WO2022194118A1 - 一种car-t细胞灌流培养方法 - Google Patents

一种car-t细胞灌流培养方法 Download PDF

Info

Publication number
WO2022194118A1
WO2022194118A1 PCT/CN2022/080811 CN2022080811W WO2022194118A1 WO 2022194118 A1 WO2022194118 A1 WO 2022194118A1 CN 2022080811 W CN2022080811 W CN 2022080811W WO 2022194118 A1 WO2022194118 A1 WO 2022194118A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
car
cell
perfusion
culture
Prior art date
Application number
PCT/CN2022/080811
Other languages
English (en)
French (fr)
Inventor
石琳
谢志明
杨晓燕
靳霞
田皞靓
孟欢
朱慧娟
黄林生
李新灵
Original Assignee
合源生物科技(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合源生物科技(天津)有限公司 filed Critical 合源生物科技(天津)有限公司
Publication of WO2022194118A1 publication Critical patent/WO2022194118A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the invention relates to the technical field of bioengineering, in particular to a method for perfusion culture of CAR-T cells.
  • CAR-T cells Chimeric Antigen Receptor T-Cell
  • T-Cell the full name of chimeric antigen receptor T cells
  • T cells activate T cells by directly binding to specific antigens on the surface of tumor cells, directly killing tumor cells by releasing perforin, granzyme B, etc., and also recruiting human endogenous immune cells to kill tumors by releasing cytokines cells for the purpose of treating tumors.
  • the process of using CAR-T cells to treat tumors includes collecting peripheral blood from patients, isolating T cells, introducing CAR into T cells, culturing them in vitro, and returning the cells to patients.
  • a large number of CAR-T cells need to be expanded.
  • a patient needs hundreds of millions or even billions of CAR-T cells (the larger the body size, the more cells are required).
  • the medium used is costly and imposes a financial burden on the patient.
  • the survival rate of CAR-T cells will directly affect the clearance efficiency of CAR-T cells against cancer cells.
  • Clinical studies have shown that the proliferation ability of CAR-T cells in the peripheral blood of patients after reinfusion has a strong correlation with the curative effect.
  • the purpose of the present invention is to propose a method for perfusion culture of CAR-T cells, which can save culture medium and is more economical without significantly reducing the culture effect.
  • the present invention provides a CAR-T cell perfusion culture method, which comprises the following steps:
  • T cells are activated with CD3/CD28-stimulated magnetic beads;
  • the CAR-T cells are cultured using a serum-free medium without animal-derived components, and the composition of the serum-free medium without animal-derived components is: AIM-V+(3-9)% ISR;
  • the perfusion culture includes the following stages:
  • the first stage when the cell density is (0.5-1.1) ⁇ 10 6 cells/mL, the perfusion flow rate is A 1 ; and/or
  • the second stage when the cell density is (1.1-2) ⁇ 10 6 cells/mL, the perfusion flow rate is A 2 ;
  • the third stage when the cell density is more than 2 ⁇ 10 6 cells/mL, the perfusion flow rate is A 3 ;
  • composition of the serum-free medium without animal-derived components is: AIM-V+(4-7)% ISR;
  • composition of the serum-free medium without animal-derived components is: AIM-V+5% ISR.
  • A1 is 0.4 bioreactor volume/ day
  • A2 is 0.8 bioreactor volume/day
  • A3 is 1.0 bioreactor volume/day.
  • step 4 when the cell density is greater than or equal to a preset value, the perfusion culture is started;
  • the preset value is (0.3-1.2) ⁇ 10 6 cells/mL;
  • the preset value is (0.4 ⁇ 1.0) ⁇ 10 6 cells/mL;
  • the preset value is 0.5 ⁇ 10 6 cells/mL.
  • step 4 before the cell density reaches a preset value, supplemented culture is adopted, wherein during the supplemented culture process, the concentration of (0.3-1) ⁇ 10 6 cells/mL is used.
  • the density is the standard for fluid replacement
  • the ventilation volume is (0.1-1) L/min
  • the rotation speed is (4-12) rpm
  • the ventilation is compressed air plus (1-10)% CO 2 .
  • step 4 before the rehydration culture, it includes:
  • the infected T cells were transferred into the Xuri bioreactor for rehydration culture.
  • the ventilation rate during the perfusion culture process is (0.3-0.8) L/min
  • the rotational speed is (5-15) rpm
  • the ventilation is compressed air plus (1-10) L/min. %CO 2 ;
  • the ventilation rate in the perfusion culture process is (0.4-0.6) L/min, the rotational speed is (8-12) rpm, and the ventilation is compressed air plus (3-6)% CO 2 ;
  • the ventilation rate in the perfusion culture process is 0.5 L/min, the rotation speed is 10 rpm, and the ventilation is compressed air plus 5% CO 2 .
  • the activation treatment of the isolated T cells with CD3/CD28 stimulating magnetic beads specifically includes: resuspending the isolated T cells so that the final concentration is ( 1 ⁇ 2) ⁇ 10 6 cells/mL, and add (0.5 ⁇ 10) ⁇ L of CD3/CD28 stimulated magnetic beads per 1 ⁇ 10 6 T cells and mix well, then incubate at 37°C+5% CO 2 for at least 24 hours.
  • the isolated T cells are resuspended in a serum-free medium without animal-derived components, and the serum-free medium without animal-derived components is composed of: AIM-V+( 3 ⁇ 9)%ISR;
  • composition of the serum-free medium without animal-derived components is: AIM-V+(4-7)% ISR;
  • composition of the serum-free medium without animal-derived components is: AIM-V+5% ISR.
  • Figure 1 is a comparison chart of CAR-T cell proliferation multiples under different culture systems
  • Figure 2 is a comparison chart of the survival rate of CAR-T cells under different culture systems
  • Figure 3 is a comparison chart of CAR expression under different culture systems
  • Figure 4 is a comparison chart of the amplification multiples of different perfusion processes (400mL-1000mL perfusion speed and 600mL-1800mL perfusion speed);
  • Figure 5 is a comparison chart of the survival rate of different perfusion processes (400mL-1000mL perfusion speed and 600mL-1800mL perfusion speed);
  • Figure 6 is a comparison chart of the amplification multiples of different perfusion processes (800mL-1000mL perfusion speed and 1000mL-1500mL perfusion speed);
  • Figure 7 is a comparison chart of the survival rate of different perfusion processes (800mL-1000mL perfusion speed and 1000mL-1500mL perfusion speed).
  • the traditional CAR-T cell culture system adopts a culture system containing serum, and the serum includes autologous serum (or plasma), AB serum, fetal bovine serum, etc.
  • Autologous serum (or plasma) is affected by individual differences, the quality is uncontrollable, and the batch is limited; AB serum is collected from allogeneic donors of AB blood type, although the quality consistency is better than that of autologous serum (or plasma), the batch is also higher than that of autologous serum.
  • CAR-T cell proliferation ability is weak in serum-free culture system
  • CAR-T cell survival rate is low in serum-free culture system
  • CAR expression of CAR-T cells The rate is lower in serum-free culture system and so on.
  • the present invention obtains a CAR-T cell culture medium in a serum-free culture system without animal-derived components by screening serum-free culture medium and additives from different sources, so that the CAR-T cell proliferation, survival rate and virus The infection efficiency was higher, which was equivalent to or better than the culture system containing serum.
  • the present invention uses the method of perfusion culture to culture CAR-T cells, and determines the perfusion rate of each stage in the process of perfusion culture, so that the perfusion culture method of the present invention can save on the premise of not significantly reducing the culture effect.
  • Culture medium more economical.
  • the present invention provides a CAR-T cell perfusion culture method, which comprises the following steps:
  • T cells are activated with CD3/CD28-stimulated magnetic beads;
  • the CAR-T cells are cultured using a serum-free medium without animal-derived components, and the composition of the serum-free medium without animal-derived components is: AIM-V+3-9% ISR;
  • the perfusion culture includes the following stages:
  • the first stage when the cell density is (0.5-1.1) ⁇ 10 6 cells/mL, the perfusion flow rate is A 1 ; and/or
  • the second stage when the cell density is (1.1-2) ⁇ 10 6 cells/mL, the perfusion flow rate is A 2 ;
  • the third stage when the cell density is more than 2 ⁇ 10 6 cells/mL, the perfusion flow rate is A 3 ;
  • composition of the animal-derived serum-free medium is:
  • Serum-free basal medium AIM-V;
  • AIM-V+5% ISR medium, serum-containing medium and several other common serum-free mediums are used to compare the culturing effects (expansion times, survival rate and CAR expression rate) of CAR-T cells , the results showed that AIM-V + 5% ISR medium was better in terms of expansion fold, survival rate and CD 3 + CAR + expression.
  • the present invention selects AIM-V+5% ISR medium as the medium for CAR-T cell culture.
  • ISR is a well-defined serum replacement that does not contain bovine or other animal-derived ingredients, and the use of this serum replacement reduces safety risks. Both AIM-V medium and ISR were purchased from ThermoFisher.
  • the large-scale culture of CAR-T cells mainly uses the supplemented culture method, and the number of cells is increased by expanding the culture volume.
  • Perfusion culture is a culture method in which fresh medium is added and waste liquid is discharged.
  • the concentration of medium components changes less during the perfusion culture process, which can provide a stable and favorable growth environment for cells.
  • the cell culture effect is better, and the effect of expanding the number of cells can be achieved without increasing the culture volume. Therefore, it is more suitable for the CAR-T cell expansion culture stage.
  • perfusion rate An important parameter in the process of perfusion culture is the perfusion rate.
  • the present invention compares multiple perfusion modes, comprehensively considers the culture effect and economy, and finally determines the following perfusion culture process:
  • the first stage when the cell density is (0.5-1.1) ⁇ 10 6 cells/mL, the perfusion flow rate is A 1 ; and/or
  • the second stage when the cell density is (1.1-2) ⁇ 10 6 cells/mL, the perfusion flow rate is A 2 ;
  • the third stage when the cell density is more than 2 ⁇ 10 6 cells/mL, the perfusion flow rate is A 3 ;
  • A1 is 0.4 bioreactor volume/day
  • A2 is 0.8 bioreactor volume/day
  • A3 is 1.0 bioreactor volume/day.
  • the bioreactor volume is 1000 mL
  • the corresponding perfusion rate A1 is 400 mL/day
  • the perfusion rate A2 is 800 mL/day
