inner wall of the suction tube 461 that grips the outer edge of the first straightening plate 49b).
  • a mechanism for example, a support rod provided between the first straightening plate 49b and the suction mechanism 462 and supporting the surface of the first straightening plate 49b on the side of the suction mechanism 462).
  • the first straightening plate 49b is located between the second substrate fixing portion 48 provided at the upper end of the suction pipe 461 and the suction mechanism 462 connected to the lower end of the suction pipe 461. are placed.
  • the first rectifying plate 49b moves toward the second end surface T2 of the porous substrate 1. It is located apart from the second end surface T2. That is, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the first straightening plate 49b It is located on the side of the second end face T2 and separated from the second end face T2 of the porous substrate 1 .
  • the distance between the first current plate 49b and the second end surface T2 of the porous substrate 1 becomes the distance D2b.
  • the distance D2b is the distance between the main surface of the first current plate 49b on the second end surface T2 side and the second end surface T2 of the porous substrate 1 .
  • the main surface of the first current plate 49b on the second end surface T2 side is substantially parallel to the second end surface T2 of the porous substrate 1 .
  • the meaning of "substantially parallel” is as described above.
  • the first straightening plate 49b differs from the straightening plate 49a according to the first embodiment in that the second portion 492 is formed with the second through holes J.
  • Other configurations of the first straightening plate 49b are the same as those of the straightening plate 49a, and in the first straightening plate 49b, the same members or portions as the straightening plate 49a are denoted by the same reference numerals as those of the straightening plate 49a.
  • the above description of the rectifying plate 49a also applies to the first rectifying plate 49b, unless otherwise specified.
  • the planar shape of the second through holes J is circular, and the number of the second through holes J is one.
  • the planar view shape of the second through hole J can be changed as appropriate, and may be other shapes such as an elliptical shape, a square shape, a rectangular shape, a rectangular shape with rounded corners, and the like.
  • the number of second through holes J can be changed as appropriate, and may be two or more.
  • the second through hole J is not continuous with the first through hole G formed in the first portion 491, but may be continuous.
  • planar view shape of the central region T22 and the planar view shape of the second through hole J are similar shapes.
  • the second through hole J exposes at least part of the central region T22 of the second end surface T2 of the porous substrate 1.
  • the second through-hole J exposes at least a part of the central region T22 of the second end surface T2 of the porous substrate 1” means that the suction tube 461 is porous when it is in the slurry suction position shown in FIG.
  • T2 of the substrate 1 and the first current plate 49b are viewed from the axial direction X of the porous substrate 1 (for example, the second end surface of the porous substrate 1 is shown in the plan view of the first current plate 49b).
  • T2 as shown in FIGS. 13 and 14, the second through hole J overlaps at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1.
  • the outline of the second end surface T2 and the outline of the central region T22 that is, the boundary line L2 projected onto the plan view of the first current plate 49b are indicated by dotted lines and chain double-dashed lines, respectively.
  • the second through hole J may expose the entire central region T22 of the second end surface T2 of the porous substrate 1, or expose a portion of the central region T22 of the second end surface T2 of the porous substrate 1. You may let When the second through hole J exposes a part of the central region T22 of the second end surface T2 of the porous substrate 1, the second portion 492 of the first current plate 49b Cover the rest of the central region T22 of T2.
  • the second through-hole J exposes a part of the central region T22 of the second end surface T2 of the porous substrate 1, and the second portion 492 of the first straightening plate 49b exposes the second end surface of the porous substrate 1.
  • the phrase "covering the remainder of the central region T22 of T2" means that the second end surface T2 of the porous substrate 1 and the first straightening plate 49b are covered with the porous substrate while the suction pipe 461 is in the slurry suction position shown in FIG. 1 (for example, when the second end surface T2 of the porous substrate 1 is projected onto the plan view of the first current plate 49b), as shown in FIGS.
  • the hole J overlaps with a part of the central region T22 of the second end surface T2 of the porous substrate 1, and the portion of the second portion 492 of the first current plate 49b other than the second through hole J overlaps with the porous substrate. It means overlapping with the rest of the central region T22 of the second end face T2 of No. 1.
  • the planar shape of the central region T22 and the second through hole J is formed with a predetermined width along the outline of the second portion 492 so that the second portion 492 of the first current plate 49b has a similar shape to the shape in plan view. It is preferable that That is, it is preferable that the planar view shape of the second portion 492 of the first current plate 49b other than the second through hole J is annular (for example, annular).
  • the width of the portion other than the second through hole J in the second portion 492 of the first current plate 49b is constant. It may be, or it may not be constant.
  • the material of the second current plate 50 is, for example, resin, ceramics, metal, or the like.
  • the thickness of the second current plate 50 can be adjusted as appropriate, and is, for example, 1 mm or more and 15 mm or less, preferably 1 mm or more and 5 mm or less.
  • the thickness of the second current plate 50 may be constant or may not be constant. When the thickness of the second current plate 50 is not constant, both the minimum value and the maximum value of the thickness of the second current plate 50 are preferably within the above ranges.
  • the second current plate 50 is arranged inside the suction pipe 461 .
  • the second straightening plate 50 is fixed inside the suction pipe 461 so that its position does not change even if the pressure in the suction space V2 inside the suction pipe 461 is reduced.
  • the second rectifying plate 50 is, for example, a connecting member that connects the first rectifying plate 49b and the second rectifying plate 50 (for example, a connecting member that connects the third portion 493 of the first rectifying plate 49b and the second rectifying plate 50).
  • member 70 see FIG.
  • the connecting member 70 is omitted.
  • the connecting member 70 overlaps a part of the first through hole G formed in the first portion 491 of the first rectifying plate 49b.
  • the area of the part of the first through hole G that overlaps with the connecting member 70 is preferably 20% or less, more preferably 10% or less, and 5% or less of the area of the first through hole G. is even more preferred. In this case, since the connecting member 70 does not interfere with the flow of air passing through the first through holes G, the effect of the rectifying member 40b, which will be described later, can be further improved.
  • the lower limit of the area of the portion of the first through-hole G that overlaps the connecting member 70 can be appropriately adjusted in consideration of the strength of the connecting member 70 and the like.
  • the "area of the first through holes G" is means the total area of
  • “the area of the first through-hole G” is the area of the first through-hole G when viewed from the axial direction X of the porous substrate 1 in plan view.
  • the second straightening plate 50 is arranged between the first straightening plate 49b and the suction mechanism 462 connected to the lower end of the suction pipe 461. As shown in FIG. That is, the second straightening plate 50 is arranged on the side opposite to the second end face T2 of the porous substrate 1 with respect to the first straightening plate 49b. This positional relationship does not change whether the suction tube 461 is at the slurry suction position or at the standby position. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the second rectifying plate 50 moves toward the first rectifying plate 49b. On the other hand, it is located on the side opposite to the second end surface T2 of the porous substrate 1 .
  • the distance between the first rectifying plate 49b and the second rectifying plate 50 is the distance D3.
  • the distance D3 is the distance between the main surface of the first straightening plate 49b on the second straightening plate 50 side and the main surface of the second straightening plate 50 on the first straightening plate 49b side.
  • the distance D3 does not change whether the suction tube 461 is at the slurry suction position or at the standby position. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the first rectifying plate 49b and the second rectifying plate 50 The distance is distance D3.
  • the main surface of the second current plate 50 on the second end surface T2 side is substantially parallel to the second end surface T2 of the porous substrate 1 .
  • the meaning of "substantially parallel” is as described above.
  • the second current plate 50 is not formed with through holes, but may be formed with through holes.
  • the second current plate 50 covers at least part of the second through holes J. As shown in FIGS. 13 to 15, the second current plate 50 covers at least part of the second through holes J. As shown in FIGS. 13 to 15, the second current plate 50 covers at least part of the second through holes J. As shown in FIGS. 13 to 15, the second current plate 50 covers at least part of the second through holes J.
  • the second straightening plate 50 covers at least part of the second through hole J means that the first straightening plate 49b and the second straightening plate 50 are in a state where the suction pipe 461 is at the slurry suction position shown in FIG. is viewed from the axial direction X of the porous substrate 1 (for example, when the second straightening plate 50 is projected on the plan view of the first straightening plate 49b, or when the second straightening plate 50 is projected on the plan view of the second straightening plate 50, the second 13 to 15, the portion of the second current plate 50 other than the through hole overlaps with at least a portion of the second through hole J when the through hole J is projected.
  • the outline of the second straightening plate 50 projected onto the plan view of the first straightening plate 49b is indicated by a dotted line.
  • the outline of the second through hole J projected onto the plan view of the second current plate 50 is indicated by a dotted line.
  • the second current plate 50 When the second current plate 50 does not have a through hole, the second current plate 50 covers the entire second through hole J, and when the second current plate 50 has a through hole, the second current plate 50 covers the second through hole J. The current plate 50 partially covers the second through hole J. As shown in FIG.
  • the outline of the second flow plate 50 is preferably positioned outside the outline of the second through hole J, as shown in FIGS.
  • the opening area of the second straightening plate 50 is adjusted so that the entire second through hole J becomes the second straightening plate. It is also possible to cover a part of the second through hole J with the second current plate 50 .
  • the outline of the second straightening plate 50 is positioned inside the outline of the second portion 492 of the first straightening plate 49b. preferably.
  • the second rectifying plate 50 does not interfere with the flow of air passing through the first through holes G, so that the effect of the rectifying member 40b, which will be described later, can be further improved.
  • the second through hole J formed in the first straightening plate 49b exposes at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1, and the second straightening plate 50 serves as the first straightening plate. Since at least a part of the second through hole J formed in the plate 49b is covered, it is difficult for air to flow in the radially inner portion of the porous substrate 1. Since the first through holes G expose at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1, air can easily flow through the radially outer portion of the porous substrate 1. FIG.
  • the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
  • the straightening member 40b By arranging on the end surface T2 side, the following effects are exhibited.
  • the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the current plate 49a side, a turbulent flow occurs between the second portion 492 of the rectifying plate 49a and the second end surface T2 of the porous substrate 1, causing variations in the length of the slurry layers N (particularly, Variation in length between slurry layers N formed on the inner portion of the porous substrate 1 in the radial direction may occur.
  • the distance between the rectifying plate 49a and the second end surface T2 of the porous substrate 1, which generates turbulent flow is defined as Dx.
  • the straightening member 49b since the second through hole J is formed in the second portion 492 of the first straightening plate 49b, the first straightening plate 49b and the second end surface T2 of the porous base material 1 is Dx, turbulent flow is less likely to occur between the second portion 492 of the first rectifying plate 49b and the second end face T2 of the porous substrate 1 .
  • the second rectifying plate 50 is arranged on the opposite side of the first rectifying plate 49b from the second end surface T2 of the porous substrate 1, so that the first rectifying plate 49b and the porous Even if the distance from the second end surface T2 of the substrate 1 is Dx, the distance between the second straightening plate 50 and the second end surface T2 of the porous substrate 1 is greater than Dx, and the second straightening plate A turbulent flow is less likely to occur between 50 and the second end surface T2 of the porous substrate 1 .
  • the variation in length between the slurry layers N (in particular, the porous substrate 1 It is possible to prevent the occurrence of variations in length between the slurry layers N formed in the radially inner portion of the .
  • the structure manufacturing method of the present invention comprises the following steps: (a) a step of supplying a slurry M containing raw materials for the functional layer to the first end surface T1 side of the porous substrate 1; and (b) a slurry supplied to the first end surface T1 side of the porous substrate 1.
  • M is sucked from the second end surface T2 side of the porous substrate 1, and is applied to the inner wall of the first cell of the porous substrate 1 from the first end surface T1 of the porous substrate 1 to the second end surface of the porous substrate 1.
  • a step of forming a slurry layer N that extends toward T2 and does not reach the second end face T2 of the porous substrate 1 is included.
  • the structure manufacturing method of the present invention can be implemented by the structure manufacturing apparatus 100.
  • steps (a) and (b) are performed by the coating processing section 4 .
  • the operation of the coating processor 4 is controlled by the controller 3 .
  • the end face S1 is the first end face T1
  • the end face S2 is the second end face T2
  • the cell 13a is the first cell
  • the cell 13b is the second cell.
  • the base material loading process is performed.
  • the porous substrate 1 is loaded into the coating processing section 4 .
  • the control unit 3 controls the operation of the transport mechanism 222 to carry the porous substrate 1 placed on the placement unit 211 into the coating processing unit 4 .
  • the base material holding process is performed.
  • the porous substrate 1 carried into the coating processing section 4 is held by the substrate holding section 41 .
  • the porous substrate 1 carried into the coating processing section 4 by the transport mechanism 222 may be held by the transport mechanism 222 as it is.
  • the transport mechanism 222 functions as the substrate holder 41 .
  • the nozzle moving process and the suction pipe moving process are performed.
  • the order of the nozzle moving process and the suction tube moving process is not particularly limited. After the nozzle moving process, the suction tube moving process may be performed, after the suction tube moving process, the nozzle moving process may be performed, or the nozzle moving process and the suction tube moving process may be performed at the same time. good.
  • the nozzle moving mechanism 43 moves the nozzle 422 from the standby position shown in FIG. 7 to the slurry supply position shown in FIG.
  • the control unit 3 controls the operation of the nozzle moving mechanism 43 to control the timing of moving the nozzle 422 from the standby position to the slurry supply position, the timing of moving the nozzle 422 from the slurry supply position to the standby position, and the like.
  • a storage space V1 is formed in which the slurry M supplied to the T1 side can be stored.
  • the end portion of the porous substrate 1 on the side of the first end surface T1 that has entered the jig 44 is fixed inside the jig 44 by the first substrate fixing portion 45 .
  • the first base material fixing part 45 has, for example, a chuck mechanism such as a balloon type chuck.
  • the control unit 3 controls the operation of the first base material fixing unit 45, and determines the timing and fixing of the end of the porous base material 1 that has entered the jig 44 on the side of the first end surface T1 in the jig 44.
  • control unit 3 controls the operation of the first base material fixing unit 45, and when the end of the porous base material 1 on the first end surface T1 side enters the jig 44, After the end portion of the porous substrate 1 on the first end surface T1 side enters the jig 44 without expanding the balloon held by the balloon chuck, the balloon held by the balloon chuck is expanded by air pressure, and the jig is moved. The end portion of the porous substrate 1 on the first end surface T1 side that has entered the inside 44 is fixed inside the jig 44 .
  • the balloon held by the balloon-type chuck fills the space between the jig 44 and the end of the porous base material 1 on the first end surface T1 side that has entered the jig 44 without any gap, and the balloon is discharged from the storage space V1. Prevent the slurry M from leaking.
  • the nozzle moving mechanism 43 moves the nozzle 422 to change the relative position between the porous substrate 1 and the nozzle 422 .
  • the relative position between the porous substrate 1 and the nozzle 422 may be changed.
  • the suction tube moving mechanism 47 moves the suction tube 461 from the standby position shown in FIG. 7 to the slurry suction position shown in FIG.
  • the control unit 3 controls the operation of the suction tube moving mechanism 47, and controls the timing of moving the suction tube 461 from the standby position to the slurry suction position, the timing of moving the suction tube 461 from the slurry suction position to the standby position, and the like.
  • the end portion of the porous substrate 1 on the second end surface T2 side that has entered the suction tube 461 is fixed inside the suction pipe 461 by the second substrate fixing portion 48 .
  • the second base material fixing portion 48 has, for example, a chuck mechanism such as a balloon type chuck.
  • the control unit 3 controls the operation of the second base material fixing unit 48, and determines the timing and fixing of the second end surface T2 side end of the porous base material 1 that has entered the suction tube 461, in the suction tube 461.
  • control unit 3 controls the operation of the second base material fixing unit 48, and when the end of the porous base material 1 on the second end surface T2 side enters the suction tube 461, After the end portion of the porous substrate 1 on the second end surface T2 side enters the suction tube 461 without expanding the balloon of the balloon chuck, the balloon of the balloon chuck is expanded by the air pressure to open the suction tube. The end portion of the porous substrate 1 on the second end surface T2 side that has entered the inside of the suction tube 461 is fixed inside the suction tube 461 .
  • the balloon held by the balloon-type chuck fills the gap between the suction tube 461 and the end portion of the porous substrate 1 on the second end surface T2 side that has entered the suction tube 461, and seals the suction space V2. do. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, it does not flow into the straightening member 40 inside the suction tube 461.
  • the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 through through holes formed in the rectifying plate 49a in the suction tube 461 (for example, through the through holes of the rectifying plate 49a).
  • the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 and through the through holes formed in the first straightening plate 49 b and the second straightening plate 50 inside the suction tube 461 .
  • the suction tube moving mechanism 47 moves the suction tube 461 to change the relative position between the porous substrate 1 and the suction tube 461 .
  • the suction tube moving mechanism 47 moves the suction tube 461 to change the relative position between the porous substrate 1 and the suction tube 461 .
  • the relative positions of the porous substrate 1 and the suction tube 461 may be changed.
  • Step (a) is performed after the nozzle moving step and the suction tube moving step.
  • step (a) the slurry supply unit 42 supplies the slurry M to the first end surface T1 of the porous substrate 1 .
  • the slurry M supplied to the first end face T1 side of the porous substrate 1 is stored in the storage space V1.
  • the control unit 3 controls the operation of the slurry supply unit 42, and controls the timing of starting supply of the slurry M, the amount of supply of the slurry M, the timing of stopping the supply of the slurry M, and the like.
  • step (b) is performed.
  • step (b) the slurry suction part 46 sucks the slurry M supplied to the first end surface T1 side of the porous substrate 1 from the second end surface T2 side of the porous substrate 1, and the porous substrate 1 forming a slurry layer N on the inner walls of the first cells of the .
  • the suction mechanism 462 decompresses the suction space V2 inside the suction pipe 461 .
  • the slurry layer N is formed on the surface of the partition wall 12 on the cell 13a side.
  • the slurry layer N has a portion protruding from the surface of the partition wall 12 toward the cell 13a.
  • the slurry layer N may be composed only of a portion protruding from the surface of the partition wall 12 toward the cell 13a, or may have a portion present inside the partition wall 12 together with the portion. . Since the partition wall 12 is porous, the slurry layer N usually has a portion existing inside the partition wall 12 .
  • the slurry layer N may be composed only of the portion existing inside the partition wall portion 12 .
  • the slurry layer N does not reach the second end surface T2 of the porous substrate 1. That is, the length PN of the slurry layer N is smaller than the length P1 of the porous substrate 1 .
  • the length PN of the slurry layer N is preferably 10% or more and 90% or less, more preferably 20% or more and 80% or less of the length P1 of the porous substrate 1 .
  • the length PN of the slurry layer N is within the above range, the porous substrate 1 is easily uniformly coated with the slurry.
  • the control unit 3 controls the operation of the slurry suction unit 46 so that the slurry layer N does not reach the second end surface T2 of the porous substrate 1, and the timing of starting the pressure reduction of the suction space V2 in the suction pipe 461, Adjust the degree of decompression, the timing to stop decompression, etc.
  • the porous substrate is removed from the first end surface T1 of the porous substrate 1 so as not to reach the second end surface T2 of the porous substrate 1 by firing.
  • a catalyst layer extending toward the second end face T2 of the material 1 is formed on the surface of the partition wall portion 12 on the cell 13a side.
  • the catalyst layer has a portion protruding from the surface of the partition wall portion 12 toward the cell 13a.
  • the catalyst layer may consist only of a portion protruding from the surface of the partition wall 12 toward the cell 13a, or may have a portion existing inside the partition wall 12 together with the portion. Since the partition wall 12 is porous, the catalyst layer usually has a portion existing inside the partition wall 12 .
  • the catalyst layer may be composed only of the portion existing inside the partition wall portion 12 .
  • the straightening member 40 When the suction pipe 461 moves to the slurry suction position, the straightening member 40 is positioned on the second end face T2 side of the porous base material 1 and spaced from the second end face T2 of the porous base material 1 . That is, when the slurry M supplied to the first end face T1 side of the porous base material 1 is sucked from the second end face T2 side of the porous base material 1, the rectifying member 40 moves toward the second end face T2 of the porous base material 1. It is located on the side of the end face T2 and is spaced apart from the second end face T2 of the porous substrate 1 .
  • the rectifying member 40 moves toward the second end surface T2 of the porous substrate 1. At least part of the central region T22 of the porous substrate 1 is covered, and at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1 is exposed.
  • the rectifying member 40 covers at least a part of the central region T22 of the second end surface T2 of the porous substrate 1, it is difficult for air to flow in the radially inner portion of the porous substrate 1. Since the rectifying member 40 exposes at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1, air can easily flow through the radially outer portion of the porous substrate 1.
  • the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
  • the rectifying plate 49a When the suction pipe 461 moves to the slurry suction position, the rectifying plate 49a is positioned on the second end face T2 side of the porous base material 1 and spaced apart from the second end face T2 of the porous base material 1 . Therefore, in the step (b), when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying plate 49a becomes porous. It is located on the side of the second end surface T2 of the base material 1 and spaced from the second end surface T2 of the porous base material 1 .
  • step (b) when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the current plate 49a At least part of the central region T22 of the one second end face T2 is covered, and at least part of the outer edge region T21 is exposed.
  • the second portion 492 of the straightening plate 49a covers at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1
  • the first portion 491 formed on the first portion 491 of the straightening plate 49a covers at least a portion of the central region T22.
  • 1 through-hole G exposes at least part of outer edge region T21 of second end surface T2 of porous substrate 1 .
  • the second portion 492 of the rectifying plate 49a covers at least part of the central region T22 of the second end surface T2 of the porous substrate 1, it is difficult for air to flow through the radially inner portion of the porous substrate 1.
  • the first through holes G formed in the first portion 491 of the current plate 49a expose at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1, the porous substrate The radially outer portion of 1 facilitates air flow.
  • the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
  • the first rectifying plate 49b is positioned on the second end face T2 side of the porous base material 1 and spaced apart from the second end face T2 of the porous base material 1 . That is, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the first straightening plate 49b It is located on the side of the second end face T2 and separated from the second end face T2 of the porous substrate 1 .
  • the second straightening plate 50 is arranged on the side opposite to the second end surface T2 of the porous substrate 1 with respect to the first straightening plate 49b. This positional relationship does not change whether the suction tube 461 is at the slurry suction position or at the standby position. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the second rectifying plate 50 moves toward the first rectifying plate 49b. On the other hand, it is located on the side opposite to the second end surface T2 of the porous substrate 1 .
  • the distance between the first rectifying plate 49b and the second rectifying plate 50 is the distance D3.
  • the distance D3 does not change whether the suction tube 461 is at the slurry suction position or at the standby position. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the first rectifying plate 49b and the second rectifying plate 50 The distance is distance D3.
  • the second through hole J formed in the first straightening plate 49b exposes at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1, and the second straightening plate 50 serves as the first straightening plate. Since at least a part of the second through hole J formed in the plate 49b is covered, it is difficult for air to flow in the radially inner portion of the porous substrate 1. Since the first through holes G expose at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1, air can easily flow through the radially outer portion of the porous substrate 1. FIG.
  • the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
  • the straightening member 40b By arranging on the end surface T2 side, the following effects are exhibited.
  • the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the current plate 49a side, a turbulent flow occurs between the second portion 492 of the rectifying plate 49a and the second end surface T2 of the porous substrate 1, causing variations in the length of the slurry layers N (particularly, Variation in length between slurry layers N formed on the inner portion of the porous substrate 1 in the radial direction may occur.
  • the distance between the rectifying plate 49a and the second end surface T2 of the porous substrate 1, which generates turbulent flow is defined as Dx.
  • the straightening member 49b since the second through hole J is formed in the second portion 492 of the first straightening plate 49b, the first straightening plate 49b and the second end surface T2 of the porous base material 1 is Dx, turbulent flow is less likely to occur between the second portion 492 of the first rectifying plate 49b and the second end face T2 of the porous substrate 1 .
  • the second rectifying plate 50 is arranged on the opposite side of the first rectifying plate 49b from the second end surface T2 of the porous substrate 1, so that the first rectifying plate 49b and the porous Even if the distance from the second end surface T2 of the substrate 1 is Dx, the distance between the second straightening plate 50 and the second end surface T2 of the porous substrate 1 is greater than Dx, and the second straightening plate A turbulent flow is less likely to occur between 50 and the second end surface T2 of the porous substrate 1 .
  • the variation in length between the slurry layers N (in particular, the porous substrate 1 It is possible to prevent the occurrence of variations in length between the slurry layers N formed in the radially inner portion of the .
  • the radial direction of the porous substrate 1 is preferably 1 m/s or more and 10 m/s or less, more preferably 2 m/s or more and 5 m/s or less.
  • the radial direction of the porous substrate 1 is preferably 1 m/s or more and 30 m/s or less, more preferably 5 m/s or more and 15 m/s or less.
  • the porous substrate 1 on which the slurry layer N is formed may be dried and then fired as necessary. Thereby, the slurry layer N becomes a catalyst layer.
  • the drying temperature is, for example, 70° C. or more and 150° C. or less
  • the drying time is, for example, 0.2 hours or more and 3 hours or less
  • the firing temperature is, for example, 400° C. or more and 900° C. or less
  • the firing time is , for example, from 1 hour to 10 hours. Firing can be performed in an air atmosphere.
  • the process (a) may be performed without performing the suction tube moving process.
  • the suction tube moving step is performed during or after the step (a)
  • the step (b) is performed after the step (a) and the suction tube moving step.
  • the second portion 492 of the rectifying plate 49a does not have the second through hole, at least one of the central regions T22 covered by the second portion 492 of the rectifying plate 49a is provided from the viewpoint of further improving the above effect of the rectifying member 40a.
  • the area of the part is preferably 50% or more of the area of the central region T22, more preferably 60% or more, even more preferably 70% or more, and even more preferably 80% or more. It is preferably 90% or more, even more preferably 95% or more.
  • the upper limit is 100%.
  • the second portion 492 of the current plate 49a and the porous substrate 1 It prevents turbulent flow from occurring between the second end surface T2, and thus the length variation between the slurry layers N (especially, the slurry formed in the radially inner part of the porous substrate 1 From the viewpoint of preventing occurrence of variation in length between layers N, it is preferable that a second through hole is formed in the second portion 492 of the straightening plate 49a.
  • FIG. 16 shows an embodiment in which a second through hole is formed in the second portion 492 of the rectifying plate 49a.
  • a large number of round second through holes Q are formed in the second portion 492 of the current plate 49a.
  • the planar view shape of the second through hole Q can be changed as appropriate, and the planar view shape of the second through hole Q includes, for example, a circular shape, an elliptical shape, a square shape, a rectangular shape, and a rectangular shape with rounded corners. etc.
  • the number of second through holes Q can be changed as appropriate, and the number of second through holes Q may be one, or two or more.
  • the second through hole Q formed in the second portion 492 of the current plate 49a may be continuous with the first through hole G formed in the first portion 491 of the current plate 49a.
  • the diameter of the second through hole Q is, for example, 1 mm or more and 5 mm or less.
  • the diameter of the second through-hole Q means the diameter of the circle. means the diameter of the circle that
  • the second through hole Q When the second through hole Q is formed in the second portion 492 of the current plate 49a, the second through hole Q exposes a part of the central region T22 of the second end surface T2 of the porous substrate 1.
  • the second through-hole Q exposes a part of the central region T22 of the second end surface T2 of the porous substrate 1” means that the suction tube 461 is at the slurry suction position shown in FIG.
  • the second end face T2 of the material 1 and the straightening plate 49a are viewed from the axial direction X of the porous substrate 1 (for example, when the second end face T2 of the porous substrate 1 is projected on the plan view of the straightening plate 49a ), as shown in FIG.
  • the outline of the second end surface T2 and the outline of the central region T22 that is, the boundary line L2 projected onto the plan view of the current plate 49a are indicated by dotted lines and chain double-dashed lines, respectively.
  • the second The area of the part of the central region T22 exposed by the through hole Q is preferably 10% or more and 50% or less, more preferably 20% or more and 40% or less, of the area of the central region T22.
  • the "area of the part of the central region T22 exposed by the second through holes Q" is the two It means the total area of the portion of the central region T22 exposed by the second through holes Q described above.
  • the area of at least a part of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the rectifying plate 49a is reduced to the area of the outer edge region T21. It is preferably 50% or more of the area, more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, and 90% or more. More preferably, it is 95% or more. The upper limit is 100%. "The area of at least a part of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the straightening plate 49a or 49b" is two or more first portions 491 of the straightening plate 49a or 49b. When one through-hole G is formed, it means the total area of the portion of the outer edge region T21 exposed by the two or more first through-holes G.
  • the second portion 492 may be, for example, a supporting mechanism (for example, the second portion 492 provided between the second portion 492 and the suction mechanism 462).
  • the third part 493 can be fixed in the suction tube 461 by a support rod that supports the surface on the suction mechanism 462 side of the suction tube 461, and the third part 493 is, for example, a holding mechanism (for example, a third A chuck mechanism (e.g., hand chuck, etc.) that grips the outer edge of the third portion 493) or a support mechanism (e.g., the suction mechanism 462 side of the third portion 493 provided between the third portion 493 and the suction mechanism 462 It can be fixed within the aspiration tube 461 by means of a support rod supporting the surface of the .
  • a holding mechanism for example, a third A chuck mechanism (e.g., hand chuck, etc.) that grips the outer edge of the third portion 493) or a support mechanism (e.g., the suction mechanism 462 side of the third portion 493 provided between the third portion 493 and the suction mechanism 462
  • the current plate 49a or 49b may consist of only the second portion 492 .
  • the area of the part of the central region T22 exposed by the second through-holes Q is reduced from the viewpoint of further improving the above effect of the rectifying member 40a.
  • the ratio (the area of the part of the central region T22 exposed by the second through hole Q/the area of the central region T22) is the outer edge region T21 exposed by the first through hole G formed in the first portion 491 of the current plate 49a. (area of at least part of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the current plate 49a/area of the outer edge region T21).
  • the distance D2a or D2b between the rectifying plate 49a or 49b and the second end surface T2 of the porous substrate 1 when the suction tube 461 is at the slurry suction position is , preferably 5 mm or more and 30 mm or less, more preferably 5 mm or more and 15 mm or less.
  • both the minimum value and the maximum value of the distance D2a or D2b are preferably within the above range.
  • the area of at least a part of the central region T22 exposed by the second through holes J is preferably 50% or more, more preferably 60% or more of the area of the central region T22. is more preferable.
  • the upper limit is 100%.
  • the area of at least a part of the central region T22 exposed by the second through holes J is 90% of the area of the central region T22. % or less, more preferably 80% or less.
  • the "area of at least a part of the central region T22 exposed by the second through holes J" is the two or more second through holes J. 2 means the total area of the portion of the central region T22 exposed by the through holes J.
  • the area of at least a portion of the second through hole J covered by the second current plate 50 is preferably 50% or more of the area of the second through hole J.
  • the "area of the second through holes J" is means the total area of
  • the area of the second through hole J” means the area of the second through hole J when viewed from the axial direction X of the porous substrate 1 in plan view.
  • the second A through hole is preferably formed in the second straightening plate 50 so that the straightening plate 50 partially covers the second through hole J. As shown in FIG.
  • FIG. 17 shows an embodiment in which through holes are formed in the second current plate 50 .
  • a large number of circular through holes K are formed in the second current plate 50 .
  • the planar view shape of the through hole K can be changed as appropriate, and examples of the planar view shape of the through hole K include a circular shape, an elliptical shape, a square shape, a rectangular shape, a rectangular shape with rounded corners, and the like. .
  • the number of through-holes K can be changed as appropriate, and the number of through-holes K may be one, or two or more.
  • the diameter of the through hole K is, for example, 1 mm or more and 5 mm or less.
  • the diameter of the through-hole K means the diameter of the circle when the through-hole K is circular, and the diameter of the circle circumscribing the shape when the through-hole K has a shape other than a circle. do.
  • the through holes K are formed in the second straightening plate 50, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, , the occurrence of turbulent flow is effectively prevented, and thus the variation in length between the slurry layers N (in particular, the length between the slurry layers N formed in the radially inner portion of the porous substrate 1
  • the area of the part of the second through hole J covered by the second current plate 50 is 50% or more and 90% or less of the area of the second through hole J. , and more preferably 60% or more and 90% or less.
  • the distance D3 between the first rectifying plate 49b and the second rectifying plate 50 when the suction pipe 461 is at the slurry suction position is preferably 5 mm or more and 30 mm or less. It is preferably 5 mm or more and 15 mm or less. If the distance D3 is not constant, it is preferable that both the minimum value and the maximum value of the distance D3 are within the above ranges.
  • FIG. 18 is a plan view of a current plate 49a' according to a modification.
  • the outline of the second end face T2 and the outline of the central region T22 (that is, the boundary line L2) projected onto the plan view of the current plate 49a' are indicated by dotted lines and chain double-dashed lines, respectively. .
  • a straightening plate 49a' may be used instead of the straightening plate 49a.
  • the rectifying plate 49a' differs from the rectifying plate 49a in that a large number of circular through holes H are formed in the first portion 491 instead of the through holes G.
  • through holes G also applies to through holes H, unless otherwise specified.
  • the planar view shape of the through hole H is circular, but the planar view shape of the through hole H may be other shapes such as elliptical, square, rectangular, and rectangular with rounded corners. It may be a shape or the like.
  • the diameter of the through hole H is, for example, 1 mm or more and 4 mm or less.
  • the diameter of the through-hole H means the diameter of the circle when the through-hole H is circular, and the diameter of the circle circumscribing the shape when the through-hole H has a shape other than a circle. do.
  • the modified example 1A has the same effect as the above effect of the rectifying member 40a.
  • ⁇ Modification 1B> In the straightening member 40b, instead of the through holes G, a large number of circular through holes H may be formed in the first portion 491 of the first straightening plate 49b. The above description regarding the through hole H also applies to the modification 1B. Modification 1B has the same effect as the above effect of the rectifying member 40b.
  • FIG. 19 is an end view for explaining a modification in which a gap is formed between the suction tube 461 and the end of the porous substrate 1 on the second end face T2 side that has entered the suction tube 461.
  • FIG. . 19 is a plane perpendicular to the axial direction X of the porous substrate 1 in a state where the suction tube 461 is at the slurry suction position shown in FIG. 48 and an end view when the end portion on the second end face T2 side of the porous substrate 1 is cut.
  • a gap V3 may be formed between the second end surface T2 side end of the porous substrate 1 that has entered inside.
  • the second base material fixing part 48 does not fix the end of the porous base material 1 on the side of the second end surface T2 that has entered the suction tube 461 (for example, the second base material fixing part 48 has a balloon chuck, the gap V3 can be formed by not inflating the balloon).
  • the gap V3 is formed between the suction tube 461 and the end portion of the porous substrate 1 on the side of the second end surface T2 that has entered the suction tube 461, the porous substrate 1 on the side of the first end surface T1 is formed.
  • the air outside the suction tube 461 is rectified in the suction tube 461 along the outer peripheral surface of the porous substrate 1. It flows into through-holes formed in member 40 .
