WO2022193564A1 - 一种伺服***参数管理方法、装置、设备及存储介质 - Google Patents

一种伺服***参数管理方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022193564A1
WO2022193564A1 PCT/CN2021/115666 CN2021115666W WO2022193564A1 WO 2022193564 A1 WO2022193564 A1 WO 2022193564A1 CN 2021115666 W CN2021115666 W CN 2021115666W WO 2022193564 A1 WO2022193564 A1 WO 2022193564A1
Authority
WO
WIPO (PCT)
Prior art keywords
servo
determination condition
target
backup
module
Prior art date
Application number
PCT/CN2021/115666
Other languages
English (en)
French (fr)
Inventor
唐海元
王亚平
王志成
徐必业
吴丰礼
Original Assignee
广东拓斯达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东拓斯达科技股份有限公司 filed Critical 广东拓斯达科技股份有限公司
Publication of WO2022193564A1 publication Critical patent/WO2022193564A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1448Management of the data involved in backup or backup restore
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0656Data buffering arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the embodiments of the present application relate to the field of automatic control, for example, to a method, apparatus, device, and storage medium for managing parameters of a servo system.
  • Servo systems are widely used in the field of industrial manufacturing.
  • Servo systems often use a closed-loop proportional-integral-derivative (PID) control method, which inevitably requires adjustment of PID parameters.
  • PID proportional-integral-derivative
  • parameter debugging is generally carried out by professional debugging personnel on the job site, or parameter debugging is carried out through the parameter automatic tuning function.
  • the parameters that have passed the debugging are saved to the internal storage medium of the servo system, and the control parameters will not be changed unless there is an accident.
  • the servo system faces a prominent problem. Once the servo system is irreversibly damaged, the worst case is: the internal parameters of the servo system will be lost directly, and the debugging parameters cannot be read. Therefore, it is necessary to re-debug the parameters through manual or parameter auto-tuning function, and the newly debugged parameters cannot be guaranteed to be exactly the same as the original debugging parameters, which is not expected. Even if the internal parameters of the servo system are not lost, the field personnel need to download the parameters to the new servo drive through the debugging software after replacing the servo drive.
  • Embodiments of the present application provide a method, device, device, and storage medium for managing parameters of a servo system, so as to backup the debugged parameters of the servo system, and restore the parameters of the servo system to the axis drive module after replacing the axis drive module, so as to avoid Debug control parameters to facilitate the management of servo system parameters.
  • an embodiment of the present application provides a method for managing parameters of a servo system, which is applied to a servo system, where the servo system includes a power supply module, and the method for managing parameters of a servo system includes:
  • the power module obtains the judgment conditions, target servo parameters and backup servo parameters
  • the power module determines a decision result according to the determination condition, the backup servo parameter and the target servo parameter;
  • the power module manages the target servo parameter or the backup servo parameter according to the decision result.
  • an embodiment of the present application further provides a servo parameter management device, the device includes: a power supply module, wherein the power supply module includes: an acquisition sub-module, a decision-making sub-module and a management sub-module.
  • the acquisition sub-module is set to acquire judgment conditions, target servo parameters and backup servo parameters;
  • a decision-making submodule configured to determine a decision-making result according to the judgment condition, the backup servo parameter and the target servo parameter;
  • the management sub-module is configured to manage the target servo parameter or the backup servo parameter according to the decision result.
  • an embodiment of the present application further provides a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the computer program as described herein when executing the computer program
  • a computer device including a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the computer program as described herein when executing the computer program
  • an embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the implementation is as described in any of the embodiments of the present application
  • the servo system parameter management method is described in any of the embodiments of the present application.
  • Embodiment 1 is a flowchart of a method for managing servo parameters in Embodiment 1 of the present application
  • FIG. 2a is a flowchart of a method for managing servo parameters in Embodiment 2 of the present application
  • FIG. 2b is a schematic structural diagram of a servo parameter management system in Embodiment 2 of the present application.
  • FIG. 2c is a schematic diagram of a decision-making process of a servo parameter management system in Embodiment 2 of the present application;
  • FIG. 3 is a schematic structural diagram of a servo parameter management device in Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram of a computer device in Embodiment 4 of the present application.
  • Embodiment 1 is a flowchart of a method for managing servo parameters provided in Embodiment 1 of the present application. This embodiment is applicable to the management and backup of system parameters after the modular servo system has replaced modules.
  • a servo parameter management device is implemented, and the device can be implemented in software and/or hardware. As shown in FIG. 1 , the method includes steps S110 to S130.
  • the power module acquires the determination condition, target servo parameters and backup servo parameters.
  • the servo system is a system composed of a power module and a shaft drive module, and bus communication is established between the power module and the shaft drive module.
  • the shaft drive module is a component that can directly connect and drive the servo motor, and the power module is responsible for supplying power to the shaft drive module.
  • the power supply module includes three functional components of a bus communication module, a storage area (fixed storage area) and a buffer area (temporary buffer area).
  • the storage area can store parameter information when the power module is powered off, while the buffer area can only store parameter information when the power is turned on.
  • the storage area is a power-down non-volatile storage medium, such as Flash, electrified Erasable Programmable Read Only Memory (EEPROM), etc.;
  • the cache area is a power-down volatile storage medium, such as random access memory ( Random Access Memory, RAM).
  • the axis drive module includes a debug interface and a fixed storage area (for example, electrically erasable programmable read only memory (EEPROM)), and the fixed storage area of each axis drive module stores the internal parts of the axis drive module itself
  • EEPROM electrically erasable programmable read only memory
  • the fixed storage area of the axis drive module stores target servo parameters
  • the storage area of the power module stores backup servo parameters. If the servo system replaces the axis drive module or the power supply module, the power supply module reads the target servo parameters from the storage area of the axis drive module to the buffer area of the power supply module.
  • the power module also stores judgment conditions, which are set to make decisions and manage servo parameters.
  • the backup servo parameters include: at least two of backup shaft identification information, backup shaft verification information, backup shaft power information and backup power source identification information;
  • the target servo parameters include: At least two kinds of target shaft identification information, target shaft verification information, target shaft power information and target power source identification information.
  • the target servo parameters also include some or all of the internal operation parameters and control parameters of the axis drive module.
  • the axis drive module number identification information is the unique number identification to distinguish different axis drive modules
  • the axis drive module internal parameter verification code referred to as the axis verification information
  • the power module number identification information is a unique number identification to distinguish different power modules
  • the power identification of the shaft drive module referred to as the shaft power information P, is used to indicate the power of the shaft drive module.
  • the backup servo parameters are stored in the power module storage area, the target servo parameters are stored in the power module buffer area, and the backup servo parameters are consistent with the target servo parameters.
  • the target servo parameters in the buffer area of the power module are lost.
  • the target servo parameters are read from the axis drive module and stored in the buffer area of the power module. , judging whether the target servo parameters in the buffer area are inconsistent with the backup servo parameters in the storage area. If any module is replaced, the backup servo parameters will be inconsistent with the target servo parameters.
  • the determination conditions include a first determination condition, a second determination condition, a third determination condition, a fourth determination condition, and a fifth determination condition
  • the first determination condition is the backup axis identification information and the target axis identification information.
  • the second judgment condition is that the backup power source identification information is the same as the target power source identification information
  • the third judgment condition is that the backup shaft verification information is the same as the target shaft verification information
  • the fourth judgment condition is that the backup shaft power information and The target shaft power information is the same
  • the fifth determination condition is that the target power supply identification information in the power supply module buffer area is the same.
  • the power supply module determines a decision result according to the determination condition, the backup servo parameter and the target servo parameter.
  • the power module will judge the backup servo parameters in the storage area and the target servo parameters in the cache according to the judgment conditions, and determine the decision result.
  • the decision-making result determined by the power supply module according to the determination conditions, the backup servo parameters and the target servo parameters may be that if the power supply module determines, according to the determination conditions, that the servo system replaces the shaft drive module, the decision-making result is to update the target servo. If the power module determines that the servo system should replace the power module according to the judgment conditions, the decision result is to update the backup servo parameters; it can also be that the power module cannot determine the servo system according to the judgment conditions to replace the power module or replace the axis drive module.
  • the power module manages the target servo parameter or the backup servo parameter according to the decision result.
