WO2022193208A1 - 电动工具及其保护方法和*** - Google Patents

电动工具及其保护方法和*** Download PDF

Info

Publication number
WO2022193208A1
WO2022193208A1 PCT/CN2021/081442 CN2021081442W WO2022193208A1 WO 2022193208 A1 WO2022193208 A1 WO 2022193208A1 CN 2021081442 W CN2021081442 W CN 2021081442W WO 2022193208 A1 WO2022193208 A1 WO 2022193208A1
Authority
WO
WIPO (PCT)
Prior art keywords
predetermined
temperature
tool
threshold
sensor
Prior art date
Application number
PCT/CN2021/081442
Other languages
English (en)
French (fr)
Inventor
谢焕发
孙凯嘉
马海波
文超
李永民
Original Assignee
创科无线普通合伙
谢焕发
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创科无线普通合伙, 谢焕发 filed Critical 创科无线普通合伙
Priority to PCT/CN2021/081442 priority Critical patent/WO2022193208A1/zh
Priority to CN202180004281.6A priority patent/CN115380466A/zh
Priority to EP21930801.2A priority patent/EP4311100A1/en
Publication of WO2022193208A1 publication Critical patent/WO2022193208A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive

Definitions

  • the present invention relates to power tools, in particular to a method and system for protecting power tools.
  • a power tool typically includes a housing, an electric motor within the housing, a transmission driven by the electric motor, and a control assembly for controlling the electric motor.
  • Power tools usually include tool temperature sensors to detect the temperature of components such as MOSFETs in switching networks or motors.
  • the conduction time delay of the tool temperature sensor there is a temperature difference between the temperature detected by the tool temperature sensor and the actual temperature of components such as MOSFETs of the switching network or the motor.
  • the temperature difference will be larger, so that the temperature protection of the power tool cannot protect the tool in time. If you continue to work with high current at this time, the tool will be damaged. .
  • the power tool usually includes an ambient temperature sensor for detecting the temperature of the operating environment of the power tool.
  • a predetermined ambient temperature threshold such as but not limited to 30°C
  • a predetermined tool temperature threshold such as but not limited to 60°C
  • the electric The operating mode of the tool is set to the high temperature working mode.
  • the power tool is in a high temperature working mode, if the user frequently triggers faults intentionally or due to misoperation, the damage of the power tool will also be aggravated. Therefore, there is a need to protect the power tool to prevent or inhibit such abuse by the user in order to prolong the life of the power tool.
  • the invention makes the power tool enter abuse protection and stop for a period of time by detecting that the power tool frequently enters a fault state within a predetermined time or in a predetermined working mode, so as to cool the power tool and reduce the temperature difference between the tool temperature sensor and the detected element.
  • the temperature difference between the actual temperatures protects the power tool in a more timely manner and avoids damage to the power tool.
  • the present invention provides a system for protecting a power tool from abuse, comprising:
  • At least one sensor that detects at least one operating state of the power tool
  • a processor configured to:
  • the at least one sensor includes:
  • a speed sensor that measures the speed of the electric motor
  • a current sensor that measures the current through the electric motor of the power tool
  • a tool temperature sensor that measures the temperature of the electronic components of the power tool.
  • the processor is further configured to:
  • a first predetermined failure mode is detected if the speed measured by the speed sensor is below a first predetermined speed threshold
  • a second predetermined failure mode is detected if the current measured by the current sensor exceeds the first predetermined current threshold.
  • a third predetermined failure mode is detected if the temperature measured by the tool temperature sensor exceeds the first predetermined temperature threshold.
  • the abuse protection mode includes setting the trigger switch and/or switch network to an open state and starting a timer.
  • the processor is further configured to:
  • the count value is a weighted sum of the number of predetermined failure modes.
  • the processor is configured to use different weights for different predetermined failure modes.
  • the processor is configured to use different weights for different times.
  • the processor is configured to use different weights for different ambient and/or tool temperatures.
  • the processor is further configured to:
  • the recovery condition is satisfied if the temperature measured by the tool temperature sensor is less than the third predetermined temperature threshold and/or the trigger is released.
  • the abuse protection mode further includes an enable indicator.
  • the present invention provides a power tool, comprising:
  • the present invention provides a method for protecting a power tool from abuse, comprising:
  • the method further includes:
  • the speed of the electric motor is measured by a speed sensor
  • a first predetermined failure mode is detected if the speed measured by the speed sensor is below a first predetermined speed threshold
  • a second predetermined failure mode is detected if the current measured by the current sensor exceeds the first predetermined current threshold.
  • the temperature of the electronic components of the power tool is measured by the tool temperature sensor;
  • a third predetermined failure mode is detected if the temperature measured by the tool temperature sensor exceeds the first predetermined temperature threshold.
  • the abuse protection mode includes setting the trigger switch and/or switch network to an open state and starting a timer.
  • the method further includes:
  • the count value is a weighted sum of the number of predetermined failure modes.
  • weights are used for different predetermined failure modes.
  • weights are used for different times.
  • weights are used for different ambient and/or tool temperatures.
  • the method further includes:
  • the recovery condition is satisfied if the temperature measured by the tool temperature sensor is less than the third predetermined temperature threshold and/or the trigger is released.
  • the abuse protection mode further includes an enable indicator.
  • the method and system according to the present invention can turn off the trigger switch when a user is abusing the power tool so that the trigger switch is not turned on even if the user presses the trigger. This can advantageously protect the power tool, thereby extending the life of the power tool.
  • FIG. 1 is a schematic diagram of a power tool according to an embodiment of the present invention.
  • FIG. 2 is a simplified block diagram of a power tool according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for protecting a power tool according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for protecting a power tool according to another embodiment of the present invention.
  • an embodiment of the present invention provides a power tool 100 .
  • the power tool 100 has a casing 10, an electric motor 20 arranged in the casing 10, a transmission mechanism 30 connected to the electric motor 20, a clamp 40 driven by the transmission mechanism 30, a battery 50 for supplying power to the electric motor 20, and a control assembly 60 for controlling the electric motor 20 .
  • the power tool 100 is an electric drill. It should be understood, however, that the power tool 100 may be any other power tool having a motor, such as an impact wrench, hammer drill, impact hole saw, impact driver, reciprocating saw, etc., without departing from the scope of the present invention.
  • the methods and systems of the present invention for protecting a power tool to prevent or inhibit abuse are applicable to any type of power tool.
  • the power tool 100 of the present invention may also take the form of an external power source. At this time, the power tool has a power cord. When in use, just connect the power cable to the external power supply.
  • the power tool 100 of the present invention may also include both the storage battery 50 and the power supply connection line, wherein the storage battery is used as a backup or a second power source.