  • the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 and flows through the through holes (for example, the first portion 491) formed in the current plate 49a inside the suction tube 461.
  • the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 and through the through holes formed in the first straightening plate 49 b and the second straightening plate 50 inside the suction tube 461 .
  • FIG. 20 is a schematic partial end view showing the configuration of a coating processing section 4a according to a modification.
  • FIG. 20 shows the state when the porous substrate 1 is subjected to the coating process.
  • the same members or portions as the coating processing unit 4 are denoted by the same reference numerals as the coating processing unit 4.
  • the above description of the coating section 4 also applies to the coating section 4a, unless otherwise specified.
  • the jig 44 may be moved independently of the nozzle 422 by the jig moving mechanism 7. In this case, the jig 44 is not attached to the nozzle holder 431 .
  • FIG. 20 is as described above
  • FIG. 21 is a plan view of the first end face of the porous base material according to the modification
  • FIG. 22 is a plan view of the current plate according to the modification.
  • Modification 4 is an example in which the arrangement position of the current plate 49a is changed. Therefore, the configuration of the rectifying plate 49a in Modification 4 is the same as that described above, and the above description of the rectifying plate 49a also applies to Modification 4, unless otherwise specified.
  • the main surface of the current plate 49a on the side of the first end surface T1 is substantially parallel to the first end surface T1 of the porous substrate 1.
  • the meaning of "substantially parallel” is as described above.
  • the following steps are performed instead of the nozzle movement step.
  • the end portion of the porous substrate 1 on the side of the first end surface T1 is caused to enter the jig 44, and the porous substrate 1 is inserted into the jig 44.
  • a storage space V1 that enables storage of the supplied slurry M is formed on the first end face T1 side of the .
  • the lifting mechanism 432 lowers the nozzle holder 431 to bring the nozzle 422 closer to the porous substrate 1 and move it to the slurry supply position.
  • the slurry M is supplied from the nozzle 422 to the first end surface T1 of the porous substrate 1 at the slurry supply position.
  • the lifting mechanism 432 lifts the nozzle holder 431 to move the nozzle 422 away from the porous substrate 1 to the standby position.
  • the straightening plate 49a is arranged on the first end surface T1 side of the porous substrate 1 .
  • the rectifying plate 49a may be arranged by a rectifying plate moving mechanism (not shown) or manually.
  • the first end surface T1 of the porous substrate 1 includes an annular (for example, annular) outer edge region T11 located radially outside the first end surface T1 and an outer edge region T11 located radially outward of the first end surface T1. It is partitioned into a central region T12 located inside T11.
  • the boundary line L1 is a virtual line.
  • the openings of the cells 13a existing in the first end surface T1 are omitted.
  • the area of the central region T12 is preferably 40% or more and 90% or less, more preferably 65% or more and 85% or less, of the area of the first end surface T1.
  • the shape of the central region T12 and the shape of the first end face T1 are preferably similar shapes.
  • the shape of the central region T12 means the shape defined by the outline of the central region T12 (that is, the boundary line L1), and the shape of the first end face T1 means the shape defined by the outline of the first end face T1. means.
  • the outer edge region T11 is preferably formed with a predetermined width along the outline of the first end face T1 so that the shape of the central region T12 and the shape of the first end face T1 are similar. As long as the shape of the central region T12 and the shape of the first end face T1 are similar, the width of the outer edge region T11 may or may not be constant.
  • the current plate 49a includes a first annular (for example, annular) portion 491, a second portion 492 positioned inside the first portion 491, and a second portion 492 positioned outside the first portion 491. and an annular (eg, toric) third portion 493 .
  • the rectifying plate 49a in a state where the rectifying plate 49a is arranged on the first end surface T1 side of the porous substrate 1, the first end surface T1 of the porous substrate 1 and the rectifying plate 49a are aligned with the axis of the porous substrate 1.
  • the first end surface T1 of the porous substrate 1 of the straightening plate 49a is A portion overlapping with the outer edge region T11 is the first portion 491, and a portion overlapping with the central region T12 of the first end surface T1 of the porous substrate 1 is the second portion 492.
  • the outline of the first end face T1 and the outline of the central region T12 that is, the boundary line L1 projected onto the plan view of the current plate 49a are indicated by dotted lines and chain double-dashed lines, respectively.
  • the second portion 492 of the straightening plate 49a preferably does not have a through hole as in the present embodiment, but may have a through hole (hereinafter referred to as "second through hole").
  • second through hole a through hole
  • the above description regarding the second through hole also applies to Modification 4.
  • the second through-hole exposes part of the central region T12 of the first end surface T1 of the porous substrate 1.
  • the second through-hole exposes a part of the central region T12 of the first end surface T1 of the porous substrate 1 means that the porous substrate is in a state where the suction pipe 461 is at the slurry suction position shown in FIG. 1 and the straightening plate 49a are viewed from the axial direction X of the porous substrate 1 (for example, when the first end surface T1 of the porous substrate 1 is projected onto the plan view of the straightening plate 49a).
  • the area of the part of the central region T12 exposed by the second through holes is preferably 50% or less of the area of the central region T12, and 40% or less. is more preferably 30% or less, even more preferably 20% or less, even more preferably 10% or less, and even more preferably 5% or less.
  • the "area of the part of the central region T12 exposed by the second through holes" is the two or more second through holes. It means the total area of the portion of the central region T12 exposed by the through holes.
  • the second portion 492 of the current plate 49a covers at least part of the central region T12 of the first end surface T1 of the porous substrate 1, and the first through hole G formed in the first portion 491 of the current plate 49a At least part of the outer edge region T11 of the one end surface T1 is exposed.
  • the second portion 492 of the straightening plate 49a covers at least part of the central region T12 of the first end surface T1 of the porous substrate 1” means that the straightening plate 49a covers the first end surface T1 of the porous substrate 1.
  • the portion of the second portion 492 of the rectifying plate 49a other than the second through-hole is located at the center of the first end surface T1 of the porous substrate 1, as shown in FIG. It means that it overlaps with the region T12.
  • the second portion 492 of the current plate 49a When the second portion 492 of the current plate 49a does not have a second through hole, the second portion 492 of the current plate 49a covers the entire central region T12 of the first end surface T1 of the porous substrate 1, When the second portion 492 of the straightening plate 49a has the second through hole, the second portion 492 of the straightening plate 49a covers part of the central region T12 of the first end surface T1 of the porous substrate 1. .
  • the first through holes G formed in the first portion 491 of the current plate 49a expose at least part of the outer edge region T11 of the first end surface T1 of the porous substrate 1 means that the current plate 49a is porous.
  • the first end surface T1 of the porous substrate 1 and the rectifying plate 49a are arranged on the first end surface T1 side of the porous substrate 1 and viewed from the axial direction X of the porous substrate 1 (for example, the rectifying plate 22, when the first end face T1 of the porous substrate 1 is projected onto the plan view of the plate 49a, the first through holes G formed in the first portion 491 of the current plate 49a are aligned with the porous substrate. It means that it overlaps with at least part of the outer edge region T11 of the first end surface T1 of the material 1 .
  • the current plate 49a When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the current plate 49a When the rectifying plate 49a is arranged on the second end surface T2 side of the porous substrate 1, the same effect as when the rectifying plate 49a is arranged on the second end surface T2 side of the porous substrate 1 can be obtained.
  • the area of at least part of the central region T12 covered by the second portion 492 of the rectifying plate 49a is 50% or more of the area of the central region T12. preferably 60% or more, even more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, 95% The above is even more preferable.
  • the upper limit is 100%.
  • the area of at least a part of the outer edge region T11 exposed by the first through holes G formed in the first portion 491 of the rectifying plate 49a is The area of the region T11 is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, and 90% or more. It is more preferable that the ratio is 95% or more. The upper limit is 100%. "At least a part of the outer edge region T11 exposed by the first through holes G formed in the first portion 491 of the straightening plate 49a" is defined by two or more first through holes G formed in the first portion 491 of the straightening plate 49a. is formed, it means the total area of the portion of the outer edge region T21 exposed by the two or more first through holes G.
  • the straightening plate 49a and the porous substrate 1 are arranged in a state where the straightening plate 49a is arranged on the first end surface T1 side of the porous substrate 1.
  • a distance D1 from the first end face T1 is preferably 5 mm or more and 30 mm or less, and more preferably 5 mm or more and 15 mm or less.
  • the distance D1 is the distance between the first end surface T1 side main surface of the current plate 49a and the first end surface T1 of the porous substrate 1 . If the distance D1 is not constant, both the minimum value and the maximum value of the distance D1 are preferably within the above range.
  • FIGS. 23 to 25 are schematic partial end views showing the configuration of the coating processing section 4b according to the modification.
  • 23 shows the state before the slurry supply process and the coating process are performed on the porous substrate 1
  • FIG. 24 shows the state when the slurry supply process is performed on the porous substrate 1.
  • FIG. 25 show the state when the porous substrate 1 is subjected to the coating process.
  • the coating processing unit 4b does not include the slurry supply unit 42, the nozzle moving mechanism 43, and the first substrate fixing unit 45, and is provided with a storage tank 42b in which the slurry M is stored. , and is different from the coating processing section 4 .
  • the same members or portions as the coating processing section 4 are denoted by the same reference numerals as in the coating processing section 4.
  • the above description of the coating section 4 also applies to the coating section 4b, unless otherwise specified.
  • the storage tank 42b is installed below the porous substrate 1 held by the substrate holding portion 41. As shown in FIG. 23, the storage tank 42b is installed below the porous substrate 1 held by the substrate holding portion 41. As shown in FIG. 23, the storage tank 42b is installed below the porous substrate 1 held by the substrate holding portion 41.
  • the substrate holding part 41 holds the porous substrate 1 so that the first end face T1 of the porous substrate 1 faces the reservoir 42b side (lower side in FIG. 23).
  • the step (a) is performed after the substrate holding step, without performing the nozzle moving step and the suction tube moving step.
  • step (a) the substrate holder 41 lowers the porous substrate 1 .
  • the end portion of the porous substrate 1 on the first end surface T1 side is immersed in the slurry M in the storage tank 42b, and the porous substrate 1 on the first end surface T1 side is , slurry M is supplied. Therefore, in Modification 5, the base material holding part 41 and the storage tank 42b function as a slurry supply part that supplies the slurry M to the first end surface T1 side of the porous base material 1 .
  • the base material holding part 41 raises the porous base material 1 so that the end portion of the porous base material 1 on the first end face T1 side is is taken out from the slurry M in the storage tank 42 b , the porous substrate 1 is inverted, and the porous substrate 1 is moved above the suction tube 461 .
  • the second end surface T2 of the porous substrate 1 held above the suction tube 461 by the substrate holding portion 41 faces the suction tube 461 side (lower side in FIG. 25). .
  • the porous substrate 1 may be turned over.
  • the control unit 3 controls the operation of the substrate holding unit 41, and determines the timing and duration of immersion of the end of the porous substrate 1 on the first end surface T1 side in the slurry M in the storage tank 42b ( supply amount), the timing of removing the end of the porous substrate 1 on the first end face T1 side from the slurry M in the storage tank 42b, the timing of turning over the porous substrate 1, Controls the timing of upward movement.
  • a suction tube moving step is performed.
  • the suction tube moving mechanism 47 moves the suction tube 461 from the standby position shown in FIGS. 23 and 24 to the slurry suction position shown in FIG.
  • Example 1 A cylindrical porous substrate 1 shown in FIGS. 1 to 4 was prepared.
  • the length of the porous substrate 1 was 127 mm
  • the diameter of the porous substrate 1 was 118 mm
  • the total number of cells per square inch of the porous substrate 1 was 300 cells per square inch.
  • a slurry M containing raw materials for the catalyst layer was prepared.
  • the viscosity of slurry M is 500 mPa s when measured using a cone and plate type viscometer at a temperature of 25 ° C. and a shear rate of 380 s -1 , and a shear rate of 4 s -1 . was 5500 mPa ⁇ s.
  • a structure manufacturing apparatus 100 shown in FIGS. 5 to 8 was prepared.
  • the rectifying member 40 the rectifying plate 49a shown in FIGS. 11 and 12 was used.
  • the diameter of the second portion 492 of the current plate 49a was adjusted to 108.4 mm, and the width W of the first through hole G was adjusted to 5 mm.
  • the first portion 491 of the rectifying plate 49a and the outer edge region T21 of the second end surface T2 are 16% of the area of the second end surface T2
  • the second portion 492 of the rectifying plate 49a and the central region T22 of the second end surface T2 are the second end surface T2. It was adjusted to 84% of the area of the end surface T2.
  • the area of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the current plate 49a is 97% of the area of the outer edge region T21, and the central region T22 covered by the second portion 492 of the current plate 49a. was adjusted to 100% of the central region T22.
  • the distance D2a between the current plate 49a and the second end face T2 of the porous substrate 1 when the suction pipe 461 is at the slurry suction position was adjusted to 6 mm.
  • the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, and the first cell of the porous substrate 1 is A slurry layer N that did not reach the second end surface T2 of the porous substrate 1 was formed on the inner wall.
  • the inner part of the porous substrate 1 in the radial direction is the first
  • the flow velocity of air in the portion on the side of the first end surface T1 is 3.8 m/s
  • the flow velocity of air in the portion on the side of the first end surface T1 among the radially outer portions of the porous substrate 1 is 14 m/s. Met.
  • the porous substrate 1 is cut along a plane parallel to the axial direction X, and the radial outer portion Q1 of the porous substrate 1 (as shown in FIG. 26, the left portion (5% ) and the right portion (5%)) were measured, and the average value was obtained. Similarly, the length of 36 slurry layers N in the radially inner portion Q2 of the porous substrate 1 (the central portion (90%) of the porous substrate 1 as shown in FIG. 26) is measured. and calculated the average value.
  • Example 2 As shown in FIG. 19, the end portion of the porous substrate 1 on the second end surface T2 side that has entered the suction tube 461 is not fixed by the second substrate fixing portion 48, and the suction tube 461 and the suction tube 461 are separated from each other. The same operation as in Example 1 was performed, except that a gap was formed between the second end face T2 side end of the porous substrate 1 that had entered inside.
  • the air flow velocity in the portion on the first end surface T1 side is 3.1 m/s
  • the air flow velocity in the portion on the first end surface T1 side of the radially outer portion of the porous substrate 1 is 9 .2 m/s.
  • Example 1 The same operation as in Example 1 was performed, except that the current plate 49a was not used.
  • the air flow velocity in the portion on the first end surface T1 side is 14.6 m/s
  • the air flow velocity in the portion on the first end surface T1 side of the radially outer portion of the porous substrate 1 is 15 m/s. .3 m/s.
  • Example 2 The same operation as in Example 2 was performed, except that the current plate 49a was not used.
  • the flow velocity of air in the portion on the side of the first end surface T1 is 12.1 m/s
  • the flow velocity of air in the portion on the side of the first end surface T1 among the radially outer portions of the porous substrate 1 is 11 m/s. .1 m/s.
  • SYMBOLS 1 Porous base material, 11... Cylindrical part, 12... Partition part, 13... Cell, 13a... First cell, 13b... Second cell, T1 (S1) ... first end face, T11 ... outer edge region of the first end face, T12 ... central region of the first end face, T2 (S2) ... second end face, T21 ... outer edge region of the second end face , T22... Central region of the second end surface, 100... Structure manufacturing apparatus, 2... Base material processing unit, 3... Control unit, 4... Coating processing unit, 40... Rectification Members 40a... Straightening member according to the first embodiment 40b... Straightening member according to the second embodiment 41... Base material holding part 42... Slurry supply part 43... Nozzle Moving mechanism 44 Jig 45 First base material fixing part 46 Slurry suction part 47 Suction tube moving mechanism 48 Second base material fixing part 49a Straightening plate 49b First straightening plate 50 Second straightening plate G Through hole M Slurry N Slurry layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The purpose of the present invention is to provide an apparatus and a method whereby it becomes possible to reduce the difference between the length of a slurry layer formed in an inside part of a wall-flow-type substrate when observed in the direction of diameter of the wall-flow-type substrate and the length of the slurry layer formed in an outside part of the wall-flow-type substrate when observed in the direction of diameter of the wall-flow-type substrate. In the apparatus and the method, when a slurry M supplied to a first edge surface (T1) of a porous substrate (1) is absorbed from the side of a second edge surface (T2) of the porous substrate (1), a flow straightening member (40) that covers a center region (T12, T22) of either one of the first edge surface (T1) or the second edge surface (T2) and exposes at least a portion of an outer edge region (T11, T21) of the edge surface is provided on the side of the first edge surface (T1) or the second edge surface (T2).

Description

構造体を製造する装置及び方法Apparatus and method for manufacturing structures
 本発明は、多孔質基材と該多孔質基材に設けられた機能層(例えば、触媒層又はその前駆層)とを備える構造体(例えば、排ガス浄化用触媒又はその前駆体)を製造する装置及び方法に関する。 The present invention produces a structure (e.g., an exhaust gas purifying catalyst or its precursor) comprising a porous substrate and a functional layer (e.g., a catalyst layer or its precursor layer) provided on the porous substrate. Apparatus and method.
 従来、基材の一方の端面側に、触媒層の原料を含有するスラリーを供給し、供給されたスラリーを基材の他方の端面側から吸引し、基材にスラリー層を形成する、排ガス浄化用触媒の製造装置及び製造方法が知られている(例えば、特許文献1)。 Conventionally, a slurry containing a raw material for a catalyst layer is supplied to one end surface of a base material, and the supplied slurry is sucked from the other end surface side of the base material to form a slurry layer on the base material. A manufacturing apparatus and a manufacturing method for a catalyst for industrial use are known (for example, Patent Document 1).
 一方、排ガス浄化用触媒の基材として、ウォールフロー型基材が知られている。ウォールフロー型基材は、多孔質の筒状部と、筒状部内に設けられた多孔質の隔壁部と、隔壁部で仕切られたセルとを備える。ウォールフロー型基材におけるセルは、排ガス流入側の端部が開口し、排ガス流出側の端部が閉塞する排ガス流入側セルと、排ガス流出側の端部が開口し、排ガス流入側の端部が閉塞する排ガス流出側セルとで構成されている。ウォールフロー型基材において、排ガス流入側セルの排ガス流入側の端部(開口部)から流入した排ガスは、多孔質の隔壁部を通過して、排ガス流出側セルの排ガス流出側の端部(開口部)から流出する。この際、排ガス中の粒子状物質(PM:Particulate Matter)は、隔壁部の細孔内に捕集される。したがって、ウォールフロー型基材は、PM捕集機能を有するフィルタ、例えば、ガソリンエンジン用のパティキュレートフィルタ(GPF:Gasoline Particulate Filter)又はディーゼルエンジン用のパティキュレートフィルタ(DPF:Diesel Particulate Filter)として有用である。 On the other hand, wall-flow type substrates are known as substrates for exhaust gas purification catalysts. The wall-flow type substrate includes a porous tubular portion, porous partition walls provided in the tubular portion, and cells partitioned by the partition walls. The cells in the wall flow type substrate are divided into an exhaust gas inflow side cell whose end on the exhaust gas inflow side is open and an end on the exhaust gas outflow side is closed, and an exhaust gas inflow side cell whose end is open on the exhaust gas outflow side and is closed on the exhaust gas inflow side. It is composed of an exhaust gas outflow side cell that is closed. In the wall-flow type substrate, the exhaust gas that has flowed in from the exhaust gas inflow side end (opening) of the exhaust gas inflow side cell passes through the porous partition wall and reaches the exhaust gas outflow side end of the exhaust gas outflow side cell ( opening). At this time, particulate matter (PM) in the exhaust gas is trapped in the pores of the partition wall. Therefore, the wall flow type substrate is useful as a filter having a PM collection function, for example, a particulate filter for gasoline engines (GPF: Gasoline Particulate Filter) or a particulate filter for diesel engines (DPF: Diesel Particulate Filter). is.
特開2006-15205号公報Japanese Patent Application Laid-Open No. 2006-15205
 ウォールフロー型基材において、筒状部及び隔壁部はともに多孔質である。したがって、ウォールフロー型基材の一方の端面側にスラリーを供給し、供給されたスラリーをウォールフロー型基材の他方の端面側から吸引すると、ウォールフロー型基材の筒状部の外周面から空気が流入し、ウォールフロー型基材の径方向の外側部分における吸引力が、ウォールフロー型基材の径方向の内側部分における吸引力より低下する。 In the wall-flow type base material, both the tubular portion and the partition wall portion are porous. Therefore, when slurry is supplied to one end surface of the wall-flow substrate and the supplied slurry is sucked from the other end surface of the wall-flow substrate, the outer peripheral surface of the cylindrical portion of the wall-flow substrate Air flows in and the suction force at the radially outer portion of the wall-flow substrate is less than the suction force at the radially inner portion of the wall-flow substrate.
 ウォールフロー型基材において、排ガス流入側セルの内壁にスラリー層を形成する場合、ウォールフロー型基材の排ガス流入側の端面側にスラリーを供給する。ウォールフロー型基材の排ガス流入側の端面では、排ガス流入側セルの端部は開口しているが、排ガス流出側セルの端部は閉塞している。このため、ウォールフロー型基材の排ガス流入側の端面側に供給されたスラリーをウォールフロー型基材の排ガス流出側の端面側から吸引する際、吸引力がスラリーに伝わりにくく、排ガス流入側セルの内壁にスラリー層を形成しにくい。排ガス流出側セルの内壁にスラリー層を形成する場合も同様である。したがって、ウォールフロー型基材の径方向の外側部分における吸引力が、ウォールフロー型基材の径方向の内側部分における吸引力より低下すると、ウォールフロー型基材の径方向の外側部分に形成されるスラリー層の長さが、ウォールフロー型基材の径方向の内側部分に形成されるスラリー層の長さより顕著に短くなり、これにより、ウォールフロー型基材のPM捕集機能が悪化する。 When forming a slurry layer on the inner wall of the exhaust gas inflow side cell in the wall flow type substrate, the slurry is supplied to the end surface of the wall flow type substrate on the exhaust gas inflow side. At the end face of the wall flow type substrate on the exhaust gas inflow side, the ends of the exhaust gas inflow side cells are open, but the ends of the exhaust gas outflow side cells are closed. Therefore, when the slurry supplied to the end surface of the exhaust gas inflow side of the wall-flow type substrate is sucked from the end surface side of the exhaust gas outflow side of the wall-flow type substrate, the suction force is less likely to be transmitted to the slurry, and the exhaust gas inflow side cell It is difficult to form a slurry layer on the inner wall of the The same applies to forming a slurry layer on the inner wall of the exhaust gas outflow side cell. Therefore, when the suction force at the radially outer portion of the wall-flow substrate is lower than the suction force at the radially inner portion of the wall-flow substrate, a The length of the slurry layer formed on the wall-flow substrate becomes significantly shorter than the length of the slurry layer formed on the radially inner portion of the wall-flow substrate, thereby degrading the PM trapping function of the wall-flow substrate.
 そこで、本発明は、多孔質基材と該多孔質基材に設けられた機能層(例えば、触媒層又はその前駆層)とを備える構造体(例えば、排ガス浄化用触媒又はその前駆体)を製造する装置及び方法であって、ウォールフロー型基材の径方向の内側部分に形成されるスラリー層の長さと、ウォールフロー型基材の径方向の外側部分に形成されるスラリー層の長さとの差を小さくすることができる装置及び方法を提供することを目的とする。 Therefore, the present invention provides a structure (e.g., an exhaust gas purification catalyst or its precursor) comprising a porous substrate and a functional layer (e.g., a catalyst layer or its precursor layer) provided on the porous substrate. An apparatus and method for manufacturing, wherein the length of the slurry layer formed on the radially inner portion of the wall-flow substrate and the length of the slurry layer formed on the radially outer portion of the wall-flow substrate It is an object of the present invention to provide an apparatus and method capable of reducing the difference in
 上記課題を解決するために、本発明は、構造体を製造する装置であって、
 前記構造体は、
 軸方向に延在する多孔質基材と、
 前記多孔質基材に設けられた機能層と、を備え、
 前記多孔質基材は、
 前記軸方向の一方側に位置する第1端面と、
 前記軸方向の他方側に位置する第2端面と、
 前記軸方向に延在し、前記第1端面側の端部が開口し、前記第2端面側の端部が閉塞する第1セルと、
 前記軸方向に延在し、前記第2端面側の端部が開口し、前記第1端面側の端部が閉塞する第2セルと、を備え、
 前記装置は、
 前記第1端面側に、前記機能層の原料を含有するスラリーを供給するスラリー供給部と、
 前記第1端面側に供給された前記スラリーを前記第2端面側から吸引し、前記第1セルの内壁に、前記第2端面に達しないスラリー層を形成するスラリー吸引部と、
 前記第1端面側に供給された前記スラリーが前記第2端面側から吸引される際、前記第1端面側又は前記第2端面側に配置され、前記第1端面又は前記第2端面のうち、中央領域の少なくとも一部を被覆し、外縁領域の少なくとも一部を露出させる整流部材と、を備える、前記装置を提供する。
In order to solve the above problems, the present invention provides an apparatus for manufacturing a structure,
The structure is
an axially extending porous substrate;
and a functional layer provided on the porous substrate,
The porous substrate is
a first end face positioned on one side in the axial direction;
a second end face located on the other side in the axial direction;
a first cell extending in the axial direction and having an open end on the first end surface side and a closed end on the second end surface side;
a second cell extending in the axial direction, having an open end on the second end face side and a closed end on the first end face side;
The device comprises:
a slurry supply unit that supplies a slurry containing raw materials for the functional layer to the first end face side;
a slurry suction part that sucks the slurry supplied to the first end face side from the second end face side and forms a slurry layer that does not reach the second end face on the inner wall of the first cell;
When the slurry supplied to the first end face side is sucked from the second end face side, the slurry is arranged on the first end face side or the second end face side, a rectifying member that covers at least a portion of the central region and exposes at least a portion of the outer edge region.
 また、本発明は、構造体を製造する方法であって、
 前記構造体は、
 軸方向に延在する多孔質基材と、
 前記多孔質基材に設けられた機能層と、を備え、
 前記多孔質基材は、
 前記軸方向の一方側に位置する第1端面と、
 前記軸方向の他方側に位置する第2端面と、
 前記軸方向に延在し、前記第1端面側の端部が開口し、前記第2端面側の端部が閉塞する第1セルと、
 前記軸方向に延在し、前記第2端面側の端部が開口し、前記第1端面側の端部が閉塞する第2セルと、を備え、
 前記方法は、以下の工程:
(a)前記第1端面側に、前記機能層の原料を含有するスラリーを供給する工程;及び
(b)前記第1端面側に供給された前記スラリーを前記第2端面側から吸引し、前記第1セルの内壁に、前記第2端面に達しないスラリー層を形成する工程
を含み、
 工程(b)において、前記第1端面側に供給された前記スラリーを前記第2端面側から吸引する際、前記第1端面又は前記第2端面のうち、中央領域の少なくとも一部を被覆し、外縁領域の少なくとも一部を露出させる整流部材が、前記第1端面側又は前記第2端面側に配置される、前記方法を提供する。
The present invention also provides a method of manufacturing a structure, comprising:
The structure is
an axially extending porous substrate;
and a functional layer provided on the porous substrate,
The porous substrate is
a first end face positioned on one side in the axial direction;
a second end face located on the other side in the axial direction;
a first cell extending in the axial direction and having an open end on the first end surface side and a closed end on the second end surface side;
a second cell extending in the axial direction, having an open end on the second end face side and a closed end on the first end face side;
The method comprises the steps of:
(a) supplying a slurry containing raw materials for the functional layer to the first end face; and (b) sucking the slurry supplied to the first end face from the second end face, forming a slurry layer that does not reach the second end surface on the inner wall of the first cell;
In step (b), when sucking the slurry supplied to the first end face side from the second end face side, covering at least part of a central region of the first end face or the second end face, The above method is provided, wherein the rectifying member that exposes at least part of the outer edge region is arranged on the first end face side or the second end face side.
 本発明によれば、多孔質基材と該多孔質基材に設けられた機能層(例えば、触媒層又はその前駆層)とを備える構造体(例えば、排ガス浄化用触媒又はその前駆体)を製造する装置及び方法であって、ウォールフロー型基材の径方向の内側部分に形成されるスラリー層の長さと、ウォールフロー型基材の径方向の外側部分に形成されるスラリー層の長さとの差を小さくすることができる装置及び方法が提供される。 According to the present invention, a structure (e.g., an exhaust gas purification catalyst or its precursor) comprising a porous substrate and a functional layer (e.g., a catalyst layer or its precursor layer) provided on the porous substrate is provided. An apparatus and method for manufacturing, wherein the length of the slurry layer formed on the radially inner portion of the wall-flow substrate and the length of the slurry layer formed on the radially outer portion of the wall-flow substrate Apparatus and methods are provided that can reduce the difference in .
図1は、一実施形態に係る多孔質基材の側面図である。FIG. 1 is a side view of a porous substrate according to one embodiment. 図2は、図1のA-A線端面図である。FIG. 2 is an end view taken along the line AA of FIG. 1. FIG. 図3は、図2中の符号Rで示す領域の拡大図である。FIG. 3 is an enlarged view of the area indicated by symbol R in FIG. 図4は、図1のB-B線端面図である。4 is an end view taken along the line BB of FIG. 1. FIG. 図5は、一実施形態に係る構造体製造装置の構成を示す概略図である。FIG. 5 is a schematic diagram showing the configuration of a structure manufacturing apparatus according to one embodiment. 図6は、一実施形態に係る基材処理部の構成を示す概略平面図である。FIG. 6 is a schematic plan view showing the configuration of a base material processing section according to one embodiment. 図7は、一実施形態に係るコーティング処理部の構成を示す概略一部端面図である。なお、図7は、多孔質基材に対してコーティング処理が行われる前の状態を示す。FIG. 7 is a schematic partial end view showing the configuration of the coating processing section according to one embodiment. In addition, FIG. 7 shows the state before the coating process is performed on the porous substrate. 図8は、一実施形態に係るコーティング処理部の構成を示す概略一部端面図である。なお、図8は、多孔質基材に対してコーティング処理が行われる際の状態を示す。FIG. 8 is a schematic partial end view showing the configuration of the coating processing section according to one embodiment. In addition, FIG. 8 shows the state when the coating process is performed on the porous substrate. 図9は、一実施形態に係る多孔質基材の第2端面の平面図である。FIG. 9 is a plan view of the second end surface of the porous substrate according to one embodiment. 図10は、一実施形態に係るコーティング処理後の多孔質基材の端面図(図4に対応する端面図)である。FIG. 10 is an end view (end view corresponding to FIG. 4) of the porous substrate after coating treatment according to one embodiment. 図11は、第1実施形態に係る整流部材が設けられている吸引管の内部の拡大図である。FIG. 11 is an enlarged view of the inside of the suction tube provided with the straightening member according to the first embodiment. 図12は、第1実施形態に係る整流部材が備える整流板の平面図である。FIG. 12 is a plan view of a rectifying plate included in the rectifying member according to the first embodiment; 図13は、第2実施形態に係る整流部材が設けられている吸引管の内部の拡大図である。FIG. 13 is an enlarged view of the inside of a suction tube provided with a straightening member according to the second embodiment. 図14は、第2実施形態に係る整流部材が備える第1整流板の平面図である。FIG. 14 is a plan view of a first straightening vane included in the straightening member according to the second embodiment. 図15は、第2実施形態に係る整流部材が備える第2整流板の平面図である。FIG. 15 is a plan view of a second rectifying plate included in the rectifying member according to the second embodiment. 図16は、図12に示す整流板の第2部分に貫通孔が形成されている一実施形態を示す平面図である。16 is a plan view showing an embodiment in which a through hole is formed in the second portion of the rectifying plate shown in FIG. 12. FIG. 図17は、図15に示す第2整流板に貫通孔が形成されている一実施形態を示す平面図である。17 is a plan view showing an embodiment in which through holes are formed in the second current plate shown in FIG. 15. FIG. 図18は、変更例に係る整流板の平面図である。FIG. 18 is a plan view of a current plate according to a modification. 図19は、吸引管と、吸引管内に進入した多孔質基材の第2端面側の端部との間に隙間が形成される変形例を説明するための端面図である。FIG. 19 is an end view for explaining a modification in which a gap is formed between the suction tube and the end portion of the porous substrate on the second end surface side that has entered the suction tube. 図20は、変更例に係るコーティング処理部の構成を示す概略一部端面図である。なお、図20は、多孔質基材に対してコーティング処理が行われる際の状態を示す。FIG. 20 is a schematic partial end view showing the configuration of a coating processing section according to a modification. In addition, FIG. 20 shows the state when the coating process is performed on the porous substrate. 図21は、変更例に係る多孔質基材の第1端面の平面図である。FIG. 21 is a plan view of the first end surface of the porous base material according to the modification. 図22は、変更例に係る整流板の平面図である。FIG. 22 is a plan view of a current plate according to a modification. 図23は、変更例に係るコーティング処理部の構成を示す概略一部端面図である。なお、図23は、多孔質基材に対してスラリー供給処理及びコーティング処理が行われる前の状態を示す。FIG. 23 is a schematic partial end view showing the configuration of a coating processing section according to a modification. In addition, FIG. 23 shows the state before the slurry supply process and the coating process are performed on the porous substrate. 図24は、変更例に係るコーティング処理部の構成を示す概略一部端面図である。なお、図24は、多孔質基材に対してスラリー供給処理が行われる際の状態を示す。FIG. 24 is a schematic partial end view showing the configuration of a coating processing section according to a modification. In addition, FIG. 24 shows the state when the slurry supply process is performed on the porous substrate. 図25は、変更例に係るコーティング処理部の構成を示す概略一部端面図である。なお、図25は、多孔質基材に対してコーティング処理が行われる際の状態を示す。FIG. 25 is a schematic partial end view showing the configuration of a coating processing section according to a modification. In addition, FIG. 25 shows the state when the coating process is performed on the porous substrate. 図26は、多孔質基材の径方向の外側部分及び内側部分を説明するための図である。FIG. 26 is a diagram for explaining the radial outer portion and inner portion of the porous substrate.
≪多孔質基材≫
 以下、図1~4を参照して、本発明で使用される多孔質基材の実施形態について説明する。図1は、多孔質基材1の側面図であり、図2は、図1のA-A線端面図であり、図3は、図2中の符号Rで示す領域の拡大図であり、図4は、図1のB-B線端面図である。
<<Porous substrate>>
Hereinafter, embodiments of the porous substrate used in the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is a side view of the porous substrate 1, FIG. 2 is an end view of the AA line in FIG. 1, and FIG. 3 is an enlarged view of the region indicated by symbol R in FIG. 4 is an end view taken along the line BB of FIG. 1. FIG.
