WO2022193587A1 - 一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法 - Google Patents

一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法 Download PDF

Info

Publication number
WO2022193587A1
WO2022193587A1 PCT/CN2021/118763 CN2021118763W WO2022193587A1 WO 2022193587 A1 WO2022193587 A1 WO 2022193587A1 CN 2021118763 W CN2021118763 W CN 2021118763W WO 2022193587 A1 WO2022193587 A1 WO 2022193587A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
temperature
less
equal
manufacturing
Prior art date
Application number
PCT/CN2021/118763
Other languages
English (en)
French (fr)
Inventor
王中学
李金浩
韩蕾蕾
李成浩
欧阳峥容
刘珊珊
郑桂芸
张海霞
马传庆
张利平
李月
Original Assignee
山东钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东钢铁股份有限公司 filed Critical 山东钢铁股份有限公司
Publication of WO2022193587A1 publication Critical patent/WO2022193587A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of iron and steel materials, in particular to a high-strength, tough, ultra-low-temperature impact-resistant oil pipe head forging blank and a manufacturing method thereof.
  • the tubing head is installed on top of the casing head spool and installed after the final casing is installed to provide a load step to support the tubing string and provide a seal hole for a tubing hanger or production casing/tubing annulus seal.
  • the Christmas tree is installed on the top flange of the tubing head spool by connecting the tubing head reducer.
  • the tubing head made of ordinary CrMo steel has low strength and poor toughness, and its low temperature impact resistance cannot reach -60°C. In some extreme environments, brittle fracture occurs, causing major accidents in oil wells, and serious blowouts and scrapping.
  • the object of the present invention is to provide a high-strength, tough, ultra-low temperature impact-resistant tubing head forging blank and a manufacturing method for the defects existing in the prior art.
  • the production process flow is: electric furnace smelting, LF refining, VD vacuum treatment, continuous casting process, heating, Forged, heat treated.
  • the present invention has adopted the following technical scheme:
  • a high-strength, tough, ultra-low-temperature impact-resistant oil pipe head forging blank the chemical composition of the steel content of the forging blank is below the mass percentage content: C: 0.30-0.40%, Si: 0.20-0.50%, Mn: 0.70-1.00%, Cr: 1.00 ⁇ 1.30%, Ni: 0.20 ⁇ 0.50%, Mo: 0.20 ⁇ 0.30%, V: 0.02 ⁇ 0.05%, Al: 0.02 ⁇ 0.05%, P ⁇ 0.012%, S ⁇ 0.005%, five harmful elements Sn ⁇ 0.015% , As ⁇ 0.015%, Pb ⁇ 0.015%, Sb ⁇ 0.015%, Bi ⁇ 0.015%, gas [H] ⁇ 1.5ppm, [O] ⁇ 15ppm, [N] ⁇ 60ppm; the rest are Fe and other inevitable impurities.
  • a method for manufacturing a high-strength, tough, ultra-low-temperature impact-resistant tubing head forging blank of the present invention comprising the following steps:
  • Electric furnace smelting smelting in electric arc furnace, using scrap steel and hot charging molten iron, the proportion of hot charging molten iron is ⁇ 60%, and the total furnace capacity is 120 tons.
  • Feeding sequence for tapping aluminum ingot ⁇ medium manganese ⁇ ferrosilicon ⁇ ferrochromium ⁇ nickel plate ⁇ ferromolybdenum ⁇ ferrovanadium ⁇ active lime ⁇ pre-melted slag, according to the target composition of C, Mn, Cr, Ni, Mo minus 0.06%.
  • the addition amount of aluminum ingot is 1.2-1.6kg/t
  • the addition amount of lime is 6-8kg/t
  • the addition amount of pre-melting slag is 6-8kg/t.
  • the amount of alloy added is appropriately adjusted according to the actual content of alloying elements and the content of residual elements in the molten steel of the electric furnace.
  • (2) LF refining: after refining is in place, add slag material according to the slag condition, control the final refining slag Al 2 O 3 20% ⁇ 31%, (FeO+MnO) ⁇ 0.5%, use high-purity silicon carbide for deoxidation, add The amount is greater than 1.0kg/t steel.
  • the slag is in good condition, depending on the deoxidation status, an appropriate amount of aluminum wire can be added, and the argon flow rate is 300-700 NL/min, after fully stirring for 2 minutes, and after soft blowing for 1 minute, a sample is taken for full analysis.
  • VD furnace vacuum treatment slag removal before entering the VD furnace.
  • the vacuum degree is less than 67Pa and the holding time is more than 12 minutes.
  • the time of soft argon blowing is not less than 15 minutes. It is strictly forbidden to expose molten steel and a large amount of argon to stir and cool down during soft argon blowing.
  • control the temperature of the upper steel the first furnace of continuous casting: 1579-1589 °C, and the second furnace: 1549-1569 °C.
  • the tundish is well baked and kept clean, and the baking temperature is ⁇ 1100 °C.
  • the arc of the crystallizer and the centering of the nozzle meet the requirements, and the atomization effect of the nozzle is good.
  • the long nozzle of the large ladle is poured with graphite sealing gasket + argon blowing, the tundish is fully sealed, and argon is blown into the tundish before pouring; the liquid level of the tundish is not less than 700mm, and the fluctuation of the liquid level of the mold is ⁇ 3mm.
  • Medium carbon alloy continuous casting mold flux is used, and double-layer middle-package covering agent is used.
  • the superheat degree of the middle bag is controlled according to the target of 15-30°C
  • the temperature of the first furnace of the middle bag is 1534-1544°C (heat exchange heat minus 5°C)
  • the normal heat temperature is 1519-1529°C.
  • the temperature of the billet entering the tension leveling machine is ⁇ 900°C.
  • the electromagnetic stirring current of the crystallizer is controlled at 250-300A, the frequency is controlled at 1.0-2.0Hz, the electromagnetic stirring current at the end is controlled at 100-150A, and the frequency is controlled at 5.0-8.0Hz.
  • the temperature of the ⁇ 700mm round billet entering the slow cooling pit is greater than or equal to 750°C, and the temperature of the exit pit is less than or equal to 100°C.
  • Heating in the heating furnace The ⁇ 700mm round billet enters the heating furnace and the heating temperature reaches 1200-1230 °C, and the holding time is ⁇ 1 hour.
  • Heat treatment The round billet after forging is subjected to overall heat treatment.