  • the perfusion rate A3 is 1000 mL/day.
  • the perfusion culture process of the present invention emphasizes that the corresponding perfusion rate is determined according to the constantly changing cell density.
  • the perfusion culture process of the present invention does not stress that the first stage and the second stage must be included at the same time.
  • the first stage and the second stage may exist alternatively or simultaneously, which needs to be determined according to the growth conditions of the cells.
  • the perfusion culture process of the present invention may include the first stage and the third stage, or the second stage and the third stage, or the first stage, the second stage and the third stage simultaneously.
  • the perfusion rate A 1 was used for cultivation, and then at intervals (for example, 24 hours), the cell density >
  • the perfusion rate A 3 can be directly used for culture (for example, the perfusion culture process in Table 1);
  • the perfusion rate A 2 can be directly used for cultivation, and then after a period of time (such as 24 hours), when the cell density is determined to be > 2 ⁇ 10 6 cells/mL, the perfusion rate A 3 is used for cultivation (such as the perfusion culture process in Table 2). ).
  • CAR-T proliferative capacity i.e. expansion fold
  • CAR-T cells are expanded and activated in vitro and then returned to the patient.
  • the mechanism of killing tumor cells is as follows: after CAR-T cells bind to specific tumor antigens, they directly kill tumors by releasing perforin, granzyme B, etc. At the same time, it also recruits human endogenous immune cells to kill tumor cells by releasing cytokines, so as to achieve the purpose of treating tumors.
  • IFN- ⁇ interferon ⁇
  • IFN- ⁇ interferon ⁇
  • the present invention focuses on these indicators, and the experimental results show that the present invention achieves high-efficiency culture under serum-free culture system under the condition of using serum-free medium + specific perfusion process, and the CAR-T obtained by culture
  • the cell expansion fold, survival rate, CAR expression rate and secreted IFN- ⁇ content were all higher.
  • the perfusion culture when the cell density ⁇ a preset value, the perfusion culture is started; preferably, the preset value is (0.3-1.2) ⁇ 10 6 cells /mL; more preferably, the preset value is (0.4-1.0) ⁇ 10 6 cells/mL; further preferably, the preset value is 0.5 ⁇ 10 6 cells/mL.
  • the perfusion flow rate is A 1 .
  • the present invention does not limit the method for separating and obtaining peripheral blood mononuclear cells (PBMC) from apheresis cells of a subject.
  • PBMC peripheral blood mononuclear cells
  • a dextran- Ficoll density gradient centrifugation method can be used to separate PMBC by this method. Purity up to 95%. The principle is: the specific gravity of each formed component in the blood is different.
  • the ficoll-hypaque mixed solution also known as the lymphocyte stratified solution
  • various blood components will be Density Gradient Reclustering.
  • Plasma and platelets are suspended in the upper part of the liquid separation layer due to their low density; red blood cells and granulocytes sink at the bottom of the liquid separation layer due to their high density; PBMC is slightly lower in density than the layered liquid, so it is located at the interface of the layered liquid , so that PMBC can be obtained.
  • the present invention does not limit the method for sorting and obtaining T cells from peripheral blood.
  • the immunomagnetic bead method can be used.
  • the cells connected to the magnetic beads are adsorbed by the antibody and stay in the magnetic field.
  • the cells without this surface antigen have no magnetism because they cannot bind to the specific monoclonal antibody connected to the magnetic beads and do not stay in the magnetic field, so that the cells can separation.
  • CD3/CD28 antibody-coupled magnetic beads are mainly used for the isolation, activation and in vitro expansion of human T cells. Using 4.5 ⁇ m superparamagnetic beads, matched to the cell size, coupled with anti-CD3 and CD28 antibodies, can provide the main signal and costimulatory signal required for T cell activation and expansion.
  • CD3 + T cells can be isolated and enriched from the resulting separation product. After isolation, CD3+ T cells were cultured in the presence of magnetic beads.
  • T cells By binding anti-CD3 and anti-CD28 antibodies on immunomagnetic beads, magnetic beads can provide the primary and costimulatory signals required for T cell activation and expansion.
  • Activated T cells can produce cells such as IL-2 (interleukin 2), GM-CSF (granulocyte macrophage stimulating factor), IFN- ⁇ (interferon ⁇ ) and INF- ⁇ (tumor necrosis factor ⁇ ) Factors that play the role and function of T cells.
  • IL-2 interleukin 2
  • GM-CSF granulocyte macrophage stimulating factor
  • IFN- ⁇ interferon ⁇
  • INF- ⁇ tumor necrosis factor ⁇
  • the present invention does not limit the involved lentiviral vectors, and all lentiviral vectors in the prior art that include a nucleic acid sequence encoding a CAR gene can be used in the present invention.
  • the cell count results and the culture volume in the cell viability detection test calculate the total number of viable cells on the day and divide by the total number of viable cells on the day of inoculation to obtain the cell expansion fold.
  • CAR-T cells and Nalm6 cells were seeded in a 24-well plate at a ratio of 1:1, and 0.5 ⁇ 10 6 cells/well were seeded each as an experimental well; CAR-T cell control wells and Nalm6 cell control wells were also set. Place into a carbon dioxide incubator at 37 °C, 5% CO2 for about 24 hours.
  • the supernatant was collected by centrifugation after 24 hours of culture.
  • microplate IFN- ⁇ Microplate
  • Shake off the liquid in the plate use an automatic plate washer, add 350 ul of washing working solution to each well, wash the plate at low speed for 5 s, repeat 4 times; or wash the plate manually, add 300 ul of washing working solution to each well, soak for 30 s, repeat 4 times .
  • microplate reader Use a microplate reader to read at the detection wavelength of 450 nm and the reference wavelength of 570 nm.
  • the abscissa of the curve is the IFN- ⁇ concentration value of the standard curve point
  • concentration of IFN- ⁇ in the samples can be obtained from the standard curve by the mean OD of each sample.
  • PBMCs Peripheral blood mononuclear cells
  • MACS buffer composed of PBS/EDTA+0.2%BSA
  • PMBC cells 10 7 /mL
  • CD3 immunomagnetic beads 20 ⁇ L/10 7 PBMC
  • CD3 immunomagnetic beads 20 ⁇ L/10 7 PBMC
  • the cells that flow out first are CD3 - T cells, wash the isolate 3 times with MACS buffer, remove the MS column from the magnetic field, add 1 mL of MACS buffer, and push out the CD3 + T cells with a push rod into a sterile centrifuge tube.
  • CAR-T cell complete media namely: KBM581+5%FBS+100IU/ml IL-2, X-VIVO+5%ISR+100IU/ml IL -2, PRIME-XVT CELL CDM+5%ISR+100IU/ml IL-2, AIM-V+5%ISR+100IU/ml IL-2, resuspend the cells, centrifuge at 1500 rpm for 10 minutes to remove the supernatant.
  • Step 2 Activation of T cells
  • the isolated T cells were treated with 4 kinds of CAR-T cell complete medium (KBM581+5%FBS+100IU/ml IL-2, X-VIVO+5%ISR+100IU/ml IL-2, PRIME-XVT CELL CDM+ 5%ISR+100IU/ml IL-2, AIM-V+5%ISR+100IU/ml IL-2) were resuspended to a final concentration of 2 ⁇ 10 6 cells/ml, and adjusted according to each 1 ⁇ 10 6 Add 2.5 ⁇ L of CD3/CD28 antibody to T cells to stimulate magnetic beads, mix well and place in an incubator to culture under 37°C + 5% CO 2 for at least 24 hours.
  • CAR-T cell complete medium KBM581+5%FBS+100IU/ml IL-2, X-VIVO+5%ISR+100IU/ml IL-2, PRIME-XVT CELL CDM+ 5%ISR+100IU/ml IL-2, AIM-V+5%ISR+100IU/m
  • polybrene polybrene
  • MOI lentiviral vector
  • Step 4 Expansion and culture of CAR-T cells after infection
  • the cell culture plate was centrifuged, the culture medium was discarded, fresh cell culture medium was added to expand CAR-T cells, and CAR-T cells were expanded using the above 4 different medium compositions, and the CAR-T cells were expanded at the 0th stage.
  • Day 2 day 4, day 6, day 8, day 10, day 12 and day 14
  • the cell culture medium was taken to measure the expansion fold, survival rate and CAR expression rate.
  • PBMCs Peripheral blood mononuclear cells
  • MACS buffer the composition is PBS/EDTA+0.5% human serum albumin
  • PMBC cells 10 7 /mL
  • CD3 immunomagnetic beads 20 ⁇ L/10 7 PBMC
  • the cells that flow out first are CD3 - T cells, wash the isolate 3 times with MACS buffer, remove the MS column from the magnetic field, add 1 mL of MACS buffer, and push out the CD3 + T cells with a push rod into a sterile centrifuge tube. After cell counting, resuspend with AIM-V+5%ISR+100IU/mL IL-2 medium.
  • Step 2 Activation of T cells
  • the isolated T cells were resuspended in AIM-V+5%ISR+100IU/mL IL-2 medium to a final concentration of 2 ⁇ 10 6 cells/ml, and 2.5 cells were added per 1 ⁇ 10 6 T cells.
  • ⁇ L of CD3/CD28 antibody stimulated the magnetic beads, mixed well and then placed in an incubator for incubation at 37°C + 5% CO 2 for at least 24 hours.
  • polybrene polybrene
  • MOI lentiviral vector
  • Step 4 Transfer to Xuri Bioreactor for Expansion Culture
  • the CAR-T cells were expanded and cultured at different perfusion speeds, and the data such as the expansion fold, survival rate and secreted IFN- ⁇ content after the start of perfusion were compared.
  • a total of four perfusion modes were compared, namely:
  • the perfusion volume is set to 1000 mL per day; when the cell density is greater than or equal to 2 ⁇ 10 6 cells/mL, the daily perfusion volume is The volume was set to 1500 mL.
  • 1000mL-1500mL mode the perfusion volume is set to 1000 mL per day.
  • Table 1 Cell density, viability, expansion fold and secreted IFN- ⁇ content
  • the perfusion mode of 400mL-1000mL or 800mL-1000mL was selected as the preferred perfusion mode, that is, when the cell density was (0.5 ⁇ 1.1) ⁇ 10 6 cells When cells/mL, the perfusion volume per day is set to 400mL; and/or, when the cell density is (1.1 ⁇ 2) ⁇ 10 6 cells/mL, the perfusion volume per day is set to 800mL; and when the cell density is ⁇ 2 ⁇ 10 6 When cells/mL, the perfusion volume was set to 1000 mL per day.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供了一种CAR-T细胞灌流培养方法,包括以下步骤:1)从受试者单采血细胞中分离获得外周血单个核细胞,从单个核细胞中分选获得T细胞;2)将分离的T细胞用CD3/CD28刺激磁珠进行激活处理;3)采用慢病毒载体感染激活后的T细胞;4)对慢病毒感染后的T细胞进行灌流培养,收获CAR-T细胞;对CAR-T细胞进行培养使用的不含动物源成分的无血清培养基的组成为:AIM-V+(3~9)%ISR;灌流培养包括以下阶段:第一阶段:当细胞密度为(0.5~1.1)×10 6个细胞/mL时,灌流速率为A1;以及/或者第二阶段:当细胞密度为(1.1~2)×10 6个细胞/mL时,灌流速率为A2;以及第三阶段:当细胞密度>2×10 6个细胞/mL时,灌流速率为A3,A1:A2:A3=1:2:2.5。

