WO2022193563A1 - 一种主被动并联复位机器人 - Google Patents

一种主被动并联复位机器人 Download PDF

Info

Publication number
WO2022193563A1
WO2022193563A1 PCT/CN2021/115607 CN2021115607W WO2022193563A1 WO 2022193563 A1 WO2022193563 A1 WO 2022193563A1 CN 2021115607 W CN2021115607 W CN 2021115607W WO 2022193563 A1 WO2022193563 A1 WO 2022193563A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallel
active
passive
platform
hinge
Prior art date
Application number
PCT/CN2021/115607
Other languages
English (en)
French (fr)
Inventor
张立海
赵文
胡磊
杜海龙
Original Assignee
张立海
赵文
胡磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张立海, 赵文, 胡磊 filed Critical 张立海
Publication of WO2022193563A1 publication Critical patent/WO2022193563A1/zh
Priority to US18/369,150 priority Critical patent/US11911124B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/846Nails or pins, i.e. anchors without movable parts, holding by friction only, with or without structured surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0258Two-dimensional joints

Definitions

  • the invention relates to the technical field of medical equipment, in particular to an active-passive parallel reset robot.
  • Fracture reduction operation is a key link in bone treatment. Because of the complex and powerful muscle and soft tissue around the fracture, the reduction operation requires strong reduction force and dexterous reduction operation. At the same time, due to the limited operation space, the occupied space and movement space of the reset mechanism cannot occupy the space of the surgeon and the patient.
  • the surgical robot In order to complete the dexterous and large-load movement of the traditional reset mechanism, the surgical robot needs to achieve multi-degree-of-freedom spatial movement.
  • the structure and assembly are complex, and the volume is often large, requiring more space for installation and layout, and occupying more space for the surgeon. , is not conducive to the doctor's surgical operation, can not meet the clinical needs.
  • the purpose of the invention is: how to solve the problems of complex structure and assembly of the fracture reduction robot and occupy a large space, and to provide a simple structure, small volume, reliable and small active and passive parallel reduction robot.
  • An active-passive parallel reset robot comprising:
  • a synchronous motion platform on which a fracture reduction needle is fixedly installed, and the active output end of the active mechanical arm is connected to the synchronous motion platform;
  • a passive manipulator one end of which is fixed and the other end has a passive output end with multiple degrees of freedom, and the passive output end can be slidably installed on the synchronous motion platform;
  • the passive manipulator can keep the degree of freedom locked when the active manipulator drives the synchronous motion platform to insert the fracture reduction needle into the fracture end to be reset, and the active manipulator drives the synchronous motion platform to perform the reset operation under the support of the passive manipulator.
  • the synchronous motion platform includes:
  • the main body of the platform includes a robot end-moving platform connected with the active mechanical arm and a parallel transmission mechanism connected with the robot end-moving platform for parallel transmission of power;
  • the uniform strength wrist is fixedly installed with the fracture reduction needle, and the uniform strength wrist is fixedly connected with the parallel transmission mechanism of the platform main body.
  • the parallel transmission mechanism includes a first parallel transmission mechanism that performs parallel motion on a first plane and a second parallel transmission mechanism that performs parallel motion on a second plane. intersects the second plane.
  • the parallel transmission mechanism includes a follower end platform for fixedly connecting with a uniform wrist;
  • the first parallel transmission mechanism includes a first support rod and a second support rod parallel to the first support rod, a first rotation shaft and a second rotation shaft parallel to the first rotation shaft, the first support rod
  • the two ends of the first parallel hinge seat are fixedly connected to the first parallel hinge seat and the second parallel hinge seat respectively.
  • One end of the first rotating shaft is fixedly connected to the robot end moving platform, and the other end is rotatably connected to the first parallel hinge seat.
  • One end of the rotating shaft is fixedly connected with the follower end platform, and the other end is rotatably connected with the second parallel hinge seat;
  • the second parallel mechanism includes a third support rod parallel to the second support rod, a fourth rotation shaft and a fifth rotation shaft parallel to the fourth rotation shaft, and both ends of the second support rod are respectively fixedly connected to the first support rod.
  • the fourth rotating shaft is rotatable through the robot. The platform, both ends are rotatably installed on the third parallel hinge seat, the fifth parallel hinge seat, the fifth rotating shaft can rotatably pass through the follower end platform, and the two ends are rotatably installed on the fourth parallel hinge seat, The sixth parallel hinge seat.
  • the robot end-moving platform includes a platform body and a first connecting block and a second connecting block fixedly connected to the platform body, and one end of the first rotating shaft is connected to the first connecting block.
  • the blocks are fixedly connected; the fourth rotating shaft rotatably passes through the second connecting block.
  • the follower-end platform includes a transverse arm and a vertical arm fixedly connected with the transverse arm, the second rotating shaft is fixedly connected with the vertical arm, and the fifth rotating shaft can be Rotate across the cross arm.
  • the synchronous motion platform includes a spherical hinge slidably disposed on the second support rod, and the passive output end of the passive mechanical arm is connected to the spherical hinge.
  • the uniform wrist includes a bracket, a motor, a motor output shaft screw, a sliding shaft, a stress adjustment rod, a universal locking buckle, a sliding shaft fixing plate and a universal locking bayonet for fixing axis;
  • the motor is fixed on the bracket, the motor output shaft screw is fixed on the motor output shaft, the motor output shaft screw and the sliding shaft fixing plate are threaded for transmission, and the rotation of the motor can drive the sliding shaft fixing plate to move up and down; the sliding shaft and the sliding shaft are fixed
  • the plate is fixedly connected together;
  • the stress adjusting rod is fixedly connected with the bracket; one end of the universal locking buckle is connected with the fracture reduction needle, and the other end can be fixed with the stress adjusting rod or the universal locking bayonet shafts are connected together;
  • the universal locking buckle When the fracture reduction needle is inserted into the fracture reduction end, the universal locking buckle firmly connects the fracture reduction needle and the frame part, and the motor rotates, which can drive the sliding shaft fixing plate to move up and down to adjust the force between the stress adjusting rod and the bracket. arm.
  • the active output end of the active manipulator is an end connecting flange with six degrees of freedom in space.
  • the passive manipulator includes a first moving member, a second moving member connected to the first moving member through a first spherical hinge, and a second moving member rotatably connected to the second moving member through a rotating hinge.
  • the invention proposes an active and passive parallel reset robot structure: an active mechanical arm and a passive mechanical arm parallel mechanism are adopted, a passive mechanical arm with a small volume and a large load is arranged in the operation space, and the auxiliary robot is supported by a large rigidity to complete the output of a large force load;
