WO2022193542A1 - 晶圆清洗方法及晶圆清洗装置 - Google Patents

晶圆清洗方法及晶圆清洗装置 Download PDF

Info

Publication number
WO2022193542A1
WO2022193542A1 PCT/CN2021/113075 CN2021113075W WO2022193542A1 WO 2022193542 A1 WO2022193542 A1 WO 2022193542A1 CN 2021113075 W CN2021113075 W CN 2021113075W WO 2022193542 A1 WO2022193542 A1 WO 2022193542A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
cleaning
polishing pad
contaminants
surfactant
Prior art date
Application number
PCT/CN2021/113075
Other languages
English (en)
French (fr)
Inventor
宋受壮
蔡长益
林禄渊
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/457,799 priority Critical patent/US20220301892A1/en
Publication of WO2022193542A1 publication Critical patent/WO2022193542A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67046Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly scrubbing means, e.g. brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/022Cleaning travelling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing

Definitions

  • the present disclosure relates to, but is not limited to, a wafer cleaning method and a wafer cleaning device.
  • CMP Chemical Mechanical Polishing
  • the polished wafer After the chemical mechanical polishing process, the polished wafer usually needs to be cleaned to remove polishing residues on the wafer surface.
  • the wafer surface In the current post-grinding cleaning process, the wafer surface is usually brushed with a cleaning brush. When the cleaning brush is cleaned and the cleaning brush is separated from the wafer (that is, the moment when the cleaning brush is opened), due to the limitation of the cleaning brush itself, the particle and other defect sources on the cleaning brush are easy to stick back to the surface of the wafer. Scalloped or rod-shaped special pattern defects are formed on the wafer surface.
  • the carrying capacity of the defect source on the cleaning brush becomes larger and larger, so that the defect source is more likely to fall to the wafer surface at the moment when the cleaning brush is opened.
  • the drop or sticking of the defect source leads to the residue of contaminants on the surface of the wafer, which reduces the cleaning effect of the wafer and affects the smooth progress of the subsequent semiconductor manufacturing process.
  • the present disclosure provides a wafer cleaning method and a wafer cleaning device.
  • a first aspect of the present disclosure provides a wafer cleaning method, comprising the following steps:
  • Surfactant is sprayed onto the wafer surface while scrubbing the wafer surface with a polishing pad to remove the contaminants on the wafer surface.
  • a second aspect of the present disclosure provides a wafer cleaning apparatus, including:
  • the spraying module is configured to spray the surfactant to the wafer with contaminants on the surface
  • the scrubbing module includes a polishing pad, and the polishing pad is configured to use a mechanical external force to scrub the wafer to remove the contaminants on the surface of the wafer.
  • FIG. 1 is a flowchart of a wafer cleaning method in an embodiment of the present disclosure
  • FIG. 2A is a schematic cross-sectional view of a wafer with contaminants provided by an embodiment of the present disclosure
  • FIG. 2B is a side view of the wafer surface when a surface active agent is used in combination with polishing pad scrubbing in an embodiment of the present disclosure
  • 2C is a schematic diagram of an oxide layer after chemical mechanical polishing using a surfactant in an embodiment of the present disclosure
  • 2D is a side view of an embodiment of the present disclosure when an ultrasonic cleaning process is used to clean a wafer;
  • 2E is a side view of an embodiment of the present disclosure when an acidic cleaning agent is used to rinse a wafer;
  • 2F is a side view of an embodiment of the present disclosure when an alkaline cleaning agent is used to rinse a wafer;
  • FIG. 3 is a structural block diagram of a wafer cleaning apparatus in an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of the wafer cleaning method in the embodiment of the present disclosure
  • FIGS. 2A-2E are the main processes in the process of cleaning the wafer according to the embodiment of the present disclosure. Schematic cross section. As shown in FIG. 1, FIG. 2A-FIG. 2F, the wafer cleaning method provided by this embodiment includes the following steps:
  • step S11 a wafer to be cleaned is provided, and the surface of the wafer 20 has contaminants 21 , as shown in FIG. 2A .
  • the wafer 20 undergoes one or more processing steps prior to cleaning, resulting in contaminants remaining from the processing steps on the surface of the wafer 20 .
  • the wafer 20 includes a substrate 201 and an oxide layer 202 on the surface of the substrate 201 .
  • the oxide layer 202 can be thinned and the surface of the oxide layer 202 can be planarized. After the chemical mechanical polishing process is completed, the surface of the oxide layer 202 is left with contaminants 21, and the contaminants 21 include residual polishing liquid, debris generated during the chemical mechanical polishing process, and the like.
  • step S12 the surface active agent is sprayed onto the surface of the wafer 20 , and the surface of the wafer 20 is scrubbed with the polishing pad 23 .
  • the surface active agent can act on the contaminants 21 on the surface of the wafer 20 to reduce the contamination 21 and the wafer 20 . adhesion between the wafers 20 , thereby removing the contaminants 21 on the surface of the wafer 20 .
  • the effect between the surfactant and the contaminants 21 is used to reduce the adhesion between the contaminants 21 and the wafer 20 , so that the contaminants 21 It is easier to peel off the wafer 20 surface.
  • the contaminants are wiped from the surface of the wafer, so as to realize the scrubbing of the surface of the wafer 20 to be cleaned, and the contaminants 21 can be separated from the wafer 20, so that large particles can be removed. Part or all of the contaminants remaining on the wafer surface in the front-end process can achieve the effect of removing the contaminants 21 on the surface of the wafer 20 .
  • the adhesion between the contaminants 21 and the wafers 20 is reduced, the contaminants removed by mechanical external force are difficult to stick back to the surface of the wafers 20 , thereby avoiding secondary pollution of the wafers 20 and improving the cleaning of the wafers 20
  • the effect ensures the continuous and stable progress of the subsequent semiconductor process.
  • the use of polishing pads to apply mechanical external force to the wafer surface to remove contaminants from the wafer surface also avoids brushing the wafer surface with a cleaning brush in the prior art. When the cleaning is completed and the cleaning brush is separated from the wafer Due to the limitation of the structure of the cleaning brush itself, the particles stick back to the surface of the wafer, resulting in the technical problem of surface defects.
  • FIG. 2B is a side view of the wafer surface cleaning using surfactant combined with polishing pad scrubbing.
  • the surfactant 221 is sprayed onto the surface of the wafer 20 through the first spray pipe 22 so that the surfactant 221 covers the surface of the wafer 20 to be cleaned.