  • the heat treatment process is normalizing + quenching (heating to 843 ° C ⁇ 885 ° C and then water or polymer quenching) + tempering (heating to 649 ° C ⁇ 704 ° C) air-cooled after insulation).
  • the present invention adopts the above-mentioned technical scheme to produce beneficial effects as follows:
  • composition design of the invention has obvious advantages, the purity of the steel material is high, the uniformity of the structure of the forging can be significantly improved by the large reduction forging, the strength, toughness and -60 °C low temperature impact resistance of the tubing head forging blank can be significantly improved, Used in various extreme environments, the service life and safety factor are greatly increased.
  • Table 1 The chemical composition and mass percentage content of the high-strength, tough, ultra-low-temperature impact-resistant tubing head forging blank of this embodiment are shown in Table 1, and the remaining components are Fe and inevitable impurities.
  • Table 2 shows the mechanical properties of each example.
  • Table 3 lists the grades of non-metallic inclusions for each example.
  • the production process of this embodiment includes electric furnace smelting, LF refining, VD vacuum treatment, continuous casting process, heating, forging, and heat treatment, and the specific process steps are as follows:
  • Electric furnace smelting smelting in electric arc furnace, using scrap steel and hot charging molten iron, the proportion of hot charging molten iron is 62%, and the total furnace capacity is 118 tons.
  • the end point C is 0.08%, P is 0.010%, the residual elements meet the requirements of internal control;
  • the tapping temperature is 1650 °C.
  • the tapping time of the electric furnace is 3 minutes; the amount of steel remaining in the electric furnace is 10.5 tons.
  • Feeding sequence for tapping aluminum ingot ⁇ medium manganese ⁇ ferrosilicon ⁇ ferrochromium ⁇ nickel plate ⁇ ferromolybdenum ⁇ ferrovanadium ⁇ active lime ⁇ pre-melted slag, according to the target composition of C, Mn, Cr, Ni, Mo minus 0.06%. Alloy, the addition amount of aluminum ingot is 1.3kg/t, the addition amount of lime is 6kg/t, and the addition amount of pre-melted slag is 7kg/t. The amount of alloy added is appropriately adjusted according to the actual content of alloying elements and the content of residual elements in the molten steel of the electric furnace.
  • VD furnace vacuum treatment slag removal before entering the VD furnace.
  • the vacuum degree is less than 67Pa and the holding time is 15 minutes.
  • the time of soft argon blowing is 16 minutes.
  • soft argon blowing it is strictly forbidden to expose molten steel and a large amount of argon to stir and cool down.
  • the upper steel temperature was controlled to 1559°C.
  • the tundish is well baked and kept clean, and the baking temperature is 1120 °C.
  • the arc of the crystallizer and the centering of the nozzle meet the requirements, and the atomization effect of the nozzle is good.
  • the long nozzle of the large ladle is poured with graphite sealing gasket + argon blowing, the tundish is completely sealed, and argon is blown into the tundish before pouring; the liquid level of the tundish is 720mm, and the fluctuation of the liquid level of the mold is ⁇ 3mm.
  • Medium carbon alloy continuous casting mold flux is used, and double-layer middle-package covering agent is used.
  • the superheat of the tundish is controlled at the target of 20°C.
  • the temperature of the billet entering the tension leveler is 915 °C.
  • the electromagnetic stirring current of the crystallizer is controlled at 280A, the frequency is controlled at 1.6Hz, the electromagnetic stirring current at the end is controlled at 130A, and the frequency is controlled at 5.0Hz.
  • the temperature of ⁇ 700mm round billet entering the slow cooling pit is 762°C, and the temperature of exiting the pit is less than 100°C.
  • Heating in the heating furnace The ⁇ 700mm round billet enters the heating furnace for heating to 1210°C, and the holding time is 1.5 hours.
  • Heat treatment The round billet after forging is subjected to overall heat treatment, and the heat treatment process is normalizing + quenching (heating to 855 °C and then quenching the polymer) + tempering (heating to 660 °C and then air cooling).
  • Table 1 The chemical composition and mass percentage content of the high-strength, tough, ultra-low-temperature impact-resistant tubing head forging blank of this embodiment are shown in Table 1, and the remaining components are Fe and inevitable impurities.
  • Table 2 shows the mechanical property results of each example.
  • Table 3 lists the grades of non-metallic inclusions for each example.
  • the production process of this embodiment includes electric furnace smelting, LF refining, VD vacuum treatment, continuous casting process, heating, forging, and heat treatment, and the specific process steps are as follows:
  • Electric furnace smelting smelting in electric arc furnace, using scrap steel and hot charging molten iron, the proportion of hot charging molten iron is 60.6%, and the total furnace capacity is 119.3 tons.
  • the end point C is 0.08%, P is 0.011%, the residual elements meet the internal control requirements; the tapping temperature is 1652 °C.
  • the tapping time of the electric furnace is 3.5 minutes; the residual steel amount of the electric furnace is 10.6 tons.
  • Feeding sequence for tapping aluminum ingot ⁇ medium manganese ⁇ ferrosilicon ⁇ ferrochromium ⁇ nickel plate ⁇ ferromolybdenum ⁇ ferrovanadium ⁇ active lime ⁇ pre-melted slag, according to the target composition of C, Mn, Cr, Ni, Mo minus 0.06%.
  • the addition amount of aluminum ingot is 1.5kg/t
  • the addition amount of lime is 7.6kg/t
  • the addition amount of pre-melted slag is 7.2kg/t.
  • the amount of alloy added is appropriately adjusted according to the actual content of alloying elements and the content of residual elements in the molten steel of the electric furnace.
  • VD furnace vacuum treatment slag removal before entering the VD furnace.
  • the vacuum degree is less than 67Pa and the holding time is 13 minutes.
  • the time of soft argon blowing is 17 minutes.
  • soft argon blowing it is strictly forbidden to expose molten steel and a large amount of argon to stir and cool down.
  • the upper steel temperature was controlled to 1555°C.