  • the manipulator completes high-power and dexterous motion, and with the support of the passive branch chain, reduces the power demand of the active manipulator;
  • the synchronous motion platform outputs the motion of the active manipulator in a crowbar-like manner to complete the dexterous reset operation with large loads.
  • the active-passive parallel reduction robot structure of the present invention realizes the reduction operation of the fracture through the active mechanical arm, the passive mechanical arm and the synchronous motion platform, the structure is simple, stable and reliable, the assembly and disassembly are convenient, the occupation space is small, and it is more conducive to the cooperation with the surgeon. Perform surgery.
  • FIG. 1 is a schematic diagram of the use state of an active-passive parallel reset robot of the present invention
  • FIG. 2 is a schematic three-dimensional structure diagram of an active mechanical arm of an active-passive parallel reset robot of the present invention
  • Fig. 3 is a three-dimensional schematic diagram of the synchronous motion platform of the active-passive parallel reset robot of the present invention
  • FIG. 4 is a schematic three-dimensional structure diagram of the platform main body of the synchronous motion platform of the present invention.
  • Fig. 5 is the three-dimensional structural schematic diagram of the uniform strength wrist of the synchronous motion platform of the present invention.
  • FIG. 6 is a schematic three-dimensional structure diagram of the passive mechanical arm of the active-passive parallel reset robot of the present invention.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, etc. is based on the orientation or positional relationship shown in the accompanying drawings, or is usually placed when the product of the invention is used.
  • Orientation or positional relationship, or the orientation or positional relationship commonly understood by those skilled in the art such terms are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, It is constructed and operated in a particular orientation and is therefore not to be construed as a limitation of the present invention.
  • the terms “first”, “second”, etc. are only used to differentiate the description and should not be construed to indicate or imply relative importance.
  • an active-passive parallel reset robot provided by this embodiment includes:
  • Active robotic arm 1, an active output end with multiple degrees of freedom
  • Synchronous motion platform 2 the fracture reduction needle is fixedly installed on the synchronous motion platform, and the active output end of the active mechanical arm is connected to the synchronous motion platform;
  • passive mechanical arm 3 one end of which is fixedly arranged, and the other end has a passive output end with multiple degrees of freedom, and the passive output end can be slidably installed on the synchronous motion platform;
  • the passive manipulator 3 can keep the degree of freedom locked when the active manipulator 1 drives the synchronous motion platform 2 to insert the fracture reduction needle into the fracture end to be reset, and the active manipulator 1 drives the synchronous motion platform 2 on the passive manipulator 3 arm. Perform the reset operation under the support.
  • This embodiment proposes an active-passive parallel reset robot structure: a parallel mechanism of an active robotic arm 1 and a passive robotic arm 3 is used, a passive robotic arm 3 with a small volume and a large load is arranged in the surgical space, and a large rigidity is used to support the auxiliary robot to complete a large force.
  • the active-passive parallel reduction robot structure of the present embodiment realizes the reduction operation of the fracture through the active mechanical arm 1, the passive mechanical arm 3 and the synchronous motion platform 2, the structure is simple, stable and reliable, the assembly and disassembly are convenient, the occupied space is small, and it is more conducive to working with The cooperation of the surgeon to perform the operation.
  • the active-passive parallel reset robot of this embodiment includes an active robot arm 1 with six degrees of freedom, a passive robot arm 3 with seven degrees of freedom, and a synchronous motion platform 2 including two synchronous motions.
  • the active robotic arm 1 in this embodiment can be fixed on an operating trolley, or can be fixed on a permanent support; the active robotic arm 1 can actively move according to a preoperative or intraoperative planned route; the active robotic arm 1 With six degrees of freedom, the movement and rotation of the space coordinate system can be realized.
  • One end of the moving platform of the synchronous motion platform 2 is fixed on the active mechanical arm 1 , and the other end of the moving platform can move synchronously according to the moving platform fixed on the active mechanical arm 1 .
  • the passive mechanical arm 3 is fixed on the spherical hinge of the synchronous motion platform 2, and the other end is fixed on the operating bed or permanent support, and can also be fixed on the trolley; the passive mechanical arm 3 has seven degrees of freedom, including Two spherical hinges and one rotating hinge can be passively locked as the motion support of the synchronous motion platform 2 .
  • the active mechanical arm 1 is fixed on the trolley, and can also be fixed on a permanent support; one end of the synchronous motion platform 2 is installed on the active mechanical arm 1.
  • One end of the passive mechanical arm 3 is installed on the operating bed, or can be fixed on the trolley, and the other end is fixed on the spherical hinge of the synchronous motion platform 2, and the spherical hinge can slide on the support rod of the synchronous motion platform 2 .
  • the passive manipulator 3 has no degree of freedom, which is quite on rigidly fixed support rods.
  • the synchronous motion platform 2 can rotate around its spherical hinge with three degrees of freedom and slide along the support rod.
  • the active-passive parallel reset robot can perform a reset operation at this time, and the passive mechanical arm 3 provides support for the active mechanical arm 1 to reduce its load.
  • the active mechanical arm 1 drives the synchronous motion platform 2 to move to realize the movement of the fractured end.
  • the synchronous motion platform 2 can rotate around its own spherical hinge with three degrees of freedom and slide along the support rod, and use the spherical hinge to generate a crowbar-like motion to drive the The movement of the distal fracture end reduces the load of the active robotic arm 1 .
  • the active output end of the active robotic arm 1 in this embodiment is an end connecting flange 101 with six degrees of freedom in space, which can realize free movement in space posture and provide power for the fracture end reduction operation.
  • the passive mechanical arm 3 in this embodiment includes a first moving member 306 , a second moving member 307 connected to the first moving member 306 through a first spherical hinge 301 , and a second moving member 307 that rotates with the second moving member 307 .
  • a third moving member 308 rotatably connected to the hinge 302, a fourth moving member 304 connected to the third moving member 308 through a second spherical hinge 303, and a third moving member 304 for locking the first spherical hinge 301, the rotating hinge 302, the second spherical hinge
  • the locking member 305 of the hinge 303 The locking member 305 of the hinge 303 .
  • the first spherical hinge connection 301 and the second spherical hinge 303 of the passive mechanical arm 3 in this embodiment each have three degrees of freedom of movement around the center of the sphere; the rotary hinge 302 has one degree of freedom of rotation; the fourth movement member 304 has six degrees of freedom in space; when the locking member 305 is in a relaxed state, the first spherical hinge connection 301, the second spherical hinge 303 and the rotating hinge 302 can move freely, while the fourth moving member 304 has six spaces in the space.