  • the polishing pad 23 is used to scrub the surface of the wafer 20 to be cleaned, and the contaminants 21 on the surface of the wafer 20 are removed by the action of friction.
  • the polishing pad 23 is used to exert mechanical external force on the contaminants on the surface of the wafer 20.
  • the surface of the polishing pad 23 in contact with the wafer 20 is always the same plane on the polishing pad 23 (that is, the polishing surface of the polishing pad 23). Therefore, At the moment when the polishing pad 23 is separated from the wafer 20 , the contaminants 21 will not stick back to the surface of the wafer 20 from the polishing pad 23 , which fundamentally avoids the secondary pollution of the wafer 20 .
  • the polishing surface of the polishing pad 23 has a plurality of protrusions, and the plurality of protrusions are arranged in parallel along a direction parallel to the polishing surface. The contaminants 21 on the surface of the wafer 20 are removed by friction between the protrusion and the surface of the wafer 20 (ie, mechanical external force).
  • the interaction between the surfactant and the contaminants 21 on the surface of the wafer 20 is a chemical interaction or a physical interaction.
  • the specific form of interaction between the surfactant and the contaminant 21 depends on the type of surfactant and the type of the contaminant 21 .
  • the step of scrubbing the surface of wafer 20 with polishing pad 23 includes:
  • the wafer 20 and the polishing pad 23 are respectively driven to rotate, and the rotation directions of the wafer 20 and the polishing pad 23 are the same.
  • the wafer 20 is driven by the driving wheel 24 to rotate along the first axis, the first axis is parallel to the Z-axis direction and passes through The axis of the center of the wafer 20 .
  • the polishing pad 23 rotates along a second axis, which is an axis parallel to the Z-axis direction and passing through the center of the polishing pad 23 , that is, the first axis is parallel to the second axis.
  • the wafer 20 rotates clockwise along the first axis, and the polishing pad 23 rotates clockwise along the second axis; or, the wafer 20 rotates counterclockwise along the first axis, and the polishing pad 23 rotates counterclockwise along the second axis.
  • the rotational speeds of the wafer 20 and the polishing pad 23 are different.
  • the step of using the polishing pad 23 to scrub the surface of the wafer 20 includes:
  • the wafer 20 is driven to rotate, and the polishing pad 23 is driven to reciprocate along a predetermined path on the surface of the wafer 20 .
  • the wafer 20 is driven by the driving wheel 24 to rotate along the first axis, the first axis is parallel to the Z-axis direction and passes through The axis of the center of the wafer 20 .
  • the polishing pad 23 reciprocates and translates along a predetermined path on the surface of the wafer 20 , that is, the polishing pad 23 swings back and forth along a predetermined path on the surface of the wafer 20 .
  • the wafer 20 includes a substrate 201 and an oxide layer 202 on the substrate 201, and the contaminants 21 are the contaminants remaining after the oxide layer 202 is subjected to a chemical mechanical polishing process; surfactants are used in combination with mechanical
  • the steps of scrubbing the wafer 20 by external force include:
  • the oxide layer 202 is scrubbed with a surfactant combined with a mechanical external force.
  • the polishing liquid used in the chemical mechanical polishing process is ceria, and the surfactant is sulfate or sulfonate.
  • Chemical mechanical polishing is a process through the combined action of chemical reaction process and mechanical grinding process.
  • the grinding head exerts a certain pressure on the back side of the wafer, so that the front side of the wafer is close to the grinding pad.
  • the polishing pad itself rotates, and at the same time, the polishing head drives the wafer and the polishing pad to rotate in the same direction, so that mechanical friction occurs between the front surface of the wafer and the surface of the polishing pad.
  • a certain thickness of film on the surface of the wafer is removed through a series of complex mechanical and chemical actions, so as to achieve the purpose of wafer planarization.
  • FIG. 2C is a schematic diagram of treating the oxide layer after chemical mechanical polishing with a surfactant.
  • the surface of the oxide layer 202 is negatively charged, and the remaining cerium ions (Ce4+) are positively charged, and the negatively charged
  • the sulfate or sulfonate is used as the surfactant 221, and the negatively charged surfactant 221 can chemically react with the positively charged cerium ions, thereby reducing the adhesion of the cerium ions on the surface of the wafer 20, and subsequently pass through the polishing pad.
  • the residual ceria slurry can be removed from the surface of the wafer 20 by applying a mechanical external force.
  • the time for scrubbing the wafer 20 by using the surfactant combined with the mechanical external force can be adjusted according to different process requirements, for example, the scrubbing time can be controlled within the range of 30s ⁇ 300s.
  • the mass concentration of the surfactant is less than 1%.
  • the step of scrubbing with a surfactant combined with a mechanical external force can be carried out at normal temperature, for example, in a temperature range of 15°C to 35°C.
  • the wafer 20 is cleaned by an ultrasonic cleaning process.
  • FIG. 2D is a side view of the wafer being cleaned by an ultrasonic cleaning process.
  • the ultrasonic cleaning in this embodiment may be mega-frequency ultrasonic cleaning.
  • the mega-frequency ultrasonic cleaning utilizes the bubbles generated by the ultrasonic waves 25 to flow on the wafer 20 to take away the contaminants 21 remaining on the surface of the wafer 20 .
  • the cleaning time of ultrasonic cleaning can be in the range of 30s to 300s.
  • the solution for ultrasonic cleaning can be TMAH (tetramethylammonium hydroxide) with a mass concentration of less than 1%, and the temperature range during cleaning is between 25°C and 35°C.
  • the solution for ultrasonic cleaning is SC1 (a mixture of ammonia water, hydrogen peroxide and water) solution, and the temperature during cleaning is between 20°C and 80°C.
  • the wafer 20 is rinsed with an acidic cleaning agent.
  • the step of rinsing wafer 20 with an acidic cleaning agent includes:
  • an acid cleaning agent is sprayed on the surface of the wafer 20 to remove the natural oxide layer on the surface of the wafer.
  • FIG. 2E is a side view of the wafer 20 being rinsed with an acid cleaning agent.
  • the acidic cleaning agent 261 is sprayed onto the surface of the wafer 20 through the second spray pipe 26 , and at the same time, the driving wheel 24 drives the wafer 20 to rotate in the XY plane (ie, along the Z axis and passing through the wafer 20 , parallel to the Z axis) center axis rotation).
  • the acid cleaning solution has an etching effect on the natural oxide layer formed on the surface of the wafer 20 (for example, the silicon dioxide layer generated by natural oxidation), and can etch away a thin film of the natural oxide layer on the surface of the wafer 20, thereby peeling off the pollution.