  • the tundish is well baked and kept clean, and the baking temperature is 1125 °C.
  • the arc of the crystallizer and the centering of the nozzle meet the requirements, and the atomization effect of the nozzle is good.
  • the long nozzle of the large ladle is poured with graphite sealing gasket + argon blowing, the tundish is fully sealed, and argon is blown into the tundish before pouring; the liquid level of the tundish is 730mm, and the fluctuation of the liquid level of the mold is ⁇ 3mm.
  • Medium carbon alloy continuous casting mold flux is used, and double-layer middle-package covering agent is used.
  • the superheat of the tundish is controlled according to the target of 21°C.
  • the temperature of the billet entering the tension leveler is 920°C.
  • the electromagnetic stirring current of the crystallizer is controlled at 282A, the frequency is controlled at 1.6Hz, the electromagnetic stirring current at the end is controlled at 120A, and the frequency is controlled at 5.0Hz.
  • the temperature of ⁇ 700mm round billet entering the slow cooling pit is 775°C, and the temperature of exiting the pit is less than 100°C.
  • Heating in the heating furnace the ⁇ 700mm round billet enters the heating furnace and the heating temperature reaches 1223°C, and the holding time is 1.6 hours.
  • Heat treatment The round billet after forging is subjected to overall heat treatment, and the heat treatment process is normalizing + quenching (heating to 860 °C and then quenching the polymer) + tempering (heating to 662 °C and then air cooling).
  • Table 1 The chemical composition and mass percentage content of the high-strength, tough, ultra-low-temperature impact-resistant tubing head forging blank of this embodiment are shown in Table 1, and the remaining components are Fe and inevitable impurities.
  • Table 2 shows the results of mechanical properties of each example.
  • Table 3 lists the grades of non-metallic inclusions for each example.
  • the production process of this embodiment includes electric furnace smelting, LF refining, VD vacuum treatment, continuous casting process, heating, forging, and heat treatment, and the specific process steps are as follows:
  • Electric furnace smelting smelting in electric arc furnace, using scrap steel and hot charging molten iron, the proportion of hot charging molten iron is 61%, and the total furnace capacity is 120.3 tons.
  • the end point C is 0.09%, P is 0.013%, the residual elements meet the internal control requirements;
  • the tapping temperature is 1646 °C.
  • the tapping time of the electric furnace is 4 minutes; the amount of steel remaining in the electric furnace is 10.8 tons.
  • Feeding sequence for tapping aluminum ingot ⁇ medium manganese ⁇ ferrosilicon ⁇ ferrochromium ⁇ nickel plate ⁇ ferromolybdenum ⁇ ferrovanadium ⁇ active lime ⁇ pre-melted slag, according to the target composition of C, Mn, Cr, Ni, Mo minus 0.06%.
  • the addition amount of aluminum ingot is 1.3kg/t
  • the addition amount of lime is 7.2kg/t
  • the addition amount of pre-melted slag is 7.3kg/t.
  • the amount of alloy added is appropriately adjusted according to the actual content of alloying elements and the content of residual elements in the molten steel of the electric furnace.
  • VD furnace vacuum treatment slag removal before entering the VD furnace.
  • the vacuum degree is less than 67Pa and the holding time is 14 minutes.
  • the time of soft argon blowing is 18 minutes.
  • soft argon blowing it is strictly forbidden to expose molten steel and a large amount of argon to stir and cool down.
  • the upper steel temperature was controlled to 1560°C.
  • the tundish is well baked and kept clean, and the baking temperature is 1120 °C.
  • the arc of the crystallizer and the centering of the nozzle meet the requirements, and the atomization effect of the nozzle is good.
  • the long nozzle of the large ladle is poured with graphite sealing gasket + argon blowing, the tundish is fully sealed, and argon is blown into the tundish before pouring; the liquid level of the tundish is 728mm, and the fluctuation of the liquid level of the mold is ⁇ 3mm.
  • Medium carbon alloy continuous casting mold flux is used, and double-layer middle-package covering agent is used.
  • the superheat of the tundish is controlled at the target of 22°C.
  • the temperature of the billet entering the tension leveler is 921°C.
  • the electromagnetic stirring current of the crystallizer is controlled at 279A, the frequency is controlled at 1.5Hz, the electromagnetic stirring current at the end is controlled at 118A, and the frequency is controlled at 5.3Hz.
  • the temperature of ⁇ 700mm round billet entering the slow cooling pit is 763°C, and the temperature of exiting the pit is less than 100°C.
  • Heating in the heating furnace The ⁇ 700mm round billet enters the heating furnace for heating to 1213°C, and the holding time is 1.4 hours.
  • Heat treatment The round billet after forging is subjected to overall heat treatment.
  • the heat treatment process is normalizing + quenching (heating to 862 °C and then quenching the polymer) + tempering (heating to 658 °C and then air cooling).
  • Table 1 is the chemical composition of each embodiment steel of the present invention.
  • Example 1 Example 2
  • Example 3 C 0.33% 0.34% 0.35% Si 0.35% 0.38% 0.31% Mn 0.84% 0.88% 0.90% P 0.010% 0.011% 0.009%
  • Table 3 shows the grades of non-metallic inclusions
  • a fine A thick B fine B thick C fine C thick D fine D thick Example 1 1.0 0 0.5 0 0 0.5 0
  • Example 2 1.0 0 0 0.5 0.5 0 0 0.5
  • Example 3 1.0 0 0.5 0 0 0.5 0 0 skills requirement ⁇ 1.0 ⁇ 1.0 ⁇ 1.5 ⁇ 1.0 ⁇ 1.0 ⁇ 1.0 ⁇ 1.0 ⁇ 1.0 ⁇ 1.0 ⁇ 1.0 ⁇ 1.0
  • the tensile strength of the forging blank obtained in the present application can be about 900MPa, which is more than 200MPa higher than the technical requirements, and the yield strength reaches more than 650Mpa, which is 120MPa higher than that of similar forgings Above, other performance parameters are also far higher than the technical requirements, and achieve significant technical effects.
  • the process parameters (such as temperature, time, etc.) of the present invention can implement the method by setting the upper and lower limits of the interval and the interval value, and the embodiments are not listed one by one here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Forging (AREA)