Description

一种CAR-T细胞灌流培养方法 技术领域
本发明涉及生物工程技术领域,尤其涉及一种CAR-T细胞灌流培养方法。
背景技术
CAR-T细胞(Chimeric Antigen Receptor T-Cell),全称为嵌合抗原受体T细胞,是指通过基因修饰技术,将带有特异性抗原识别结构域及T细胞激活信号的遗传物质转入T细胞,使T细胞通过直接与肿瘤细胞表面的特异性抗原相结合而激活,通过释放穿孔素、颗粒酶素B等直接杀伤肿瘤细胞,同时还通过释放细胞因子募集人体内源性免疫细胞杀伤肿瘤细胞,从而达到***的目的。
使用CAR-T细胞***的流程包括采集患者外周血、分离T细胞、将CAR导入T细胞、体外培养以及将细胞回输至患者。在体外培养过程中需要大量扩增CAR-T细胞,一般一个患者需要上亿,乃至几十亿个CAR-T细胞(体型越大,需要细胞越多),而CAR-T细胞扩增中所使用的培养基成本很高,对患者的经济负担过重。同时CAR-T细胞的存活率会直接影响CAR-T细胞对癌细胞的清除效率。临床研究证明,CAR-T细胞回输后在患者外周血中的增殖能力与疗效具有很强的相关性。另外,文献1(Almeida JR,Price DA,Papagno L,Arkoub ZA,Sauce D,Bornsterin E et al.Superior control of HIV-1replication by CD8+T cells is reflected by their avidity,polyfunctionality,and clonal turnover.J Exp Med 2007;204:2473-2485)和文献2(Harari A,Cellerai C,Enders FB,Kostler J,Codarri L,Tapia G et al.Skewed association of polyfunctional antigen-specific CD8T cell polpulations with HLA-B genptype.Proc Natl Acad Sci USA 2007;104:16233-16238)均表明,T细胞分泌的细胞因子(例如IFN-γ)的含量与疗效密切相关。因此,如何在不显著降低培养效果的前提下,尽可能地节省培养基是亟待解决的问题。
文献3(Corey Smith et al.,Ex vivo expansion of human T cells for  adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement,Clinical&Translational Immunology(2015)4,e31;doi:10.1038/cti.2014.31)公开了一种适用于基因修饰细胞(例如慢病毒介导的基因转导的T细胞)的无血清培养基,本发明在该文献的基础上对培养基及培养方法进行进一步的改进,以在不显著降低培养效果的前提下,尽可能地节省培养基。
发明内容
有鉴于此,本发明的目的是提出一种CAR-T细胞灌流培养方法,该灌流培养方法能够在不显著降低培养效果的前提下,节省培养基,经济性更高。
基于上述目的,本发明提供了一种CAR-T细胞灌流培养方法,其包括以下步骤:
1)从受试者单采血细胞中分离获得外周血单个核细胞,然后从外周血单个核细胞中分选获得T细胞;
2)将分离的T细胞用CD3/CD28刺激磁珠进行激活处理;
3)采用慢病毒载体感染激活后的T细胞;
4)对慢病毒感染后的T细胞进行灌流培养,收获CAR-T细胞;
其中使用不含动物源成分的无血清培养基对CAR-T细胞进行培养,所述不含动物源成分的无血清培养基的组成为:AIM-V+(3~9)%ISR;
所述灌流培养包括以下阶段:
第一阶段:当细胞密度为(0.5~1.1)×10 6个细胞/mL时,灌流速率为A 1;以及/或者
第二阶段:当细胞密度为(1.1~2)×10 6个细胞/mL时,灌流速率为A 2;以及
第三阶段:当细胞密度>2×10 6个细胞/mL时,灌流速率为A 3
其中A 1:A 2:A 3=1:2:2.5。
在本发明的优选的实施方案中,其中,所述不含动物源成分的无血清培养基的组成为:AIM-V+(4~7)%ISR;
优选地,所述不含动物源成分的无血清培养基的组成为:AIM-V+5%ISR。
在本发明的优选的实施方案中,其中,A 1为0.4个生物反应器体积/天,A 2为0.8个生物反应器体积/天,A 3为1.0个生物反应器体积/天。
在本发明的优选的实施方案中,其中,在步骤4)中,当细胞密度≥预设值时,开始灌流培养;
优选地,所述预设值为(0.3~1.2)×10 6个细胞/mL;
更优选地,所述预设值为(0.4~1.0)×10 6个细胞/mL;
进一步优选地,所述预设值为0.5×10 6个细胞/mL。
在本发明的优选的实施方案中,其中,在步骤4)中,在细胞密度达到预设值之前,采用补液培养,其中补液培养过程中以(0.3~1)×10 6个细胞/mL的密度为补液标准进行补液,通气量为(0.1~1)L/分钟,转速为(4~12)rpm,通气为压缩空气加(1~10)%CO 2
在本发明的优选的实施方案中,在步骤4)中,在补液培养之前包括:
待感染后的T细胞数量达到(5~15)×10 7个细胞,将感染后的T细胞转入Xuri生物反应器进行补液培养。
在本发明的优选的实施方案中,其中,所述灌流培养过程中的通气量为(0.3~0.8)L/分钟,转速为(5~15)rpm,通气为压缩空气加(1~10)%CO 2
优选地,所述灌流培养过程中的通气量为(0.4~0.6)L/分钟,转速为(8~12)rpm,通气为压缩空气加(3~6)%CO 2
更优选地,所述灌流培养过程中的通气量为0.5L/分钟,转速为10rpm,通气为压缩空气加5%CO 2
在本发明的优选的实施方案中,在步骤2)中,所述将分离的T细胞用CD3/CD28刺激磁珠进行激活处理具体包括:将分离的T细胞进行重悬,使终浓度为(1~2)×10 6个细胞/mL,并按照每1×10 6T细胞加入(0.5~10)μL的CD3/CD28刺激磁珠混匀,然后在37℃+5%CO 2下培养至少24小时。
在本发明的优选的实施方案中,将分离的T细胞用不含动物源成分的无血清培养基进行重悬,所述不含动物源成分的无血清培养基的组成为:AIM-V+(3~9)%ISR;
优选地,所述不含动物源成分的无血清培养基的组成为:AIM-V+(4~7)%ISR;
更优选地,所述不含动物源成分的无血清培养基的组成为: AIM-V+5%ISR。
在本发明的优选的实施方案中,在步骤3)中,所述采用慢病毒载体感染激活后的T细胞具体包括:取出激活培养的T细胞,加入终浓度为(5~10)μg/mL的聚凝胺混匀,并按感染复数=(0.25~5)缓慢加入慢病毒载体,混匀后在(1000~3000)rpm下离心0.5~2.0小时,然后在37℃+5%CO 2下培养至少24小时。
附图说明
图1为不同培养体系下CAR-T细胞增殖倍数的对比图;
图2为不同培养体系下CAR-T细胞存活率的对比图;
图3为不同培养体系下CAR表达的对比图;
图4为不同灌流工艺(400mL-1000mL灌流速度与600mL-1800mL灌流速度)扩增倍数的对比图;
图5为不同灌流工艺(400mL-1000mL灌流速度与600mL-1800mL灌流速度)存活率的对比图;
图6为不同灌流工艺(800mL-1000mL灌流速度与1000mL-1500mL灌流速度)扩增倍数的对比图;
图7为不同灌流工艺(800mL-1000mL灌流速度与1000mL-1500mL灌流速度)存活率的对比图。
具体实施方式