  • the decision result is to update the target servo parameters, then update the target servo parameters in the storage area of the shaft drive module according to the backup servo parameters in the storage area of the power module; if the decision result is to update the backup servo parameters, then Update the backup servo parameters in the storage area of the power module according to the target servo parameters in the storage area of the axis drive module; And displayed on the display screen of the servo system to prompt the relevant personnel to perform manual operation and make manual decisions on the update of the target servo parameters and backup servo parameters.
  • the power module acquires the judgment conditions, target servo parameters and backup servo parameters, it also includes:
  • the power module When the power module supplies power to the shaft drive module, the power module obtains the target servo parameters of each shaft drive module, and stores the target servo parameters in the buffer area of the power module;
  • the power supply module stores the backup servo parameters in the storage area of the power supply module.
  • the power module and the axis drive module in the servo system are used for the first time, parameter debugging of the axis drive module is required, and the debugged servo parameters are stored in the storage area of the axis drive module as the target servo parameters.
  • the power module supplies power to the shaft drive module, the power module acquires the target servo parameters of each shaft drive module, and stores the target servo parameters in the buffer area of the power module, where the target servo parameters include the corresponding shaft drive module parameters and parameters of the power module.
  • the target servo parameters in the buffer area are lost; when the power is re-supplied, the power module re-acquires the target servo parameters of each axis drive module and stores them in the buffer area of the power module.
  • the determination conditions, target servo parameters and backup servo parameters are obtained through the power module; the power module determines the decision result according to the determination conditions, the backup servo parameters and the target servo parameters; As a result of the decision, the target servo parameters or the backup servo parameters are updated, which solves the problem that any module of the servo system needs to be re-commissioned after being replaced, and enables the servo system to perform parameter debugging only when it is used for the first time. , you can make decisions, update and use them directly without using external tools to download parameters and manually debug the replaced modules, saving time and effort.
  • the backup servo determines the decision result, including: calculating the count value when the first judgment condition is established; if the count value is greater than zero, then according to the first judgment condition, the second judgment condition, the third judgment condition and the At least two of the fourth determination conditions determine a decision result; if the count value is equal to zero, then determine a decision result according to at least two of the second determination condition, the fourth determination condition and the fifth determination condition.
  • the method of this embodiment includes steps S210 to S250.
  • the power module acquires the determination condition, target servo parameters and backup servo parameters.
  • S220 Calculate the count value for which the first determination condition is satisfied.
  • the power supply module includes multiple storage areas and multiple buffer areas, each storage area stores a backup servo parameter of a shaft drive module, and the backup servo parameters include shaft drive module parameters and power module parameters; each buffer area stores a target servo parameter corresponding to a shaft drive module, and the target servo parameters include shaft drive module parameters and power module parameters.
  • the plurality of storage areas and the plurality of buffer areas are in a one-to-one correspondence, and the storage area for storing backup servo parameters of one axis drive module and the buffer area for storing target servo parameters corresponding to the same axis drive module are in a corresponding relationship.
  • the power supply module calculates the count value when the first determination condition is satisfied, that is, compares the identification information of the backup axis in the storage area of the power supply module with the identification information of the target axis in the corresponding buffer area, and determines the same number of the two.
  • the comparison results of the backup axis identification information in the storage area of the power module and the target axis identification information in the corresponding buffer area are the same or different, then according to the first judgment result, the comparison results of the axis identification information AxisID are inconsistent with the buffer area and the corresponding buffer area.
  • the storage area is marked, and the cache area and storage area marked as inconsistent with the comparison result are further compared according to the fourth judgment condition.
  • Four determination results determine the decision result; for the cache area and the storage area with the same comparison result of the axis identification information AxisID, then further compare the backup power supply identification information in the storage area and the target power supply identification information in the corresponding cache area according to the second determination condition. The same, if the backup power source identification information in the storage area is different from the target power source identification information in the corresponding buffer area, then the decision result is determined according to the second judgment result, if the backup power source identification information in the storage area is different from the target power source identification information in the corresponding buffer area. If the power source identification information is the same, then further compare the backup shaft verification information in the storage area with the target shaft verification information in the corresponding buffer area according to the third judgment condition, and determine the decision result according to the third judgment result. And so on until the backup servo parameters of all storage areas are compared with the target servo parameters in all buffer areas, so as to determine the decision result of backup servo parameters or target servo parameters corresponding to each axis drive module.
  • the second judgment condition compares the backup power supply identification information in the storage area with the target power supply identification information in the corresponding buffer area in turn, and selects the result according to the fourth judgment condition and/or the fifth judgment condition according to the number of the second judgment condition. Determine the outcome of the decision. And so on until the backup servo parameters of all storage areas are compared with the target servo parameters in all buffer areas, so as to determine the decision result of backup servo parameters or target servo parameters corresponding to each axis drive module.
  • the power module manages the target servo parameter or the backup servo parameter according to the decision result.
  • the decision result is determined according to at least two of the first judgment condition, the second judgment condition, the third judgment condition and the fourth judgment condition, including:
  • the decision result is to update the target servo parameter
  • the decision result is to update the backup servo parameters
  • the count value for which the first determination is established is greater than zero, that is, the comparison result between the backup axis identification information in the storage area of the power supply module and the target axis identification information in the corresponding buffer area is at least the same, then it is marked.
  • the first determination condition is to determine whether the identification information of the backup axis in the storage area is the same as the identification information of the target axis in the corresponding buffer area.
  • the backup power supply identification information in each storage area is the same as the target power supply identification information in the corresponding cache area according to the second determination condition. If the first judgment condition is established and the second judgment condition is not established, it means that after the axis drive module corresponding to the target power supply identification information is connected to the new power supply module, it is connected to the original power supply module again, and the original power supply module is not connected during this period. Other axis drive modules. The decision result is that the power supply module requests to update the target servo parameters of the corresponding axis drive module according to the backup servo parameters in the storage area of the power supply module.
  • the second determination condition it is sequentially determined according to the third determination condition whether the verification information of the backup axis in the storage area is the same as the verification information of the target axis in the corresponding buffer area. If the second judgment condition is established and the third judgment condition is not established, it means that the internal parameters in the corresponding shaft drive module have been modified, and the decision result is that the power module requests to update the backup in the storage area of the power module according to the modified parameters of the shaft drive module Servo parameters. If the second determination condition is satisfied and the third determination condition is satisfied, it means that the current axis drive module has not been replaced or the parameters have been modified, and the decision result is that no parameter update operation is required.
  • the shaft drive module For the buffer area and storage area where the first judgment condition does not hold, it means that the shaft drive module has been replaced, and it is necessary to sequentially determine whether the backup shaft power information in the storage area is the same as the target shaft power information in the corresponding buffer area according to the fourth judgment condition. To ensure the security of system parameter update.
  • the count value of the first determination is equal to the number of axis drive modules, that is, the comparison results of the backup axis identification information in each storage area of the power module and the target axis identification information in the corresponding buffer area are all If the same, it is not necessary to judge whether the first judgment conditions are established one by one, and further judgments are made directly to improve the decision-making efficiency.
  • determining the decision result according to at least two of the second judgment condition, the fourth judgment condition and the fifth judgment condition includes:
  • the decision result is determined according to the fourth determination condition
  • the decision result is to update the backup servo parameters
  • the decision result is determined according to the fourth determination condition.
  • the number of axis drive modules can be freely expanded according to the number of axes to obtain the number of axis drive modules of the servo system.
  • the backup axis identification information in the storage area of the power supply module and the target in the corresponding buffer area are equal to zero. If the shaft identification information is all different, and the backup power identification information in the storage area of the power module is completely different from the target power identification information in the corresponding buffer area, then compare the same number of target power identification information in multiple buffer areas, If the number of the fifth determination condition is equal to the number of axis drive modules, it means that the power module has been replaced, and the decision result is to update the backup servo parameters in the power module storage area according to the target servo parameters of the axis drive module.
  • the number of the fifth judgment condition is less than the number of shaft drive modules, it means that all the shaft modules have been replaced, and it is necessary to judge the backup shaft power information in the storage area and the target shaft power information in the corresponding buffer area in turn according to the fourth judgment condition. Whether the same is established to ensure the security of system parameter update. In another example, if the count value is equal to zero, and the number of which the second determination condition is satisfied is not equal to zero, it means that some axis modules have been connected to the power supply module.
  • the four determination conditions determine whether the backup shaft power information in the storage area is the same as the target shaft power information in the corresponding buffer area in turn, so as to ensure the security of system parameter update.
