WO2022193905A1 - 一种用于棱柱式高温气冷堆的混合腔室结构、棱柱式高温气冷堆结构 - Google Patents

一种用于棱柱式高温气冷堆的混合腔室结构、棱柱式高温气冷堆结构 Download PDF

Info

Publication number
WO2022193905A1
WO2022193905A1 PCT/CN2022/076982 CN2022076982W WO2022193905A1 WO 2022193905 A1 WO2022193905 A1 WO 2022193905A1 CN 2022076982 W CN2022076982 W CN 2022076982W WO 2022193905 A1 WO2022193905 A1 WO 2022193905A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature gas
cooled reactor
mixing chamber
side wall
high temperature
Prior art date
Application number
PCT/CN2022/076982
Other languages
English (en)
French (fr)
Inventor
***
张朔婷
张成龙
朱思阳
李呼昂
姚红
贺楷
杨长江
刘国明
汪俊
Original Assignee
中国核电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核电工程有限公司 filed Critical 中国核电工程有限公司
Priority to CA3207375A priority Critical patent/CA3207375A1/en
Publication of WO2022193905A1 publication Critical patent/WO2022193905A1/zh
Priority to ZA2023/07645A priority patent/ZA202307645B/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/02Details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/12Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from pressure vessel; from containment vessel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/14Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from headers; from joints in ducts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the technical field of reactors, and in particular relates to a hybrid chamber structure for a prismatic high temperature gas-cooled reactor and a prismatic high temperature gas-cooled reactor structure.
  • High-temperature gas-cooled reactors refer to nuclear reactors that use helium as a coolant and have a high outlet temperature.
  • High-temperature gas-cooled reactors use highly inclusive fuels with graphite as moderator.
  • the core outlet temperature is 850-1000°C, or even higher.
  • Nuclear fuel generally uses high-enriched uranium dioxide, but also uses low-enriched uranium dioxide.
  • high temperature gas-cooled reactors are divided into pebble bed high-temperature gas-cooled reactors and prismatic high-temperature gas-cooled reactors.
  • the high temperature gas-cooled reactor has the advantages of high thermal efficiency (40%-41%), deep burnup (up to 20MWd/t uranium), and high conversion ratio (0.7-0.8). Due to the good chemical stability of helium gas, good heat transfer performance, and low induced radioactivity, the residual heat can be safely taken out after the shutdown, and the safety performance is good.
  • the prismatic high temperature gas-cooled reactor is a fourth-generation reactor technology and an experimentally proven reactor design with high inherent safety.
  • the reactor core is a core structure formed by layering and splicing together a plurality of prismatic components.
  • the prismatic components are divided into three categories, the first is the fuel assembly, the second is the control assembly, and the third is the reflective layer.
  • the fuel assembly and a portion of the control assembly are located in the central portion of the core, and the reflector assembly and the remaining control assemblies surround the central portion.
  • a fuel hole and a coolant channel are arranged on each fuel assembly, wherein the fuel hole is used for placing fuel; the coolant channel is used for circulating coolant gas, and the fuel is cooled and then merged into the core outlet channel.
  • Practice has shown that the local temperature of the helium gas in the outlet channel of the core is too high, which has a great impact on the subsequent equipment, and the quality is not high, which is not conducive to thermal energy conversion.
  • the purpose of the present invention is to provide a mixing chamber structure for a prismatic high temperature gas-cooled reactor, which can ensure the collection, mixing and transportation of the coolant, and improve the uniformity of the coolant flowing out of the core fuel area. At the same time, it can play a certain neutron shielding function and improve the safety of reactor operation.
  • the technical solution adopted in the present invention is a mixing chamber structure for a prismatic high temperature gas-cooled reactor
  • annular side wall It includes an annular side wall and a bottom plate, the annular side wall is supported on the bottom plate and is sealed with the bottom plate, and the prismatic high temperature gas-cooled stack is supported on the annular side wall and is sealed with the annular side wall,
  • the annular side wall and the bottom plate are enclosed to form a mixing chamber, and the mixing chamber is in communication with each coolant channel of the prismatic high temperature gas-cooled reactor, and is used for mixing the coolant flowing out from each coolant channel,
  • An outlet flow channel is also provided on the annular side wall for connecting the mixing chamber and the core outlet channel.
  • annular side wall is made of graphite
  • bottom plate is made of metal material
  • both the annular sidewall and the bottom plate are made of neutron absorbing material.
  • a plurality of support columns are arranged on the upper surface of the base plate, the support columns are perpendicular to the upper surface of the base plate, and the plurality of support columns are distributed in an array.
  • the support column is made of neutron absorbing material.
  • the neutron absorption material includes graphite or boron-containing carbon material.
  • annular side wall is formed by splicing a plurality of bricks in sequence along the circumferential direction of the annular side wall.
  • annular side wall corresponds to the reflective layer of the prismatic high temperature gas-cooled stack.
  • the outlet flow channel is constituted by an outlet pipe disposed through the side wall.
  • outlet nozzle is cylindrical.
  • the diameter of the outlet nozzle is smaller than the height of the side wall.
  • the outlet pipe is made of metal material, and the inner wall of the outlet pipe is provided with a thermal insulation layer.
  • the metal material includes 316H stainless steel or 800H stainless steel.