  • the more stubborn particles in the material 21 The natural oxide layer is different from the oxide layer 202 in the wafer 20, and the natural oxide layer is formed on the surface of the oxide layer 202 by contaminant particles on the surface of the wafer 20 through natural oxidation.
  • the acidic cleaning agent may be hydrofluoric acid with a mass concentration ranging from 0.1% to 1%. Depending on the concentration of hydrofluoric acid used, the acid cleaning time should be controlled within the range of 5s to 60s, and used at room temperature (15°C to 35°C). In the process of acid cleaning the wafer 20, no cleaning brush is required, and the natural oxide layer is only removed by the rinsing action of the acid cleaning agent.
  • the wafer 20 is rinsed with an alkaline cleaning agent.
  • a cleaning brush is not used during rinsing of wafer 20 with an alkaline cleaner.
  • FIG. 2F is a side view of the wafer 20 being rinsed with an alkaline cleaning agent.
  • the alkaline cleaning agent 271 is sprayed onto the surface of the wafer 20 through the third spray tube 27, and at the same time, the driving wheel 24 drives the wafer 20 to rotate in the XY plane (ie, along the Z axis and passing through the wafer parallel to the XY plane). 20 axis rotation of the center).
  • the alkaline cleaning agent is mainly used to neutralize the acid cleaning agent remaining on the surface of the wafer 20 , so as to avoid further erosion of the wafer 20 by the remaining acid cleaning agent, and restore the alkaline property of the surface of the wafer 20 .
  • the time of alkaline cleaning can be controlled within the range of 30s to 300s.
  • the alkaline cleaning agent may be TMAH (tetramethylammonium hydroxide) with a mass concentration of less than 0.1%, and the temperature during cleaning is normal temperature.
  • the alkaline cleaning agent can be SC1 (a mixture of ammonia water, hydrogen peroxide and water) solution, and the temperature range during cleaning is between 20°C and 80°C.
  • no cleaning brush is used, that is, only the action of the alkaline cleaning agent and the acid cleaning agent remaining on the surface of the wafer 20 and the centrifugal force generated by the rotation of the wafer 20 are used to remove the Acid cleaner remaining on the wafer surface.
  • FIG. 3 is a structural block diagram of a wafer cleaning apparatus in an embodiment of the present disclosure.
  • the wafer cleaning apparatus provided in this embodiment can use the wafer cleaning method shown in FIG. 1 and FIGS. 2A-2F to clean the wafer.
  • the wafer cleaning device provided in this embodiment includes:
  • Spraying module 31 is configured to spray surfactant to wafer 20 with contaminants 21 on the surface, and the surfactant can act on contaminants 21 on the surface of wafer 20 to reduce the contact between the contaminants and wafer 20. Adhesion;
  • the scrubbing module 32 includes a polishing pad 23 , and the polishing pad 23 is configured to scrub the wafer 20 with external mechanical force to remove contaminants on the surface of the wafer 20 .
  • the interaction between the surfactant and the contaminants 21 on the surface of the wafer 20 is a chemical interaction or a physical interaction.
  • the wafer cleaning apparatus further includes:
  • the driving wheel 24 is configured to carry the wafer 20 and drive the wafer 20 to rotate.
  • scrubbing module 32 further includes:
  • the driving unit 321 is configured to drive the polishing pad 23 to rotate along its axis direction; or, the driving unit 321 is configured to drive the polishing pad 23 to reciprocate along a predetermined path.
  • the wafer cleaning apparatus further includes:
  • the ultrasonic cleaning module 33 is configured to perform ultrasonic cleaning on the wafer 20 .
  • the wafer cleaning apparatus further includes:
  • the acid cleaning module 34 is configured to use an acid cleaning agent to rinse the wafer 20 .
  • the wafer cleaning apparatus further includes:
  • the alkaline cleaning module 35 is configured to use an alkaline cleaning agent to rinse the wafer 20 .
  • the wafer cleaning device can also be provided with a control module 30.
  • the control module 30 is connected to the jetting module 31, the scrubbing module 32, the ultrasonic cleaning module 33, the acid cleaning module 34 and the alkaline cleaning module 35, and is configured to adjust the control module 30 to be connected to the jetting module respectively. 31.
  • the working states of the scrubbing module 32 , the ultrasonic cleaning module 33 , the acid cleaning module 34 and the alkaline cleaning module 35 (including the open state and the closed state) to ensure the smooth progress of the wafer cleaning process.
  • the wafer cleaning method and wafer cleaning device provided in this embodiment use a surfactant to reduce the adhesion between the contaminants on the wafer surface and the wafer, so that the contaminants are easier to fall off from the wafer surface, and then use
  • the mechanical external force exerted by the polishing pad on the wafer surface removes the contaminants from the wafer surface, so that most or even all the contaminants remaining on the wafer surface in the front-end process can be removed, and due to the contact between the contaminants and the wafer, the contaminants can be removed.
  • the reduced adhesive force reduces the probability of contaminants sticking back to the wafer surface, thereby improving the wafer cleaning effect, reducing the residue of contaminants on the wafer surface, and ensuring the smooth and stable progress of the semiconductor manufacturing process.
  • polishing pads to apply mechanical external force to the wafer surface to remove contaminants from the wafer surface also avoids brushing the wafer surface with a cleaning brush in the prior art.
  • the cleaning is completed and the cleaning brush is separated from the wafer Due to the limitation of the structure of the cleaning brush itself, the particles stick back to the surface of the wafer, resulting in the technical problem of surface defects.
  • the wafer cleaning method and wafer cleaning device provided by the embodiments of the present disclosure reduce the adhesion between the contaminants on the wafer surface and the wafer by using a surfactant, so that the contaminants can be more easily removed from the wafer surface. Then, the contaminants are removed from the surface of the wafer by the mechanical external force exerted by the polishing pad on the surface of the wafer, so that most or even all the contaminants remaining on the surface of the wafer in the front-end process can be removed.
  • the reduced adhesion between the circles reduces the probability of contaminants sticking back to the wafer surface, thereby improving the wafer cleaning effect, reducing the residue of contaminants on the wafer surface, and ensuring a smooth and stable semiconductor process. conduct.
  • polishing pads to apply mechanical external force to the wafer surface to remove contaminants from the wafer surface also avoids brushing the wafer surface with a cleaning brush in the prior art.
  • the cleaning is completed and the cleaning brush is separated from the wafer Due to the limitation of the structure of the cleaning brush itself, the particles stick back to the surface of the wafer, resulting in the technical problem of surface defects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本公开提供一种晶圆清洗方法及晶圆清洗装置。晶圆清洗方法包括如下步骤:提供待清洗的晶圆,晶圆表面具有污染物;向晶圆表面喷射表面活性剂,同时采用抛光垫对晶圆表面进行擦洗,除去晶圆表面上的污染物。