需要说明的是,除非另外定义,本说明书一个或多个实施例使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的药材原料、试剂材料等,如无特殊说明,均为市售购买产品。
传统CAR-T细胞培养体系采用的是含血清的培养体系,血清包括自体血清(或血浆)、AB血清、胎牛血清等。自体血清(或血浆)受个体差异的影响,质量不可控,且批量受限;AB血清采自AB血型的异体供者,虽然质量一致性较自体血清(或血浆)要好,批量也较自体血清(或血浆)高,但是由于一个批次的AB血清来源于多个供者,虽然经过病原 体筛查和灭活处理,仍然不能完全避免血源性疾病的传播;胎牛血清来源于牛,除了有病原体传播的风险,还有过敏反应的风险。因此,从CAR-T细胞产品开发和安全使用的角度,需要研发一种不含动物源成分的无血清培养体系用于CAR-T细胞培养。
但当前的市售无血清培养体系存在以下问题:CAR-T细胞增殖能力在无血清培养体系下较弱;CAR-T细胞存活率在无血清培养体系下较低;CAR-T细胞的CAR表达率在无血清培养体系下较低等等。
本发明通过筛选不同来源的无血清培养基及添加物,获得了一种在不含动物源成分的无血清培养体系下的CAR-T细胞培养基,使得CAR-T细胞增殖、存活率和病毒感染效率均较高,与含血清的培养体系相当或更优。
另外,本发明采用灌流培养的方式对CAR-T细胞进行培养,并对灌流培养过程中各阶段的灌流速率进行确定,使得本发明的灌流培养方法能够在不显著降低培养效果的前提下,节省培养基,经济性更高。
基于上述目的,本发明提供了一种CAR-T细胞灌流培养方法,其包括以下步骤:
1)从受试者单采血细胞中分离获得外周血单个核细胞,然后从外周血单个核细胞中分选获得T细胞;
2)将分离的T细胞用CD3/CD28刺激磁珠进行激活处理;
3)采用慢病毒载体感染激活后的T细胞;
4)对慢病毒感染后的T细胞进行灌流培养,收获CAR-T细胞;
其中使用不含动物源成分的无血清培养基对CAR-T细胞进行培养,所述不含动物源成分的无血清培养基的组成为:AIM-V+3~9%ISR;
所述灌流培养包括以下阶段:
第一阶段:当细胞密度为(0.5~1.1)×10 6个细胞/mL时,灌流速率为A 1;以及/或者
第二阶段:当细胞密度为(1.1~2)×10 6个细胞/mL时,灌流速率为A 2;以及
第三阶段:当细胞密度>2×10 6个细胞/mL时,灌流速率为A 3
其中A 1:A 2:A 3=1:2:2.5。
该不含动物源成分的无血清培养基的组成为:
(1)无血清基础培养基:AIM-V;
(2)添加物:CTS IMMUNE CELL SR(“ISR”);
(3)配比:AIM-V+(3~9)%ISR;优选地,配比:AIM-V+(4~7)%ISR;更优选地,配比为:AIM-V+5%ISR。
本发明将AIM-V+5%ISR培养基与含血清的培养基以及几种常见的其他无血清培养基进行CAR-T细胞的培养效果(扩增倍数、存活率和CAR表达率)的比较,结果表明,AIM-V+5%ISR培养基在扩增倍数、存活率和CD 3+CAR +表达方面均较好。综合考虑,本发明选择了AIM-V+5%ISR培养基作为CAR-T细胞培养的培养基。
ISR是一种成分明确的血清替代物,不含牛或其他动物来源的成分,这种血清替代物的使用,能够减少安全方面的风险。AIM-V培养基和ISR均可购自ThermoFisher公司。
现阶段CAR-T细胞的大规模培养主要使用补液培养方式,通过扩大培养体积来提高细胞的数量。然而,这种方式下,当所需的细胞数量较多时,可能无法在一个容器中完成培养,造成批次内的差异;另外培养过程中代谢废物无法排出,影响细胞培养效果。灌流培养是一种补加新鲜培养基的同时排出废液的培养方式,相比于一般的补液培养方式,灌流培养过程中培养基成分浓度变化更小,可提供对细胞稳定且有利的生长环境,细胞培养效果更好,且可以在培养体积不增加的情况下,达到大量扩增细胞数量的效果。因此,比较适合于CAR-T细胞扩增培养阶段。
在灌流培养过程中一个重要的参数为灌流速率,当反应器中活细胞密度发生变化时,每个细胞所获得的营养物质及被带走的代谢产物发生变化,其灌流速率必然发生变化。如何根据时刻变化的细胞密度,选择合适的灌流速率是一个非常重要的问题,本发明比较了多个灌流模式,综合考虑培养效果和经济性,最终确定了以下的灌流培养过程:
第一阶段:当细胞密度为(0.5~1.1)×10 6个细胞/mL时,灌流速率为A 1;以及/或者
第二阶段:当细胞密度为(1.1~2)×10 6个细胞/mL时,灌流速率为A 2;以及
第三阶段:当细胞密度>2×10 6个细胞/mL时,灌流速率为A 3
其中A 1:A 2:A 3=1:2:2.5。
优选地,A1为0.4个生物反应器体积/天,A2为0.8个生物反应器体积/天,A3为1.0个生物反应器体积/天。例如,当生物反应器体积为1000mL时,对应的灌流速率A1为400mL/天,灌流速率A2为800mL/天,灌流速率A3为1000mL/天。
需要说明一点,本发明的灌流培养过程强调的是根据不断变化的细胞密度,确定所对应的灌流速率。本发明的灌流培养过程并不强调必须同时包括第一阶段和第二阶段,第一阶段和第二阶段可以择一存在,也可以同时存在,这需要根据细胞的生长情况具体而定。具体的,本发明的灌流培养过程可以包括第一阶段和第三阶段,或者包括第二阶段和第三阶段,或者同时包括第一阶段、第二阶段和第三阶段。在实际培养CAR-T细胞过程中,测定细胞密度为(0.5~1.1)×10 6个细胞/mL时,采用灌流速率A 1进行培养,然后隔一段时间(例如24小时),测定细胞密度>2×10 6个细胞/mL时,可直接采用灌流速率A 3进行培养(例如表1中的灌流培养过程);或者,测定细胞密度为(1.1~2)×10 6个细胞/mL时,可直接采用灌流速率A 2进行培养,然后隔一段时间(例如24小时),测定细胞密度>2×10 6个细胞/mL时,采用灌流速率A 3进行培养(例如表2中的灌流培养过程)。
如背景技术所述,CAR-T细胞的存活率会直接影响CAR-T细胞对癌细胞的清除效率。CAR-T增殖能力(即扩增倍数)与疗效具有很强的相关性。另外,CAR-T细胞体外扩增激活后回输到患者体内,其杀伤肿瘤细胞的机制为:CAR-T细胞与特异性肿瘤抗原结合后,通过释放穿孔素、颗粒酶素B等直接杀伤肿瘤细胞,同时还通过释放细胞因子募集人体内源性免疫细胞杀伤肿瘤细胞,从而达到***的目的。而在CAR-T细胞释放的这些细胞因子中,IFN-γ(干扰素γ)是起主要作用的细胞因子;已有文献表明,CAR-T细胞分泌的IFN-γ含量与疗效密切相关。因此,本发明重点考察了这几个指标,实验结果表明,本发明在使用无血清培养基+特定灌流工艺的情况下,实现了无血清培养体系下的高效培养,且培养获得的CAR-T细胞扩增倍数、存活率、CAR表达率和分泌IFN-γ含量均较高。
在本发明的优选的实施方案中,其中,在步骤4)中,当细胞密度≥预设值时,开始灌流培养;优选地,所述预设值为(0.3~1.2)×10 6个细胞/mL;更优选地,所述预设值为(0.4~1.0)×10 6个细胞/mL;进一步优选地,所述 预设值为0.5×10 6个细胞/mL。优选地,当细胞密度为(0.5~1.1)×10 6个细胞/mL时,灌流速率为A 1
本发明对从受试者单采血细胞中分离获得外周血单个核细胞(PBMC)的方法不作限制,例如可采用葡聚糖-泛影葡胺(Ficoll)密度梯度离心法,用此方法分离PMBC纯度可达95%。原理为:血液中各有形成分的比重存在差异,利用比重为1.077、近于等渗的ficoll-hypaque混合溶液(又称淋巴细胞分层液)作密度梯度离心时,各种血液成分将按照密度梯度重新聚集。血浆和血小板由于密度较低,故悬浮于分液层的上部;红细胞与粒细胞由于密度较大,故沉于分液层的底部;PBMC密度稍低于分层液,故位于分层液界面上,这样就可获得PMBC。本发明对从外周血中分选获得T细胞的方法不作限制,例如可采用免疫磁珠法,该方法是基于细胞表面抗原能与连接有磁珠的特异性单抗相结合,在外加磁场中,通过抗体与磁珠相连的细胞被吸附而滞留在磁场中,无该种表面抗原的细胞由于不能与连接着磁珠的特异性单抗结合而没有磁性,不在磁场中停留,从而使细胞得以分离。