  • the battery 50 of the power tool 100 is a rechargeable battery.
  • the battery 50 of the power tool 100 may be a rechargeable battery such as a lead-acid battery, a nickel-metal hydride battery, a nickel-cadmium battery, or a lithium-ion battery. It should be understood, however, that the battery 50 may comprise any other type of battery without departing from the scope of the present invention.
  • the power tool 100 also includes a trigger 70 that is selectively depressed and released by the user to selectively apply power from a power source (eg, the battery 50 or AC power from a wall outlet). electricity to drive the electric motor.
  • a power source eg, the battery 50 or AC power from a wall outlet.
  • electricity to drive the electric motor The electric motor 20 is energized based on the position of the trigger 70 .
  • the trigger 70 extends partially downward along the length of the gripping portion; however, in other embodiments, the trigger 70 may extend downwardly along the entire length of the gripping portion, or may be positioned elsewhere on the power tool 100 .
  • the trigger 70 is movably coupled to the gripping portion to move the trigger 70 relative to the housing 10 .
  • Trigger 70 may be coupled to a push rod (not shown), which may be engaged with trigger switch 215 (see Figure 2).
  • Trigger 70 When the user presses the trigger 70, the trigger 70 moves toward the gripping portion in the first direction.
  • Trigger 70 is biased (eg, with a spring) such that when trigger 70 is released by the user, trigger 70 moves in a second direction away from the gripping portion.
  • the push rod activates the trigger switch 215, and when the user releases the trigger 70, the trigger switch 215 is deactivated.
  • the trigger switch 215 may be a mechanical switch. When the trigger switch 215 is turned on, current from the battery 50 is supplied to the electric motor 20 through the trigger switch 215 .
  • the trigger switch may be a signal switch only and not pass current.
  • the control assembly 60 controls the switch network 216 ( FIG. 2 ) based on the trigger switch signal, thereby selectively supplying current from the battery 50 to the electric motor 20 .
  • the flip-flop switch includes, for example, a transistor.
  • trigger 70 may not include a push rod for activating a mechanical switch, and trigger switch 215 may be activated by, for example, a position sensor (eg, a Hall effect sensor) that will The relative position information is relayed to the housing or trigger switch 215 .
  • a position sensor eg, a Hall effect sensor
  • FIG. 2 shows a simplified block diagram of the power tool 10 .
  • the power tool 10 includes a system 200 for protecting the power tool 10 against or inhibiting abuse in accordance with the present invention.
  • system 200 may be part of control assembly 60 . It should be understood, however, that system 200 may be a separate system from control assembly 60 without departing from the scope of the present invention.
  • power tool 10 may include switch network 216 , at least one sensor, system 200 , and trigger switch 215 .
  • the switch network 216 enables the control assembly 60 to control the operation of the electric motor 20 .
  • trigger 70 is depressed (as indicated by the output of trigger switch 215 )
  • current is provided from battery 50 to electric motor 20 via switch network 216 .
  • the trigger switch may be a signal switch only and does not pass current.
  • the control assembly 60 controls the switch network 216 ( FIG. 2 ) based on the trigger switch signal, thereby selectively supplying current from the battery 50 to the electric motor 20 .
  • the switch network 216 may also include rectifiers, buck controllers, filters, and the like.
  • the switch network 216 may regulate the power received from the power source and provide the appropriate level of power to the electric motor 20 of the power tool 100 .
  • the power source may be the battery 50 .
  • the switch network 216 may receive AC power (eg, 120V/60Hz) from a tool plug coupled to a standard wall outlet. In such a case, the switch network 216 then filters, conditions and rectifies the received power to output DC power.
  • the control assembly 60 of the power tool 100 is also electrically coupled to a suitable power source such that the power source provides power to the control assembly 60 .
  • control assembly 60 In response to control assembly 60 receiving an activation signal from trigger switch 215 , control assembly 60 activates switch network 216 to provide power to electric motor 20 . According to another embodiment, the control assembly 60 may also selectively activate the switch network 216 based on other signals to provide power to the electric motor 20 .
  • the switching network 216 controls the amount of current available to the electric motor 20 , thereby controlling the speed and torque output of the electric motor 20 .
  • Switch network 216 may include FETs, bipolar transistors, or other types of electrical switches.
  • switch network 216 may include a six-FET bridge receiving pulse width modulated (PWM) signals from control assembly 60 to drive electric motor 20 .
  • PWM pulse width modulated
  • At least one sensor is coupled to the control assembly 60 and communicates to the control assembly 60 various signals indicative of various parameters of the power tool 100 or the electric motor 20 .
  • the at least one sensor may include a current sensor 211 , a motor sensor 212 (also referred to as a speed sensor), a voltage sensor 213 , an ambient temperature sensor 217 and a tool temperature sensor 214 .
  • the power tool 10 may include any other sensor, such as a vibration sensor, a distance sensor, a torque sensor, etc., without departing from the scope of the present invention.
  • Motor sensor 212 detects and outputs motor feedback information to control assembly 60 , such as an indication (eg, a pulse) when a magnet of the motor rotor rotates on the surface of motor sensor 212 . Based on motor feedback information from motor sensors 212, control assembly 60 can determine the position, speed, and acceleration of the rotor. In response to the motor feedback information and the signal from the trigger switch 215 , the control assembly 60 sends control signals to control the switch network 216 to drive the electric motor 20 , eg, by selectively enabling and disabling the FETs of the switch network 216 , received via the battery 50 The power of the electric motor 20 is selectively applied to the stator coils of the electric motor 20 to cause rotation of its rotor.
  • motor feedback information e.g, a pulse
  • the control assembly 60 uses the motor feedback information to ensure that control signals are properly timed to the switching network 216 and, in some cases, provides closed-loop feedback to control the speed of the electric motor 20 at a desired level.
  • motor sensor 212 is a Hall effect sensor. It should be understood, however, that the motor sensor 212 may be any other suitable type of sensor, such as a rotary encoder, an inductive sensor, etc., without departing from the scope of the present invention.
  • the current sensor 211 detects the current supplied to the electric motor 20 and outputs the current information to the control assembly 60 . Based on current information from current sensor 211 , control assembly 60 sends control signals to control switching network 216 to drive electric motor 20 , eg, by selectively enabling and disabling FETs of switching network 216 .
  • the tool temperature sensor 214 detects the temperature of the electronic components and outputs the temperature information to the control assembly 60 . Based on temperature information from tool temperature sensor 214 , control assembly 60 sends control signals to control switching network 216 to drive electric motor 20 , eg, by selectively enabling and disabling FETs of switching network 216 .