  • the determining a decision result according to the fourth decision condition includes:
  • the decision result is to update the target servo parameter
  • the decision result is to send prompt information.
  • the function of setting the fourth judgment condition is to compare the power of the backup shaft with the power of the target shaft, and determine that the power of the shaft module and the power module are the same, so that the target servo parameter update operation can be performed to improve the system of parameter updating. safety.
  • the fourth determination condition it means that the power of the replaced shaft drive module matches the power of the power supply module, and the parameters can be automatically restored, and the decision result is that the power supply module requests the backup servo according to the power supply module.
  • the parameter updates the target servo parameters in the axis drive module.
  • the fourth judgment condition does not hold, it means that the power of the replaced shaft drive module does not match the power of the power supply module, and the parameters cannot be automatically restored. Therefore, the decision result is that the transmission power does not match through the human-computer interaction interface of the power supply module. Prompt information for manual confirmation.
  • each axis drive module can obtain the target servo parameters of other axis drive modules except itself, then each axis drive module can be used as a source of backup servo parameters, not limited to the backup of the power module.
  • Servo parameters this method is suitable for replacing the power module and multiple axis drive modules at the same time.
  • the current axis module is called the first target axis drive module
  • any other axis module is called the second target axis drive module.
  • any parameter in the target servo parameters of each axis drive module has a number. When other axis drive modules access the target servo parameters of a certain axis drive module, they only need to send the corresponding target servo parameter number.
  • the second target servo parameters of the second target shaft driving module are fed back to the first target shaft driving module.
  • each axis drive module is connected to a power supply module, and at least one parameter of the target servo parameters can be acquired between the axis drive modules through the power supply module.
  • the power supply module when the power supply module provides power to the shaft drive module, the power supply module reads the target servo parameters from the fixed storage area of the shaft drive module, and stores the target servo parameters in the power module cache area.
  • the power supply module reads the target servo parameters in the buffer area, reads the backup servo parameters in the storage area, and calculates the calculated values of the target servo parameters and the backup servo parameters meeting the first determination condition. According to the relationship between the calculated value and the axis drive module, it is divided into the following two cases:
  • the count value is greater than zero, then judge whether the servo parameters in each buffer area and storage area satisfy the first condition. If the condition is not satisfied, the decision result is to update the target servo parameter, and if the second decision condition is satisfied, it is determined whether the third decision condition is satisfied. If the third determination condition is not satisfied, the decision result is to update the backup servo parameters. If the third judgment condition is satisfied, the decision result is that no parameter needs to be updated. If the first judgment condition is not established, then judge whether the fourth judgment condition is established. If the fourth judgment condition is established, the decision result is to update the target servo parameters; if the fourth judgment condition is not established, the decision result is that the prompt power does not match.
  • the count value is equal to zero, it is determined whether the number of the second determination condition is equal to zero, if the number of the second determination condition is equal to zero, the number of the fifth determination condition is determined, if the fifth determination condition is satisfied.
  • the number of established ones is equal to the number of axis drive modules, and the decision result is to update the backup servo parameters; if the number of established fifth judgment conditions is less than the number of axis drive modules, then judge whether the fourth judgment condition is established, if the fourth judgment If the condition is satisfied, the decision result is to update the target servo parameters; if the fourth decision condition is not satisfied, the decision result is that the power does not match.
  • the decision result is to update the target servo parameters; if the fourth judgment condition is not established, the decision result is the prompt power Mismatch.
  • the first axis drive module is replaced with an axis drive module of the same power, and the power module and the other three axis drive modules remain unchanged.
  • the backup servo parameters of the first axis drive module to the fourth axis drive module are respectively stored in the first storage area to the fourth storage area of the power supply module, and the target servo parameters of the first axis drive module to the fourth axis drive module are respectively stored in the power supply in the first to fourth buffer areas of the module. If the target shaft identification information and the target power source identification information in the first buffer area of the power module change, the target shaft power information remains unchanged, and the target shaft verification information is uncertain whether there is a change. The information in the second buffer area, the third buffer area and the fourth buffer area has not changed.
  • the decision results of the servo system parameter management are as follows:
  • the first step is to compare the target axis identification information in the storage area with the backup axis identification information in the corresponding buffer area in turn, calculate the count value of three when the first judgment condition is satisfied, and determine that the calculated value is greater than zero.
  • the second step it is judged whether the first judgment condition is established according to the target axis identification information in the first storage area and the backup axis identification information in the first buffer area. If the determination result is that the first determination condition is not satisfied, then it is determined whether the fourth determination condition is satisfied for the target shaft power information in the first storage area and the backup shaft power information in the first buffer area, and the determination result is that the fourth determination condition is satisfied. Then the first decision result is to update the target servo parameters.
  • the power supply module writes the backup servo parameters except the backup shaft power information in the first storage area into the fixed storage area of the corresponding shaft drive module according to the first decision result, and updates the target servo parameters.
  • the third step is to judge whether the first judgment condition is established according to the target axis identification information in the second storage area and the backup axis identification information in the second buffer area. If the determination result is that the first determination condition is satisfied, then it is determined whether the second determination condition is satisfied for the target power supply identification information in the first storage area and the backup power supply identification information in the first buffer area, and the determination result is that the second determination condition is satisfied. It is determined whether the third determination condition is satisfied with respect to the target axis verification information in the first storage area and the backup axis verification information in the first buffer area, and the determination result is that the third determination condition is satisfied. Then the result of the second decision is that the parameters do not need to be updated.
  • the fourth step for the target axis identification information in the third storage area and the backup axis identification information in the third buffer area, repeat the steps of the third step, and determine that the fourth decision result is that the parameter does not need to be updated.
  • the fifth step is to repeat the steps of the third step for the target axis identification information in the fourth storage area and the backup axis identification information in the fourth buffer area, and determine that the fourth decision result is that the parameters do not need to be updated.
  • the power module processes the parameters of all axis drive modules
  • the data sharing function between axes is opened, so that any axis drive module can access data of other axis drive modules.
  • the determination conditions, target servo parameters and backup servo parameters are obtained through the power module; the power module determines the decision result according to the determination conditions, the backup servo parameters and the target servo parameters;
  • the decision result updates the target servo parameters or the backup servo parameters, so that the servo parameter system can only perform parameter debugging when it is used for the first time.
  • the module After the module is replaced, it can make decisions, update and use it directly without resorting to external tools. Parameter download and manual debugging of the replaced module saves time and effort.
  • FIG. 3 is a schematic structural diagram of a servo parameter management apparatus according to Embodiment 3 of the present application. This embodiment can be applied to the management and backup of system parameters after the modular servo system replaces modules.
  • the device can be implemented in software and/or hardware, and the device can be integrated into any device that provides the function of managing servo parameters.
  • the servo parameter management device includes a power supply module and a shaft drive module, wherein the power supply module includes: an acquisition sub-module 310 , a decision-making sub-module 320 and a management sub-module 330 .
  • the acquisition sub-module 310 is set to acquire determination conditions, target servo parameters and backup servo parameters;
  • a decision-making sub-module 320 configured to determine a decision-making result according to the judgment condition, the backup servo parameter and the target servo parameter;
  • the management sub-module 330 is configured to manage the target servo parameter or the backup servo parameter according to the decision result.
  • the decision-making sub-module is set to:
  • a decision result is determined according to at least two of the second determination condition, the fourth determination condition and the fifth determination condition.
  • the decision-making sub-module is further set to:
  • the decision result is to update the target servo parameter
  • the decision result is to update the backup servo parameters
  • the decision-making sub-module is further set to:
  • the decision result is determined according to the fourth determination condition
  • the decision result is to update the backup servo parameters
  • the decision result is determined according to the fourth determination condition.
  • the decision-making sub-module is further set to:
  • the decision result is to update the target servo parameter
  • the decision result is to send prompt information.
  • the first storage sub-module is configured to obtain the target servo parameters of each shaft drive module by the power module when the power module supplies power to the shaft drive module, and store the target servo parameters in the power module buffer area;
  • the second storage sub-module is configured to store the backup servo parameters in the storage area of the power supply module when the power supply module and the shaft drive module are debugged for the first time.
  • the first judgment condition is that the backup shaft identification information is the same as the target shaft identification information
  • the second judgment condition is that the backup power source identification information is the same as the target power source identification information
  • the third judgment condition is that the backup shaft calibration information.
  • the verification information is the same as the target shaft verification information
  • the fourth determination condition is that the backup shaft power information and the target shaft power information are the same
  • the fifth determination condition is that the multiple target power supply identification information in the power supply module buffer area is the same.