  • the locking member 305 includes a transmission link and a locking block in contact with the first spherical hinge 301 and the second spherical hinge 303 respectively, and drives the transmission link to drive and lock through rotation.
  • the block is locked in close contact with the first spherical hinge 301 and the second spherical hinge 303 respectively.
  • the synchronous motion platform 2 in this embodiment includes:
  • the platform main body 200 includes a robot end-moving platform 201 connected with the active robotic arm 1 and a parallel transmission mechanism connected with the robot end-moving platform 201 for parallel transmission of power;
  • the uniform strength wrist 210 is fixedly installed with the fracture reduction needle 217 , and the uniform strength wrist 210 is fixedly connected with the parallel transmission mechanism of the platform main body 200 .
  • the parallel transmission mechanism described in this embodiment includes a first parallel transmission mechanism that performs parallel motion on a first plane and a second parallel transmission mechanism that performs parallel motion on a second plane.
  • the first plane intersects the second plane.
  • the first parallel transmission mechanism and the second parallel transmission mechanism are respectively in the intersecting first plane and second plane, which can realize that the follow-up end moving platform is kept parallel to the robot end moving platform in space
  • the parallel transmission mechanism described in this embodiment includes a follower end platform 208 for fixedly connecting with the uniform wrist 210 .
  • the first parallel transmission mechanism described in this embodiment includes a first support rod 203 and a second support rod 205 parallel to the first support rod 203 , a first rotation shaft 2013 and a second rotation shaft parallel to the first rotation shaft 2013
  • both ends of the first support rod 203 were fixedly connected to the first parallel hinge base 202 and the second parallel hinge base 2012 respectively
  • one end of the first rotating shaft 2013 was fixedly connected to the robot end moving platform 201
  • the other end was fixedly connected to the robot end moving platform 201.
  • Connected rotatably with the first parallel hinge base 202 one end of the second rotating shaft 2010 is fixedly connected with the follower end platform 208 , and the other end is rotatably connected with the second parallel hinge base 2012 .
  • the second parallel mechanism in this embodiment includes a third support rod 207 parallel to the second support rod 205 , a fourth rotation shaft 204 and a fifth rotation shaft 209 parallel to the fourth rotation shaft 204 .
  • Both ends of the support rod 205 are fixedly connected to the third parallel hinge base 2014 and the fourth parallel hinge base 2017 respectively, and the two ends of the third support rod 207 are respectively fixed to the fifth parallel hinge base 206 and the sixth parallel hinge base 2016, so
  • the fourth rotating shaft 204 is rotatably passed through the robot end moving platform 201, the two ends are respectively rotatably mounted on the third parallel hinge seat 2014 and the fifth parallel hinge seat 206, and the fifth rotating shaft 209 is rotatable through Both ends of the follower-end platform 208 are rotatably mounted on the fourth parallel hinge seat 2017 and the sixth parallel hinge seat 2016 respectively.
  • the robot end moving platform 201 in this embodiment includes a platform body and a first connecting block and a second connecting block that are fixedly connected to the platform body, and one end of the first rotating shaft 2013 is connected to the first connecting block.
  • Fixed connection; the fourth rotating shaft 204 rotatably passes through the second connection block.
  • the platform body is a circular connection flange, and the first connection block and the second connection block are respectively fixed on the outer peripheral wall of the circular connection flange.
  • the follower-end platform described in this embodiment includes a transverse arm and a vertical arm fixedly connected with the transverse arm, the second rotating shaft 2010 is fixedly connected with the vertical arm, and the fifth rotating shaft 209 is rotatable through the cross arm.
  • the follower-end platform comprises a transverse arm and two vertical arms located at both ends of the transverse arm, and has a U-shaped structure as a whole.
  • the axis a, axis b, axis c and axis d shown in Figure 4 form the first parallelogram mechanism, and the axis a and axis c, axis b and axis d will move in parallel during the movement of the mechanism; the axis a1, axis b1, The axis c1 and the axis d constitute the second parallelogram mechanism, and the axis a1 and the axis c1, the axis b1 and the axis d will move in parallel during the movement of the mechanism.
  • the first parallelogram and the second parallelogram are perpendicular to each other, the axis a and the axis a1 are perpendicular to each other and intersect at one point, and the axis c and the axis c1 are perpendicular to each other and intersect at one point.
  • the first parallelogram mechanism and the second parallelogram mechanism can realize that the follower end moving platform and the robot end moving platform keep parallel in space.
  • the synchronous motion platform 2 in this embodiment includes a spherical hinge 2011 slidably disposed on the second support rod 205 , and the passive output end of the passive mechanical arm 3 is connected to the spherical hinge 2011 .
  • the spherical hinge 2011 includes three rotational degrees of freedom around the center of the sphere, is mounted on the second support rod 205, and can slide along the second support rod 205; the platform main body 200 can rotate around the spherical hinge 2011, or along the The second support rod 205 slides to realize the synchronous reset movement of the space mechanism.
  • the uniform strength wrist 210 in this embodiment includes a bracket 211, a motor 212, a motor output shaft screw 213, a sliding shaft 214, a stress adjustment rod 215, a universal locking buckle 216, a fracture reduction needle 217, Sliding shaft fixing plate 218 and universal locking bayonet fixing shaft 219 .
  • the motor 212 is fixed on the bracket 211, the motor output shaft screw 213 is fixed on the motor output shaft, the motor output shaft screw 213 is threaded with the sliding shaft fixing plate 218, and the rotation of the motor 212 can drive the sliding shaft fixing plate 218 to move up and down; sliding;
  • the shaft 214 is fixedly connected with the sliding shaft fixing plate 218;
  • the stress adjusting rod 215 is fixedly connected with the bracket 211;
  • one end of the universal locking buckle 216 is connected with the fracture reduction needle 217, and the other end can be connected with the stress adjusting rod 215 Or the fixing shafts 219 of the universal locking bayonet are connected together; when the universal locking buckle 216 is in a relaxed state, the two ends of the buckle can move freely, and the two ends are relatively fixed after locking; when the fracture reduction needle 217 When the fracture reduction end is inserted, the universal locking buckle 216 fixes the fracture reduction needle 217 and the frame part together, and the motor 212 rotates to drive the sliding shaft fixing plate 218 to move up and down to
  • the nail 211 in this embodiment is an L-shaped bracket
  • the uniform strength wrist in this embodiment includes two sets of fracture reduction needles 217 and corresponding clamping, fixing and adjusting mechanisms.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Neurology (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及医疗设备技术领域,公开了一种主被动并联复位机器人,包括:主动机械臂,具有多自由度的主动输出端;同步运动平台,所述同步运动平台上固定安装骨折复位针,所述主动机械臂的主动输出端与同步运动平台连接;及被动机械臂,其一端固定设置,另一端具有多自由度的被动输出端,被动输出端可滑动的安装在同步运动平台上;所述被动机械臂可在主动机械臂带动同步运动平台将骨折复位针***需复位的骨折端时保持自由度锁定,所述主动机械臂带动同步运动平台在被动机械臂的支撑下执行复位操作。本发明的主被动式并联复位机器人通过主动机械臂、被动机械臂及同步运动平台实现了骨折的复位操作,占用空间小,更有利于手术医生进行手术操作。