  • the voltage sensor 213 detects the voltage of the battery 50 and outputs the voltage information to the control unit 60 . Based on the voltage information from the voltage sensor 213, the control assembly 60 sends control signals to control the switching network 216, eg, disabling the FETs of the switching network 216 when the voltage of the battery 50 is too low.
  • the ambient temperature sensor 217 detects the temperature of the operating environment of the power tool. When the temperature measured by the ambient temperature sensor 217 is above a predetermined ambient temperature threshold (eg, but not limited to, 30°C) and/or the temperature measured by the tool temperature sensor 214 is above a predetermined tool temperature threshold (eg, but not limited to, 60°C), The control assembly 60 sets the operating mode of the power tool to a high temperature operating mode.
  • a predetermined ambient temperature threshold eg, but not limited to, 30°C
  • a predetermined tool temperature threshold eg, but not limited to, 60°C
  • control assembly 60 and/or system 200 includes processor 230 , memory 232 and indicator 220 .
  • the indicator 220 turns on and off or otherwise communicates information based on the different states of the power tool 100 .
  • Indicator 220 may include, for example, one or more light emitting diodes ("LEDs"), vibrators, speakers, or a display screen.
  • the indicator 220 may be configured to display the status of the power tool 100 or information related to the power tool 100 .
  • the indicator 220 is configured to indicate the electrical characteristics of the power tool 100, the status of the power tool 100, the mode of the power tool 100.
  • Indicator 220 may also include elements that convey information to the user through audible or tactile output.
  • indicator 220 may include a separate vibration generator.
  • the power tool 100 may also not include the indicator 220 .
  • control assembly 60 and/or system 200 may pulse a switching network to selectively vibrate electric motor 20 to indicate a particular failure mode.
  • Memory 232 may include volatile and nonvolatile memory in read only memory (ROM), random access memory (RAM), and keep-alive memory (KAM).
  • KAM is persistent or non-volatile memory that can be used to store various operating variables when the CPU is powered off.
  • the computer-readable storage device or medium may be implemented using any of a number of known memory devices, such as PROM (Programmable Read Only Memory), EPROM (Electrical PROM), EEPROM (Electrically Erasable PROM), flash memory, or capable of Any other electrical, magnetic, optical or combination memory device that stores data.
  • Instructions for implementing the method of protecting the power tool 10 from misuse according to the present invention may be stored in the memory 232 of the control assembly 60 .
  • the instructions may include, for example, firmware, one or more application programs, one or more program modules, and other executable instructions.
  • Control component 60 is configured to retrieve and execute instructions, etc., from memory related to the control processes and methods described herein.
  • the control assembly 60 is also configured to store power tool information on the memory 232 including operational data, information identifying the type of tool, a unique identifier for a particular tool, and other information related to the operation or maintenance of the power tool 100 .
  • Tool usage information eg, current level, motor speed, motor acceleration, motor direction, etc.
  • the processor 230 receives various information from the at least one sensor and controls the switch network 216 and/or the trigger switch 215 accordingly.
  • the processor 230 may include application specific integrated circuits (ASICs); digital, analog or mixed analog/digital discrete circuits; digital, analog or mixed analog/digital integrated circuits; combinational logic circuits; field programmable gate arrays (FPGAs); A processor circuit (shared, dedicated, or group).
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a processor circuit shared, dedicated, or group.
  • the power tool may also include a wireless communication controller (not shown), such as a Bluetooth controller.
  • the Bluetooth controller communicates with external devices using the Bluetooth protocol.
  • the external device and the power tool 100 are within communication range (ie, in proximity) of each other when they exchange data.
  • the wireless communication controller communicates over different types of wireless networks using other protocols (e.g., Wi-Fi, cellular protocols, proprietary protocols, etc.).
  • the wireless communication controller may be configured to communicate via Wi-Fi over a wide or local area network such as the Internet, or over a piconet (eg, using infrared or NFC communication). Communication via the wireless communication controller may be encrypted to protect data exchanged between the power tool 100 and external devices/networks from third parties.
  • the system 200 also includes a real time clock (RTC).
  • RTC increments/decrements independently of other power tool components and maintains time.
  • the RTC receives power from the battery 50 when the battery 50 is connected to the power tool 100 , and receives power from a backup power source when the battery 50 is not connected to the power tool 100 .
  • An RTC with a clock that is independently powered enables time stamping and security features of operational data (stored in memory 232 for later export), whereby the user sets a predetermined time, and when the time of the RTC exceeds the set predetermined time, the system 200 Controls the operation of the power tool 100 .
  • Figure 3 shows a flow diagram of a method of protecting the power tool 10 from misuse in accordance with the present invention. The method may be performed in control assembly 60 and/or system 200 .
  • control assembly 60 and/or system 200 determines whether a predetermined failure mode is detected.
  • control assembly 60 and/or system 200 detects a first predetermined failure mode when the speed measured by the speed sensor is below a first predetermined speed threshold.
  • the control assembly 60 and/or the system 200 detects a second predetermined failure mode when the temperature measured by the tool temperature sensor 214 exceeds a first predetermined temperature threshold.
  • control assembly 60 and/or system 200 detects a third predetermined failure mode when the current measured by current sensor 211 exceeds a first predetermined current threshold. It should be understood, however, that the present invention may be applicable to any other failure mode, such as undervoltage operation, etc., without departing from the scope of the present invention.
  • step 302 the method proceeds to step 303 .
  • step 303 the method accumulates the count value.
  • the count value may be incremented by 1 each time a predetermined failure mode is detected within a predetermined period of time.
  • the count value may be a weighted summation of the number of predetermined failure modes. According to one embodiment, the same weights may be used. According to another embodiment, different weights are used for different predetermined failure modes.
  • the count value is incremented by 3; if the second predetermined failure mode (high temperature failure mode) is detected, the count value is incremented by 1; if the third predetermined failure mode (over-temperature failure mode) is detected current fault mode), the count value is incremented by 2.
  • the failure mode weight may adopt other suitable values, for example, but not limited to, the first predetermined failure mode may use a weight of 1.5 or 2.5, etc., the third predetermined failure mode may use a weight of 1.5 or 1.8, etc., and without departing from the scope of the present invention.
  • the count values may be accumulated with different weights.
  • the count value when the temperature measured by the tool temperature sensor 214 is greater than the first predetermined temperature threshold and less than the second predetermined temperature threshold, the count value may be accumulated using the first temperature weight; when the temperature measured by the tool temperature sensor 214 is greater than the second predetermined temperature threshold , the count value can be accumulated using the second temperature weight.