T细胞的体外培养都需要使用CD3/CD28抗体,刺激T细胞使其获得功能活性。CD3/CD28抗体偶联磁珠主要用于人T细胞的分离、活化和体外扩增。使用4.5μm的超顺磁珠,与细胞大小相匹配,同时偶联抗CD3和CD28抗体,可以提供T细胞激活与扩增所需的主要信号和协同刺激信号。首先,利用CD3/CD28免疫磁珠进行磁性细胞分离,CD3 +T细胞便可以从所得分离产物中分离并富集。分离后,CD3+T细胞在磁珠的存在下培养。通过结合免疫磁珠上的抗CD3和抗CD28抗体,磁珠可以提供T细胞活化和扩增所需的初级和共刺激信号。被激活的T细胞可产生IL-2(白细胞介素2)、GM-CSF(粒细胞巨噬细胞刺激因子)、IFN-γ(干扰素γ)和INF-α(肿瘤坏死因子α)等细胞因子,发挥T细胞的作用和功能。
本发明对涉及的慢病毒载体不作限定,现有技术中包含编码CAR基因的核酸序列的慢病毒载体均可用于本发明。
下面结合具体的实施例对本发明提供的技术方案做进一步的描述。下述实施例仅用于对本发明进行说明,并不会对本发明的保护范围进行限制。
以下实施例中涉及的检测方法如下:
1)细胞存活率
混匀检测样本,吸取20μl样本至EP管中。再吸取20μl AOPI染液至EP管中,用加样枪吸取超过1/10样品体积,上下混匀10次。从混匀的液体中吸取20μl加入细胞计数板。将细胞计数板***细胞计数仪样本槽中,点击确定。活细胞呈绿色或黄绿色均匀荧光,死细胞呈红色荧光。记录细胞存活率和活细胞浓度等结果。
2)细胞扩增倍数
根据细胞存活率检测试验中的细胞计数结果和培养体积,计算当天的活细胞总数,除以接种当天的活细胞总数,即可得到细胞扩增倍数。
细胞扩增倍数=活细胞浓度×体积/接种的活细胞数
3)CAR表达率
CAR-T细胞扩增后计数,转染与未转染CAR-T细胞分别取10 5移入FACS管中;用2ml FACS缓冲液洗涤细胞,1200rpm/分离心5分钟,弃掉上清;100μl FACS缓冲液重悬细胞沉淀,加入2μl PE标记的羊抗鼠F(ab′) 2抗体,4℃避光染色30分钟;2ml FACS缓冲液洗涤细胞,1200rpm/分离心5分钟,弃掉上清;200μl FACS缓冲液重悬细胞沉淀,流式细胞仪分析T细胞表面CAR的表达率。
4)分泌IFN-γ含量检测方法
将CAR-T细胞与Nalm6细胞按照1:1的比例接种在24孔板中,各接种0.5×10 6细胞/孔,作为实验孔;同时设置CAR-T细胞对照孔和Nalm6细胞对照孔。放入37℃,5%CO 2的二氧化碳培养箱培养约24小时。
培养24小时后离心收集上清。
从已平衡至室温的密封袋中取出微孔板(IFN-γMicroplate),未用的板条放回铝箔袋内,重新封口,放回2-8℃保存。
用稀释剂(1X)将样品、检测内参、阴性对照分别进行100倍稀释。
将准备好的标准品(浓度由低到高)、样品、检测内参、阴性对照分别加入相应孔中,每孔100ul,做三个复孔。用封板胶纸封住反应孔,室温孵育2小时。
将板内液体甩去,使用自动洗板机,每孔加洗涤工作液350ul,低速震动5s洗板,重复4次;或手动洗板,每孔加洗涤工作液300ul,浸泡 30s,重复4次。
每孔加入200ul IFN-γ缀合物(Conjugate),用封板膜封住,室温孵育2小时。
重复步骤4.7.5洗板。
每孔加入200ul显色液,室温静置避光孵育10-30min。
每孔加入50ul终止液(Stop Solution)1,轻柔震荡混匀。
用酶标仪于检测波长450nm,参比波长570nm下读数。
标准曲线的绘制与计算
利用酶标仪软件,绘制一个4参数线性标准曲线,曲线横坐标为标准曲线点IFN-γ浓度值,纵坐标为标准曲线点的OD平均值(OD=OD 450-OD 570)。通过每个样品的OD平均值,可从标准曲线上得到样品中IFN-γ的浓度值。
实施例1CAR-T细胞培养过程中无血清培养基的筛选
步骤1:T细胞的获得
采用葡聚糖-泛影葡胺(Ficoll)密度梯度离心法从受试者单采血细胞中分离获得外周血单个核细胞(PBMC),然后采用免疫磁珠法从PBMC细胞中分选获得T细胞。采用Ficoll密度梯度离心法从受试者单采血细胞中分离获得PBMC细胞的步骤如下:
(1)静脉取血2ml,加入含肝素溶液(10~50μg/ml血样本)的试管中,混匀,使血液抗凝。用pH 7.2Hanks或生理盐水将抗凝血稀释1倍。
(2)吸取2ml淋巴细胞分层液置于刻度离心管中,然后将离心管倾斜45°角,用毛细滴管将稀释的全血沿管壁缓慢加至分离液上面,应注意保持两者界面清晰。
(3)在18℃~20℃下,用水平离心机以2000r/min离心20min。
(4)用毛细吸管轻轻插到混浊带,沿管壁轻轻吸出此层细胞,移入另一支离心管中。既要吸取所有单个核细胞,又要避免吸取过多的分层液或血浆,以免混入其他细胞成分。
(5)用Hanks液洗涤细胞3次。第一次2000r/min,10min,第2~3次1500r/min,10min可去掉大部分混杂的血小板。
(6)将沉淀细胞(即为PMBC细胞)悬于培养基中备用。
使用CD3免疫磁珠(购自Miltenyi公司)从PBMC细胞中分选获得T细胞的步骤如下:
取适量的MACS缓冲液(成分为PBS/EDTA+0.2%BSA)洗涤PMBC细胞(10 7/mL),离心后MACS缓冲液重悬PMBC,加入CD3免疫磁珠(20μL/10 7PBMC)混匀,4℃孵育15min;MACS缓冲液洗涤细胞1次后,500μL重悬细胞。将MS分离柱放入磁场中,加入MACS缓冲液预洗涤1次。将细胞悬液加入MS柱中,先流出的细胞为CD3 -T细胞,MACS缓冲液洗涤分离株3次,将MS柱从磁场中移出,加入1mLMACS缓冲液,用推杆将CD3 +T细胞推出到一个无菌的离心管中。细胞计数后,分为4份,用4种不同的CAR-T细胞完全培养基,分别为:KBM581+5%FBS+100IU/ml IL-2,X-VIVO+5%ISR+100IU/ml IL-2,PRIME-XVT CELL CDM+5%ISR+100IU/ml IL-2,AIM-V+5%ISR+100IU/ml IL-2,重悬细胞,1500转、10分钟离心去除上清。
步骤2:对T细胞进行激活处理
将分离的T细胞用4种CAR-T细胞完全培养基(KBM581+5%FBS+100IU/ml IL-2,X-VIVO+5%ISR+100IU/ml IL-2,PRIME-XVT CELL CDM+5%ISR+100IU/ml IL-2,AIM-V+5%ISR+100IU/ml IL-2)进行重悬,使终浓度为2×10 6个细胞/ml,并按照每1×10 6T细胞加入2.5μL的CD3/CD28抗体刺激磁珠,混匀后置于培养箱培养,培养条件为37℃+5%CO 2,培养时间至少24小时。
步骤3:慢病毒载体感染T细胞
取出激活培养的T细胞,加入终浓度为8μg/ml的聚凝胺(polybrene),混匀,并按MOI=1缓慢加入慢病毒载体,混匀后将细胞培养板置于离心机中,1500rpm,离心1.5小时。然后将其置于培养箱培养,培养条件为37℃+5%CO 2,培养时间至少24小时。
步骤4:感染后CAR-T细胞的扩增培养