 多孔質基材1は、空気が通過可能な多孔質構造を有する。多孔質基材1を構成する材料は特に限定されず、排ガス浄化用触媒の分野で一般的に使用されている材料から適宜選択することができる。構成材料は、高温(例えば400℃以上)の排ガスに曝露された場合にも多孔質基材1の形状を安定して維持し得ることが好ましい。構成材料としては、例えば、セラミックス等が挙げられる。セラミックスとしては、例えば、アルミナ、ジルコニア、ムライト、ジルコン、コージェライト、チタン酸アルミニウム、炭化ケイ素、窒化ケイ素、窒化ホウ素等が挙げられる。 The porous substrate 1 has a porous structure through which air can pass. The material constituting the porous substrate 1 is not particularly limited, and can be appropriately selected from materials commonly used in the field of exhaust gas purification catalysts. The constituent material is preferably capable of stably maintaining the shape of the porous substrate 1 even when exposed to high-temperature (for example, 400° C. or higher) exhaust gas. Examples of constituent materials include ceramics. Examples of ceramics include alumina, zirconia, mullite, zircon, cordierite, aluminum titanate, silicon carbide, silicon nitride, and boron nitride.
 図1に示すように、多孔質基材1は、軸方向Xに延在し、軸方向Xの一方側に位置する端面S1及び軸方向Xの他方側に位置する端面S2を有する。 As shown in FIG. 1, the porous substrate 1 extends in the axial direction X and has an end surface S1 located on one side in the axial direction X and an end surface S2 located on the other side in the axial direction X.
 多孔質基材1の長さP1は、例えば、40mm以上300mm以下であり、多孔質基材1の端面S1及びS2の径P2は、例えば、30mm以上250mm以下である。なお、多孔質基材1の端面S1及びS2の径P2は、多孔質基材1の端面S1及びS2が円形である場合には、当該円形の直径を意味し、多孔質基材1の端面S1及びS2が円形以外の形状(例えば、四角形等の多角形)である場合には、当該形状に外接する円形の直径を意味する。 The length P1 of the porous substrate 1 is, for example, 40 mm or more and 300 mm or less, and the diameter P2 of the end surfaces S1 and S2 of the porous substrate 1 is, for example, 30 mm or more and 250 mm or less. The diameter P2 of the end surfaces S1 and S2 of the porous substrate 1 means the diameter of the circle when the end surfaces S1 and S2 of the porous substrate 1 are circular. When S1 and S2 are shapes other than circles (for example, polygons such as squares), they refer to diameters of circles circumscribing the shapes.
 図2~4に示すように、多孔質基材1は、多孔質基材1の外形を規定する多孔質の筒状部11と、筒状部11内に設けられた多孔質の隔壁部12と、隔壁部12で仕切られたセル13とを備える。 As shown in FIGS. 2 to 4, the porous substrate 1 includes a porous tubular portion 11 that defines the outer shape of the porous substrate 1, and a porous partition wall portion 12 provided in the tubular portion 11. and cells 13 partitioned by partition walls 12 .
 筒状部11及び隔壁部12はともに、空気が通過可能な多孔質構造を有する。一実施形態において、筒状部11及び隔壁部12は、一体成型されている。別の実施形態において、筒状部11及び隔壁部12は、別体であり、互いに接合されている。筒状部11の多孔性と、隔壁部12の多孔性とは、同程度であってもよいし、同程度でなくてもよい。 Both the tubular portion 11 and the partition wall portion 12 have a porous structure through which air can pass. In one embodiment, the tubular portion 11 and the partition wall portion 12 are integrally molded. In another embodiment, the tubular portion 11 and the partition portion 12 are separate and joined together. The porosity of the tubular portion 11 and the porosity of the partition wall portion 12 may or may not be the same.
 筒状部11及び隔壁部12の厚みは適宜調整可能であるが、筒状部11の厚みは、例えば、100μm以上3000μm以下であり、隔壁部12の厚みは、例えば、20μm以上1500μm以下である。 The thickness of the cylindrical portion 11 and the partition wall portion 12 can be adjusted as appropriate. The thickness of the cylindrical portion 11 is, for example, 100 μm or more and 3000 μm or less, and the thickness of the partition wall portion 12 is, for example, 20 μm or more and 1500 μm or less. .
 図2に示すように、筒状部11は、円筒状であるが、筒状部11の形状は、適宜変更可能である。筒状部11は、例えば、楕円筒状、角筒状等であってもよい。 As shown in FIG. 2, the cylindrical portion 11 is cylindrical, but the shape of the cylindrical portion 11 can be changed as appropriate. The tubular portion 11 may be, for example, an elliptical tubular shape, a rectangular tubular shape, or the like.
 図3に示すように、セル13の平面視形状は、正方形であるが、セル13の平面視形状は、適宜変更可能である。セル13の平面視形状は、例えば、正方形以外の四角形、正三角形等の三角形、正六角形等の六角形、正八角形等の八角形、円形、楕円形等であってもよい。 As shown in FIG. 3, the planar view shape of the cell 13 is square, but the planar view shape of the cell 13 can be changed as appropriate. The planar shape of the cell 13 may be, for example, a quadrangle other than a square, a triangle such as a regular triangle, a hexagon such as a regular hexagon, an octagon such as a regular octagon, a circle, or an oval.
 図3に示すように、隣接するセル13の間には隔壁部12が存在し、隣接するセル13は隔壁部12によって仕切られている。 As shown in FIG. 3, partition walls 12 exist between adjacent cells 13, and the adjacent cells 13 are partitioned by the partition walls 12.
 図4に示すように、隔壁部12及びセル13は軸方向Xに延在する。 As shown in FIG. 4, the partition 12 and the cells 13 extend in the axial direction X.
 図4に示すように、多孔質基材1は、ウォールフロー型基材である。すなわち、多孔質基材1は、一部のセル13の端面S2側の端部を封止する封止部14と、残りのセル13の端面S1側の端部を封止する封止部15とを有する。これにより、一部のセル13は、軸方向Xに延在し、端面S1側の端部が開口し、端面S2側の端部が封止部14で閉塞するセル13aとなっており、残りのセル13は、軸方向Xに延在し、端面S2側の端部が開口し、端面S1側の端部が封止部15で閉塞するセル13bとなっている。 As shown in FIG. 4, the porous substrate 1 is a wall flow type substrate. That is, the porous substrate 1 includes a sealing portion 14 that seals the ends of some of the cells 13 on the side of the end surface S2 and a sealing portion 15 that seals the ends of the remaining cells 13 on the side of the end surface S1. and As a result, some of the cells 13 extend in the axial direction X and form cells 13a whose ends on the side of the end face S1 are open and whose ends on the side of the end face S2 are closed by the sealing portion 14. The cell 13 extends in the axial direction X and is a cell 13 b whose end on the side of the end surface S2 is open and whose end on the side of the end surface S1 is closed by the sealing portion 15 .
 図4に示すように、セル13a及び13bは、1個のセル13aの周りに複数個(例えば4個)のセル13bが隣接するように配置されており、セル13aと、該セル13aに隣接するセル13bとは、隔壁部12によって仕切られている。 As shown in FIG. 4, the cells 13a and 13b are arranged such that a plurality of (for example, four) cells 13b are adjacent to one cell 13a. The cell 13b is partitioned by the partition wall portion 12. As shown in FIG.
 多孔質基材1の1平方インチあたりのセル13の個数は適宜調整可能であるが、例えば、100セル/インチ以上1000セル/インチ以下である。多孔質基材1の1平方インチあたりのセル13の個数は、多孔質基材1を軸方向Xと垂直な平面で切断して得られる切断面における1平方インチあたりのセル13a及びセル13bの合計個数である。 The number of cells 13 per square inch of the porous substrate 1 can be adjusted as appropriate, but is, for example, 100 cells/inch 2 or more and 1000 cells/inch 2 or less. The number of cells 13 per square inch of the porous substrate 1 is the number of cells 13a and cells 13b per square inch on a cut surface obtained by cutting the porous substrate 1 along a plane perpendicular to the axial direction X. total number.
≪構造体製造装置≫
 以下、図面を参照して、本発明の構造体製造装置の実施形態について説明する。
≪Structure Manufacturing Equipment≫
An embodiment of a structure manufacturing apparatus of the present invention will be described below with reference to the drawings.
<構造体製造装置の構成>
 以下、図5を参照して、一実施形態に係る構造体製造装置の構成について説明する。図5は、構造体製造装置100の構成を示す概略図である。
<Configuration of Structure Manufacturing Equipment>
Hereinafter, the configuration of the structure manufacturing apparatus according to one embodiment will be described with reference to FIG. FIG. 5 is a schematic diagram showing the configuration of the structure manufacturing apparatus 100. As shown in FIG.
 図5に示すように、構造体製造装置100は、基材処理部2と、基材処理部2の動作を制御する制御部3とを備える。 As shown in FIG. 5 , the structure manufacturing apparatus 100 includes a base material processing section 2 and a control section 3 that controls the operation of the base material processing section 2 .
 基材処理部2は、多孔質基材1に対する各種処理を行う。基材処理部2が行う各種処理については後述する。 The base material treatment section 2 performs various treatments on the porous base material 1 . Various processes performed by the base material processing section 2 will be described later.
 制御部3は、例えばコンピュータであり、主制御部と記憶部とを備える。主制御部は、例えばCPU(Central Processing Unit)で構成されており、記憶部に記憶されているプログラムを読み出して実行することにより、基材処理部2の動作を制御する。 The control unit 3 is, for example, a computer, and includes a main control unit and a storage unit. The main control section is composed of, for example, a CPU (Central Processing Unit), and controls the operation of the base material processing section 2 by reading and executing a program stored in the storage section.
<基材処理部の構成>
 図6を参照して、一実施形態に係る基材処理部の構成について説明する。図6は、基材処理部2の構成を示す概略平面図である。図6中の点線は、多孔質基材1を表す。
<Configuration of base material processing unit>
The configuration of the base material processing section according to one embodiment will be described with reference to FIG. 6 . FIG. 6 is a schematic plan view showing the configuration of the base material processing section 2. As shown in FIG. A dotted line in FIG. 6 represents the porous substrate 1 .
 図6に示すように、基材処理部2は、搬入出ステーション21と、搬入出ステーション21に隣接して設けられた処理ステーション22とを備える。 As shown in FIG. 6 , the base material processing section 2 includes a loading/unloading station 21 and a processing station 22 provided adjacent to the loading/unloading station 21 .
 図6に示すように、搬入出ステーション21は、載置部211を備える。載置部211には、多孔質基材1が載置される。 As shown in FIG. 6 , the loading/unloading station 21 includes a placement section 211 . The porous substrate 1 is mounted on the mounting portion 211 .
 図6に示すように、処理ステーション22は、所定方向に延在する搬送路221と、搬送路221に設けられた搬送機構222とを備える。搬送機構222は、多孔質基材1を保持する保持機構を備え、水平方向及び鉛直方向への移動並びに鉛直軸を中心とする旋回が可能となるように構成されている。 As shown in FIG. 6, the processing station 22 includes a transport path 221 extending in a predetermined direction, and a transport mechanism 222 provided on the transport path 221 . The transport mechanism 222 includes a holding mechanism that holds the porous substrate 1, and is configured to be capable of horizontal and vertical movement and rotation about the vertical axis.
 図6に示すように、処理ステーション22は、コーティング処理部4を備える。 As shown in FIG. 6 , the processing station 22 includes a coating processing section 4 .
 処理ステーション22は、焼成処理部を備えていてもよい。焼成処理部は、コーティング処理部4によってコーティング処理が施された多孔質基材1を、必要に応じて乾燥した後、焼成する。 The processing station 22 may include a baking processing section. The baking treatment section dries the porous substrate 1 coated by the coating treatment section 4 as necessary, and then bakes it.
 搬送機構222は、載置部211とコーティング処理部4との間で、多孔質基材1の搬送を行う。例えば、搬送機構222は、載置部211に載置された多孔質基材1をコーティング処理部4へ搬入し、コーティング処理後の多孔質基材1をコーティング処理部4から搬出して載置部211に載置する。搬送機構222は、コーティング処理部4と焼成処理部との間、及び、焼成処理部と載置部211との間で、多孔質基材1の搬送を行ってもよい。例えば、搬送機構222は、載置部211に載置された多孔質基材1をコーティング処理部4へ搬入し、コーティング処理後の多孔質基材1をコーティング処理部4から搬出して焼成処理部へ搬入し、焼成処理後の多孔質基材1を焼成処理部から搬出して載置部211に載置してもよい。 The transport mechanism 222 transports the porous substrate 1 between the placing section 211 and the coating processing section 4 . For example, the transport mechanism 222 carries the porous substrate 1 placed on the placement unit 211 into the coating processing unit 4, carries out the coated porous substrate 1 from the coating processing unit 4, and places it. It is placed on the part 211 . The transport mechanism 222 may transport the porous substrate 1 between the coating processing section 4 and the firing processing section and between the firing processing section and the placing section 211 . For example, the transport mechanism 222 carries the porous substrate 1 placed on the placement unit 211 into the coating processing unit 4, carries out the coated porous substrate 1 from the coating processing unit 4, and bakes it. The porous substrate 1 after the baking treatment may be carried out from the baking treatment part and placed on the placing part 211 .
<コーティング処理部の構成>
 図7~10を参照して、一実施形態に係るコーティング処理部の構成について説明する。図7及び8は、コーティング処理部4の構成を示す概略一部端面図であり、図9は、多孔質基材1の第2端面T2の平面図であり、図10は、コーティング処理後の多孔質基材1の端面図(図4に対応する端面図)である。なお、図7は、多孔質基材1に対してコーティング処理が行われる前の状態を示し、図8は、多孔質基材1に対してコーティング処理が行われる際の状態を示す。
<Configuration of Coating Processing Unit>
The configuration of the coating processor according to one embodiment will be described with reference to FIGS. 7 to 10. FIG. 7 and 8 are schematic partial end views showing the configuration of the coating processing section 4, FIG. 9 is a plan view of the second end surface T2 of the porous substrate 1, and FIG. 5 is an end view of the porous substrate 1 (end view corresponding to FIG. 4). FIG. 7 shows the state before the coating process is performed on the porous substrate 1, and FIG. 8 shows the state when the coating process is performed on the porous substrate 1. As shown in FIG.
 コーティング処理部4は、多孔質基材1に対するコーティング処理を行う。コーティング処理では、多孔質基材1にスラリーMがコーティングされ、多孔質基材1にスラリー層Nが形成される(図10参照)。スラリー層Nは、必要に応じて乾燥された後、焼成されることにより、触媒層となる。 The coating processing unit 4 performs coating processing on the porous substrate 1 . In the coating process, the porous substrate 1 is coated with the slurry M to form a slurry layer N on the porous substrate 1 (see FIG. 10). The slurry layer N becomes a catalyst layer by being dried as necessary and then calcined.
 図7及び8に示すように、コーティング処理部4は、チャンバCを備える。多孔質基材1に対するコーティング処理は、チャンバC内で行われる。 As shown in FIGS. 7 and 8, the coating processing section 4 includes a chamber C. A coating process for the porous substrate 1 is performed in the chamber C. As shown in FIG.
 図7及び8に示すように、コーティング処理部4は、多孔質基材1を保持する基材保持部41を備える。多孔質基材1に対するコーティング処理は、多孔質基材1が基材保持部41に保持された状態で行われる。 As shown in FIGS. 7 and 8, the coating processing section 4 includes a substrate holding section 41 that holds the porous substrate 1 . The coating process for the porous substrate 1 is performed while the porous substrate 1 is held by the substrate holder 41 .
 基材保持部41は、多孔質基材1を保持する保持機構を有する。基材保持部41は、例えば、ハンドチャック等のチャック機構を有し、チャック機構によって多孔質基材1の筒状部11の中央部を把持することにより、多孔質基材1を保持する。基材保持部41は、保持した多孔質基材1の、水平方向及び鉛直方向への移動、鉛直軸を中心とする回転、水平軸を中心とする回転等が可能となるように構成されていてもよい。 The substrate holding part 41 has a holding mechanism that holds the porous substrate 1 . The substrate holding unit 41 has, for example, a chuck mechanism such as a hand chuck, and holds the porous substrate 1 by gripping the central portion of the cylindrical portion 11 of the porous substrate 1 with the chuck mechanism. The substrate holding unit 41 is configured so that the held porous substrate 1 can be moved in horizontal and vertical directions, rotated around the vertical axis, rotated around the horizontal axis, and the like. may
 図7及び8に示すように、基材保持部41は、多孔質基材1の第1端面T1がスラリー供給部42のノズル422側(図7及び8の上側)を向き、多孔質基材1の第2端面T2がスラリー吸引部46の吸引管461側(図7及び8の下側)を向くように、多孔質基材1を保持する。 As shown in FIGS. 7 and 8, the substrate holding portion 41 is configured such that the first end surface T1 of the porous substrate 1 faces the nozzle 422 side of the slurry supply portion 42 (upper side in FIGS. 7 and 8), and the porous substrate The porous substrate 1 is held so that the second end face T2 of the substrate 1 faces the suction pipe 461 side of the slurry suction part 46 (lower side in FIGS. 7 and 8).
 多孔質基材1の第1端面T1は、多孔質基材1の端面S1及びS2のうちの一方であり、多孔質基材1の第2端面T2は、多孔質基材1の端面S1及びS2のうちの他方である。すなわち、多孔質基材1の端面S1にスラリーMが供給され、供給されたスラリーMが多孔質基材1の端面S2側から吸引される場合、端面S1が第1端面T1に、端面S2が第2端面T2に該当し、多孔質基材1の端面S2にスラリーMが供給され、供給されたスラリーが多孔質基材1の端面S1側から吸引される場合、端面S2が第1端面T1に該当し、端面S1が第2端面T2に該当する。本実施形態では、端面S1が第1端面T1であり、端面S2が第2端面T2である。 The first end surface T1 of the porous substrate 1 is one of the end surfaces S1 and S2 of the porous substrate 1, and the second end surface T2 of the porous substrate 1 is the end surface S1 and S2 of the porous substrate 1. The other of S2. That is, when the slurry M is supplied to the end surface S1 of the porous substrate 1 and the supplied slurry M is sucked from the end surface S2 side of the porous substrate 1, the end surface S1 is the first end surface T1, and the end surface S2 is the first end surface T1. When the slurry M is supplied to the end surface S2 of the porous substrate 1 and the supplied slurry is sucked from the end surface S1 side of the porous substrate 1, the end surface S2 corresponds to the second end surface T2. , and the end surface S1 corresponds to the second end surface T2. In this embodiment, the end surface S1 is the first end surface T1, and the end surface S2 is the second end surface T2.
 図9に示すように、多孔質基材1の第2端面T2は、境界線L2によって、第2端面T2の径方向の外側に位置する環状(例えば円環状)の外縁領域T21と、外縁領域T21の内側に位置する中央領域T22とに区画される。境界線L2は仮想線である。なお、図9において、第2端面T2に存在するセル13bの開口部は省略されている。 As shown in FIG. 9 , the second end face T2 of the porous substrate 1 includes an annular (for example, annular) outer edge region T21 located radially outside the second end face T2 and an outer edge region T21 located radially outward of the second end face T2. It is partitioned into a central region T22 located inside T21. Boundary line L2 is a virtual line. In FIG. 9, the openings of the cells 13b present on the second end surface T2 are omitted.
 中央領域T22の面積は、第2端面T2の面積の40%以上90%以下であることが好ましく、65%以上85%以下であることがより好ましい。 The area of the central region T22 is preferably 40% or more and 90% or less of the area of the second end surface T2, and more preferably 65% or more and 85% or less.
 中央領域T22の形状と第2端面T2の形状とは、相似形状であることが好ましい。中央領域T22の形状は、中央領域T22の外形線(すなわち、境界線L2)により規定される形状を意味し、第2端面T2の形状は、第2端面T2の外形線により規定される形状を意味する。 The shape of the central region T22 and the shape of the second end face T2 are preferably similar shapes. The shape of the central region T22 means the shape defined by the outline of the central region T22 (that is, the boundary line L2), and the shape of the second end surface T2 means the shape defined by the outline of the second end surface T2. means.
 外縁領域T21は、中央領域T22の形状と第2端面T2の形状とが相似形状となるように、第2端面T2の外形線に沿って所定の幅で形成されていることが好ましい。中央領域T22の形状と第2端面T2の形状とが相似形状となる限り、外縁領域T21の幅は一定であってもよいし、一定でなくてもよい。 The outer edge region T21 is preferably formed with a predetermined width along the outline of the second end face T2 so that the shape of the central region T22 and the shape of the second end face T2 are similar. As long as the shape of the central region T22 and the shape of the second end surface T2 are similar, the width of the outer edge region T21 may or may not be constant.
 搬送機構222によってコーティング処理部4へ搬入された多孔質基材1は、そのまま、搬送機構222によって保持されてもよい。この場合、搬送機構222は、基材保持部41として機能する。 The porous substrate 1 carried into the coating processing section 4 by the transport mechanism 222 may be held by the transport mechanism 222 as it is. In this case, the transport mechanism 222 functions as the substrate holder 41 .
 図7及び8に示すように、コーティング処理部4は、多孔質基材1の第1端面T1側にスラリーMを供給するスラリー供給部42を備える。 As shown in FIGS. 7 and 8, the coating processing section 4 includes a slurry supply section 42 that supplies the slurry M to the first end surface T1 side of the porous substrate 1 .
 図7及び8に示すように、スラリー供給部42は、スラリーMが貯留されている貯留槽421と、多孔質基材1の第1端面T1に向けてスラリーMを吐出するノズル422と、貯留槽421中のスラリーMをノズル422に供給する供給管423とを備える。 As shown in FIGS. 7 and 8, the slurry supply unit 42 includes a storage tank 421 in which the slurry M is stored, a nozzle 422 for discharging the slurry M toward the first end surface T1 of the porous substrate 1, and a storage and a supply pipe 423 for supplying the slurry M in the tank 421 to the nozzle 422 .
 スラリー供給部42は、貯留槽421中のスラリーMを、供給管423を通じてノズル422に供給し、ノズル422から多孔質基材1の第1端面T1に吐出することにより、多孔質基材1の第1端面T1にスラリーMを供給する。 The slurry supply unit 42 supplies the slurry M in the storage tank 421 to the nozzle 422 through the supply pipe 423 and discharges the slurry M from the nozzle 422 onto the first end surface T1 of the porous substrate 1, whereby the porous substrate 1 is A slurry M is supplied to the first end face T1.
 スラリーMは、多孔質基材1に設けられる機能層の原料を含有する。 The slurry M contains raw materials for the functional layer provided on the porous substrate 1 .
 スラリーMの粘度は、コーン・アンド・プレート型の粘度計を使用し、25℃の温度で、せん断速度を380s-1として測定した場合、例えば、100mPa・s以上1000mPa・s以下であり、せん断速度を4s-1として測定した場合、例えば、1000mPa・s以上10000mPa・s以下である。 The viscosity of the slurry M is, for example, 100 mPa s or more and 1000 mPa s or less when measured using a cone and plate type viscometer at a temperature of 25 ° C. and a shear rate of 380 s -1 . When the velocity is measured as 4 s −1 , it is, for example, 1000 mPa·s or more and 10000 mPa·s or less.
 機能層は、所定の機能を有する層であり、機能層の種類は、製造すべき構造体の種類に応じて適宜選択される。 A functional layer is a layer having a predetermined function, and the type of functional layer is appropriately selected according to the type of structure to be manufactured.
 本実施形態において、製造すべき構造体は排ガス浄化用触媒又はその前駆体であり、機能層は触媒層又はその前駆層である。触媒層は、スラリー層Nが、必要に応じて乾燥された後、焼成されることにより形成される。触媒層の前駆層には、乾燥前のスラリー層N及び乾燥後のスラリー層Nが包含される。排ガス浄化用触媒は、多孔質基材1と、多孔質基材1に設けられた触媒層とを備える構造体である。排ガス浄化用触媒の前駆体には、多孔質基材1と、多孔質基材1に設けられた乾燥前のスラリー層Nとを備える構造体、及び、多孔質基材1と、多孔質基材1に設けられた乾燥後のスラリー層Nとを備える構造体が包含される。 In this embodiment, the structure to be manufactured is an exhaust gas purifying catalyst or its precursor, and the functional layer is a catalyst layer or its precursor layer. The catalyst layer is formed by calcining the slurry layer N after drying it if necessary. The precursor layer of the catalyst layer includes the slurry layer N before drying and the slurry layer N after drying. The exhaust gas purifying catalyst is a structure comprising a porous substrate 1 and a catalyst layer provided on the porous substrate 1 . The precursor of the exhaust gas purifying catalyst includes a structure including a porous substrate 1 and a slurry layer N before drying provided on the porous substrate 1, a porous substrate 1, and a porous substrate A structure comprising a slurry layer N after drying provided on the material 1 is included.
 スラリーMは、触媒活性成分及び分散媒を含有する。 The slurry M contains a catalytically active component and a dispersion medium.
 触媒活性成分としては、例えば、Au(金元素)、Ag(銀元素)、Pt(白金元素)、Pd(パラジウム元素)、Rh(ロジウム元素)、Ir(イリジウム元素)、Ru(ルテニウム元素)、Os(オスミウム元素)等の貴金属元素が挙げられる。スラリーMは、例えば、貴金属元素を、貴金属元素の供給源である貴金属元素の塩の形態で含有する。貴金属元素の塩としては、例えば、硝酸塩、アンミン錯体塩、塩化物等が挙げられる。スラリーMにおける貴金属元素の含有量は、適宜調整可能である。 Examples of catalytically active components include Au (gold element), Ag (silver element), Pt (platinum element), Pd (palladium element), Rh (rhodium element), Ir (iridium element), Ru (ruthenium element), Noble metal elements such as Os (osmium element) are included. The slurry M contains, for example, a noble metal element in the form of a salt of the noble metal element, which is a supply source of the noble metal element. Examples of salts of noble metal elements include nitrates, ammine complex salts, and chlorides. The content of the noble metal element in the slurry M can be adjusted as appropriate.
 分散媒としては、例えば、水、有機溶媒等が挙げられる。分散媒は、1種の溶媒であってもよいし、2種以上の溶媒の混合物であってもよい。有機溶媒としては、例えば、アルコール、アセトン、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられる。 Examples of dispersion media include water and organic solvents. The dispersion medium may be one solvent or a mixture of two or more solvents. Examples of organic solvents include alcohol, acetone, dimethylsulfoxide, dimethylformamide and the like.
 スラリーMは、触媒活性成分を担持する担体を含有してもよい。触媒活性成分は、例えば、担体の外表面又は細孔内表面に、物理的又は化学的に吸着又は保持されることにより、担体に担持される。 The slurry M may contain a carrier that supports catalytically active components. The catalytically active component is supported on the carrier by, for example, being physically or chemically adsorbed or retained on the outer surface or inner surface of pores of the carrier.
 担体としては、例えば、無機酸化物粒子等が挙げられる。無機酸化物粒子を構成する無機酸化物は、酸素貯蔵能(OSC:Oxygen Storage Capacity)を有する無機酸化物(以下「酸素貯蔵成分」という。)であってもよいし、酸素貯蔵成分以外の無機酸化物であってもよい。 Examples of the carrier include inorganic oxide particles. The inorganic oxide constituting the inorganic oxide particles may be an inorganic oxide having oxygen storage capacity (OSC: Oxygen Storage Capacity) (hereinafter referred to as "oxygen storage component"), or an inorganic oxide other than the oxygen storage component. It may be an oxide.
 酸素貯蔵成分としては、例えば、酸化セリウム、セリウム元素及びジルコニウム元素を含む複合酸化物(以下「CeO-ZrO系複合酸化物」という。)等が挙げられる。CeO-ZrO系複合酸化物は、セリウム元素及びジルコニウム元素以外の金属元素を含んでもよい。セリウム元素及びジルコニウム元素以外の金属元素としては、例えば、セリウム元素以外の希土類元素、アルカリ土類金属、遷移金属等が挙げられる。 Examples of the oxygen storage component include cerium oxide, composite oxides containing cerium element and zirconium element (hereinafter referred to as "CeO 2 —ZrO 2 -based composite oxide"), and the like. The CeO 2 —ZrO 2 -based composite oxide may contain metal elements other than the cerium element and the zirconium element. Examples of metal elements other than the cerium element and the zirconium element include rare earth elements other than the cerium element, alkaline earth metals, and transition metals.
 酸素貯蔵成分以外の無機酸化物としては、例えば、アルミナ、シリカ、シリカ-アルミナ、アルミノ-シリケート、アルミナ-ジルコニア、アルミナ-クロミア、アルミナ-セリア、アルミナ-ランタナ、チタニア等が挙げられる。 Examples of inorganic oxides other than oxygen storage components include alumina, silica, silica-alumina, alumino-silicate, alumina-zirconia, alumina-chromia, alumina-ceria, alumina-lanthana, and titania.
 スラリーMは、安定剤を含有してもよい。安定剤としては、例えば、アルカリ土類金属元素の硝酸塩、炭酸塩、酸化物、硫酸塩等が挙げられる。 The slurry M may contain a stabilizer. Examples of stabilizers include nitrates, carbonates, oxides and sulfates of alkaline earth metal elements.
 スラリーMは、バインダー成分を含有してもよい。バインダー成分としては、例えば、アルミナゾル等の無機系バインダーが挙げられる。 The slurry M may contain a binder component. Examples of binder components include inorganic binders such as alumina sol.
 図7及び8に示すように、コーティング処理部4は、ノズル422を移動させるノズル移動機構43を備える。 As shown in FIGS. 7 and 8, the coating processing section 4 includes a nozzle moving mechanism 43 that moves the nozzle 422. As shown in FIGS.
 図7及び8に示すように、ノズル移動機構43は、ノズル422を保持するノズル保持部431と、ノズル保持部431を昇降させる昇降機構432とを備える。 As shown in FIGS. 7 and 8, the nozzle moving mechanism 43 includes a nozzle holding portion 431 that holds the nozzle 422 and a lifting mechanism 432 that lifts and lowers the nozzle holding portion 431 .
 ノズル移動機構43は、昇降機構432によってノズル保持部431を降下させることにより、ノズル422を多孔質基材1に近づけ、図8に示すスラリー供給位置に移動させる。また、ノズル移動機構43は、昇降機構432によってノズル保持部431を上昇させることにより、ノズル422を多孔質基材1から遠ざけ、図7に示す待機位置に移動させる。ノズル422は、図8に示すスラリー供給位置において、多孔質基材1の第1端面T1に向けてスラリーMを吐出する。 The nozzle moving mechanism 43 moves the nozzle 422 closer to the porous substrate 1 by lowering the nozzle holding part 431 by the lifting mechanism 432 to the slurry supply position shown in FIG. Further, the nozzle moving mechanism 43 moves the nozzle 422 away from the porous substrate 1 and moves it to the standby position shown in FIG. The nozzle 422 discharges the slurry M toward the first end surface T1 of the porous substrate 1 at the slurry supply position shown in FIG.
 本実施形態では、ノズル移動機構43によってノズル422を移動させることにより、多孔質基材1とノズル422との相対的な位置を変化させているが、基材保持部41が多孔質基材1を移動させることにより、多孔質基材1とノズル422との相対的な位置を変化させてもよい。 In this embodiment, the relative position between the porous substrate 1 and the nozzle 422 is changed by moving the nozzle 422 with the nozzle moving mechanism 43. By moving , the relative position between the porous substrate 1 and the nozzle 422 may be changed.
 図7及び8に示すように、コーティング処理部4は、治具44を備える。  As shown in FIGS. 7 and 8, the coating processing section 4 includes a jig 44. As shown in FIG.
 図7及び8に示すように、治具44は、円筒状等の筒状であり、治具44の内径は、多孔質基材1の外径よりも大きくなっている。 As shown in FIGS. 7 and 8, the jig 44 has a tubular shape such as a cylindrical shape, and the inner diameter of the jig 44 is larger than the outer diameter of the porous substrate 1 .
 図7及び8に示すように、治具44は、ノズル422を囲むように、ノズル保持部431に取り付けられている。したがって、治具44は、ノズル移動機構43によってノズル422とともに移動する。 As shown in FIGS. 7 and 8, the jig 44 is attached to the nozzle holder 431 so as to surround the nozzle 422 . Therefore, the jig 44 is moved together with the nozzle 422 by the nozzle moving mechanism 43 .
 図8に示すように、ノズル移動機構43によってノズル422がスラリー供給位置に移動すると、多孔質基材1の第1端面T1側の端部は、治具44内に進入し、治具44内には、多孔質基材1の第1端面T1側に供給されたスラリーMの貯留を可能とする貯留空間V1が形成される。 As shown in FIG. 8, when the nozzle 422 is moved to the slurry supply position by the nozzle moving mechanism 43, the end portion of the porous substrate 1 on the first end surface T1 side enters the jig 44 and moves into the jig 44. is formed with a storage space V1 that enables storage of the slurry M supplied to the first end surface T1 side of the porous substrate 1 .
 図7及び8に示すように、コーティング処理部4は、第1基材固定部45を備える。 As shown in FIGS. 7 and 8, the coating processing section 4 includes a first substrate fixing section 45. As shown in FIG.
 図7及び8に示すように、第1基材固定部45は、治具44の下端部に設けられており、治具44内に進入した多孔質基材1の第1端面T1側の端部を治具44内に固定する。第1基材固定部45は、例えば、風船式チャック等のチャック機構を有する。風船式チャックが有する風船は、多孔質基材1の第1端面T1側の端部が治具44内に進入する際には、進入を妨げないように膨張していないが、多孔質基材1の第1端面T1側の端部が治具44内に進入した後には、空気圧により膨張し、治具44内に進入した多孔質基材1の第1端面T1側の端部を治具44内に固定する。この際、風船式チャックが有する風船は、治具44と、治具44内に進入した多孔質基材1の第1端面T1側の端部との間を隙間なく埋め、貯留空間V1からのスラリーMの漏出を防止する。 As shown in FIGS. 7 and 8, the first substrate fixing portion 45 is provided at the lower end portion of the jig 44, and the end of the porous substrate 1 entering the jig 44 on the first end surface T1 side The part is fixed in jig 44 . The first base material fixing part 45 has, for example, a chuck mechanism such as a balloon type chuck. When the end of the porous substrate 1 on the side of the first end surface T1 enters the jig 44, the balloon of the balloon-type chuck is not inflated so as not to hinder the entry. After the end portion of the porous substrate 1 on the side of the first end surface T1 enters the jig 44, it is expanded by the air pressure, and the end portion of the porous substrate 1 on the side of the first end surface T1 that has entered the jig 44 is removed by the jig. 44. At this time, the balloon held by the balloon-type chuck fills the space between the jig 44 and the end of the porous base material 1 on the first end surface T1 side that has entered the jig 44 without any gap, and the balloon is discharged from the storage space V1. Prevent the slurry M from leaking.