  • the first temperature weight may be 1 and the second temperature weight may be, for example, 1.2. It should be understood, however, that the second temperature weight may take other suitable values, such as, but not limited to, 1.1, 1.3, 1.4, 1.5, or 2, etc., without departing from the scope of the present invention.
  • the count value can be accumulated using the first current weight; when the current measured by the current sensor 211 is greater than the second predetermined current threshold, the count value
  • the values may be accumulated using a second current weight.
  • the first current weight may be 1 and the second current weight may be eg 1.2. It should be understood, however, that the second current weight may take other suitable values, such as, but not limited to, 1.1, 1.3, 1.4, 1.5, or 2, etc., without departing from the scope of the present invention.
  • the count value may be accumulated with different weights for different times.
  • the weights can be incremented over time so that the most recent failure has a greater impact on the count value.
  • the weight may be increased from a first time weight at the 1st second to a second time weight at the 100th second.
  • the first time weight may be 1
  • the second time weight may be, for example, 1.2.
  • the second time weight may take other suitable values, such as, but not limited to, 1.1, 1.3, 1.4, 1.5, or 2, etc., without departing from the scope of the present invention.
  • the weights may be incremented in a linear fashion from the 1st second to the 100th second, however it should be understood that the weights may also be incremented in a non-linear manner without departing from the scope of the present invention.
  • the count values may be accumulated with different weights for different ambient temperatures and/or tool temperatures.
  • a first predetermined ambient temperature threshold eg, 25°C
  • a second predetermined ambient temperature threshold eg, 30°C
  • the weight of the stall fault of the electric motor is the first ambient temperature weight and/or the first tool Temperature weighting
  • the weight of the stall fault of the electric motor is the second ambient temperature weight and/or the second tool temperature weight.
  • the first ambient temperature weight and/or the first tool temperature weight may be 1.1
  • the second ambient temperature weight and/or the second tool temperature weight may be, for example, 1.2. It should be understood, however, that the first ambient temperature weight and/or the first tool temperature weight and the second ambient temperature weight and/or the second tool temperature weight may take on other suitable values without departing from the scope of the present invention.
  • step 302 determines whether the count value exceeds a predetermined threshold. If step 304 is "NO”, the method returns to step 302. If step 304 is "yes”, the method proceeds to step 305 .
  • step 305 the method enters an abuse protection mode.
  • the abuse protection mode includes setting the trigger switch 215 and/or the switch network 216 to an open state and starting a timer. It should be understood that the abuse protection mode may include any other suitable remedy.
  • the abuse protection mode includes setting the switch network 216 to a disabled state and starting a timer. The timer is set to a first predetermined period and begins to decrement. The first predetermined period of time may be any suitable period of time, such as 10 minutes. However, it should be understood that the first predetermined period of time may be other time periods, such as 20 minutes, 30 minutes, and the like.
  • the abuse protection mode may also include any suitable warning measures.
  • the abuse protection mode can enable the LED of the indicator to flash violently to alert the user that the abuse protection mode has been entered.
  • the abuse protection mode can activate the indicator's vibrator to vibrate to alert the user that the abuse protection mode has been entered.
  • abuse protection mode can enable the speaker of the indicator to audibly alert the user that abuse protection mode has been entered.
  • the abuse protection mode may enable the display of the indicator to graphically and/or textually alert the user that the abuse protection mode has been entered.
  • step 306 the method determines whether the first predetermined period has expired. If step 306 is YES, then the method proceeds to step 307 . If step 306 is "NO", then the method continues with step 306 .
  • step 307 the method determines whether the power tool 100 meets the recovery conditions.
  • the recovery condition is satisfied when the temperature measured by the tool temperature sensor 214 is less than a third predetermined temperature threshold.
  • the recovery condition is satisfied when the temperature measured by the tool temperature sensor 214 is less than a third predetermined temperature threshold and/or the trigger 70 is released. It should be understood, however, that the recovery conditions may include any suitable other conditions without departing from the scope of the present invention. If step 307 is "yes”, then the method proceeds to step 308 . If step 307 is NO, the method returns to step 305 .
  • step 308 the method exits abuse protection mode and the count value is cleared. The method returns from step 308 to step 302 .
  • FIG. 4 is a flowchart of a method for protecting a power tool according to another embodiment of the present invention.
  • the embodiment of FIG. 4 only adds step 401 compared to FIG. 3 .
  • the remaining steps that are the same as those in FIG. 3 will not be repeated.
  • the method determines whether the power tool 100 is in a predetermined high temperature operating mode. For example, when the temperature measured by ambient temperature sensor 217 is above a predetermined ambient temperature threshold (eg, but not limited to, 30°C) and/or the temperature measured by tool temperature sensor 214 is above a predetermined tool temperature threshold (eg, but not limited to, 60°C) , the power tool 100 is in a predetermined high temperature working mode. If step 401 is "yes”, the method proceeds to step 302 . If step 401 is "NO", the method returns to step 401 .
  • a predetermined ambient temperature threshold eg, but not limited to, 30°C
  • a predetermined tool temperature threshold eg, but not limited to, 60°C
  • processor or the term “controller” may be replaced with the term “module”.
  • module may refer to, be part of, or include the following: Application Specific Integrated Circuits (ASICs); digital, analog, or mixed analog/digital discrete circuits; digital, analog, or mixed analog/digital integration circuits; combinational logic circuits; field programmable gate arrays (FPGAs); processor circuits (shared, dedicated, or group) that execute code; memory circuits (shared, dedicated, or group) that store code executed by processor circuits; other suitable hardware components for the functions described above; or a combination of some or all of the above.
  • ASICs Application Specific Integrated Circuits
  • FPGAs field programmable gate arrays
  • processor circuits shared, dedicated, or group
  • memory circuits shared, dedicated, or group
  • a module may include one or more interface circuits.
  • the interface circuit may include a wired or wireless interface connected to a local area network (LAN), the Internet, a wide area network (WAN), or a combination thereof.
  • LAN local area network
  • WAN wide area network
  • the functionality of any given module of the present disclosure may be distributed among multiple modules connected via interface circuitry. For example, multiple modules may allow for load balancing.
  • a server (also referred to as remote or cloud) module may perform some functions on behalf of a client module.
  • code may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, data structures, and/or objects.
  • shared processor circuit encompasses a single processor circuit that executes some or all code from multiple modules.
  • set of processor circuits encompasses processor circuits that execute some or all code from one or more modules in combination with additional processor circuits. References to multiple processor circuits encompass multiple processor circuits on discrete dies, multiple processor circuits on a single die, multiple cores of a single processor circuit, multiple threads of a single processor circuit, or the above The combination.
  • shared memory circuit encompasses a single memory circuit that stores some or all code from multiple modules.