Description

晶圆清洗方法及晶圆清洗装置
本公开基于申请号为202110294823.X,申请日为2021年03月19日,申请名称为“晶圆清洗方法及晶圆清洗装置”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于一种晶圆清洗方法及晶圆清洗装置。
背景技术
化学机械研磨(Chemical Mechanical Polishing,CMP)是半导体制造过程中的一种重要工艺步骤。在化学机械研磨工序结束之后,通常需要对研磨后的晶圆进行清洗,以除去晶圆表面的研磨残留物。在当前的研磨后清洗工艺中,通常会采用清洗刷对晶圆表面进行刷洗。在清洗刷清洗完成、清洗刷与晶圆分离的时候(即清洗刷打开的瞬间),由于清洗刷本身结构的限制,清洗刷上的颗粒物等缺陷源很容易回粘到晶圆表面,从而在晶圆表面形成扇形或者棒状的特殊图案缺陷。并且随着清洗刷使用寿命的增加,清洗刷上缺陷源的承载量越来越大,从而导致缺陷源更容易在清洗刷打开的瞬间掉落至晶圆表面。缺陷源的掉落或者回粘,导致了污染物在晶圆表面的残留,降低了晶圆清洗效果,影响了后续半导体制程工艺的顺利进行。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供一种晶圆清洗方法及晶圆清洗装置。
本公开的第一方面提供一种晶圆清洗方法,包括如下步骤:
提供待清洗的晶圆,所述晶圆表面具有污染物;
向所述晶圆表面喷射表面活性剂,同时采用抛光垫对所述晶圆表面进行 擦洗,除去所述晶圆表面上的所述污染物。
本公开的第二方面提供一种晶圆清洗装置,包括:
喷射模块,所述喷射模块设置为向表面具有污染物的晶圆喷射表面活性剂;
擦洗模块,包括抛光垫,所述抛光垫设置为采用机械外力对所述晶圆进行擦洗,除去所述晶圆表面上的所述污染物。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1是本公开实施方式中晶圆清洗方法的流程图;
图2A是本公开实施方式提供的具有污染物的晶圆的截面示意图;
图2B是本公开实施方式中采用表面活性剂结合抛光垫擦洗对晶圆表面进行清洗时的侧视图;
图2C是本公开实施方式中采用表面活性剂对化学机械研磨之后的氧化层进行处理时的示意图;
图2D是本公开实施方式中采用超声清洗工艺对晶圆进行清洗时的侧视图;
图2E是本公开实施方式中采用酸性清洗剂对晶圆进行冲洗时的侧视图;
图2F是本公开实施方式中采用碱性清洗剂对晶圆进行冲洗时的侧视图;
图3是本公开实施方式中晶圆清洗装置的结构框图。
具体实施方式
下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开实施方式提供了一种晶圆清洗方法,附图1是本公开实施方式中晶圆清洗方法的流程图,附图2A-2E是本公开实施方式在清洗晶圆的过程中主要的工艺截面示意图。如图1、图2A-图2F所示,本实施方式提供的晶圆清洗方法,包括如下步骤:
步骤S11,提供待清洗的晶圆,晶圆20表面具有污染物21,如图2A所示。
在示例性实施方式中,晶圆20在进行清洗之前,经过了一个或者多个工艺处理步骤,从而导致在晶圆20表面具有工艺处理步骤中残留的污染物。举例来说,晶圆20包括衬底201和位于衬底201表面的氧化层202,通过对氧化层202进行化学机械研磨,能够减薄氧化层202,并实现对氧化层202表面的平坦化。在化学机械研磨工艺结束之后,氧化层202表面残留有污染物21,污染物21包括残留的研磨液、化学机械研磨过程中产生的碎屑等。
步骤S12,向晶圆20表面喷射表面活性剂,同时采用抛光垫23对晶圆20表面进行擦洗,表面活性剂能够与晶圆20表面的污染物21作用,以降低污染物21与晶圆20之间的粘附力,从而除去晶圆20表面上的污染物21。
本实施方式中,通过采用表面活性剂作为清洗剂,利用表面活性剂与污染物21之间的作用,达到降低污染物21与晶圆20之间的粘附力的效果,从而使得污染物21更容易从晶圆20表面脱落。结合抛光垫23向晶圆20表面施加的机械外力将污染物从晶圆表面擦除,实现对晶圆20待清洗的表面的擦洗,能够将污染物21与晶圆20分离,从而可以去除大部分甚至全部前段制程工艺在晶圆表面上残留的污染物,达到去除晶圆20表面上的污染物21的效果。而且,由于污染物21与晶圆20之间的粘附力降低,机械外力去除的污染物难以回粘至晶圆20表面,避免了晶圆20的二次污染,提高了晶圆20的清洗效果,确保了后续的半导体制程持续、稳定的进行。此外,利用抛光垫对晶圆表面施加机械外力将污染物从晶圆表面去除,也避免了现有技术中通过清洗刷对晶圆表面进行刷洗,在清洗完成,清洗刷与晶圆分离的时候由于清洗刷本身结构的限制,使颗粒物回粘到晶圆表面,导致表面产生缺陷的 技术问题。
图2B是采用表面活性剂结合抛光垫擦洗对晶圆表面进行清洗时的侧视图。在示例性实施方式中,如图2B所示,通过第一喷射管22向晶圆20的表面喷射表面活性剂221,使得表面活性剂221覆盖晶圆20待清洗的表面。同时,采用抛光垫23对晶圆20待清洗的表面进行擦洗,通过摩擦力的作用除去晶圆20表面的污染物21。