Description

一种主被动并联复位机器人 技术领域
本发明涉及医疗设备技术领域,具体的涉及一种主被动并联复位机器人。
背景技术
骨折复位操作是骨质治疗的关键环节,由于折骨周边存在复杂有力的肌肉软组织,因此,复位操作需要强力复位力和灵巧复位操作。同时,由于手术空间有限,复位机构的占有空间和运动空间,不能占用手术医生和患者的空间。
传统的复位机构为了完成灵巧大负载运动,手术机器人需实现多自由度的空间运动,结构及装配比较复杂,往往体积大,需要更多的空间进行安装布置,较多的侵占了手术医生的空间,不利于医生的手术操作,无法满足临床需要。
有鉴于此,特提出本发明。
发明内容
本发明的目的在于:如何解决骨折复位机器人结构装配复杂,占用空间大的问题,提供一种结构简单,体积小,可靠有小的主被动并联复位机器人。
为了实现上述发明目的,本发明提供了以下技术方案:
一种主被动并联复位机器人,包括:
主动机械臂,具有多自由度的主动输出端;
同步运动平台,所述同步运动平台上固定安装骨折复位针,所述主动机械臂的主动输出端与同步运动平台连接;
及被动机械臂,其一端固定设置,另一端具有多自由度的被动输出端,被动输出端可滑动的安装在同步运动平台上;
所述被动机械臂可在主动机械臂带动同步运动平台将骨折复位针***需复位的骨折端时保持自由度锁定,所述主动机械臂带动同步运动平台在被动机械臂的支撑下执行复位操作。
作为本发明的一种实施方式,所述的同步运动平台包括:
平台主体,包括与主动机械臂连接的机器人端动平台和与机器人端动平台连接进行动力平行传递的平行传动机构;
匀强手腕,固定安装所述骨折复位针,所述的匀强手腕与平台主体的平行传动机构固定连接。
作为本发明的一种实施方式,所述的平行传动机构包括在第一平面进行平行运动的第一平行传动机构和在第二平面进行平行运动的第二平行传动机构,所述的第一平面与第二平面相交。
作为本发明的一种实施方式,所述的平行传动机构包括用于与匀强手腕固定连接的随动端平台;
所述的第一平行传动机构包括第一支撑杆和与第一支撑杆平行的第二支撑杆,第一旋转轴和与第一旋转轴平行的第二旋转轴,所述的第一支撑杆的两端分别固定连接第一平行铰链座、第二平行铰链座,所述第一旋转轴的一端与机器人端动平台固定连接,另一端与第一平行铰链座可转动连接,所述第二旋转轴的一端与随动端平台固定连接,另一端与第二平行铰链座可转动连接;
所述的第二平行机构包括与第二支撑杆平行的第三支撑杆,第四旋转轴和 与第四旋转轴平行的第五旋转轴,所述的第二支撑杆两端分别固定连接第三平行铰链座、第四平行铰链座,所述的第三支撑杆两端分别固定连接第五平行铰链座、第六平行铰链座,所述的第四旋转轴可转动的穿过机器人端动平台,两端分别可转动的安装在第三平行铰链座、第五平行铰链座,第五旋转轴可转动的穿过随动端平台,两端分别可转动的安装在第四平行铰链座、第六平行铰链座。
作为本发明的一种实施方式,所述的机器人端动平台包括平台本体和固定连接平台本体上的第一连接块、第二连接块,所述第一旋转轴的一端与所述第一连接块固定连接;所述的第四旋转轴可转动的穿过第二连接块。
作为本发明的一种实施方式,所述的随动端平台包括横臂和与横臂固定连接的竖臂,所述第二旋转轴与所述竖臂固定连接,所述第五旋转轴可转动的穿过横臂。
作为本发明的一种实施方式,所述的同步运动平台包括可滑动的设置在第二支撑杆上的球形铰链,所述被动机械臂的被动输出端与所述球形铰链连接。
作为本发明的一种实施方式,所述匀强手腕包括支架、电机、电机输出轴螺杆、滑动轴、应力调整杆、万向锁紧卡扣、滑动轴固定板和万向锁紧卡口固定轴;
所述电机固定在支架上,电机输出轴螺杆固定在电机输出轴上,电机输出轴螺杆与滑动轴固定板螺纹传动,电机转动可带动滑动轴固定板上下运动;所述滑动轴与滑动轴固定板固连在一起;所述应力调整杆与支架固连在一起;所述万向锁紧卡扣一端与骨折复位针连在一起,另一端可与应力调整杆或万向锁紧卡口固定轴连在一起;
当骨折复位针***骨折复位端时,万向锁紧卡扣将骨折复位针与机架部分固连在一起,电机旋转,可带动滑动轴固定板上下运动,来调节应力调整杆与支架的力臂。
作为本发明的一种实施方式,所述主动机械臂的主动输出端为具有空间六个自由度的末端连接法兰。
作为本发明的一种实施方式,所述被动机械臂包括第一运动构件、与第一运动构件通过第一球形铰链连接的第二运动构件、与第二运动构件通过旋转铰链可转动连接的第三运动构件、与第三运动构件通过第二球形铰链连接的第四运动构件以及用于锁定所述第一球形铰链、旋转铰链、第二球形铰链的锁紧构件。
与现有技术相比,本发明的有益效果:
本发明提出了一种主被动式并联复位机器人结构:采用主动机械臂、被动机械臂并联机构,小体积大负载的被动机械臂布置到手术空间,利用大刚度支撑辅助机器人完成大力量负载输出;主动机械臂完成大动力、灵巧运动,并借助被动支链的支撑,降低主动机械臂的动力需求;同步运动平台将主动机械臂的运动撬杠式输出,完成大负载灵巧复位操作。因此,本发明的主被动式并联复位机器人结构通过主动机械臂、被动机械臂及同步运动平台实现了骨折的复位操作,结构简单稳定可靠,装卸方便,占用空间小,更有利于与手术医生的配合进行手术操作。
附图说明:
图1本发明主被动并联复位机器人的使用状态示意图;
图2本发明主被动并联复位机器人的主动机械臂的立体结构示意图;
图3本发明主被动并联复位机器人的同步运动平台的立体结构示意图;
图4本发明同步运动平台的平台主体的立体结构示意图;
图5本发明同步运动平台的匀强手腕的立体结构示意图;
图6本发明主被动并联复位机器人的被动机械臂的立体结构示意图。