Abstract

本发明公开了一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法,所述高强韧超低温耐冲击油管头锻件毛坯含有以下质量百分比含量的化学成分:C:0.30~0.40%,Si:0.20~0.50%,Mn:0.70~1.00%,Cr:1.00~1.30%,Ni:0.20~0.50%,Mo:0.20~0.30%,V:0.02~0.05%,Al:0.02~0.05%,P≤0.012%,S≤0.005%,五害元素Sn≤0.015%,As≤0.015%,Pb≤0.015%,Sb≤0.015%,Bi≤0.015%,气体[H]≤1.5ppm,[O]≤15ppm,[N]≤60ppm;其余为Fe及其他不可避免杂质;本发明成分设计具有明显的优越性,钢材质纯净度高,通过大压下锻造可以明显提高锻件的组织均匀性,可以明显改善油管头锻件毛坯的强度、韧性和-60℃耐低温冲击性能。

Description

一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法
相关申请:本申请要求名称为“一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法”、于2021年3月15日提交的中国专利申请2021102748784的优先权,在此通过引用包括该件申请。
技术领域
本发明涉及钢铁材料技术领域,特别是一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法。
背景技术
油管头安装在套管头四通顶部,在最后的套管安装完毕以后再安装油管头,来提供一个负荷台阶支撑油管柱并且为油管悬挂器或者生产套管/油管环形空间密封提供密封孔。当完井之后,采油树通过连接油管头异径接头再安装到油管头四通顶部法兰上。普通的CrMo钢材质制作的油管头强度较低韧性差,耐低温冲击达不到-60℃,在一些极端环境下发生脆断,引起油井的重大事故,严重的会引起井喷造成报废。
发明内容
本发明的目的是针对现有技术存在的缺陷,提供一种高强韧超低温耐冲击油管头锻件毛坯及制造方法,生产工艺流程为:电炉冶炼、LF精炼、VD真空处理、连铸工序、加热、锻造、热处理。
为达到上述目的,本发明采用了如下的技术方案:
一种高强韧超低温耐冲击油管头锻件毛坯,所述锻件毛坯的钢含量以下质量百分比含量的化学成分:C:0.30~0.40%,Si:0.20~0.50%,Mn:0.70~1.00%,Cr:1.00~1.30%,Ni:0.20~0.50%,Mo:0.20~0.30%,V:0.02~0.05%,Al:0.02~0.05%,P≤0.012%,S≤0.005%,五害元素Sn≤0.015%,As≤0.015%,Pb≤0.015%,Sb≤0.015%,Bi≤0.015%,气体[H]≤1.5ppm,[O]≤15ppm,[N]≤60ppm;其余为Fe及其他不可避免杂质。
本发明的一种高强韧超低温耐冲击油管头锻件毛坯制造方法,包括下述步 骤:
(1)电炉冶炼:在电弧炉中冶炼,采用废钢和热装铁水,热装铁水比例≥60%,总装炉量120吨。终点C≥0.07%,P≤0.015%,残余元素符合内控要求;出钢温度1640~1680℃。电炉出钢时间≥2.0min;电炉余钢量≥10吨。采用铝锭、中锰、硅铁、铬铁脱氧合金化,严禁配加硅锰合金。出钢加料顺序:铝锭→中锰→硅铁→铬铁→镍板→钼铁→钒铁→活性石灰→预熔渣,按照C、Mn、Cr、Ni、Mo目标成分减0.06%配入合金,铝锭加入量为1.2~1.6kg/t,石灰加入量为6~8kg/t,预熔渣加入量为6~8kg/t。合金加入量根据合金元素实际含量及电炉钢水残余元素含量适当调整。
(2)LF精炼:精炼到位后视渣况补加渣料,控制精炼终渣Al 2O 3=20%~31%,(FeO+MnO)≤0.5%,使用高纯碳化硅脱氧,其加入量大于1.0kg/t钢。化渣良好情况下,视脱氧状况可补喂适量铝线,氩气流量300~700NL/min充分搅拌2min后,软吹1min后取一次样全分析。根据一次样分析结果,按目标成分要求调整C、Si、Mn、Cr、Ni、Mo、V等成分含量,氩气流量300~700NL/min充分搅拌1.5min后,软吹2min后取二次样分析。LF出钢前,按照1.0~1.5m/吨钢喂入钙线,然后软吹≥2min。
(3)VD炉真空处理:入VD炉前扒渣。真空度小于67Pa保持时间≥12分钟。VD处理后软吹氩时间不小于15分钟,软吹氩时严禁裸露钢水和大氩气量搅拌降温。软吹氩后控制上钢温度:连铸第一炉:1579~1589℃,第二炉起:1549~1569℃。
(4)连铸保护浇注:中间包烘烤良好并保持清洁,烘烤温度≥1100℃。结晶器对弧、水口对中符合要求,喷嘴雾化效果良好。大包长水口使用石墨密封垫+吹氩气密封浇注,中间包全密封,开浇前向中间包内吹氩;中间包液面不低于700mm,结晶器液面波动≤±3mm。采用中碳合金连铸保护渣,使用双层中包覆盖剂。正常炉次中包过热度按15~30℃目标控制,中包第一炉温度:1534~1544℃(热换炉次减5℃),正常炉次温度1519~1529℃。铸坯进拉矫机温度≥900℃。结晶器电磁搅拌电流控制在250-300A,频率控制在1.0-2.0Hz,末端电磁搅拌电流控制在100-150A,频率控制在5.0-8.0Hz。Φ700mm圆坯入缓冷坑温度大于等于750℃,出坑温度小于等于100℃。
(5)加热炉加热:Φ700mm圆坯进入加热炉加热温度至1200~1230℃,保温时间≥1小时。
(6)5000吨液压机自由锻:Φ700mm圆坯进入液压机进行自由锻打,采用三墩三拔工艺,第一道次墩粗小压下30mm,第二道次拔长压下30mm,第三道次墩粗压下40mm,第四道次拔长压下45mm,第五道次墩粗大压下65mm,第六道次拔长大压下70mm。