  • the present invention also provides a prismatic high-temperature gas-cooled stack structure, comprising a prismatic high-temperature gas-cooled stack and the above-mentioned mixing chamber structure, wherein the prismatic high-temperature gas-cooled stack is supported on the annular sidewall of the mixing chamber structure and is connected with The annular side walls are hermetically connected.
  • the coolant temperature in the coolant channels near the center of the core is higher, and the coolant temperature in the coolant channels near the edge of the core is lower, and the two can be different. hundreds of degrees Celsius. If it is not mixed, considering the temperature limit of the material, the gas with uneven temperature will have a great impact on the subsequent equipment after directly flowing out of the core, and the quality of the working fluid is not high, which is not conducive to the conversion of thermal energy into electrical energy.
  • the invention can collect, mix and transport the coolant, improve the uniformity of the coolant flowing out of the core fuel area, and improve the safety of the reactor operation.
  • the annular sidewall composed of neutron absorbing materials is used as both the support structure of the core and the radiation shielding of the reactor.
  • the neutron absorbing materials are preferably high-temperature resistant materials such as graphite and boron-containing carbon, which can withstand the impact of high-temperature airflow at the reactor core outlet. It also plays the role of maintaining the airtightness of the mixing chamber, preventing neutron leakage and isolating core heat transfer to protect the gondola and pressure vessel.
  • FIG. 1 is a schematic diagram of a mixing chamber structure for a prismatic high temperature gas-cooled reactor according to the specific embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of a mixing chamber structure for a prismatic high temperature gas-cooled reactor according to the specific embodiment of the present invention
  • the present invention provides a hybrid chamber structure for a prismatic high-temperature gas-cooled reactor, which comprises an annular side wall composed of graphite and a bottom plate 3 made of metal, and the annular side wall is supported on the bottom plate 3 and hermetically connected to the bottom plate 3, the prismatic high temperature gas-cooled stack is supported on the annular side wall and is hermetically connected to the annular side wall,
  • the annular side wall and the bottom plate 3 are enclosed to form a mixing chamber 5, and the mixing chamber 5 is in communication with each coolant channel of the prismatic high temperature gas-cooled reactor, and is used for mixing the coolant flowing out from each coolant channel,
  • An outlet flow channel 6 is also provided on the annular side wall for connecting the mixing chamber 5 and the core outlet channel.
  • the coolant flowing from the bottom of each coolant channel of the prismatic high temperature gas-cooled reactor can be mixed in the mixing chamber 5 and then flow out through the outlet flow channel 6, thus forming a chamber where the coolant is collected, stirred and circulated, and finally mixed. A uniform coolant is led out of the core.
  • a plurality of support columns 2 are arranged on the upper surface of the base plate 3 , the support columns 2 are perpendicular to the upper surface of the base plate 3 , and the plurality of support columns 2 are distributed in an array.
  • the support column 2 is made of metal.
  • the side wall is annular, and the side wall is composed of several graphite bricks 1.
  • the structures of the graphite bricks 1 are different, but the heights are the same.
  • the outlet flow channel 6 is formed by the outlet nozzle 4 which is provided through the side wall.
  • the outlet nozzle 4 is cylindrical.
  • the diameter of the outlet nozzle 4 is smaller than the height of the side walls.
  • the outlet nozzle 4 is made of metal.
  • the number, shape and size of the graphite bricks 1 are determined according to the requirements of the structural design of the graphite reactor internal components of the reactor.
  • the graphite bricks 1 constituting the side wall of the mixing chamber 5 correspond to the reflective layer on the core side, which supports the mixing chamber 5, maintains the airtightness of the mixing chamber 5, prevents the leakage of neutrons and isolates the heat transfer of the core for protection
  • the role of the gondola and pressure vessel graphite brick 1 provides support for the reflector and fuel area on the core side
  • the design drawings of graphite brick 1 will focus on making a reasonable design according to the size and structural requirements of the core.
  • the number, shape and size of the support columns 2 are determined according to the requirements of the structural design of the reactor graphite reactor internals.
  • the support column 2 can be cylindrical, prismatic and other shapes.
  • the support column 2 is supported between the graphite area of the reflective layer under the core and the bottom plate 3 to support the mixing chamber 5, mix the coolant, and prevent high temperature cooling from the core.
  • the effect of the agent directly impacting the bottom plate 3 increases the bearing capacity of the core fuel area at the same time.
  • the design drawings of the support column 2 will focus on making a reasonable design according to the size and structural requirements of the core.
  • the size of the bottom plate 3 is determined according to the requirements of the structural design of the internal components of the graphite reactor of the reactor.
  • the bottom plate 3 corresponds to the shape of the core, and is generally circular, which supports the entire core, maintains the airtightness of the mixing chamber 5, and protects the gondola and the pressure vessel from being damaged by the heat of the core.
  • the design drawings of the bottom plate 3 will focus on making a reasonable design according to the size and structural requirements of the core.
  • the outlet nozzle 4 is on the side of the mixing chamber 5 , and the diameter of the outlet nozzle 4 is slightly smaller than the height of the graphite brick 1 of the mixing chamber 5 .
  • the outlet nozzle 4 guides the coolant homogeneously mixed in the mixing chamber 5 out of the core.