  • the above product can execute the method provided by any embodiment of the present application, and has functional modules corresponding to the execution method.
  • the determination conditions, target servo parameters and backup servo parameters are obtained through the power module; the power module determines the decision result according to the determination conditions, the backup servo parameters and the target servo parameters;
  • the decision result updates the target servo parameters or the backup servo parameters, so that the servo parameter system can only perform parameter debugging when it is used for the first time.
  • the module After the module is replaced, it can make decisions, update and use it directly without resorting to external tools. Parameter download and manual debugging of the replaced module saves time and effort.
  • FIG. 4 is a schematic structural diagram of a computer device in Embodiment 4 of the present application.
  • FIG. 4 shows a block diagram of an exemplary computer device 12 suitable for use in implementing embodiments of the present application.
  • the computer device 12 shown in FIG. 4 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present application.
  • computer device 12 takes the form of a general-purpose computing device.
  • Components of computer device 12 may include, but are not limited to, at least one processor or processing unit 16, system memory 28, and a bus 18 connecting various system components including system memory 28 and processing unit 16.
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards Association) Association, VESA) local bus and Peripheral Component Interconnect (PCI) bus.
  • Computer device 12 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by computer device 12, including both volatile and nonvolatile media, removable and non-removable media.
  • System memory 28 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory 32 .
  • Computer device 12 may include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 34 may be configured to read and write to non-removable, non-volatile magnetic media (not shown in FIG. 4, commonly referred to as a "hard drive”).
  • a magnetic disk drive for reading and writing to removable non-volatile magnetic disks (eg "floppy disks") and removable non-volatile optical disks (eg Compact Disc-Read only) may be provided.
  • Memory 28 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present application.
  • a program/utility 40 having a set (at least one) of program modules 42, which may be stored, for example, in memory 28, such program modules 42 including, but not limited to, an operating system, at least one application program, other program modules, and Program data, each or some combination of these examples may include an implementation of a network environment.
  • Program modules 42 generally perform the functions and/or methods of the embodiments described herein.
  • the computer device 12 may also communicate with at least one external device 14 (eg, keyboard, pointing device, display 24, etc.), may also communicate with at least one device that enables a user to interact with the computer device 12, and/or communicate with the computer device 12 communicates with any device (eg, network card, modem, etc.) capable of communicating with at least one other computing device. Such communication may take place through an input/output (I/O) interface 22 .
  • the display 24 does not exist as an independent entity, but is embedded in the mirror surface. When the display surface of the display 24 is not displayed, the display surface of the display 24 and the mirror surface are visually integrated.
  • the computer device 12 may communicate with at least one network (eg, a Local Area Network (LAN), a Wide Area Network (WAN), and/or a public network such as the Internet) through a network adapter 20.
  • network adapter 20 communicates with other modules of computer device 12 via bus 18 .
  • other hardware and/or software modules may be used in conjunction with computer device 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, Redundant Arrays of Independent Disks, RAID) systems, tape drives, and data backup storage systems.
  • the processing unit 16 executes various functional applications and data processing by running the programs stored in the system memory 28, for example, to implement the servo system parameter management method provided by the embodiments of the present application:
  • the power module obtains the judgment conditions, target servo parameters and backup servo parameters
  • the power module determines a decision result according to the determination condition, the backup servo parameter and the target servo parameter;
  • the power module manages the target servo parameter or the backup servo parameter according to the decision result.
  • the fifth embodiment of the present application provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the servo system parameter management methods provided by all the application embodiments of the present application are implemented:
  • the power module obtains the judgment conditions, target servo parameters and backup servo parameters
  • the power module determines a decision result according to the determination condition, the backup servo parameter and the target servo parameter;
  • the power module manages the target servo parameter or the backup servo parameter according to the decision result.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

一种伺服***参数管理方法、装置、设备及存储介质。该方法包括:电源模块获取判定条件、目标伺服参数和备份伺服参数(S110);电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果(S120);电源模块根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数(S130)。

Description

一种伺服***参数管理方法、装置、设备及存储介质
本申请要求在2021年3月17日提交中国专利局、申请号为202110287111.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及自动控制领域,例如涉及一种伺服***参数管理方法、装置、设备及存储介质。
背景技术
随着工业机器人的快速普及,伺服***在工业制造领域中广泛使用。伺服***往往采用闭环比例积分微分(Proportion Integral Differential,PID)控制方法,不可避免的需要调节PID参数。
在伺服***中,一般由专业调试人员在作业现场进行参数调试,或者通过参数自动整定功能进行参数调试。调试通过的参数,保存至伺服***的内部存储介质中,在无意外情况下该控制参数都不会改变。
但是随着伺服***的大量运用,伺服***面临着一个突出问题,一旦伺服***发生了不可逆转的损坏,最坏的情况就是:伺服***的内部参数会直接丢失,且无法读取调试参数。因而,需要通过人工或参数自动整定功能重新进行参数调试,而新调试的参数无法保证和原有调试参数完全一致,这是不符合期望的。即使,伺服***内部参数未丢失,也需要现场人员在更换伺服驱动器后,再通过该调试软件将参数下载至新伺服驱动器。
因此,伺服***的驱动器损坏或更换后,需要专业人员在作业现场重新进行参数调试或下载参数,操作复杂,耗时耗力,且无法保证新驱动器的调试参数与原有的调试参数完全一致。
发明内容
本申请实施例提供一种伺服***参数管理方法、装置、设备及存储介质,以实现对调试好的伺服***参数进行备份,并在更换轴驱动模块后将伺服***参数恢复至轴驱动模块,避免调试控制参数,便于伺服***参数的管理。
第一方面,本申请实施例提供了一种伺服***参数管理方法,应用于伺服***,所述伺服***包括电源模块,所述伺服***参数管理方法包括:
电源模块获取判定条件、目标伺服参数和备份伺服参数;
电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;
电源模块根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数。
第二方面,本申请实施例还提供了一种伺服参数管理装置,该装置包括:电源模块,其中,所述电源模块包括:获取子模块、决策子模块和管理子模块。
其中,获取子模块,设置为获取判定条件、目标伺服参数和备份伺服参数;
决策子模块,设置为根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;
管理子模块,设置为根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数。
第三方面,本申请实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如本申请实施例中任一所述的伺服***参数管理方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现如本申请实施例中任一所述的伺服***参数管理方法。
附图说明
图1是本申请实施例一中的一种伺服参数管理方法的流程图;
图2a是本申请实施例二中的一种伺服参数管理方法的流程图;
图2b是本申请实施例二中的一种伺服参数管理***的结构示意图;
图2c是本申请实施例二中的一种伺服参数管理***的决策过程的示意图;
图3是本申请实施例三中的一种伺服参数管理装置的结构示意图;
图4是本申请实施例四中的一种计算机设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例一
图1为本申请实施例一提供的一种伺服参数管理方法的流程图,本实施例可适用于模块化伺服***更换模块后***参数的管理与备份的情况,该方法可以由本申请实施例中的伺服参数管理装置来执行,该装置可采用软件和/或硬件的方式实现,如图1所示,该方法包括步骤S110至S130。
S110,电源模块获取判定条件、目标伺服参数和备份伺服参数。
在本实施例中,伺服***是由电源模块和轴驱动模块组成的***,电源模块和轴驱动模块之间建立总线通信。轴驱动模块是能够直接连接和驱动伺服电机的部件,电源模块负责向轴驱动模块提供电源。电源模块只有一个,而轴驱动模块可更换并根据轴数自由扩展。
其中,电源模块包括总线通信模块、存储区(固定存储区)和缓存区(临时缓存区)三大功能的组件。存储区可在电源模块断电时刻存储参数信息,而缓存区只能在通电时刻存储参数信息。存储区为掉电非易失存储介质,例如Flash,带电可擦可编程只读存储器(Electrically Erasable Programmable Read Only  Memory,EEPROM)等;缓存区为掉电易失存储介质,例如随机存取存储器(Random Access Memory,RAM)。轴驱动模块包括调试接口和固定存储区(例如,带电可擦可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)),每个轴驱动模块的固定存储区中存储轴驱动模块自身的内部运行参数、控制参数以及其它所有轴驱动模块的目标伺服参数,所述自身内部运行参数、控制参数包括自身目标伺服参数。
示例性的,在正常工作状态下,轴驱动模块的固定存储区存储有目标伺服参数,电源模块的存储区存储有备份伺服参数。若伺服***更换轴驱动模块或电源模块,电源模块将目标伺服参数从轴驱动模块的存储区读取至电源模块的缓存区。电源模块中还存储有判定条件,设置为对伺服参数进行决策与管理。
可选的,在本实施例中,所述备份伺服参数包括:备份轴标识信息、备份轴校验信息、备份轴功率信息和备份电源标识信息中的至少两种;所述目标伺服参数包括:目标轴标识信息、目标轴校验信息、目标轴功率信息和目标电源标识信息中的至少两种。此外,目标伺服参数还包括轴驱动模块的内部运行参数和控制参数中的部分或全部。
其中,轴驱动模块编号标识信息,简称轴标识信息AxisID,是区分不同轴驱动模块的唯一编号标识;轴驱动模块内部参数校验码,简称轴校验信息,是区分驱动模块参数修改的标识;电源模块编号标识信息,简称电源标识信息PowerID,是区分不同电源模块的唯一编号标识;轴驱动模块的功率标识,简称轴功率信息P,用于表示轴驱动模块的功率。
在正常工作状态下,备份伺服参数存储在电源模块存储区中,目标伺服参数存储在电源模块缓存区中,且备份伺服参数与目标伺服参数保持一致。在断电时,电源模块缓存区中的目标伺服参数丢失,电源模块向轴驱动模块重新供电时,从轴驱动模块中读取目标伺服参数并存储在电源模块缓存区中,电源模块根据判定条件,判断缓存区中的目标伺服参数与存储区中的备份伺服参数是否不一致。若任意模块更换,则备份伺服参数与目标伺服参数会出现不一致的 情况。
可选的,所述判定条件包括第一判定条件、第二判定条件、第三判定条件、第四判定条件以及第五判定条件,所述第一判定条件为备份轴标识信息与目标轴标识信息相同,所述第二判定条件为备份电源标识信息与目标电源标识信息相同,所述第三判定条件为备份轴校验信息与目标轴校验信息相同;第四判定条件为备份轴功率信息和目标轴功率信息相同;所述第五判定条件为电源模块缓存区中的目标电源标识信息相同。
S120,电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果。
若伺服***更换轴驱动模块或电源模块后再次通电时,电源模块根据判定条件对存储区中的备份伺服参数和缓存中的目标伺服参数进行判定并确定决策结果。
示例性的,电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果可以为若电源模块根据判定条件确定伺服***更换轴驱动模块,则确定决策结果为更新目标伺服参数;或者可以为若电源模块根据判定条件确定伺服***更换电源模块,则确定决策结果为更新备份伺服参数;还可以为电源模块根据判定条件无法确定伺服***更换电源模块或者更换轴驱动模块。
S130,电源模块根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数。
示例性的,若决策结果为更新目标伺服参数,则根据电源模块的存储区中的备份伺服参数对轴驱动模块的存储区中的目标伺服参数进行更新;若决策结果为更新备份伺服参数,则根据轴驱动模块的存储区中的目标伺服参数对电源模块的存储区中的备份伺服参数进行更新;若电源模块根据判定条件无法确定伺服***更换电源模块或者更换轴驱动模块,则发送提示信息,并显示在伺服***的显示屏上,以提示相关人员进行人工操作,对目标伺服参数以及备份伺 服参数的更新情况进行人工决策。
可选的,在电源模块获取判定条件、目标伺服参数和备份伺服参数之前,还包括:
在电源模块对轴驱动模块供电时,所述电源模块获取每个轴驱动模块的目标伺服参数,并将所述目标伺服参数存储至所述电源模块的缓存区;
在电源模块和轴驱动模块首次调试完成时,所述电源模块将所述备份伺服参数存储至所述电源模块的存储区。
示例性的,伺服***中的电源模块和轴驱动模块在首次使用时,需要对轴驱动模块进行参数调试,并将调试好的伺服参数存储至轴驱动模块的存储区作为目标伺服参数,。在电源模块对轴驱动模块供电时,所述电源模块获取每个轴驱动模块的目标伺服参数,并将所述目标伺服参数存储至电源模块的缓存区,所述目标伺服参数包括对应轴驱动模块的参数和电源模块的参数。在断电时,缓存区中的目标伺服参数丢失;在重新供电时,电源模块重新获取每个轴驱动模块的目标伺服参数存储至电源模块的缓存区。
本实施例的技术方案,通过电源模块获取判定条件、目标伺服参数和备份伺服参数;电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;电源模块根据所述决策结果对所述目标伺服参数或者所述备份伺服参数进行更新,解决了伺服***的任一模块更换后需要重新调试的问题,能够使伺服***只在首次使用时进行参数调试,在更换模块后,可以自行决策、更新并直接使用,而无需借助外部工具对更换后的模块进行参数下载和人工调试,省时省力。