本实施方式采用抛光垫23来对晶圆20表面的污染物施加机械外力,抛光垫23与晶圆20接触的表面始终为抛光垫23上的同一平面(即抛光垫23的抛光面),因此,在抛光垫23与晶圆20分离的瞬间,污染物21不会自抛光垫23回粘至晶圆20表面,从根本上避免了晶圆20被二次污染。抛光垫23的抛光面上具有多个凸起,多个凸起沿平行于抛光面的方向平行排布。通过凸起与晶圆20表面的摩擦(即机械外力),来除去晶圆20表面上的污染物21。
在示例性实施方式中,表面活性剂与晶圆20表面的污染物21之间的作用为化学作用或者物理作用。表面活性剂与污染物21之间作用的具体形式,取决于表面活性剂的类型以及污染物21的类型。
在示例性实施方式中,采用抛光垫23对晶圆20表面进行擦洗的步骤包括:
分别驱动晶圆20和抛光垫23旋转,且晶圆20与抛光垫23的旋转方向相同。
举例来说,如图2B所示,在采用抛光垫23对晶圆进行擦洗的过程中,通过驱动轮24驱动晶圆20沿第一轴线自转,第一轴线为平行于Z轴方向且穿过晶圆20的中心的轴线。抛光垫23沿第二轴线自转,第二轴线为平行于Z轴方向且穿过抛光垫23的中心的轴线,即第一轴线与第二轴线平行。晶圆20沿第一轴线顺时针方向自转,且抛光垫23沿第二轴线顺时针自转;或者,晶圆20沿第一轴线逆时针方向自转,抛光垫23沿第二轴线逆时针方向自转。晶圆20与抛光垫23的转速不同。
在其他实施方式中,采用抛光垫23对晶圆20表面进行擦洗的步骤包括:
驱动晶圆20自转,并驱动抛光垫23在晶圆20表面沿一预设路径往复运动。
举例来说,如图2B所示,在采用抛光垫23对晶圆进行擦洗的过程中,通过驱动轮24驱动晶圆20沿第一轴线自转,第一轴线为平行于Z轴方向且穿过晶圆20的中心的轴线。抛光垫23在晶圆20表面上沿一预设路径往复平移运动,即抛光垫23在晶圆20表面上沿一预设路径往复摆动。
在示例性实施方式中,晶圆20包括衬底201和位于衬底201上的氧化层202,污染物21为氧化层202经过化学机械研磨工艺之后残留的污染物;采用表面活性剂并结合机械外力对晶圆20进行擦洗的步骤包括:
采用表面活性剂并结合机械外力对氧化层202进行擦洗。
在示例性实施方式中,在化学机械研磨工艺中所使用的研磨液为二氧化铈,表面活性剂为硫酸化物或者磺酸化物。
化学机械研磨是一个通过化学反应过程和机械研磨过程共同作用的工艺。研磨过程中研磨头施加一定的压力在晶圆背面,使得晶圆正面紧贴研磨垫。研磨垫自身进行旋转,同时,且研磨头带动晶圆与研磨垫同方向旋转,使得晶圆正面与研磨垫表面产生机械摩擦。在研磨过程中,通过一系列复杂的机械和化学作用去除晶圆表面的一定厚度的膜层,从而达到晶圆平坦化的目的。
图2C是采用表面活性剂对化学机械研磨之后的氧化层进行处理时的示意图。举例来说,在化学机械研磨工艺中采用二氧化铈作为研磨液对氧化层202进行研磨之后,氧化层202的表面为负电性,残留的铈离子(Ce4+)为正电性,采用带负电性的硫酸化物或者磺酸化物作为表面活性剂221,负电性的表面活性剂221能够与正电性的铈离子发生化学反应,从而降低铈离子在晶圆20表面的粘附力,后续通过抛光垫23施加机械外力即可将残留的二氧化铈研磨液从晶圆20表面去除。
采用表面活性剂并结合机械外力对晶圆20进行擦洗的时间可以根据工艺需求的不同进行调整,例如擦洗的时间可以控制在30s~300s范围内。
在示例性实施方式中,表面活性剂的质量浓度小于1%。采用表面活性剂结合机械外力擦洗的步骤可以在常温下实施,例如在15℃~35℃的温度范围内。
在示例性实施方式中,采用表面活性剂并结合机械外力对晶圆进行擦洗之后,还包括如下步骤:
采用超声清洗工艺对晶圆20进行清洗。
图2D是采用超声清洗工艺对晶圆进行清洗时的侧视图。本实施方式中的超声清洗可以为兆频超声清洗。通过兆频超声清洗利用超声波25产生的起泡在晶圆20流动来带走晶圆20表面残留的污染物21。超声清洗的清洗时间可以在30s~300s范围内。超声清洗的溶液可以采用质量浓度小于1%的TMAH(四甲基氢氧化铵),清洗时的温度范围在25℃~35℃之间。或者,超声清洗的溶液采用SC1(氨水、双氧水和水的混合物)溶液,清洗时的温度范围在20℃~80℃之间。
在示例性实施方式中,采用超声清洗工艺对晶圆20进行清洗之后,还包括如下步骤:
采用酸性清洗剂对晶圆20进行冲洗。
在示例性实施方式中,采用酸性清洗剂对晶圆20进行冲洗的步骤包括:
在驱动晶圆20自转的同时,向晶圆20表面喷射酸性清洗剂,以除去晶圆表面的自然氧化层。