  • the metal materials used for the support column 2, the bottom plate 3 and the outlet nozzle 4 can be suitable for the high temperature environment of the prismatic high temperature gas-cooled reactor, including 316H stainless steel or 800H stainless steel.
  • the present embodiment provides a mixing chamber structure for a prismatic high temperature gas-cooled stack, which includes an annular side wall and a bottom plate 3 .
  • the annular side wall is supported on the bottom plate 3 and is connected to the bottom plate 3 .
  • the core components of the prismatic high temperature gas-cooled reactor are supported by sealing and connected to the annular side wall and are sealed and connected to the annular side wall,
  • the annular side wall and the bottom plate 3 are enclosed to form a mixing chamber 5, and the mixing chamber 5 is in communication with each coolant passage of the prismatic high temperature gas-cooled reactor, and is used for mixing the coolant flowing out from each coolant passage,
  • An outlet flow channel 6 is also provided on the annular side wall for connecting the mixing chamber 5 and the core outlet channel.
  • the coolant flowing from the bottom of each coolant channel of the prismatic high temperature gas-cooled reactor can be mixed in the mixing chamber 5 and then flow out through the outlet channel 6, thus forming a chamber where the coolant is collected, stirred and circulated, and finally mixed A uniform coolant is led out of the core.
  • a plurality of support columns 2 are arranged on the upper surface of the base plate 3 , the support columns 2 are perpendicular to the upper surface of the base plate 3 , and the plurality of support columns 2 are distributed in an array.
  • the annular side wall, the bottom plate 3 and the support column 2 are all composed of neutron absorbing material.
  • the neutron absorption material is preferably graphite, boron-containing carbon and other high temperature resistant materials, which can withstand the impact of high temperature airflow at the core outlet, and also maintain the air tightness of the mixing chamber, prevent neutron leakage and isolate the core heat transfer to protect the gondola and the core.
  • the role of pressure vessels. Neutron absorbing materials are designed and selected according to the shielding requirements of different reactor types.
  • the side wall is composed of several bricks 1, the structure of the bricks 1 is different, but the height is the same.
  • the outlet flow channel 6 is formed by the outlet nozzle 4 which is provided through the side wall.
  • the outlet nozzle 4 is cylindrical.
  • the diameter of the outlet nozzle 4 is smaller than the height of the side walls.
  • the outlet nozzle 4 is made of metal, and its inner wall is provided with a heat-resistant material heat-insulating layer.
  • the number, shape and size of the bricks 1 are determined according to the needs of the structural design of the internal components of the reactor.
  • the bricks 1 constituting the side wall of the mixing chamber 5 correspond to the reflective layer on the core side, and are not only used for constructing the mixing chamber 5, maintaining the airtightness of the mixing chamber 5, preventing neutron leakage, and isolating the heat transfer of the core to prevent heat transfer.
  • the role of protecting the gondola and the pressure vessel (the brick 1 provides support for the reflector and fuel area on the core side), and can also provide support for part of the core structure; the design drawings of the brick 1 will focus on the size and structure of the core. Form requires a reasonable design.
  • the number, shape and size of the support columns 2 are determined according to the requirements of the structural design of the internal components of the reactor.
  • the support column 2 can be cylindrical, prismatic or polygonal, etc.
  • the support column 2 is supported between the reflective layer assembly area under the core and the bottom plate 3 to collect and mix the coolant and prevent the high-temperature coolant flowing out of the core from directly
  • the impact of the bottom plate 3 increases the bearing capacity of the core area at the same time.
  • the design drawings of the support column 2 will focus on making a reasonable design according to the size and structural requirements of the core.
  • the size of the bottom plate 3 is determined according to the needs of the structural design of the internal components of the reactor.
  • the bottom plate 3 corresponds to the shape of the reactor pressure vessel, which is generally circular, and plays the role of supporting the entire core, maintaining the airtightness of the mixing chamber 5, and protecting the gondola and the pressure vessel from being damaged by the heat of the core.
  • the design drawings of the bottom plate 3 will focus on making a reasonable design according to the size and structural requirements of the core.
  • the outlet nozzle 4 is on the side of the mixing chamber 5 , and the diameter of the outlet nozzle 4 is slightly smaller than the height of the bricks 1 of the mixing chamber 5 .
  • the outlet nozzle 4 guides the coolant homogeneously mixed in the mixing chamber 5 out of the core.
  • the metal material used for the outlet nozzle 4 can be suitable for the high temperature environment of the prismatic high temperature gas-cooled reactor, preferably high temperature resistant stainless steel, including 316H stainless steel or 800H stainless steel.
  • This embodiment provides a prismatic high-temperature gas-cooled reactor structure, including the prismatic high-temperature gas-cooled reactor and the hybrid chamber structure of Embodiment 1.
  • the core part of the prismatic high-temperature gas-cooled reactor is supported on the annular shape of the hybrid chamber structure. on the side wall and in sealing connection with the annular side wall.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种用于棱柱式高温气冷堆的混合腔室结构、棱柱式高温气冷堆结构,混合腔室结构包括环形侧壁和底板(3),环形侧壁支撑于底板(3)上且与底板(3)密封相连,棱柱式高温气冷堆支撑于环形侧壁上且与环形侧壁密封相连,环形侧壁与底板(3)围合形成混合腔室(5),混合腔室(5)与棱柱式高温气冷堆的各冷却剂通道均连通,用于对从各冷却剂通道流出的冷却剂进行混合,在环形侧壁上还设有出口流道(6),用于连通混合腔室(5)与堆芯出口通道。用于棱柱式高温气冷堆的混合腔室结构能够汇集、搅混、输运冷却剂,提高流出堆芯燃料区的冷却剂的均匀性,提高反应堆运行的安全性。