实施例二
图2a为本申请实施例二中的一种伺服***参数管理方法的流程图,本实施例以上述实施例为基础进行细化,在本实施例中,根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果,包括:计算第一判定条件成立 的计数值;若所述计数值大于零,则根据所述第一判定条件、第二判定条件、第三判定条件和第四判定条件中的至少两个确定决策结果;若所述计数值等于零,则根据所述第二判定条件、所述第四判定条件和第五判定条件中的至少两个确定决策结果。
如图2a所示,本实施例的方法包括步骤S210至S250。
S210,电源模块获取判定条件、目标伺服参数和备份伺服参数。
S220,计算第一判定条件成立的计数值。
在本实施例中,如图2b所示,电源模块包括多个存储区和多个缓存区,每个存储区中存储一个轴驱动模块的备份伺服参数,所述备份伺服参数包括轴驱动模块参数和电源模块参数;每个缓存区中存储一个轴驱动模块对应的目标伺服参数,所述目标伺服参数包括轴驱动模块参数和电源模块参数。多个存储区和多个缓存区为一一对应关系,存储一个轴驱动模块的备份伺服参数的存储区和存储同一个轴驱动模块对应的目标伺服参数的缓存区为对应关系。
电源模块计算第一判定条件成立的计数值,即将电源模块存储区中的备份轴标识信息与对应缓存区中的目标轴标识信息进行比较,确定二者相同的个数。
示例性,首先比较电源模块的第一存储区中的备份轴标识信息与第一缓存区中的目标轴标识信息,在电源模块的第一存储区中的备份轴标识信息与第一缓存区中的目标轴标识信息相同的情况下,第一判定条件成立的计数值加一。再比较电源模块的第二存储区中的备份轴标识信息与第二缓存区中的目标轴标识信息,在电源模块的第二存储区中的备份轴标识信息与第二缓存区中的目标轴标识信息相同的情况下,第一判定条件成立的计数值加一。依次类推直到所有存储区的备份轴标识信息与所有缓存区中的目标轴标识信息比较完成,记录第一判定条件成立的计数值。
S230,若所述计数值大于零,则根据所述第一判定条件、所述第二判定条件、所述第三判定条件和第四判定条件中的至少两个确定决策结果。
示例性的,若根据第一判定条件确定第一判定结果为所述计数值大于零, 则根据所述第一判定条件、所述第二判定条件、所述第三判定条件和第四判定条件中的至少两个确定决策结果。即电源模块的存储区中的备份轴标识信息与对应缓存区中的目标轴标识信息的比较结果有相同的也有不同的,则根据第一判定结果对轴标识信息AxisID比较结果不一致的缓存区和存储区进行标记,对标记为比较结果不一致的缓存区和存储区,进一步根据第四判定条件依次比较存储区中的备份轴功率信息与对应缓存区中的目标轴功率信息是否相同,并根据第四判定结果确定决策结果;对轴标识信息AxisID比较结果一致的缓存区和存储区,则进一步根据第二判定条件依次比较存储区中的备份电源标识信息与对应缓存区中的目标电源标识信息是否相同,若存储区中的备份电源标识信息与对应缓存区中的目标电源标识信息不相同,则根据第二判定结果确定决策结果,若存储区中的备份电源标识信息与对应缓存区中的目标电源标识信息相同,则进一步根据第三判定条件比较存储区中的备份轴校验信息与对应缓存区中的目标轴校验信息是否相同,并根据第三判定结果确定决策结果。依次类推直到所有存储区的备份伺服参数与所有缓存区中的目标伺服参数比较完成,从而确定每一个轴驱动模块对应的备份伺服参数或者目标伺服参数的决策结果。
S240,若所述计数值等于零,则根据所述第二判定条件、所述第四判定条件和第五判定条件中的至少两个确定决策结果。
示例性的,若根据第一判定条件确定第一判定结果为所述计数值等于零,即电源模块的存储区中的备份轴标识信息与对应缓存区中的目标轴标识信息全部不相同,根据第二判定条件依次比较存储区中的备份电源标识信息与对应缓存区中的目标电源标识信息是否相同,并根据第二判定条件成立的个数选择根据第四判定条件结果和/或第五判定条件确定决策结果。依次类推直到所有存储区的备份伺服参数与所有缓存区中的目标伺服参数比较完成,从而确定每一个轴驱动模块对应的备份伺服参数或者目标伺服参数的决策结果。
S250,电源模块根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数。
可选的,若所述计数值大于零,则根据所述第一判定条件、所述第二判定条件、所述第三判定条件和第四判定条件中的至少两个确定决策结果,包括:
若所述计数值大于零,所述第一判定条件成立且所述第二判定条件不成立,则所述决策结果为更新所述目标伺服参数;
若所述计数值大于零,所述第一判定条件成立和所述第二判定条件成立,且所述第三判定条件不成立,则所述决策结果为更新备份伺服参数;
若所述计数值大于零,且所述第一判定条件不成立,则根据所述第四判定条件确定决策结果。
示例性的,若确定第一判定成立的计数值大于零,即电源模块的存储区中的备份轴标识信息与对应缓存区中的目标轴标识信息的比较结果至少有一个相同的,则标记出第一判定条件成立的缓存区和存储区,以及第一判定条件不成立的缓存区和存储区。第一判定条件即判断存储区中的备份轴标识信息与对应缓存区中的目标轴标识信息相同是否成立。
对于第一判定条件成立的缓存区和存储区,根据第二判定条件依次判断每一个存储区中的备份电源标识信息与对应缓存区中的目标电源标识信息相同是否成立。若第一判定条件成立且第二判定条件不成立,则说明目标电源标识信息对应的轴驱动模块连接到新的电源模块后,又再次连接到原电源模块上,而原电源模块在此期间没有连接其他轴驱动模块。决策结果为电源模块请求根据电源模块存储区中的备份伺服参数更新对应轴驱动模块的目标伺服参数。若第二判定条件成立,根据第三判定条件依次判断存储区中的备份轴校验信息与对应缓存区中的目标轴校验信息相同是否成立。若第二判定条件成立且第三判定条件不成立,说明对应的轴驱动模块中的内部参数被修改,则决策结果为电源模块请求根据轴驱动模块修改后的参数更新电源模块的存储区中的备份伺服参数。若第二判定条件成立且第三判定条件成立,说明当前轴驱动模块未被更换或者修改参数,则决策结果为不需要进行任何参数更新操作。
对于第一判定条件不成立的缓存区和存储区,说明轴驱动模块被更换,需 要根据第四判定条件依次判定存储区中的备份轴功率信息与对应缓存区中的目标轴功率信息相同是否成立,以保证***参数更新的安全性。
需要说明的是,若确定第一判定成立的计数值等于轴驱动模块的个数,即电源模块的每个存储区中的备份轴标识信息与对应缓存区中的目标轴标识信息的比较结果全部相同,则无需一一判断第一判定条件是否成立,直接作进一步判断,以提高决策效率。
可选的,若所述计数值等于零,则根据所述第二判定条件、所述第四判定条件和第五判定条件中的至少两个确定决策结果包括:
获取轴驱动模块的个数;
若所述计数值等于零,所述第二判定条件成立的个数等于零,且第五判定条件成立的个数小于轴驱动模块的个数,则根据所述第四判定条件确定决策结果;
若所述计数值等于零,所述第二判定条件成立的个数等于零,且第五判定条件成立的个数等于轴驱动模块的个数,则所述决策结果为更新备份伺服参数;
若所述计数值等于零,所述第二判定条件成立的个数不等于零,则根据所述第四判定条件确定决策结果。
其中,轴驱动模块的个数可以根据轴数自由扩展,获取伺服***的轴驱动模块的个数。
在一个例子中,若根据第一判定条件确定所述计数值等于零,且所述第二判定条件成立个数均等于零,即电源模块的存储区中的备份轴标识信息与对应缓存区中的目标轴标识信息全部不相同,且电源模块的存储区中的备份电源标识信息与对应缓存区中的目标电源标识信息全部不相同,则比较多个缓存区中的目标电源标识信息相同的个数,若第五判定条件成立的个数等于轴驱动模块的个数,则说明更换了电源模块,则决策结果为根据轴驱动模块的目标伺服参数更新电源模块存储区中的备份伺服参数。若第五判定条件成立的个数小于轴驱动模块的个数,说明所有轴模块被更换,需要根据第四判定条件依次判定存 储区中的备份轴功率信息与对应缓存区中的目标轴功率信息相同是否成立,以保证***参数更新的安全性。在另一个例子中,若所述计数值等于零,且所述第二判定条件成立的个数不等于零,说明存在部分轴模块与电源模块连接过,则对第二判定条件成立的轴模块根据第四判定条件依次判定存储区中的备份轴功率信息与对应缓存区中的目标轴功率信息相同是否成立,以保证***参数更新的安全性。
可选的,所述根据所述第四判定条件确定决策结果,包括:
若所述第四判定条件成立,则所述决策结果为更新目标伺服参数;
若所述第四判定条件不成立,则所述决策结果为发送提示信息。
示例性的,设置第四判定条件的作用在于对备份轴功率和所述目标轴功率进行比较,确定轴模块与电源模块的功率相同,才能进行目标伺服参数的更新操作,以提高参数更新的***安全性。
示例性的,若所述第四判定条件成立,说明更换后的轴驱动模块的功率与电源模块的功率匹配,可以自动恢复参数,则所述决策结果为电源模块请求根据电源模块中的备份伺服参数更新轴驱动模块中的目标伺服参数。
若所述第四判定条件不成立,说明更换后的轴驱动模块的功率与电源模块的功率不匹配,无法自动恢复参数,因此,决策结果为通过电源模块的人机交互界面,发送功率不匹配需人工手动确认的提示信息。
在一实施例中,每个轴驱动模块可以获取除自身外的其它轴驱动模块的目标伺服参数,那么每个轴驱动模块均可以作为备份伺服参数的源头,而不仅仅局限于电源模块的备份伺服参数,该方法适用于同时更换电源模块与多个轴驱动模块的情况。本实施例中将当前的轴模块称为第一目标轴驱动模块,则其它任意一个轴模块称为第二目标轴驱动模块。需要说明的是,每一个轴驱动模块的目标伺服参数中的任一参数都有编号,其它轴驱动模块访问某一个轴驱动模块的目标伺服参数时,只需要发送相应的目标伺服参数编号。
可选的,还包括:
获取所述第一目标轴驱动模块发送的第二目标轴驱动模块的目标伺服参数编号;
根据所述目标伺服参数编号获取第二目标轴驱动模块的第二目标伺服参数;
将所述第二目标轴驱动模块的第二目标伺服参数反馈至第一目标轴驱动模块。
示例性的,每个轴驱动模块均与电源模块之间连接,轴驱动模块之间可以通过电源模块获取目标伺服参数中至少一个参数。
在一个实施例中,如图2c所示,在电源模块向轴驱动模块提供电源时,电源模块从轴驱动模块的固定存储区读取目标伺服参数,并将所述目标伺服参数存储至电源模块的缓存区。电源模块读取缓存区中的目标伺服参数,读取存储区中的备份伺服参数,并计算目标伺服参数和备份伺服参数满足第一判定条件的计算值。根据计算值与轴驱动模块之间的关系分为以下两种情况:
第一种情况,若计数值大于零,则判断每个缓存区和存储区内的伺服参数是否满足第一判定条件,若满足第一判定条件,则判断第二条件是否成立,若第二判定条件不成立,则决策结果为更新目标伺服参数,若第二判定条件成立,则判断第三判定条件是否成立。若第三判定条件不成立,则决策结果为更新备份伺服参数。若第三判定条件成立,则决策结果为无需更新任何参数。若第一判定条件不成立,则判断第四判定条件是否成立,若第四判定条件成立,则决策结果为更新目标伺服参数;若第四判定条件不成立,则决策结果为提示功率不匹配。
第二种情况,若计数值等于零,则判断第二判定条件成立的个数是否等于零,若第二判定条件成立的个数等于零,则判断第五判定条件成立的个数,若第五判定条件成立的个数等于轴驱动模块的个数,决策结果为更新备份伺服参数;若第五判定条件成立的个数小于轴驱动模块的个数,则判断第四判定条件是否成立,若第四判定条件成立,则决策结果为更新目标伺服参数;若第四判定条件不成立,则决策结果为提示功率不匹配。若第二判定条件成立的个数不 等于零,则判断第四判定条件是否成立,若第四判定条件成立,则决策结果为更新目标伺服参数;若第四判定条件不成立,则决策结果为提示功率不匹配。