(7)热处理:将锻打后的圆坯进行整体热处理,热处理工艺为正火+淬火(加热至843℃~885℃保温后水或聚合物淬火)+回火(加热至649℃~704℃保温后空冷)。
与现有技术相比,本发明采用上述技术方案所产生的有益效果在于:
本发明成分设计具有明显的优越性,钢材质纯净度高,通过大压下锻造可以明显提高锻件的组织均匀性,可以明显改善油管头锻件毛坯的强度、韧性和-60℃耐低温冲击性能,使用于各种极端环境,使用寿命和安全系数大大调高。
具体实施方式
下面结合实施例对本发明作进一步的说明。
实施例1
本实施例高强韧超低温耐冲击油管头锻件毛坯化学成分组成及其质量百分比含量见表1,其余成分为Fe和不可避免的杂质。表2为各实施例的力学性能。表3为各实施例的非金属夹杂物级别。
本实施例生产工艺包括电炉冶炼、LF精炼、VD真空处理、连铸工序、加热、锻造、热处理,具体工艺步骤如下所述:
(1)电炉冶炼:在电弧炉中冶炼,采用废钢和热装铁水,热装铁水比例62%,总装炉量118吨。终点C为0.08%,P为0.010%,残余元素符合内控要求;出钢温度1650℃。电炉出钢时间3min;电炉余钢量10.5吨。采用铝锭、中锰、硅铁、铬铁脱氧合金化,严禁配加硅锰合金。出钢加料顺序:铝锭→中锰→硅铁→铬铁→镍板→钼铁→钒铁→活性石灰→预熔渣,按照C、Mn、Cr、Ni、Mo目标成分减0.06%配入合金,铝锭加入量为1.3kg/t,石灰加入量为6kg/t,预熔渣加入量为7kg/t。合金加入量根据合金元素实际含量及电炉钢水残余元素含量适当调整。
(2)LF精炼:精炼到位后视渣况补加渣料,控制精炼终渣Al 2O 3=22%,(FeO+MnO)=0.3%,使用高纯碳化硅脱氧,其加入量大于1.0kg/t钢。化渣良好情况下,视脱氧状况可补喂适量铝线,氩气流量360NL/min充分搅拌2min后,软吹1min后取一次样全分析。根据一次样分析结果,按目标成分要求调整C、Si、Mn、Cr、Ni、Mo、V等成分含量,氩气流量400NL/min充分搅拌1.5min后,软吹2min后取二次样分析。LF出钢前,按照1.2m/吨钢喂入钙线,然后软吹3min。
(3)VD炉真空处理:入VD炉前扒渣。真空度小于67Pa保持时间15分钟。VD处理后软吹氩时间16分钟,软吹氩时严禁裸露钢水和大氩气量搅拌降温。软吹氩后控制上钢温度1559℃。
(4)连铸保护浇注:中间包烘烤良好并保持清洁,烘烤温度1120℃。结晶器对弧、水口对中符合要求,喷嘴雾化效果良好。大包长水口使用石墨密封垫+吹氩气密封浇注,中间包全密封,开浇前向中间包内吹氩;中间包液面720mm,结晶器液面波动≤±3mm。采用中碳合金连铸保护渣,使用双层中包覆盖剂。中包过热度按20℃目标控制。铸坯进拉矫机温度915℃。结晶器电磁搅拌电流控制在280A,频率控制在1.6Hz,末端电磁搅拌电流控制在130A,频率控制在5.0Hz。Φ700mm圆坯入缓冷坑温度762℃,出坑温度小于100℃。
(5)加热炉加热:Φ700mm圆坯进入加热炉加热温度至1210℃,保温时间1.5小时。
(6)5000吨液压机自由锻:Φ700mm圆坯进入液压机进行自由锻打,采用三墩三拔工艺,第一道次墩粗小压下30mm,第二道次拔长压下30mm,第三道次墩粗压下40mm,第四道次拔长压下45mm,第五道次墩粗大压下65mm,第六道次拔长大压下70mm。
(7)热处理:将锻打后的圆坯进行整体热处理,热处理工艺为正火+淬火(加热至855℃保温后聚合物淬火)+回火(加热至660℃保温后空冷)。
实施例2
本实施例高强韧超低温耐冲击油管头锻件毛坯化学成分组成及其质量百分比含量见表1,其余成分为Fe和不可避免的杂质。表2为各实施例的力学性 能结果。表3为各实施例的非金属夹杂物级别。
本实施例生产工艺包括电炉冶炼、LF精炼、VD真空处理、连铸工序、加热、锻造、热处理,具体工艺步骤如下所述:
(1)电炉冶炼:在电弧炉中冶炼,采用废钢和热装铁水,热装铁水比例60.6%,总装炉量119.3吨。终点C为0.08%,P为0.011%,残余元素符合内控要求;出钢温度1652℃。电炉出钢时间3.5min;电炉余钢量10.6吨。采用铝锭、中锰、硅铁、铬铁脱氧合金化,严禁配加硅锰合金。出钢加料顺序:铝锭→中锰→硅铁→铬铁→镍板→钼铁→钒铁→活性石灰→预熔渣,按照C、Mn、Cr、Ni、Mo目标成分减0.06%配入合金,铝锭加入量为1.5kg/t,石灰加入量为7.6kg/t,预熔渣加入量为7.2kg/t。合金加入量根据合金元素实际含量及电炉钢水残余元素含量适当调整。
(2)LF精炼:精炼到位后视渣况补加渣料,控制精炼终渣Al 2O 3=25%,(FeO+MnO)=0.2%,使用高纯碳化硅脱氧,其加入量大于1.0kg/t钢。化渣良好情况下,视脱氧状况可补喂适量铝线,氩气流量380NL/min充分搅拌2min后,软吹1min后取一次样全分析。根据一次样分析结果,按目标成分要求调整C、Si、Mn、Cr、Ni、Mo、V等成分含量,氩气流量410NL/min充分搅拌1.5min后,软吹2min后取二次样分析。LF出钢前,按照1.3m/吨钢喂入钙线,然后软吹3.5min。
(3)VD炉真空处理:入VD炉前扒渣。真空度小于67Pa保持时间13分钟。VD处理后软吹氩时间17分钟,软吹氩时严禁裸露钢水和大氩气量搅拌降温。软吹氩后控制上钢温度1555℃。
(4)连铸保护浇注:中间包烘烤良好并保持清洁,烘烤温度1125℃。结晶器对弧、水口对中符合要求,喷嘴雾化效果良好。大包长水口使用石墨密封垫+吹氩气密封浇注,中间包全密封,开浇前向中间包内吹氩;中间包液面730mm,结晶器液面波动≤±3mm。采用中碳合金连铸保护渣,使用双层中包覆盖剂。中包过热度按21℃目标控制。铸坯进拉矫机温度920℃。结晶器电磁搅拌电流控制在282A,频率控制在1.6Hz,末端电磁搅拌电流控制在120A,频率控制在5.0Hz。Φ700mm圆坯入缓冷坑温度775℃,出坑温度小于100℃。