Description

一种用于棱柱式高温气冷堆的混合腔室结构、棱柱式高温气冷堆结构
本公开要求申请日为2021年03月15日、申请号为CN 202110274580.3、名称为“一种用于棱柱式高温气冷堆的混合腔室结构”的中国专利申请的优先权。
技术领域
本发明属于反应堆技术领域,具体涉及一种用于棱柱式高温气冷堆的混合腔室结构及棱柱式高温气冷堆结构。
背景技术
高温气冷堆是指用氦气作冷却剂,出口温度高的核反应堆。高温气冷堆采用高包容性燃料,以石墨作慢化剂。堆芯出口温度为850-1000℃,甚至更高。核燃料一般采用高浓二氧化铀,亦有采用低浓二氧化铀的。根据堆芯形状,高温气冷堆分为球床式高温气冷堆和棱柱式高温气冷堆。高温气冷堆具有热效率高(40%-41%),燃耗深(最大高达20MWd/t铀),转换比高(0.7-0.8)等优点。由于氦气化学稳定性好,传热性能好,而且诱生放射性小,停堆后能将余热安全带出,安全性能好。
棱柱式高温气冷堆是四代堆技术,是经过实验验证的固有安全性很高的反应堆设计。其堆芯为多个棱柱型组件分层、分区堆砌拼合形成的堆芯结构,棱柱型组件分为三类,第一类是燃料组件,第二类是控制组件,第三类是反射层,燃料组件和一部分控制组件位于堆芯的中心部分,反射层组件及其余控制组件环绕于中心部分的周围。在每个燃料组件上均布置有燃料孔道和冷却剂通道,其中燃料孔道用于放置燃料;冷却剂通道则用于流通冷却剂气体,对燃料进行冷却后汇入堆芯出口通道中。实践表明,堆芯出口通道中的氦气存在局部温度过高的现象,对后续设备的冲击极大,而且品质不高,不利于 热能转换。
发明内容
本发明的目的是提供一种用于棱柱式高温气冷堆的混合腔室结构,该混合腔室结构能够保证冷却剂的汇集、搅混、输运,提高流出堆芯燃料区的冷却剂的均匀性;同时能够起到一定的中子屏蔽功能,提高反应堆运行的安全性。
为达到以上目的,本发明采用的技术方案是一种用于棱柱式高温气冷堆的混合腔室结构,
包括环形侧壁和底板,所述环形侧壁支撑于底板上且与底板密封相连、棱柱式高温气冷堆支撑于环形侧壁上且与环形侧壁密封相连,
所述环形侧壁与底板围合形成混合腔室,所述混合腔室与棱柱式高温气冷堆的各冷却剂通道均连通,用于对从各冷却剂通道流出的冷却剂进行混合,
在所述环形侧壁上还设有出口流道,用于连通混合腔室与堆芯出口通道。
进一步,所述环形侧壁由石墨构成,所述底板由金属材质构成。
进一步,所述环形侧壁和底板均由中子吸收材料构成。
进一步,在所述底板的上表面设置有若干根支撑柱,所述支撑柱垂直于所述底板的上表面,若干根支撑柱呈阵列分布。
进一步,所述支撑柱由中子吸收材料构成。
进一步,所述中子吸收材料包括石墨或含硼碳材料。
进一步,所述环形侧壁由若干块砖块沿环形侧壁的周向依次拼接而成。
进一步,所述环形侧壁与棱柱式高温气冷堆的反射层对应。
进一步,所述出口流道由贯穿设置在所述侧壁上的出口接管构成。
进一步,所述出口接管为圆筒形。
进一步,所述出口接管的直径小于所述侧壁的高度。
进一步,所述出口接管为金属材质,所述出口接管的内壁设有隔热层。
进一步,所述金属材质包括316H不锈钢或800H不锈钢。
本发明还提供一种棱柱式高温气冷堆结构,包括棱柱式高温气冷堆和上述的混合腔室结构,所述棱柱式高温气冷堆支撑于混合腔室结构的环形侧壁上且与环形侧壁密封相连。