  • bank memory circuit encompasses memory circuits that store some or all code from one or more modules in combination with additional memory.
  • the processes, methods or algorithms disclosed herein can be submitted to and/or implemented by a processing device, controller or computer, which may include any existing programmable electronic control unit or dedicated electronic control unit.
  • the processes, methods or algorithms may be stored as data and instructions executable by a controller or computer in many forms, including but not limited to information stored permanently on a non-writable storage medium (eg, a ROM device) and variably stored information on writable storage media such as floppy disks, magnetic tapes, CDs, RAM devices, and other magnetic and optical media.
  • the processes, methods or algorithms can also be implemented in software executable objects.
  • the processes, methods or algorithms may be implemented in whole or in part using suitable hardware components, such as application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), state machines, controllers or other hardware components or a device, or a combination of hardware, software and firmware components.
  • suitable hardware components such as application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), state machines, controllers or other hardware components or a device, or a combination of hardware, software and firmware components.
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Portable Power Tools In General (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

本发明涉及电动工具以及用于保护电动工具以防止滥用的***和方法。所述***包括:至少一个传感器,所述至少一个传感器检测电动工具的至少一种操作状态;和处理器,所述处理器配置成:基于电动工具的至少一种操作状态来确定是否检测到预定故障模式;如果检测到预定故障模式,那么累加计数值;确定所述计数值是否超过预定阈值;以及如果所述计数值超过预定阈值,那么进入滥用保护模式。

Description

电动工具及其保护方法和*** 技术领域
本发明涉及电动工具,具体地涉及一种保护电动工具的方法和***。
背景技术
电动工具通常包括壳体、位于壳体内的电动马达、由电动马达驱动的传动机构以及用于控制电动马达的控制组件。电动工具通常包括工具温度传感器,用于检测开关网络的MOSFET等元器件或马达的温度。然而,由于工具温度传感器的传导时间延迟,工具温度传感器检测到的温度与开关网络的MOSFET等元器件或马达的实际温度之间存在温度差。特别是当使用者有意地或者由于误操作在短时间内频繁地触发故障时,温度差会更大,从而使电动工具的温度保护不能及时保护工具,这时候如果继续大电流工作,会损坏工具。
此外,电动工具通常还包括环境温度传感器,用于检测电动工具的操作环境的温度。当由环境温度传感器测量的温度高于预定环境温度阈值(例如但不限于30℃)和/或由工具温度传感器测量的温度高于预定工具温度阈值(例如但不限于60℃)时,将电动工具的操作模式设置为高温工作模式。当电动工具处于高温工作模式时,如果使用者有意地或者由于误操作频繁地触发故障,也会加剧电动工具的损坏。因此,需要保护电动工具以防止或禁止使用者的这种滥用,以延长电动工具的寿命。
发明内容
本发明的目的是提供一种保护电动工具以防止或禁止滥用的方法和***。本发明通过检测电动工具在预定时间内或者在预定工作模式时频繁进入故障状态时,使电动工具进入滥用保护并停机一段时间,使电动工具冷却的同时,也减少工具温度传感器和被检测元件的实际温度之间的温度差,更加及时地保护电动工具,避免电动工具的损坏。
在一个方面,本发明提供一种用于保护电动工具以防止滥用的***,包括:
至少一个传感器,所述至少一个传感器检测电动工具的至少一种操作状态;和
处理器,所述处理器配置成:
基于电动工具的至少一种操作状态来确定是否检测到预定故障模式;
如果检测到预定故障模式,那么累加计数值;
确定所述计数值是否超过预定阈值;以及
如果所述计数值超过预定阈值,那么进入滥用保护模式。
优选地,所述至少一个传感器包括:
速度传感器,所述速度传感器测量电动马达的速度;和/或
电流传感器,所述电流传感器测量通过电动工具的电动马达的电流;和/或
工具温度传感器,所述工具温度传感器测量电动工具的电子部件的温度。
优选地,所述处理器还配置成:
确定由速度传感器测量的速度是否低于第一预定速度阈值;
如果由速度传感器测量的速度低于第一预定速度阈值,那么检测到第一预定故障模式;和/或
确定由电流传感器测量的电流是否超过第一预定电流阈值;
如果由电流传感器测量的电流超过第一预定电流阈值,那么检测到第二预定故障模式;和/或
确定由工具温度传感器测量的温度是否超过第一预定温度阈值;
如果由工具温度传感器测量的温度超过第一预定温度阈值,那么检测到第三预定故障模式。
优选地,所述滥用保护模式包括将触发器开关和/或开关网络设置成断开状态,并启动计时器。
