WO2022196192A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2022196192A1
WO2022196192A1 PCT/JP2022/005020 JP2022005020W WO2022196192A1 WO 2022196192 A1 WO2022196192 A1 WO 2022196192A1 JP 2022005020 W JP2022005020 W JP 2022005020W WO 2022196192 A1 WO2022196192 A1 WO 2022196192A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat transfer
transfer layer
layer
laminated
Prior art date
Application number
PCT/JP2022/005020
Other languages
French (fr)
Japanese (ja)
Inventor
広治 南谷
克美 田中
Original Assignee
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工パッケージング株式会社 filed Critical 昭和電工パッケージング株式会社
Publication of WO2022196192A1 publication Critical patent/WO2022196192A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat exchanger manufactured using a laminate material in which a resin layer is laminated on a metal layer, and related technology.
  • metal heat exchangers are manufactured based on metal processing, it is difficult to make them thinner than at present. It was difficult to fit into the narrow space between each of the modules.
  • Patent Document 4 development of a heat exchanger using a laminate material in which resin layers are laminated on both sides of a metal layer is underway.
  • an inner core member (inner fin) made of a laminated material is housed inside an outer envelope made of a laminated material.
  • the member to be cooled is cooled by exchanging heat with the member to be cooled that contacts the outer surface of the body through the inner fins.
  • the outer envelope and inner fins are formed of a laminated material cut to a predetermined size, so compared to the above-mentioned metal coolers, the degree of freedom and versatility in design is high. It is possible to reduce the size and weight, improve production efficiency, and reduce costs.
  • JP 2015-59693 A Japanese Patent Application Laid-Open No. 2015-141002 JP 2016-189415 A Japanese Patent Application Laid-Open No. 2020-3132 JP 2020-159667 A JP 2020-161449 A
  • the heat transfer layer as a metal layer is exposed at the cut end surface of the laminate material for the inner fin, for example. contact with , corrosion occurs, the heat transfer is reduced, and there is a risk that the heat exchange efficiency may be reduced.
  • Patent Literatures 5 and 6 propose a technique in which the cut end surface of the laminated material for the inner fin is coated with a resin to cover the cut end surface of the heat transfer layer to prevent the heat transfer layer from being exposed. It is
  • Preferred embodiments of the present invention have been made in view of the above and/or other problems in the related art. Preferred embodiments of the present invention can significantly improve existing methods and/or apparatus.
  • the present invention has been made in view of the above problems, and provides a heat exchanger using a laminate material, which can easily and reliably prevent corrosion of a heat transfer layer and maintain excellent heat transfer properties.
  • An object of the present invention is to provide a heat exchanger and its related technology.
  • the present invention has the following means.
  • a heat exchanger comprising an outer envelope through which a heat exchange medium flows, and inner fins accommodated in the outer envelope with a portion thereof in contact with the inner surface of the outer envelope,
  • the outer wrapping body is composed of an outer wrapping laminate material in which a resin layer is laminated on at least one side of a metal layer
  • the inner fin is composed of an inner core laminate material in which resin heat-sealable layers are laminated on both sides of a metal heat transfer layer
  • a thin edge portion is formed on a side edge of the inner core laminate material, The thin edge portion includes a side edge of the heat transfer layer, a resin heat transfer layer side edge laminated portion laminated on both sides of the side edge, and a resin heat transfer layer covering the end surface of the heat transfer layer.
  • a heat exchanger comprising: a layer end face covering portion.
  • a heat exchange medium circulates inside an outer envelope composed of an outer envelope laminate material in which a resin layer is laminated on at least one side of a metal layer, and a part thereof is in contact with the inner surface of the outer envelope.
  • An inner fin for a heat exchanger adapted to be housed It is composed of an inner core laminate material in which resin heat-sealing layers are laminated on both sides of a metal heat transfer layer, A thin edge portion is formed on a side edge of the inner core laminate material, The thin edge portion includes a side edge of the heat transfer layer, a resin heat transfer layer side edge laminated portion laminated on both sides of the side edge, and a resin heat transfer layer covering the end surface of the heat transfer layer.
  • An inner fin for a heat exchanger comprising: a layer end surface covering portion.
  • a heat exchange medium circulates inside an outer envelope made of an outer envelope laminate material in which a resin layer is laminated on at least one side of a metal layer, and a part of the outer envelope is in contact with the inner surface of the outer envelope.
  • a method for manufacturing a housed inner fin for a heat exchanger comprising: Producing an inner core laminate material in which resin heat-sealing layers are laminated on both sides of a metal heat transfer layer, heat press molding is performed on the side edges of the inner core laminate material to cover the side edges and end faces of the heat transfer layer, and to form a thin edge portion of the heat sealing layer by the molten resin molding, 1.
  • a method for manufacturing an inner fin for a heat exchanger characterized in that the inner fin is manufactured using an inner core laminate material after forming a thin edge portion.
  • the heat exchanger of the invention since the side edge of the metal heat transfer layer is covered with the thin edge portion at the edge of the inner fin, the end surface of the heat transfer layer is not exposed and the heat transfer The contact of the heat exchange medium with the heat layer can be prevented, the occurrence of corrosion caused by the contact can be reliably prevented, and good heat transfer can be maintained. Furthermore, since the thin edge portions provided on the side edges of the inner core laminate material can be formed by thinning the side edges, the thin edge portions can be easily formed by heat-press molding the side edges of the inner core laminate material. For this reason, in the heat exchanger of the present invention, delicate and careful work such as resin coating is not required in order to cover the end faces of the heat transfer layer, and thin edges can be easily formed, improving production efficiency. can be improved.
  • FIG. 1 is a perspective view showing a heat exchanger that is an embodiment of the invention.
  • 2A and 2B are diagrams showing the heat exchanger of the embodiment, FIG. 2A is a plan view, FIG. It is a cross-sectional view corresponding to the CC line cross-section of FIG. (a).
  • FIG. 3 is an exploded perspective view of the heat exchanger of the embodiment.
  • FIG. 4 is a front view showing inner fins applied to the heat exchanger of the embodiment.
  • FIG. 5 is a cross-sectional view showing an enlarged part of the outer wrapping laminated material applied to the heat exchanger of the embodiment.
  • FIG. 6 is a cross-sectional view showing an enlarged side portion of an inner core laminate before heat press molding applied to the heat exchanger of the embodiment.
  • FIG. 7 is a cross-sectional view showing an enlarged side portion of the inner core laminated material after heat press molding applied to the heat exchanger of the embodiment.
  • FIGS 1 to 3 are diagrams showing a heat exchanger that is an embodiment of the present invention.
  • the heat exchanger of this embodiment is used as a heat transfer panel, a heat transfer tube, or the like. and a pair of (both sides) headers (joint members) 3 , 3 housed in both end portions of the outer envelope 1 .
  • the outer package 1 is composed of a tray member 10 having a rectangular shape in plan view and a cover member 15 having a rectangular shape in plan view.
  • the tray member 10 is formed of a molded product of the outer wrap laminate material L1, and the entire intermediate region except for the outer peripheral edge is recessed downward using a cold forming technique such as deep drawing or stretch forming.
  • a concave portion 11 having a rectangular shape in a plan view is formed, and an outwardly projecting flange portion 12 is integrally formed on the outer circumference of the opening edge portion of the concave portion 11 .
  • the cover member 15 is formed with a pair of entrances 16 , 16 corresponding to the front and rear ends of the recess 11 in the tray member 10 .
  • one of the pair of doorways 16 is configured as an inlet, and the other doorway 16 is configured as an outlet.
  • the tray member 10 and the cover member 15 are composed of an envelope laminate material L1, which is a laminate sheet or film having softness and flexibility.
  • the outer wrap laminate material L1 includes a heat transfer layer 51 made of metal (metal foil) and a heat-sealable resin laminated on one surface (inner surface) of the heat transfer layer 51. It has a layer 52 and a protective layer 53 made of a heat-resistant resin laminated on the other surface (outer surface) of the heat transfer layer 51 .
  • the term "foil” is used to include films, thin plates, and sheets.
  • Aluminum foil, copper foil, stainless steel (SUS) foil, nickel foil, nickel-plated copper foil, clad metal made of nickel and copper, and the like can be suitably used as the heat transfer layer 51 in the outer wrap laminate material L1.
  • the terms "aluminum”, “copper”, “nickel”, and “titanium” are used to include their alloys.
  • the heat transfer layer 51 is also called a metal foil layer or a heat collection layer, and preferably has a thickness of 30 ⁇ m to 200 ⁇ m, more preferably 40 ⁇ m to 150 ⁇ m.
  • a layer composed of an olefin-based resin, a modified resin thereof, or a resin containing an olefin polymer having a carboxylic acid can be preferably used.
  • Suitable examples of olefinic resins or modified resins thereof include unstretched polypropylene films (CPP), polyethylene films (LDPE, LLDPE, HDPE), acid-modified polyolefin resins, and the like.
  • resins containing olefin polymers having carboxylic acid include ionomer resins, ethylene-methacrylic acid copolymers (EMAA), ethylene-ethyl acrylate copolymers (EEA), ethylene-methyl acrylate copolymers (EMA ) and the like can be cited as suitable examples.
  • the heat-sealable layer 52 can be formed by attaching a film or sheet of these resins to the heat transfer layer 51 or by applying a coating of these resins.
  • the thermal adhesive layer 52 is also called a sealant layer, and preferably has a thickness of 20 ⁇ m to 500 ⁇ m, more preferably 30 ⁇ m to 80 ⁇ m.
  • Suitable examples of the protective layer 53 include those composed of heat-resistant resins such as polyester resin and polyamide resin.
  • the protective layer 53 can be formed by coating with a resin.
  • the protective layer 53 is also called a coating layer, and preferably has a thickness of 6 ⁇ m to 100 ⁇ m, more preferably 9 ⁇ m to 50 ⁇ m.
  • the outer wrap laminate material L1 having the above configuration is cut into a predetermined size and thermoformed as described above as necessary to form the tray member 10 and the cover member 15 as the outer wrapper 1.
  • the inner fins 2 are formed by molding the inner core laminate material L2.
  • the inner core laminate material L2 is a heat transfer layer 61 made of metal (metal foil) and heat-sealable resin laminated on both sides (inner surface and outer surface) of the heat transfer layer 61. and a heat-sealable layer 62 .
  • Aluminum foil, copper foil, or the like can be suitably used as the heat transfer layer 61 in the inner core laminate material L2.
  • the heat transfer layer 61 is also called a metal foil layer or a heat collection layer, and preferably has a thickness of 30 ⁇ m to 200 ⁇ m, more preferably 40 ⁇ m to 150 ⁇ m.
  • a layer composed of an olefin-based resin, a modified resin thereof, or a resin containing an olefin polymer having a carboxylic acid can be preferably used.
  • Suitable examples of olefinic resins or modified resins thereof include unstretched polypropylene films (CPP), polyethylene films (LDPE, LLDPE, HDPE), and acid-modified polyolefin resins.
  • resins containing olefin polymers having carboxylic acid include ionomer resins, ethylene-methacrylic acid copolymers (EMAA), ethylene-ethyl acrylate copolymers (EEA), ethylene-methyl acrylate copolymers (EMA ) and the like can be cited as suitable examples.
  • the heat fusion layer 62 can be formed by attaching a film or sheet of these resins to the heat transfer layer 61 or by applying a coating of these resins.
  • the thermal adhesive layer 62 is also called a sealant layer, and preferably has a thickness of 20 ⁇ m to 500 ⁇ m, more preferably 30 ⁇ m to 80 ⁇ m.
  • the heat transfer layer 61 for the inner core laminate material L2 is also preferably subjected to surface treatment such as chemical conversion treatment, if necessary, in the same manner as described above.
  • the cut ends of the cut inner core laminate material L2 are subjected to edge anti-corrosion treatment.
  • the side edge 6a of the inner core laminate material L2 is formed into a thin edge portion 7 that is thinner than the unpressurized portion.
  • the thin edge portion 7 is a molding of resin remaining on the side edge 6a of the heat transfer layer 61 and the heat-sealing layer 62, and is laminated on both sides of the side edge 6a of the heat transfer layer 61 on the side of the heat transfer layer. It includes an edge laminated portion 72 and a heat transfer layer end surface covering portion 73 which is a molded body of resin in which the thermal fusion layer 62 flows and which covers the end surface 6b of the heat transfer layer 61 .
  • the heat transfer layer side edge lamination portion 72 and the heat transfer layer end face covering portion 73 are formed by a molding of the molten resin of the heat sealing layer 62 which is formed by partially melting the resin of the heat sealing layer 62. It is Therefore, the heat transfer layer side edge laminated portion 72 is formed continuously and integrally with the heat sealing layer 62, and the heat transfer layer end face covering portion 73 is continuously formed with the heat transfer layer side edge laminated portion 72 and integrally formed. formed.
  • edge anti-corrosion treatment is performed on the inner core laminate material L2 by heat press molding, and the cut edge surface 6b of the heat transfer layer 61 is reliably covered with the thin edge portion 7.
  • the cavity 41 in the pair of seal molds 4, 4 is formed in a shape corresponding to the thin edge portion 7.
  • the thickness of the heat sealing layer 62 is "T1"
  • the thickness of the heat transfer layer side edge lamination portion 72 is "T2”
  • the width of the heat transfer layer side edge lamination portion 72 is Assuming that "W1” and the width of the heat transfer layer end surface covering portion 73 as "W2", it is preferable to establish the following relational expression.
  • T1 is preferably set to 20 ⁇ m to 500 ⁇ m (0.02 mm to 0.5 mm), more preferably 30 ⁇ m to 80 ⁇ m (0.03 mm to 0.08 mm).