研究表明,由于堆芯功率分布并不均匀,靠近堆芯中心位置的冷却剂通道中的冷却剂温度较高,靠近堆芯边缘位置的冷却剂通道中的冷却剂温度较低,二者可以相差上百摄氏度。若不经混合,考虑到材料的温度限值,这种温度不均匀的气体直接流出堆芯后对后续设备的冲击极大,而且工质品质不高,不利于热能转换为电能。本发明通过在棱柱式高温气冷堆的底部增设混合腔室结构,其能够汇集、搅混、输运冷却剂,提高流出堆芯燃料区的冷却剂的均匀性,提高反应堆运行的安全性。此外,中子吸收材料构成的环形侧壁,既作为堆芯的支撑结构也用于反应堆辐射屏蔽,中子吸收材料优选石墨、含硼碳等耐高温材料,能够承受堆芯出口高温气流冲击,还起到保持混合腔室气密性、阻止中子泄露和隔绝堆芯热量传递以保护吊篮和压力容器的作用。
附图说明
图1是本发明具体实施方式中所述的一种用于棱柱式高温气冷堆的混合腔室结构的示意图;
图2是本发明具体实施方式中所述的一种用于棱柱式高温气冷堆的混合腔室结构的截面示意图;
图中:1-砖块,2-支撑柱,3-底板,4-出口接管,5-混合腔室,6-出口流道。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和实施例对本公开作进一步详细描述。
下面详细描述本专利的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本专利,而不能理解为对本专利的限制。
实施例1:
如图1、图2所示,本发明提供的一种用于棱柱式高温气冷堆的混合腔室结构,其包括石墨构成的环形侧壁和金属材质的底板3,环形侧壁支撑于底板3上且与底板3密封相连、棱柱式高温气冷堆支撑于环形侧壁上且与环形侧壁密封相连,
环形侧壁与底板3围合形成混合腔室5,该混合腔室5与棱柱式高温气冷堆的各冷却剂通道均连通,用于对从各冷却剂通道流出的冷却剂进行混合,
在环形侧壁上还设有出口流道6,用于连通混合腔室5与堆芯出口通道。从棱柱式高温气冷堆的各冷却剂通道底部流出的冷却剂能够在混合腔室5内混合后经过出口流道6流出,这样形成冷却剂汇集、搅混以及流通的腔室, 并最终将混合均匀的冷却剂导出堆芯。
在底板3的上表面设置有若干根支撑柱2,支撑柱2垂直于底板3的上表面,若干根支撑柱2呈阵列分布。
支撑柱2为金属材质。
侧壁呈环形,侧壁由若干块石墨砖块1构成,石墨砖块1的结构有所不同,但高度一致。
出口流道6由贯穿设置在侧壁上的出口接管4构成。
出口接管4为圆筒形。
出口接管4的直径小于侧壁的高度。
出口接管4为金属材质。
石墨砖块1的数目、形状和大小,根据反应堆石墨堆内构件结构设计的需要而定。构成混合腔室5的侧壁的石墨砖块1与堆芯侧反射层相对应,起支撑混合腔室5、保持混合腔室5气密性、阻止中子泄露和隔绝堆芯热量传递以保护吊篮和压力容器的作用(石墨砖块1为堆芯侧反射层与燃料区域提供支撑);石墨砖块1的设计图纸将重点考虑根据堆芯大小、结构形式要求做出合理的设计。
支撑柱2的数目、形状和大小,根据反应堆石墨堆内构件结构设计的需要而定。支撑柱2可以为圆柱形、棱柱型等形状,支撑柱2支撑在堆芯下反射层石墨区域和底板3之间,起支撑混合腔室5、搅混冷却剂、防止从堆芯流出的高温冷却剂直接冲击底板3的作用,同时增加了对堆芯燃料区域的承载能力。支撑柱2的设计图纸将重点考虑根据堆芯大小、结构形式要求做出合 理的设计。
底板3的大小,根据反应堆石墨堆内构件结构设计的需要而定。底板3对应堆芯的形状,一般为圆形,起支撑整个堆芯、保持混合腔室5气密性、保护吊篮和压力容器不受堆芯热量损伤的作用。底板3的设计图纸将重点考虑根据堆芯大小、结构形式要求做出合理的设计。
出口接管4在混合腔室5的侧面,出口接管4的直径略小于混合腔室5的石墨砖块1的高度。出口接管4引导在混合腔室5搅混均匀的冷却剂流出堆芯。
支撑柱2、底板3和出口接管4所采用的金属材质能够适用于棱柱式高温气冷堆的高温环境,包括316H不锈钢或800H不锈钢。
实施例2:
如图1、图2所示,本实施例提供一种用于棱柱式高温气冷堆的混合腔室结构,其包括环形侧壁和底板3,环形侧壁支撑于底板3上且与底板3密封相连、棱柱式高温气冷堆的堆芯部分构件支撑于环形侧壁上且与环形侧壁密封相连,
环形侧壁与底板3围合形成混合腔室5,混合腔室5与棱柱式高温气冷堆的各冷却剂通道均连通,用于对从各冷却剂通道流出的冷却剂进行混合,
在环形侧壁上还设有出口流道6,用于连通混合腔室5与堆芯出口通道。从棱柱式高温气冷堆的各冷却剂通道底部流出的冷却剂能够在混合腔室5内混合后经过出口流道6流出,这样形成冷却剂汇集、搅混以及流通的腔室,并最终将混合均匀的冷却剂导出堆芯。
在底板3的上表面设置有若干根支撑柱2,支撑柱2垂直于底板3的上表面,若干根支撑柱2呈阵列分布。
其中,环形侧壁、底板3和支撑柱2均由中子吸收材料构成。中子吸收 材料优选石墨、含硼碳等耐高温材料,能够承受堆芯出口高温气流冲击,还起到保持混合腔室气密性、阻止中子泄露和隔绝堆芯热量传递以保护吊篮和压力容器的作用。中子吸收材料根据不同堆型的屏蔽需求进行设计选材。
侧壁由若干块砖块1构成,砖块1的结构有所不同,但高度一致。
出口流道6由贯穿设置在侧壁上的出口接管4构成。
出口接管4为圆筒形。
出口接管4的直径小于侧壁的高度。
出口接管4为金属材质,其内壁敷设有耐高温材料隔热层。
砖块1的数目、形状和大小,根据反应堆堆内构件结构设计的需要而定。构成混合腔室5的侧壁的砖块1与堆芯侧反射层相对应,不仅用于构筑混合腔室5、保持混合腔室5气密性、阻止中子泄露和隔绝堆芯热量传递以保护吊篮和压力容器的作用(砖块1为堆芯侧反射层与燃料区域提供支撑),还可以为堆芯部分结构提供支撑;砖块1的设计图纸将重点考虑根据堆芯大小、结构形式要求做出合理的设计。
支撑柱2的数目、形状和大小,根据反应堆堆内构件结构设计的需要而定。支撑柱2可以为圆柱形、棱柱形或者多边形等形状,支撑柱2支撑在堆芯下反射层组件区域和底板3之间,起汇集、搅混冷却剂、防止从堆芯流出的高温冷却剂直接冲击底板3的作用,同时增加了对堆芯区域的承载能力。支撑柱2的设计图纸将重点考虑根据堆芯大小、结构形式要求做出合理的设计。
底板3的大小,根据反应堆堆内构件结构设计的需要而定。底板3对应反应堆压力容器的形状,一般为圆形,起支撑整个堆芯、保持混合腔室5气密性、保护吊篮和压力容器不受堆芯热量损伤的作用。底板3的设计图纸将 重点考虑根据堆芯大小、结构形式要求做出合理的设计。
出口接管4在混合腔室5的侧面,出口接管4的直径略小于混合腔室5的砖块1的高度。出口接管4引导在混合腔室5搅混均匀的冷却剂流出堆芯。
出口接管4所采用的金属材质能够适用于棱柱式高温气冷堆的高温环境,优选耐高温不锈钢,包括316H不锈钢或800H不锈钢。
最后,说明本发明提供的一种用于棱柱式高温气冷堆的混合腔室结构的实际应用。在反应堆运行过程中,由于堆芯各区域燃料功率不同,所以各冷却剂通道流出的冷却剂温度不同。不同温度的冷却剂由堆芯下反射层的冷却剂通道流入堆芯底部的混合腔室5。在混合腔室5内部混合,支撑柱2在提供支撑的同时,进一步促进冷却剂搅混,使得冷却剂温度更为均匀。冷却剂的充分混合,降低了对底板3的热冲击,提高反应堆运行的安全性,也降低了对底板3的高温耐受性能的要求。充分混合的冷却剂沿着出口接管4流出堆芯。
实施例3:
本实施例提供一种棱柱式高温气冷堆结构,包括棱柱式高温气冷堆和实施例1的混合腔室结构,棱柱式高温气冷堆的堆芯部分构件支撑于混合腔室结构的环形侧壁上且与环形侧壁密封相连。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