在另一个实施例中,如图2c所示,对于模块化四轴伺服***,仅将第一轴驱动模块更换为同一功率的轴驱动模块,电源模块和其他三个轴驱动模块不作变化。第一轴驱动模块至第四轴驱动模块的备份伺服参数分别存储至电源模块的第一存储区至第四存储区,第一轴驱动模块至第四轴驱动模块的目标伺服参数分别存储至电源模块的第一缓存区至第四缓存区中。对于电源模块的第一缓存区中的目标轴标识信息和目标电源标识信息发生变化,目标轴功率信息不变,目标轴校验信息不确定是否发生变化。第二缓存区、第三缓存区和第四缓存区中的信息均未发生变化。伺服***参数管理的决策结果如下:
第一步,依次比较存储区中的目标轴标识信息和对应缓存区中的备份轴标识信息,计算第一判定条件成立的计数值为三个,确定计算值大于零。
第二步,针对第一存储区中的目标轴标识信息和第一缓存区中的备份轴标识信息,判断第一判定条件是否成立。判定结果为第一判定条件不成立,则针对第一存储区中的目标轴功率信息和第一缓存区中的备份轴功率信息,判断第四判定条件是否成立,判定结果为第四判定条件成立。则第一决策结果为更新目标伺服参数。电源模块根据第一决策结果将第一存储区中的除备份轴功率信息之外的备份伺服参数写入到对应的轴驱动模块的固定存储区中,对目标伺服参数进行更新。
第三步,针对第二存储区中的目标轴标识信息和第二缓存区中的备份轴标识信息,判断第一判定条件是否成立。判定结果为第一判定条件成立,则针对第一存储区中的目标电源标识信息和第一缓存区中的备份电源标识信息,判断第二判定条件是否成立,判定结果为第二判定条件成立。针对第一存储区中的目标轴校验信息和第一缓存区中的备份轴校验信息,判断第三判定条件是否成立,判定结果为第三判定条件成立。则第二决策结果为无需更新参数。
第四步,针对第三存储区中的目标轴标识信息和第三缓存区中的备份轴标 识信息,重复第三步的步骤,确定第四决策结果为无需更新参数。
第五步,针对第四存储区中的目标轴标识信息和第四缓存区中的备份轴标识信息,重复第三步的步骤,确定第四决策结果为无需更新参数。
第六步,电源模块处理所有轴驱动模块的参数后,开放轴间数据共享功能,使得任一轴驱动模块可以访问其他轴驱动模块的数据。
本实施例的技术方案,通过电源模块获取判定条件、目标伺服参数和备份伺服参数;电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;电源模块根据所述决策结果对所述目标伺服参数或者所述备份伺服参数进行更新,能够使伺服参数***只在首次使用时进行参数调试,在更换模块后,可以自行决策、更新并直接使用,而无需借助外部工具对更换后的模块进行参数下载和人工调试,省时省力。
实施例三
图3为本申请实施例三提供的一种伺服参数管理装置的结构示意图。本实施例可适用于模块化伺服***更换模块后***参数的管理与备份的情况,该装置可采用软件和/或硬件的方式实现,该装置可集成在任何提供伺服参数管理的功能的设备中,如图3所示,所述伺服参数管理的装置包括电源模块和轴驱动模块,其中,所述电源模块包括:获取子模块310、决策子模块320和管理子模块330。
其中,获取子模块310,设置为获取判定条件、目标伺服参数和备份伺服参数;
决策子模块320,设置为根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;
管理子模块330,设置为根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数。
可选的,所述决策子模块,是设置为:
计算第一判定条件成立的计数值;
若所述计数值大于零,则根据所述第一判定条件、所述第二判定条件、所述第三判定条件和所述第四判定条件中的至少一个确定决策结果;
若所述计数值等于零,则根据所述第二判定条件、所述第四判定条件和第五判定条件中的至少两个确定决策结果。
可选的,所述决策子模块,还设置为:
若所述计数值大于零,所述第一判定条件成立且所述第二判定条件不成立,则所述决策结果为更新所述目标伺服参数;
若所述计数值大于零,所述第一判定条件成立和所述第二判定条件成立,且所述第三判定条件不成立,则所述决策结果为更新备份伺服参数;
若所述计数值大于零,且所述第一判定条件不成立,则根据所述第四判定条件确定决策结果。
可选的,所述决策子模块,还设置为:
获取轴驱动模块的个数;
若所述计数值等于零,所述第二判定条件成立的个数等于零,且所述第五判定条件成立的个数小于轴驱动模块的个数,则根据所述第四判定条件确定决策结果;
若所述计数值等于零,所述第二判定条件成立的个数等于零,且所述第五判定条件成立的个数等于轴驱动模块的个数,则所述决策结果为更新备份伺服参数;
若所述计数值等于零,所述第二判定条件成立的个数不等于零,则根据所述第四判定条件确定决策结果。
可选的,所述决策子模块,还设置为:
若所述第四判定条件成立,则所述决策结果为更新目标伺服参数;
若所述第四判定条件不成立,则所述决策结果为发送提示信息。
可选的,还包括:
第一存储子模块,设置为于电源模块对轴驱动模块供电时,所述电源模块获取每个轴驱动模块的目标伺服参数,并将所述目标伺服参数存储至电源模块缓存区;
第二存储子模块,设置为于电源模块和轴驱动模块首次调试完成时,所述电源模块将所述备份伺服参数存储至电源模块存储区。
可选的,所述第一判定条件为备份轴标识信息与目标轴标识信息相同,所述第二判定条件为备份电源标识信息与目标电源标识信息相同,所述第三判定条件为备份轴校验信息与目标轴校验信息相同;所述第四判定条件为备份轴功率信息和目标轴功率信息相同;所述第五判定条件为电源模块缓存区中的多个目标电源标识信息相同。
上述产品可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块。
本实施例的技术方案,通过电源模块获取判定条件、目标伺服参数和备份伺服参数;电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;电源模块根据所述决策结果对所述目标伺服参数或者所述备份伺服参数进行更新,能够使伺服参数***只在首次使用时进行参数调试,在更换模块后,可以自行决策、更新并直接使用,而无需借助外部工具对更换后的模块进行参数下载和人工调试,省时省力。
实施例四
图4为本申请实施例四中的一种计算机设备的结构示意图。图4示出了适于用来实现本申请实施方式的示例性计算机设备12的框图。图4显示的计算机设备12仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图4所示,计算机设备12以通用计算设备的形式表现。计算机设备12的组件可以包括但不限于:至少一个处理器或者处理单元16,***存储器28,连接不同***组件(包括***存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,***总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture,ISA)总线,微通道体系结构(Micro Channel Architecture,MCA)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及***组件互连(Peripheral Component Interconnect,PCI)总线。
计算机设备12典型地包括多种计算机***可读介质。这些介质可以是任何能够被计算机设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
***存储器28可以包括易失性存储器形式的计算机***可读介质,例如随机存取存储器(Random Access Memory,RAM)30和/或高速缓存存储器32。计算机设备12可以包括其它可移动/不可移动的、易失性/非易失性计算机***存储介质。仅作为举例,存储***34可以设置为读写不可移动的、非易失性磁介质(图4未显示,通常称为“硬盘驱动器”)。尽管图4中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如只读光盘(Compact Disc-Read Only Memory,CD-ROM),数字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过至少一个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括——但不限于——操作***、至少一个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能 和/或方法。
计算机设备12也可以与至少一个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与至少一个使得用户能与该计算机设备12交互的设备通信,和/或与使得该计算机设备12能与至少一个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(Input/Output,I/O)接口22进行。另外,本实施例中的计算机设备12,显示器24不是作为独立个体存在,而是嵌入镜面中,在显示器24的显示面不予显示时,显示器24的显示面与镜面从视觉上融为一体。并且,计算机设备12还可以通过网络适配器20与至少一个网络(例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与计算机设备12的其它模块通信。应当明白,尽管图中未示出,可以结合计算机设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)***、磁带驱动器以及数据备份存储***等。
处理单元16通过运行存储在***存储器28中的程序,从而执行各种功能应用以及数据处理,例如实现本申请实施例所提供的伺服***参数管理方法:
电源模块获取判定条件、目标伺服参数和备份伺服参数;
电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;
电源模块根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数。
实施例五
本申请实施例五提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现如本申请所有申请实施例提供的伺服***参数管理方法:
电源模块获取判定条件、目标伺服参数和备份伺服参数;
电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;
电源模块根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数。
可以采用至少一个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有至少一个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器((Erasable Programmable Read Only Memory,EPROM)或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程 序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种伺服***参数管理方法,应用于伺服***,所述伺服***包括电源模块和轴驱动模块,所述伺服***参数管理方法包括:
    电源模块获取判定条件、目标伺服参数和备份伺服参数;
    电源模块根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;
    电源模块根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数。