优选地,所述处理器还配置成:
在计时器的计时到期之后,确定电动工具是否满足恢复条件;和
如果电动工具满足恢复条件,那么退出滥用保护模式。
优选地,计数值是预定故障模式的次数的加权求和。
优选地,所述处理器配置成对不同的预定故障模式使用不同的权重。
优选地,所述处理器配置成对不同的时间使用不同的权重。
优选地,所述处理器配置成对不同的环境温度和/或工具温度使用不同的权重。
优选地,所述处理器还配置成:
确定由工具温度传感器测量的温度是否小于第三预定温度阈值;以及
如果由工具温度传感器测量的温度小于第三预定温度阈值且/或触发器被松开,那么满足恢复条件。
优选地,滥用保护模式还包括启用指示器。
在另一方面,本发明提供一种电动工具,包括:
壳体;
电动马达;
由电动马达驱动的传动机构;以及
如上所述的***。
在另一方面,本发明提供一种用于保护电动工具以防止滥用的方法,包括:
检测电动工具的至少一种操作状态;
基于电动工具的至少一种操作状态来确定是否检测到预定故障模式;
如果检测到预定故障模式,那么累加计数值;
确定所述计数值是否超过预定阈值;以及
如果所述计数值超过预定阈值,那么进入滥用保护模式。
优选地,所述方法还包括:
由速度传感器测量电动马达的速度;
确定由速度传感器测量的速度是否低于第一预定速度阈值;
如果由速度传感器测量的速度低于第一预定速度阈值,那么检测到第一预定故障模式;和/或
由电流传感器测量通过电动工具的电动马达的电流;
确定由电流传感器测量的电流是否超过第一预定电流阈值;
如果由电流传感器测量的电流超过第一预定电流阈值,那么检测到第二预定故障模式;和/或
由工具温度传感器测量电动工具的电子部件的温度;
确定由工具温度传感器测量的温度是否超过第一预定温度阈值;
如果由工具温度传感器测量的温度超过第一预定温度阈值,那么检测到第三预定故障模式。
优选地,所述滥用保护模式包括将触发器开关和/或开关网络设置成断开状态,并启动计时器。
优选地,所述方法还包括:
在计时器的计时到期之后,确定电动工具是否满足恢复条件;和
如果电动工具满足恢复条件,那么退出滥用保护模式。
优选地,计数值是预定故障模式的次数的加权求和。
优选地,对不同的预定故障模式使用不同的权重。
优选地,对不同的时间使用不同的权重。
优选地,对不同的环境温度和/或工具温度使用不同的权重。
优选地,所述方法还包括:
确定由工具温度传感器测量的温度是否小于第三预定温度阈值;以及
如果由工具温度传感器测量的温度小于第三预定温度阈值且/或触发器被松开,那么满足恢复条件。
优选地,滥用保护模式还包括启用指示器。
根据本发明的方法和***可以在使用者滥用电动工具时切断触发器开关,使得使用者即使按下触发器也不会接通触发器开关。这可以有利地保护电动工具,从而延长电动工具的寿命。
本发明的其它示例性实施例从下文提供的详细说明显而易见。应当理解的是,所述详细说明和具体示例虽然公开了本发明的示例性实施例,但是仅仅用于说明目的而不旨在限制本发明的范围。
附图说明
在下文将结合以下附图描述至少一个实施例,其中,相同的附图标记表示相同的元件。
图1是本发明的一个实施例的电动工具的示意图。
图2是本发明的一个实施例的电动工具的简化框图;
图3是本发明的一个实施例的保护电动工具的方法的流程图。
图4是本发明的另一个实施例的保护电动工具的方法的流程图。
结合附图,根据以下描述和所附权利要求,本公开的前述和其它特征将变得更加完全显而易见。应当理解,这些附图仅示出了根据本公开的若干实施例,而不应被认为是对本公开的范围的限制,将通过使用附图以附加的特征和细节来描述本公开。附图中或本文其它地方公开的任何尺寸仅用于图示目的。
具体实施方式
本文描述了本公开的实施例。然而,应当理解,所公开的实施例仅仅是示例,其它实施例可以采取不同的和可选的形式。附图不必按比例绘制;一些特征可能被夸大或最小化以示出特定部件的细节。因此,本文公开的具体结构和功能细节不应被解释为限制性的,而仅仅作为教导本领域技术人员以各种方式使用本公开的代表性基础。如本领域的普通技术人员将理解的那样,参考任何一个附图图示和描述的各种特征可以与一个或多个其它附图中图示的特征相结合,以产生没有明确图示或描述的实施例。所图示特征的组合为典型应用提供了代表性实施例。然而,与本公开的教导一致的特征的各种组合和修改对于特定的应用或实施方式可能是期望的。
参考图1,本发明的一个实施例提供一种电动工具100。该电动工具100具有壳体10、设置于壳体10内的电动马达20、与电动马达20相连的传动机构30、由传动机构30带动的夹具40、用于给电动马达20供电的蓄电池50、以及用于对电动马达20进行控制的控制组件60。
在该实施例中,该电动工具100为电钻。然而应当理解的是,该电动工具100可以为具有马达的任何其它电动工具,例如冲击扳手、锤钻、冲击孔锯、冲击起子、往复锯等等,而不偏离本发明的范围。本发明的保护电动工具以防止或禁止滥用的方法和***可适用于任何类型的电动工具。
虽然所示的电动工具100包括蓄电池50,但是本发明的电动工具100也可以采用外接电的形式。此时,电动工具具有电源连接线。使用时,将电源连接线与外接电相连即可。此外,本发明的电动工具100也可以包括蓄电池50和电源连接线两者,其中,蓄电池作为备用或第二电源。
在一个实施例中,该电动工具100的蓄电池50为充电电池。在其 它实施例中,该电动工具100的蓄电池50可以为铅蓄电池、镍氢电池、镍镉电池、锂离子电池等充电电池。然而应当理解的是,蓄电池50可以包括任何其它类型的电池,而不偏离本发明的范围。
如图1所示,电动工具100还包括触发器70,触发器70通过使用者选择性地按下和释放,以选择性地施加来自电源(例如,蓄电池50或者壁式插座的AC电源)的电力,以驱动电动马达。电动马达20基于触发器70的位置被激励。当触发器70被按下时,电动马达20被激励,并且当触发器70被释放时,电动马达20被断电。在所示实施例中,触发器70沿着抓握部分的长度部分地向下延伸;然而,在其他实施例中,触发器70可以沿着抓握部分的整个长度向下延伸,或者可以定位在电动工具100上的其他位置。触发器70可移动地联结到抓握部分,以使得触发器70相对于壳体10移动。触发器70可联结到推杆(未示出),推杆可与触发器开关215接合(参见图2)。当使用者按下触发器70时,触发器70沿第一方向朝向抓握部分移动。触发器70被偏置(例如,利用弹簧),以使得当触发器70被使用者释放时,触发器70在远离抓握部分的第二方向上移动。当使用者按下触发器70时,推杆激活触发器开关215,并且当使用者释放触发器70时,触发器开关215被停用。
根据一个实施例,触发器开关215可以是机械开关。当触发器开关215被接通时,来自于蓄电池50的电流通过触发器开关215被供应给电动马达20。在其他实施例中,触发器开关可以仅仅是信号开关,并不通过电流。控制组件60基于触发器开关的信号来控制开关网络216(图2),由此选择性地将来自于蓄电池50的电流供应给电动马达20。在这种情况下,触发器开关包括例如晶体管。对于这样的实施例,触发器70可以不包括用于激活机械开关的推杆,而触发器开关215可以由例如位置传感器(例如,霍尔效应传感器)激活,该位置传感器将关于触发器70的相对位置的信息中继到壳体或触发器开关215。