  1. 一种用于棱柱式高温气冷堆的混合腔室结构,
    其特征在于,包括环形侧壁和底板(3),所述环形侧壁支撑于底板(3)上且与底板(3)密封相连、棱柱式高温气冷堆支撑于环形侧壁上且与环形侧壁密封相连,
    所述环形侧壁与底板(3)围合形成混合腔室(5),所述混合腔室(5)与棱柱式高温气冷堆的各冷却剂通道均连通,用于对从各冷却剂通道流出的冷却剂进行混合,
    在所述环形侧壁上还设有出口流道(6),用于连通混合腔室(5)与堆芯出口通道。
  2. 如权利要求1所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述环形侧壁由石墨构成,所述底板(3)由金属材质构成。
  3. 如权利要求1所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述环形侧壁和底板(3)均由中子吸收材料构成。
  4. 如权利要求1所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:在所述底板(3)的上表面设置有若干根支撑柱(2),所述支撑柱(2)垂直于所述底板(3)的上表面,若干根支撑柱(2)呈阵列分布。
  5. 如权利要求4所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述支撑柱(2)由中子吸收材料构成。
  6. 如权利要求3或5所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述中子吸收材料包括石墨或含硼碳材料。
  7. 如权利要求1-5任一项所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述环形侧壁由若干块砖块(1)沿环形侧壁的周向依次拼接而成。
  8. 如权利要求1-5任一项所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述环形侧壁与棱柱式高温气冷堆的反射层对应。
  9. 如权利要求1-5任一项所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述出口流道(6)由贯穿设置在所述侧壁上的出口接管(4)构成。
  10. 如权利要求9所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述出口接管(4)为圆筒形。
  11. 如权利要求10所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述出口接管(4)的直径小于所述侧壁的高度。
  12. 如权利要求9所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述出口接管(4)为金属材质,所述出口接管(4)的内壁设有隔热层。
  13. 如权利要求12所述的用于棱柱式高温气冷堆的混合腔室结构,其特征是:所述金属材质包括316H不锈钢或800H不锈钢。
  14. 一种棱柱式高温气冷堆结构,其特征是:包括棱柱式高温气冷堆和如权利要求1-13任一项所述的混合腔室结构,所述棱柱式高温气冷堆支撑于混合腔室结构的环形侧壁上且与环形侧壁密封相连。
PCT/CN2022/076982 2021-03-15 2022-02-21 一种用于棱柱式高温气冷堆的混合腔室结构、棱柱式高温气冷堆结构 WO2022193905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3207375A CA3207375A1 (en) 2021-03-15 2022-02-21 Mixing chamber structure for prismatic high-temperature gas-cooled reactor, and prismatic high-temperature gas-cooled reactor structure
ZA2023/07645A ZA202307645B (en) 2021-03-15 2023-08-02 Mixing chamber structure for prismatic high-temperature gas-cooled reactor, and prismatic high-temperature gas-cooled reactor structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110274580.3A CN113178267B (zh) 2021-03-15 2021-03-15 一种用于棱柱式高温气冷堆的混合腔室结构
CN202110274580.3 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022193905A1 true WO2022193905A1 (zh) 2022-09-22