  • the cut end surface 6b of the heat transfer layer 61 can be reliably covered with the thin edge portion 7. FIG. As a result, as will be described later, it is possible to reliably prevent a heat exchange medium such as a refrigerant from coming into contact with the heat transfer layer 61, and to reliably prevent the heat transfer layer 61 from corroding and deteriorating.
  • the inner fin 2 is produced by performing uneven processing on the inner core laminate material L2 that has been subjected to heat press molding (edge anti-corrosion treatment).
  • the method of processing the inner fins 2 is not particularly limited, but for example, the inner core laminate material L2 is sandwiched between a pair of embossing rolls or a pair of corrugated rolls and passed between the pair of rolls to form irregularities.
  • a molding method can be exemplified.
  • a method of forming uneven portions in the inner core laminate material L2 using a press machine or a press die can be exemplified.
  • the inner fin 2 is formed into a square wave shape (rectangular wave shape) in which concave portions 25 and convex portions 26 are alternately formed continuously, that is, a so-called digital signal waveform. That is, the bottom surface (bottom wall) of the concave portion and the top surface (top wall) of the convex portion in the inner fin 2 of the present embodiment are formed flat, and when the heat exchanger is assembled, the bottom wall (lower wall) of the tray member 10 is flat. and parallel to the ceiling wall (upper wall) of the cover member 15 .
  • the inner fins 2 have raised walls that connect the adjacent recess bottom walls and projection top walls so that they are positioned against the recess bottom walls and the projection top walls, or against the upper and lower walls of the outer envelope 1 in the assembled state of the heat exchanger. placed perpendicular to it.
  • the inner fins 2 having an angular wave shape are used.
  • the present invention is not limited to this. (sinusoidal waveform), that is, a so-called analog signal waveform may be used.
  • the inner fins of any shape can be used as long as they are provided with concave portions and convex portions to be joined to the inner surface of the outer envelope.
  • the inner fins 2 are accommodated in the intermediate portion of the concave portion 11 of the tray member 10 excluding both end portions.
  • the accommodated inner fins 2 are arranged so that the mountain and valley directions (horizontal direction in FIG. 3) coincide with the lengthwise direction of the tray member 10 (horizontal direction in FIG. 3).
  • the tunnels and grooves formed along the ridges and valleys of the inner fins 2 are arranged along the longitudinal direction of the tray member 10, and the coolant and the like pass through the tunnels and grooves.
  • the heat exchange medium can smoothly flow from one longitudinal end of the outer envelope 1 to the other longitudinal end.
  • the pair of headers 3, 3 arranged at both ends of the outer package 1 are formed by moldings of heat-sealable resin.
  • the header 3 includes a box-shaped mounting box portion 31 having an opening 32 on one side, and a pipe portion 33 provided on the top wall of the mounting box portion 31 .
  • the pipe portion 33 communicates with the inside of the mounting box portion 31 so that a heat exchange medium can flow between the inside of the pipe portion 33 and the inside of the mounting box portion 31 .
  • the molding method of the header 3 is not particularly limited, a molding method using injection molding, for example, can be suitably adopted.
  • the mounting box portions 31 of the header 3 are arranged on both sides of the inner fins 2 in the recesses 11 of the tray member 10 . Further, the pipe portion 33 of the header 3 is arranged upward, and the opening portion 32 of the mounting box portion 31 is arranged facing inward, that is, facing the inner fins 2 .
  • the headers 3, 3 are accommodated in the tray member 10, and the cover member 15 is arranged on the tray member 10 so as to close the opening.
  • the upward pipe portions 33 , 33 of the headers 3 , 3 are inserted into the inlet 16 of the cover member 15 .
  • This heat-sealing process consists of an outer envelope body sealing step for heat-sealing the flange portion 12 of the tray member 10 and the outer peripheral edge portion of the cover member 15 (heat-sealing); 1 (tray member 10 and cover member 15) and interior parts (inner fins 2 and header 3) are heat-sealed.
  • the case where the outer package fusion bonding process and the internal component fusion bonding process are performed simultaneously is referred to as one-stage sealing (single-stage sealing method), and the case where they are performed separately at different times is referred to as two-stage sealing (2 It is called the step seal method).
  • the heat-sealing temperature is preferably set to 160°C to 200°C, more preferably 170°C to 190°C.
  • the heat-sealing pressure is preferably set to 0.1 MPa to 0.5 MPa, more preferably 0.15 MPa to 0.4 MPa.
  • the heat-sealing time is preferably set to 2 to 10 seconds, more preferably 3 to 8 seconds.
  • the heat exchanger configured as described above is used as a cooler (cooling device) for cooling a battery or the like as a member to be cooled (member to be heat exchanged). That is, one pipe portion 33 of the heat exchanger is connected to an inflow pipe for inflowing a cooling liquid (cooling water, antifreeze liquid, etc.) as a heat exchange medium (refrigerant), and the other pipe portion 33 is connected to a cooling An outflow tube is connected for the outflow of liquid. Further, a battery as a member to be cooled is arranged in contact with the upper wall and the lower wall of the outer casing 1 of the heat exchanger.
  • the cooling liquid flows from one pipe portion 33 into the outer envelope 1 through one header 3, flows through the inner fins 2, and flows through the other header 3. It is caused to flow out from the other pipe portion 33 .
  • heat is exchanged between the coolant and the battery through the inner fins 2 and the outer envelope 1, thereby cooling the battery.
  • the cut end surface 6b of the metal heat transfer layer 61 at the edge of the inner fin 2 is covered with the thin edge portion 7, so that the heat transfer layer 61 is not exposed, and the contact of the refrigerant with the heat transfer layer 61 can be prevented.
  • the heat transfer layer 61 can be reliably prevented from being corroded by water, chloride ions, copper ions, etc., which are corrosive factors in the refrigerant, and can maintain good heat transfer properties. Heat exchange efficiency can be improved.
  • the side edge 6a of the inner core laminate material L2 is thinned, and the heat-sealing layer 62 of the side edge 7a is made to flow toward the end surface 6b of the heat transfer layer 61 to form a heat transfer layer. Since the end surface 6b of the heat transfer layer 61 is covered by forming the end surface covering portion 73, the thin edge portion 7 (heat transfer layer An end surface covering portion 73) can be formed. Therefore, in the heat exchanger of the present embodiment, delicate and careful work such as resin coating is not required to cover the end surface of the heat transfer layer, and the heat transfer layer end surface covering portion 73 can be easily formed. can improve production efficiency.
  • the outer envelope 1 and the inner fins 2 are manufactured using the laminate materials L1 and L2, there is no need to use troublesome metal processing, and the manufacturing is efficient and easy.
  • the outer wrapper 1 and the inner fins 2, which are laminated materials L1 and L2, are joined together the thickness can be sufficiently reduced.
  • the heat exchanger is used as a cooler (cooling device) by circulating a heat medium (refrigerant) for cooling inside the heat exchanger, but the present invention is not limited to this.
  • the heat exchanger can be used as a heater (heating device) or a heat generator (heat generating device) by circulating a heat medium for heating (heat medium) therein.
  • the three-dimensionally molded tray member 10 and the sheet-like cover member 15 are adhered together when manufacturing the outer package 1.
  • the three-dimensionally molded member (Laminate material) may be pasted together.
  • a bag-shaped outer package made of laminated material may be manufactured by bonding two sheets of laminated material at their outer peripheral edges by heat-sealing or the like. .
  • the bag-shaped envelope may be manufactured by bonding the outer peripheral edge portions of the overlapping laminated materials, excluding the folded portions, by heat-sealing or the like.
  • three or more laminated materials may be used to manufacture the outer envelope.
  • the laminated materials L1 and L2 have a three-layer structure, but the present invention is not limited to this.
  • a laminate material may be used, and a laminate material having a structure of four or more layers may be used as the inner core laminate material L2.
  • heat exchanger of the present invention is used as a cooler for a battery pack of an automobile or the like has been described as an example.
  • heat exchangers for heating battery packs for automobiles heat for cooling power semiconductor elements (power modules) for controlling the main power of electric power driven devices such as automobile electric motors, industrial machinery, home appliances, and information terminals.
  • Heat exchanger for cooling CPU Central Processing Unit
  • Heat exchanger for cooling/heating storage battery for home or business use Cooling for battery pack (battery module) of personal computer It can also be used as a heat exchanger for cooling liquid crystal televisions, organic EL televisions, plasma television displays, floor heating equipment, and snow melting equipment for roofs, passages, roads, etc. in cold regions. can.
  • CPU Central Processing Unit
  • Cooling for battery pack battery module
  • Example 1 A heat exchanger of Example 1 was manufactured as follows based on the heat exchanger of the above embodiment.
  • a non-stretching polypropylene film (CPP) with a thickness of 40 ⁇ m is laminated as a heat-sealing layer 52 via an adhesive, and an outer wrap laminate material (PET 12 ⁇ m/adhesive/AL (A8021H-O) 120 ⁇ m/adhesive/CPP 40 ⁇ m) L1 was prepared.
  • a recess 11 having a depth of 4 mm, a width of 65 mm, and a length of 180 mm and a flange portion 12 having a width of 10 mm are integrally formed around the entire periphery of the opening edge of the recess 11.
  • a tray member 10 of the outer package 1 was produced.
  • the same outer wrap laminate material L1 was cut to produce a sheet-like cover member 15 of width 85 mm x length 200 mm. Circular entrances and exits 16 with a diameter of 12 mm were formed at predetermined positions on both ends of the cover member 15 .
  • This inner core laminate material L2 is cut into a size of 193 mm in width and 120 mm in length to form a fin blank.
  • the width W1 of the heat transfer layer side edge lamination portion 72 2 mm
  • the width W2 of the heat transfer layer end face covering portion 73 0.2 mm
  • the thickness (Al thickness + T2 x 2) 0.16 mm.
  • a portion 7 is formed, and the side edge 6a of the heat transfer layer 61 is covered with CPP (heat transfer layer side edge laminated portion 72 and heat transfer layer end surface covering portion 73), and after heat press molding (after anticorrosion treatment), the inner A core laminate material L2 (anticorrosion treated fin material) was produced.
  • the inner core laminate material L2 (anticorrosion-treated fin material) after this heat press molding is corrugated so that the fin height (Hf) is 4 mm, the fin pitch (Pf) is 4 mm, The fin thickness (Tf) is 0.2 mm, and the outer corner radius (R4) is 0.5 mm. .
  • the inner fins 2 are arranged so that the direction of the crests and the direction of the valleys are along the length direction (longitudinal direction).
  • a header 3 made of PP was prepared in which a pipe portion 33 was integrally formed with a mounting box portion 31 of 65 mm long ⁇ 30 mm wide ⁇ 4 mm high (see FIG. 3).
  • the pipe portion 33 has an inner diameter of ⁇ 10 mm, an outer diameter of ⁇ 12 mm, and a length of 3 mm.
  • the headers 3 are accommodated in both longitudinal (longitudinal) ends of the concave portion 11 of the tray member 10 with the pipe portions 33 facing upward. Further, the inner fins 2 are accommodated between the headers 3, 3 in the concave portion 11 of the tray member 10. As shown in FIG. The openings 32 of the header 3 are directed inward so as to face the ends of the inner fins 2 .
  • the cover member 15 was placed on the flange portion 12 of the tray member 10 so as to cover the concave portion 11 of the tray member 10 from above, with the heat-sealing layer 52 inside thereof facing downward.
  • the upward pipe portion 33 of the header 3 in the tray member 10 was inserted into the inlet/outlet 16 of the cover member 15 so as to protrude upward from the cover member 15 .
  • Example 2 The same outer wrapping laminate material (PET 12 ⁇ m/adhesive/AL (A8021H-O) 120 ⁇ m/adhesive/ Ionomer 50 ⁇ m) L1 was prepared.
  • a tray member 10 and a cover member 15 were produced in the same manner as in Example 1 using this outer wrap laminate material L1.
  • This inner core laminate material L2 is cut into a size of 193 mm in width and 120 mm in length to form a fin blank, and the four sides of the blank are subjected to heat press molding in the same manner as in Example 1 to obtain a heat transfer layer.
  • a thin edge portion 7 having a width W1 of the side edge laminated portion 72 of 3 mm, a width W2 of the heat transfer layer end surface covering portion 73 of 0.5 mm, and a thickness (Al thickness + T2 ⁇ 2) of 0.18 mm is formed to facilitate heat transfer.
  • the side edge 6a of the layer 61 is covered with an ionomer resin (the heat transfer layer side edge laminated portion 72 and the heat transfer layer end surface covering portion 73) to produce the inner core laminate material L2 (anticorrosion treated fin material) after heat press molding. did.
  • Example 1 Using the inner core laminate material L2 after heat press molding, an inner fin 2 having the same shape as in Example 1 was produced.
  • a header 3 was produced in the same manner as in Example 1 above, except that it was made of PE.
  • the first-stage sealing is performed under the sealing conditions of 140° C. ⁇ 0.3 MPaa ⁇ 7 seconds, and the tray member 10 and the cover member 15 are heat-sealed.
  • the mesh was sealed under the sealing conditions of 150° C. ⁇ 0.3 MPa ⁇ 7 seconds, and the outer package 1, the inner fins 2 and the header 3 were heat-sealed.
  • a heat exchanger of a comparative example was produced in the same manner as in Example 1 above, except that the core laminate material (fin blank) was not subjected to anticorrosion treatment by heat press molding. Needless to say, the inner fins 2 in this heat exchanger have the metal heat transfer layer 61 exposed at the cut end surface, and the exposed heat transfer layer 61 is in contact with the refrigerant circulating in the heat exchanger. It is in a state to obtain.