 図7及び8に示すように、コーティング処理部4は、多孔質基材1の第1端面T1側に供給されたスラリーMを多孔質基材1の第2端面T2側から吸引し、多孔質基材1の第1セルの内壁にスラリー層Nを形成するスラリー吸引部46を備える。 As shown in FIGS. 7 and 8, the coating processing unit 4 sucks the slurry M supplied to the first end surface T1 side of the porous substrate 1 from the second end surface T2 side of the porous substrate 1, A slurry suction part 46 for forming a slurry layer N on the inner wall of the first cell of the substrate 1 is provided.
 多孔質基材1の第1セルは、多孔質基材1の第1端面T1に開口部を有するセルである。端面S1が第1端面T1である場合、セル13aが第1セルであり、セル13bが第2セルである。端面S2が第1端面T1である場合、セル13bが第1セルであり、セル13aが第2セルである。本実施形態では、セル13aが第1セルであり、セル13bが第2セルである。 The first cell of the porous substrate 1 is a cell having an opening in the first end surface T1 of the porous substrate 1. When the end surface S1 is the first end surface T1, the cell 13a is the first cell and the cell 13b is the second cell. When the end surface S2 is the first end surface T1, the cell 13b is the first cell and the cell 13a is the second cell. In this embodiment, the cell 13a is the first cell and the cell 13b is the second cell.
 図7及び8に示すように、スラリー吸引部46は、吸引管461と、吸引管461の下端部に接続された吸引機構462とを備える。 As shown in FIGS. 7 and 8, the slurry suction unit 46 includes a suction tube 461 and a suction mechanism 462 connected to the lower end of the suction tube 461.
 図7及び8に示すように、吸引管461は、円筒状等の筒状であり、吸引管461の内径は、多孔質基材1の外径よりも大きくなっている。吸引管移動機構47が吸引管461を多孔質基材1に近づけ、図8に示すスラリー吸引位置に移動させると、多孔質基材1の第2端面T2側の端部は、吸引管461内に進入し、吸引管461内には、多孔質基材1の第1端面T1側に供給されたスラリーMの吸引を可能とする吸引空間V2が形成される。 As shown in FIGS. 7 and 8, the suction tube 461 has a tubular shape such as a cylindrical shape, and the inner diameter of the suction tube 461 is larger than the outer diameter of the porous substrate 1 . When the suction tube moving mechanism 47 brings the suction tube 461 closer to the porous substrate 1 and moves it to the slurry suction position shown in FIG. inside the suction tube 461, a suction space V2 is formed in which the slurry M supplied to the first end face T1 side of the porous substrate 1 can be sucked.
 吸引機構462は、例えば、ポンプを備え、吸引管461内の吸引空間V2を減圧する。これにより、多孔質基材1の第1端面T1から多孔質基材1の第2端面T2に向けて空気の流れが生じ、多孔質基材1の第1端面T1側に供給されたスラリーMは、多孔質基材1の第2端面T2に向けて吸引される。具体的には、多孔質基材1の第1端面T1側に供給されたスラリーMは、セル13a内へ導入され、セル13aの内壁を伝って第1端面T1から第2端面T2へ流れる。その結果、図10に示すように、セル13aの内壁には、多孔質基材1の第2端面T2に達していないように、多孔質基材1の第1端面T1から多孔質基材1の第2端面T2に向けて延在するスラリー層Nが形成される。 The suction mechanism 462 includes, for example, a pump, and depressurizes the suction space V2 inside the suction pipe 461. As a result, an air flow is generated from the first end surface T1 of the porous substrate 1 toward the second end surface T2 of the porous substrate 1, and the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked toward the second end surface T2 of the porous substrate 1 . Specifically, the slurry M supplied to the first end surface T1 side of the porous substrate 1 is introduced into the cells 13a and flows along the inner walls of the cells 13a from the first end surface T1 to the second end surface T2. As a result, as shown in FIG. 10 , the inner walls of the cells 13 a are formed from the first end surface T1 of the porous substrate 1 to the porous substrate 1 so as not to reach the second end surface T2 of the porous substrate 1 . A slurry layer N extending toward the second end surface T2 of is formed.
 図7及び8に示すように、コーティング処理部4は、吸引管461を移動させる吸引管移動機構47を備える。 As shown in FIGS. 7 and 8, the coating processing section 4 includes a suction tube moving mechanism 47 that moves the suction tube 461. As shown in FIGS.
 吸引管移動機構47は、吸引管461を上昇させて多孔質基材1に近づけることにより、吸引管461を、図8に示すスラリー吸引位置に移動させる。また、吸引管移動機構47は、吸引管461を降下させて多孔質基材1から遠ざけることにより、吸引管461を、図7に示す待機位置に移動させる。吸引機構462は、吸引管461が図8に示すスラリー吸引位置にあるときに、吸引管461内の吸引空間V2を減圧する。 The suction tube moving mechanism 47 moves the suction tube 461 to the slurry suction position shown in FIG. Further, the suction tube moving mechanism 47 moves the suction tube 461 to the standby position shown in FIG. 7 by lowering the suction tube 461 away from the porous substrate 1 . The suction mechanism 462 decompresses the suction space V2 inside the suction pipe 461 when the suction pipe 461 is at the slurry suction position shown in FIG.
 本実施形態では、吸引管移動機構47によって吸引管461を移動させることにより、多孔質基材1と吸引管461との相対的な位置を変化させているが、基材保持部41により多孔質基材1を移動させることにより、多孔質基材1と吸引管461との相対的な位置を変化させてもよい。 In the present embodiment, the suction tube moving mechanism 47 moves the suction tube 461 to change the relative position between the porous substrate 1 and the suction tube 461 . By moving the substrate 1, the relative positions of the porous substrate 1 and the suction tube 461 may be changed.
 図7及び8に示すように、コーティング処理部4は、第2基材固定部48を備える。 As shown in FIGS. 7 and 8, the coating processing section 4 includes a second base material fixing section 48 .
 第2基材固定部48は、吸引管461の上端部に設けられており、吸引管461内に進入した多孔質基材1の第2端面T2側の端部を吸引管461内に固定する。第2基材固定部48は、例えば、風船式チャック等のチャック機構を有する。風船式チャックが有する風船は、多孔質基材1の第2端面T2側の端部が吸引管461内に進入する際には、進入を妨げないように膨張していないが、多孔質基材1の第2端面T2側の端部が吸引管461内に進入した後には、空気圧により膨張し、多孔質基材1の第2端面T2側の端部を吸引管461内に固定する。この際、風船式チャックが有する風船は、吸引管461と、吸引管461内に進入した多孔質基材1の第2端面T2側の端部との間を隙間なく埋め、吸引空間V2を密閉する。このため、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、吸引管461外の空気は、多孔質基材1の外周面に沿って、吸引管461内の整流部材40に形成された貫通孔に流れ込まない。例えば、後述の第1実施形態では、吸引管461外の空気が、多孔質基材1の外周面に沿って、吸引管461内の整流板49aに形成された貫通孔(例えば、整流板49aの第1部分491に形成された第1貫通孔G)に流れ込まない。また、後述の第2実施形態では、吸引管461外の空気が、多孔質基材1の外周面に沿って、吸引管461内の第1整流板49b及び第2整流板50に形成された貫通孔(例えば、第1整流板49bの第1部分491に形成された第1貫通孔G、第1整流板49bの第2部分492に形成された第2貫通孔J、第2整流板50に形成された貫通孔等)に流れ込まない。 The second base material fixing part 48 is provided at the upper end of the suction tube 461 and fixes the second end surface T2 side end of the porous base material 1 that has entered the suction tube 461 inside the suction tube 461 . . The second base material fixing portion 48 has, for example, a chuck mechanism such as a balloon type chuck. When the end of the porous substrate 1 on the side of the second end surface T2 enters the suction tube 461, the balloon of the balloon-type chuck is not inflated so as not to hinder the entry. After the end portion of the porous substrate 1 on the second end surface T2 side enters the suction tube 461 , the porous substrate 1 is expanded by air pressure to fix the end portion on the second end surface T2 side of the porous substrate 1 inside the suction tube 461 . At this time, the balloon held by the balloon-type chuck fills the gap between the suction tube 461 and the end portion of the porous substrate 1 on the second end surface T2 side that has entered the suction tube 461, and seals the suction space V2. do. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the air outside the suction pipe 461 is It does not flow into the through-hole formed in the rectifying member 40 in the suction tube 461 along the outer peripheral surface of 1 . For example, in the first embodiment described later, the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 through holes formed in the straightening plate 49a inside the suction tube 461 (for example, the straightening plate 49a). does not flow into the first through hole G) formed in the first portion 491 of the . Further, in a second embodiment described later, air outside the suction pipe 461 is formed along the outer peripheral surface of the porous substrate 1 in the first straightening plate 49b and the second straightening plate 50 inside the suction pipe 461. Through holes (for example, a first through hole G formed in the first portion 491 of the first straightening plate 49b, a second through hole J formed in the second portion 492 of the first straightening plate 49b, a second straightening plate 50 Do not flow into the through holes, etc. formed in the
 図7及び8に示すように、コーティング処理部4は、整流部材40を備える。なお、図7及び8において、整流部材40は簡略化して記載されている。 As shown in FIGS. 7 and 8, the coating processing section 4 includes a straightening member 40. As shown in FIGS. 7 and 8, the straightening member 40 is illustrated in a simplified manner.
 図7及び8に示すように、整流部材40は、吸引管461内に配置されている。整流部材40は、吸引管461内の吸引空間V2が減圧されても位置が変化しないように、吸引管461内に固定されている。整流部材40は、例えば、保持機構又は支持機構により、吸引管461内に固定することができる。 As shown in FIGS. 7 and 8, the straightening member 40 is arranged inside the suction tube 461 . The straightening member 40 is fixed inside the suction pipe 461 so that its position does not change even if the suction space V2 inside the suction pipe 461 is decompressed. The straightening member 40 can be fixed within the suction tube 461 by, for example, a holding mechanism or a supporting mechanism.
 図7及び8に示すように、整流部材40は、吸引管461の上端部に設けられた第2基材固定部48と、吸引管461の下端部に接続された吸引機構462との間に配置されている。 As shown in FIGS. 7 and 8, the rectifying member 40 is positioned between the second substrate fixing portion 48 provided at the upper end of the suction tube 461 and the suction mechanism 462 connected to the lower end of the suction tube 461. are placed.
 図7及び8に示すように、吸引管移動機構47によって吸引管461がスラリー吸引位置に移動すると、整流部材40は、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。すなわち、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40は、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。 As shown in FIGS. 7 and 8, when the suction tube 461 is moved to the slurry suction position by the suction tube moving mechanism 47, the rectifying member 40 moves toward the second end surface T2 of the porous substrate 1. It is located apart from the second end surface T2. That is, when the slurry M supplied to the first end face T1 side of the porous base material 1 is sucked from the second end face T2 side of the porous base material 1, the rectifying member 40 moves toward the second end face T2 of the porous base material 1. It is located on the side of the end face T2 and is spaced apart from the second end face T2 of the porous substrate 1 .
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40は、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆し、多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させる。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying member 40 moves toward the second end surface T2 of the porous substrate 1. At least part of the central region T22 of the porous substrate 1 is covered, and at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1 is exposed.
 「整流部材40が、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆する」とは、吸引管461が図8に示すスラリー吸引位置にある状態において多孔質基材1の第2端面T2及び整流部材40を多孔質基材1の軸方向Xから平面視したとき、整流部材40のうち貫通孔以外の部分が、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部と重なることを意味する。整流部材40は、多孔質基材1の第2端面T2の中央領域T22の全体を被覆してもよいし、多孔質基材1の第2端面T2の中央領域T22の一部を被覆してもよい。 "The rectifying member 40 covers at least a part of the central region T22 of the second end surface T2 of the porous substrate 1" means that the porous substrate is in a state where the suction pipe 461 is at the slurry suction position shown in FIG. 1 and the rectifying member 40 in plan view from the axial direction X of the porous substrate 1, the portion of the rectifying member 40 other than the through holes is the center of the second end surface T2 of the porous substrate 1. It means overlapping with at least part of the region T22. The rectifying member 40 may cover the entire central region T22 of the second end surface T2 of the porous substrate 1, or may cover a part of the central region T22 of the second end surface T2 of the porous substrate 1. good too.
 「整流部材40が、多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させる」とは、吸引管461が図8に示すスラリー吸引位置にある状態において多孔質基材1の第2端面T2及び整流部材40を多孔質基材1の軸方向Xから平面視したとき、整流部材40に形成された貫通孔が、多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部と重なることを意味する。整流部材40は、多孔質基材1の第2端面T2の外縁領域T21の全体を露出させてもよいし、多孔質基材1の第2端面T2の外縁領域T21の一部を露出させてもよい。 "The rectifying member 40 exposes at least a part of the outer edge region T21 of the second end surface T2 of the porous substrate 1" means that the porous substrate is in a state where the suction pipe 461 is at the slurry suction position shown in FIG. 1 and the straightening member 40 from the axial direction X of the porous substrate 1, the through-holes formed in the straightening member 40 correspond to the outer edge region of the second end surface T2 of the porous substrate 1. It means overlapping with at least part of T21. The rectifying member 40 may expose the entire outer edge region T21 of the second end surface T2 of the porous substrate 1, or expose a part of the outer edge region T21 of the second end surface T2 of the porous substrate 1. good too.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40が、多孔質基材1の第2端面T2側に配置されることにより、次の効果が奏される。多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の筒状部11の外周面から空気が流入し、多孔質基材1の径方向の外側部分における吸引力は低下する。しかしながら、整流部材40が多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆するため、多孔質基材1の径方向の内側部分では空気が流れにくくなっている一方、整流部材40が多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させるため、多孔質基材1の径方向の外側部分では空気が流れやすくなっている。したがって、多孔質基材1の径方向の内側部分に加わる吸引力と、多孔質基材1の径方向の外側部分に加わる吸引力との差が小さくなり、多孔質基材1の径方向の内側部分に形成されるスラリー層Nの長さと、多孔質基材1の径方向の外側部分に形成されるスラリー層Nの長さとの差が小さくなる。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying member 40 moves toward the second end surface T2 of the porous substrate 1. By arranging on the side, the following effects are exhibited. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, air is drawn from the outer peripheral surface of the cylindrical portion 11 of the porous substrate 1. flows in and the suction force at the radially outer portion of the porous substrate 1 decreases. However, since the rectifying member 40 covers at least a part of the central region T22 of the second end surface T2 of the porous substrate 1, it is difficult for air to flow in the radially inner portion of the porous substrate 1. Since the rectifying member 40 exposes at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1, air can easily flow through the radially outer portion of the porous substrate 1. FIG. Therefore, the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
 以下、整流部材40の実施形態について説明する。 An embodiment of the rectifying member 40 will be described below.
<第1実施形態>
 以下、図11及び12を参照して、第1実施形態に係る整流部材40aについて説明する。図11は、整流部材40aが設けられている吸引管461の内部の拡大図であり、図12は、整流部材40aが備える整流板49aの平面図である。なお、図11は、図8に示すスラリー吸引位置にある吸引管461の内部の拡大図である。
<First embodiment>
Hereinafter, the straightening member 40a according to the first embodiment will be described with reference to FIGS. 11 and 12. FIG. FIG. 11 is an enlarged view of the inside of the suction tube 461 provided with the straightening member 40a, and FIG. 12 is a plan view of the straightening plate 49a provided in the straightening member 40a. 11 is an enlarged view of the inside of the suction pipe 461 at the slurry suction position shown in FIG.
 第1実施形態では、整流部材40として、整流部材40aが使用される。 In the first embodiment, the rectifying member 40a is used as the rectifying member 40.
 図11に示すように、整流部材40aは、整流板49aを備える。整流部材40aは、整流板49aで構成されていてもよいし、後述の整流部材40aの効果が発揮される限り、整流板49a以外の部材を有していてもよい。 As shown in FIG. 11, the straightening member 40a includes a straightening plate 49a. The rectifying member 40a may be composed of the rectifying plate 49a, or may have a member other than the rectifying plate 49a as long as the effect of the rectifying member 40a, which will be described later, is exhibited.
 整流板49aの材質は、例えば、樹脂、セラミックス、金属等である。 The material of the current plate 49a is, for example, resin, ceramics, metal, or the like.
 整流板49aの厚みは適宜調整可能であるが、例えば1mm以上15mm以下、好ましくは1mm以上5mm以下である。整流板49aの厚みは一定であってもよいし、一定でなくてもよい。整流板49aの厚みが一定でない場合、整流板49aの厚みの最小値及び最大値の両方が上記範囲であることが好ましい。 The thickness of the current plate 49a can be adjusted as appropriate, and is, for example, 1 mm or more and 15 mm or less, preferably 1 mm or more and 5 mm or less. The thickness of the current plate 49a may be constant or may not be constant. When the thickness of the rectifying plate 49a is not constant, both the minimum value and the maximum value of the thickness of the rectifying plate 49a are preferably within the above ranges.
 図11に示すように、整流板49aは、吸引管461内に配置されている。整流板49aは、吸引管461内の吸引空間V2が減圧されても位置が変化しないように、吸引管461内に固定されている。整流板49aは、例えば、保持機構(例えば、吸引管461の内壁に設けられた、整流板49aの外縁部を把持するチャック機構(例えば、ハンドチャック等))により、あるいは、支持機構(例えば、整流板49aと吸引機構462との間に設けられた、整流板49aの吸引機構462側の面を支持する支持ロッド)により、吸引管461内に固定することができる。 As shown in FIG. 11, the current plate 49a is arranged inside the suction pipe 461. As shown in FIG. The straightening plate 49a is fixed inside the suction pipe 461 so that its position does not change even if the suction space V2 inside the suction pipe 461 is decompressed. The straightening plate 49a is held by, for example, a holding mechanism (for example, a chuck mechanism (eg, hand chuck) provided on the inner wall of the suction tube 461 that grips the outer edge of the straightening plate 49a), or a supporting mechanism (eg, It can be fixed in the suction tube 461 by a support rod provided between the straightening plate 49 a and the suction mechanism 462 and supporting the surface of the straightening plate 49 a on the side of the suction mechanism 462 .
 図11に示すように、整流板49aは、吸引管461の上端部に設けられた第2基材固定部48と、吸引管461の下端部に接続された吸引機構462との間に配置されている。 As shown in FIG. 11, the straightening plate 49a is arranged between the second substrate fixing portion 48 provided at the upper end of the suction tube 461 and the suction mechanism 462 connected to the lower end of the suction tube 461. ing.
 図11に示すように、吸引管移動機構47によって吸引管461がスラリー吸引位置に移動すると、整流板49aは、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。すなわち、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49aは、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。 As shown in FIG. 11, when the suction tube 461 is moved to the slurry suction position by the suction tube moving mechanism 47, the rectifying plate 49a moves toward the second end surface T2 of the porous substrate 1 and moves toward the second end surface T2 of the porous substrate 1. As shown in FIG. It is located apart from the end surface T2. That is, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying plate 49a moves toward the second end surface T2 of the porous substrate 1. It is located on the side of the end face T2 and is spaced apart from the second end face T2 of the porous substrate 1 .
 図11に示すように、吸引管移動機構47によって吸引管461がスラリー吸引位置に移動すると、整流板49aと多孔質基材1の第2端面T2との距離は、距離D2aとなる。距離D2aは、整流板49aの第2端面T2側の主面と多孔質基材1の第2端面T2との距離である。 As shown in FIG. 11, when the suction tube 461 is moved to the slurry suction position by the suction tube moving mechanism 47, the distance between the current plate 49a and the second end surface T2 of the porous substrate 1 becomes the distance D2a. The distance D2a is the distance between the second end face T2 side of the current plate 49a and the second end face T2 of the porous substrate 1 .
 図11に示すように、整流板49aの第2端面T2側の主面は、多孔質基材1の第2端面T2と略平行である。本明細書において、「略平行」は、対象となる2つの面のなす角度が、好ましくは0°以上10°以下、より好ましくは0°以上5°以下であることを意味する。なお、「略平行」には、平行も包含される。 As shown in FIG. 11, the main surface of the current plate 49a on the second end surface T2 side is substantially parallel to the second end surface T2 of the porous substrate 1. As shown in FIG. As used herein, the term "substantially parallel" means that the angle formed by two target surfaces is preferably 0° or more and 10° or less, more preferably 0° or more and 5° or less. In addition, parallel is also included in "substantially parallel."
 図11及び12に示すように、整流板49aは、環状(例えば円環状)の第1部分491と、第1部分491の内側に位置する第2部分492と、第1部分491の外側に位置する環状(例えば円環状)の第3部分493とを備える。 As shown in FIGS. 11 and 12, the rectifying plate 49a includes an annular (for example, annular) first portion 491, a second portion 492 positioned inside the first portion 491, and a second portion 492 positioned outside the first portion 491. and an annular (eg, toric) third portion 493 .
 吸引管461が図8に示すスラリー吸引位置にある状態において多孔質基材1の第2端面T2及び整流板49aを多孔質基材1の軸方向Xから平面視したとき(例えば、整流板49aの平面図に多孔質基材1の第2端面T2を投影したとき)、図11及び12に示すように、整流板49aのうち、多孔質基材1の第2端面T2の外縁領域T21と重なる部分が第1部分491であり、多孔質基材1の第2端面T2の中央領域T22と重なる部分が第2部分492である。なお、図12において、整流板49aの平面図に投影された第2端面T2の外形線及び中央領域T22の外形線(すなわち、境界線L2)はそれぞれ点線及び二点鎖線で示されている。 When the second end face T2 of the porous substrate 1 and the current plate 49a are viewed from the axial direction X of the porous substrate 1 in a state where the suction pipe 461 is at the slurry suction position shown in FIG. When the second end surface T2 of the porous substrate 1 is projected on the plan view of ), as shown in FIGS. The overlapping portion is the first portion 491 , and the portion overlapping the central region T22 of the second end surface T2 of the porous substrate 1 is the second portion 492 . In FIG. 12, the outline of the second end face T2 and the outline of the central region T22 (that is, the boundary line L2) projected onto the plan view of the current plate 49a are indicated by dotted lines and chain double-dashed lines, respectively.
 図11及び12に示すように、整流板49aの第1部分491には、第1部分491の周方向に延在する長孔状の第1貫通孔Gが形成されている。第1貫通孔Gの平面視形状は、幅Wを有する細長形状である。第1貫通孔Gの平面視形状及び数は適宜変更可能である。第1貫通孔Gの平面視形状は、例えば、円形状、楕円形状、正方形状、長方形状、長方形の角が丸くなった形状等であってもよい。第1貫通孔Gの数は1であってもよいし、2以上であってもよい。本実施形態における第1貫通孔Gの数は4である。 As shown in FIGS. 11 and 12, the first portion 491 of the straightening plate 49a is formed with an elongated first through hole G extending in the circumferential direction of the first portion 491. As shown in FIGS. A plan view shape of the first through hole G is an elongated shape having a width W. As shown in FIG. The plan view shape and number of the first through holes G can be changed as appropriate. The planar shape of the first through hole G may be, for example, circular, elliptical, square, rectangular, or a rectangular shape with rounded corners. The number of first through holes G may be one, or two or more. The number of first through holes G in this embodiment is four.
 図11及び12に示すように、整流板49aの第2部分492には、貫通孔は形成されていないが、貫通孔(以下「第2貫通孔」という。)が形成されていてもよい。 As shown in FIGS. 11 and 12, the second portion 492 of the rectifying plate 49a is not formed with through holes, but may be formed with through holes (hereinafter referred to as "second through holes").
 図11及び12に示すように、整流板49aの第2部分492は、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆し、整流板49aの第1部分491に形成された第1貫通孔Gは、多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させる。 As shown in FIGS. 11 and 12, the second portion 492 of the current plate 49a covers at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1, and the first portion 491 of the current plate 49a. The formed first through-hole G exposes at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1 .
 「整流板49aの第2部分492が、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆する」とは、吸引管461が図8に示すスラリー吸引位置にある状態において多孔質基材1の第2端面T2及び整流板49aを多孔質基材1の軸方向Xから平面視したとき(例えば、整流板49aの平面図に多孔質基材1の第2端面T2を投影したとき)、図11及び12に示すように、整流板49aの第2部分492のうち第2貫通孔以外の部分が、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部と重なることを意味する。整流板49aの第2部分492に第2貫通孔が形成されていない場合、整流板49aの第2部分492は、多孔質基材1の第2端面T2の中央領域T22の全体を被覆し、整流板49aの第2部分492に第2貫通孔が形成されている場合、整流板49aの第2部分492は、多孔質基材1の第2端面T2の中央領域T22の一部を被覆する。 "The second portion 492 of the current plate 49a covers at least part of the central region T22 of the second end surface T2 of the porous substrate 1" means that the suction pipe 461 is in the slurry suction position shown in FIG. , when the second end surface T2 of the porous substrate 1 and the current plate 49a are viewed from the axial direction X of the porous substrate 1 (for example, the second end surface T2 of the porous substrate 1 is shown in the plan view of the current plate 49a). is projected), as shown in FIGS. It means overlapping with a part. When the second portion 492 of the straightening plate 49a does not have a second through hole, the second portion 492 of the straightening plate 49a covers the entire central region T22 of the second end surface T2 of the porous substrate 1, When the second portion 492 of the straightening plate 49a has the second through hole, the second portion 492 of the straightening plate 49a covers part of the central region T22 of the second end surface T2 of the porous substrate 1. .
 「整流板49aの第1部分491に形成された第1貫通孔Gが、多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させる」とは、吸引管461が図8に示すスラリー吸引位置にある状態において多孔質基材1の第2端面T2及び整流板49aを多孔質基材1の軸方向Xから平面視したとき(例えば、整流板49aの平面図に多孔質基材1の第2端面T2を投影したとき)、図11及び12に示すように、整流板49aの第1部分491に形成された第1貫通孔Gが、多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部と重なることを意味する。 ``The first through holes G formed in the first portion 491 of the rectifying plate 49a expose at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1'' means that the suction tube 461 is 8, when the second end surface T2 of the porous substrate 1 and the rectifying plate 49a are viewed from the axial direction X of the porous substrate 1 (for example, a plan view of the rectifying plate 49a shows a porous structure). 11 and 12, the first through hole G formed in the first portion 491 of the rectifying plate 49a is located at the second end surface T2 of the porous substrate 1). It means overlapping with at least part of the outer edge region T21 of the two end surfaces T2.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40aが、多孔質基材1の第2端面T2側に配置されることにより、次の効果が奏される。多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の筒状部11の外周面から空気が流入し、多孔質基材1の径方向の外側部分における吸引力は低下する。しかしながら、整流板49aの第2部分492が多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆するため、多孔質基材1の径方向の内側部分では空気が流れにくくなっている一方、整流板49aの第1部分491に形成された第1貫通孔Gが多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させるため、多孔質基材1の径方向の外側部分では空気が流れやすくなっている。したがって、多孔質基材1の径方向の内側部分に加わる吸引力と、多孔質基材1の径方向の外側部分に加わる吸引力との差が小さくなり、多孔質基材1の径方向の内側部分に形成されるスラリー層Nの長さと、多孔質基材1の径方向の外側部分に形成されるスラリー層Nの長さとの差が小さくなる。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the straightening member 40a By arranging on the side, the following effects are exhibited. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, air is drawn from the outer peripheral surface of the cylindrical portion 11 of the porous substrate 1. flows in and the suction force at the radially outer portion of the porous substrate 1 decreases. However, since the second portion 492 of the rectifying plate 49a covers at least part of the central region T22 of the second end surface T2 of the porous substrate 1, it is difficult for air to flow through the radially inner portion of the porous substrate 1. On the other hand, since the first through holes G formed in the first portion 491 of the current plate 49a expose at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1, the porous substrate The radially outer portion of 1 facilitates air flow. Therefore, the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
<第2実施形態>
 以下、図13~15を参照して、第2実施形態に係る整流部材40bについて説明する。図13は、整流部材40bが設けられている吸引管461の内部の拡大図であり、図14は、整流部材40bが備える第1整流板49bの平面図であり、図15は、整流部材40bが備える第2整流板50の平面図である。なお、図13は、図8に示すスラリー吸引位置にある吸引管461の内部の拡大図である。
<Second embodiment>
A rectifying member 40b according to the second embodiment will be described below with reference to FIGS. 13 to 15. FIG. 13 is an enlarged view of the inside of the suction pipe 461 provided with the straightening member 40b, FIG. 14 is a plan view of the first straightening plate 49b provided in the straightening member 40b, and FIG. 15 is a plan view of the straightening member 40b. 2 is a plan view of a second rectifying plate 50 provided in the . 13 is an enlarged view of the inside of the suction pipe 461 at the slurry suction position shown in FIG.
 第2実施形態では、整流部材40として、整流部材40bが使用される。 In the second embodiment, as the rectifying member 40, a rectifying member 40b is used.
 図13に示すように、整流部材40bは、第1整流板49b及び第2整流板50を備える。整流部材40bは、第1整流板49b及び第2整流板50で構成されていてもよいし、後述の整流部材40bの効果が発揮される限り、第1整流板49b及び第2整流板50以外の部材を有していてもよい。 As shown in FIG. 13, the straightening member 40b includes a first straightening plate 49b and a second straightening plate 50. As shown in FIG. The rectifying member 40b may be composed of the first rectifying plate 49b and the second rectifying plate 50, or other than the first rectifying plate 49b and the second rectifying plate 50 as long as the effect of the rectifying member 40b described later is exhibited. You may have a member of.
 第1整流板49bの材質は、例えば、樹脂、セラミックス、金属等である。 The material of the first current plate 49b is, for example, resin, ceramics, metal, or the like.
 第1整流板49bの厚みは適宜調整可能であるが、例えば1mm以上15mm以下、好ましくは1mm以上5mm以下である。第1整流板49bの厚みは一定であってもよいし、一定でなくてもよい。第1整流板49bの厚みが一定でない場合、第1整流板49bの厚みの最小値及び最大値の両方が上記範囲であることが好ましい。 The thickness of the first current plate 49b can be adjusted as appropriate, and is, for example, 1 mm or more and 15 mm or less, preferably 1 mm or more and 5 mm or less. The thickness of the first current plate 49b may be constant or may not be constant. If the thickness of the first current plate 49b is not constant, both the minimum value and the maximum value of the thickness of the first current plate 49b are preferably within the above ranges.
 図13に示すように、第1整流板49bは、吸引管461内に配置されている。第1整流板49bは、吸引管461内の吸引空間V2が減圧されても位置が変化しないように、吸引管461内に固定されている。第1整流板49bは、例えば、保持機構(例えば、吸引管461の内壁に設けられた、第1整流板49bの外縁部を把持するチャック機構(例えば、ハンドチャック等))により、あるいは、支持機構(例えば、第1整流板49bと吸引機構462との間に設けられた、第1整流板49bの吸引機構462側の面を支持する支持ロッド)により、吸引管461内に固定することができる。 As shown in FIG. 13, the first current plate 49b is arranged inside the suction pipe 461. As shown in FIG. The first straightening plate 49b is fixed inside the suction pipe 461 so that its position does not change even if the pressure in the suction space V2 inside the suction pipe 461 is reduced. The first straightening plate 49b is, for example, supported by a holding mechanism (eg, a chuck mechanism (eg, hand chuck) provided on the inner wall of the suction tube 461 that grips the outer edge of the first straightening plate 49b). It can be fixed in the suction tube 461 by a mechanism (for example, a support rod provided between the first straightening plate 49b and the suction mechanism 462 and supporting the surface of the first straightening plate 49b on the side of the suction mechanism 462). can.
 図13に示すように、第1整流板49bは、吸引管461の上端部に設けられた第2基材固定部48と、吸引管461の下端部に接続された吸引機構462との間に配置されている。 As shown in FIG. 13, the first straightening plate 49b is located between the second substrate fixing portion 48 provided at the upper end of the suction pipe 461 and the suction mechanism 462 connected to the lower end of the suction pipe 461. are placed.
 図13に示すように、吸引管移動機構47によって吸引管461がスラリー吸引位置に移動すると、第1整流板49bは、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。すなわち、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、第1整流板49bは、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。 As shown in FIG. 13, when the suction tube 461 is moved to the slurry suction position by the suction tube moving mechanism 47, the first rectifying plate 49b moves toward the second end surface T2 of the porous substrate 1. It is located apart from the second end surface T2. That is, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the first straightening plate 49b It is located on the side of the second end face T2 and separated from the second end face T2 of the porous substrate 1 .
 図13に示すように、吸引管移動機構47によって吸引管461がスラリー吸引位置に移動すると、第1整流板49bと多孔質基材1の第2端面T2との距離は、距離D2bとなる。距離D2bは、第1整流板49bの第2端面T2側の主面と多孔質基材1の第2端面T2との距離である。 As shown in FIG. 13, when the suction tube 461 is moved to the slurry suction position by the suction tube moving mechanism 47, the distance between the first current plate 49b and the second end surface T2 of the porous substrate 1 becomes the distance D2b. The distance D2b is the distance between the main surface of the first current plate 49b on the second end surface T2 side and the second end surface T2 of the porous substrate 1 .
 図13に示すように、第1整流板49bの第2端面T2側の主面は、多孔質基材1の第2端面T2と略平行である。「略平行」の意義は、上記の通りである。 As shown in FIG. 13 , the main surface of the first current plate 49b on the second end surface T2 side is substantially parallel to the second end surface T2 of the porous substrate 1 . The meaning of "substantially parallel" is as described above.
 図13及び14に示すように、第1整流板49bは、第2部分492に第2貫通孔Jが形成されている点で、第1実施形態に係る整流板49aと異なる。第1整流板49bのその他の構成は、整流板49aと同一であり、第1整流板49bにおいて、整流板49aと同一の部材又は部分は、整流板49aと同一の符号で示されている。整流板49aに関する上記説明は、別段規定される場合を除き、第1整流板49bにも適用される。 As shown in FIGS. 13 and 14, the first straightening plate 49b differs from the straightening plate 49a according to the first embodiment in that the second portion 492 is formed with the second through holes J. As shown in FIGS. Other configurations of the first straightening plate 49b are the same as those of the straightening plate 49a, and in the first straightening plate 49b, the same members or portions as the straightening plate 49a are denoted by the same reference numerals as those of the straightening plate 49a. The above description of the rectifying plate 49a also applies to the first rectifying plate 49b, unless otherwise specified.
 図14に示すように、第2貫通孔Jの平面視形状は、円形状であり、第2貫通孔Jの数は1である。第2貫通孔Jの平面視形状は適宜変更可能であり、その他の形状、例えば、楕円形状、正方形状、長方形状、長方形の角が丸くなった形状等であってもよい。第2貫通孔Jの数は適宜変更可能であり、2以上であってもよい。図14に示すように、第2貫通孔Jは、第1部分491に形成された第1貫通孔Gと連続していないが、連続していてもよい。 As shown in FIG. 14, the planar shape of the second through holes J is circular, and the number of the second through holes J is one. The planar view shape of the second through hole J can be changed as appropriate, and may be other shapes such as an elliptical shape, a square shape, a rectangular shape, a rectangular shape with rounded corners, and the like. The number of second through holes J can be changed as appropriate, and may be two or more. As shown in FIG. 14, the second through hole J is not continuous with the first through hole G formed in the first portion 491, but may be continuous.