图2示出了电动工具10的简化框图。电动工具10包括根据本发明的保护电动工具10以防止或禁止滥用的***200。根据一个实施例,***200可以是控制组件60的一部分。然而应当理解的是,***200可以是与控制组件60独立的***,而不偏离本发明的范围。
如图2所示,电动工具10可包括开关网络216、至少一个传感器、 ***200、和触发器开关215。
开关网络216使控制组件60能够控制电动马达20的操作。通常,当触发器70被按下时(如触发器开关215的输出所示),电流经由开关网络216从蓄电池50提供给电动马达20。当没有按下触发器70时,没有电流从蓄电池50供应到电动马达20。根据另一个实施例,触发器开关可以仅仅是信号开关,并不通过电流。控制组件60基于触发器开关的信号来控制开关网络216(图2),由此选择性地将来自于蓄电池50的电流供应给电动马达20。开关网络216还可以包括整流器、降压控制器、滤波器等。开关网络216可以调节从电源接收到的电力,并且给电动工具100的电动马达20提供适当的水平的电力。在一些实施方式中,电源可以是蓄电池50。在其它实施例中,开关网络216可以从联结到标准壁式插座的工具插头接收AC电力(例如,120V/60Hz)。在这样的情况下,开关网络216然后过滤、调节和整流所接收的电力以输出DC电力。尽管未示出,但电动工具100的控制组件60也电联接到合适的电源,使得电源向控制组件60供电。
响应于控制组件60从触发器开关215接收激活信号,控制组件60激活开关网络216以向电动马达20提供电力。根据另一个实施例,控制组件60也可以基于其它信号来选择性地激活开关网络216以向电动马达20提供电力。开关网络216控制电动马达20可用的电流量,从而控制电动马达20的速度和扭矩输出。开关网络216可包括FET、双极晶体管或其他类型的电开关。例如,开关网络216可以包括六FET桥,从控制组件60接收脉冲宽度调制(PWM)信号以驱动电动马达20。
至少一个传感器联结到控制组件60并且向控制组件60通信指示电动工具100或电动马达20的不同参数的各种信号。至少一个传感器可包括电流传感器211、马达传感器212(也称为速度传感器)、电压传感器213、环境温度传感器217和工具温度传感器214。应当理解的是,电动工具10可包括任何其它传感器,例如振动传感器、距离传感器、扭矩传感器等,而不偏离本发明的范围。
马达传感器212检测马达反馈信息,且将马达反馈信息输出到控制组件60,例如当马达转子的磁体在马达传感器212的表面上旋转时的指示(例如,脉冲)。基于来自马达传感器212的马达反馈信息,控制组件60可以确定转子的位置、速度和加速度。响应于马达反馈信息和 来自触发器开关215的信号,控制组件60发送控制信号以控制开关网络216以驱动电动马达20,例如,通过选择性地启用和禁用开关网络216的FET,经由蓄电池50接收的电力被选择性地施加到电动马达20的定子线圈,以引起其转子的旋转。控制组件60使用马达反馈信息来确保将控制信号适当定时到开关网络216,并且在一些情况下,提供闭环反馈以将电动马达20的速度控制在期望的水平。根据一个实施例,马达传感器212是霍尔效应传感器。然而应当理解的是,马达传感器212可以是任何其它合适类型的传感器,例如旋转编码器、电感传感器等,而不偏离本发明的范围。
电流传感器211检测输送给电动马达20的电流,且将电流信息输出到控制组件60。基于来自电流传感器211的电流信息,控制组件60发送控制信号以控制开关网络216以驱动电动马达20,例如,通过选择性地启用和禁用开关网络216的FET。
工具温度传感器214检测电子部件的温度,且将温度信息输出到控制组件60。基于来自工具温度传感器214的温度信息,控制组件60发送控制信号以控制开关网络216以驱动电动马达20,例如,通过选择性地启用和禁用开关网络216的FET。
电压传感器213检测蓄电池50的电压,且将电压信息输出到控制组件60。基于来自电压传感器213的电压信息,控制组件60发送控制信号以控制开关网络216,例如在蓄电池50的电压过低时,禁用开关网络216的FET。
环境温度传感器217检测电动工具的操作环境的温度。当由环境温度传感器217测量的温度高于预定环境温度阈值(例如但不限于30℃)和/或由工具温度传感器214测量的温度高于预定工具温度阈值(例如但不限于60℃)时,控制组件60将电动工具的操作模式设置为高温操作模式。
根据本发明的一个实施例,控制组件60和/或***200包括处理器230、存储器232和指示器220。
指示器220基于电动工具100的不同状态打开和关闭或以其他方式传达信息。指示器220可包括例如一个或更多的发光二极管(“LED”)、振动器、扬声器或显示屏。指示器220可以被配置为显示电动工具100的状态或与电动工具100相关的信息。例如,指示器220被配置为指 示电动工具100的电特性、电动工具100的状态、电动工具100的模式。指示器220还可以包括通过听觉或触觉输出向使用者传送信息的元件。例如,指示器220可以包括单独的振动发生器。根据另一个实施例,电动工具100也可以不包括指示器220。例如,控制组件60和/或***200可以发生脉冲信号给开关网络,以使电动马达20选择性地振动,以指示特定的故障模式。
存储器232可包括在只读存储器(ROM)、随机存取存储器(RAM)和保持活动存储器(KAM)中的易失性和非易失性存储器。KAM是持久性或非易失性存储器,其可以在CPU断电时用于存储各种操作变量。可以使用多个已知存储器装置中的任一个来实施计算机可读存储装置或介质,例如PROM(可编程只读存储器)、EPROM(电PROM)、EEPROM(电可擦除PROM)、闪存或能够存储数据的任何其它电、磁、光学或组合存储器装置。
用于实施根据本发明的保护电动工具10以防止或禁止滥用的方法的指令可以存储在控制组件60的存储器232中。该指令可包括例如固件、一个或多个应用程序、一个或多个程序模块、以及其他可执行指令。控制组件60被配置为从存储器检索并执行与本文描述的控制过程和方法有关的指令等。控制组件60还被配置为在存储器232上存储电动工具信息,包括操作数据、识别工具类型的信息、特定工具的唯一标识符、以及与电动工具100的操作或维护相关的其他信息。工具使用信息(例如电流水平、马达速度、马达加速度、马达方向等)可以从由至少一个传感器输出的数据中获取或推断。
处理器230从至少一个传感器接收各种信息,且相应地控制开关网络216和/或触发器开关215。处理器230可包括专用集成电路(ASIC);数字、模拟或混合模拟/数字分立电路;数字、模拟或混合模拟/数字集成电路;组合逻辑电路;现场可编程门阵列(FPGA);执行代码的处理器电路(共享、专用或组)。