  • the corrosive liquid was introduced into the heat exchangers of Examples 1 and 2 and the comparative example from one pipe portion 33, flowed through the inside, and circulated so as to flow out from the other pipe portion 33.
  • the temperature of the corrosive liquid was set to 60° C.
  • the flow rate was set to 1 L/min
  • the circulation time was set to 250 hours continuously.
  • the heat exchanger of this invention can be used as a countermeasure against heat generation around CPUs and batteries of information terminals such as smartphones, tablet terminals, and personal computers; It can be used as a cooler for countermeasures against heat generation around batteries, as well as a heater for floor heating and snow removal.
  • Outer envelope 2 Inner fin 61: Heat transfer layer 62: Heat sealing layer 6a: Side edge 6b of heat transfer layer: End surface of heat transfer layer 7: Thin edge 7a: Side edge 72 of inner core laminate material: Heat transfer Thermal layer side edge laminated part 73: Heat transfer layer end surface covering part L1: Outer wrap laminate material L2: Inner core laminate material

Abstract

Provided is a heat exchanger whereby corrosion of the metallic heat-transfer layers can be simply and reliably prevented. The present invention is directed to a heat exchanger provided with: an outer envelope (1) through the interior of which a heat exchange medium circulates; and inner fins (2) that are housed in the outer envelope (1) in a state in which a portion of the inner fins are in contact with the inner surface of the outer envelope 1. This heat exchanger is configured so that: the outer envelope (1) is constituted by an externally-enveloping laminate material (L1) in which on at least one side of a metal layer, a resin polymer layer is laminated; and the inner fins (2) are constituted by an internal-core laminate material (L2) in which on both sides of a metallic heat-transfer layer (61), resin hot-melt adhesive layers (62) are respectively laminated. On a lateral edge (7a) of the internal-core laminate material (L2), a thin edge section (7) is formed, and the thin edge section (7) includes: a lateral edge (6a) of the heat-transfer layer (61); heat-transfer-layer lateral-edge laminate sections (72) that are made of a resin and are laminated on both sides of the lateral edge (6a); and a heat-transfer-layer end-surface cover section (73) that is made of a resin and covers an end surface (6b) of the heat-transfer layer (61).

Description

熱交換器Heat exchanger
 この発明は、金属層に樹脂層が積層されたラミネート材を利用して製作される熱交換器およびその関連技術に関する。 The present invention relates to a heat exchanger manufactured using a laminate material in which a resin layer is laminated on a metal layer, and related technology.
 スマートフォンやパーソナルコンピュータ等の電子機器におけるCPU回りの発熱対策や、電気自動車やハイブリッド車に搭載される電池モジュールの発熱対策は重要であるが、これらの発熱対策用の熱交換器として、アルミニウム等の伝熱性が高い金属を用いて製作される金属製の熱交換器(冷却器)が周知である(特許文献1~3等)。 It is important to take countermeasures against heat generation around CPUs in electronic devices such as smartphones and personal computers, as well as heat countermeasures against heat generation in battery modules mounted on electric vehicles and hybrid vehicles. Metal heat exchangers (coolers) made of metal with high heat conductivity are well known (Patent Documents 1 to 3, etc.).
 ところが金属製の熱交換器は、金属加工を基に製作されるため、現状以上の薄型化は困難であり、特にスマートフォンやパーソナルコンピュータのような電子機器における薄い筐体内に組み込んだり、自動車用電池モジュールの各間の狭い空間に組み込むことは困難であった。 However, since metal heat exchangers are manufactured based on metal processing, it is difficult to make them thinner than at present. It was difficult to fit into the narrow space between each of the modules.
 そこで特許文献4に示すように、金属層の両面に樹脂層が積層されたラミネート材を用いた熱交換器の開発が進められている。 Therefore, as shown in Patent Document 4, development of a heat exchanger using a laminate material in which resin layers are laminated on both sides of a metal layer is underway.
 この熱交換器は、ラミネート材によって形成された外包体の内部に、ラミネート材によって形成された内芯材(インナーフィン)が収容されるものであり、外包体の内部を循環する冷媒と、外包体の外面に接触する冷却対象部材との間で、インナーフィンを介して熱交換することによって、冷却対象部材を冷却するものである。 In this heat exchanger, an inner core member (inner fin) made of a laminated material is housed inside an outer envelope made of a laminated material. The member to be cooled is cooled by exchanging heat with the member to be cooled that contacts the outer surface of the body through the inner fins.
 このような熱交換器は、例えば外包体やインナーフィンは、所定のサイズに切断したラミネート材によって形成するものであるため、上記金属製の冷却器と比較して、設計の自由度や汎用性が増し、小型軽量化、生産効率の向上およびコストの削減を図ることが可能である。 In such a heat exchanger, for example, the outer envelope and inner fins are formed of a laminated material cut to a predetermined size, so compared to the above-mentioned metal coolers, the degree of freedom and versatility in design is high. It is possible to reduce the size and weight, improve production efficiency, and reduce costs.
特開2015-59693号公報JP 2015-59693 A 特開2015-141002号公報Japanese Patent Application Laid-Open No. 2015-141002 特開2016-189415号公報JP 2016-189415 A 特開2020-3132号公報Japanese Patent Application Laid-Open No. 2020-3132 特開2020-159667号公報JP 2020-159667 A 特開2020-161449号公報JP 2020-161449 A
 ところで、上記ラミネート材を用いた熱交換器において例えばインナーフィン用のラミネート材はその切断端面において金属層としての伝熱層が露出されるため、その露出した伝熱層が外包体内を流通する冷媒に接触して、腐食が発生して伝熱性が低下し、ひいては熱交換効率が低下するおそれがある、という課題があった。 By the way, in the heat exchanger using the laminate material, the heat transfer layer as a metal layer is exposed at the cut end surface of the laminate material for the inner fin, for example. contact with , corrosion occurs, the heat transfer is reduced, and there is a risk that the heat exchange efficiency may be reduced.
 一方、特許文献5,6には、インナーフィン用のラミネート材における切断端面に樹脂をコーティングして、伝熱層の切断端面を被覆して伝熱層の露出を防止するようにした技術が提案されている。 On the other hand, Patent Literatures 5 and 6 propose a technique in which the cut end surface of the laminated material for the inner fin is coated with a resin to cover the cut end surface of the heat transfer layer to prevent the heat transfer layer from being exposed. It is
 しかしながら、ラミネート材の切断端面に精度良く適切に樹脂をコーティングするという防食処理は、高度な技術が必要で繊細かつ慎重な作業となり、生産効率の低下を来すおそれがあるという課題があった。 However, the anti-corrosion treatment of accurately and appropriately coating the cut edges of the laminated material with resin requires advanced technology, requires delicate and careful work, and has the potential to reduce production efficiency.
 本発明の好ましい実施形態は、関連技術における上述した及び/又は他の問題点に鑑みてなされたものである。本発明の好ましい実施形態は、既存の方法及び/又は装置を著しく向上させることができるものである。 Preferred embodiments of the present invention have been made in view of the above and/or other problems in the related art. Preferred embodiments of the present invention can significantly improve existing methods and/or apparatus.
 この発明は、上記の課題に鑑みてなされたものであり、ラミネート材を用いた熱交換器であって、伝熱層の腐食を簡単かつ確実に防止できて、優れた伝熱性を維持することができる熱交換器およびその関連技術を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a heat exchanger using a laminate material, which can easily and reliably prevent corrosion of a heat transfer layer and maintain excellent heat transfer properties. An object of the present invention is to provide a heat exchanger and its related technology.
 本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかであろう。 Other objects and advantages of the present invention will be apparent from the following preferred embodiments.
 上記課題を解決するため、本発明は、以下の手段を備えるものである。 In order to solve the above problems, the present invention has the following means.
 [1]内部を熱交換媒体が流通する外包体と、一部が前記外包体の内面に接触した状態で前記外包体に収容されるインナーフィンとを備えた熱交換器であって、
 前記外包体が、金属層の少なくとも片面側に樹脂層が積層された外包ラミネート材によって構成され、
 前記インナーフィンは、金属製の伝熱層の両面側に樹脂製の熱融着層がそれぞれ積層された内芯ラミネート材によって構成され、
 前記内芯ラミネート材の側縁に、薄縁部が形成され、
 前記薄縁部は、前記伝熱層の側縁と、その側縁の両面側に積層される樹脂製の伝熱層側縁積層部と、前記伝熱層の端面を被覆する樹脂製の伝熱層端面被覆部とを含むことを特徴とする熱交換器。
[1] A heat exchanger comprising an outer envelope through which a heat exchange medium flows, and inner fins accommodated in the outer envelope with a portion thereof in contact with the inner surface of the outer envelope,
The outer wrapping body is composed of an outer wrapping laminate material in which a resin layer is laminated on at least one side of a metal layer,
The inner fin is composed of an inner core laminate material in which resin heat-sealable layers are laminated on both sides of a metal heat transfer layer,
A thin edge portion is formed on a side edge of the inner core laminate material,
The thin edge portion includes a side edge of the heat transfer layer, a resin heat transfer layer side edge laminated portion laminated on both sides of the side edge, and a resin heat transfer layer covering the end surface of the heat transfer layer. A heat exchanger, comprising: a layer end face covering portion.
 [2]前記熱融着層、前記伝熱層側縁積層部および前記伝熱層端面被覆部は連続して一体に形成されている前項1に記載の熱交換器。 [2] The heat exchanger according to the preceding item 1, wherein the heat sealing layer, the heat transfer layer side edge laminated portion, and the heat transfer layer end face covering portion are continuously and integrally formed.
 [3]前記伝熱層側縁積層部および前記伝熱層端面被覆部は、前記熱融着層の溶融樹脂成形体によって構成されている前項1または2に記載の熱交換器。 [3] The heat exchanger according to the preceding item 1 or 2, wherein the heat transfer layer side edge laminated portion and the heat transfer layer end face covering portion are formed of a molten resin molding of the heat sealing layer.
 [4]前記熱融着層の厚さを「T1」とし、前記伝熱層側縁積層部の厚さを「T2」として、
 T1=0.02mm~0.5mm
 T2=1/6×T1~2/3×T1
 の関係式が成立するように構成されている前項1~3のいずれか1項に記載の熱交換器。
[4] Assuming that the thickness of the heat sealing layer is "T1" and the thickness of the heat transfer layer side edge laminated portion is "T2",
T1=0.02mm to 0.5mm
T2 = 1/6 x T1 to 2/3 x T1
4. The heat exchanger according to any one of the preceding items 1 to 3, wherein the relational expression of is established.
 [5]前記伝熱層側縁積層部の幅を「W1」として、
 W1=2mm~15mm
 の関係式が成立するように構成されている前項1~4のいずれか1項に記載の熱交換器。
[5] Assuming that the width of the heat transfer layer side edge laminated portion is "W1",
W1 = 2mm to 15mm
5. The heat exchanger according to any one of the preceding items 1 to 4, wherein the relational expression of is established.
 [6]前記伝熱層端面被覆部の幅を「W2」として、
 W2=0.01mm~2mm
 の関係式が成立するように構成されている前項1~5のいずれか1項に記載の熱交換器。
[6] Assuming that the width of the end surface covering portion of the heat transfer layer is "W2",
W2=0.01mm to 2mm
6. The heat exchanger according to any one of the preceding items 1 to 5, wherein the relational expression of is established.
 [7]内部を熱交換媒体が流通し、かつ金属層の少なくとも片面側に樹脂層が積層された外包ラミネート材によって構成された外包体内に、一部が前記外包体の内面に接触した状態で収容されるようにした熱交換器用インナーフィンであって、
 金属製の伝熱層の両面側に樹脂製の熱融着層がそれぞれ積層された内芯ラミネート材によって構成され、
 前記内芯ラミネート材の側縁に、薄縁部が形成され、
 前記薄縁部は、前記伝熱層の側縁と、その側縁の両面側に積層される樹脂製の伝熱層側縁積層部と、前記伝熱層の端面を被覆する樹脂製の伝熱層端面被覆部とを含むことを特徴とする熱交換器用インナーフィン。
[7] A heat exchange medium circulates inside an outer envelope composed of an outer envelope laminate material in which a resin layer is laminated on at least one side of a metal layer, and a part thereof is in contact with the inner surface of the outer envelope. An inner fin for a heat exchanger adapted to be housed,
It is composed of an inner core laminate material in which resin heat-sealing layers are laminated on both sides of a metal heat transfer layer,
A thin edge portion is formed on a side edge of the inner core laminate material,
The thin edge portion includes a side edge of the heat transfer layer, a resin heat transfer layer side edge laminated portion laminated on both sides of the side edge, and a resin heat transfer layer covering the end surface of the heat transfer layer. An inner fin for a heat exchanger, comprising: a layer end surface covering portion.