图2E是采用酸性清洗剂对晶圆20进行冲洗时的侧视图。如图2E所示,通过第二喷射管26向晶圆20表面喷射酸性清洗剂261,同时,驱动轮24驱动晶圆20在XY平面内自转(即沿平行于Z轴且穿过晶圆20中心的轴线自转)。酸性清洗液对于晶圆20表面形成的自然氧化层(例如通过自然氧化作用生成的二氧化硅层)具有蚀刻作用,能够蚀刻掉晶圆20表面一层很薄的自然氧化层薄膜,从而剥离污染物21中比较顽固的颗粒。自然氧化层不同于晶圆20中的氧化层202,自然氧化层是晶圆20表面的污染物颗粒通过自然氧化作用形成于氧化层202表面的。酸性清洗剂可以为质量浓度在0.1%~1%范围内的氢氟酸。根据所使用的氢氟酸的浓度不同,酸性清洗的时间应控制在5s~60s范围内,且于常温(15℃~35℃)下使用。在对晶圆20进行酸性清洗的过程中,无需使用清洗刷,仅仅通过酸性清洗剂的冲洗作用去除自然氧化层。
在示例性实施方式中,采用酸性清洗剂对晶圆20进行冲洗之后,还包括如下步骤:
采用碱性清洗剂对晶圆20进行冲洗。
在示例性实施方式中,采用碱性清洗剂对晶圆20进行冲洗的过程中不使 用清洗刷。
图2F是采用碱性清洗剂对晶圆20进行冲洗时的侧视图。如图2F所示,通过第三喷射管27向晶圆20表面喷射碱性清洗剂271,同时,驱动轮24驱动晶圆20在XY平面内自转(即沿平行于Z轴且穿过晶圆20中心的轴线自转)。碱性清洗剂主要用于中和掉晶圆20表面残留的酸性清洗剂,以避免残留的酸性清洗剂对晶圆20的进一步侵蚀,恢复晶圆20表面的碱性性质。碱性清洗的时间可以控制在30s~300s范围内。碱性清洗剂可以为质量浓度小于0.1%的TMAH(四甲基氢氧化铵),清洗时的温度为常温。或者,碱性清洗剂可以为SC1(氨水、双氧水和水的混合物)溶液,清洗时的温度范围在20℃~80℃之间。
本实施方式在采用碱性清洗剂清洗晶圆20的过程中,不使用清洗刷,即仅利用碱性清洗剂与晶圆20表面残留的酸性清洗剂的作用以及晶圆20自转产生的离心力去除晶圆表面残留的酸性清洗剂。
不仅如此,本实施方式还提供了一种晶圆清洗装置。附图3是本公开实施方式中晶圆清洗装置的结构框图。本实施方式提供的晶圆清洗装置可以采用如图1、图2A-图2F所示的晶圆清洗方法对晶圆进行清洗。如图1、图2A-图2F和图3所示,本实施方式提供的晶圆清洗装置,包括:
喷射模块31,喷射模块31设置为向表面具有污染物21的晶圆20喷射表面活性剂,表面活性剂能够与晶圆20表面的污染物21作用,以降低污染物与晶圆20之间的粘附力;
擦洗模块32,包括抛光垫23,抛光垫23设置为采用机械外力对晶圆20进行擦洗,除去晶圆20表面上的污染物。
在示例性实施方式中,表面活性剂与晶圆20表面的污染物21之间的作用为化学作用或者物理作用。
在示例性实施方式中,晶圆清洗装置还包括:
驱动轮24,设置为承载晶圆20并驱动晶圆20自转。
在示例性实施方式中,擦洗模块32还包括:
驱动单元321,设置为驱动抛光垫23沿其轴线方向自转;或者,驱动单元321设置为驱动抛光垫23沿一预设路径往复运动。
在示例性实施方式中,晶圆清洗装置还包括:
超声清洗模块33,设置为对晶圆20进行超声清洗。
在示例性实施方式中,晶圆清洗装置还包括:
酸性清洗模块34,设置为采用酸性清洗剂对晶圆20进行冲洗。
在示例性实施方式中,晶圆清洗装置还包括:
碱性清洗模块35,设置为采用碱性清洗剂对晶圆20进行冲洗。
晶圆清洗装置中还可以设置控制模块30,控制模块30连接喷射模块31、擦洗模块32、超声清洗模块33、酸性清洗模块34和碱性清洗模块35,设置为分别调整控制模块30连接喷射模块31、擦洗模块32、超声清洗模块33、酸性清洗模块34和碱性清洗模块35的工作状态(包括开启状态和关闭状态),以确保晶圆清洗制程顺利进行。
本实施方式提供的晶圆清洗方法及晶圆清洗装置,通过使用表面活性剂降低晶圆表面的污染物与晶圆之间的粘附力,使得污染物更容易从晶圆表面脱落,然后利用抛光垫对晶圆表面施加的机械外力将污染物从晶圆表面擦除,从而可以去除大部分甚至全部前段制程工艺在晶圆表面上残留的污染物,且由于污染物与晶圆之间的粘附力减小,使得污染物回粘至晶圆表面的概率降低,从而改善了晶圆清洗效果,减少了污染物在晶圆表面的残留,确保半导体制程工序顺利、稳定的进行。此外,利用抛光垫对晶圆表面施加机械外力将污染物从晶圆表面去除,也避免了现有技术中通过清洗刷对晶圆表面进行刷洗,在清洗完成,清洗刷与晶圆分离的时候由于清洗刷本身结构的限制,使颗粒物回粘到晶圆表面,导致表面产生缺陷的技术问题。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例所提供的提供的晶圆清洗方法及晶圆清洗装置,通过使用表面活性剂降低晶圆表面的污染物与晶圆之间的粘附力,使得污染物更容易从晶圆表面脱落,然后利用抛光垫对晶圆表面施加的机械外力将污染物从晶圆表面擦除,从而可以去除大部分甚至全部前段制程工艺在晶圆表面上残留的污染物,且由于污染物与晶圆之间的粘附力减小,使得污染物回粘至晶圆表面的概率降低,从而改善了晶圆清洗效果,减少了污染物在晶圆表面的残留,确保半导体制程工序顺利、稳定的进行。此外,利用抛光垫对晶圆表面施加机械外力将污染物从晶圆表面去除,也避免了现有技术中通过清洗刷对晶圆表面进行刷洗,在清洗完成,清洗刷与晶圆分离的时候由于清洗刷本身 结构的限制,使颗粒物回粘到晶圆表面,导致表面产生缺陷的技术问题。