(5)加热炉加热:Φ700mm圆坯进入加热炉加热温度至1223℃,保温时 间1.6小时。
(6)5000吨液压机自由锻:Φ700mm圆坯进入液压机进行自由锻打,采用三墩三拔工艺,第一道次墩粗小压下30mm,第二道次拔长压下30mm,第三道次墩粗压下40mm,第四道次拔长压下45mm,第五道次墩粗大压下65mm,第六道次拔长大压下70mm。
(7)热处理:将锻打后的圆坯进行整体热处理,热处理工艺为正火+淬火(加热至860℃保温后聚合物淬火)+回火(加热至662℃保温后空冷)。
实施例3
本实施例高强韧超低温耐冲击油管头锻件毛坯化学成分组成及其质量百分比含量见表1,其余成分为Fe和不可避免的杂质。表2为各实施例的力学性能结果。表3为各实施例的非金属夹杂物级别。
本实施例生产工艺包括电炉冶炼、LF精炼、VD真空处理、连铸工序、加热、锻造、热处理,具体工艺步骤如下所述:
(1)电炉冶炼:在电弧炉中冶炼,采用废钢和热装铁水,热装铁水比例61%,总装炉量120.3吨。终点C为0.09%,P为0.013%,残余元素符合内控要求;出钢温度1646℃。电炉出钢时间4min;电炉余钢量10.8吨。采用铝锭、中锰、硅铁、铬铁脱氧合金化,严禁配加硅锰合金。出钢加料顺序:铝锭→中锰→硅铁→铬铁→镍板→钼铁→钒铁→活性石灰→预熔渣,按照C、Mn、Cr、Ni、Mo目标成分减0.06%配入合金,铝锭加入量为1.3kg/t,石灰加入量为7.2kg/t,预熔渣加入量为7.3kg/t。合金加入量根据合金元素实际含量及电炉钢水残余元素含量适当调整。
(2)LF精炼:精炼到位后视渣况补加渣料,控制精炼终渣Al 2O 3=24.5%,(FeO+MnO)=0.4%,使用高纯碳化硅脱氧,其加入量大于1.0kg/t钢。化渣良好情况下,视脱氧状况可补喂适量铝线,氩气流量410NL/min充分搅拌2min后,软吹1min后取一次样全分析。根据一次样分析结果,按目标成分要求调整C、Si、Mn、Cr、Ni、Mo、V等成分含量,氩气流量420NL/min充分搅拌1.5min后,软吹2min后取二次样分析。LF出钢前,按照1.4m/吨钢喂入钙线,然后软吹4min。
(3)VD炉真空处理:入VD炉前扒渣。真空度小于67Pa保持时间14分钟。VD处理后软吹氩时间18分钟,软吹氩时严禁裸露钢水和大氩气量搅拌降温。软吹氩后控制上钢温度1560℃。
(4)连铸保护浇注:中间包烘烤良好并保持清洁,烘烤温度1120℃。结晶器对弧、水口对中符合要求,喷嘴雾化效果良好。大包长水口使用石墨密封垫+吹氩气密封浇注,中间包全密封,开浇前向中间包内吹氩;中间包液面728mm,结晶器液面波动≤±3mm。采用中碳合金连铸保护渣,使用双层中包覆盖剂。中包过热度按22℃目标控制。铸坯进拉矫机温度921℃。结晶器电磁搅拌电流控制在279A,频率控制在1.5Hz,末端电磁搅拌电流控制在118A,频率控制在5.3Hz。Φ700mm圆坯入缓冷坑温度763℃,出坑温度小于100℃。
(5)加热炉加热:Φ700mm圆坯进入加热炉加热温度至1213℃,保温时间1.4小时。
(6)5000吨液压机自由锻:Φ700mm圆坯进入液压机进行自由锻打,采用三墩三拔工艺,第一道次墩粗小压下30mm,第二道次拔长压下30mm,第三道次墩粗压下40mm,第四道次拔长压下45mm,第五道次墩粗大压下65mm,第六道次拔长大压下70mm。
(7)热处理:将锻打后的圆坯进行整体热处理,热处理工艺为正火+淬火(加热至862℃保温后聚合物淬火)+回火(加热至658℃保温后空冷)。
表1为本发明各实施例钢的化学成分
化学成分 实施例1 实施例2 实施例3
C 0.33% 0.34% 0.35%
Si 0.35% 0.38% 0.31%
Mn 0.84% 0.88% 0.90%
P 0.010% 0.011% 0.009%
S 0.003% 0.002% 0.003%
Cr 1.20% 1.22% 1.25%
Ni 0.30% 0.28% 0.23%
Mo 0.25% 0.22% 0.21%
V 0.035% 0.030% 0.040%
Sn 0.005% 0.006% 0.004%
As 0.004% 0.005% 0.003%
Pb 0.003% 0.003% 0.002%
Sb 0.004% 0.001% 0.002%
Bi 0.005% 0.002% 0.003%
[H] 1.2ppm 1.1ppm 1.0ppm
[O] 10ppm 11ppm 9ppm
[N] 55ppm 50ppm 48ppm
表2为力学性能
  抗拉强度 屈服强度 延伸率 收缩率 -60℃冲击
实施例1 872 663 32.5 51 56
实施例2 901 656 28 56 59
实施例3 895 687 27 52 57
技术要求 ≥675MPa ≥530MPa ≥20% ≥41% ≥30J
表3为非金属夹杂物级别
  A细 A粗 B细 B粗 C细 C粗 D细 D粗
实施例1 1.0 0 0.5 0 0 0 0.5 0
实施例2 1.0 0 0 0.5 0.5 0 0 0.5
实施例3 1.0 0 0.5 0 0 0.5 0 0
技术要求 ≤1.0 ≤1.0 ≤1.5 ≤1.0 ≤1.0 ≤1.0 ≤1.0 ≤1.0
从上述表2-3可以看出,本申请的所得锻件毛坯的抗拉强度可得到900MPa左右,相比于技术要求提高了200MPa以上,屈服强度达到了650Mpa以上,相比于同类锻件提高了120MPa以上,其他性能参数也远高于技术要求,取得显著的技术效果。
本发明的工艺参数(如温度、时间等)区间上下限取值以及区间值都能实现本法,在此不一一列举实施例。
本发明未详细说明的内容均可采用本领域的常规技术知识。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。 尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