 [8]内部を熱交換媒体が流通し、かつ金属層の少なくとも片面側に樹脂層が積層された外包ラミネート材によって構成された外包体内に、一部が前記外包体の内面に接触した状態で収容されるようにした熱交換器用インナーフィンの製造方法であって、
 金属製の伝熱層の両面側に樹脂製の熱融着層がそれぞれ積層された内芯ラミネート材を作製し、
 その内芯ラミネート材の側縁にヒートプレス成形を行って、前記伝熱層における側縁および端面を覆い、かつ前記熱融着層の溶融樹脂成形体による薄縁部を成形して、
 薄縁部成形後の内芯ラミネート材を用いてインナーフィンを製造するようにしたことを特徴とする熱交換器用インナーフィンの製造方法。
[8] A heat exchange medium circulates inside an outer envelope made of an outer envelope laminate material in which a resin layer is laminated on at least one side of a metal layer, and a part of the outer envelope is in contact with the inner surface of the outer envelope. A method for manufacturing a housed inner fin for a heat exchanger, comprising:
Producing an inner core laminate material in which resin heat-sealing layers are laminated on both sides of a metal heat transfer layer,
heat press molding is performed on the side edges of the inner core laminate material to cover the side edges and end faces of the heat transfer layer, and to form a thin edge portion of the heat sealing layer by the molten resin molding,
1. A method for manufacturing an inner fin for a heat exchanger, characterized in that the inner fin is manufactured using an inner core laminate material after forming a thin edge portion.
 発明[1]の熱交換器によれば、インナーフィンの端縁において金属製の伝熱層の側縁が薄縁部によって被覆されているため、伝熱層の端面が露出することがなく、伝熱層に熱交換媒体が接触するのを防止でき、その接触に起因する腐食の発生を確実に防止することができ、良好な伝熱性を維持することができる。さらに内芯ラミネート材の側縁に設けられる薄縁部は、側縁を薄肉化して形成できるため、内芯ラミネート材の側縁にヒートプレス成形するだけで簡単に薄縁部を形成することができる。このため本発明の熱交換器においては、伝熱層の端面を被覆するために、樹脂をコーティングする等の繊細かつ慎重な作業が不要であり、薄縁部を簡単に形成できて、生産効率を向上させることができる。 According to the heat exchanger of the invention [1], since the side edge of the metal heat transfer layer is covered with the thin edge portion at the edge of the inner fin, the end surface of the heat transfer layer is not exposed and the heat transfer The contact of the heat exchange medium with the heat layer can be prevented, the occurrence of corrosion caused by the contact can be reliably prevented, and good heat transfer can be maintained. Furthermore, since the thin edge portions provided on the side edges of the inner core laminate material can be formed by thinning the side edges, the thin edge portions can be easily formed by heat-press molding the side edges of the inner core laminate material. For this reason, in the heat exchanger of the present invention, delicate and careful work such as resin coating is not required in order to cover the end faces of the heat transfer layer, and thin edges can be easily formed, improving production efficiency. can be improved.
 発明[2]~[6]の熱交換器によれば、上記の効果をより確実に得ることができる。 According to the heat exchangers of inventions [2] to [6], the above effects can be obtained more reliably.
 発明[7]の熱交換器用インナーフィンによれば、上記発明[1]の主要部を特定するものであるため、上記と同様の効果を得ることができる。 According to the heat exchanger inner fin of the invention [7], since the main part of the invention [1] is specified, the same effects as above can be obtained.
 発明[8]の製造方法によれば、上記発明[7]の製造プロセスを特定するものであるため、上記と同様の効果を有するインナーフィンを製造することができる。 According to the manufacturing method of the invention [8], since the manufacturing process of the invention [7] is specified, it is possible to manufacture inner fins having the same effect as the above.
図1はこの発明の実施形態である熱交換器を示す斜視図である。FIG. 1 is a perspective view showing a heat exchanger that is an embodiment of the invention. 図2は実施形態の熱交換器を示す図であって、図(a)は平面図、図(b)は図(a)のB-B線断面に相当する断面図、図(c)は図(a)のC-C線断面に相当する断面図である。2A and 2B are diagrams showing the heat exchanger of the embodiment, FIG. 2A is a plan view, FIG. It is a cross-sectional view corresponding to the CC line cross-section of FIG. (a). 図3は実施形態の熱交換器を分解して示す斜視図である。FIG. 3 is an exploded perspective view of the heat exchanger of the embodiment. 図4は実施形態の熱交換器に適用されたインナーフィンを示す正面図である。FIG. 4 is a front view showing inner fins applied to the heat exchanger of the embodiment. 図5は実施形態の熱交換器に適用された外包ラミネート材の一部を拡大して示す断面図である。FIG. 5 is a cross-sectional view showing an enlarged part of the outer wrapping laminated material applied to the heat exchanger of the embodiment. 図6は実施形態の熱交換器に適用されたヒートプレス成形前の内芯ラミネート材の側部を拡大して示す断面図である。FIG. 6 is a cross-sectional view showing an enlarged side portion of an inner core laminate before heat press molding applied to the heat exchanger of the embodiment. 図7は実施形態の熱交換器に適用されたヒートプレス成形後の内芯ラミネート材の側部を拡大して示す断面図である。FIG. 7 is a cross-sectional view showing an enlarged side portion of the inner core laminated material after heat press molding applied to the heat exchanger of the embodiment.
 図1~図3はこの発明の実施形態である熱交換器を示す図である。これらの図に示すように、本実施形態の熱交換器は、伝熱パネルや伝熱チューブ等として用いられるものであり、ケーシング(容器)としての外包体1と、外包体1の内部に収容されるインナーフィン(内芯材)2と、外包体1の両端部内に収容される一対(両側)のヘッダー(ジョイント部材)3,3とを備えている。  Figures 1 to 3 are diagrams showing a heat exchanger that is an embodiment of the present invention. As shown in these figures, the heat exchanger of this embodiment is used as a heat transfer panel, a heat transfer tube, or the like. and a pair of (both sides) headers (joint members) 3 , 3 housed in both end portions of the outer envelope 1 .
 外包体1は、平面視矩形状のトレイ部材10と、平面視矩形状のカバー部材15とによって構成されている。 The outer package 1 is composed of a tray member 10 having a rectangular shape in plan view and a cover member 15 having a rectangular shape in plan view.
 トレイ部材10は、外包ラミネート材L1の成形品によって構成されており、深絞り成形や、張出し成形等の冷間成形の手法を用いて、外周縁部を除く中間領域全域が下方に凹陥形成されて、平面視矩形状の凹部11が形成されるとともに、凹部11の開口縁部外周に外方突出状のフランジ部12が一体に形成されている。 The tray member 10 is formed of a molded product of the outer wrap laminate material L1, and the entire intermediate region except for the outer peripheral edge is recessed downward using a cold forming technique such as deep drawing or stretch forming. A concave portion 11 having a rectangular shape in a plan view is formed, and an outwardly projecting flange portion 12 is integrally formed on the outer circumference of the opening edge portion of the concave portion 11 .
 またカバー部材15は、トレイ部材10における凹部11の前後両端部に対応して一対の出入口16,16が形成されている。言うまでもなく本実施形態においては、一対の出入口16のうち、一方の出入口16が入口として構成され、他方の出入口16が出口として構成されている。 Also, the cover member 15 is formed with a pair of entrances 16 , 16 corresponding to the front and rear ends of the recess 11 in the tray member 10 . Needless to say, in this embodiment, one of the pair of doorways 16 is configured as an inlet, and the other doorway 16 is configured as an outlet.
 トレイ部材10およびカバー部材15は、柔軟性および可撓性を有するラミネートシートないしフィルムである外包ラミネート材L1によって構成されている。 The tray member 10 and the cover member 15 are composed of an envelope laminate material L1, which is a laminate sheet or film having softness and flexibility.
 図5に示すように外包ラミネート材L1は、金属(金属箔)製の伝熱層51と、その伝熱層51の一面(内面)に積層された熱融着性の樹脂である熱融着層52と、伝熱層51の他面(外面)に積層された耐熱性の樹脂である保護層53とを備えている。なお本実施形態において、「箔」という用語は、フィルム、薄板、シートも含む意味で用いられている。 As shown in FIG. 5, the outer wrap laminate material L1 includes a heat transfer layer 51 made of metal (metal foil) and a heat-sealable resin laminated on one surface (inner surface) of the heat transfer layer 51. It has a layer 52 and a protective layer 53 made of a heat-resistant resin laminated on the other surface (outer surface) of the heat transfer layer 51 . In this embodiment, the term "foil" is used to include films, thin plates, and sheets.
 外包ラミネート材L1における伝熱層51としては、アルミニウム箔、銅箔、ステンレス(SUS)箔、ニッケル箔、ニッケルメッキ加工した銅箔、ニッケルと銅から成るクラッドメタル等を好適に用いることができる。なお本実施形態において、「アルミニウム」「銅」「ニッケル」「チタン」という用語は、それらの合金も含む意味で用いられている。 Aluminum foil, copper foil, stainless steel (SUS) foil, nickel foil, nickel-plated copper foil, clad metal made of nickel and copper, and the like can be suitably used as the heat transfer layer 51 in the outer wrap laminate material L1. In the present embodiment, the terms "aluminum", "copper", "nickel", and "titanium" are used to include their alloys.
 伝熱層51は、金属箔層や集熱層とも称されるものであり、厚みが30μm~200μmのものを用いるのが良く、より好ましくは40μm~150μmのものを用いるのが良い。 The heat transfer layer 51 is also called a metal foil layer or a heat collection layer, and preferably has a thickness of 30 μm to 200 μm, more preferably 40 μm to 150 μm.
 熱融着層52としては、オレフィン系樹脂またはそれらの変性樹脂、カルボン酸を有するオレフィン重合体を含む樹脂によって構成されるものを好適に用いることができる。 As the heat-sealable layer 52, a layer composed of an olefin-based resin, a modified resin thereof, or a resin containing an olefin polymer having a carboxylic acid can be preferably used.
 オレフィン系樹脂またはそれらの変性樹脂としては、無延伸ポリプロピレンフィル(CPP)、ポリエチレンフィルム(LDPE、LLDPE、HDPE)、酸変性したポリオレフィン樹脂等を好適例として挙げることができる。 Suitable examples of olefinic resins or modified resins thereof include unstretched polypropylene films (CPP), polyethylene films (LDPE, LLDPE, HDPE), acid-modified polyolefin resins, and the like.
 またカルボン酸を有するオレフィン重合体を含む樹脂としては、アイオノマー樹脂、エチレン-メタクリル酸共重合体(EMAA)、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-アクリル酸メチル共重合体(EMA)等を好適例として挙げることができる。 Examples of resins containing olefin polymers having carboxylic acid include ionomer resins, ethylene-methacrylic acid copolymers (EMAA), ethylene-ethyl acrylate copolymers (EEA), ethylene-methyl acrylate copolymers (EMA ) and the like can be cited as suitable examples.
 これらの樹脂のフィルムないしシートを伝熱層51に貼り付けたり、これらの樹脂を塗布コートすることによって、熱融着層52を形成することができる。 The heat-sealable layer 52 can be formed by attaching a film or sheet of these resins to the heat transfer layer 51 or by applying a coating of these resins.
 熱融着層52は、シーラント層とも称されるものであり、厚みが20μm~500μmのものを用いるのが良く、より好ましくは30μm~80μmのものを用いるのが良い。 The thermal adhesive layer 52 is also called a sealant layer, and preferably has a thickness of 20 μm to 500 μm, more preferably 30 μm to 80 μm.
 保護層53としては、耐熱性樹脂であるポリエステル樹脂、ポリアミド樹脂等によって構成されるものを好適例として挙げることができ、これらの樹脂のフィルムないしシートを伝熱層51に貼り付けたり、これらの樹脂を塗布コートすることによって、保護層53を形成することができる。 Suitable examples of the protective layer 53 include those composed of heat-resistant resins such as polyester resin and polyamide resin. The protective layer 53 can be formed by coating with a resin.
 保護層53は、被覆層とも称されるものであり、厚みが6μm~100μmのものを用いるのが良く、より好ましくは9μm~50μmのものを用いるのが良い。 The protective layer 53 is also called a coating layer, and preferably has a thickness of 6 μm to 100 μm, more preferably 9 μm to 50 μm.
 なお上記のようなアルミニウム箔製の伝熱層51に、熱融着層52および保護層53用の上記樹脂フィルムを、2液硬化型接着剤でラミネート加工する場合には予め、アルミニウム箔に対し焼鈍または洗浄等で脱脂を行って、化成処理等の表面処理を施した方が良好な接着性が得られるので、好ましい。 In the case of laminating the resin film for the heat-sealing layer 52 and the protective layer 53 on the heat transfer layer 51 made of aluminum foil as described above with a two-liquid curing adhesive, It is preferable to perform surface treatment such as chemical conversion treatment after degreasing by annealing or washing, etc., because better adhesiveness can be obtained.
 以上の構成の外包ラミネート材L1を所定サイズに切断し、必要に応じて上記のように熱成形して、外包体1としてのトレイ部材10およびカバー部材15を形成する。 The outer wrap laminate material L1 having the above configuration is cut into a predetermined size and thermoformed as described above as necessary to form the tray member 10 and the cover member 15 as the outer wrapper 1.
 一方、インナーフィン2は内芯ラミネート材L2の成形品によって構成されている。内芯ラミネート材L2は図6に示すように、金属(金属箔)製の伝熱層61と、その伝熱層61の両面(内面および外面)に積層された熱融着性の樹脂である熱融着層62とを備えている。 On the other hand, the inner fins 2 are formed by molding the inner core laminate material L2. As shown in FIG. 6, the inner core laminate material L2 is a heat transfer layer 61 made of metal (metal foil) and heat-sealable resin laminated on both sides (inner surface and outer surface) of the heat transfer layer 61. and a heat-sealable layer 62 .
 内芯ラミネート材L2における伝熱層61としては、アルミニウム箔、銅箔等を好適に用いることができる。 Aluminum foil, copper foil, or the like can be suitably used as the heat transfer layer 61 in the inner core laminate material L2.