附图中的标号说明:1-主动机械臂 101-末端连接法兰 2-同步运动平台 200-平台主体 201-机器人端动平台 202-第一平行铰链座 203-第一支撑杆 204-第四旋转轴 205-第二支撑杆 206-第五平行铰链座 207-第三支撑杆 208-随动端平台 209-第五旋转轴 2010-第二旋转轴 2011-球形铰链 2012-第二平行铰链座 2013-第一旋转轴 2014-第三平行铰链座 2016-第六平行铰链座 2017-第四平行铰链座 210-匀强手腕 211-支架 212-电机 213-电机输出轴螺杆 214-滑动轴 215-应力调整杆 216-万向锁紧卡扣 217-骨折复位针 218-滑动轴固定板 219-万向锁紧卡口固定轴 3-被动机械臂 301-第一球形铰链 302-旋转铰链 303-第二球形铰链 304-第四运动构件 305-锁紧构件 306-第一运动构件 307-第二运动构件 308-第三运动构件。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。
因此,以下对本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的部分实施例。基于本发明中的实施例,本领域 普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征和技术方案可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,这类术语仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
参见图1所示,本实施例提供的一种主被动并联复位机器人,包括:
主动机械臂1,具有多自由度的主动输出端;
同步运动平台2,所述同步运动平台上固定安装骨折复位针,所述主动机械臂的主动输出端与同步运动平台连接;
及被动机械臂3,其一端固定设置,另一端具有多自由度的被动输出端,被动输出端可滑动的安装在同步运动平台上;
所述被动机械臂3可在主动机械臂1带动同步运动平台2将骨折复位针插 入需复位的骨折端时保持自由度锁定,所述主动机械臂1带动同步运动平台2在被动机械3臂的支撑下执行复位操作。
本实施例提出了一种主被动式并联复位机器人结构:采用主动机械臂1、被动机械臂3并联机构,小体积大负载的被动机械臂3布置到手术空间,利用大刚度支撑辅助机器人完成大力量负载输出;主动机械臂1完成大动力、灵巧运动,并借助被动支链的支撑,降低主动机械臂1的动力需求;同步运动平台2将主动机械臂1的运动撬杠式输出,完成大负载灵巧复位操作。
因此,本实施例的主被动式并联复位机器人结构通过主动机械臂1、被动机械臂3及同步运动平台2实现了骨折的复位操作,结构简单稳定可靠,装卸方便,占用空间小,更有利于与手术医生的配合进行手术操作。
进一步地,本实施例的主被动式并联复位机器人,包含一个六自由度的主动机械臂1、一个七自由度的被动机械臂3、一个包含两个同步运动的同步运动平台2。
本实施例所述主动机械臂1可固定在手术台车上,也可固定在永久支座上;所述主动机械臂1可根据术前或术中规划路线主动移动;所述主动机械臂1具有六个自由度,可实现空间坐标系的移动和旋转。所述同步运动平台2的一端动平台固定在主动机械臂1上,另一端动平台可根据固定在主动机械臂1的动平台同步运动。所述被动机械臂3一端固定在同步运动平台2的球形铰链上,另一端固定在手术床或永久支座,也可固定在台车上;所述被动机械臂3具有七个自由度,包含两个球形铰链及一个旋转铰链,可被动锁定,作为同步运动平台2的运动支撑。
具体实施方式是:所述主动机械臂1固定在台车上,也可固定在永久支座 上;所述同步运动平台2一端安装在所述主动机械臂1上。所述被动机械臂3一端安装在手术床上,也可固定在台车上,另一端固定在所述同步运动平台2的球形铰链上,球形铰链可在所述同步运动平台2的支撑杆上滑动。在所述主动机械臂1未达到预定位置时,处于放松状态,各个关节可随意运动。所述主动机械臂1带动所述同步运动平台2到达预定位置后,将骨折复位针钉入需复位的骨折端,锁紧所述被动机械臂3,此时被动机械臂3没有自由度,相当于刚性固定支撑杆。所述同步运动平台2可围绕自身的球形铰链进行三个自由度的旋转及沿支撑杆的滑动。所述主被动并联复位机器人此时可执行复位操作,所述被动机械臂3为主动机械臂1提供支撑,减小其负载。当所述同步运动平台2的球形铰链不发生运动时,所述主动机械臂1带动所述同步运动平台2进行运动,实现骨折端移动。当所述同步运动平台2的球形铰链运动时,所述同步运动平台2可围绕自身的球形铰链进行三个自由度的旋转及沿支撑杆的滑动,利用球形铰链发生撬杠式运动,来带动末端骨折端的移动,减小所述主动机械臂1的负载。
参见图2所示,本实施例的所述主动机械臂1的主动输出端为具有空间六个自由度的末端连接法兰101,可实现空间姿态的随意运动,为骨折端复位操作提供动力。
参见图6所示,本实施例所述被动机械臂3包括第一运动构件306、与第一运动构件306通过第一球形铰链301连接的第二运动构件307、与第二运动构件307通过旋转铰链302可转动连接的第三运动构件308、与第三运动构件308通过第二球形铰链303连接的第四运动构件304以及用于锁定所述第一球形铰链301、旋转铰链302、第二球形铰链303的锁紧构件305。