  2. 根据权利要求1所述的方法,其中,根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果,包括:
    计算第一判定条件成立的计数值;
    响应于所述计数值大于零,根据所述第一判定条件、第二判定条件、第三判定条件和第四判定条件中的至少两个确定决策结果;
    响应于所述计数值等于零,根据所述第二判定条件、所述第四判定条件和第五判定条件中的至少两个确定决策结果。
  3. 根据权利要求2所述的方法,其中,响应于所述计数值大于零,根据所述第一判定条件、第二判定条件、第三判定条件和第四判定条件中的至少两个确定决策结果,包括:
    响应于所述计数值大于零,所述第一判定条件成立且所述第二判定条件不成立,所述决策结果为更新所述目标伺服参数;
    响应于若所述计数值大于零,所述第一判定条件成立和所述第二判定条件成立,且所述第三判定条件不成立,所述决策结果为更新备份伺服参数;
    响应于所述计数值大于零,且所述第一判定条件不成立,根据所述第四判定条件确定决策结果。
  4. 根据权利要求2所述的方法,其中,响应于所述计数值等于零,根据所述第二判定条件、第四判定条件和所述第五判定条件中的至少两个确定决策结果,包括:
    获取轴驱动模块的个数;
    响应于所述计数值等于零,所述第二判定条件成立的个数等于零,且所述第五判定条件成立的个数小于轴驱动模块的个数,根据所述第四判定条件确定决策结果;
    响应于所述计数值等于零,所述第二判定条件成立的个数等于零,且所述第五判定条件成立的个数等于轴驱动模块的个数,所述决策结果为更新备份伺服参数;
    响应于所述计数值等于零,所述第二判定条件成立的个数不等于零,根据所述第四判定条件确定决策结果。
  5. 根据权利要求2至4任一项所述的方法,其中,所述根据所述第四判定条件确定决策结果,包括:
    响应于所述第四判定条件成立,所述决策结果为更新目标伺服参数;
    响应于所述第四判定条件不成立,所述决策结果为发送提示信息。
  6. 根据权利要求2所述的方法,其中,所述判定条件包括第一判定条件、第二判定条件、第三判定条件、第四判定条件以及第五判定条件,所述第一判定条件为备份轴标识信息与目标轴标识信息相同,所述第二判定条件为备份电源标识信息与目标电源标识信息相同,所述第三判定条件为备份轴校验信息与目标轴校验信息相同,所述第四判定条件为备份轴功率信息和目标轴功率信息相同,所述第五判定条件为电源模块的缓存区中的目标电源标识信息相同。
  7. 根据权利要求1所述的方法,在电源模块获取判定条件、目标伺服参数和备份伺服参数之前,还包括:
    在电源模块对轴驱动模块供电时,所述电源模块获取每个轴驱动模块的目标伺服参数,并将所述目标伺服参数存储至电源模块的缓存区;
    在电源模块和轴驱动模块首次调试完成时,所述电源模块将所述备份伺服参数存储至电源模块的存储区。
  8. 一种伺服***参数管理装置,包括电源模块,其中,所述电源模块包括:
    获取子模块,设置为获取判定条件、目标伺服参数和备份伺服参数;
    决策子模块,设置为根据所述判定条件、所述备份伺服参数和所述目标伺服参数确定决策结果;
    管理子模块,设置为根据所述决策结果管理所述目标伺服参数或者所述备份伺服参数。
  9. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-7中任一所述的伺服***参数管理方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一所述的伺服***参数管理方法。
PCT/CN2021/115666 2021-03-17 2021-08-31 一种伺服***参数管理方法、装置、设备及存储介质 WO2022193564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110287111.5A CN112882869B (zh) 2021-03-17 2021-03-17 一种伺服***参数管理方法、装置、设备及存储介质
CN202110287111.5 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022193564A1 true WO2022193564A1 (zh) 2022-09-22

Family

ID=76041038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115666 WO2022193564A1 (zh) 2021-03-17 2021-08-31 一种伺服***参数管理方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112882869B (zh)
WO (1) WO2022193564A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112882869B (zh) * 2021-03-17 2024-06-14 广东拓斯达科技股份有限公司 一种伺服***参数管理方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202975687U (zh) * 2012-11-30 2013-06-05 中广核中电能源服务(深圳)有限公司 一种伺服***参数标定及状态实时监控装置
CN104503369A (zh) * 2014-12-19 2015-04-08 清能德创电气技术(北京)有限公司 一种伺服驱动器及伺服参数操作方法
US20170261955A1 (en) * 2016-03-10 2017-09-14 Omron Corporation Motor control device, control method, information processing program and recording medium
CN112882869A (zh) * 2021-03-17 2021-06-01 广东拓斯达科技股份有限公司 一种伺服***参数管理方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202975687U (zh) * 2012-11-30 2013-06-05 中广核中电能源服务(深圳)有限公司 一种伺服***参数标定及状态实时监控装置
CN104503369A (zh) * 2014-12-19 2015-04-08 清能德创电气技术(北京)有限公司 一种伺服驱动器及伺服参数操作方法
US20170261955A1 (en) * 2016-03-10 2017-09-14 Omron Corporation Motor control device, control method, information processing program and recording medium
CN112882869A (zh) * 2021-03-17 2021-06-01 广东拓斯达科技股份有限公司 一种伺服***参数管理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112882869B (zh) 2024-06-14
CN112882869A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US20070169129A1 (en) Automated application configuration using device-provided data
JP3265131B2 (ja) イベント生成分配方式
US10613520B2 (en) Data setting system for robot, data setting method and program
US8903967B2 (en) Out-of-band management of third party adapter configuration settings in a computing system
JPH03244003A (ja) プログラマブルコントローラおよびシーケンスプログラムの部分実行方法
WO2022193564A1 (zh) 一种伺服***参数管理方法、装置、设备及存储介质
US20080010608A1 (en) Apparatus and methods for ensuring visibility of display window
CN116382746A (zh) 固件升级方法、装置、设备及介质
US7010659B2 (en) Method for setting up disk-array device, computer-readable storage medium, and information processing device
US20080010315A1 (en) Platform management of high-availability computer systems
US7805709B2 (en) System and method for bypassing execution of an algorithm
CN110689137B (zh) 参数确定方法、***、介质和电子设备
US20090276779A1 (en) Job management apparatus
US20090210589A1 (en) Dynamic Vital Product Data Update Based on an Installed Feature Card
US9514554B2 (en) Computer readable recording medium recorded with graphics editing program, and graphics editing apparatus
WO2023010251A1 (zh) 显示控制方法、装置、电子设备及存储介质
US20130144457A1 (en) Server system for updating heat dissipation solution
CN108037949B (zh) 安装包多渠道打包方法、装置、计算机设备及存储介质
JP6576852B2 (ja) デバイス情報管理システム
CN118132450B (zh) 一种面向Windows集成测试环境的管理方法和***
US20050010650A1 (en) Network-based computer platform external access method and system
CN113096269B (zh) 一种信息采集方法、装置、电子设备以及存储介质
CN114489292B (zh) 一种散热调控方法、***、装置及服务器
US11474492B2 (en) Apparatus and method for autonomously adding and removing of functionality in programmable logic controllers (PLCs)
CN108363619B (zh) 服务流程控制方法、服务器及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931139

Country of ref document: EP

Kind code of ref document: A1