 伝熱層61は、金属箔層や集熱層とも称されるものであり、厚みが30μm~200μmのものを用いるのが良く、より好ましくは40μm~150μmのものを用いるのが良い。 The heat transfer layer 61 is also called a metal foil layer or a heat collection layer, and preferably has a thickness of 30 μm to 200 μm, more preferably 40 μm to 150 μm.
 熱融着層52としては、オレフィン系樹脂またはそれらの変性樹脂、カルボン酸を有するオレフィン重合体を含む樹脂によって構成されるものを好適に用いることができる。 As the heat-sealable layer 52, a layer composed of an olefin-based resin, a modified resin thereof, or a resin containing an olefin polymer having a carboxylic acid can be preferably used.
 オレフィン系樹脂またはそれらの変性樹脂としては、無延伸ポリプロピレンフィル(CPP)、ポリエチレンフィルム(LDPE、LLDPE、HDPE)、酸変性したポリオレフィン樹脂を好適例として挙げることができる。 Suitable examples of olefinic resins or modified resins thereof include unstretched polypropylene films (CPP), polyethylene films (LDPE, LLDPE, HDPE), and acid-modified polyolefin resins.
 またカルボン酸を有するオレフィン重合体を含む樹脂としては、アイオノマー樹脂、エチレン-メタクリル酸共重合体(EMAA)、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-アクリル酸メチル共重合体(EMA)等を好適例として挙げることができる。 Examples of resins containing olefin polymers having carboxylic acid include ionomer resins, ethylene-methacrylic acid copolymers (EMAA), ethylene-ethyl acrylate copolymers (EEA), ethylene-methyl acrylate copolymers (EMA ) and the like can be cited as suitable examples.
 これらの樹脂のフィルムないしシートを伝熱層61に貼り付けたり、これらの樹脂を塗布コートすることによって、熱融着層62を形成することができる。 The heat fusion layer 62 can be formed by attaching a film or sheet of these resins to the heat transfer layer 61 or by applying a coating of these resins.
 熱融着層62は、シーラント層とも称されるものであり、厚みが20μm~500μmのものを用いるのが良く、より好ましくは30μm~80μmのものを用いるのが良い。 The thermal adhesive layer 62 is also called a sealant layer, and preferably has a thickness of 20 μm to 500 μm, more preferably 30 μm to 80 μm.
 なお内芯ラミネート材L2用の伝熱層61に対しても、必要に応じて上記と同様に、化成処理等の表面処理を施しておくのが好ましい。 The heat transfer layer 61 for the inner core laminate material L2 is also preferably subjected to surface treatment such as chemical conversion treatment, if necessary, in the same manner as described above.
 本実施形態においては、内芯ラミネート材L2を所定サイズに切断した後、その切断した内芯ラミネート材L2の切断端部に対し端部防食処理を行う。 In this embodiment, after the inner core laminate material L2 is cut into a predetermined size, the cut ends of the cut inner core laminate material L2 are subjected to edge anti-corrosion treatment.
 すなわち図6に示すように、内芯ラミネート材L2を切断した際にその切断端部には、金属製の伝熱層61の端面6bが露出している。この内芯ラミネート材L2の切断端部周辺である側縁(通常は周囲4側縁)6aを、上下一対のシール金型4,4によって加熱しつつ挟み込んで加圧することにより(ヒートプレス成形することにより)、ヒートプレス成形前の内芯ラミネート材L2の側縁6aにおける熱融着層62を溶融して一部を残留させつつ、残りを外側方に流動させて、その状態で冷却固化する。 That is, as shown in FIG. 6, when the inner core laminate material L2 is cut, the end face 6b of the metal heat transfer layer 61 is exposed at the cut end. The side edge (usually the peripheral 4 side edge) 6a around the cut end of the inner core laminate material L2 is heated and sandwiched between a pair of upper and lower seal dies 4, 4 and pressed (heat press molding). Thus, the heat-sealable layer 62 on the side edge 6a of the inner core laminate material L2 before heat press molding is melted and partially left while the rest is allowed to flow outward and is cooled and solidified in that state. .
 これにより図7に示すように、内芯ラミネート材L2の側縁6aを、未加圧部に比べて厚さが薄い薄縁部7に形成する。この薄縁部7は、伝熱層61の側縁6aと、熱融着層62の残留した樹脂の成形体であり、かつ伝熱層61の側縁6aの両面に積層される伝熱層側縁積層部72と、熱融着層62の流動した樹脂の成形体であり、かつ伝熱層61の端面6bを被覆する伝熱層端面被覆部73とを含むものである。換言すると、伝熱層側縁積層部72および伝熱層端面被覆部73は、熱融着層62の樹脂の一部を溶融させて成形した熱融着層62の溶融樹脂の成形体によって形成されている。従って伝熱層側縁積層部72は、熱融着層62に連続して一体に形成されるとともに、伝熱層端面被覆部73は、伝熱層側縁積層部72に連続して一体に形成されている。 As a result, as shown in FIG. 7, the side edge 6a of the inner core laminate material L2 is formed into a thin edge portion 7 that is thinner than the unpressurized portion. The thin edge portion 7 is a molding of resin remaining on the side edge 6a of the heat transfer layer 61 and the heat-sealing layer 62, and is laminated on both sides of the side edge 6a of the heat transfer layer 61 on the side of the heat transfer layer. It includes an edge laminated portion 72 and a heat transfer layer end surface covering portion 73 which is a molded body of resin in which the thermal fusion layer 62 flows and which covers the end surface 6b of the heat transfer layer 61 . In other words, the heat transfer layer side edge lamination portion 72 and the heat transfer layer end face covering portion 73 are formed by a molding of the molten resin of the heat sealing layer 62 which is formed by partially melting the resin of the heat sealing layer 62. It is Therefore, the heat transfer layer side edge laminated portion 72 is formed continuously and integrally with the heat sealing layer 62, and the heat transfer layer end face covering portion 73 is continuously formed with the heat transfer layer side edge laminated portion 72 and integrally formed. formed.
 こうして内芯ラミネート材L2に対しヒートプレス成形による端部防食処理を行って、伝熱層61の切断端面6bを薄縁部7によって確実に被覆する。 In this way, the edge anti-corrosion treatment is performed on the inner core laminate material L2 by heat press molding, and the cut edge surface 6b of the heat transfer layer 61 is reliably covered with the thin edge portion 7.
 なお言うまでもなく、一対のシール金型4、4におけるキャビティ41は、薄縁部7に対応する形状に形成されている。 Needless to say, the cavity 41 in the pair of seal molds 4, 4 is formed in a shape corresponding to the thin edge portion 7.
 ここで本実施形態においては、熱融着層62の厚さを「T1」とし、伝熱層側縁積層部72の厚さを「T2」とし、伝熱層側縁積層部72の幅を「W1」とし、伝熱層端面被覆部73の幅を「W2」として、以下の関係式を成立させるのが良い。 Here, in the present embodiment, the thickness of the heat sealing layer 62 is "T1", the thickness of the heat transfer layer side edge lamination portion 72 is "T2", and the width of the heat transfer layer side edge lamination portion 72 is Assuming that "W1" and the width of the heat transfer layer end surface covering portion 73 as "W2", it is preferable to establish the following relational expression.
 すなわちT2=1/6×T1~2/3×T1を成立させるのが良く、より好ましくはT2=1/3×T1~1/2×T1を成立させるのが良い。なおT1は既述した通り、20μm~500μm(0.02mm~0.5mm)に設定するが良く、より好ましくは30μm~80μm(0.03mm~0.08mm)に設定するが良い。 That is, it is preferable to establish T2=1/6×T1 to 2/3×T1, and more preferably to establish T2=1/3×T1 to 1/2×T1. As described above, T1 is preferably set to 20 μm to 500 μm (0.02 mm to 0.5 mm), more preferably 30 μm to 80 μm (0.03 mm to 0.08 mm).
 さらにW1=2mm~15mmを成立させるのが良く、より好ましくはW1=3mm~8mmを成立させるのが良い
 またW2=0.01mm~2mmを成立させるのが良く、より好ましくはW2=0.05mm~1.0mmを成立させるのが良い
 本実施形態においてこれらの関係式を満足させた場合、薄縁部7によって、伝熱層61の切断端面6bを確実に被覆することができる。その結果後述するように、伝熱層61に冷媒等の熱交換媒体が接触するのを確実に防止でき、伝熱層61の腐食劣化を確実に防止することができる。換言すると、伝熱層側縁積層部72の厚さ「T2」や幅「T1」、伝熱層端面被覆部の幅「T2」が小さ過ぎる場合には、伝熱層61の腐食を確実に防止することができず、また逆に、必要以上に大きくしたとしても、それに見合う効果を十分に得ることができず、好ましくない。
Furthermore, it is preferable to establish W1 = 2 mm to 15 mm, more preferably W1 = 3 mm to 8 mm. Also, it is preferable to establish W2 = 0.01 mm to 2 mm, more preferably W2 = 0.05 mm. It is preferable to establish ~1.0 mm. In this embodiment, when these relational expressions are satisfied, the cut end surface 6b of the heat transfer layer 61 can be reliably covered with the thin edge portion 7. FIG. As a result, as will be described later, it is possible to reliably prevent a heat exchange medium such as a refrigerant from coming into contact with the heat transfer layer 61, and to reliably prevent the heat transfer layer 61 from corroding and deteriorating. In other words, if the thickness “T2” and width “T1” of the heat transfer layer side edge laminated portion 72 and the width “T2” of the heat transfer layer end face covering portion are too small, the corrosion of the heat transfer layer 61 is prevented. On the contrary, even if it is made larger than necessary, it is not preferable because it is not possible to sufficiently obtain the effect corresponding to it.
 こうしてヒートプレス成形(端部防食処理)を行った内芯ラミネート材L2に対し、凹凸加工を行ってインナーフィン2を作製するものである。インナーフィン2の加工方法は、特に限定されるものではないが、例えば内芯ラミネート材L2を一対のエンボスロールまたは一対のコルゲートロールによって挟み込みつつ、その一対のロール間に通過させることにより、凹凸を成形する方法を例示することができる。さらにはプレス機や、プレス金型を用いて、内芯ラミネート材L2に凹凸部を成形する方法を例示することができる。 The inner fin 2 is produced by performing uneven processing on the inner core laminate material L2 that has been subjected to heat press molding (edge anti-corrosion treatment). The method of processing the inner fins 2 is not particularly limited, but for example, the inner core laminate material L2 is sandwiched between a pair of embossing rolls or a pair of corrugated rolls and passed between the pair of rolls to form irregularities. A molding method can be exemplified. Further, a method of forming uneven portions in the inner core laminate material L2 using a press machine or a press die can be exemplified.
 図2~図4に示すようにインナーフィン2は、凹部25および凸部26が交互に連続して形成された角波形状(矩形波形状)、いわゆるデジタル信号波形に形成されている。すなわち本実施形態のインナーフィン2における凹部底面(底壁)および凸部頂面(頂壁)は、平坦に形成され、かつ熱交換器組付状態において、トレイ部材10の底壁(下壁)およびカバー部材15の天壁(上壁)に対し平行に配置されている。さらにインナーフィン2は、隣り合う凹部底壁および凸部頂壁間を連結する立ち上がり壁が、凹部底壁および凸部頂壁に対し、または熱交換器組付状態における外包体1の上下壁に対し垂直に配置されている。 As shown in FIGS. 2 to 4, the inner fin 2 is formed into a square wave shape (rectangular wave shape) in which concave portions 25 and convex portions 26 are alternately formed continuously, that is, a so-called digital signal waveform. That is, the bottom surface (bottom wall) of the concave portion and the top surface (top wall) of the convex portion in the inner fin 2 of the present embodiment are formed flat, and when the heat exchanger is assembled, the bottom wall (lower wall) of the tray member 10 is flat. and parallel to the ceiling wall (upper wall) of the cover member 15 . Further, the inner fins 2 have raised walls that connect the adjacent recess bottom walls and projection top walls so that they are positioned against the recess bottom walls and the projection top walls, or against the upper and lower walls of the outer envelope 1 in the assembled state of the heat exchanger. placed perpendicular to it.
 なお本実施形態においては、角波形状のインナーフィン2を用いているが、それだけに限られず、本発明においては、断面円弧状凹部および凸部が交互に連続して形成された一般的な波形状(正弦波形状)、いわゆるアナログ信号波形に形成されたものを用いても良い。もっとも本発明においては、インナーフィンは、外包体の内面に接合される凹部および凸部が設けられていれば、どのような形状のものでも使用することができる。 In the present embodiment, the inner fins 2 having an angular wave shape are used. However, the present invention is not limited to this. (sinusoidal waveform), that is, a so-called analog signal waveform may be used. However, in the present invention, the inner fins of any shape can be used as long as they are provided with concave portions and convex portions to be joined to the inner surface of the outer envelope.
 このインナーフィン2が、トレイ部材10の凹部11における両端部を除いた中間部に収容される。収容されたインナーフィン2は、その山筋方向および谷筋方向(図3の紙面に向かって左右方向)がトレイ部材10の長さ方向(図3の左右方向)に一致するように配置されている。これにより、インナーフィン2の山筋部および谷筋部に沿って形成されるトンネル部および溝部が、トレイ部材10の長さ方向に沿うように配置され、そのトンネル部および溝部を通って冷媒等の熱交換媒体が外包体1の長さ方向一端側から他端側に向けてスムーズに流通できるように構成されている。 The inner fins 2 are accommodated in the intermediate portion of the concave portion 11 of the tray member 10 excluding both end portions. The accommodated inner fins 2 are arranged so that the mountain and valley directions (horizontal direction in FIG. 3) coincide with the lengthwise direction of the tray member 10 (horizontal direction in FIG. 3). there is As a result, the tunnels and grooves formed along the ridges and valleys of the inner fins 2 are arranged along the longitudinal direction of the tray member 10, and the coolant and the like pass through the tunnels and grooves. The heat exchange medium can smoothly flow from one longitudinal end of the outer envelope 1 to the other longitudinal end.