培养24小时后,离心细胞培养板,弃掉培养液,加入新鲜的细胞培养基,扩增CAR-T细胞,使用上述4种不同的培养基组成来扩增CAR-T细胞,并在第0天、第2天、第4天、第6天、第8天、第10天、第12天和第14天取细胞培养液进行扩增倍数、存活率和CAR表达率的测定。
扩增倍数、存活率和CAR表达的结果分别参见图1-3。由图1-3可知,AIM-V+5%ISR+100IU/mL IL-2培养基中,CAR-T细胞增殖倍数、CAR-T细胞存活率和CD3 +CAR +表达都明显较好。比较了4种培养基,综合考虑培养效果,选择了AIM-V+5%ISR培养基。因此,在后续的实验中,选择AIM-V+5%ISR+100IU/mL IL-2培养基作为CAR-T细胞扩增的培养基,并选择MOI=1进行慢病毒载体转染。
实施例2CAR-T细胞培养过程中灌流速率的确定
步骤1:T细胞的获得
采用葡聚糖-泛影葡胺(Ficoll)密度梯度离心法从受试者单采血细胞中分离获得外周血单个核细胞(PBMC),然后采用免疫磁珠法从PBMC细胞中分选获得T细胞。采用Ficoll密度梯度离心法从受试者单采血细胞中分离获得PBMC细胞的步骤如下:
(1)静脉取血2ml,加入含肝素溶液(10~50μg/ml血样本)的试管中,混匀,使血液抗凝。用pH 7.2Hanks或生理盐水将抗凝血稀释1倍。
(2)吸取2ml淋巴细胞分层液置于刻度离心管中,然后将离心管倾斜45°角,用毛细滴管将稀释的全血沿管壁缓慢加至分离液上面,应注意保持两者界面清晰。
(3)在18℃~20℃下,用水平离心机以2000r/min离心20min。
(4)用毛细吸管轻轻插到混浊带,沿管壁轻轻吸出此层细胞,移入另一支离心管中。既要吸取所有单个核细胞,又要避免吸取过多的分层液或血浆,以免混入其他细胞成分。
(5)用Hanks液洗涤细胞3次。第一次2000r/min,10min,第2~3次1500r/min,10min可去掉大部分混杂的血小板。
(6)将沉淀细胞(即为PMBC细胞)悬于培养基中备用。
使用CD3免疫磁珠(购自Miltenyi公司)从PBMC细胞中分选获得T细胞的步骤如下:
取适量的MACS缓冲液(成分为PBS/EDTA+0.5%人血白蛋白)洗涤PMBC细胞(10 7/mL),离心后MACS缓冲液重悬PMBC,加入CD3免疫磁珠(20μL/10 7PBMC)混匀,4℃孵育15min;MACS缓冲液洗涤细胞1次后,500μL重悬细胞。将MS分离柱放入磁场中,加入MACS 缓冲液预洗涤1次。将细胞悬液加入MS柱中,先流出的细胞为CD3 -T细胞,MACS缓冲液洗涤分离株3次,将MS柱从磁场中移出,加入1mLMACS缓冲液,用推杆将CD3 +T细胞推出到一个无菌的离心管中。细胞计数后,用AIM-V+5%ISR+100IU/mL IL-2培养基重悬。
步骤2:对T细胞进行激活处理
将分离的T细胞用AIM-V+5%ISR+100IU/mL IL-2培养基进行重悬,使终浓度为2×10 6个细胞/ml,并按照每1×10 6T细胞加入2.5μL的CD3/CD28抗体刺激磁珠,混匀后置于培养箱培养,培养条件为37℃+5%CO 2,培养时间至少24小时。
步骤3:慢病毒载体感染T细胞
取出激活培养的T细胞,加入终浓度为8μg/ml的聚凝胺(polybrene),混匀,并按MOI=1缓慢加入慢病毒载体,混匀后将细胞培养板置于离心机中,1500rpm,离心1.5小时。然后将其置于培养箱培养,培养条件为37℃+5%CO 2,培养时间至少24小时。
步骤4:转入Xuri生物反应器扩增培养
培养24小时后,离心细胞培养板,弃掉培养液,加入新鲜的细胞培养基AIM-V+5%ISR+100IU/mL IL-2,扩增CAR-T细胞,监测细胞数量,待细胞数量达到(5~15)×10 7后,将细胞转入Xuri生物反应器进行扩增培养。
扩增培养开始后,每天取样计数,并按照(0.3~1)×10 6个细胞/mL密度为补液标准进行补液,通气量设置为(0.1~1)L/分钟,转速(4~12)rpm,通气为压缩空气加5%CO 2。一直到培养体积达到1000mL,且细胞总数≥5×10 8个细胞时,转入灌流培养模式,开始灌流培养后,通气量设置为0.5L/分钟,转速10rpm,通气为压缩空气加5%CO 2
分别采用不同灌流速度进行CAR-T细胞扩增培养,比较灌流开始后的扩增倍数、存活率和分泌IFN-γ含量等数据。共对比了四种灌流模式,分别为:
(一)培养体积达到1000mL后,当细胞密度为(0.5~1.1)×10 6个细胞/mL时,每天灌流体积设置为400mL;当细胞密度≥2×10 6个细胞/mL时,每天灌流体积设置为1000mL。以下简称“400mL-1000mL模式”。
(二)培养体积达到1000mL后,当细胞密度在(1.1~2)×10 6个细胞/mL 时,每天灌流体积设置为800mL;当细胞密度≥2×10 6个细胞/mL时,每天灌流体积设置为1000mL。以下简称“800mL-1000mL模式”。
(三)培养体积达到1000mL后,当细胞密度为(0.5~1.1)×10 6个细胞/mL时,每天灌流体积设置为600mL;当细胞密度≥2×10 6个细胞/mL时,每天灌流体积设置为1800mL。以下简称“600mL-1800mL模式”。
(四)培养体积达到1000mL后,当细胞密度在(1.1~2)×10 6个细胞/mL时,每天灌流体积设置为1000mL;当细胞密度≥2×10 6个细胞/mL时,每天灌流体积设置为1500mL。以下简称“1000mL-1500mL模式”。
研究结果:
①灌流开始后细胞密度、存活率、24小时扩增倍数和分泌IFN-γ含量(400mL-1000mL模式与600mL-1800mL模式对比)的结果见表1和图4-5。
表1:细胞密度、存活率、扩增倍数和分泌IFN-γ含量
Figure PCTCN2022080811-appb-000001
由以上结果可以得出,400mL-1000mL模式与600mL-1800mL模式下,虽然600mL-1800mL模式的细胞扩增倍数略优于400mL-1000mL模式,但400mL-1000mL模式的存活率和分泌IFN-γ含量要显著高于600mL-1800mL模式,且400mL-1000mL模式分泌IFN-γ含量是600mL-1800mL模式的约1.2倍。
②灌流开始后细胞密度、存活率、24小时扩增倍数和分泌IFN-γ含量(800mL-1000mL模式与1000mL-1500mL模式对比)的结果见表2和图6-7。
表2:细胞密度、存活率、扩增倍数和分泌IFN-γ含量
Figure PCTCN2022080811-appb-000002
Figure PCTCN2022080811-appb-000003
由以上结果可以得出,800mL-1000mL模式与1000mL-1500mL模式下,两次实验细胞扩增倍数及存活率平均结果没有明显区别,但800mL-1000mL模式分泌IFN-γ含量要显著高于1000mL-1500mL模式,且800mL-1000mL模式分泌IFN-γ含量是1000mL-1500mL模式的约1.8倍。
通过上述实验,比较了4种灌流模式,综合考虑培养效果和经济性,选择400mL-1000mL或800mL-1000mL的灌流模式作为优选的灌流模式,即当细胞密度为(0.5~1.1)×10 6个细胞/mL时,每天灌流体积设置为400mL;以及/或者,当细胞密度在(1.1~2)×10 6个细胞/mL时,每天灌流体积设置为800mL;以及当细胞密度≥2×10 6个细胞/mL时,每天灌流体积设置为1000mL。
综上,在AIM-V+5%ISR培养基中,通过400mL-1000mL或800mL-1000mL的灌流模式,可以获得高细胞扩增倍数、高细胞存活率和高分泌IFN-γ含量,且可保证CAR +表达的CAR-T细胞,用于临床治疗。