Family

ID=76922016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076982 WO2022193905A1 (zh) 2021-03-15 2022-02-21 一种用于棱柱式高温气冷堆的混合腔室结构、棱柱式高温气冷堆结构

Country Status (4)

Country Link
CN (1) CN113178267B (zh)
CA (1) CA3207375A1 (zh)
WO (1) WO2022193905A1 (zh)
ZA (1) ZA202307645B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178267B (zh) * 2021-03-15 2023-11-24 中国核电工程有限公司 一种用于棱柱式高温气冷堆的混合腔室结构
CN117079842B (zh) * 2023-07-27 2024-06-04 华能核能技术研究院有限公司 一种高温气冷堆侧隙阻流装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2134265A1 (en) * 1971-04-29 1972-12-08 Commissariat Energie Atomique Nuclear fuel element - prismatic in shape for high temp reactor
CN103871529A (zh) * 2014-03-26 2014-06-18 清华大学 一种球床式高温气冷堆的底反射层结构
CN112201369A (zh) * 2020-09-30 2021-01-08 中国核电工程有限公司 一种上反射层结构、堆芯结构、以及高温气冷堆
CN112216408A (zh) * 2020-11-05 2021-01-12 新核(北京)能源科技有限公司 燃料元件、高温气冷堆、高温气冷反应堆***
CN113178267A (zh) * 2021-03-15 2021-07-27 中国核电工程有限公司 一种用于棱柱式高温气冷堆的混合腔室结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2131886B1 (zh) * 1971-04-01 1974-03-08 Commissariat Energie Atomique
DE2854155A1 (de) * 1978-12-15 1980-07-03 Hochtemperatur Reaktorbau Gmbh Gasgekuehlter hochtemperaturreaktor mit einer mit gasdurchlaessen versehenen tragkonstruktion
US4764339A (en) * 1986-12-16 1988-08-16 The United States Of America As Represented By The United States Department Of Energy High flux reactor
KR100871284B1 (ko) * 2007-07-30 2008-11-28 한국원자력연구원 블록형 노심 초고온가스로의 냉각압력용기 구조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2134265A1 (en) * 1971-04-29 1972-12-08 Commissariat Energie Atomique Nuclear fuel element - prismatic in shape for high temp reactor
CN103871529A (zh) * 2014-03-26 2014-06-18 清华大学 一种球床式高温气冷堆的底反射层结构
CN112201369A (zh) * 2020-09-30 2021-01-08 中国核电工程有限公司 一种上反射层结构、堆芯结构、以及高温气冷堆
CN112216408A (zh) * 2020-11-05 2021-01-12 新核(北京)能源科技有限公司 燃料元件、高温气冷堆、高温气冷反应堆***
CN113178267A (zh) * 2021-03-15 2021-07-27 中国核电工程有限公司 一种用于棱柱式高温气冷堆的混合腔室结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHOU YANG-PING, HAO PENG-FEI, ZHANG XI-WEN, HE FENG: "Numerical investigations of thermal mixing performance of a hot gas mixing structure in high-temperature gas-cooled reactor", HE JISHU - NUCLEAR TECHNIQUE., SHANGHAI., CN, vol. 27, no. 1, 2 March 2016 (2016-03-02), CN , pages Article no 23, XP009539605, ISSN: 0253-3219, DOI: 10.1007/s41365-016-0024-7 *
ZHOU YANGPING, HAO PENG-FEI;LI FU;SHI LEI;HE FENG;XIE FEI: "Numerical Simulation and Analysis of Hot Gas Mixing at HTR-PM Reactor Outlet", YUANZINENG-KEXUE-JISHU : SHUANGYUEKAN = ATOMIC ENERGY SCIENCE AND TECHNOLOGY, BEIJING : YUANZINENG CHUBANSHE, CN, vol. 49, 31 May 2015 (2015-05-31), CN , pages 270 - 277, XP055967520, ISSN: 1000-6931, DOI: 10.7538/yzk.2015.49.S0.0270 *

Also Published As

Publication number Publication date
ZA202307645B (en) 2024-04-24
CA3207375A1 (en) 2022-09-22
CN113178267B (zh) 2023-11-24
CN113178267A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2022193905A1 (zh) 一种用于棱柱式高温气冷堆的混合腔室结构、棱柱式高温气冷堆结构
US8711997B2 (en) Reactor core of liquid metal cooled reactor
US20200373027A1 (en) Small modular mobile fission reactor
US20100054389A1 (en) Mixed oxide fuel assembly
WO2022206064A1 (zh) 一种堆芯***及气冷微堆
RU2012137378A (ru) Модульный реактор, преобразующий отходы деления ядерных материалов
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
US3128234A (en) Modular core units for a neutronic reactor
WO2022116614A1 (zh) 可在线换料熔盐堆及其换料方法
US3249508A (en) Gas cooled nuclear reactor system having improved shield and flow path arrangement
CN114446496A (zh) 基于环形燃料元件的超高通量反应堆堆芯
CN112216407A (zh) 高温气冷堆及***
US4863676A (en) Inherently safe, modular, high-temperature gas-cooled reactor system
CN115101221B (zh) 一体化移动式气冷微型动力反应堆堆芯
KR20190098611A (ko) 핵연료 블록, 상기 핵연료 블록을 구비하는 노심, 상기 노심을 구비하는 초소형 고온가스로
CN110853772B (zh) 一种基于正方形燃料组件的单流程超临界水冷堆
CN111341467B (zh) 一种适用于球形燃料和高温冷却剂的金属堆内构件
Proust et al. Status of the design and feasibility assessment of the European helium cooled ceramic breeder inside tubes test blanket
CN213459077U (zh) 高温气冷堆及***
US20240170168A1 (en) Solid-state fluid thermal bonded heat pipe micro-reactor
CN115394458A (zh) 一种基于棒束型燃料组件的超高通量反应堆堆芯
CN115424743A (zh) 一种用于卧式堆的非能动热量导出***
WO2023070888A1 (zh) 燃料模块及其应用
CN114446497A (zh) 基于方形燃料组件的超高通量反应堆堆芯
JP2013245982A (ja) 原子炉格納容器の冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3207375

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523450447

Country of ref document: SA

122 Ep: pct application non-entry in european phase

Ref document number: 22770260

Country of ref document: EP

Kind code of ref document: A1