 後述の整流部材40bの効果をより向上させる観点から、中央領域T22の平面視形状と第2貫通孔Jの平面視形状とは、相似形状であることが好ましい。 From the viewpoint of further improving the effect of the rectifying member 40b, which will be described later, it is preferable that the planar view shape of the central region T22 and the planar view shape of the second through hole J are similar shapes.
 図13及び14に示すように、第2貫通孔Jは、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を露出させる。 As shown in FIGS. 13 and 14, the second through hole J exposes at least part of the central region T22 of the second end surface T2 of the porous substrate 1.
 「第2貫通孔Jが、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を露出させる」とは、吸引管461が図8に示すスラリー吸引位置にある状態において多孔質基材1の第2端面T2及び第1整流板49bを多孔質基材1の軸方向Xから平面視したとき(例えば、第1整流板49bの平面図に多孔質基材1の第2端面T2を投影したとき)、図13及び14に示すように、第2貫通孔Jが、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部と重なることを意味する。なお、図14において、第1整流板49bの平面図に投影された第2端面T2の外形線及び中央領域T22の外形線(すなわち、境界線L2)はそれぞれ点線及び二点鎖線で示されている。 “The second through-hole J exposes at least a part of the central region T22 of the second end surface T2 of the porous substrate 1” means that the suction tube 461 is porous when it is in the slurry suction position shown in FIG. When the second end surface T2 of the substrate 1 and the first current plate 49b are viewed from the axial direction X of the porous substrate 1 (for example, the second end surface of the porous substrate 1 is shown in the plan view of the first current plate 49b). T2), as shown in FIGS. 13 and 14, the second through hole J overlaps at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1. In FIG. 14, the outline of the second end surface T2 and the outline of the central region T22 (that is, the boundary line L2) projected onto the plan view of the first current plate 49b are indicated by dotted lines and chain double-dashed lines, respectively. there is
 第2貫通孔Jは、多孔質基材1の第2端面T2の中央領域T22の全体を露出させてもよいし、多孔質基材1の第2端面T2の中央領域T22の一部を露出させてもよい。第2貫通孔Jが、多孔質基材1の第2端面T2の中央領域T22の一部を露出させる場合、第1整流板49bの第2部分492は、多孔質基材1の第2端面T2の中央領域T22の残部を被覆する。 The second through hole J may expose the entire central region T22 of the second end surface T2 of the porous substrate 1, or expose a portion of the central region T22 of the second end surface T2 of the porous substrate 1. You may let When the second through hole J exposes a part of the central region T22 of the second end surface T2 of the porous substrate 1, the second portion 492 of the first current plate 49b Cover the rest of the central region T22 of T2.
 「第2貫通孔Jが、多孔質基材1の第2端面T2の中央領域T22の一部を露出させ、第1整流板49bの第2部分492が、多孔質基材1の第2端面T2の中央領域T22の残部を被覆する」とは、吸引管461が図8に示すスラリー吸引位置にある状態において多孔質基材1の第2端面T2及び第1整流板49bを多孔質基材1の軸方向Xから平面視したとき(例えば、第1整流板49bの平面図に多孔質基材1の第2端面T2を投影したとき)、図13及び14に示すように、第2貫通孔Jが、多孔質基材1の第2端面T2の中央領域T22の一部と重なり、第1整流板49bの第2部分492のうち第2貫通孔J以外の部分が、多孔質基材1の第2端面T2の中央領域T22の残部と重なることを意味する。 "The second through-hole J exposes a part of the central region T22 of the second end surface T2 of the porous substrate 1, and the second portion 492 of the first straightening plate 49b exposes the second end surface of the porous substrate 1. The phrase "covering the remainder of the central region T22 of T2" means that the second end surface T2 of the porous substrate 1 and the first straightening plate 49b are covered with the porous substrate while the suction pipe 461 is in the slurry suction position shown in FIG. 1 (for example, when the second end surface T2 of the porous substrate 1 is projected onto the plan view of the first current plate 49b), as shown in FIGS. The hole J overlaps with a part of the central region T22 of the second end surface T2 of the porous substrate 1, and the portion of the second portion 492 of the first current plate 49b other than the second through hole J overlaps with the porous substrate. It means overlapping with the rest of the central region T22 of the second end face T2 of No. 1.
 第2貫通孔Jが中央領域T22の一部を露出させ、第1整流板49bの第2部分492が中央領域T22の残部を被覆する場合、中央領域T22の平面視形状と第2貫通孔Jの平面視形状とが相似形状となるように、第1整流板49bの第2部分492のうち第2貫通孔J以外の部分は、第2部分492の外形線に沿って所定の幅で形成されていることが好ましい。すなわち、第1整流板49bの第2部分492のうち第2貫通孔J以外の部分の平面視形状は、環状(例えば円環状)であることが好ましい。中央領域T22の平面視形状と第2貫通孔Jの平面視形状とが相似形状となる限り、第1整流板49bの第2部分492のうち第2貫通孔J以外の部分の幅は一定であってもよいし、一定でなくてもよい。 When the second through hole J exposes a portion of the central region T22 and the second portion 492 of the first current plate 49b covers the remaining portion of the central region T22, the planar shape of the central region T22 and the second through hole J The second portion 492 of the first current plate 49b, other than the second through hole J, is formed with a predetermined width along the outline of the second portion 492 so that the second portion 492 of the first current plate 49b has a similar shape to the shape in plan view. It is preferable that That is, it is preferable that the planar view shape of the second portion 492 of the first current plate 49b other than the second through hole J is annular (for example, annular). As long as the planar view shape of the central region T22 and the planar view shape of the second through hole J are similar, the width of the portion other than the second through hole J in the second portion 492 of the first current plate 49b is constant. It may be, or it may not be constant.
 第2整流板50の材質は、例えば、樹脂、セラミックス、金属等である。 The material of the second current plate 50 is, for example, resin, ceramics, metal, or the like.
 第2整流板50の厚みは適宜調整可能であるが、例えば1mm以上15mm以下、好ましくは1mm以上5mm以下である。第2整流板50の厚みは一定であってもよいし、一定でなくてもよい。第2整流板50の厚みが一定でない場合、第2整流板50の厚みの最小値及び最大値の両方が上記範囲であることが好ましい。 The thickness of the second current plate 50 can be adjusted as appropriate, and is, for example, 1 mm or more and 15 mm or less, preferably 1 mm or more and 5 mm or less. The thickness of the second current plate 50 may be constant or may not be constant. When the thickness of the second current plate 50 is not constant, both the minimum value and the maximum value of the thickness of the second current plate 50 are preferably within the above ranges.
 図13に示すように、第2整流板50は、吸引管461内に配置されている。第2整流板50は、吸引管461内の吸引空間V2が減圧されても位置が変化しないように、吸引管461内に固定されている。第2整流板50は、例えば、第1整流板49bと第2整流板50とを連結する連結部材(例えば、第1整流板49bの第3部分493と第2整流板50とを連結する連結部材70(図13参照))により、あるいは、保持機構(例えば、吸引管461の内壁に設けられた、第2整流板50の外縁部を把持するチャック機構(例えば、ハンドチャック等))により、あるいは、支持機構(例えば、第2整流板50と吸引機構462との間に設けられた、第2整流板50の吸引機構462側の面を支持する支持ロッド)により、吸引管461内に固定することができる。なお、図14において、連結部材70は省略されている。 As shown in FIG. 13, the second current plate 50 is arranged inside the suction pipe 461 . The second straightening plate 50 is fixed inside the suction pipe 461 so that its position does not change even if the pressure in the suction space V2 inside the suction pipe 461 is reduced. The second rectifying plate 50 is, for example, a connecting member that connects the first rectifying plate 49b and the second rectifying plate 50 (for example, a connecting member that connects the third portion 493 of the first rectifying plate 49b and the second rectifying plate 50). member 70 (see FIG. 13)), or by a holding mechanism (for example, a chuck mechanism (for example, a hand chuck, etc.) provided on the inner wall of the suction tube 461 for gripping the outer edge of the second current plate 50). Alternatively, it is fixed in the suction tube 461 by a support mechanism (for example, a support rod provided between the second straightening plate 50 and the suction mechanism 462 and supporting the surface of the second straightening plate 50 on the side of the suction mechanism 462). can do. 14, the connecting member 70 is omitted.
 整流部材40bを多孔質基材1の軸方向Xから平面視したとき、連結部材70は、第1整流板49bの第1部分491に形成された第1貫通孔Gの一部と重なる。連結部材70と重なる第1貫通孔Gの一部の面積は、第1貫通孔Gの面積の20%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがより一層好ましい。この場合、連結部材70が、第1貫通孔Gを通る空気の流れの障害とならないため、後述の整流部材40bの効果をより向上させることができる。連結部材70と重なる第1貫通孔Gの一部の面積の下限は、連結部材70の強度等を考慮して適宜調整可能である。なお、「第1貫通孔Gの面積」は、第1整流板49bの第1部分491に2以上の第1貫通孔Gが形成されている場合には、当該2以上の第1貫通孔Gの合計面積を意味する。また、「第1貫通孔Gの面積」は、第1貫通孔Gを多孔質基材1の軸方向Xから平面視したときの面積である。 When the rectifying member 40b is viewed from the axial direction X of the porous substrate 1, the connecting member 70 overlaps a part of the first through hole G formed in the first portion 491 of the first rectifying plate 49b. The area of the part of the first through hole G that overlaps with the connecting member 70 is preferably 20% or less, more preferably 10% or less, and 5% or less of the area of the first through hole G. is even more preferred. In this case, since the connecting member 70 does not interfere with the flow of air passing through the first through holes G, the effect of the rectifying member 40b, which will be described later, can be further improved. The lower limit of the area of the portion of the first through-hole G that overlaps the connecting member 70 can be appropriately adjusted in consideration of the strength of the connecting member 70 and the like. In addition, when two or more first through holes G are formed in the first portion 491 of the first current plate 49b, the "area of the first through holes G" is means the total area of Further, “the area of the first through-hole G” is the area of the first through-hole G when viewed from the axial direction X of the porous substrate 1 in plan view.
 図13に示すように、第2整流板50は、第1整流板49bと、吸引管461の下端部に接続された吸引機構462との間に配置されている。すなわち、第2整流板50は、第1整流板49bに対して多孔質基材1の第2端面T2とは反対側に配置されている。この位置関係は、吸引管461がスラリー吸引位置にある状態でも、吸引管461が待機位置にある状態でも、変わらない。したがって、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、第2整流板50は、第1整流板49bに対して多孔質基材1の第2端面T2とは反対側に位置する。 As shown in FIG. 13, the second straightening plate 50 is arranged between the first straightening plate 49b and the suction mechanism 462 connected to the lower end of the suction pipe 461. As shown in FIG. That is, the second straightening plate 50 is arranged on the side opposite to the second end face T2 of the porous substrate 1 with respect to the first straightening plate 49b. This positional relationship does not change whether the suction tube 461 is at the slurry suction position or at the standby position. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the second rectifying plate 50 moves toward the first rectifying plate 49b. On the other hand, it is located on the side opposite to the second end surface T2 of the porous substrate 1 .
 図13に示すように、第1整流板49bと第2整流板50との距離は、距離D3である。距離D3は、第1整流板49bの第2整流板50側の主面と、第2整流板50の第1整流板49b側の主面との距離である。距離D3は、吸引管461がスラリー吸引位置にある状態でも、吸引管461が待機位置にある状態でも、変わらない。したがって、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、第1整流板49bと第2整流板50との距離は、距離D3である。 As shown in FIG. 13, the distance between the first rectifying plate 49b and the second rectifying plate 50 is the distance D3. The distance D3 is the distance between the main surface of the first straightening plate 49b on the second straightening plate 50 side and the main surface of the second straightening plate 50 on the first straightening plate 49b side. The distance D3 does not change whether the suction tube 461 is at the slurry suction position or at the standby position. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the first rectifying plate 49b and the second rectifying plate 50 The distance is distance D3.
 図13に示すように、第2整流板50の第2端面T2側の主面は、多孔質基材1の第2端面T2と略平行である。「略平行」の意義は、上記の通りである。 As shown in FIG. 13 , the main surface of the second current plate 50 on the second end surface T2 side is substantially parallel to the second end surface T2 of the porous substrate 1 . The meaning of "substantially parallel" is as described above.
 図15に示すように、第2整流板50には、貫通孔は形成されていないが、貫通孔が形成されていてもよい。 As shown in FIG. 15, the second current plate 50 is not formed with through holes, but may be formed with through holes.
 図13~15に示すように、第2整流板50は、第2貫通孔Jの少なくとも一部を被覆する。 As shown in FIGS. 13 to 15, the second current plate 50 covers at least part of the second through holes J. As shown in FIGS.
 「第2整流板50が、第2貫通孔Jの少なくとも一部を被覆する」とは、吸引管461が図8に示すスラリー吸引位置にある状態において第1整流板49b及び第2整流板50を多孔質基材1の軸方向Xから平面視したとき(例えば、第1整流板49bの平面図に第2整流板50を投影したとき、又は、第2整流板50の平面図に第2貫通孔Jを投影したとき)、図13~15に示すように、第2整流板50のうち貫通孔以外の部分が、第2貫通孔Jの少なくとも一部と重なることを意味する。なお、図14において、第1整流板49bの平面図に投影された第2整流板50の外形線は点線で示されている。また、図15において、第2整流板50の平面図に投影された第2貫通孔Jの外形線は点線で示されている。 “The second straightening plate 50 covers at least part of the second through hole J” means that the first straightening plate 49b and the second straightening plate 50 are in a state where the suction pipe 461 is at the slurry suction position shown in FIG. is viewed from the axial direction X of the porous substrate 1 (for example, when the second straightening plate 50 is projected on the plan view of the first straightening plate 49b, or when the second straightening plate 50 is projected on the plan view of the second straightening plate 50, the second 13 to 15, the portion of the second current plate 50 other than the through hole overlaps with at least a portion of the second through hole J when the through hole J is projected. In FIG. 14, the outline of the second straightening plate 50 projected onto the plan view of the first straightening plate 49b is indicated by a dotted line. In addition, in FIG. 15, the outline of the second through hole J projected onto the plan view of the second current plate 50 is indicated by a dotted line.
 第2整流板50に貫通孔が形成されていない場合、第2整流板50は、第2貫通孔Jの全体を被覆し、第2整流板50に貫通孔が形成されている場合、第2整流板50は、第2貫通孔Jの一部を被覆する。 When the second current plate 50 does not have a through hole, the second current plate 50 covers the entire second through hole J, and when the second current plate 50 has a through hole, the second current plate 50 covers the second through hole J. The current plate 50 partially covers the second through hole J. As shown in FIG.
 吸引管461が図8に示すスラリー吸引位置にある状態において第1整流板49b及び第2整流板50を多孔質基材1の軸方向Xから平面視したとき(例えば、第1整流板49bの平面図に第2整流板50を投影したとき)、図13及び14に示すように、第2整流板50の外形線は、第2貫通孔Jの外形線の外側に位置することが好ましい。第2整流板50の外形線が第2貫通孔Jの外形線の外側に位置する場合、第2整流板50の開口面積を調整することにより、第2貫通孔Jの全体を第2整流板50で被覆することも、第2貫通孔Jの一部を第2整流板50で被覆することも可能となる。 When the suction tube 461 is at the slurry suction position shown in FIG. When the second flow plate 50 is projected onto a plan view, the outline of the second flow plate 50 is preferably positioned outside the outline of the second through hole J, as shown in FIGS. When the contour line of the second straightening plate 50 is located outside the contour line of the second through hole J, the opening area of the second straightening plate 50 is adjusted so that the entire second through hole J becomes the second straightening plate. It is also possible to cover a part of the second through hole J with the second current plate 50 .
 吸引管461が図8に示すスラリー吸引位置にある状態において第1整流板49b及び第2整流板50を多孔質基材1の軸方向Xから平面視したとき(例えば、第1整流板49bの平面図に第2整流板50を投影したとき)、図13及び14に示すように、第2整流板50の外形線は、第1整流板49bの第2部分492の外形線の内側に位置することが好ましい。この場合、第2整流板50が、第1貫通孔Gを通る空気の流れの障害とならないため、後述の整流部材40bの効果をより向上させることができる。 When the suction tube 461 is at the slurry suction position shown in FIG. 13 and 14, the outline of the second straightening plate 50 is positioned inside the outline of the second portion 492 of the first straightening plate 49b. preferably. In this case, the second rectifying plate 50 does not interfere with the flow of air passing through the first through holes G, so that the effect of the rectifying member 40b, which will be described later, can be further improved.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40bが、多孔質基材1の第2端面T2側に配置されることにより、次の効果が奏される。多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の筒状部11の外周面から空気が流入し、多孔質基材1の径方向の外側部分における吸引力は低下する。しかしながら、第1整流板49bに形成された第2貫通孔Jが、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を露出させ、第2整流板50が、第1整流板49bに形成された第2貫通孔Jの少なくとも一部を被覆するため、多孔質基材1の径方向の内側部分では空気が流れにくくなっている一方、第1整流板49bに形成された第1貫通孔Gが多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させるため、多孔質基材1の径方向の外側部分では空気が流れやすくなっている。したがって、多孔質基材1の径方向の内側部分に加わる吸引力と、多孔質基材1の径方向の外側部分に加わる吸引力との差が小さくなり、多孔質基材1の径方向の内側部分に形成されるスラリー層Nの長さと、多孔質基材1の径方向の外側部分に形成されるスラリー層Nの長さとの差が小さくなる。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying member 40b moves toward the second end surface T2 of the porous substrate 1. By arranging on the side, the following effects are exhibited. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, air is drawn from the outer peripheral surface of the cylindrical portion 11 of the porous substrate 1. flows in and the suction force at the radially outer portion of the porous substrate 1 decreases. However, the second through hole J formed in the first straightening plate 49b exposes at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1, and the second straightening plate 50 serves as the first straightening plate. Since at least a part of the second through hole J formed in the plate 49b is covered, it is difficult for air to flow in the radially inner portion of the porous substrate 1. Since the first through holes G expose at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1, air can easily flow through the radially outer portion of the porous substrate 1. FIG. Therefore, the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
 また、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40bが、多孔質基材1の第2端面T2側に配置されることにより、次の効果が奏される。多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49aが、多孔質基材1の第2端面T2側に配置される場合、整流板49aの第2部分492と多孔質基材1の第2端面T2との間で、乱流が発生し、スラリー層N間での長さのバラツキ(特に、多孔質基材1の径方向の内側部分に形成されるスラリー層N間での長さのバラツキ)が発生するおそれがある。以下、乱流を発生させる、整流板49aと多孔質基材1の第2端面T2との距離をDxとする。これに対して、整流部材49bでは、第2貫通孔Jが第1整流板49bの第2部分492に形成されているため、第1整流板49bと多孔質基材1の第2端面T2との距離がDxであっても、第1整流板49bの第2部分492と多孔質基材1の第2端面T2との間において乱流が発生しにくい。また、整流部材49bでは、第2整流板50が第1整流板49bに対して多孔質基材1の第2端面T2とは反対側に配置されているため、第1整流板49bと多孔質基材1の第2端面T2との距離がDxであっても、第2整流板50と多孔質基材1の第2端面T2との距離はDxよりも大きくなっており、第2整流板50と多孔質基材1の第2端面T2との間において乱流が発生しにくい。したがって、第1整流板49b及び第2整流板50が使用される場合には、整流板49aが使用される場合よりも、スラリー層N間での長さのバラツキ(特に、多孔質基材1の径方向の内側部分に形成されるスラリー層N間での長さのバラツキ)の発生を防止することができる。 Further, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the straightening member 40b By arranging on the end surface T2 side, the following effects are exhibited. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the current plate 49a side, a turbulent flow occurs between the second portion 492 of the rectifying plate 49a and the second end surface T2 of the porous substrate 1, causing variations in the length of the slurry layers N (particularly, Variation in length between slurry layers N formed on the inner portion of the porous substrate 1 in the radial direction may occur. Hereinafter, the distance between the rectifying plate 49a and the second end surface T2 of the porous substrate 1, which generates turbulent flow, is defined as Dx. On the other hand, in the straightening member 49b, since the second through hole J is formed in the second portion 492 of the first straightening plate 49b, the first straightening plate 49b and the second end surface T2 of the porous base material 1 is Dx, turbulent flow is less likely to occur between the second portion 492 of the first rectifying plate 49b and the second end face T2 of the porous substrate 1 . Further, in the rectifying member 49b, the second rectifying plate 50 is arranged on the opposite side of the first rectifying plate 49b from the second end surface T2 of the porous substrate 1, so that the first rectifying plate 49b and the porous Even if the distance from the second end surface T2 of the substrate 1 is Dx, the distance between the second straightening plate 50 and the second end surface T2 of the porous substrate 1 is greater than Dx, and the second straightening plate A turbulent flow is less likely to occur between 50 and the second end surface T2 of the porous substrate 1 . Therefore, when the first rectifying plate 49b and the second rectifying plate 50 are used, the variation in length between the slurry layers N (in particular, the porous substrate 1 It is possible to prevent the occurrence of variations in length between the slurry layers N formed in the radially inner portion of the .
≪構造体製造方法≫
 以下、本発明の構造体製造方法の実施形態について説明する。
<<Method for manufacturing structure>>
An embodiment of the structure manufacturing method of the present invention will be described below.
 本発明の構造体製造方法は、以下の工程:
(a)多孔質基材1の第1端面T1側に、機能層の原料を含有するスラリーMを供給する工程;及び
(b)多孔質基材1の第1端面T1側に供給されたスラリーMを多孔質基材1の第2端面T2側から吸引し、多孔質基材1の第1セルの内壁に、多孔質基材1の第1端面T1から多孔質基材1の第2端面T2に向けて延在し、多孔質基材1の第2端面T2に達しないスラリー層Nを形成する工程
を含む。
The structure manufacturing method of the present invention comprises the following steps:
(a) a step of supplying a slurry M containing raw materials for the functional layer to the first end surface T1 side of the porous substrate 1; and (b) a slurry supplied to the first end surface T1 side of the porous substrate 1. M is sucked from the second end surface T2 side of the porous substrate 1, and is applied to the inner wall of the first cell of the porous substrate 1 from the first end surface T1 of the porous substrate 1 to the second end surface of the porous substrate 1. A step of forming a slurry layer N that extends toward T2 and does not reach the second end face T2 of the porous substrate 1 is included.
 本発明の構造体製造方法は、構造体製造装置100により実施することができる。構造体製造装置100により本発明の構造体製造方法を実施する場合、工程(a)及び(b)は、コーティング処理部4により実施される。この際、コーティング処理部4の動作は、制御部3によって制御される。 The structure manufacturing method of the present invention can be implemented by the structure manufacturing apparatus 100. When the structure manufacturing method of the present invention is performed by the structure manufacturing apparatus 100 , steps (a) and (b) are performed by the coating processing section 4 . At this time, the operation of the coating processor 4 is controlled by the controller 3 .
 以下、構造体製造装置100により実施される構造体製造方法の実施形態について説明する。本実施形態では、端面S1が第1端面T1、端面S2が第2端面T2、セル13aが第1セル、セル13bが第2セルである。 An embodiment of the structure manufacturing method performed by the structure manufacturing apparatus 100 will be described below. In this embodiment, the end face S1 is the first end face T1, the end face S2 is the second end face T2, the cell 13a is the first cell, and the cell 13b is the second cell.
 まず、基材搬入工程が行われる。基材搬入工程では、多孔質基材1がコーティング処理部4へ搬入される。制御部3は、搬送機構222の動作を制御して、載置部211に載置された多孔質基材1をコーティング処理部4へ搬入する。 First, the base material loading process is performed. In the substrate loading step, the porous substrate 1 is loaded into the coating processing section 4 . The control unit 3 controls the operation of the transport mechanism 222 to carry the porous substrate 1 placed on the placement unit 211 into the coating processing unit 4 .
 基材搬入工程の後、基材保持工程が行われる。基材保持工程では、コーティング処理部4へ搬入された多孔質基材1が基材保持部41に保持される。搬送機構222によってコーティング処理部4へ搬入された多孔質基材1は、そのまま、搬送機構222によって保持されてもよい。この場合、搬送機構222は、基材保持部41として機能する。 After the base material loading process, the base material holding process is performed. In the substrate holding step, the porous substrate 1 carried into the coating processing section 4 is held by the substrate holding section 41 . The porous substrate 1 carried into the coating processing section 4 by the transport mechanism 222 may be held by the transport mechanism 222 as it is. In this case, the transport mechanism 222 functions as the substrate holder 41 .
 基材保持工程の後、ノズル移動工程及び吸引管移動工程が行われる。ノズル移動工程及び吸引管移動工程の順序は特に限定されない。ノズル移動工程の後、吸引管移動工程が行われてもよいし、吸引管移動工程の後、ノズル移動工程が行われてもよいし、ノズル移動工程及び吸引管移動工程が同時に行われてもよい。 After the substrate holding process, the nozzle moving process and the suction pipe moving process are performed. The order of the nozzle moving process and the suction tube moving process is not particularly limited. After the nozzle moving process, the suction tube moving process may be performed, after the suction tube moving process, the nozzle moving process may be performed, or the nozzle moving process and the suction tube moving process may be performed at the same time. good.
 ノズル移動工程では、ノズル移動機構43がノズル422を図7に示す待機位置から図8に示すスラリー供給位置に移動させる。 In the nozzle moving process, the nozzle moving mechanism 43 moves the nozzle 422 from the standby position shown in FIG. 7 to the slurry supply position shown in FIG.
 制御部3は、ノズル移動機構43の動作を制御し、ノズル422を待機位置からスラリー供給位置に移動させるタイミング、ノズル422をスラリー供給位置から待機位置に移動させるタイミング等を制御する。 The control unit 3 controls the operation of the nozzle moving mechanism 43 to control the timing of moving the nozzle 422 from the standby position to the slurry supply position, the timing of moving the nozzle 422 from the slurry supply position to the standby position, and the like.
 ノズル422がスラリー供給位置に移動すると、多孔質基材1の第1端面T1側の端部は、治具44内に進入し、治具44内には、多孔質基材1の第1端面T1側に供給されたスラリーMの貯留を可能とする貯留空間V1が形成される。 When the nozzle 422 moves to the slurry supply position, the end of the porous substrate 1 on the side of the first end surface T1 enters the jig 44, and the first end surface of the porous substrate 1 is placed in the jig 44. A storage space V1 is formed in which the slurry M supplied to the T1 side can be stored.
 治具44内に進入した多孔質基材1の第1端面T1側の端部は、第1基材固定部45によって治具44内に固定される。第1基材固定部45は、例えば、風船式チャック等のチャック機構を有する。制御部3は、第1基材固定部45の動作を制御し、治具44内に進入した多孔質基材1の第1端面T1側の端部を治具44内に固定するタイミング、固定を解除するタイミング等を制御する。具体的には、制御部3は、第1基材固定部45の動作を制御して、多孔質基材1の第1端面T1側の端部が治具44内に進入する際には、風船式チャックが有する風船を膨張させず、多孔質基材1の第1端面T1側の端部が治具44内に進入した後には、風船式チャックが有する風船を空気圧により膨張させ、治具44内に進入した多孔質基材1の第1端面T1側の端部を治具44内に固定する。この際、風船式チャックが有する風船は、治具44と、治具44内に進入した多孔質基材1の第1端面T1側の端部との間を隙間なく埋め、貯留空間V1からのスラリーMの漏出を防止する。 The end portion of the porous substrate 1 on the side of the first end surface T1 that has entered the jig 44 is fixed inside the jig 44 by the first substrate fixing portion 45 . The first base material fixing part 45 has, for example, a chuck mechanism such as a balloon type chuck. The control unit 3 controls the operation of the first base material fixing unit 45, and determines the timing and fixing of the end of the porous base material 1 that has entered the jig 44 on the side of the first end surface T1 in the jig 44. Controls the timing of releasing the Specifically, the control unit 3 controls the operation of the first base material fixing unit 45, and when the end of the porous base material 1 on the first end surface T1 side enters the jig 44, After the end portion of the porous substrate 1 on the first end surface T1 side enters the jig 44 without expanding the balloon held by the balloon chuck, the balloon held by the balloon chuck is expanded by air pressure, and the jig is moved. The end portion of the porous substrate 1 on the first end surface T1 side that has entered the inside 44 is fixed inside the jig 44 . At this time, the balloon held by the balloon-type chuck fills the space between the jig 44 and the end of the porous base material 1 on the first end surface T1 side that has entered the jig 44 without any gap, and the balloon is discharged from the storage space V1. Prevent the slurry M from leaking.
 本実施形態では、ノズル移動機構43がノズル422を移動させることにより、多孔質基材1とノズル422との相対的な位置を変化させているが、基材保持部41が多孔質基材1を移動させることにより、多孔質基材1とノズル422との相対的な位置を変化させてもよい。 In the present embodiment, the nozzle moving mechanism 43 moves the nozzle 422 to change the relative position between the porous substrate 1 and the nozzle 422 . By moving , the relative position between the porous substrate 1 and the nozzle 422 may be changed.
 吸引管移動工程では、吸引管移動機構47が吸引管461を図7に示す待機位置から図8に示すスラリー吸引位置に移動させる。 In the suction tube moving process, the suction tube moving mechanism 47 moves the suction tube 461 from the standby position shown in FIG. 7 to the slurry suction position shown in FIG.
 制御部3は、吸引管移動機構47の動作を制御し、吸引管461を待機位置からスラリー吸引位置に移動させるタイミング、吸引管461をスラリー吸引位置から待機位置に移動させるタイミング等を制御する。 The control unit 3 controls the operation of the suction tube moving mechanism 47, and controls the timing of moving the suction tube 461 from the standby position to the slurry suction position, the timing of moving the suction tube 461 from the slurry suction position to the standby position, and the like.
 吸引管461がスラリー吸引位置に移動すると、多孔質基材1の第2端面T2側の端部は、吸引管461内に進入し、吸引管461内には、多孔質基材1の第1端面T1側に供給されたスラリーMの吸引を可能とする吸引空間V2が形成される。 When the suction tube 461 moves to the slurry suction position, the end of the porous substrate 1 on the second end face T2 side enters the suction tube 461, and the first A suction space V2 is formed to enable suction of the slurry M supplied to the end surface T1 side.
 吸引管461内に進入した多孔質基材1の第2端面T2側の端部は、第2基材固定部48によって吸引管461内に固定される。第2基材固定部48は、例えば、風船式チャック等のチャック機構を有する。制御部3は、第2基材固定部48の動作を制御し、吸引管461内に進入した多孔質基材1の第2端面T2側の端部を吸引管461内に固定するタイミング、固定を解除するタイミング等を制御する。具体的には、制御部3は、第2基材固定部48の動作を制御して、多孔質基材1の第2端面T2側の端部が吸引管461内に進入する際には、風船式チャックが有する風船を膨張させず、多孔質基材1の第2端面T2側の端部が吸引管461内に進入した後には、風船式チャックが有する風船を空気圧により膨張させ、吸引管461内に進入した多孔質基材1の第2端面T2側の端部を吸引管461内に固定する。この際、風船式チャックが有する風船は、吸引管461と、吸引管461内に進入した多孔質基材1の第2端面T2側の端部との間を隙間なく埋め、吸引空間V2を密閉する。このため、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、吸引管461内の整流部材40に流れ込まない。例えば、第1実施形態では、吸引管461外の空気が、多孔質基材1の外周面に沿って、吸引管461内の整流板49aに形成された貫通孔(例えば、整流板49aの第1部分491に形成された第1貫通孔G)に流れ込まない。また、第2実施形態では、吸引管461外の空気が、多孔質基材1の外周面に沿って、吸引管461内の第1整流板49b及び第2整流板50に形成された貫通孔(例えば、第1整流板49bの第1部分491に形成された第1貫通孔G、第1整流板49bの第2部分492に形成された第2貫通孔J、第2整流板50に形成された貫通孔等)に流れ込まない。 The end portion of the porous substrate 1 on the second end surface T2 side that has entered the suction tube 461 is fixed inside the suction pipe 461 by the second substrate fixing portion 48 . The second base material fixing portion 48 has, for example, a chuck mechanism such as a balloon type chuck. The control unit 3 controls the operation of the second base material fixing unit 48, and determines the timing and fixing of the second end surface T2 side end of the porous base material 1 that has entered the suction tube 461, in the suction tube 461. Controls the timing of releasing the Specifically, the control unit 3 controls the operation of the second base material fixing unit 48, and when the end of the porous base material 1 on the second end surface T2 side enters the suction tube 461, After the end portion of the porous substrate 1 on the second end surface T2 side enters the suction tube 461 without expanding the balloon of the balloon chuck, the balloon of the balloon chuck is expanded by the air pressure to open the suction tube. The end portion of the porous substrate 1 on the second end surface T2 side that has entered the inside of the suction tube 461 is fixed inside the suction tube 461 . At this time, the balloon held by the balloon-type chuck fills the gap between the suction tube 461 and the end portion of the porous substrate 1 on the second end surface T2 side that has entered the suction tube 461, and seals the suction space V2. do. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, it does not flow into the straightening member 40 inside the suction tube 461. For example, in the first embodiment, the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 through through holes formed in the rectifying plate 49a in the suction tube 461 (for example, through the through holes of the rectifying plate 49a). It does not flow into the first through hole G) formed in the one portion 491 . In addition, in the second embodiment, the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 and through the through holes formed in the first straightening plate 49 b and the second straightening plate 50 inside the suction tube 461 . (For example, a first through hole G formed in the first portion 491 of the first straightening plate 49b, a second through hole J formed in the second portion 492 of the first straightening plate 49b, and a second through hole J formed in the second straightening plate 50 through-holes, etc.).
 本実施形態では、吸引管移動機構47が吸引管461を移動させることにより、多孔質基材1と吸引管461との相対的な位置を変化させているが、基材保持部41により多孔質基材1を移動させることにより、多孔質基材1と吸引管461との相対的な位置を変化させてもよい。 In the present embodiment, the suction tube moving mechanism 47 moves the suction tube 461 to change the relative position between the porous substrate 1 and the suction tube 461 . By moving the substrate 1, the relative positions of the porous substrate 1 and the suction tube 461 may be changed.
 ノズル移動工程及び吸引管移動工程の後、工程(a)が行われる。 Step (a) is performed after the nozzle moving step and the suction tube moving step.
 工程(a)では、スラリー供給部42が、多孔質基材1の第1端面T1にスラリーMを供給する。多孔質基材1の第1端面T1側に供給されたスラリーMは、貯留空間V1に貯留される。 In step (a), the slurry supply unit 42 supplies the slurry M to the first end surface T1 of the porous substrate 1 . The slurry M supplied to the first end face T1 side of the porous substrate 1 is stored in the storage space V1.