Claims (10)

  1. 一种CAR-T细胞灌流培养方法,其包括以下步骤:
    1)从受试者单采血细胞中分离获得外周血单个核细胞,然后从外周血单个核细胞中分选获得T细胞;
    2)将分离的T细胞用CD3/CD28刺激磁珠进行激活处理;
    3)采用慢病毒载体感染激活后的T细胞;
    4)对慢病毒感染后的T细胞进行灌流培养,收获CAR-T细胞;
    其中使用不含动物源成分的无血清培养基对CAR-T细胞进行培养,所述不含动物源成分的无血清培养基的组成为:AIM-V+(3~9)%ISR;
    所述灌流培养包括以下阶段:
    第一阶段:当细胞密度为(0.5~1.1)×10 6个细胞/mL时,灌流速率为A 1;以及/或者
    第二阶段:当细胞密度为(1.1~2)×10 6个细胞/mL时,灌流速率为A 2;以及
    第三阶段:当细胞密度>2×10 6个细胞/mL时,灌流速率为A 3
    其中A 1:A 2:A 3=1:2:2.5。
  2. 根据权利要求1所述的CAR-T细胞灌流培养方法,其中,所述不含动物源成分的无血清培养基的组成为:AIM-V+(4~7)%ISR;
    优选地,所述不含动物源成分的无血清培养基的组成为:AIM-V+5%ISR。
  3. 根据权利要求1或2所述的CAR-T细胞灌流培养方法,其中,A 1为0.4个生物反应器体积/天,A 2为0.8个生物反应器体积/天,A 3为1.0个生物反应器体积/天。
  4. 根据权利要求1-3之一所述的CAR-T细胞灌流培养方法,其中,在步骤4)中,当细胞密度≥预设值时,开始灌流培养;
    优选地,所述预设值为(0.3~1.2)×10 6个细胞/mL;
    更优选地,所述预设值为(0.4~1.0)×10 6个细胞/mL;
    进一步优选地,所述预设值为0.5×10 6个细胞/mL。
  5. 根据权利要求4所述的CAR-T细胞灌流培养方法,其中,在步骤4)中,在细胞密度达到预设值之前,采用补液培养,其中补液培养过程 中以(0.3~1)×10 6个细胞/mL的密度为补液标准进行补液,通气量为(0.1~1)L/分钟,转速为(4-12)rpm,通气为压缩空气加(1~10)%CO 2
  6. 根据权利要求5所述的CAR-T细胞灌流培养方法,在步骤4)中,在补液培养之前包括:
    待感染后的T细胞数量达到(5~15)×10 7个细胞,将感染后的T细胞转入Xuri生物反应器进行补液培养。
  7. 根据权利要求1-6之一所述的CAR-T细胞灌流培养方法,其中,所述灌流培养过程中的通气量为(0.3~0.8)L/分钟,转速为(5~15)rpm,通气为压缩空气加(1~10)%CO 2
    优选地,所述灌流培养过程中的通气量为(0.4~0.6)L/分钟,转速为(8~12)rpm,通气为压缩空气加(3~6)%CO 2
    更优选地,所述灌流培养过程中的通气量为0.5L/分钟,转速为10rpm,通气为压缩空气加5%CO 2
  8. 根据权利要求1-7之一所述的CAR-T细胞灌流培养方法,其中,在步骤2)中,所述将分离的T细胞用CD3/CD28刺激磁珠进行激活处理具体包括:将分离的T细胞进行重悬,使终浓度为(1~2)×10 6个细胞/mL,并按照每1×10 6T细胞加入(0.5~10)μL的CD3/CD28刺激磁珠混匀,然后在37℃+5%CO 2下培养至少24小时。
  9. 根据权利要求8所述的CAR-T细胞灌流培养方法,其中,将分离的T细胞用不含动物源成分的无血清培养基进行重悬,所述不含动物源成分的无血清培养基的组成为:AIM-V+(3~9)%ISR;
    优选地,所述不含动物源成分的无血清培养基的组成为:AIM-V+(4~7)%ISR;
    更优选地,所述不含动物源成分的无血清培养基的组成为:AIM-V+5%ISR。
  10. 根据权利要求1-9之一所述的CAR-T细胞灌流培养方法,其中,在步骤3)中,所述采用慢病毒载体感染激活后的T细胞具体包括:取出激活培养的T细胞,加入终浓度为(5~10)μg/mL的聚凝胺混匀,并按感染复数=(0.25~5)缓慢加入慢病毒载体,混匀后在(1000~3000)rpm下离心0.5~2.0小时,然后在37℃+5%CO 2下培养至少24小时。
PCT/CN2022/080811 2021-03-16 2022-03-15 一种car-t细胞灌流培养方法 WO2022194118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110278284.0 2021-03-16
CN202110278284.0A CN112662631B (zh) 2021-03-16 2021-03-16 一种car-t细胞灌流培养方法