  1. 一种高强韧超低温耐冲击油管头锻件毛坯,其特征在于:所述锻件毛坯包括以下质量百分比含量的化学成分:C:0.30~0.40%,Si:0.20~0.50%,Mn:0.70~1.00%,Cr:1.00~1.30%,Ni:0.20~0.50%,Mo:0.20~0.30%,V:0.02~0.05%,Al:0.02~0.05%,P≤0.012%,S≤0.005%,五害元素Sn≤0.015%,As≤0.015%,Pb≤0.015%,Sb≤0.015%,Bi≤0.015%,气体[H]≤1.5ppm,[O]≤15ppm,[N]≤60ppm;其余为Fe及其他不可避免杂质。
  2. 一种高强韧超低温耐冲击油管头锻件毛坯的制造方法,所述制造方法包括以下步骤:
    (1)电炉冶炼:
    在电弧炉中冶炼,采用废钢和热装铁水,热装铁水比例≥60%,总装炉量120吨;终点C≥0.07%,P≤0.015%,残余元素符合内控要求;出钢温度1640~1680℃。电炉出钢时间≥2.0min;电炉余钢量≥10吨;
    (2)LF精炼:
    精炼到位后视渣况补加渣料,控制精炼终渣Al 2O 3=20%~31%,(FeO+MnO)≤0.5%,使用高纯碳化硅脱氧,其加入量大于1.0kg/t钢;化渣良好情况下,视脱氧状况可补喂适量铝线,氩气流量300~700NL/min充分搅拌2min后,软吹1min后取一次样全分析;根据一次样分析结果,按目标成分要求调整C、Si、Mn、Cr、Ni、Mo、V等成分含量,氩气流量300~700NL/min充分搅拌1.5min后,软吹2min后取二次样分析;LF出钢前,按照1.0~1.5m/吨钢喂入钙线,然后软吹≥2min;
    (3)VD炉真空处理:
    入VD炉前扒渣;真空度小于67Pa保持时间≥12分钟;VD处理后软吹氩时间不小于15分钟,软吹氩时严禁裸露钢水和大氩气量搅拌降温;软吹氩后控制上钢温度:连铸第一炉:1579~1589℃,第二炉起:1549~1569℃;
    (4)连铸保护浇注:
    中间包烘烤良好并保持清洁,烘烤温度≥1100℃;大包长水口使用石墨密封垫+吹氩气密封浇注,中间包全密封,开浇前向中间包内吹氩;中间包液面不低于700mm,结晶器液面波动±3mm;采用中碳合金连铸保护渣,使用双层中包覆盖剂;正常炉次中包过热度按15~30℃目标控制,中包第一炉温度:1534 ~1544℃,正常炉次温度1519~1529℃;铸坯进拉矫机温度≥900℃;Φ700mm圆坯入缓冷坑温度大于等于750℃,出坑温度小于等于100℃;
    (5)加热炉加热:
    Φ700mm圆坯进入加热炉加热温度至1200~1230℃,保温时间≥1小时;
    (6)液压自由锻:
    Φ700mm圆坯进入液压机进行自由锻打,采用三墩三拔工艺,第一道次墩粗小压下30mm,第二道次拔长压下30mm,第三道次墩粗压下40mm,第四道次拔长压下45mm,第五道次墩粗大压下65mm,第六道次拔长大压下70mm;
    (7)热处理:
    将锻打后的圆坯进行整体热处理,热处理工艺为正火+淬火+回火。
  3. 根据权利要求2所述的制造方法,其特征在于,步骤(2)中,采用铝锭、中锰、硅铁、铬铁脱氧合金化,严禁配加硅锰合金;出钢加料顺序:铝锭→中锰→硅铁→铬铁→镍板→钼铁→钒铁→活性石灰→预熔渣,按照C、Mn、Cr、Ni、Mo目标成分减0.06%配入合金,铝锭加入量为1.2~1.6kg/t,石灰加入量为6~8kg/t,预熔渣加入量为6~8kg/t。
  4. 根据权利要求2所述的制造方法,其特征在于,步骤(4)中,结晶器电磁搅拌电流控制在250-300A,频率控制在1.0-2.0Hz,末端电磁搅拌电流控制在100-150A,频率控制在5.0-8.0Hz。
  5. 根据权利要求2所述的制造方法,其特征在于,步骤(7)的热处理中,淬火为:加热至843℃~885℃保温后水或聚合物淬火,回火为:加热至649℃~704℃保温后空冷。
  6. 根据权利要求2所述的制造方法,其特征在于,通过以上制造方法的锻件毛坯,其力学性能中:抗拉强度≥675MPa,屈服强度≥530MPa,延伸率≥20%,收缩率≥41%;-60℃低温冲击功≥30J;夹杂物A细≤1.0级,A粗≤1.0级,B细≤1.5级,B粗≤1.0级,C细≤1.0级,C粗≤1.0级,D细≤1.0级,D粗≤1.0级。
PCT/CN2021/118763 2021-03-15 2021-09-16 一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法 WO2022193587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110274878.4 2021-03-15
CN202110274878.4A CN113088812B (zh) 2021-03-15 2021-03-15 一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法