 制御部3は、スラリー供給部42の動作を制御し、スラリーMの供給を開始するタイミング、スラリーMの供給量、スラリーMの供給を停止するタイミング等を制御する。 The control unit 3 controls the operation of the slurry supply unit 42, and controls the timing of starting supply of the slurry M, the amount of supply of the slurry M, the timing of stopping the supply of the slurry M, and the like.
 工程(a)の後、工程(b)が行われる。 After step (a), step (b) is performed.
 工程(b)では、スラリー吸引部46が、多孔質基材1の第1端面T1側に供給されたスラリーMを多孔質基材1の第2端面T2側から吸引し、多孔質基材1の第1セルの内壁にスラリー層Nを形成する。具体的には、吸引機構462が吸引管461内の吸引空間V2を減圧する。これにより、多孔質基材1の第1端面T1から多孔質基材1の第2端面T2に向けて空気の流れが生じ、多孔質基材1の第1端面T1側に供給されたスラリーMは、多孔質基材1の第2端面T2に向けて吸引され、第1セル内へ導入され、第1セルの内壁を伝って第1端面T1から第2端面T2へ流れる。その結果、図10に示すように、第1セルの内壁には、多孔質基材1の第1端面T1から多孔質基材1の第2端面T2に向けて延在するスラリー層Nが形成される。 In step (b), the slurry suction part 46 sucks the slurry M supplied to the first end surface T1 side of the porous substrate 1 from the second end surface T2 side of the porous substrate 1, and the porous substrate 1 forming a slurry layer N on the inner walls of the first cells of the . Specifically, the suction mechanism 462 decompresses the suction space V2 inside the suction pipe 461 . As a result, an air flow is generated from the first end surface T1 of the porous substrate 1 toward the second end surface T2 of the porous substrate 1, and the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked toward the second end surface T2 of the porous substrate 1, introduced into the first cell, and flows along the inner wall of the first cell from the first end surface T1 to the second end surface T2. As a result, as shown in FIG. 10, a slurry layer N extending from the first end surface T1 of the porous substrate 1 toward the second end surface T2 of the porous substrate 1 is formed on the inner wall of the first cell. be done.
 図10に示すように、スラリー層Nは、隔壁部12のセル13a側の表面上に形成されている。スラリー層Nは、隔壁部12の表面からセル13a側に***している部分を有する。スラリー層Nは、隔壁部12の表面からセル13a側に***している部分のみで構成されていてもよいし、当該部分とともに、隔壁部12の内部に存在する部分を有していてもよい。隔壁部12は多孔質であるため、スラリー層Nは、通常、隔壁部12の内部に存在する部分を有する。スラリー層Nは、隔壁部12の内部に存在する部分のみで構成されていてもよい。 As shown in FIG. 10, the slurry layer N is formed on the surface of the partition wall 12 on the cell 13a side. The slurry layer N has a portion protruding from the surface of the partition wall 12 toward the cell 13a. The slurry layer N may be composed only of a portion protruding from the surface of the partition wall 12 toward the cell 13a, or may have a portion present inside the partition wall 12 together with the portion. . Since the partition wall 12 is porous, the slurry layer N usually has a portion existing inside the partition wall 12 . The slurry layer N may be composed only of the portion existing inside the partition wall portion 12 .
 図10に示すように、スラリー層Nは、多孔質基材1の第2端面T2には達していない。すなわち、スラリー層Nの長さPNは、多孔質基材1の長さP1よりも小さい。スラリー層Nの長さPNは、多孔質基材1の長さP1の、好ましくは10%以上90%以下、より好ましくは20%以上80%以下である。スラリー層Nの長さPNが上記範囲内であると、スラリーが多孔質基材1に均一にコートされやすい。 As shown in FIG. 10, the slurry layer N does not reach the second end surface T2 of the porous substrate 1. That is, the length PN of the slurry layer N is smaller than the length P1 of the porous substrate 1 . The length PN of the slurry layer N is preferably 10% or more and 90% or less, more preferably 20% or more and 80% or less of the length P1 of the porous substrate 1 . When the length PN of the slurry layer N is within the above range, the porous substrate 1 is easily uniformly coated with the slurry.
 制御部3は、スラリー層Nが多孔質基材1の第2端面T2に達しないように、スラリー吸引部46の動作を制御し、吸引管461内の吸引空間V2の減圧を開始するタイミング、減圧の程度、減圧を停止するタイミング等を調整する。 The control unit 3 controls the operation of the slurry suction unit 46 so that the slurry layer N does not reach the second end surface T2 of the porous substrate 1, and the timing of starting the pressure reduction of the suction space V2 in the suction pipe 461, Adjust the degree of decompression, the timing to stop decompression, etc.
 スラリー層Nが、必要に応じて乾燥された後、焼成されることにより、多孔質基材1の第2端面T2に至らないように、多孔質基材1の第1端面T1から多孔質基材1の第2端面T2に向けて延在する触媒層が、隔壁部12のセル13a側の表面上に形成される。触媒層は、隔壁部12の表面からセル13a側に***している部分を有する。触媒層は、隔壁部12の表面からセル13a側に***している部分のみで構成されていてもよいし、当該部分とともに、隔壁部12の内部に存在する部分を有していてもよい。隔壁部12は多孔質であるため、触媒層は、通常、隔壁部12の内部に存在する部分を有する。触媒層は、隔壁部12の内部に存在する部分のみで構成されていてもよい。 After the slurry layer N is dried as necessary, the porous substrate is removed from the first end surface T1 of the porous substrate 1 so as not to reach the second end surface T2 of the porous substrate 1 by firing. A catalyst layer extending toward the second end face T2 of the material 1 is formed on the surface of the partition wall portion 12 on the cell 13a side. The catalyst layer has a portion protruding from the surface of the partition wall portion 12 toward the cell 13a. The catalyst layer may consist only of a portion protruding from the surface of the partition wall 12 toward the cell 13a, or may have a portion existing inside the partition wall 12 together with the portion. Since the partition wall 12 is porous, the catalyst layer usually has a portion existing inside the partition wall 12 . The catalyst layer may be composed only of the portion existing inside the partition wall portion 12 .
 吸引管461がスラリー吸引位置に移動すると、整流部材40は、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。すなわち、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40は、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。 When the suction pipe 461 moves to the slurry suction position, the straightening member 40 is positioned on the second end face T2 side of the porous base material 1 and spaced from the second end face T2 of the porous base material 1 . That is, when the slurry M supplied to the first end face T1 side of the porous base material 1 is sucked from the second end face T2 side of the porous base material 1, the rectifying member 40 moves toward the second end face T2 of the porous base material 1. It is located on the side of the end face T2 and is spaced apart from the second end face T2 of the porous substrate 1 .
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40は、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆し、多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させる。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying member 40 moves toward the second end surface T2 of the porous substrate 1. At least part of the central region T22 of the porous substrate 1 is covered, and at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1 is exposed.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40が、多孔質基材1の第2端面T2側に配置されることにより、次の効果が奏される。多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の筒状部11の外周面から空気が流入し、多孔質基材1の径方向の外側部分における吸引力は低下する。しかしながら、整流部材40が多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆するため、多孔質基材1の径方向の内側部分では空気が流れにくくなっている一方、整流部材40が多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させるため、多孔質基材1の径方向の外側部分では空気が流れやすくなっている。したがって、多孔質基材1の径方向の内側部分に加わる吸引力と、多孔質基材1の径方向の外側部分に加わる吸引力との差が小さくなり、多孔質基材1の径方向の内側部分に形成されるスラリー層Nの長さと、多孔質基材1の径方向の外側部分に形成されるスラリー層Nの長さとの差が小さくなる。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying member 40 moves toward the second end surface T2 of the porous substrate 1. By arranging on the side, the following effects are exhibited. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, air is drawn from the outer peripheral surface of the cylindrical portion 11 of the porous substrate 1. flows in and the suction force at the radially outer portion of the porous substrate 1 decreases. However, since the rectifying member 40 covers at least a part of the central region T22 of the second end surface T2 of the porous substrate 1, it is difficult for air to flow in the radially inner portion of the porous substrate 1. Since the rectifying member 40 exposes at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1, air can easily flow through the radially outer portion of the porous substrate 1. FIG. Therefore, the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
 以下、整流部材40として、第1実施形態に係る整流部材40aが使用される場合について説明する。 A case where the rectifying member 40a according to the first embodiment is used as the rectifying member 40 will be described below.
 吸引管461がスラリー吸引位置に移動すると、整流板49aは、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。したがって、工程(b)において、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49aは、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。 When the suction pipe 461 moves to the slurry suction position, the rectifying plate 49a is positioned on the second end face T2 side of the porous base material 1 and spaced apart from the second end face T2 of the porous base material 1 . Therefore, in the step (b), when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying plate 49a becomes porous. It is located on the side of the second end surface T2 of the base material 1 and spaced from the second end surface T2 of the porous base material 1 .
 吸引管461がスラリー吸引位置に移動すると、整流板49aと多孔質基材1の第2端面T2との距離は、距離D2aとなる。 When the suction pipe 461 moves to the slurry suction position, the distance between the current plate 49a and the second end face T2 of the porous substrate 1 becomes the distance D2a.
 工程(b)において、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49aは、多孔質基材1の第2端面T2のうち、中央領域T22の少なくとも一部を被覆し、外縁領域T21の少なくとも一部を露出させる。具体的には、整流板49aの第2部分492は、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆し、整流板49aの第1部分491に形成された第1貫通孔Gは、多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させる。 In step (b), when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the current plate 49a At least part of the central region T22 of the one second end face T2 is covered, and at least part of the outer edge region T21 is exposed. Specifically, the second portion 492 of the straightening plate 49a covers at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1, and the first portion 491 formed on the first portion 491 of the straightening plate 49a covers at least a portion of the central region T22. 1 through-hole G exposes at least part of outer edge region T21 of second end surface T2 of porous substrate 1 .
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40aが、多孔質基材1の第2端面T2側に配置されることにより、次の効果が奏される。多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の筒状部11の外周面から空気が流入し、多孔質基材1の径方向の外側部分における吸引力は低下する。しかしながら、整流板49aの第2部分492が多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆するため、多孔質基材1の径方向の内側部分では空気が流れにくくなっている一方、整流板49aの第1部分491に形成された第1貫通孔Gが多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させるため、多孔質基材1の径方向の外側部分では空気が流れやすくなっている。したがって、多孔質基材1の径方向の内側部分に加わる吸引力と、多孔質基材1の径方向の外側部分に加わる吸引力との差が小さくなり、多孔質基材1の径方向の内側部分に形成されるスラリー層Nの長さと、多孔質基材1の径方向の外側部分に形成されるスラリー層Nの長さとの差が小さくなる。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the straightening member 40a By arranging on the side, the following effects are exhibited. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, air is drawn from the outer peripheral surface of the cylindrical portion 11 of the porous substrate 1. flows in and the suction force at the radially outer portion of the porous substrate 1 decreases. However, since the second portion 492 of the rectifying plate 49a covers at least part of the central region T22 of the second end surface T2 of the porous substrate 1, it is difficult for air to flow through the radially inner portion of the porous substrate 1. On the other hand, since the first through holes G formed in the first portion 491 of the current plate 49a expose at least part of the outer edge region T21 of the second end surface T2 of the porous substrate 1, the porous substrate The radially outer portion of 1 facilitates air flow. Therefore, the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
 以下、整流部材40として、第2実施形態に係る整流部材40bが使用される場合について説明する。 A case where the rectifying member 40b according to the second embodiment is used as the rectifying member 40 will be described below.
 吸引管461がスラリー吸引位置に移動すると、第1整流板49bは、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。すなわち、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、第1整流板49bは、多孔質基材1の第2端面T2側に、多孔質基材1の第2端面T2から離間して位置する。 When the suction pipe 461 moves to the slurry suction position, the first rectifying plate 49b is positioned on the second end face T2 side of the porous base material 1 and spaced apart from the second end face T2 of the porous base material 1 . That is, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the first straightening plate 49b It is located on the side of the second end face T2 and separated from the second end face T2 of the porous substrate 1 .
 吸引管461がスラリー吸引位置に移動すると、第1整流板49bと多孔質基材1の第2端面T2との距離は、距離D2bとなる。 When the suction pipe 461 moves to the slurry suction position, the distance between the first straightening plate 49b and the second end face T2 of the porous substrate 1 becomes the distance D2b.
 第2整流板50は、第1整流板49bに対して多孔質基材1の第2端面T2とは反対側に配置されている。この位置関係は、吸引管461がスラリー吸引位置にある状態でも、吸引管461が待機位置にある状態でも、変わらない。したがって、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、第2整流板50は、第1整流板49bに対して多孔質基材1の第2端面T2とは反対側に位置する。 The second straightening plate 50 is arranged on the side opposite to the second end surface T2 of the porous substrate 1 with respect to the first straightening plate 49b. This positional relationship does not change whether the suction tube 461 is at the slurry suction position or at the standby position. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the second rectifying plate 50 moves toward the first rectifying plate 49b. On the other hand, it is located on the side opposite to the second end surface T2 of the porous substrate 1 .
 第1整流板49bと第2整流板50との距離は、距離D3である。距離D3は、吸引管461がスラリー吸引位置にある状態でも、吸引管461が待機位置にある状態でも、変わらない。したがって、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、第1整流板49bと第2整流板50との距離は、距離D3である。 The distance between the first rectifying plate 49b and the second rectifying plate 50 is the distance D3. The distance D3 does not change whether the suction tube 461 is at the slurry suction position or at the standby position. Therefore, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the first rectifying plate 49b and the second rectifying plate 50 The distance is distance D3.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40bが、多孔質基材1の第2端面T2側に配置されることにより、次の効果が奏される。多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の筒状部11の外周面から空気が流入し、多孔質基材1の径方向の外側部分における吸引力は低下する。しかしながら、第1整流板49bに形成された第2貫通孔Jが、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を露出させ、第2整流板50が、第1整流板49bに形成された第2貫通孔Jの少なくとも一部を被覆するため、多孔質基材1の径方向の内側部分では空気が流れにくくなっている一方、第1整流板49bに形成された第1貫通孔Gが多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させるため、多孔質基材1の径方向の外側部分では空気が流れやすくなっている。したがって、多孔質基材1の径方向の内側部分に加わる吸引力と、多孔質基材1の径方向の外側部分に加わる吸引力との差が小さくなり、多孔質基材1の径方向の内側部分に形成されるスラリー層Nの長さと、多孔質基材1の径方向の外側部分に形成されるスラリー層Nの長さとの差が小さくなる。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the rectifying member 40b moves toward the second end surface T2 of the porous substrate 1. By arranging on the side, the following effects are exhibited. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, air is drawn from the outer peripheral surface of the cylindrical portion 11 of the porous substrate 1. flows in and the suction force at the radially outer portion of the porous substrate 1 decreases. However, the second through hole J formed in the first straightening plate 49b exposes at least a portion of the central region T22 of the second end surface T2 of the porous substrate 1, and the second straightening plate 50 serves as the first straightening plate. Since at least a part of the second through hole J formed in the plate 49b is covered, it is difficult for air to flow in the radially inner portion of the porous substrate 1. Since the first through holes G expose at least a portion of the outer edge region T21 of the second end surface T2 of the porous substrate 1, air can easily flow through the radially outer portion of the porous substrate 1. FIG. Therefore, the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 becomes small, The difference between the length of the slurry layer N formed on the inner portion and the length of the slurry layer N formed on the radially outer portion of the porous substrate 1 is reduced.
 また、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流部材40bが、多孔質基材1の第2端面T2側に配置されることにより、次の効果が奏される。多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49aが、多孔質基材1の第2端面T2側に配置される場合、整流板49aの第2部分492と多孔質基材1の第2端面T2との間で、乱流が発生し、スラリー層N間での長さのバラツキ(特に、多孔質基材1の径方向の内側部分に形成されるスラリー層N間での長さのバラツキ)が発生するおそれがある。以下、乱流を発生させる、整流板49aと多孔質基材1の第2端面T2との距離をDxとする。これに対して、整流部材49bでは、第2貫通孔Jが第1整流板49bの第2部分492に形成されているため、第1整流板49bと多孔質基材1の第2端面T2との距離がDxであっても、第1整流板49bの第2部分492と多孔質基材1の第2端面T2との間において乱流が発生しにくい。また、整流部材49bでは、第2整流板50が第1整流板49bに対して多孔質基材1の第2端面T2とは反対側に配置されているため、第1整流板49bと多孔質基材1の第2端面T2との距離がDxであっても、第2整流板50と多孔質基材1の第2端面T2との距離はDxよりも大きくなっており、第2整流板50と多孔質基材1の第2端面T2との間において乱流が発生しにくい。したがって、第1整流板49b及び第2整流板50が使用される場合には、整流板49aが使用される場合よりも、スラリー層N間での長さのバラツキ(特に、多孔質基材1の径方向の内側部分に形成されるスラリー層N間での長さのバラツキ)の発生を防止することができる。 Further, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the straightening member 40b By arranging on the end surface T2 side, the following effects are exhibited. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the current plate 49a side, a turbulent flow occurs between the second portion 492 of the rectifying plate 49a and the second end surface T2 of the porous substrate 1, causing variations in the length of the slurry layers N (particularly, Variation in length between slurry layers N formed on the inner portion of the porous substrate 1 in the radial direction may occur. Hereinafter, the distance between the rectifying plate 49a and the second end surface T2 of the porous substrate 1, which generates turbulent flow, is defined as Dx. On the other hand, in the straightening member 49b, since the second through hole J is formed in the second portion 492 of the first straightening plate 49b, the first straightening plate 49b and the second end surface T2 of the porous base material 1 is Dx, turbulent flow is less likely to occur between the second portion 492 of the first rectifying plate 49b and the second end face T2 of the porous substrate 1 . Further, in the rectifying member 49b, the second rectifying plate 50 is arranged on the opposite side of the first rectifying plate 49b from the second end surface T2 of the porous substrate 1, so that the first rectifying plate 49b and the porous Even if the distance from the second end surface T2 of the substrate 1 is Dx, the distance between the second straightening plate 50 and the second end surface T2 of the porous substrate 1 is greater than Dx, and the second straightening plate A turbulent flow is less likely to occur between 50 and the second end surface T2 of the porous substrate 1 . Therefore, when the first rectifying plate 49b and the second rectifying plate 50 are used, the variation in length between the slurry layers N (in particular, the porous substrate 1 It is possible to prevent the occurrence of variations in length between the slurry layers N formed in the radially inner portion of the .
 いずれの実施形態においても、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の径方向の内側部分のうち、第1端面T1側の部分における空気の流速は、好ましくは、1m/s以上10m/s以下、より好ましくは、2m/s以上5m/s以下である。 In any embodiment, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the radial direction of the porous substrate 1 The flow velocity of the air in the portion on the first end face T1 side of the inner portion is preferably 1 m/s or more and 10 m/s or less, more preferably 2 m/s or more and 5 m/s or less.
 いずれの実施形態においても、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の径方向の外側部分のうち、第1端面T1側の部分における空気の流速は、好ましくは、1m/s以上30m/s以下、より好ましくは、5m/s以上15m/s以下である。 In any embodiment, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the radial direction of the porous substrate 1 The flow velocity of the air in the portion on the first end surface T1 side of the outer portion of is preferably 1 m/s or more and 30 m/s or less, more preferably 5 m/s or more and 15 m/s or less.
 工程(b)の後、スラリー層Nが形成された多孔質基材1を、必要に応じて乾燥した後、焼成してもよい。これにより、スラリー層Nは、触媒層となる。乾燥温度は、例えば、70℃以上150℃以下であり、乾燥時間は、例えば、0.2時間以上3時間以下であり、焼成温度は、例えば、400℃以上900℃以下であり、焼成時間は、例えば、1時間以上10時間以下である。焼成は、大気雰囲気下で行うことができる。 After the step (b), the porous substrate 1 on which the slurry layer N is formed may be dried and then fired as necessary. Thereby, the slurry layer N becomes a catalyst layer. The drying temperature is, for example, 70° C. or more and 150° C. or less, the drying time is, for example, 0.2 hours or more and 3 hours or less, the firing temperature is, for example, 400° C. or more and 900° C. or less, and the firing time is , for example, from 1 hour to 10 hours. Firing can be performed in an air atmosphere.
 ノズル移動工程の後、吸引管移動工程が行われることなく、工程(a)が行われてもよい。この場合、工程(a)の間又は工程(a)の後に吸引管移動工程が行われ、工程(a)及び吸引管移動工程の後に工程(b)が行われる。 After the nozzle moving process, the process (a) may be performed without performing the suction tube moving process. In this case, the suction tube moving step is performed during or after the step (a), and the step (b) is performed after the step (a) and the suction tube moving step.
 以下、本発明の構造体製造装置及び構造体製造方法の好ましい実施形態について説明する。2以上の好ましい実施形態を組み合わせることができる場合、このような組み合わせも本発明に包含される。 Preferred embodiments of the structure manufacturing apparatus and structure manufacturing method of the present invention will be described below. Where two or more preferred embodiments can be combined, such combinations are also included in the invention.
 整流板49aの第2部分492に第2貫通孔が形成されていない場合、整流部材40aの上記効果をより向上させる観点から、整流板49aの第2部分492が被覆する中央領域T22の少なくとも一部の面積は、中央領域T22の面積の50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより一層好ましく、80%以上であることがより一層好ましく、90%以上であることがより一層好ましく、95%以上であることがより一層好ましい。上限は100%である。 When the second portion 492 of the rectifying plate 49a does not have the second through hole, at least one of the central regions T22 covered by the second portion 492 of the rectifying plate 49a is provided from the viewpoint of further improving the above effect of the rectifying member 40a. The area of the part is preferably 50% or more of the area of the central region T22, more preferably 60% or more, even more preferably 70% or more, and even more preferably 80% or more. It is preferably 90% or more, even more preferably 95% or more. The upper limit is 100%.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49aの第2部分492と多孔質基材1の第2端面T2との間で、乱流が発生することを防止し、ひいては、スラリー層N間での長さのバラツキ(特に、多孔質基材1の径方向の内側部分に形成されるスラリー層N間での長さのバラツキ)が発生することを防止する観点から、整流板49aの第2部分492に第2貫通孔が形成されていることが好ましい。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the second portion 492 of the current plate 49a and the porous substrate 1 It prevents turbulent flow from occurring between the second end surface T2, and thus the length variation between the slurry layers N (especially, the slurry formed in the radially inner part of the porous substrate 1 From the viewpoint of preventing occurrence of variation in length between layers N, it is preferable that a second through hole is formed in the second portion 492 of the straightening plate 49a.
 整流板49aの第2部分492に第2貫通孔が形成されている一実施形態を図16に示す。図16に示す実施形態では、整流板49aの第2部分492に多数の丸孔状の第2貫通孔Qが形成されている。第2貫通孔Qの平面視形状は適宜変更可能であり、第2貫通孔Qの平面視形状としては、例えば、円形状、楕円形状、正方形状、長方形状、長方形の角が丸くなった形状等が挙げられる。第2貫通孔Qの数は適宜変更可能であり、第2貫通孔Qの数は1であってもよいし、2以上であってもよい。整流板49aの第2部分492に形成された第2貫通孔Qは、整流板49aの第1部分491に形成された第1貫通孔Gと連続していてもよい。第2貫通孔Qの径は、例えば1mm以上5mm以下である。第2貫通孔Qの径は、第2貫通孔Qが円形である場合には、当該円形の直径を意味し、第2貫通孔Qが円形以外の形状である場合には、当該形状に外接する円形の直径を意味する。 FIG. 16 shows an embodiment in which a second through hole is formed in the second portion 492 of the rectifying plate 49a. In the embodiment shown in FIG. 16, a large number of round second through holes Q are formed in the second portion 492 of the current plate 49a. The planar view shape of the second through hole Q can be changed as appropriate, and the planar view shape of the second through hole Q includes, for example, a circular shape, an elliptical shape, a square shape, a rectangular shape, and a rectangular shape with rounded corners. etc. The number of second through holes Q can be changed as appropriate, and the number of second through holes Q may be one, or two or more. The second through hole Q formed in the second portion 492 of the current plate 49a may be continuous with the first through hole G formed in the first portion 491 of the current plate 49a. The diameter of the second through hole Q is, for example, 1 mm or more and 5 mm or less. When the second through-hole Q is circular, the diameter of the second through-hole Q means the diameter of the circle. means the diameter of the circle that
 整流板49aの第2部分492に第2貫通孔Qが形成されている場合、第2貫通孔Qは、多孔質基材1の第2端面T2の中央領域T22の一部を露出させる。「第2貫通孔Qが、多孔質基材1の第2端面T2の中央領域T22の一部を露出させる」とは、吸引管461が図8に示すスラリー吸引位置にある状態において多孔質基材1の第2端面T2及び整流板49aを多孔質基材1の軸方向Xから平面視したとき(例えば、整流板49aの平面図に多孔質基材1の第2端面T2を投影したとき)、図16に示すように、第2貫通孔Qが、多孔質基材1の第2端面T2の中央領域T22の一部と重なることを意味する。なお、図16において、整流板49aの平面図に投影された第2端面T2の外形線及び中央領域T22の外形線(すなわち、境界線L2)はそれぞれ点線及び二点鎖線で示されている。 When the second through hole Q is formed in the second portion 492 of the current plate 49a, the second through hole Q exposes a part of the central region T22 of the second end surface T2 of the porous substrate 1. “The second through-hole Q exposes a part of the central region T22 of the second end surface T2 of the porous substrate 1” means that the suction tube 461 is at the slurry suction position shown in FIG. When the second end face T2 of the material 1 and the straightening plate 49a are viewed from the axial direction X of the porous substrate 1 (for example, when the second end face T2 of the porous substrate 1 is projected on the plan view of the straightening plate 49a ), as shown in FIG. In FIG. 16, the outline of the second end surface T2 and the outline of the central region T22 (that is, the boundary line L2) projected onto the plan view of the current plate 49a are indicated by dotted lines and chain double-dashed lines, respectively.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、乱流の発生を効果的に防止し、ひいては、スラリー層N間での長さのバラツキ(特に、多孔質基材1の径方向の内側部分に形成されるスラリー層N間での長さのバラツキ)の発生を効果的に防止する観点から、第2貫通孔Qが露出させる中央領域T22の一部の面積は、中央領域T22の面積の10%以上50%以下であることが好ましく、20%以上40%以下であることがより好ましい。なお、「第2貫通孔Qが露出させる中央領域T22の一部の面積」は、整流板49aの第2部分492に2以上の第2貫通孔Qが形成されている場合には、当該2以上の第2貫通孔Qが露出させる中央領域T22の部分の合計面積を意味する。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the generation of turbulence is effectively prevented, and thus the slurry layer is formed. From the viewpoint of effectively preventing the occurrence of variation in length between N (in particular, variation in length between slurry layers N formed in the radially inner portion of the porous substrate 1), the second The area of the part of the central region T22 exposed by the through hole Q is preferably 10% or more and 50% or less, more preferably 20% or more and 40% or less, of the area of the central region T22. In addition, when two or more second through holes Q are formed in the second portion 492 of the rectifying plate 49a, the "area of the part of the central region T22 exposed by the second through holes Q" is the two It means the total area of the portion of the central region T22 exposed by the second through holes Q described above.
 整流部材40a又は40bの上記効果をより向上させる観点から、整流板49aの第1部分491に形成された第1貫通孔Gが露出させる外縁領域T21の少なくとも一部の面積は、外縁領域T21の面積の50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより一層好ましく、80%以上であることがより一層好ましく、90%以上であることがより一層好ましく、95%以上であることがより一層好ましい。上限は100%である。「整流板49a又は49bの第1部分491に形成された第1貫通孔Gが露出させる外縁領域T21の少なくとも一部の面積」は、整流板49a又は49bの第1部分491に2以上の第1貫通孔Gが形成されている場合には、当該2以上の第1貫通孔Gが露出させる外縁領域T21の部分の合計面積を意味する。 From the viewpoint of further improving the above effect of the rectifying member 40a or 40b, the area of at least a part of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the rectifying plate 49a is reduced to the area of the outer edge region T21. It is preferably 50% or more of the area, more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, and 90% or more. More preferably, it is 95% or more. The upper limit is 100%. "The area of at least a part of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the straightening plate 49a or 49b" is two or more first portions 491 of the straightening plate 49a or 49b. When one through-hole G is formed, it means the total area of the portion of the outer edge region T21 exposed by the two or more first through-holes G.
 整流板49a又は49bの第1部分491に形成された第1貫通孔Gが露出させる外縁領域T21の少なくとも一部の面積が、外縁領域T21の面積の100%である場合、第2部分492と第3部分493とは分断されることになるが、支障はない。第2部分492と第3部分493とが分断されている場合、第2部分492は、例えば、支持機構(例えば、第2部分492と吸引機構462との間に設けられた、第2部分492の吸引機構462側の面を支持する支持ロッド)により、吸引管461内に固定することができ、第3部分493は、例えば、保持機構(例えば、吸引管461の内壁に設けられた、第3部分493の外縁部を把持するチャック機構(例えば、ハンドチャック等))又は支持機構(例えば、第3部分493と吸引機構462との間に設けられた、第3部分493の吸引機構462側の面を支持する支持ロッド)により、吸引管461内に固定することができる。整流板49a又は49bの第1部分491に形成された第1貫通孔Gが露出させる外縁領域T21の少なくとも一部の面積が、外縁領域T21の面積の100%である場合、整流板49a又は49bは、第2部分492のみで構成されていてもよい。 When the area of at least part of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the current plate 49a or 49b is 100% of the area of the outer edge region T21, the second portion 492 and Although it is separated from the third portion 493, there is no problem. When the second portion 492 and the third portion 493 are separated, the second portion 492 may be, for example, a supporting mechanism (for example, the second portion 492 provided between the second portion 492 and the suction mechanism 462). The third part 493 can be fixed in the suction tube 461 by a support rod that supports the surface on the suction mechanism 462 side of the suction tube 461, and the third part 493 is, for example, a holding mechanism (for example, a third A chuck mechanism (e.g., hand chuck, etc.) that grips the outer edge of the third portion 493) or a support mechanism (e.g., the suction mechanism 462 side of the third portion 493 provided between the third portion 493 and the suction mechanism 462 It can be fixed within the aspiration tube 461 by means of a support rod supporting the surface of the . When the area of at least a part of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the current plate 49a or 49b is 100% of the area of the outer edge region T21, the current plate 49a or 49b may consist of only the second portion 492 .
 整流板49aの第2部分492に第2貫通孔Qが形成されている場合、整流部材40aの上記効果をより向上させる観点から、第2貫通孔Qが露出させる中央領域T22の一部の面積比率(第2貫通孔Qが露出させる中央領域T22の一部の面積/中央領域T22の面積)は、整流板49aの第1部分491に形成された第1貫通孔Gが露出させる外縁領域T21の少なくとも一部の面積比率(整流板49aの第1部分491に形成された第1貫通孔Gが露出させる外縁領域T21の少なくとも一部の面積/外縁領域T21の面積)よりも小さいことが好ましい。 When the second through-holes Q are formed in the second portion 492 of the rectifying plate 49a, the area of the part of the central region T22 exposed by the second through-holes Q is reduced from the viewpoint of further improving the above effect of the rectifying member 40a. The ratio (the area of the part of the central region T22 exposed by the second through hole Q/the area of the central region T22) is the outer edge region T21 exposed by the first through hole G formed in the first portion 491 of the current plate 49a. (area of at least part of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the current plate 49a/area of the outer edge region T21). .
 整流部材40a又は40bの上記効果をより向上させる観点から、吸引管461がスラリー吸引位置にあるときの、整流板49a又は49bと多孔質基材1の第2端面T2との距離D2a又はD2bは、5mm以上30mm以下であることが好ましく、5mm以上15mm以下であることがより好ましい。距離D2a又はD2bが一定でない場合、距離D2a又はD2bの最小値及び最大値の両方が上記範囲であることが好ましい。 From the viewpoint of further improving the effect of the rectifying member 40a or 40b, the distance D2a or D2b between the rectifying plate 49a or 49b and the second end surface T2 of the porous substrate 1 when the suction tube 461 is at the slurry suction position is , preferably 5 mm or more and 30 mm or less, more preferably 5 mm or more and 15 mm or less. When the distance D2a or D2b is not constant, both the minimum value and the maximum value of the distance D2a or D2b are preferably within the above range.
 整流部材40bの上記効果をより向上させる観点から、第2貫通孔Jが露出させる中央領域T22の少なくとも一部の面積は、中央領域T22の面積の50%以上であることが好ましく、60%以上であることがより好ましい。上限は100%である。第2貫通孔Jの形成のしやすさ、第1整流板49bの強度等を考慮すると、第2貫通孔Jが露出させる中央領域T22の少なくとも一部の面積は、中央領域T22の面積の90%以下であることが好ましく、80%以下であることがより好ましい。これらの上限はそれぞれ、上記の下限のいずれと組み合わせてもよい。なお、「第2貫通孔Jが露出させる中央領域T22の少なくとも一部の面積」は、第2部分492に2以上の第2貫通孔Jが形成されている場合には、当該2以上の第2貫通孔Jが露出させる中央領域T22の部分の合計面積を意味する。 From the viewpoint of further improving the above effect of the rectifying member 40b, the area of at least a part of the central region T22 exposed by the second through holes J is preferably 50% or more, more preferably 60% or more of the area of the central region T22. is more preferable. The upper limit is 100%. Considering the ease of forming the second through holes J, the strength of the first current plate 49b, etc., the area of at least a part of the central region T22 exposed by the second through holes J is 90% of the area of the central region T22. % or less, more preferably 80% or less. Each of these upper limits may be combined with any of the above lower limits. In addition, when two or more second through holes J are formed in the second portion 492, the "area of at least a part of the central region T22 exposed by the second through holes J" is the two or more second through holes J. 2 means the total area of the portion of the central region T22 exposed by the through holes J.