本实施例所述被动机械臂3的第一球形铰链连接301和第二球形铰链303各具有三个围绕球心运动自由度;所述旋转铰链302具有一个旋转自由度;所述第四运动构件304具有空间六个自由度;所述锁紧构件305在放松状态下时,第一球形铰链连接301、第二球形铰链303及旋转铰链302可***,同时第四运动构件304有空间六个自由度,所述锁紧构件305在锁紧状态下时,第一球形铰链连接301、第二球形铰链303及旋转铰链302都处在锁紧状态,同时第四运动构件304也不可移动,此时七自由度被动支链也处于锁紧状态,形成一个刚性件。
作为本实施例的一种实施方式,所述的锁紧构件305包括传动连杆以及分别与第一球形铰链301、第二球形铰链303接触的锁紧块,通过旋转带动传动连杆驱动锁紧块与第一球形铰链301、第二球形铰链303分别紧密接触锁定。
参见图3所示,本实施例所述的同步运动平台2包括:
平台主体200,包括与主动机械臂1连接的机器人端动平台201和与机器人端动平台201连接进行动力平行传递的平行传动机构;
匀强手腕210,固定安装所述骨折复位针217,所述的匀强手腕210与平台主体200的平行传动机构固定连接。
参见图4所示,本实施例所述的平行传动机构包括在第一平面进行平行运动的第一平行传动机构和在第二平面进行平行运动的第二平行传动机构,所述的第一平面与第二平面相交。所述第一平行传动机构和所述第二平行传动机构分别处于相交的第一平面和第二平面,可实现随动端动平台在空间上与机器人端动平台保持平行
具体地,本实施例所述的平行传动机构包括用于与匀强手腕210固定连接的随动端平台208。
本实施例所述的第一平行传动机构包括第一支撑杆203和与第一支撑杆203平行的第二支撑杆205,第一旋转轴2013和与第一旋转轴2013平行的第二旋转轴2010,所述的第一支撑杆203的两端分别固定连接第一平行铰链座202、第二平行铰链座2012,所述第一旋转轴2013的一端与机器人端动平台201固定连接,另一端与第一平行铰链座202可转动连接,所述第二旋转轴2010的一端与随动端平台208固定连接,另一端与第二平行铰链座2012可转动连接。
本实施例所述的第二平行机构包括与第二支撑杆205平行的第三支撑杆207,第四旋转轴204和与第四旋转轴204平行的第五旋转轴209,所述的第二支撑杆205两端分别固定连接第三平行铰链座2014、第四平行铰链座2017,所述的第三支撑杆207两端分别固定连接第五平行铰链座206、第六平行铰链座2016,所述的第四旋转轴204可转动的穿过机器人端动平台201,两端分别可转动的安装在第三平行铰链座2014、第五平行铰链座206,第五旋转轴209可转动的穿过随动端平台208,两端分别可转动的安装在第四平行铰链座2017、第六平行铰链座2016。
具体地,本实施例所述的机器人端动平台201包括平台本体和固定连接平台本体上的第一连接块、第二连接块,所述第一旋转轴2013的一端与所述第一连接块固定连接;所述的第四旋转轴204可转动的穿过第二连接块。优选地,所述的平台本体为圆形连接法兰,所述的第一连接块、第二连接块分别固定在圆形连接法兰的外周壁上。
具体地,本实施例所述的随动端平台包括横臂和与横臂固定连接的竖臂, 所述第二旋转轴2010与所述竖臂固定连接,所述第五旋转轴209可转动的穿过横臂。优选地,所述的随动端平台为包括一个横臂和位于横臂两端的两个竖臂,整体呈U型结构。
其中图4中所示轴线a、轴线b、轴线c和轴线d组成第一平行四边形机构,机构运动中轴线a和轴线c,轴线b和轴线d会平行运动;图示轴线a1、轴线b1、轴线c1和轴线d组成第二平行四边形机构,机构运动中轴线a1和轴线c1,轴线b1和轴线d会平行运动。所述第一平行四边形和第二平行四边形相互垂直,且轴线a和轴线a1相互垂直并交于一点,轴线c和轴线c1相互垂直并交于一点。所述第一平行四边形机构和所述第二平行四边形机构可实现随动端动平台在空间上与机器人端动平台保持平行。
进一步地,本实施例所述的同步运动平台2包括可滑动的设置在第二支撑杆205上的球形铰链2011,所述被动机械臂3的被动输出端与所述球形铰链2011连接。所述球形铰链2011包含三个围绕球心的旋转自由度,安装在第二支撑杆205上,且可以沿第二支撑杆205滑动;所述平台主体200可围绕球形铰链2011旋转,也可以沿第二支撑杆205滑动,来实现空间机构的同步复位运动。
参见图5所示,本实施例所述匀强手腕210包括支架211、电机212、电机输出轴螺杆213、滑动轴214、应力调整杆215、万向锁紧卡扣216、骨折复位针217、滑动轴固定板218和万向锁紧卡口固定轴219。
所述电机212固定在支架211上,电机输出轴螺杆213固定在电机输出轴上,电机输出轴螺杆213与滑动轴固定板218螺纹传动,电机212转动可带动滑动轴固定板218上下运动;滑动轴214与滑动轴固定板218固连在一起;应力调整杆215与支架211固连在一起;万向锁紧卡扣216一端与骨折复位针217 连在一起,另一端可与应力调整杆215或万向锁紧卡口固定轴219连在一起;万向锁紧卡扣216在放松状态下时,两端卡扣可随意运动,锁紧后两端卡扣相对固定;当骨折复位针217***骨折复位端时,万向锁紧卡扣216将骨折复位针217与机架部分固连在一起,电机212旋转,可带动滑动轴固定板218上下运动,来调节应力调整杆215与支架211的力臂,防止因为骨折复位针217与骨折复位端应力过大而引起二次骨折等情况。
优选地,本实施例的指甲211为L型支架,本实施例的匀强手腕包括两套骨折复位针217以及对应的夹持固定和调节机构。