Publications (1)

Publication Number Publication Date
WO2022193587A1 true WO2022193587A1 (zh) 2022-09-22

Family

ID=76667200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118763 WO2022193587A1 (zh) 2021-03-15 2021-09-16 一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法

Country Status (2)

Country Link
CN (1) CN113088812B (zh)
WO (1) WO2022193587A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088812B (zh) * 2021-03-15 2022-12-06 山东钢铁股份有限公司 一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法
CN113699448B (zh) * 2021-08-27 2022-06-10 中冶陕压重工设备有限公司 一种低合金结构钢SY41CrMnMoNbVTi及其制备方法
CN114686770A (zh) * 2022-04-18 2022-07-01 营口中车型钢新材料有限公司 一种铁路制动梁模具用钢
CN116949353B (zh) * 2023-06-02 2024-05-17 江阴兴澄特种钢铁有限公司 一种含Bi易切削非调质汽车发动机曲轴用钢及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894487A (zh) * 2015-06-25 2015-09-09 江苏沙钢集团淮钢特钢股份有限公司 一种高强度、高韧性石油钻井平台阀体用钢及其生产工艺
CN105385948A (zh) * 2015-11-06 2016-03-09 天津钢管集团股份有限公司 自升钻井平台屈服强度大于690MPa无缝管的制造方法
CN110230005A (zh) * 2019-05-22 2019-09-13 山东钢铁股份有限公司 一种高碳铬冷轧辊辊坯用钢及其制备方法
CN110257692A (zh) * 2019-06-12 2019-09-20 山东钢铁股份有限公司 一种表层石油套管用钢及其制造方法
CN113088812A (zh) * 2021-03-15 2021-07-09 山东钢铁股份有限公司 一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131956B (zh) * 2013-03-15 2015-05-27 济钢集团有限公司 一种抗拉强度达800MPa以上的高强韧钢板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894487A (zh) * 2015-06-25 2015-09-09 江苏沙钢集团淮钢特钢股份有限公司 一种高强度、高韧性石油钻井平台阀体用钢及其生产工艺
CN105385948A (zh) * 2015-11-06 2016-03-09 天津钢管集团股份有限公司 自升钻井平台屈服强度大于690MPa无缝管的制造方法
CN110230005A (zh) * 2019-05-22 2019-09-13 山东钢铁股份有限公司 一种高碳铬冷轧辊辊坯用钢及其制备方法
CN110257692A (zh) * 2019-06-12 2019-09-20 山东钢铁股份有限公司 一种表层石油套管用钢及其制造方法
CN113088812A (zh) * 2021-03-15 2021-07-09 山东钢铁股份有限公司 一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法

Also Published As

Publication number Publication date
CN113088812A (zh) 2021-07-09
CN113088812B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2022193587A1 (zh) 一种高强韧超低温耐冲击油管头锻件毛坯及其制造方法
CN104651754B (zh) 一种高压锅炉管用低合金钢及其制备方法
CN108950432B (zh) 一种高强度、高韧性低合金耐磨钢的制造方法
JP2023528422A (ja) 極地海洋工事用鋼板及びその製造方法
CN114395657B (zh) 一种高洁净铁路货车用电渣轴承钢及其冶炼方法
CN105063267B (zh) 高强合金R320Cr钢轨的生产方法
CN108660377A (zh) 无缝钢管及无缝钢管的制备方法
CN115233109B (zh) 一种窄淬透性轴承钢及其生产工艺
CN116179967A (zh) 一种支重轮轮轴用材料及其制备方法
CN109628693B (zh) 一种低成本镁处理微合金钢及其制备方法
CN108977612B (zh) 高强度耐大气腐蚀螺栓用钢的冶炼方法
CN117230360B (zh) 一种单真空300m钢的制备方法
CN107675097B (zh) 具有良好侧弯性能的高强钢q690d钢板及其生产方法
WO2024120001A1 (zh) 一种以V代Mo的低成本Q550D钢板及其生产方法
CN109097665B (zh) 高强度耐大气腐蚀螺栓用钢的冶炼方法
CN115896634A (zh) 一种耐高温有色金属压铸成型模具钢材料及其制备方法
CN113249640B (zh) 一种p91钢中细化夹杂物的冶炼方法
CN115491575A (zh) 一种高碳铬风电轴承钢及其生产工艺
CN115386790A (zh) 一种含铌高温渗碳齿轮钢及其生产工艺
CN110468329B (zh) ZG-SY09MnCrNiMo RE钢及铸件制备方法
CN110230003B (zh) 一种适用于高寒地区的高强度低合金耐热铸钢材料及其制备工艺
CN114107807A (zh) 一种低成本轻型随车吊吊臂用钢650db及其生产方法
CN107338391A (zh) 一种坯料及制作方法、钢材及制作方法
CN117248167B (zh) 耐腐蚀工字钢及其生产方法
CN113699448B (zh) 一种低合金结构钢SY41CrMnMoNbVTi及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931162

Country of ref document: EP

Kind code of ref document: A1