 第2整流板50に貫通孔が形成されていない場合、多孔質基材1の径方向の内側部分に加わる吸引力と、多孔質基材1の径方向の外側部分に加わる吸引力との差を効果的に小さくし、ひいては、多孔質基材1の径方向の内側部分に形成されるスラリー層Nの長さと、多孔質基材1の径方向の外側部分に形成されるスラリー層Nの長さとの差を効果的に小さくする観点から、第2整流板50が被覆する第2貫通孔Jの少なくとも一部の面積は、第2貫通孔Jの面積の50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより一層好ましく、80%以上であることがより一層好ましく、90%以上であることがより一層好ましく、95%以上であることがより一層好ましい。上限は100%である。なお、「第2貫通孔Jの面積」は、第1整流板49bの第2部分492に2以上の第2貫通孔Jが形成されている場合には、当該2以上の第2貫通孔Jの合計面積を意味する。また、「第2貫通孔Jの面積」は、第2貫通孔Jを多孔質基材1の軸方向Xから平面視したときの面積を意味する。 When no through-hole is formed in the second current plate 50, the difference between the suction force applied to the radially inner portion of the porous substrate 1 and the suction force applied to the radially outer portion of the porous substrate 1 is effectively reduced, and consequently, the length of the slurry layer N formed on the radially inner portion of the porous substrate 1 and the slurry layer N formed on the radially outer portion of the porous substrate 1 From the viewpoint of effectively reducing the difference in length, the area of at least a portion of the second through hole J covered by the second current plate 50 is preferably 50% or more of the area of the second through hole J. , more preferably 60% or more, even more preferably 70% or more, still more preferably 80% or more, even more preferably 90% or more, and 95% or more is even more preferred. The upper limit is 100%. In addition, when two or more second through holes J are formed in the second portion 492 of the first current plate 49b, the "area of the second through holes J" is means the total area of In addition, “the area of the second through hole J” means the area of the second through hole J when viewed from the axial direction X of the porous substrate 1 in plan view.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、乱流の発生を効果的に防止し、ひいては、スラリー層N間での長さのバラツキ(特に、多孔質基材1の径方向の内側部分に形成されるスラリー層N間での長さのバラツキ)の発生を効果的に防止する観点から、第2整流板50が第2貫通孔Jの一部を被覆するように、第2整流板50に貫通孔が形成されていることが好ましい。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the generation of turbulence is effectively prevented, and thus the slurry layer is formed. From the viewpoint of effectively preventing the occurrence of variation in length between N (in particular, variation in length between slurry layers N formed in the radially inner portion of the porous substrate 1), the second A through hole is preferably formed in the second straightening plate 50 so that the straightening plate 50 partially covers the second through hole J. As shown in FIG.
 第2整流板50に貫通孔が形成されている一実施形態を図17に示す。図17に示す実施形態では、多数の丸孔状の貫通孔Kが第2整流板50に形成されている。貫通孔Kの平面視形状は適宜変更可能であり、貫通孔Kの平面視形状としては、例えば、円形状、楕円形状、正方形状、長方形状、長方形の角が丸くなった形状等が挙げられる。貫通孔Kの数は適宜変更可能であり、貫通孔Kの数は1であってもよいし、2以上であってもよい。貫通孔Kの径は、例えば1mm以上5mm以下である。貫通孔Kの径は、貫通孔Kが円形である場合には、当該円形の直径を意味し、貫通孔Kが円形以外の形状である場合には、当該形状に外接する円形の直径を意味する。 FIG. 17 shows an embodiment in which through holes are formed in the second current plate 50 . In the embodiment shown in FIG. 17 , a large number of circular through holes K are formed in the second current plate 50 . The planar view shape of the through hole K can be changed as appropriate, and examples of the planar view shape of the through hole K include a circular shape, an elliptical shape, a square shape, a rectangular shape, a rectangular shape with rounded corners, and the like. . The number of through-holes K can be changed as appropriate, and the number of through-holes K may be one, or two or more. The diameter of the through hole K is, for example, 1 mm or more and 5 mm or less. The diameter of the through-hole K means the diameter of the circle when the through-hole K is circular, and the diameter of the circle circumscribing the shape when the through-hole K has a shape other than a circle. do.
 第2整流板50に貫通孔Kが形成されている場合、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、乱流の発生を効果的に防止し、ひいては、スラリー層N間での長さのバラツキ(特に、多孔質基材1の径方向の内側部分に形成されるスラリー層N間での長さのバラツキ)の発生を効果的に防止する観点から、第2整流板50が被覆する第2貫通孔Jの一部の面積は、第2貫通孔Jの面積の50%以上90%以下であることが好ましく、60%以上90%以下であることがより好ましい。 When the through holes K are formed in the second straightening plate 50, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, , the occurrence of turbulent flow is effectively prevented, and thus the variation in length between the slurry layers N (in particular, the length between the slurry layers N formed in the radially inner portion of the porous substrate 1 From the viewpoint of effectively preventing the occurrence of the variation in the second through hole J, the area of the part of the second through hole J covered by the second current plate 50 is 50% or more and 90% or less of the area of the second through hole J. , and more preferably 60% or more and 90% or less.
 整流部材40bの上記効果をより向上させる観点から、吸引管461がスラリー吸引位置にあるときの、第1整流板49bと第2整流板50との距離D3は、5mm以上30mm以下であることが好ましく、5mm以上15mm以下であることがより好ましい。距離D3が一定でない場合、距離D3の最小値及び最大値の両方が上記範囲であることが好ましい。 From the viewpoint of further improving the effect of the rectifying member 40b, the distance D3 between the first rectifying plate 49b and the second rectifying plate 50 when the suction pipe 461 is at the slurry suction position is preferably 5 mm or more and 30 mm or less. It is preferably 5 mm or more and 15 mm or less. If the distance D3 is not constant, it is preferable that both the minimum value and the maximum value of the distance D3 are within the above ranges.
≪変更例≫
 本発明の構造体製造装置及び構造体製造方法において、整流部材40a又は40bの上記効果と同様の効果が奏される限り、種々の変更が可能である。
≪Change example≫
In the structure manufacturing apparatus and structure manufacturing method of the present invention, various modifications are possible as long as the same effects as those of the rectifying member 40a or 40b are achieved.
 以下、本発明の構造体製造装置及び構造体製造方法の変更例について説明する。本発明の構造体製造装置及び構造体製造方法に関する上記説明は、別段規定される場合を除き、変形例にも適用される。なお、2以上の変更例を組み合わせることができる場合、このような組み合わせも本発明に包含される。 Modified examples of the structure manufacturing apparatus and the structure manufacturing method of the present invention will be described below. The above descriptions of the structure manufacturing apparatus and structure manufacturing method of the present invention also apply to modifications unless otherwise specified. In addition, when two or more modified examples can be combined, such a combination is also included in the present invention.
<変更例1A>
 図18を参照して、変更例1Aについて説明する。図18は、変更例に係る整流板49a’の平面図である。なお、図18において、整流板49a’の平面図に投影された第2端面T2の外形線及び中央領域T22の外形線(すなわち、境界線L2)はそれぞれ点線及び二点鎖線で示されている。
<Modification 1A>
Modification 1A will be described with reference to FIG. FIG. 18 is a plan view of a current plate 49a' according to a modification. In FIG. 18, the outline of the second end face T2 and the outline of the central region T22 (that is, the boundary line L2) projected onto the plan view of the current plate 49a' are indicated by dotted lines and chain double-dashed lines, respectively. .
 本発明の構造体製造装置及び構造体製造方法において、整流板49aに代えて、整流板49a’を使用してもよい。図18に示すように、整流板49a’は、第1部分491に、貫通孔Gに代えて多数の丸孔状の貫通孔Hが形成されている点で、整流板49aと異なる。貫通孔Gに関する上記説明は、別段規定される場合を除き、貫通孔Hにも適用される。本実施形態において、貫通孔Hの平面視形状は円形状であるが、貫通孔Hの平面視形状は、その他の形状、例えば、楕円形状、正方形状、長方形状、長方形の角が丸くなった形状等であってもよい。貫通孔Hの径は、例えば1mm以上4mm以下である。貫通孔Hの径は、貫通孔Hが円形である場合には、当該円形の直径を意味し、貫通孔Hが円形以外の形状である場合には、当該形状に外接する円形の直径を意味する。 In the structure manufacturing apparatus and structure manufacturing method of the present invention, a straightening plate 49a' may be used instead of the straightening plate 49a. As shown in FIG. 18, the rectifying plate 49a' differs from the rectifying plate 49a in that a large number of circular through holes H are formed in the first portion 491 instead of the through holes G. As shown in FIG. The above description of through holes G also applies to through holes H, unless otherwise specified. In the present embodiment, the planar view shape of the through hole H is circular, but the planar view shape of the through hole H may be other shapes such as elliptical, square, rectangular, and rectangular with rounded corners. It may be a shape or the like. The diameter of the through hole H is, for example, 1 mm or more and 4 mm or less. The diameter of the through-hole H means the diameter of the circle when the through-hole H is circular, and the diameter of the circle circumscribing the shape when the through-hole H has a shape other than a circle. do.
 図18に示すように、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49a’の第2部分492は、多孔質基材1の第2端面T2の中央領域T22の少なくとも一部を被覆し、整流板49a’の第1部分491に形成された貫通孔Hは、多孔質基材1の第2端面T2の外縁領域T21の少なくとも一部を露出させる。したがって、変更例1Aは、整流部材40aの上記効果と同様の効果を奏する。 As shown in FIG. 18, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the second portion of the current plate 49a' 492 covers at least part of the central region T22 of the second end surface T2 of the porous substrate 1, and the through hole H formed in the first portion 491 of the straightening plate 49a' At least part of the outer edge region T21 of the two end surfaces T2 is exposed. Therefore, the modified example 1A has the same effect as the above effect of the rectifying member 40a.
<変更例1B>
 整流部材40bにおいて、第1整流板49bの第1部分491には、貫通孔Gに代えて多数の丸孔状の貫通孔Hが形成されていてもよい。貫通孔Hに関する上記説明は、変更例1Bにも適用される。変更例1Bは、整流部材40bの上記効果と同様の効果を奏する。
<Modification 1B>
In the straightening member 40b, instead of the through holes G, a large number of circular through holes H may be formed in the first portion 491 of the first straightening plate 49b. The above description regarding the through hole H also applies to the modification 1B. Modification 1B has the same effect as the above effect of the rectifying member 40b.
<変更例2>
 以下、図19を参照して、変更例2について説明する。図19は、吸引管461と、吸引管461内に進入した多孔質基材1の第2端面T2側の端部との間に隙間が形成される変形例を説明するための端面図である。なお、図19は、吸引管461が図8に示すスラリー吸引位置にある状態において、多孔質基材1の軸方向Xに垂直な平面で、吸引管461の上端部、第2基材固定部48及び多孔質基材1の第2端面T2側の端部を切断したときの端面図である。
<Modification 2>
Modification 2 will be described below with reference to FIG. FIG. 19 is an end view for explaining a modification in which a gap is formed between the suction tube 461 and the end of the porous substrate 1 on the second end face T2 side that has entered the suction tube 461. FIG. . 19 is a plane perpendicular to the axial direction X of the porous substrate 1 in a state where the suction tube 461 is at the slurry suction position shown in FIG. 48 and an end view when the end portion on the second end face T2 side of the porous substrate 1 is cut.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、図19に示すように、吸引管461と、吸引管461内に進入した多孔質基材1の第2端面T2側の端部との間に隙間V3を形成してもよい。第2基材固定部48が、吸引管461内に進入した多孔質基材1の第2端面T2側の端部を吸引管461内に固定しないことにより(例えば、第2基材固定部48が風船式チャックを有する場合、風船を膨張させないことにより)、隙間V3を形成することができる。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, as shown in FIG. A gap V3 may be formed between the second end surface T2 side end of the porous substrate 1 that has entered inside. The second base material fixing part 48 does not fix the end of the porous base material 1 on the side of the second end surface T2 that has entered the suction tube 461 (for example, the second base material fixing part 48 has a balloon chuck, the gap V3 can be formed by not inflating the balloon).
 吸引管461と、吸引管461内に進入した多孔質基材1の第2端面T2側の端部との間に、隙間V3が形成されると、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、吸引管461外の空気が、多孔質基材1の外周面に沿って、吸引管461内の整流部材40に形成された貫通孔に流れ込む。例えば、第1実施形態では、吸引管461外の空気が、多孔質基材1の外周面に沿って、吸引管461内の整流板49aに形成された貫通孔(例えば、第1部分491に形成された第1貫通孔G)に流れ込む。また、第2実施形態では、吸引管461外の空気が、多孔質基材1の外周面に沿って、吸引管461内の第1整流板49b及び第2整流板50に形成された貫通孔(例えば、第1整流板49bの第1部分491に形成された第1貫通孔G、第1整流板49bの第2部分492に形成された第2貫通孔J、第2整流板50に形成された貫通孔K等)に流れ込む。これにより、多孔質基材1の第2端面T2側の端部における、多孔質基材1の径方向の内側部分における吸引力と、多孔質基材1の径方向の外側部分における吸引力との差がより緩和され、多孔質基材1の径方向の内側部分に形成されるスラリー層Nの長さと、多孔質基材1の径方向の外側部分に形成されるスラリー層Nの長さとの差がより小さくなる。 When the gap V3 is formed between the suction tube 461 and the end portion of the porous substrate 1 on the side of the second end surface T2 that has entered the suction tube 461, the porous substrate 1 on the side of the first end surface T1 is formed. When the slurry M supplied to is sucked from the second end surface T2 side of the porous substrate 1, the air outside the suction tube 461 is rectified in the suction tube 461 along the outer peripheral surface of the porous substrate 1. It flows into through-holes formed in member 40 . For example, in the first embodiment, the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 and flows through the through holes (for example, the first portion 491) formed in the current plate 49a inside the suction tube 461. It flows into the formed first through hole G). In addition, in the second embodiment, the air outside the suction tube 461 flows along the outer peripheral surface of the porous substrate 1 and through the through holes formed in the first straightening plate 49 b and the second straightening plate 50 inside the suction tube 461 . (For example, a first through hole G formed in the first portion 491 of the first straightening plate 49b, a second through hole J formed in the second portion 492 of the first straightening plate 49b, and a second through hole J formed in the second straightening plate 50 through-hole K, etc.). As a result, the suction force at the radially inner portion of the porous substrate 1 and the suction force at the radially outer portion of the porous substrate 1 at the end portion of the porous substrate 1 on the second end surface T2 side. The difference between the length of the slurry layer N formed on the inner portion in the radial direction of the porous substrate 1 and the length of the slurry layer N formed on the outer portion in the radial direction of the porous substrate 1 difference becomes smaller.
<変更例3>
 以下、図20を参照して、変更例3について説明する。図20は、変更例に係るコーティング処理部4aの構成を示す概略一部端面図である。なお、図20は、多孔質基材1に対してコーティング処理が行われる際の状態を示す。
<Modification 3>
Modification 3 will be described below with reference to FIG. FIG. 20 is a schematic partial end view showing the configuration of a coating processing section 4a according to a modification. In addition, FIG. 20 shows the state when the porous substrate 1 is subjected to the coating process.
 コーティング処理部4aにおいて、コーティング処理部4と同一の部材又は部分は、コーティング処理部4と同一の符号で示されている。コーティング処理部4に関する上記説明は、別段規定される場合を除き、コーティング処理部4aにも適用される。 In the coating processing unit 4a, the same members or portions as the coating processing unit 4 are denoted by the same reference numerals as the coating processing unit 4. The above description of the coating section 4 also applies to the coating section 4a, unless otherwise specified.
 図20に示すように、治具移動機構7によって治具44をノズル422とは独立して移動させてもよい。この場合、治具44は、ノズル保持部431に取り付けられない。 As shown in FIG. 20, the jig 44 may be moved independently of the nozzle 422 by the jig moving mechanism 7. In this case, the jig 44 is not attached to the nozzle holder 431 .
<変更例4>
 以下、図20~22を参照して、変更例4について説明する。図20は、上記の通りであり、図21は、変更例に係る多孔質基材の第1端面の平面図であり、図22は、変更例に係る整流板の平面図である。
<Modification 4>
Modification 4 will be described below with reference to FIGS. FIG. 20 is as described above, FIG. 21 is a plan view of the first end face of the porous base material according to the modification, and FIG. 22 is a plan view of the current plate according to the modification.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、図20~22に示すように、整流板49aは、多孔質基材1の第1端面T1側に配置され、多孔質基材1の第1端面T1のうち、中央領域T12の少なくとも一部を被覆し、外縁領域T11の少なくとも一部を露出させてもよい。変更例4は、整流板49aの配置位置が変更された例である。したがって、変更例4における整流板49aの構成は上記と同様であり、整流板49aに関する上記説明は、別段規定される場合を除き、変更例4にも適用される。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, as shown in FIGS. It is arranged on the first end face T1 side of the porous base material 1, covers at least part of the central region T12, and exposes at least part of the outer edge region T11 of the first end face T1 of the porous base material 1. good. Modification 4 is an example in which the arrangement position of the current plate 49a is changed. Therefore, the configuration of the rectifying plate 49a in Modification 4 is the same as that described above, and the above description of the rectifying plate 49a also applies to Modification 4, unless otherwise specified.
 図20示すように、整流板49aの第1端面T1側の主面は、多孔質基材1の第1端面T1と略平行である。「略平行」の意義は上記の通りである。 As shown in FIG. 20, the main surface of the current plate 49a on the side of the first end surface T1 is substantially parallel to the first end surface T1 of the porous substrate 1. As shown in FIG. The meaning of "substantially parallel" is as described above.
 変更例4では、ノズル移動工程に代えて、以下の工程が行われる。治具移動機構7によって治具44を移動させることにより、多孔質基材1の第1端面T1側の端部を、治具44内に進入させ、治具44内に、多孔質基材1の第1端面T1側に供給されたスラリーMの貯留を可能とする貯留空間V1を形成する。次いで、昇降機構432によってノズル保持部431を降下させることにより、ノズル422を多孔質基材1に近づけ、スラリー供給位置に移動させる。次いで、スラリー供給位置において、ノズル422から、多孔質基材1の第1端面T1にスラリーMを供給する。次いで、昇降機構432によってノズル保持部431を上昇させることにより、ノズル422を多孔質基材1から遠ざけ、待機位置に移動させる。次いで、整流板49aを多孔質基材1の第1端面T1側に配置する。整流板49aの配置は、整流板移動機構(不図示)によって行ってもよいし、手動で行ってもよい。 In Modification 4, the following steps are performed instead of the nozzle movement step. By moving the jig 44 by the jig moving mechanism 7, the end portion of the porous substrate 1 on the side of the first end surface T1 is caused to enter the jig 44, and the porous substrate 1 is inserted into the jig 44. A storage space V1 that enables storage of the supplied slurry M is formed on the first end face T1 side of the . Next, the lifting mechanism 432 lowers the nozzle holder 431 to bring the nozzle 422 closer to the porous substrate 1 and move it to the slurry supply position. Next, the slurry M is supplied from the nozzle 422 to the first end surface T1 of the porous substrate 1 at the slurry supply position. Next, the lifting mechanism 432 lifts the nozzle holder 431 to move the nozzle 422 away from the porous substrate 1 to the standby position. Next, the straightening plate 49a is arranged on the first end surface T1 side of the porous substrate 1 . The rectifying plate 49a may be arranged by a rectifying plate moving mechanism (not shown) or manually.
 図21に示すように、多孔質基材1の第1端面T1は、境界線L1によって、第1端面T1の径方向の外側に位置する環状(例えば円環状)の外縁領域T11と、外縁領域T11の内側に位置する中央領域T12とに区画される。境界線L1は仮想線である。なお、図21において、第1端面T1に存在するセル13aの開口部は省略されている。 As shown in FIG. 21 , the first end surface T1 of the porous substrate 1 includes an annular (for example, annular) outer edge region T11 located radially outside the first end surface T1 and an outer edge region T11 located radially outward of the first end surface T1. It is partitioned into a central region T12 located inside T11. The boundary line L1 is a virtual line. In addition, in FIG. 21, the openings of the cells 13a existing in the first end surface T1 are omitted.
 中央領域T12の面積は、第1端面T1の面積の40%以上90%以下であることが好ましく、65%以上85%以下であることがより好ましい。 The area of the central region T12 is preferably 40% or more and 90% or less, more preferably 65% or more and 85% or less, of the area of the first end surface T1.
 中央領域T12の形状と第1端面T1の形状とは、相似形状であることが好ましい。中央領域T12の形状は、中央領域T12の外形線(すなわち、境界線L1)により規定される形状を意味し、第1端面T1の形状は、第1端面T1の外形線により規定される形状を意味する。 The shape of the central region T12 and the shape of the first end face T1 are preferably similar shapes. The shape of the central region T12 means the shape defined by the outline of the central region T12 (that is, the boundary line L1), and the shape of the first end face T1 means the shape defined by the outline of the first end face T1. means.
 外縁領域T11は、中央領域T12の形状と第1端面T1の形状とが相似形状となるように、第1端面T1の外形線に沿って所定の幅で形成されていることが好ましい。中央領域T12の形状と第1端面T1の形状とが相似形状となる限り、外縁領域T11の幅は一定であってもよいし、一定でなくてもよい。 The outer edge region T11 is preferably formed with a predetermined width along the outline of the first end face T1 so that the shape of the central region T12 and the shape of the first end face T1 are similar. As long as the shape of the central region T12 and the shape of the first end face T1 are similar, the width of the outer edge region T11 may or may not be constant.
 図20及び21に示すように、整流板49aは、環状(例えば円環状)の第1部分491と、第1部分491の内側に位置する第2部分492と、第1部分491の外側に位置する環状(例えば円環状)の第3部分493とを備える。 As shown in FIGS. 20 and 21, the current plate 49a includes a first annular (for example, annular) portion 491, a second portion 492 positioned inside the first portion 491, and a second portion 492 positioned outside the first portion 491. and an annular (eg, toric) third portion 493 .
 図22に示すように、整流板49aが多孔質基材1の第1端面T1側に配置された状態において多孔質基材1の第1端面T1及び整流板49aを多孔質基材1の軸方向Xから平面視したとき(例えば、整流板49aの平面図に多孔質基材1の第1端面T1を投影したとき)、整流板49aのうち、多孔質基材1の第1端面T1の外縁領域T11と重なる部分が第1部分491であり、多孔質基材1の第1端面T1の中央領域T12と重なる部分が第2部分492である。なお、図22において、整流板49aの平面図に投影された第1端面T1の外形線及び中央領域T12の外形線(すなわち、境界線L1)はそれぞれ点線及び二点鎖線で示されている。 As shown in FIG. 22, in a state where the rectifying plate 49a is arranged on the first end surface T1 side of the porous substrate 1, the first end surface T1 of the porous substrate 1 and the rectifying plate 49a are aligned with the axis of the porous substrate 1. As shown in FIG. When viewed in plan from the direction X (for example, when the first end surface T1 of the porous substrate 1 is projected onto the plan view of the straightening plate 49a), the first end surface T1 of the porous substrate 1 of the straightening plate 49a is A portion overlapping with the outer edge region T11 is the first portion 491, and a portion overlapping with the central region T12 of the first end surface T1 of the porous substrate 1 is the second portion 492. In FIG. 22, the outline of the first end face T1 and the outline of the central region T12 (that is, the boundary line L1) projected onto the plan view of the current plate 49a are indicated by dotted lines and chain double-dashed lines, respectively.
 図22に示すように、整流板49aの第2部分492には、貫通孔は形成されていない。整流板49aの第2部分492には、本実施形態のように貫通孔が形成されていないことが好ましいが、貫通孔(以下「第2貫通孔」という。)が形成されていてもよい。第2貫通孔に関する上記説明は、変更例4にも適用される。 As shown in FIG. 22, no through hole is formed in the second portion 492 of the current plate 49a. The second portion 492 of the straightening plate 49a preferably does not have a through hole as in the present embodiment, but may have a through hole (hereinafter referred to as "second through hole"). The above description regarding the second through hole also applies to Modification 4.
 整流板49aの第2部分492に第2貫通孔が形成される場合、第2貫通孔は、多孔質基材1の第1端面T1の中央領域T12の一部を露出させる。「第2貫通孔が、多孔質基材1の第1端面T1の中央領域T12の一部を露出させる」とは、吸引管461が図8に示すスラリー吸引位置にある状態において多孔質基材1の第1端面T1及び整流板49aを多孔質基材1の軸方向Xから平面視したとき(例えば、整流板49aの平面図に多孔質基材1の第1端面T1を投影したとき)、第2貫通孔が、多孔質基材1の第1端面T1の中央領域T12の一部と重なることを意味する。整流部材40aの効果をより向上させる観点から、第2貫通孔が露出させる中央領域T12の一部の面積は、中央領域T12の面積の50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがより一層好ましく、20%以下であることがより一層好ましく、10%以下であることがより一層好ましく、5%以下であることがより一層好ましい。「第2貫通孔が露出させる中央領域T12の一部の面積」は、整流板49aの第2部分492に2以上の第2貫通孔が形成されている場合には、当該2以上の第2貫通孔が露出させる中央領域T12の部分の合計面積を意味する。 When the second through-hole is formed in the second portion 492 of the current plate 49a, the second through-hole exposes part of the central region T12 of the first end surface T1 of the porous substrate 1. “The second through-hole exposes a part of the central region T12 of the first end surface T1 of the porous substrate 1” means that the porous substrate is in a state where the suction pipe 461 is at the slurry suction position shown in FIG. 1 and the straightening plate 49a are viewed from the axial direction X of the porous substrate 1 (for example, when the first end surface T1 of the porous substrate 1 is projected onto the plan view of the straightening plate 49a). , means that the second through-hole overlaps with a part of the central region T12 of the first end surface T1 of the porous substrate 1 . From the viewpoint of further improving the effect of the rectifying member 40a, the area of the part of the central region T12 exposed by the second through holes is preferably 50% or less of the area of the central region T12, and 40% or less. is more preferably 30% or less, even more preferably 20% or less, even more preferably 10% or less, and even more preferably 5% or less. When two or more second through holes are formed in the second portion 492 of the rectifying plate 49a, the "area of the part of the central region T12 exposed by the second through holes" is the two or more second through holes. It means the total area of the portion of the central region T12 exposed by the through holes.
 図22に示すように、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49aの第2部分492は、多孔質基材1の第1端面T1の中央領域T12の少なくとも一部を被覆し、整流板49aの第1部分491に形成された第1貫通孔Gは、多孔質基材1の第1端面T1の外縁領域T11の少なくとも一部を露出させる。 As shown in FIG. 22, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the second portion 492 of the current plate 49a covers at least part of the central region T12 of the first end surface T1 of the porous substrate 1, and the first through hole G formed in the first portion 491 of the current plate 49a At least part of the outer edge region T11 of the one end surface T1 is exposed.
 「整流板49aの第2部分492が、多孔質基材1の第1端面T1の中央領域T12の少なくとも一部を被覆する」とは、整流板49aが多孔質基材1の第1端面T1側に配置された状態において多孔質基材1の第1端面T1及び整流板49を多孔質基材1の軸方向Xから平面視したとき(例えば、整流板49aの平面図に多孔質基材1の第1端面T1を投影したとき)、図22に示すように、整流板49aの第2部分492のうち第2貫通孔以外の部分が、多孔質基材1の第1端面T1の中央領域T12と重なることを意味する。整流板49aの第2部分492に第2貫通孔が形成されていない場合、整流板49aの第2部分492は、多孔質基材1の第1端面T1の中央領域T12の全体を被覆し、整流板49aの第2部分492に第2貫通孔が形成されている場合、整流板49aの第2部分492は、多孔質基材1の第1端面T1の中央領域T12の一部を被覆する。 “The second portion 492 of the straightening plate 49a covers at least part of the central region T12 of the first end surface T1 of the porous substrate 1” means that the straightening plate 49a covers the first end surface T1 of the porous substrate 1. When the first end face T1 of the porous substrate 1 and the rectifying plate 49 are viewed from the axial direction X of the porous substrate 1 in the state of being arranged on the side (for example, the plan view of the rectifying plate 49a shows the porous substrate 22, the portion of the second portion 492 of the rectifying plate 49a other than the second through-hole is located at the center of the first end surface T1 of the porous substrate 1, as shown in FIG. It means that it overlaps with the region T12. When the second portion 492 of the current plate 49a does not have a second through hole, the second portion 492 of the current plate 49a covers the entire central region T12 of the first end surface T1 of the porous substrate 1, When the second portion 492 of the straightening plate 49a has the second through hole, the second portion 492 of the straightening plate 49a covers part of the central region T12 of the first end surface T1 of the porous substrate 1. .
 「整流板49aの第1部分491に形成された第1貫通孔Gが、多孔質基材1の第1端面T1の外縁領域T11の少なくとも一部を露出させる」とは、整流板49aが多孔質基材1の第1端面T1側に配置された状態において多孔質基材1の第1端面T1及び整流板49aを多孔質基材1の軸方向Xから平面視したとき(例えば、整流板49aの平面図に多孔質基材1の第1端面T1を投影したとき)、図22に示すように、整流板49aの第1部分491に形成された第1貫通孔Gが、多孔質基材1の第1端面T1の外縁領域T11の少なくとも一部と重なることを意味する。 “The first through holes G formed in the first portion 491 of the current plate 49a expose at least part of the outer edge region T11 of the first end surface T1 of the porous substrate 1” means that the current plate 49a is porous. When the first end surface T1 of the porous substrate 1 and the rectifying plate 49a are arranged on the first end surface T1 side of the porous substrate 1 and viewed from the axial direction X of the porous substrate 1 (for example, the rectifying plate 22, when the first end face T1 of the porous substrate 1 is projected onto the plan view of the plate 49a, the first through holes G formed in the first portion 491 of the current plate 49a are aligned with the porous substrate. It means that it overlaps with at least part of the outer edge region T11 of the first end surface T1 of the material 1 .
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49aが、多孔質基材1の第1端面T1側に配置される場合も、整流板49aが、多孔質基材1の第2端面T2側に配置される場合と同様の効果が奏される。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the current plate 49a When the rectifying plate 49a is arranged on the second end surface T2 side of the porous substrate 1, the same effect as when the rectifying plate 49a is arranged on the second end surface T2 side of the porous substrate 1 can be obtained.
 変更例4において、整流板49aの上記効果をより向上させる観点から、整流板49aの第2部分492が被覆する中央領域T12の少なくとも一部の面積は、中央領域T12の面積の50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより一層好ましく、80%以上であることがより一層好ましく、90%以上であることがより一層好ましく、95%以上であることがより一層好ましい。上限は100%である。 In Modification 4, from the viewpoint of further improving the above effect of the rectifying plate 49a, the area of at least part of the central region T12 covered by the second portion 492 of the rectifying plate 49a is 50% or more of the area of the central region T12. preferably 60% or more, even more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, 95% The above is even more preferable. The upper limit is 100%.
 変更例4において、整流板49aの上記効果をより向上させる観点から、整流板49aの第1部分491に形成された第1貫通孔Gが露出させる外縁領域T11の少なくとも一部の面積は、外縁領域T11の面積の50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより一層好ましく、80%以上であることがより一層好ましく、90%以上であることがより一層好ましく、95%以上であることがより一層好ましい。上限は100%である。「整流板49aの第1部分491に形成された第1貫通孔Gが露出させる外縁領域T11の少なくとも一部の面積」は、整流板49aの第1部分491に2以上の第1貫通孔Gが形成されている場合には、当該2以上の第1貫通孔Gが露出させる外縁領域T21の部分の合計面積を意味する。 In Modified Example 4, from the viewpoint of further improving the above effect of the rectifying plate 49a, the area of at least a part of the outer edge region T11 exposed by the first through holes G formed in the first portion 491 of the rectifying plate 49a is The area of the region T11 is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, and 90% or more. It is more preferable that the ratio is 95% or more. The upper limit is 100%. "At least a part of the outer edge region T11 exposed by the first through holes G formed in the first portion 491 of the straightening plate 49a" is defined by two or more first through holes G formed in the first portion 491 of the straightening plate 49a. is formed, it means the total area of the portion of the outer edge region T21 exposed by the two or more first through holes G.
 変更例4において、整流板49aの上記効果をより向上させる観点から、整流板49aが多孔質基材1の第1端面T1側に配置された状態における、整流板49aと多孔質基材1の第1端面T1との距離D1は、5mm以上30mm以下であることが好ましく、5mm以上15mm以下であることがより好ましい。距離D1は、整流板49aの第1端面T1側の主面と多孔質基材1の第1端面T1との距離である。距離D1が一定でない場合、距離D1の最小値及び最大値の両方が上記範囲であることが好ましい。 In Modified Example 4, from the viewpoint of further improving the above effect of the straightening plate 49a, the straightening plate 49a and the porous substrate 1 are arranged in a state where the straightening plate 49a is arranged on the first end surface T1 side of the porous substrate 1. A distance D1 from the first end face T1 is preferably 5 mm or more and 30 mm or less, and more preferably 5 mm or more and 15 mm or less. The distance D1 is the distance between the first end surface T1 side main surface of the current plate 49a and the first end surface T1 of the porous substrate 1 . If the distance D1 is not constant, both the minimum value and the maximum value of the distance D1 are preferably within the above range.
<変更例5>
 以下、図23~25を参照して、変更例5について説明する。図23~25は、変更例に係るコーティング処理部4bの構成を示す概略一部端面図である。なお、図23は、多孔質基材1に対してスラリー供給処理及びコーティング処理が行われる前の状態を、図24は、多孔質基材1に対してスラリー供給処理が行われる際の状態を、図25は、多孔質基材1に対してコーティング処理が行われる際の状態を示す。
<Modification 5>
Modification 5 will be described below with reference to FIGS. 23 to 25 are schematic partial end views showing the configuration of the coating processing section 4b according to the modification. 23 shows the state before the slurry supply process and the coating process are performed on the porous substrate 1, and FIG. 24 shows the state when the slurry supply process is performed on the porous substrate 1. , and FIG. 25 show the state when the porous substrate 1 is subjected to the coating process.
 図23に示すように、コーティング処理部4bは、スラリー供給部42、ノズル移動機構43及び第1基材固定部45が省略され、スラリーMが貯留されている貯留槽42bが設けられている点で、コーティング処理部4とは異なる。コーティング処理部4bにおいて、コーティング処理部4と同一の部材又は部分は、コーティング処理部4と同一の符号で示されている。コーティング処理部4に関する上記説明は、別段規定される場合を除き、コーティング処理部4bにも適用される。 As shown in FIG. 23, the coating processing unit 4b does not include the slurry supply unit 42, the nozzle moving mechanism 43, and the first substrate fixing unit 45, and is provided with a storage tank 42b in which the slurry M is stored. , and is different from the coating processing section 4 . In the coating processing section 4b, the same members or portions as the coating processing section 4 are denoted by the same reference numerals as in the coating processing section 4. As shown in FIG. The above description of the coating section 4 also applies to the coating section 4b, unless otherwise specified.
 図23に示すように、貯留槽42bは、基材保持部41に保持された多孔質基材1の下方に設置されている。 As shown in FIG. 23, the storage tank 42b is installed below the porous substrate 1 held by the substrate holding portion 41. As shown in FIG.
 図23に示すように、基材保持部41は、多孔質基材1の第1端面T1が貯留槽42b側(図23の下側)を向くように、多孔質基材1を保持する。 As shown in FIG. 23, the substrate holding part 41 holds the porous substrate 1 so that the first end face T1 of the porous substrate 1 faces the reservoir 42b side (lower side in FIG. 23).
 変更例5では、基材保持工程の後、ノズル移動工程及び吸引管移動工程が行われることなく、工程(a)が行われる。 In Modified Example 5, the step (a) is performed after the substrate holding step, without performing the nozzle moving step and the suction tube moving step.