Claims (19)

  1. 一种晶圆清洗方法,包括如下步骤:
    提供待清洗的晶圆,所述晶圆表面具有污染物;
    向所述晶圆表面喷射表面活性剂,同时采用抛光垫对所述晶圆表面进行擦洗,除去所述晶圆表面上的所述污染物。
  2. 根据权利要求1所述的晶圆清洗方法,其中,所述表面活性剂与所述晶圆表面的所述污染物之间的作用为化学作用或者物理作用。
  3. 根据权利要求1所述的晶圆清洗方法,其中,采用抛光垫对所述晶圆表面进行擦洗的步骤包括:
    分别驱动所述晶圆和所述抛光垫旋转,且所述晶圆与所述抛光垫的旋转方向相同。
  4. 根据权利要求1所述的晶圆清洗方法,其中,采用抛光垫对所述晶圆表面进行擦洗的步骤包括:
    驱动所述晶圆自转,并驱动所述抛光垫在所述晶圆表面沿一预设路径往复运动。
  5. 根据权利要求1所述的晶圆清洗方法,其中,所述晶圆包括衬底和位于所述衬底上的氧化层,所述污染物为所述氧化层经过化学机械研磨工艺之后残留的污染物;采用表面活性剂并结合机械外力对所述晶圆进行擦洗的步骤包括:
    采用表面活性剂并结合机械外力对所述氧化层进行擦洗。
  6. 根据权利要求5所述的晶圆清洗方法,其中,在所述化学机械研磨工艺中所使用的研磨液为二氧化铈,所述表面活性剂为硫酸化物或者磺酸化物。
  7. 根据权利要求6所述的晶圆清洗方法,其中,所述表面活性剂的质量浓度小于1%。
  8. 根据权利要求1所述的晶圆清洗方法,采用表面活性剂并结合机械外力对所述晶圆进行擦洗之后,还包括如下步骤:
    采用超声清洗工艺对所述晶圆进行清洗。
  9. 根据权利要求8所述的晶圆清洗方法,采用超声清洗工艺对所述晶圆 进行清洗之后,还包括如下步骤:
    采用酸性清洗剂对所述晶圆进行冲洗。
  10. 根据权利要求9所述的晶圆清洗方法,其中,采用酸性清洗剂对所述晶圆进行冲洗的步骤包括:
    在驱动所述晶圆自转的同时,向所述晶圆表面喷射酸性清洗剂,以除去所述晶圆表面的自然氧化层。
  11. 根据权利要求9所述的晶圆清洗方法,采用酸性清洗剂对所述晶圆进行冲洗之后,还包括如下步骤:
    采用碱性清洗剂对所述晶圆进行冲洗。
  12. 根据权利要求11所述的晶圆清洗方法,其中,采用碱性清洗剂对所述晶圆进行冲洗的过程中不使用清洗刷。
  13. 一种晶圆清洗装置,包括:
    喷射模块,所述喷射模块设置为向表面具有污染物的晶圆喷射表面活性剂;
    擦洗模块,包括抛光垫,所述抛光垫设置为采用机械外力对所述晶圆进行擦洗,除去所述晶圆表面上的所述污染物。
  14. 根据权利要求13所述的晶圆清洗装置,其中,所述表面活性剂与所述晶圆表面的所述污染物之间的作用为化学作用或者物理作用。
  15. 根据权利要求13所述的晶圆清洗装置,还包括:
    驱动轮,设置为承载所述晶圆并驱动所述晶圆自转。
  16. 根据权利要求13所述的晶圆清洗装置,所述擦洗模块还包括:
    驱动单元,设置为驱动所述抛光垫沿其轴线方向自转;或者,所述驱动单元设置为驱动所述抛光垫沿一预设路径往复运动。
  17. 根据权利要求13所述的晶圆清洗装置,还包括:
    超声清洗模块,设置为对所述晶圆进行超声清洗。
  18. 根据权利要求13所述的晶圆清洗装置,还包括:
    酸性清洗模块,设置为采用酸性清洗剂对所述晶圆进行冲洗。
  19. 根据权利要求13所述的晶圆清洗装置,还包括:
    碱性清洗模块,设置为采用碱性清洗剂对所述晶圆进行冲洗。
PCT/CN2021/113075 2021-03-19 2021-08-17 晶圆清洗方法及晶圆清洗装置 WO2022193542A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/457,799 US20220301892A1 (en) 2021-03-19 2021-12-06 Wafer cleaning method and wafer cleaning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110294823.X 2021-03-19
CN202110294823.XA CN113078078A (zh) 2021-03-19 2021-03-19 晶圆清洗方法及晶圆清洗装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/457,799 Continuation US20220301892A1 (en) 2021-03-19 2021-12-06 Wafer cleaning method and wafer cleaning apparatus

Publications (1)

Publication Number Publication Date
WO2022193542A1 true WO2022193542A1 (zh) 2022-09-22

Family

ID=76613098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113075 WO2022193542A1 (zh) 2021-03-19 2021-08-17 晶圆清洗方法及晶圆清洗装置

Country Status (2)