Publications (1)

Publication Number Publication Date
WO2022194118A1 true WO2022194118A1 (zh) 2022-09-22

Family

ID=75399332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080811 WO2022194118A1 (zh) 2021-03-16 2022-03-15 一种car-t细胞灌流培养方法

Country Status (2)

Country Link
CN (1) CN112662631B (zh)
WO (1) WO2022194118A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116656607A (zh) * 2023-07-25 2023-08-29 苏州依科赛生物科技股份有限公司 一种t细胞无血清培养基及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662631B (zh) * 2021-03-16 2021-06-29 合源生物科技(天津)有限公司 一种car-t细胞灌流培养方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423820A (zh) * 2008-11-28 2009-05-06 浙江大学 基于骨髓间充质干细胞的骨组织分阶段灌流培养方法
CN107236762A (zh) * 2017-06-19 2017-10-10 河北浓孚雨生物科技有限公司 一种微环dna转染t细胞制备临床级car‑t细胞制剂的方法
US20180179280A1 (en) * 2016-11-22 2018-06-28 National University Of Singapore Blockade of cd7 expression and chimeric antigen receptors for immunotherapy of t-cell malignancies
CN110499291A (zh) * 2018-05-16 2019-11-26 西比曼生物科技(香港)有限公司 无血清培养制备嵌合抗原受体t细胞的方法
CN111733186A (zh) * 2020-07-03 2020-10-02 天津英科赛奥科技有限公司 靶向cd19的人源化嵌合抗原受体制备及其应用
CN112662631A (zh) * 2021-03-16 2021-04-16 合源生物科技(天津)有限公司 一种car-t细胞灌流培养方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019055946A1 (en) * 2017-09-18 2019-03-21 F1 Oncology, Inc. METHODS AND COMPOSITIONS FOR THE GENETIC MODIFICATION AND EXPANSION OF LYMPHOCYTES AND THE REGULATION OF THE ACTIVITY THEREOF
CA3092993A1 (en) * 2018-03-09 2019-09-12 Sorrento Therapeutics, Inc. Dimeric antigen receptors (dar)
CN109825436A (zh) * 2019-03-12 2019-05-31 华道(上海)生物医药有限公司 全封闭细胞培养***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423820A (zh) * 2008-11-28 2009-05-06 浙江大学 基于骨髓间充质干细胞的骨组织分阶段灌流培养方法
US20180179280A1 (en) * 2016-11-22 2018-06-28 National University Of Singapore Blockade of cd7 expression and chimeric antigen receptors for immunotherapy of t-cell malignancies
CN107236762A (zh) * 2017-06-19 2017-10-10 河北浓孚雨生物科技有限公司 一种微环dna转染t细胞制备临床级car‑t细胞制剂的方法
CN110499291A (zh) * 2018-05-16 2019-11-26 西比曼生物科技(香港)有限公司 无血清培养制备嵌合抗原受体t细胞的方法
CN111733186A (zh) * 2020-07-03 2020-10-02 天津英科赛奥科技有限公司 靶向cd19的人源化嵌合抗原受体制备及其应用
CN112662631A (zh) * 2021-03-16 2021-04-16 合源生物科技(天津)有限公司 一种car-t细胞灌流培养方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
COREY SMITH ET AL.: "Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement", CLIN TRANSL IMMUNOLOGY, vol. 4, no. 1, 16 January 2015 (2015-01-16), XP055549892, ISSN: 2050-0068, DOI: 10.1038/cti.2014.31 *
MA DONGLEI, LIN KE-JIA;CHEN CHEN;WEI ZONG-KE;WEI ZHI-ZHANG;LUO XIAO-LING;WANG YU-HUAN: "Efficiency of Inducing CIK from Cryopreserved PBMNC by Using Immune Cell SR", ZHONGGUO SHIYAN XUEYEXUE ZAZHI - JOURNAL OF EXPERIMENTALHEMATOLOGY, ZHONGGUO SHIYAN, XUEYEXUE ZAZHISHE, BEIJING, CN, vol. 26, no. 3, 20 June 2018 (2018-06-20), CN , pages 894 - 899, XP055968351, ISSN: 1009-2137, DOI: 10.7534/j.issn.1009-2137.2018.03.044 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116656607A (zh) * 2023-07-25 2023-08-29 苏州依科赛生物科技股份有限公司 一种t细胞无血清培养基及其应用
CN116656607B (zh) * 2023-07-25 2023-09-22 苏州依科赛生物科技股份有限公司 一种t细胞无血清培养基及其应用

Also Published As

Publication number Publication date
CN112662631A (zh) 2021-04-16
CN112662631B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN109666640B (zh) 自然杀伤细胞体外纯培养的方法
CN105754941B (zh) 一种外周血nk细胞的体外诱导扩增培养方法
WO2022194118A1 (zh) 一种car-t细胞灌流培养方法
CN107022524A (zh) 一种从外周血单个核细胞中大量扩增nk细胞的方法
WO2016034094A1 (zh) 制备dc-ctl的试剂盒及其应用
CN111944754B (zh) 一种自然杀伤细胞的培养方法
WO2015081741A1 (zh) 免疫细胞制备方法及其制备试剂盒
CN111500535B (zh) 用于体外培养人自然杀伤细胞的方法和培养基
CN113249321A (zh) 一种外周血nk细胞的培养方法
US20230015932A1 (en) Method of generation of lympho-myeloid niches
WO2023216799A1 (zh) 一种人nkt细胞系及其应用
CN111548994B (zh) 一种细胞培养基及其培养nk细胞的方法
CN112251405A (zh) 一种体外高效诱导扩增nk细胞的方法
CN114231488B (zh) 一种体外培养th1细胞的培养液及其应用和th1细胞的体外培养方法
CN111690606B (zh) 体外激活扩增人体自然杀伤细胞及杀伤率检测方法
CN115340981A (zh) 用于脐带血cd34阳性造血干细胞体外扩增的培养基
CN113293130B (zh) 一种肿瘤特异性t细胞的培养方法
CN111690607B (zh) 一种高效杀伤细胞体外培养试剂盒及培养方法
CN111154721B (zh) Nk细胞扩增方法
CN112725273A (zh) 一种nk细胞及其制备方法和应用
CN113195706A (zh) Ciml nk细胞及其方法
CN110564684A (zh) 一种体外稳定、大量扩增、高细胞毒活性的nk细胞的方法及应用
CN109251891B (zh) 一种cd40联合pd-l1及细胞因子扩增pbmc的方法
CN114591908B (zh) 一种诱导Tregs得到胚胎抗原特异性iTregs的刺激因子、培养基及方法和应用
CN112961827B (zh) 佛司可林在t细胞培养中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18550750

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770473

Country of ref document: EP

Kind code of ref document: A1