以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但本发明不局限于上述具体实施方式,因此任何对本发明进行修改或等同替换;而一切不脱离发明的精神和范围的技术方案及其改进,其均涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种主被动并联复位机器人,其特征在于,包括:
    主动机械臂,具有多自由度的主动输出端;
    同步运动平台,所述同步运动平台上固定安装骨折复位针,所述主动机械臂的主动输出端与同步运动平台连接;
    及被动机械臂,其一端固定设置,另一端具有多自由度的被动输出端,被动输出端可滑动的安装在同步运动平台上;
    所述被动机械臂可在主动机械臂带动同步运动平台将骨折复位针***需复位的骨折端时保持自由度锁定,所述主动机械臂带动同步运动平台在被动机械臂的支撑下执行复位操作。
  2. 根据权利要求1所述的一种主被动并联复位机器人,其特征在于,所述的同步运动平台包括:
    平台主体,包括与主动机械臂连接的机器人端动平台和与机器人端动平台连接进行动力平行传递的平行传动机构;
    匀强手腕,固定安装所述骨折复位针,所述的匀强手腕与平台主体的平行传动机构固定连接。
  3. 根据权利要求2所述的一种主被动并联复位机器人,其特征在于,所述的平行传动机构包括在第一平面进行平行运动的第一平行传动机构和在第二平面进行平行运动的第二平行传动机构,所述的第一平面与第二平面相交。
  4. 根据权利要求3所述的一种主被动并联复位机器人,其特征在于,所述的平行传动机构包括用于与匀强手腕固定连接的随动端平台;
    所述的第一平行传动机构包括第一支撑杆和与第一支撑杆平行的第二支撑杆,第一旋转轴和与第一旋转轴平行的第二旋转轴,所述的第一支撑杆的两端分别固定连接第一平行铰链座、第二平行铰链座,所述第一旋转轴的一端与机器人端动平台固定连接,另一端与第一平行铰链座可转动连接,所述第二旋转轴的一端与随动端平台固定连接,另一端与第二平行铰链座可转动连接;
    所述的第二平行机构包括与第二支撑杆平行的第三支撑杆,第四旋转轴和与第四旋转轴平行的第五旋转轴,所述的第二支撑杆两端分别固定连接第三平行铰链座、第四平行铰链座,所述的第三支撑杆两端分别固定连接第五平行铰链座、第六平行铰链座,所述的第四旋转轴可转动的穿过机器人端动平台,两端分别可转动的安装在第三平行铰链座、第五平行铰链座,第五旋转轴可转动的穿过随动端平台,两端分别可转动的安装在第四平行铰链座、第六平行铰链座。
  5. 根据权利要求4所述的一种主被动并联复位机器人,其特征在于,所述的机器人端动平台包括平台本体和固定连接平台本体上的第一连接块、第二连接块,所述第一旋转轴的一端与所述第一连接块固定连接;所述的第四旋转轴可转动的穿过第二连接块。
  6. 根据权利要求4所述的一种主被动并联复位机器人,其特征在于,所述的随动端平台包括横臂和与横臂固定连接的竖臂,所述第二旋转轴与所述竖臂固定连接,所述第五旋转轴可转动的穿过横臂。
  7. 根据权利要求4所述的一种主被动并联复位机器人,其特征在于,所述的同步运动平台包括可滑动的设置在第二支撑杆上的球形铰链,所述被动机械 臂的被动输出端与所述球形铰链连接。
  8. 根据权利要求2所述的一种主被动并联复位机器人,其特征在于,所述匀强手腕包括支架、电机、电机输出轴螺杆、滑动轴、应力调整杆、万向锁紧卡扣、滑动轴固定板和万向锁紧卡口固定轴;
    所述电机固定在支架上,电机输出轴螺杆固定在电机输出轴上,电机输出轴螺杆与滑动轴固定板螺纹传动,电机转动可带动滑动轴固定板上下运动;所述滑动轴与滑动轴固定板固连在一起;所述应力调整杆与支架固连在一起;所述万向锁紧卡扣一端与骨折复位针连在一起,另一端可与应力调整杆或万向锁紧卡口固定轴连在一起;
    当骨折复位针***骨折复位端时,万向锁紧卡扣将骨折复位针与机架部分固连在一起,电机旋转,可带动滑动轴固定板上下运动,来调节应力调整杆与支架的力臂。
  9. 根据权利要求1所述的一种主被动并联复位机器人,其特征在于,所述主动机械臂的主动输出端为具有空间六个自由度的末端连接法兰。
  10. 根据权利要求1所述的一种主被动并联复位机器人,其特征在于,所述被动机械臂包括第一运动构件、与第一运动构件通过第一球形铰链连接的第二运动构件、与第二运动构件通过旋转铰链可转动连接的第三运动构件、与第三运动构件通过第二球形铰链连接的第四运动构件以及用于锁定所述第一球形铰链、旋转铰链、第二球形铰链的锁紧构件。
PCT/CN2021/115607 2021-03-16 2021-08-31 一种主被动并联复位机器人 WO2022193563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/369,150 US11911124B2 (en) 2021-03-16 2023-09-16 Active-passive parallel-connected reduction robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110278937.5A CN112957130A (zh) 2021-03-16 2021-03-16 一种主被动并联复位机器人
CN202110278937.5 2021-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/369,150 Continuation US11911124B2 (en) 2021-03-16 2023-09-16 Active-passive parallel-connected reduction robot