 図2および図3に示すように、外包体1の両端部に配置される一対のヘッダー3,3は、熱融着性樹脂の成形品によって構成されている。  As shown in Figures 2 and 3, the pair of headers 3, 3 arranged at both ends of the outer package 1 are formed by moldings of heat-sealable resin.
 ヘッダー3は、一側面に開口部32を有する箱状の取付箱部31と、取付箱部31の上壁に設けられたパイプ部33とを備えている。パイプ部33は取付箱部31内に連通しており、パイプ部33の内部と取付箱部31の内部との間で熱交換媒体が往来できるように構成されている。 The header 3 includes a box-shaped mounting box portion 31 having an opening 32 on one side, and a pipe portion 33 provided on the top wall of the mounting box portion 31 . The pipe portion 33 communicates with the inside of the mounting box portion 31 so that a heat exchange medium can flow between the inside of the pipe portion 33 and the inside of the mounting box portion 31 .
 ヘッダー3の成形方法は特に限定されるものではないが、例えば射出成型を用いて成形する方法を好適に採用することができる。 Although the molding method of the header 3 is not particularly limited, a molding method using injection molding, for example, can be suitably adopted.
 このヘッダー3の取付箱部31がトレイ部材10の凹部11におけるインナーフィン2の両側に配置される。さらにヘッダー3のパイプ部33が上向きに配置されるとともに、取付箱部31の開口部32が内側に向けて、つまりインナーフィン2に対向して配置される。 The mounting box portions 31 of the header 3 are arranged on both sides of the inner fins 2 in the recesses 11 of the tray member 10 . Further, the pipe portion 33 of the header 3 is arranged upward, and the opening portion 32 of the mounting box portion 31 is arranged facing inward, that is, facing the inner fins 2 .
 こうしてヘッダー3,3をトレイ部材10内に収容して、カバー部材15をトレイ部材10にその開口部を閉塞するように配置する。この場合、カバー部材15の出入口16内に、ヘッダー3,3の上向きのパイプ部33,33を挿通配置する。 Thus, the headers 3, 3 are accommodated in the tray member 10, and the cover member 15 is arranged on the tray member 10 so as to close the opening. In this case, the upward pipe portions 33 , 33 of the headers 3 , 3 are inserted into the inlet 16 of the cover member 15 .
 このように仮組された熱交換器仮組品をヒートプレス成形することによって、接触し合う部材同士の所要部分を熱融着して接合一体化する。この熱融着処理は、トレイ部材10のフランジ部12と、カバー部材15の外周縁部との間を熱融着(ヒートシール)する外包体融着工程(外包体シール工程)と、外包体1(トレイ部材10およびカバー部材15)と、内装品(インナーフィン2およびヘッダー3)との間を熱融着(ヒートシール)する内装品融着工程とを含むものである。 By heat-press molding the temporarily assembled heat exchanger temporary assembly in this way, the required portions of the contacting members are heat-sealed and integrated. This heat-sealing process consists of an outer envelope body sealing step for heat-sealing the flange portion 12 of the tray member 10 and the outer peripheral edge portion of the cover member 15 (heat-sealing); 1 (tray member 10 and cover member 15) and interior parts (inner fins 2 and header 3) are heat-sealed.
 また本実施形態において、外包体融着工程と、内装品融着工程とを同時に行う場合を1段シール(1段シール方式)と称し、時間をずらせて別々に行う場合を2段シール(2段シール方式)と称している。 Further, in the present embodiment, the case where the outer package fusion bonding process and the internal component fusion bonding process are performed simultaneously is referred to as one-stage sealing (single-stage sealing method), and the case where they are performed separately at different times is referred to as two-stage sealing (2 It is called the step seal method).
 本実施形態において、熱融着工程の条件(シール条件)としては、熱融着温度を160℃~200℃に設定するのが良く、より好ましくは170℃~190℃に設定するのが良い。さらに熱融着圧力を0.1MPa~0.5MPaに設定するのが良く、より好ましくは0.15MPa~0.4MPaに設定するのが良い。さらに熱融着時間を2秒~10秒に設定するのが良く、より好ましくは3秒~8秒に設定するのが良い。 In the present embodiment, as the conditions (sealing conditions) for the heat-sealing process, the heat-sealing temperature is preferably set to 160°C to 200°C, more preferably 170°C to 190°C. Furthermore, the heat-sealing pressure is preferably set to 0.1 MPa to 0.5 MPa, more preferably 0.15 MPa to 0.4 MPa. Furthermore, the heat-sealing time is preferably set to 2 to 10 seconds, more preferably 3 to 8 seconds.
 以上の構成の熱交換器は、電池等を冷却対象部材(熱交換対象部材)として冷却する冷却器(冷却装置)として用いられる。すなわち熱交換器の一方のパイプ部33に、熱交換媒体(冷媒)としての冷却液(冷却水、不凍液等)を流入するための流入管が連結されるとともに、他方のパイプ部33に、冷却液を流出するための流出管が連結される。さらに熱交換器の外包体1における上壁および下壁に冷却対象部材としての電池を接触させた状態に配置する。そしてその状態で一方のパイプ部33から冷却液を一方のヘッダー3を介して外包体1の内部に流入し、その冷却液をインナーフィン2の部分を流通させて、他方のヘッダー3を介して他方のパイプ部33から流出させる。こうして冷却液を外包体1に循環させることにより、その冷却液と電池との間でインナーフィン2および外包体1を介して熱交換することにより、電池が冷却されるものである。 The heat exchanger configured as described above is used as a cooler (cooling device) for cooling a battery or the like as a member to be cooled (member to be heat exchanged). That is, one pipe portion 33 of the heat exchanger is connected to an inflow pipe for inflowing a cooling liquid (cooling water, antifreeze liquid, etc.) as a heat exchange medium (refrigerant), and the other pipe portion 33 is connected to a cooling An outflow tube is connected for the outflow of liquid. Further, a battery as a member to be cooled is arranged in contact with the upper wall and the lower wall of the outer casing 1 of the heat exchanger. In this state, the cooling liquid flows from one pipe portion 33 into the outer envelope 1 through one header 3, flows through the inner fins 2, and flows through the other header 3. It is caused to flow out from the other pipe portion 33 . By circulating the coolant through the outer envelope 1 in this manner, heat is exchanged between the coolant and the battery through the inner fins 2 and the outer envelope 1, thereby cooling the battery.
 以上のように構成された本実施形態の熱交換器によれば、インナーフィン2の端縁において金属製の伝熱層61の切断端面6bが薄縁部7によって被覆されているため、伝熱層61が露出することがなく、伝熱層61に冷媒が接触するのを防止することができる。特に伝熱層61に、冷媒中の腐食要因である水、塩素イオン、銅イオン等が作用して、腐食が発生するのを確実に防止することができ、良好な伝熱性を維持できて、熱交換効率を向上させることができる。 According to the heat exchanger of this embodiment configured as described above, the cut end surface 6b of the metal heat transfer layer 61 at the edge of the inner fin 2 is covered with the thin edge portion 7, so that the heat transfer layer 61 is not exposed, and the contact of the refrigerant with the heat transfer layer 61 can be prevented. In particular, the heat transfer layer 61 can be reliably prevented from being corroded by water, chloride ions, copper ions, etc., which are corrosive factors in the refrigerant, and can maintain good heat transfer properties. Heat exchange efficiency can be improved.
 また本実施形態の熱交換器においては、内芯ラミネート材L2の側縁6aを薄厚化してその側縁7aの熱融着層62を伝熱層61の端面6b側に流動させて伝熱層端面被覆部73を形成することにより、伝熱層61の端面6bを被覆するものであるため、内芯ラミネート材L2の側縁7aにヒートプレス成形するだけで簡単に薄縁部7(伝熱層端面被覆部73)を形成することができる。このため本実施形態の熱交換器においては、伝熱層の端面を被覆するために、樹脂をコーティングする等の繊細かつ慎重な作業が不要であり、伝熱層端面被覆部73を簡単に形成できて、生産効率を向上させることができる。 Further, in the heat exchanger of the present embodiment, the side edge 6a of the inner core laminate material L2 is thinned, and the heat-sealing layer 62 of the side edge 7a is made to flow toward the end surface 6b of the heat transfer layer 61 to form a heat transfer layer. Since the end surface 6b of the heat transfer layer 61 is covered by forming the end surface covering portion 73, the thin edge portion 7 (heat transfer layer An end surface covering portion 73) can be formed. Therefore, in the heat exchanger of the present embodiment, delicate and careful work such as resin coating is not required to cover the end surface of the heat transfer layer, and the heat transfer layer end surface covering portion 73 can be easily formed. can improve production efficiency.
 また本実施形態の熱交換器によれば、外包体1およびインナーフィン2をラミネート材L1,L2を用いて製作するものであるため、面倒な金属加工を用いる必要がなく、効率良く簡単に製作できてコストを削減することができるとともに、ラミネート材L1,L2である外包体1およびインナーフィン2を接合して製作するものであるため、十分に薄型化を図ることができる。 In addition, according to the heat exchanger of this embodiment, since the outer envelope 1 and the inner fins 2 are manufactured using the laminate materials L1 and L2, there is no need to use troublesome metal processing, and the manufacturing is efficient and easy. In addition, since the outer wrapper 1 and the inner fins 2, which are laminated materials L1 and L2, are joined together, the thickness can be sufficiently reduced.
 なお上記実施形態においては、熱交換器をその内部に冷却用の熱媒体(冷媒)を流通させて冷却器(冷却装置)として用いる場合を例に挙げて説明したが、それだけに限られず、本発明においては、熱交換器をその内部に加熱用の熱媒体(熱媒)を流通させて加熱器(加熱装置)や発熱器(発熱装置)として用いることも可能である。 In the above embodiment, the heat exchanger is used as a cooler (cooling device) by circulating a heat medium (refrigerant) for cooling inside the heat exchanger, but the present invention is not limited to this. In , the heat exchanger can be used as a heater (heating device) or a heat generator (heat generating device) by circulating a heat medium for heating (heat medium) therein.
 また上記実施形態においては、外包体1を製作するにあたり、立体成形されたトレイ部材10と、シート状のカバー部材15とを貼り合わせるようにしているが、本発明においては、立体成形された部材(ラミネート材)同士を貼り合わせても良い。さらに外包体1の構成部材を必ずしも立体成形する必要もない。例えば立体成形を行わない場合、2枚のシート状のラミネート材を互いの外周縁部を熱融着等によって接着することによって、ラミネート材製の袋状の外包体を製作するようにしても良い。 In the above-described embodiment, the three-dimensionally molded tray member 10 and the sheet-like cover member 15 are adhered together when manufacturing the outer package 1. However, in the present invention, the three-dimensionally molded member (Laminate material) may be pasted together. Furthermore, it is not always necessary to three-dimensionally form the constituent members of the outer package 1 . For example, when three-dimensional molding is not performed, a bag-shaped outer package made of laminated material may be manufactured by bonding two sheets of laminated material at their outer peripheral edges by heat-sealing or the like. .
 さらに上記実施形態においては、外包体1を2枚のラミネート材によって製作する場合を例に挙げて説明したが、それだけに限られず、本発明においては、1枚のラミネート材を2つ折りに折り重ねて、重なり合ったラミネート材のうち、折り返し部を除く外周縁部を熱融着等によって接着することにより、袋状の外包体を製作するようにしても良い。さらに言うまでもなく、本発明においては3枚以上のラミネート材を用いて外包体を製作するようにしても良い。 Furthermore, in the above-described embodiment, the case where the outer package 1 is manufactured from two sheets of laminated material has been described as an example, but the present invention is not limited to this. Alternatively, the bag-shaped envelope may be manufactured by bonding the outer peripheral edge portions of the overlapping laminated materials, excluding the folded portions, by heat-sealing or the like. Furthermore, it goes without saying that in the present invention, three or more laminated materials may be used to manufacture the outer envelope.
 また上記実施形態においては、ラミネート材L1,L2として3層構造のものを用いているが、それだけに限られず、本発明においては、外包ラミネート材L1としては、2層構造または4層以上の構造のラミネート材を使用するようにしても良いし、内芯ラミネート材L2としては、4層以上の構造のラミネート材を使用するようにしても良い。 In the above-described embodiment, the laminated materials L1 and L2 have a three-layer structure, but the present invention is not limited to this. A laminate material may be used, and a laminate material having a structure of four or more layers may be used as the inner core laminate material L2.
 また上記実施形態においては、本発明の熱交換器を自動車用等の電池パックの冷却器として用いる場合を例に挙げて説明したが、本発明においては、電池パックの冷却器以外の熱交換器にも適用することができる。例えば自動車用電池パックの加熱用の熱交換器、自動車の電動機、産業機械、家電、情報端末等の電力駆動機器の主電力を制御するための電力用半導体素子(パワーモジュール)の冷却用の熱交換器、パーソナルコンピュータのCPU(中央演算処理装置)の冷却用の熱交換器、家庭用または業務用蓄電池の冷却/加熱用の熱交換器、パーソナルコンピュータの電池パック(電池モジュール)の冷却用の熱交換器、液晶テレビ、有機ELテレビ、プラズマテレビのディスプレイの冷却用の熱交換器や、床暖房設備、寒冷地域での屋根、通路、道路等の融雪設備の熱交換器としても用いることもできる。 In the above-described embodiment, the case where the heat exchanger of the present invention is used as a cooler for a battery pack of an automobile or the like has been described as an example. can also be applied to For example, heat exchangers for heating battery packs for automobiles, heat for cooling power semiconductor elements (power modules) for controlling the main power of electric power driven devices such as automobile electric motors, industrial machinery, home appliances, and information terminals. Heat exchanger for cooling CPU (Central Processing Unit) of personal computer, Heat exchanger for cooling/heating storage battery for home or business use, Cooling for battery pack (battery module) of personal computer It can also be used as a heat exchanger for cooling liquid crystal televisions, organic EL televisions, plasma television displays, floor heating equipment, and snow melting equipment for roofs, passages, roads, etc. in cold regions. can.