 工程(a)において、基材保持部41は、多孔質基材1を降下させる。これにより、図24に示すように、多孔質基材1の第1端面T1側の端部は、貯留槽42b中のスラリーMに浸漬され、多孔質基材1の第1端面T1側には、スラリーMが供給される。したがって、変更例5では、基材保持部41及び貯留槽42bが、多孔質基材1の第1端面T1側にスラリーMを供給するスラリー供給部として機能する。 In step (a), the substrate holder 41 lowers the porous substrate 1 . As a result, as shown in FIG. 24, the end portion of the porous substrate 1 on the first end surface T1 side is immersed in the slurry M in the storage tank 42b, and the porous substrate 1 on the first end surface T1 side is , slurry M is supplied. Therefore, in Modification 5, the base material holding part 41 and the storage tank 42b function as a slurry supply part that supplies the slurry M to the first end surface T1 side of the porous base material 1 .
 多孔質基材1の第1端面T1側にスラリーMが供給された後、基材保持部41は、多孔質基材1を上昇させ、多孔質基材1の第1端面T1側の端部を貯留槽42b中のスラリーMから取り出し、多孔質基材1を反転させ、多孔質基材1を吸引管461の上方に移動させる。これにより、図25に示すように、基材保持部41により吸引管461の上方に保持された多孔質基材1の第2端面T2は、吸引管461側(図25の下側)を向く。多孔質基材1を吸引管461の上方に移動させた後、多孔質基材1を反転させてもよい。 After the slurry M is supplied to the first end face T1 side of the porous base material 1, the base material holding part 41 raises the porous base material 1 so that the end portion of the porous base material 1 on the first end face T1 side is is taken out from the slurry M in the storage tank 42 b , the porous substrate 1 is inverted, and the porous substrate 1 is moved above the suction tube 461 . As a result, as shown in FIG. 25, the second end surface T2 of the porous substrate 1 held above the suction tube 461 by the substrate holding portion 41 faces the suction tube 461 side (lower side in FIG. 25). . After moving the porous substrate 1 above the suction tube 461, the porous substrate 1 may be turned over.
 制御部3は、基材保持部41の動作を制御し、多孔質基材1の第1端面T1側の端部を貯留槽42b中のスラリーMに浸漬するタイミング、浸漬する時間(スラリーMの供給量)、多孔質基材1の第1端面T1側の端部を貯留槽42b中のスラリーMから取り出すタイミング、多孔質基材1を反転させるタイミング、多孔質基材1を吸引管461の上方に移動させるタイミング等を制御する。 The control unit 3 controls the operation of the substrate holding unit 41, and determines the timing and duration of immersion of the end of the porous substrate 1 on the first end surface T1 side in the slurry M in the storage tank 42b ( supply amount), the timing of removing the end of the porous substrate 1 on the first end face T1 side from the slurry M in the storage tank 42b, the timing of turning over the porous substrate 1, Controls the timing of upward movement.
 工程(a)の後、吸引管移動工程が行われる。吸引管移動工程では、吸引管移動機構47が吸引管461を図23及び24に示す待機位置から図25に示すスラリー吸引位置に移動させる。 After step (a), a suction tube moving step is performed. In the suction tube moving step, the suction tube moving mechanism 47 moves the suction tube 461 from the standby position shown in FIGS. 23 and 24 to the slurry suction position shown in FIG.
 吸引管移動工程の後、工程(b)が行われる。 After the suction tube moving process, the process (b) is performed.
〔実施例1〕
 図1~4に示す円柱状の多孔質基材1を準備した。多孔質基材1の長さは127mm、多孔質基材1の直径は118mm、多孔質基材1の1平方インチあたりのセルの合計数は1平方インチあたり300セルであった。
[Example 1]
A cylindrical porous substrate 1 shown in FIGS. 1 to 4 was prepared. The length of the porous substrate 1 was 127 mm, the diameter of the porous substrate 1 was 118 mm, and the total number of cells per square inch of the porous substrate 1 was 300 cells per square inch.
 触媒層の原料を含有するスラリーMを準備した。スラリーMの粘度は、コーン・アンド・プレート型の粘度計を使用し、25℃の温度で、せん断速度を380s-1として測定した場合、500mPa・sであり、せん断速度を4s-1として測定した場合、5500mPa・sであった。 A slurry M containing raw materials for the catalyst layer was prepared. The viscosity of slurry M is 500 mPa s when measured using a cone and plate type viscometer at a temperature of 25 ° C. and a shear rate of 380 s -1 , and a shear rate of 4 s -1 . was 5500 mPa·s.
 図5~8に示す構造体製造装置100を準備した。整流部材40としては、図11及び12に示す整流板49aを使用した。整流板49aの第2部分492の直径は108.4mm、第1貫通孔Gの幅Wは5mmに調整した。整流板49aの第1部分491及び第2端面T2の外縁領域T21は、第2端面T2の面積の16%、整流板49aの第2部分492及び第2端面T2の中央領域T22は、第2端面T2の面積の84%に調整した。整流板49aの第1部分491に形成された第1貫通孔Gが露出させる外縁領域T21の面積は、外縁領域T21の面積の97%、整流板49aの第2部分492が被覆する中央領域T22の面積は、中央領域T22の100%に調整した。吸引管461がスラリー吸引位置にあるときの、整流板49aと多孔質基材1の第2端面T2との距離D2aは6mmに調整した。 A structure manufacturing apparatus 100 shown in FIGS. 5 to 8 was prepared. As the rectifying member 40, the rectifying plate 49a shown in FIGS. 11 and 12 was used. The diameter of the second portion 492 of the current plate 49a was adjusted to 108.4 mm, and the width W of the first through hole G was adjusted to 5 mm. The first portion 491 of the rectifying plate 49a and the outer edge region T21 of the second end surface T2 are 16% of the area of the second end surface T2, and the second portion 492 of the rectifying plate 49a and the central region T22 of the second end surface T2 are the second end surface T2. It was adjusted to 84% of the area of the end surface T2. The area of the outer edge region T21 exposed by the first through holes G formed in the first portion 491 of the current plate 49a is 97% of the area of the outer edge region T21, and the central region T22 covered by the second portion 492 of the current plate 49a. was adjusted to 100% of the central region T22. The distance D2a between the current plate 49a and the second end face T2 of the porous substrate 1 when the suction pipe 461 is at the slurry suction position was adjusted to 6 mm.
 構造体製造装置100により、多孔質基材1の第1端面T1側に供給されたスラリーMを多孔質基材1の第2端面T2側から吸引し、多孔質基材1の第1セルの内壁に、多孔質基材1の第2端面T2に達しないスラリー層Nを形成した。 By the structure manufacturing apparatus 100, the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, and the first cell of the porous substrate 1 is A slurry layer N that did not reach the second end surface T2 of the porous substrate 1 was formed on the inner wall.
 多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の径方向の内側部分のうち、第1端面T1側の部分における空気の流速は、3.8m/sであり、多孔質基材1の径方向の外側部分のうち、第1端面T1側の部分における空気の流速は、14m/sであった。 When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, the inner part of the porous substrate 1 in the radial direction is the first The flow velocity of air in the portion on the side of the first end surface T1 is 3.8 m/s, and the flow velocity of air in the portion on the side of the first end surface T1 among the radially outer portions of the porous substrate 1 is 14 m/s. Met.
 多孔質基材1を軸方向Xに平行な平面で切断し、多孔質基材1の径方向の外側部分Q1(図26に示すように、多孔質基材1のうち、左側部分(5%)及び右側部分(5%))における4個のスラリー層Nの長さを測定し、平均値を求めた。同様に、多孔質基材1の径方向の内側部分Q2(図26に示すように、多孔質基材1のうち、中央部分(90%))における36個のスラリー層Nの長さを測定し、平均値を求めた。 The porous substrate 1 is cut along a plane parallel to the axial direction X, and the radial outer portion Q1 of the porous substrate 1 (as shown in FIG. 26, the left portion (5% ) and the right portion (5%)) were measured, and the average value was obtained. Similarly, the length of 36 slurry layers N in the radially inner portion Q2 of the porous substrate 1 (the central portion (90%) of the porous substrate 1 as shown in FIG. 26) is measured. and calculated the average value.
 多孔質基材1の長さに対する、多孔質基材1の径方向の内側部分Q2におけるスラリー層Nの長さの平均値の百分率Z2(%)と、多孔質基材1の長さに対する、多孔質基材1の径方向の外側部分Q1におけるスラリー層Nの長さの平均値の百分率Z1(%)との差(Z2-Z1)は、7.5%であった。 Percentage Z2 (%) of the average value of the length of the slurry layer N in the inner portion Q2 in the radial direction of the porous substrate 1 with respect to the length of the porous substrate 1, and the length of the porous substrate 1, The difference (Z2-Z1) from the average percentage Z1 (%) of the length of the slurry layer N in the radially outer portion Q1 of the porous substrate 1 was 7.5%.
〔実施例2〕
 図19に示すように、吸引管461内に進入した多孔質基材1の第2端面T2側の端部を、第2基材固定部48によって固定せず、吸引管461と、吸引管461内に進入した多孔質基材1の第2端面T2側の端部との間に隙間を形成した点を除き、実施例1と同様の操作を行った。なお、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の径方向の内側部分のうち、第1端面T1側の部分における空気の流速は、3.1m/sであり、多孔質基材1の径方向の外側部分のうち、第1端面T1側の部分における空気の流速は、9.2m/sであった。
[Example 2]
As shown in FIG. 19, the end portion of the porous substrate 1 on the second end surface T2 side that has entered the suction tube 461 is not fixed by the second substrate fixing portion 48, and the suction tube 461 and the suction tube 461 are separated from each other. The same operation as in Example 1 was performed, except that a gap was formed between the second end face T2 side end of the porous substrate 1 that had entered inside. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, , the air flow velocity in the portion on the first end surface T1 side is 3.1 m/s, and the air flow velocity in the portion on the first end surface T1 side of the radially outer portion of the porous substrate 1 is 9 .2 m/s.
 多孔質基材1の長さに対する、多孔質基材1の径方向の内側部分Q2におけるスラリー層Nの長さの平均値の百分率Z2(%)と、多孔質基材1の長さに対する、多孔質基材1の径方向の外側部分Q1におけるスラリー層Nの長さの平均値の百分率Z1(%)との差(Z2-Z1)は、6.3%であった。 Percentage Z2 (%) of the average value of the length of the slurry layer N in the inner portion Q2 in the radial direction of the porous substrate 1 with respect to the length of the porous substrate 1, and the length of the porous substrate 1, The difference (Z2-Z1) from the average percentage Z1 (%) of the length of the slurry layer N in the radially outer portion Q1 of the porous substrate 1 was 6.3%.
〔比較例1〕
 整流板49aを使用しなかった点を除き、実施例1と同様の操作を行った。なお、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の径方向の内側部分のうち、第1端面T1側の部分における空気の流速は、14.6m/sであり、多孔質基材1の径方向の外側部分のうち、第1端面T1側の部分における空気の流速は、15.3m/sであった。
[Comparative Example 1]
The same operation as in Example 1 was performed, except that the current plate 49a was not used. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, , the air flow velocity in the portion on the first end surface T1 side is 14.6 m/s, and the air flow velocity in the portion on the first end surface T1 side of the radially outer portion of the porous substrate 1 is 15 m/s. .3 m/s.
 多孔質基材1の長さに対する、多孔質基材1の径方向の内側部分Q2におけるスラリー層Nの長さの平均値の百分率Z2(%)と、多孔質基材1の長さに対する、多孔質基材1の径方向の外側部分Q1におけるスラリー層Nの長さの平均値の百分率Z1(%)との差(Z2-Z1)は、10.8%であった。 Percentage Z2 (%) of the average value of the length of the slurry layer N in the inner portion Q2 in the radial direction of the porous substrate 1 with respect to the length of the porous substrate 1, and the length of the porous substrate 1, The difference (Z2-Z1) from the average percentage Z1 (%) of the length of the slurry layer N in the radially outer portion Q1 of the porous substrate 1 was 10.8%.
〔比較例2〕
 整流板49aを使用しなかった点を除き、実施例2と同様の操作を行った。なお、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、多孔質基材1の径方向の内側部分のうち、第1端面T1側の部分における空気の流速は、12.1m/sであり、多孔質基材1の径方向の外側部分のうち、第1端面T1側の部分における空気の流速は、11.1m/sであった。
[Comparative Example 2]
The same operation as in Example 2 was performed, except that the current plate 49a was not used. When the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, , the flow velocity of air in the portion on the side of the first end surface T1 is 12.1 m/s, and the flow velocity of air in the portion on the side of the first end surface T1 among the radially outer portions of the porous substrate 1 is 11 m/s. .1 m/s.
 多孔質基材1の長さに対する、多孔質基材1の径方向の内側部分Q2におけるスラリー層Nの長さの平均値の百分率Z2(%)と、多孔質基材1の長さに対する、多孔質基材1の径方向の外側部分Q1におけるスラリー層Nの長さの平均値の百分率Z1(%)との差(Z2-Z1)は、11.5%であった。 Percentage Z2 (%) of the average value of the length of the slurry layer N in the inner portion Q2 in the radial direction of the porous substrate 1 with respect to the length of the porous substrate 1, and the length of the porous substrate 1, The difference (Z2-Z1) from the average percentage Z1 (%) of the length of the slurry layer N in the radially outer portion Q1 of the porous substrate 1 was 11.5%.
 実施例1~2及び比較例1~2の結果から、多孔質基材1の第1端面T1側に供給されたスラリーMが多孔質基材1の第2端面T2側から吸引される際、整流板49aが、多孔質基材1の第2端面T2側に配置されることにより、多孔質基材1の径方向の内側部分に形成されるスラリー層Nの長さと、多孔質基材1の径方向の外側部分に形成されるスラリー層Nの長さとの差が小さくなることが明らかとなった。 From the results of Examples 1 and 2 and Comparative Examples 1 and 2, when the slurry M supplied to the first end surface T1 side of the porous substrate 1 is sucked from the second end surface T2 side of the porous substrate 1, By arranging the rectifying plate 49a on the second end surface T2 side of the porous substrate 1, the length of the slurry layer N formed in the inner part in the radial direction of the porous substrate 1 and the length of the porous substrate 1 It has become clear that the difference between the length of the slurry layer N formed on the radially outer portion of the .
 1・・・多孔質基材,11・・・筒状部,12・・・隔壁部,13・・・セル,13a・・・第1セル,13b・・・第2セル,T1(S1)・・・第1端面,T11・・・第1端面の外縁領域,T12・・・第1端面の中央領域,T2(S2)・・・第2端面,T21・・・第2端面の外縁領域,T22・・・第2端面の中央領域,100・・・構造体製造装置,2・・・基材処理部,3・・・制御部,4・・・コーティング処理部,40・・・整流部材,40a・・・第1実施形態に係る整流部材,40b・・・第2実施形態に係る整流部材,41・・・基材保持部,42・・・スラリー供給部,43・・・ノズル移動機構,44・・・治具,45・・・第1基材固定部,46・・・スラリー吸引部,47・・・吸引管移動機構,48・・・第2基材固定部,49a・・・整流板,49b・・・第1整流板,50・・・第2整流板,G・・・貫通孔,M・・・スラリー,N・・・スラリー層 DESCRIPTION OF SYMBOLS 1... Porous base material, 11... Cylindrical part, 12... Partition part, 13... Cell, 13a... First cell, 13b... Second cell, T1 (S1) ... first end face, T11 ... outer edge region of the first end face, T12 ... central region of the first end face, T2 (S2) ... second end face, T21 ... outer edge region of the second end face , T22... Central region of the second end surface, 100... Structure manufacturing apparatus, 2... Base material processing unit, 3... Control unit, 4... Coating processing unit, 40... Rectification Members 40a... Straightening member according to the first embodiment 40b... Straightening member according to the second embodiment 41... Base material holding part 42... Slurry supply part 43... Nozzle Moving mechanism 44 Jig 45 First base material fixing part 46 Slurry suction part 47 Suction tube moving mechanism 48 Second base material fixing part 49a Straightening plate 49b First straightening plate 50 Second straightening plate G Through hole M Slurry N Slurry layer

Claims (34)

  1.  構造体を製造する装置であって、
     前記構造体は、
     軸方向に延在する多孔質基材と、
     前記多孔質基材に設けられた機能層と、を備え、
     前記多孔質基材は、
     前記軸方向の一方側に位置する第1端面と、
     前記軸方向の他方側に位置する第2端面と、
     前記軸方向に延在し、前記第1端面側の端部が開口し、前記第2端面側の端部が閉塞する第1セルと、
     前記軸方向に延在し、前記第2端面側の端部が開口し、前記第1端面側の端部が閉塞する第2セルと、を備え、
     前記装置は、
     前記第1端面側に、前記機能層の原料を含有するスラリーを供給するスラリー供給部と、
     前記第1端面側に供給された前記スラリーを前記第2端面側から吸引し、前記第1セルの内壁に、前記第2端面に達しないスラリー層を形成するスラリー吸引部と、
     前記第1端面側に供給された前記スラリーが前記第2端面側から吸引される際、前記第1端面側又は前記第2端面側に配置され、前記第1端面又は前記第2端面のうち、中央領域の少なくとも一部を被覆し、外縁領域の少なくとも一部を露出させる整流部材と、を備える、前記装置。
    An apparatus for manufacturing a structure, comprising:
    The structure is
    an axially extending porous substrate;
    and a functional layer provided on the porous substrate,
    The porous substrate is
    a first end face positioned on one side in the axial direction;
    a second end face located on the other side in the axial direction;
    a first cell extending in the axial direction and having an open end on the first end surface side and a closed end on the second end surface side;
    a second cell extending in the axial direction, having an open end on the second end face side and a closed end on the first end face side;
    The device comprises:
    a slurry supply unit that supplies a slurry containing raw materials for the functional layer to the first end face side;
    a slurry suction part that sucks the slurry supplied to the first end face side from the second end face side and forms a slurry layer that does not reach the second end face on the inner wall of the first cell;
    When the slurry supplied to the first end face side is sucked from the second end face side, the slurry is arranged on the first end face side or the second end face side, a rectifying member that covers at least a portion of the central region and exposes at least a portion of the outer edge region.
  2.  前記整流部材が、前記第1端面側に供給された前記スラリーが前記第2端面側から吸引される際、前記第1端面側又は前記第2端面側に配置され、前記中央領域の少なくとも一部を被覆し、前記外縁領域の少なくとも一部を露出させる整流板を備える、請求項1に記載の装置。 When the slurry supplied to the first end face side is sucked from the second end face side, the straightening member is arranged on the first end face side or the second end face side, and is at least part of the central region. and exposing at least a portion of the outer edge region.
  3.  前記整流板が、前記第1端面側に供給された前記スラリーが前記第2端面側から吸引される際、前記第2端面側に前記第2端面から離間して配置される、請求項2に記載の装置。 3. The rectifying plate according to claim 2, wherein when the slurry supplied to the first end face side is sucked from the second end face side, the rectifying plate is arranged on the second end face side and spaced apart from the second end face side. Apparatus as described.
  4.  前記整流板と前記第2端面との距離が5mm以上30mm以下である、請求項3に記載の装置。 The device according to claim 3, wherein the distance between the current plate and the second end surface is 5 mm or more and 30 mm or less.
  5.  前記整流板が、前記外縁領域の少なくとも一部を露出させる貫通孔を有する、請求項2~4のいずれか一項に記載の装置。 The device according to any one of claims 2 to 4, wherein the rectifying plate has a through hole that exposes at least part of the outer edge region.
  6.  前記貫通孔が露出させる前記外縁領域の少なくとも一部の面積が、前記外縁領域の面積の50%以上である、請求項5に記載の装置。 The device according to claim 5, wherein the area of at least part of the outer edge region exposed by the through-hole is 50% or more of the area of the outer edge region.
  7.  前記整流板が被覆する前記中央領域の少なくとも一部の面積が、前記中央領域の面積の50%以上である、請求項2~6のいずれか一項に記載の装置。 The device according to any one of claims 2 to 6, wherein the area of at least part of the central region covered by the current plate is 50% or more of the area of the central region.
  8.  前記整流部材が、前記第1端面側に供給された前記スラリーが前記第2端面側から吸引される際、前記第2端面側に配置される第1整流板と、前記第1整流板に対して前記第2端面とは反対側に配置される第2整流板とを備え、
     前記第1整流板が、前記外縁領域の少なくとも一部を露出させる第1貫通孔と、前記中央領域の少なくとも一部を露出させる第2貫通孔とを有し、
     前記第2整流板が、前記第2貫通孔の少なくとも一部を被覆する、請求項1に記載の装置。
    When the slurry supplied to the first end surface side is sucked from the second end surface side, the rectifying member is arranged against the first rectifying plate arranged on the second end surface side and the first rectifying plate and a second rectifying plate arranged on the opposite side of the second end face,
    the first current plate has a first through hole that exposes at least a portion of the outer edge region and a second through hole that exposes at least a portion of the central region;
    2. The apparatus according to claim 1, wherein said second current plate covers at least part of said second through hole.
  9.  前記第1貫通孔が露出させる前記外縁領域の少なくとも一部の面積が、前記外縁領域の面積の50%以上である、請求項8に記載の装置。 The device according to claim 8, wherein the area of at least part of the outer edge region exposed by the first through hole is 50% or more of the area of the outer edge region.
  10.  前記第2貫通孔が露出させる前記中央領域の少なくとも一部の面積が、前記中央領域の面積の50%以上である、請求項8又は9に記載の装置。 The device according to claim 8 or 9, wherein the area of at least part of the central region exposed by the second through-hole is 50% or more of the area of the central region.
  11.  前記第2整流板が被覆する前記第2貫通孔の少なくとも一部の面積が、前記第2貫通孔の面積の50%以上である、請求項8~10のいずれか一項に記載の装置。 The device according to any one of claims 8 to 10, wherein the area of at least part of the second through holes covered by the second current plate is 50% or more of the area of the second through holes.
  12.  前記第2整流板が前記第2貫通孔の一部を被覆するように、前記第2整流板に貫通孔が形成されている、請求項8~11のいずれか一項に記載の装置。 The apparatus according to any one of claims 8 to 11, wherein a through hole is formed in said second straightening plate so that said second straightening plate partially covers said second through hole.
  13.  前記第2整流板が被覆する前記第2貫通孔の一部の面積が、前記第2貫通孔の面積の50%以上90%以下である、請求項12に記載の装置。 13. The device according to claim 12, wherein the area of the part of the second through hole covered by the second current plate is 50% or more and 90% or less of the area of the second through hole.
  14.  前記第1整流板と前記第2端面との距離が5mm以上30mm以下である、請求項8~13のいずれか一項に記載の装置。 The device according to any one of claims 8 to 13, wherein the distance between the first current plate and the second end face is 5 mm or more and 30 mm or less.
  15.  前記第1整流板と前記第2整流板との距離が5mm以上30mm以下である、請求項8~14のいずれか一項に記載の装置。 The device according to any one of claims 8 to 14, wherein the distance between the first straightening plate and the second straightening plate is 5 mm or more and 30 mm or less.
  16.  前記第1端面側に供給された前記スラリーが前記第2端面側から吸引される際、前記多孔質基材の外周面に沿って、前記整流部材に空気が流れ込む、請求項1~15のいずれか一項に記載の装置。 16. Any one of claims 1 to 15, wherein when the slurry supplied to the first end face side is sucked from the second end face side, air flows into the straightening member along the outer peripheral surface of the porous base material. or a device according to claim 1.
  17.  前記構造体が排ガス浄化用触媒又はその前駆体であり、前記機能層が触媒層又はその前駆層である、請求項1~16のいずれか一項に記載の装置。 The device according to any one of claims 1 to 16, wherein the structure is an exhaust gas purifying catalyst or its precursor, and the functional layer is a catalyst layer or its precursor layer.
  18.  構造体を製造する方法であって、
     前記構造体は、
     軸方向に延在する多孔質基材と、
     前記多孔質基材に設けられた機能層と、を備え、
     前記多孔質基材は、
     前記軸方向の一方側に位置する第1端面と、
     前記軸方向の他方側に位置する第2端面と、
     前記軸方向に延在し、前記第1端面側の端部が開口し、前記第2端面側の端部が閉塞する第1セルと、
     前記軸方向に延在し、前記第2端面側の端部が開口し、前記第1端面側の端部が閉塞する第2セルと、を備え、
     前記方法は、以下の工程:
    (a)前記第1端面側に、前記機能層の原料を含有するスラリーを供給する工程;及び
    (b)前記第1端面側に供給された前記スラリーを前記第2端面側から吸引し、前記第1セルの内壁に、前記第2端面に達しないスラリー層を形成する工程
    を含み、
     工程(b)において、前記第1端面側に供給された前記スラリーを前記第2端面側から吸引する際、前記第1端面又は前記第2端面のうち、中央領域の少なくとも一部を被覆し、外縁領域の少なくとも一部を露出させる整流部材が、前記第1端面側又は前記第2端面側に配置される、前記方法。
    A method of manufacturing a structure, comprising:
    The structure is
    an axially extending porous substrate;
    and a functional layer provided on the porous substrate,
    The porous substrate is
    a first end face positioned on one side in the axial direction;
    a second end face located on the other side in the axial direction;
    a first cell extending in the axial direction and having an open end on the first end surface side and a closed end on the second end surface side;
    a second cell extending in the axial direction, having an open end on the second end face side and a closed end on the first end face side;
    The method comprises the steps of:
    (a) supplying a slurry containing raw materials for the functional layer to the first end face; and (b) sucking the slurry supplied to the first end face from the second end face, forming a slurry layer that does not reach the second end surface on the inner wall of the first cell;
    In step (b), when sucking the slurry supplied to the first end face side from the second end face side, covering at least part of a central region of the first end face or the second end face, The above method, wherein a rectifying member that exposes at least part of the outer edge region is arranged on the first end face side or the second end face side.
  19.  前記整流部材が、前記第1端面側に供給された前記スラリーが前記第2端面側から吸引される際、前記第1端面側又は前記第2端面側に配置され、前記中央領域の少なくとも一部を被覆し、前記外縁領域の少なくとも一部を露出させる整流板を備える、請求項18に記載の方法。 When the slurry supplied to the first end face side is sucked from the second end face side, the straightening member is arranged on the first end face side or the second end face side, and is at least part of the central region. and exposing at least a portion of the outer edge region.
  20.  工程(b)において、前記第1端面側に供給された前記スラリーを前記第2端面側から吸引する際、前記整流板が、前記第2端面側に前記第2端面から離間して配置される、請求項19に記載の方法。 In the step (b), when the slurry supplied to the first end face side is sucked from the second end face side, the current plate is arranged on the second end face side and spaced apart from the second end face. 20. The method of claim 19.
  21.  前記整流板と前記第2端面との距離が5mm以上30mm以下である、請求項20に記載の方法。 The method according to claim 20, wherein the distance between the current plate and the second end face is 5 mm or more and 30 mm or less.
  22.  前記整流板が、前記外縁領域の少なくとも一部を露出させる貫通孔を有する、請求項19~21のいずれか一項に記載の方法。 The method according to any one of claims 19 to 21, wherein said rectifying plate has a through hole exposing at least part of said outer edge region.
  23.  前記貫通孔が露出させる前記外縁領域の少なくとも一部の面積が、前記外縁領域の面積の50%以上である、請求項22に記載の方法。 The method according to claim 22, wherein the area of at least part of the outer edge region exposed by the through-hole is 50% or more of the area of the outer edge region.
  24.  前記整流板が被覆する前記中央領域の少なくとも一部の面積が、前記中央領域の面積の50%以上である、請求項19~23のいずれか一項に記載の方法。 The method according to any one of claims 19 to 23, wherein the area of at least part of the central region covered by the rectifying plate is 50% or more of the area of the central region.
  25.  前記整流部材が、前記第1端面側に供給された前記スラリーが前記第2端面側から吸引される際、前記第2端面側に配置される第1整流板と、前記第1整流板に対して前記第2端面とは反対側に配置される第2整流板とを備え、
     前記第1整流板が、前記外縁領域の少なくとも一部を露出させる第1貫通孔と、前記中央領域の少なくとも一部を露出させる第2貫通孔とを有し、
     前記第2整流板が、前記第2貫通孔の少なくとも一部を被覆する、請求項18に記載の方法。
    When the slurry supplied to the first end surface side is sucked from the second end surface side, the rectifying member is arranged against the first rectifying plate arranged on the second end surface side and the first rectifying plate and a second rectifying plate arranged on the opposite side of the second end face,
    the first current plate has a first through hole that exposes at least a portion of the outer edge region and a second through hole that exposes at least a portion of the central region;
    19. The method of claim 18, wherein the second baffle covers at least part of the second through hole.
  26.  前記第1貫通孔が露出させる前記外縁領域の少なくとも一部の面積が、前記外縁領域の面積の50%以上である、請求項25に記載の方法。 The method according to claim 25, wherein the area of at least part of the outer edge region exposed by the first through-hole is 50% or more of the area of the outer edge region.
  27.  前記第2貫通孔が露出させる前記中央領域の少なくとも一部の面積が、前記中央領域の面積の50%以上である、請求項25又は26に記載の方法。 The method according to claim 25 or 26, wherein the area of at least part of the central region exposed by the second through-hole is 50% or more of the area of the central region.
  28.  前記第2整流板が被覆する前記第2貫通孔の少なくとも一部の面積が、前記第2貫通孔の面積の50%以上である、請求項25~27のいずれか一項に記載の方法。 The method according to any one of claims 25 to 27, wherein the area of at least part of the second through holes covered by the second rectifying plate is 50% or more of the area of the second through holes.
  29.  前記第2整流板が前記第2貫通孔の一部を被覆するように、前記第2整流板に貫通孔が形成されている、請求項25~28のいずれか一項に記載の方法。 The method according to any one of claims 25 to 28, wherein a through-hole is formed in said second straightening plate so that said second straightening plate partially covers said second through-hole.
  30.  前記第2整流板が被覆する前記第2貫通孔の一部の面積が、前記第2貫通孔の面積の50%以上90%以下である、請求項29に記載の方法。 The method according to claim 29, wherein the area of the part of the second through hole covered by the second current plate is 50% or more and 90% or less of the area of the second through hole.
  31.  前記第1整流板と前記第2端面との距離が5mm以上30mm以下である、請求項25~30のいずれか一項に記載の方法。 The method according to any one of claims 25 to 30, wherein the distance between the first current plate and the second end surface is 5 mm or more and 30 mm or less.
  32.  前記第1整流板と前記第2整流板との距離が5mm以上30mm以下である、請求項25~31のいずれか一項に記載の方法。 The method according to any one of claims 25 to 31, wherein the distance between the first straightening plate and the second straightening plate is 5 mm or more and 30 mm or less.
  33.  工程(b)において、前記第1端面側に供給された前記スラリーを前記第2端面側から吸引する際、前記多孔質基材の外周面に沿って、前記整流部材に空気が流れ込む、請求項18~32のいずれか一項に記載の方法。 2. The method of claim 1, wherein in the step (b), when the slurry supplied to the first end face side is sucked from the second end face side, air flows into the straightening member along the outer peripheral surface of the porous base material. 33. The method of any one of 18-32.
  34.  前記構造体が排ガス浄化用触媒又はその前駆体であり、前記機能層が触媒層又はその前駆層である、請求項18~33のいずれか一項に記載の方法。 The method according to any one of claims 18 to 33, wherein the structure is an exhaust gas purifying catalyst or its precursor, and the functional layer is a catalyst layer or its precursor layer.
PCT/JP2022/012743 2021-03-18 2022-03-18 Apparatus and method for producing structure WO2022196806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280021620.6A CN117043124A (en) 2021-03-18 2022-03-18 Apparatus and method for manufacturing structure
JP2023507204A JPWO2022196806A1 (en) 2021-03-18 2022-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021045089 2021-03-18
JP2021-045089 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022196806A1 true WO2022196806A1 (en) 2022-09-22

Family

ID=83320520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012743 WO2022196806A1 (en) 2021-03-18 2022-03-18 Apparatus and method for producing structure

Country Status (3)

Country Link
JP (1) JPWO2022196806A1 (en)
CN (1) CN117043124A (en)
WO (1) WO2022196806A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136833A (en) * 2007-12-10 2009-06-25 Toyota Motor Corp Method for producing monolithic catalyst for exhaust gas cleaning and monolithic catalyst
JP2015039672A (en) * 2013-08-22 2015-03-02 株式会社キャタラー Slurry supplying nozzle and production apparatus and production method of exhaust gas purifying catalyst using the same
WO2016143811A1 (en) * 2015-03-09 2016-09-15 株式会社キャタラー Catalyst slurry coating device
WO2018180090A1 (en) * 2017-03-31 2018-10-04 株式会社キャタラー Manufacturing method for exhaust gas purification device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136833A (en) * 2007-12-10 2009-06-25 Toyota Motor Corp Method for producing monolithic catalyst for exhaust gas cleaning and monolithic catalyst
JP2015039672A (en) * 2013-08-22 2015-03-02 株式会社キャタラー Slurry supplying nozzle and production apparatus and production method of exhaust gas purifying catalyst using the same
WO2016143811A1 (en) * 2015-03-09 2016-09-15 株式会社キャタラー Catalyst slurry coating device
WO2018180090A1 (en) * 2017-03-31 2018-10-04 株式会社キャタラー Manufacturing method for exhaust gas purification device

Also Published As

Publication number Publication date
CN117043124A (en) 2023-11-10
JPWO2022196806A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6353918B2 (en) Exhaust gas purification catalyst
JP6353919B2 (en) Exhaust gas purification catalyst
JP5150719B2 (en) Method for introducing a catalyst coating into the pores of a ceramic honeycomb flow body
CN105121803B (en) The catalytic article of oxidation for nitrogen oxide, system and method
WO2016133087A1 (en) Exhaust gas purification catalyst
JP5090673B2 (en) Honeycomb carrier for catalyst and exhaust gas purification catalyst using the same
JP2007268484A (en) Coating method of honeycomb substrate
JP2009136833A (en) Method for producing monolithic catalyst for exhaust gas cleaning and monolithic catalyst
CN106714985B (en) Rapid and uniform coating method
WO2022196806A1 (en) Apparatus and method for producing structure
JP4480414B2 (en) Method for producing filter catalyst
JP4963380B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2001252565A (en) Exhaust gas cleaning catalyst
JP2007275709A (en) Wash coat slurry and method for manufacturing exhaust gas cleaning catalyst
JP2001276629A (en) Device for coating slurry for catalyst
JP2003326162A (en) Catalyst for purifying exhaust gas and its manufacturing method
WO2023153244A1 (en) Method for producing exhaust gas purification catalyst
JP6954912B2 (en) How to make a compartment coated catalyzed monolith
JP7404084B2 (en) Processing method
CN115209995A (en) Apparatus and method for coating a radially zoned catalyst
JP2005046669A (en) Base material for supporting catalyst and its manufacturing method
JPH10280950A (en) Diesel exhaust emission controlling catalyst
US11415039B2 (en) Structure for exhaust purification
CN114270020B (en) Catalyst substrate comprising a radially zoned coating
JP2004174366A (en) Method for manufacturing catalyst for cleaning exhaust gas and catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771551

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280021620.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023507204

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771551

Country of ref document: EP

Kind code of ref document: A1