Publications (1)

Publication Number Publication Date
WO2022193563A1 true WO2022193563A1 (zh) 2022-09-22

Family

ID=76277663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115607 WO2022193563A1 (zh) 2021-03-16 2021-08-31 一种主被动并联复位机器人

Country Status (3)

Country Link
US (1) US11911124B2 (zh)
CN (1) CN112957130A (zh)
WO (1) WO2022193563A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112957130A (zh) 2021-03-16 2021-06-15 张立海 一种主被动并联复位机器人
CN113907882A (zh) * 2021-08-26 2022-01-11 四川大学华西医院 一种用于骨折手术的复位定位机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102670309A (zh) * 2012-06-12 2012-09-19 北京航空航天大学 一种骨折手术路径调节装置
US20130190774A1 (en) * 2010-08-11 2013-07-25 Ecole Polytechnique Ferderale De Lausanne (Epfl) Mechanical positioning system for surgical instruments
WO2017020081A1 (en) * 2015-08-03 2017-02-09 Deakin University Apparatus, system and method for controlling motion of a robotic manipulator
CN206414336U (zh) * 2016-09-19 2017-08-18 北京瑞盈健康科技有限公司 主从式股骨干骨折复位并联机器人***
CN107928956A (zh) * 2017-11-28 2018-04-20 北京积水潭医院 一种基于手术床的骨折复位把持装置
CN109330686A (zh) * 2018-10-25 2019-02-15 上海大学 一种用于长骨骨折的机器人辅助复位***
CN112957130A (zh) * 2021-03-16 2021-06-15 张立海 一种主被动并联复位机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130190774A1 (en) * 2010-08-11 2013-07-25 Ecole Polytechnique Ferderale De Lausanne (Epfl) Mechanical positioning system for surgical instruments
CN102670309A (zh) * 2012-06-12 2012-09-19 北京航空航天大学 一种骨折手术路径调节装置
WO2017020081A1 (en) * 2015-08-03 2017-02-09 Deakin University Apparatus, system and method for controlling motion of a robotic manipulator
CN206414336U (zh) * 2016-09-19 2017-08-18 北京瑞盈健康科技有限公司 主从式股骨干骨折复位并联机器人***
CN107928956A (zh) * 2017-11-28 2018-04-20 北京积水潭医院 一种基于手术床的骨折复位把持装置
CN109330686A (zh) * 2018-10-25 2019-02-15 上海大学 一种用于长骨骨折的机器人辅助复位***
CN112957130A (zh) * 2021-03-16 2021-06-15 张立海 一种主被动并联复位机器人

Also Published As

Publication number Publication date
US20240000531A1 (en) 2024-01-04
US11911124B2 (en) 2024-02-27
CN112957130A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
US20220087757A1 (en) Surgical Arm
WO2022193563A1 (zh) 一种主被动并联复位机器人
US9027431B2 (en) Remote centre of motion positioner
CN106175935B (zh) 机械臂及骨科机器人
US10219871B2 (en) Robotic system for tele-surgery
US20210244489A1 (en) Robot arm structure and surgical robot manipulator including same
EP3572027A1 (en) Robot having stereotactic function
CN111700654B (zh) 单孔手术器械平台
US20190192244A1 (en) Robotic system for tele-surgery
CN114683314B (zh) 机械臂关节、机械臂及手术机器人
CN208372085U (zh) 骨折复位设备
CN210056222U (zh) 一种双控制协同操作的腹腔镜手术机器人及***
CN112998864B (zh) 一种用于下肢骨折复位手术的并联机器人***
Zenati Robotic heart surgery
RU2491161C1 (ru) Роботическая система для мини-инвазивной хирургии
CN215606256U (zh) 一种主被动并联复位机器人
Ye et al. Development of a six degree of freedom (DOF) hybrid robot for femur shaft fracture reduction
CN214231954U (zh) 一种手术器械床旁固定装置
US12011245B2 (en) Surgical robot mechanism with single-port and multi-port minimally invasive surgery functions
CN107363809B (zh) 一种四自由度并联式微创手术机器人
WO2022079875A1 (ja) 作業支援ロボット
RO135700A0 (ro) Familie de roboţi paraleli modulari cu cuple active de trans- laţie pentru chirurgia uniport

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931138

Country of ref document: EP

Kind code of ref document: A1