 <実施例1>
 上記実施形態の熱交換器に準拠して、以下のように実施例1の熱交換器を製作した。
<Example 1>
A heat exchanger of Example 1 was manufactured as follows based on the heat exchanger of the above embodiment.
 1.外包ラミネート材および外包体の作製
 伝熱層51としてのA8021H-Oのアルミニウム箔(厚さ120μm)の一面(外面)に、接着剤を介して保護層53として、厚さ12μmのポリエステル樹脂(PET)を積層する。
1. Preparation of outer wrap laminate material and outer wrap On one surface (outer surface) of A8021H-O aluminum foil (thickness 120 μm) as heat transfer layer 51, a 12 μm thick polyester resin (PET ) are stacked.
 またアルミニウム箔の他方の面(内面)に、接着剤を介して熱融着層52として、厚さ40μmの無延伸ポリプロピレンフィル(CPP)を積層して、外包ラミネート材(PET12μm/接着剤/AL(A8021H-O)120μm/接着剤/CPP40μm)L1を作製した。 On the other surface (inner surface) of the aluminum foil, a non-stretching polypropylene film (CPP) with a thickness of 40 μm is laminated as a heat-sealing layer 52 via an adhesive, and an outer wrap laminate material (PET 12 μm/adhesive/AL (A8021H-O) 120 μm/adhesive/CPP 40 μm) L1 was prepared.
 この外包ラミネート材L1を深絞り成形することによって、深さ4mm×幅65mm×長さ180の凹部11と、その凹部11の開口縁部全周に幅10mmのフランジ部12とが一体に形成された外包体1のトレイ部材10を作製した。 By deep-drawing the outer wrap laminate material L1, a recess 11 having a depth of 4 mm, a width of 65 mm, and a length of 180 mm and a flange portion 12 having a width of 10 mm are integrally formed around the entire periphery of the opening edge of the recess 11. A tray member 10 of the outer package 1 was produced.
 さらに同様の外包ラミネート材L1を切断して、幅85mm×長さ200mmのシート状のカバー部材15を作製した。なおこのカバー部材15における両端部の所定位置には、直径12mmの円形の出入口16を形成した。 Furthermore, the same outer wrap laminate material L1 was cut to produce a sheet-like cover member 15 of width 85 mm x length 200 mm. Circular entrances and exits 16 with a diameter of 12 mm were formed at predetermined positions on both ends of the cover member 15 .
 2.内芯ラミネート材およびインナーフィンの作製
 伝熱層61としてのA8021H-Oのアルミニウム箔(厚さ120μm)の両面に、接着剤を介して熱融着層62として、厚さ30μmのCPPを積層して、内芯ラミネート材(CPP30μm/接着剤/AL(A8021H-O)120μm/接着剤/CPP30μm)L2を作製した。
2. Fabrication of Inner Core Laminate Material and Inner Fins On both sides of an A8021H-O aluminum foil (120 μm thick) as a heat transfer layer 61, a 30 μm thick CPP was laminated as a heat sealing layer 62 via an adhesive. Then, an inner core laminate material (30 μm CPP/adhesive/120 μm AL (A8021H-O)/adhesive/30 μm CPP) L2 was produced.
 この内芯ラミネート材L2を、幅193mm×長さ120mmのサイズに切り出してフィン用ブランクとし、そのブランクの周囲4辺に対し、図6および図7に示すようにシール金型4を用いてヒートプレス成形することにより、伝熱層側縁積層部72の幅W1=2mm、伝熱層端面被覆部73の幅W2=0.2mm、厚さ(Al厚み+T2×2)=0.16mmの薄縁部7を形成して、伝熱層61の側縁6aをCPP(伝熱層側縁積層部72および伝熱層端面被覆部73)によって被覆し、ヒートプレス成形後(防食処理後)の内芯ラミネート材L2(防食処理済フィン材)を作製した。 This inner core laminate material L2 is cut into a size of 193 mm in width and 120 mm in length to form a fin blank. By press molding, the width W1 of the heat transfer layer side edge lamination portion 72 = 2 mm, the width W2 of the heat transfer layer end face covering portion 73 = 0.2 mm, and the thickness (Al thickness + T2 x 2) = 0.16 mm. A portion 7 is formed, and the side edge 6a of the heat transfer layer 61 is covered with CPP (heat transfer layer side edge laminated portion 72 and heat transfer layer end surface covering portion 73), and after heat press molding (after anticorrosion treatment), the inner A core laminate material L2 (anticorrosion treated fin material) was produced.
 このヒートプレス成形後の内芯ラミネート材L2(防食処理済フィン材)に対し、コルゲート加工を行って、図4に示すようにフィン高さ(Hf)が4mm、フィンピッチ(Pf)が4mm、フィン厚み(Tf)が0.2mm、外側コーナー半径(R4)が0.5mmの角波形状に形成し、その角波シートを、幅65mm×長さ120mmにカットしてインナーフィン2を作製した。 The inner core laminate material L2 (anticorrosion-treated fin material) after this heat press molding is corrugated so that the fin height (Hf) is 4 mm, the fin pitch (Pf) is 4 mm, The fin thickness (Tf) is 0.2 mm, and the outer corner radius (R4) is 0.5 mm. .
 なおインナーフィン2の山筋方向および谷筋方向は、長さ方向(縦方向)に沿うように配置されている。 The inner fins 2 are arranged so that the direction of the crests and the direction of the valleys are along the length direction (longitudinal direction).
 3.ヘッダーの作製
 縦65mm×横30mm×高さ4mmの取付箱部31に、パイプ部33が一体に成形されたPP製のヘッダー3を準備した(図3参照)。パイプ部33は、内径φ10mm、外径φ12mm、長さが3mmである。
3. Preparation of Header A header 3 made of PP was prepared in which a pipe portion 33 was integrally formed with a mounting box portion 31 of 65 mm long×30 mm wide×4 mm high (see FIG. 3). The pipe portion 33 has an inner diameter of φ10 mm, an outer diameter of φ12 mm, and a length of 3 mm.
 4.熱交換器の組み立て
 トレイ部材10の凹部11における縦方向(長さ方向)の両端部に、ヘッダー3をパイプ部33を上向きにした状態に収容する。さらにトレイ部材10の凹部11における両ヘッダー3,3間にインナーフィン2を収容した。なお、ヘッダー3の各開口部32は、インナーフィン2の端部に対向するように内側に向けて配置した。
4. Assembling the Heat Exchanger The headers 3 are accommodated in both longitudinal (longitudinal) ends of the concave portion 11 of the tray member 10 with the pipe portions 33 facing upward. Further, the inner fins 2 are accommodated between the headers 3, 3 in the concave portion 11 of the tray member 10. As shown in FIG. The openings 32 of the header 3 are directed inward so as to face the ends of the inner fins 2 .
 次にトレイ部材10の凹部11を上から覆うようにカバー部材15を、その内側の熱融着層52を下にしてトレイ部材10のフランジ部12上に配置した。このとき、カバー部材15の出入口16に、トレイ部材10内のヘッダー3の上向きパイプ部33を挿通させてカバー部材15の上方に突出するように配置した。 Next, the cover member 15 was placed on the flange portion 12 of the tray member 10 so as to cover the concave portion 11 of the tray member 10 from above, with the heat-sealing layer 52 inside thereof facing downward. At this time, the upward pipe portion 33 of the header 3 in the tray member 10 was inserted into the inlet/outlet 16 of the cover member 15 so as to protrude upward from the cover member 15 .
 こうして非接合状態の熱交換器仮組品を作製し、その熱交換器仮組品に対し2段シールで熱融着を行った。1段目のシールは、180℃×0.3MPa×7秒のシール条件で行い、トレイ部材10のフランジ部12と、カバー部材15の外周縁部とを熱融着した。さらに2段目のシールは、190℃×0.3MPa×7秒のシール条件で行い、外包体1と、インナーフィン2およびヘッダー3との間を熱融着した。こうして実施例1の熱交換器を作製した。 In this way, a non-bonded heat exchanger temporary assembly was produced, and the heat exchanger temporary assembly was heat-sealed with a two-stage seal. The first stage sealing was performed under the sealing conditions of 180° C.×0.3 MPa×7 seconds, and the flange portion 12 of the tray member 10 and the outer peripheral edge portion of the cover member 15 were heat-sealed. Furthermore, the second-stage sealing was performed under the sealing conditions of 190° C.×0.3 MPa×7 seconds, and the outer package 1, the inner fins 2 and the header 3 were heat-sealed. Thus, the heat exchanger of Example 1 was produced.
 <実施例2>
 外包ラミネート材L1の熱融着層52として、アイオノマー(厚さ50μm)を用いた以外は上記実施例1と同様の外包ラミネート材(PET12μm/接着剤/AL(A8021H-O)120μm/接着剤/アイオノマー50μm)L1を準備した。
<Example 2>
The same outer wrapping laminate material (PET 12 μm/adhesive/AL (A8021H-O) 120 μm/adhesive/ Ionomer 50 μm) L1 was prepared.
 この外包ラミネート材L1を用いて、上記実施例1と同様にトレイ部材10およびカバー部材15を作製した。 A tray member 10 and a cover member 15 were produced in the same manner as in Example 1 using this outer wrap laminate material L1.
 内芯ラミネート材L2の熱融着層62として、アイオノマー(厚さ50μm)を用いた以外は上記実施例1と同様の内芯ラミネート材(アイオノマー50μm/接着剤/AL(A8021H-O)120μm/接着剤/アイオノマー50μm)L2を準備した。 The same inner core laminate material (50 μm ionomer/adhesive/AL (A8021H-O) 120 μm/ Adhesive/Ionomer 50 μm) L2 was prepared.
 この内芯ラミネート材L2を、幅193mm×長さ120mmのサイズに切り出してフィン用ブランクとし、そのブランクの周囲4辺に対し、上記実施例1と同様にヒートプレス成形することにより、伝熱層側縁積層部72の幅W1=3mm、伝熱層端面被覆部73の幅W2=0.5mm、厚さ(Al厚み+T2×2)=0.18mmの薄縁部7を形成して、伝熱層61の側縁6aをアイオノマー樹脂(伝熱層側縁積層部72および伝熱層端面被覆部73)によって被覆し、ヒートプレス成形後の内芯ラミネート材L2(防食処理済フィン材)を作製した。 This inner core laminate material L2 is cut into a size of 193 mm in width and 120 mm in length to form a fin blank, and the four sides of the blank are subjected to heat press molding in the same manner as in Example 1 to obtain a heat transfer layer. A thin edge portion 7 having a width W1 of the side edge laminated portion 72 of 3 mm, a width W2 of the heat transfer layer end surface covering portion 73 of 0.5 mm, and a thickness (Al thickness + T2 × 2) of 0.18 mm is formed to facilitate heat transfer. The side edge 6a of the layer 61 is covered with an ionomer resin (the heat transfer layer side edge laminated portion 72 and the heat transfer layer end surface covering portion 73) to produce the inner core laminate material L2 (anticorrosion treated fin material) after heat press molding. did.
 このヒートプレス成形後の内芯ラミネート材L2を用いて、上記実施例1と同様な形状のインナーフィン2を作製した。 Using the inner core laminate material L2 after heat press molding, an inner fin 2 having the same shape as in Example 1 was produced.
 PE製とした以外は上記実施例1と同様にヘッダー3を作製した。 A header 3 was produced in the same manner as in Example 1 above, except that it was made of PE.
 これらのトレイ部材10、カバー部材15およびヘッダー3を用いて、上記実施例1と同様に熱交換器仮組品を作製し、その仮組品に対し2段シールで熱融着を行い、実施例2の熱交換器を作製した。 Using these tray member 10, cover member 15 and header 3, a heat exchanger provisional assembly was produced in the same manner as in Example 1, and the provisional assembly was heat-sealed by two-step sealing. A heat exchanger of Example 2 was made.
 なお実施例2の2段シールにおいて、1段目のシールは、140℃×0.3MPaa×7秒のシール条件で行い、トレイ部材10と、カバー部材15とを熱融着し、さらに2段目のシールは、150℃×0.3MPa×7秒のシール条件で行い、外包体1と、インナーフィン2およびヘッダー3との間を熱融着した。 In the two-stage sealing of Example 2, the first-stage sealing is performed under the sealing conditions of 140° C.×0.3 MPaa×7 seconds, and the tray member 10 and the cover member 15 are heat-sealed. The mesh was sealed under the sealing conditions of 150° C.×0.3 MPa×7 seconds, and the outer package 1, the inner fins 2 and the header 3 were heat-sealed.