Country Link
CN (1) CN113078078A (zh)
WO (1) WO2022193542A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078078A (zh) * 2021-03-19 2021-07-06 长鑫存储技术有限公司 晶圆清洗方法及晶圆清洗装置
CN113680721B (zh) * 2021-08-20 2022-07-12 淮安澳洋顺昌光电技术有限公司 去除蓝宝石单抛衬底背面色差的清洗方法
CN114405908B (zh) * 2021-12-31 2023-07-25 至微半导体(上海)有限公司 一种适用于晶圆化学品蚀刻后的清洗方法
CN115256234B (zh) * 2022-09-28 2023-01-13 华海清科股份有限公司 一种具有修整器清洗装置的晶圆减薄设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846335A (en) * 1994-06-28 1998-12-08 Ebara Corporation Method for cleaning workpiece
US20030003743A1 (en) * 2000-04-19 2003-01-02 Moore Scott E. Method and apparatus for cleaning a web-based chemical mechanical planarization system
US20130061876A1 (en) * 2011-09-14 2013-03-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device Surface Clean
CN104051303A (zh) * 2013-03-15 2014-09-17 朗姆研究公司 具有化学控制的工作液的便携声波颗粒去除工具
CN106985060A (zh) * 2016-01-18 2017-07-28 三星电子株式会社 基板减薄装置、减薄基板的方法以及制造半导体封装的方法
CN107799436A (zh) * 2016-08-29 2018-03-13 株式会社荏原制作所 基板处理装置及基板处理方法
CN110524407A (zh) * 2019-08-16 2019-12-03 西安奕斯伟硅片技术有限公司 一种晶圆的处理方法和处理装置
CN110610848A (zh) * 2018-06-14 2019-12-24 株式会社荏原制作所 基板处理方法
CN110828334A (zh) * 2018-08-09 2020-02-21 株式会社荏原制作所 基板用清洗件、基板清洗装置、基板处理装置、基板处理方法以及基板用清洗件的制造方法
CN111952162A (zh) * 2019-05-16 2020-11-17 美光科技公司 用于平面化端点确定的方法、***及设备
CN113078078A (zh) * 2021-03-19 2021-07-06 长鑫存储技术有限公司 晶圆清洗方法及晶圆清洗装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW461843B (en) * 2000-11-10 2001-11-01 Taiwan Semiconductor Mfg Chemical mechanical polish process for copper damascene structure
EP1763071A4 (en) * 2004-06-28 2008-08-13 Sumitomo Electric Industries GAAS SUBSTRATE PURIFICATION METHOD, GAAS SUBSTRATE MANUFACTURING METHOD, PRODUCTION METHOD FOR EPITAXIAL SUBSTRATE AND GAAS WAFER
CN101197268B (zh) * 2006-12-05 2010-06-09 中芯国际集成电路制造(上海)有限公司 化学机械研磨后残留物的去除方法
CN101409209A (zh) * 2007-10-09 2009-04-15 中芯国际集成电路制造(上海)有限公司 一种晶圆的Cu CMP制程后表面异常残留的清洗方法
CN105097425A (zh) * 2014-04-18 2015-11-25 中芯国际集成电路制造(上海)有限公司 一种化学机械研磨的方法
US9844800B2 (en) * 2014-04-23 2017-12-19 Applied Materials, Inc. Systems, methods and apparatus for post-chemical mechanical planarization substrate cleaning
JP7058094B2 (ja) * 2017-09-19 2022-04-21 株式会社Screenホールディングス 基板処理装置および基板処理方法
CN110900455A (zh) * 2018-09-17 2020-03-24 长鑫存储技术有限公司 晶圆清洗液、化学机械研磨后清洗方法及晶圆
CN111584340B (zh) * 2019-02-19 2023-08-18 中芯国际集成电路制造(上海)有限公司 晶圆的清洗方法
CN110993724A (zh) * 2019-10-17 2020-04-10 晋能清洁能源科技股份公司 一种异质结太阳能电池的制绒清洗方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846335A (en) * 1994-06-28 1998-12-08 Ebara Corporation Method for cleaning workpiece
US20030003743A1 (en) * 2000-04-19 2003-01-02 Moore Scott E. Method and apparatus for cleaning a web-based chemical mechanical planarization system
US20130061876A1 (en) * 2011-09-14 2013-03-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device Surface Clean
CN104051303A (zh) * 2013-03-15 2014-09-17 朗姆研究公司 具有化学控制的工作液的便携声波颗粒去除工具
CN106985060A (zh) * 2016-01-18 2017-07-28 三星电子株式会社 基板减薄装置、减薄基板的方法以及制造半导体封装的方法
CN107799436A (zh) * 2016-08-29 2018-03-13 株式会社荏原制作所 基板处理装置及基板处理方法
CN110610848A (zh) * 2018-06-14 2019-12-24 株式会社荏原制作所 基板处理方法
CN110828334A (zh) * 2018-08-09 2020-02-21 株式会社荏原制作所 基板用清洗件、基板清洗装置、基板处理装置、基板处理方法以及基板用清洗件的制造方法
CN111952162A (zh) * 2019-05-16 2020-11-17 美光科技公司 用于平面化端点确定的方法、***及设备
CN110524407A (zh) * 2019-08-16 2019-12-03 西安奕斯伟硅片技术有限公司 一种晶圆的处理方法和处理装置
CN113078078A (zh) * 2021-03-19 2021-07-06 长鑫存储技术有限公司 晶圆清洗方法及晶圆清洗装置

Also Published As

Publication number Publication date
CN113078078A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2022193542A1 (zh) 晶圆清洗方法及晶圆清洗装置
JP4709346B2 (ja) ウェーハエッジの洗浄装置
US6733596B1 (en) Substrate cleaning brush preparation sequence, method, and system
JP3772056B2 (ja) 半導体基板の洗浄方法
TW411522B (en) A semiconductor device washing apparatus and a method of washing a semiconducotr device
JP3114156B2 (ja) 洗浄方法および装置
JP2000331975A (ja) ウエハ洗浄装置
US6921494B2 (en) Backside etching in a scrubber
JP3786651B2 (ja) 機械化学研磨後の汚染物質を除去する方法
JP7444410B2 (ja) 半導体チップ洗浄方法及び半導体チップ洗浄装置
CN102446755B (zh) 一种降低化学机械抛光后微粒缺陷的方法
CN105983546A (zh) 晶圆清洗方法
JP2001070896A (ja) 基板洗浄装置
US8911558B2 (en) Post-tungsten CMP cleaning solution and method of using the same
Menon Particle Adhesion to Surfaces Theory of Cleaning
CN105364699B (zh) 一种化学机械研磨方法和化学机械研磨设备
CN113500516A (zh) 一种研磨装置的清洗方法及***
US6949411B1 (en) Method for post-etch and strip residue removal on coral films
US20220301892A1 (en) Wafer cleaning method and wafer cleaning apparatus
JP2002079190A (ja) 基板洗浄部材、ならびにこれを用いた基板洗浄装置および基板洗浄方法
JPH07321082A (ja) 基板の洗浄方法および洗浄装置
CN111584340B (zh) 晶圆的清洗方法
Moumen et al. Removal of submicrometre alumina particles from silicon oxide substrates
JPS60240129A (ja) スクラブ洗浄装置
JP5245528B2 (ja) 洗浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931118

Country of ref document: EP

Kind code of ref document: A1