 <比較例>
 内芯ラミネート材(フィン用ブランク)に対しヒートプレス成形による防食処理を行わなかった以外は、上記実施例1と同様にして比較例の熱交換器を作製した。なお言うまでもなく、この熱交換器におけるインナーフィン2は、その切断端面において金属製の伝熱層61が露出しており、その露出した伝熱層61に、熱交換器を循環する冷媒が接触し得る状態となっている。
<Comparative example>
A heat exchanger of a comparative example was produced in the same manner as in Example 1 above, except that the core laminate material (fin blank) was not subjected to anticorrosion treatment by heat press molding. Needless to say, the inner fins 2 in this heat exchanger have the metal heat transfer layer 61 exposed at the cut end surface, and the exposed heat transfer layer 61 is in contact with the refrigerant circulating in the heat exchanger. It is in a state to obtain.
 <耐腐食性試験(促進腐食試験)>
 腐食液として、OY液(Cl:195ppm、SO 2-:60ppm、Cu2+:1ppm、Fe3+:30ppmを含有するpH3の腐食液)を準備した。
<Corrosion resistance test (accelerated corrosion test)>
As a corrosive solution, an OY solution (corrosive solution of pH 3 containing Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ : 1 ppm, and Fe 3+ : 30 ppm) was prepared.
 上記腐食液を、実施例1,2および比較例の熱交換器に対し、一方のパイプ部33から導入して内部を流通させて、他方のパイプ部33から流出させるように循環させた。この循環時の試験条件として、腐食液の温度は60℃とし、流速は1L/分とし、循環時間は連続250時間とした。 The corrosive liquid was introduced into the heat exchangers of Examples 1 and 2 and the comparative example from one pipe portion 33, flowed through the inside, and circulated so as to flow out from the other pipe portion 33. As the test conditions during this circulation, the temperature of the corrosive liquid was set to 60° C., the flow rate was set to 1 L/min, and the circulation time was set to 250 hours continuously.
 その試験後に、実施例1,2および比較例の熱交換器の外観を目視により観察して評価した。その結果、熱交換器(外包体)の外観に変化がなく、外包体およびインナーフィン共に腐食が発生していないものを「○(良好)」と評価し、インナーフィンの端面に腐食が発生していたものを「×(不良)」と評価した。その結果を表1に示す。 After the test, the appearance of the heat exchangers of Examples 1 and 2 and Comparative Example was visually observed and evaluated. As a result, if there was no change in the appearance of the heat exchanger (outer envelope) and no corrosion occurred in both the outer envelope and the inner fins, it was evaluated as "good", and corrosion occurred on the end faces of the inner fins. was evaluated as "x (defective)". Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記耐腐食製試験の試験結果(表1)から明らかなように、本発明に関連した実施例1,2の熱交換器は、本発明の要旨を逸脱する比較例の熱交換器に比べて、耐腐食性に優れているのが判る。 As is clear from the test results of the corrosion resistance test (Table 1), the heat exchangers of Examples 1 and 2 related to the present invention are compared to the heat exchangers of Comparative Examples that deviate from the gist of the present invention. , it is found to be excellent in corrosion resistance.
 本願は、2021年3月19日付で出願された日本国特許出願の特願2021-46111号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application claims the priority of Japanese Patent Application No. 2021-46111 filed on March 19, 2021, and the disclosure thereof constitutes a part of this application as it is. .
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used herein are used as terms of description and not of limitation, as any equivalent of the features shown and described herein. are not to be excluded, and variations within the claimed scope of the invention are permissible.
 この発明の熱交換器は、スマートフォン、タブレット端末、パーソナルコンピュータ等の情報端末のCPU回りや電池回りの発熱対策、液晶TV、有機EL、プラズマTVのディスプレイ回りの発熱対策、自動車のパワーモジュール回りや電池回りの発熱対策用の冷却器のほか、床暖房や除雪に用いられる加熱器として利用することができる。 The heat exchanger of this invention can be used as a countermeasure against heat generation around CPUs and batteries of information terminals such as smartphones, tablet terminals, and personal computers; It can be used as a cooler for countermeasures against heat generation around batteries, as well as a heater for floor heating and snow removal.
1:外包体
2:インナーフィン
61:伝熱層
62:熱融着層
6a:伝熱層の側縁
6b:伝熱層の端面
7:薄縁部
7a:内芯ラミネート材の側縁
72:伝熱層側縁積層部
73:伝熱層端面被覆部
L1:外包ラミネート材
L2:内芯ラミネート材
1: Outer envelope 2: Inner fin 61: Heat transfer layer 62: Heat sealing layer 6a: Side edge 6b of heat transfer layer: End surface of heat transfer layer 7: Thin edge 7a: Side edge 72 of inner core laminate material: Heat transfer Thermal layer side edge laminated part 73: Heat transfer layer end surface covering part L1: Outer wrap laminate material L2: Inner core laminate material

Claims (8)

  1.  内部を熱交換媒体が流通する外包体と、一部が前記外包体の内面に接触した状態で前記外包体に収容されるインナーフィンとを備えた熱交換器であって、
     前記外包体が、金属層の少なくとも片面側に樹脂層が積層された外包ラミネート材によって構成され、
     前記インナーフィンは、金属製の伝熱層の両面側に樹脂製の熱融着層がそれぞれ積層された内芯ラミネート材によって構成され、
     前記内芯ラミネート材の側縁に、薄縁部が形成され、
     前記薄縁部は、前記伝熱層の側縁と、その側縁の両面側に積層される樹脂製の伝熱層側縁積層部と、前記伝熱層の端面を被覆する樹脂製の伝熱層端面被覆部とを含むことを特徴とする熱交換器。
    A heat exchanger comprising: an outer envelope through which a heat exchange medium flows; and an inner fin accommodated in the outer envelope with a portion thereof in contact with the inner surface of the outer envelope,
    The outer wrapping body is composed of an outer wrapping laminate material in which a resin layer is laminated on at least one side of a metal layer,
    The inner fin is composed of an inner core laminate material in which resin heat-sealable layers are laminated on both sides of a metal heat transfer layer,
    A thin edge portion is formed on a side edge of the inner core laminate material,
    The thin edge portion includes a side edge of the heat transfer layer, a resin heat transfer layer side edge laminated portion laminated on both sides of the side edge, and a resin heat transfer layer covering the end surface of the heat transfer layer. A heat exchanger, comprising: a layer end face covering portion.
  2.  前記熱融着層、前記伝熱層側縁積層部および前記伝熱層端面被覆部は連続して一体に形成されている請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the heat sealing layer, the heat transfer layer side edge laminated portion, and the heat transfer layer end face covering portion are continuously and integrally formed.
  3.  前記伝熱層側縁積層部および前記伝熱層端面被覆部は、前記熱融着層の溶融樹脂成形体によって構成されている請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the heat transfer layer side edge laminated portion and the heat transfer layer end surface covering portion are formed of a molten resin molding of the heat sealing layer.
  4.  前記熱融着層の厚さを「T1」とし、前記伝熱層側縁積層部の厚さを「T2」として、
     T1=0.02mm~0.5mm
     T2=1/6×T1~2/3×T1
     の関係式が成立するように構成されている請求項1~3のいずれか1項に記載の熱交換器。
    Assuming that the thickness of the heat sealing layer is "T1" and the thickness of the heat transfer layer side edge laminated portion is "T2",
    T1=0.02mm to 0.5mm
    T2 = 1/6 x T1 to 2/3 x T1
    4. The heat exchanger according to any one of claims 1 to 3, wherein the relational expression of is established.
  5.  前記伝熱層側縁積層部の幅を「W1」として、
     W1=2mm~15mm
     の関係式が成立するように構成されている請求項1~4のいずれか1項に記載の熱交換器。
    Assuming that the width of the heat transfer layer side edge laminated portion is "W1",
    W1 = 2mm to 15mm
    The heat exchanger according to any one of claims 1 to 4, wherein the relational expression of is established.
  6.  前記伝熱層端面被覆部の幅を「W2」として、
     W2=0.01mm~2mm
     の関係式が成立するように構成されている請求項1~5のいずれか1項に記載の熱交換器。
    Assuming that the width of the end surface covering portion of the heat transfer layer is "W2",
    W2=0.01mm to 2mm
    The heat exchanger according to any one of claims 1 to 5, wherein the relational expression of is established.
  7.  内部を熱交換媒体が流通し、かつ金属層の少なくとも片面側に樹脂層が積層された外包ラミネート材によって構成された外包体内に、一部が前記外包体の内面に接触した状態で収容されるようにした熱交換器用インナーフィンであって、
     金属製の伝熱層の両面側に樹脂製の熱融着層がそれぞれ積層された内芯ラミネート材によって構成され、
     前記内芯ラミネート材の側縁に、薄縁部が形成され、
     前記薄縁部は、前記伝熱層の側縁と、その側縁の両面側に積層される樹脂製の伝熱層側縁積層部と、前記伝熱層の端面を被覆する樹脂製の伝熱層端面被覆部とを含むことを特徴とする熱交換器用インナーフィン。
    A heat exchange medium flows through the inside and is housed in an outer envelope constituted by an outer envelope laminate material in which a resin layer is laminated on at least one side of a metal layer, with a part thereof in contact with the inner surface of the outer envelope. An inner fin for a heat exchanger, comprising:
    It is composed of an inner core laminate material in which resin heat-sealing layers are laminated on both sides of a metal heat transfer layer,
    A thin edge portion is formed on a side edge of the inner core laminate material,
    The thin edge portion includes a side edge of the heat transfer layer, a resin heat transfer layer side edge laminated portion laminated on both sides of the side edge, and a resin heat transfer layer covering the end surface of the heat transfer layer. An inner fin for a heat exchanger, comprising: a layer end surface covering portion.
  8.  内部を熱交換媒体が流通し、かつ金属層の少なくとも片面側に樹脂層が積層された外包ラミネート材によって構成された外包体内に、一部が前記外包体の内面に接触した状態で収容されるようにした熱交換器用インナーフィンの製造方法であって、
     金属製の伝熱層の両面側に樹脂製の熱融着層がそれぞれ積層された内芯ラミネート材を作製し、
     その内芯ラミネート材の側縁にヒートプレス成形を行って、前記伝熱層における側縁および端面を覆い、かつ前記熱融着層の溶融樹脂成形体による薄縁部を成形して、
     薄縁部成形後の内芯ラミネート材を用いてインナーフィンを製造するようにしたことを特徴とする熱交換器用インナーフィンの製造方法。
    A heat exchange medium flows through the inside and is housed in an outer envelope constituted by an outer envelope laminate material in which a resin layer is laminated on at least one side of a metal layer, with a part thereof in contact with the inner surface of the outer envelope. A method for manufacturing an inner fin for a heat exchanger, comprising:
    Producing an inner core laminate material in which resin heat-sealing layers are laminated on both sides of a metal heat transfer layer,
    heat press molding is performed on the side edges of the inner core laminate material to cover the side edges and end faces of the heat transfer layer, and to form a thin edge portion of the heat sealing layer by the molten resin molding,
    1. A method for manufacturing an inner fin for a heat exchanger, characterized in that the inner fin is manufactured using an inner core laminate material after forming a thin edge portion.
PCT/JP2022/005020 2021-03-19 2022-02-09 Heat exchanger WO2022196192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-046111 2021-03-19
JP2021046111A JP2022144910A (en) 2021-03-19 2021-03-19 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2022196192A1 true WO2022196192A1 (en) 2022-09-22

Family

ID=83322224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005020 WO2022196192A1 (en) 2021-03-19 2022-02-09 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2022144910A (en)
WO (1) WO2022196192A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123106B2 (en) * 1978-07-20 1986-06-04 Toppan Printing Co Ltd
JP2002019792A (en) * 2000-07-12 2002-01-23 Fuji Seal Inc Bag-like vessel having bottom
JP2016203376A (en) * 2013-10-04 2016-12-08 コニカミノルタ株式会社 Method for producing film mirror
JP2020159667A (en) * 2019-03-28 2020-10-01 昭和電工パッケージング株式会社 Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123106B2 (en) * 1978-07-20 1986-06-04 Toppan Printing Co Ltd
JP2002019792A (en) * 2000-07-12 2002-01-23 Fuji Seal Inc Bag-like vessel having bottom
JP2016203376A (en) * 2013-10-04 2016-12-08 コニカミノルタ株式会社 Method for producing film mirror
JP2020159667A (en) * 2019-03-28 2020-10-01 昭和電工パッケージング株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP2022144910A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
CN110657694B (en) Heat exchanger
JP7274325B2 (en) Heat exchanger
JP7441343B2 (en) Heat exchanger
JP7166153B2 (en) Heat exchanger
US11788794B2 (en) Heat exchanger and inner fin thereof
CN214333484U (en) Heat exchanger and inner fin thereof
JP7221136B2 (en) Heat exchanger
JP5644718B2 (en) Sealing method using sealing head for polymer battery packaging
WO2022196192A1 (en) Heat exchanger
JP7326063B2 (en) Heat exchanger
JP7353164B2 (en) Heat exchanger
JP7410713B2 (en) Heat exchanger
JP2021162198A (en) Heat exchanger and outer package body therefor
JP7369029B2 (en) Heat exchanger
JP2010282985A (en) Packaging material for polymer battery
JP2021110471A (en) Heat exchanger and externally capsuled laminate material thereof
JP2012138405A (en) Heat exchanger
JP7446918B2 (en) Heat exchanger and its inner fin
WO2022075043A1 (en) Method and device for manufacturing heat exchanger
JP2022026194A (en) Heat exchanger
JP4620233B2 (en) Method for producing packaging material for lithium battery
WO2023228676A1 (en) Resin component for cooling structure, cooling structure, and structure
WO2023210710A1 (en) Cooling structure, and structure
CN219321438U (en) Soft package battery and soft package module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770951

Country of ref document: EP

Kind code of ref document: A1