此外,电动工具还可以包括无线通信控制器(未示出),例如蓝牙控制器。蓝牙控制器使用蓝牙协议与外部装置通信。因此,在所示实施例中,外部装置和电动工具100在它们交换数据时处于彼此的通信范围内(即,在邻近处)。在其他实施例中,无线通信控制器使用其他协议(例如,Wi-Fi、蜂窝协议、专有协议等)在不同类型的无线网络上进 行通信。例如,无线通信控制器可以被配置为经由Wi-Fi通过诸如因特网的广域网或局域网进行通信,或者通过微微网进行通信(例如,使用红外或NFC通信)。经由无线通信控制器的通信可以被加密,以保护在电动工具100和外部装置/网络之间交换的数据免受第三方的影响。
虽然未示出,***200还包括实时时钟(RTC)。RTC独立于其他电动工具部件递增/递减并保持时间。当蓄电池50连接到电动工具100时,RTC从蓄电池50接收电力,并且当蓄电池50未连接到电动工具100时,RTC从备用电源接收电力。具有作为独立供电的时钟的RTC能够实现操作数据(存储在存储器232中以便以后导出)的时间戳和安全特征,由此使用者设置预定时间,并且当RTC的时间超过设置预定时间时,***200控制电动工具100的操作。
图3示出了根据本发明的保护电动工具10以防止或禁止滥用的方法的流程图。方法可以在控制组件60和/或***200中执行。
方法在步骤301开始。在步骤302中,方法确定是否检测到预定故障模式。在一个实施例中,控制组件60和/或***200在由速度传感器测量的速度低于第一预定速度阈值时检测到第一预定故障模式。在另一个实施例中,控制组件60和/或***200在由工具温度传感器214测量的温度超过第一预定温度阈值时检测到第二预定故障模式。在另一个实施例中,控制组件60和/或***200在由电流传感器211测量的电流超过第一预定电流阈值时检测到第三预定故障模式。然而应当理解的是,本发明可以适用于任何其它的故障模式,例如过低电压操作等等,而不偏离本发明的范围。
如果步骤302为“是”,方法前进到步骤303。在步骤303中,方法累加计数值。根据本发明的一个实施例,计数值可以在预定时段内每次检测到预定故障模式时累加1。根据本发明的另一个实施例,计数值可以是预定故障模式次数的加权求和。根据一个实施例,可以使用相同的权重。根据另一个实施例,对于不同的预定故障模式,使用不同的权重。例如,如果检测到第一预定故障模式(低速故障模式),计数值累加3;如果检测到第二预定故障模式(高温故障模式),计数值累加1;如果检测到第三预定故障模式(过电流故障模式),计数值累加2。然而应当理解的是,故障模式权重可以采用其它合适的数值,例如但不限于,第一预定故障模式可以使用权重1.5或2.5等等,第三预 定故障模式可以使用权重1.5或1.8等等,而不偏离本发明的范围。根据另一个实施例,对于不同的故障严重程度,计数值可以采用不同的权重累加。例如,在工具温度传感器214测量的温度大于第一预定温度阈值且小于第二预定温度阈值时,计数值可以采用第一温度权重累加;在工具温度传感器214测量的温度大于第二预定温度阈值时,计数值可以采用第二温度权重累加。根据一个实施例,第一温度权重可以是1,第二温度权重可以是例如1.2。然而应当理解的是,第二温度权重可以采用其它合适的数值,例如但不限于1.1、1.3、1.4、1.5或2等等,而不偏离本发明的范围。例如,在电流传感器211测量的电流大于第一预定电流阈值且小于第二预定电流阈值时,计数值可以采用第一电流权重累加;在电流传感器211测量的电流大于第二预定电流阈值时,计数值可以采用第二电流权重累加。根据一个实施例,第一电流权重可以是1,第二电流权重可以是例如1.2。然而应当理解的是,第二电流权重可以采用其它合适的数值,例如但不限于1.1、1.3、1.4、1.5或2等等,而不偏离本发明的范围。根据另一个实施例,计数值可以对于不同的时间采用采用不同的权重累加。例如,对于同一故障模式,权重可以随着时间的经过递增,以使得最近的故障对计数值的影响更大。例如,在预定时段为100秒时,权重可以从第1秒时的第一时间权重增加到第100秒时的第二时间权重。根据一个实施例,第一时间权重可以是1,第二时间权重可以是例如1.2。然而应当理解的是,第二时间权重可以采用其它合适的数值,例如但不限于1.1、1.3、1.4、1.5或2等等,而不偏离本发明的范围。此外,权重可以从第1秒到第100秒以线性的方式递增,然而应当理解的是,权重也可以以非线性的方式递增,而不偏离本发明的范围。根据另一个实施例,对于不同的环境温度和/或工具温度,计数值可以采用不同的权重累加。例如,在由环境温度传感器217测量的温度大于第一预定环境温度阈值(例如,25℃)且小于第二预定环境温度阈值(例如,30℃)和/或由工具温度传感器214测量的温度高于第一预定工具温度阈值(例如但不限于60℃)且小于第二预定环境温度阈值(例如,80℃)时,电动马达的失速故障的权重为第一环境温度权重和/或第一工具温度权重;在由环境温度传感器217测量的温度大于第二预定环境温度阈值(例如,30℃)和/或由工具温度传感器214测量的温度高于第二预定环境温度阈值 (例如,80℃)时,电动马达的失速故障的权重为第二环境温度权重和/或第二工具温度权重。根据一个实施例,第一环境温度权重和/或第一工具温度权重可以是1.1,第二环境温度权重和/或第二工具温度权重可以是例如1.2。然而应当理解的是,第一环境温度权重和/或第一工具温度权重以及第二环境温度权重和/或第二工具温度权重可以采用其它合适的数值,而不偏离本发明的范围。
如果步骤302为“否”,方法继续步骤302。在步骤303之后,方法前进到步骤304。在步骤304中,方法确定计数值是否超过预定阈值。如果步骤304为“否”,方法返回到步骤302。如果步骤304为“是”,方法前进到步骤305。在步骤305中,方法进入滥用保护模式。根据一个实施例,滥用保护模式包括将触发器开关215和/或开关网络216设置成断开状态,并启动计时器。应当理解的是,滥用保护模式可以包括任何其它合适的补救措施。例如,滥用保护模式包括将开关网络216设置成禁用状态,并启动计时器。计时器设定为第一预定时段,并开始递减。第一预定时段可以是任何合适的时间段,例如10分钟。然而,应当理解的是,第一预定时段可以是其它时间段,例如20分钟,30分钟等。
滥用保护模式还可以包括任何合适的警示措施。例如,滥用保护模式可以启用指示器的LED,以剧烈闪烁的方式警示使用者已经进入滥用保护模式。此外,滥用保护模式可以启用指示器的振动器,以振动的方式警示使用者已经进入滥用保护模式。此外,滥用保护模式可以启用指示器的扬声器,以语音的方式警示使用者已经进入滥用保护模式。此外,滥用保护模式可以启用指示器的显示屏,以图像和/或文字的方式警示使用者已经进入滥用保护模式。
方法从步骤305前进到步骤306。在步骤306中,方法确定第一预定时段是否到期。如果步骤306为“是”,那么方法前进到步骤307。如果步骤306为“否”,那么方法继续步骤306。
在步骤307中,方法确定电动工具100是否满足恢复条件。根据一个实施例,在工具温度传感器214测量的温度小于第三预定温度阈值时,满足恢复条件。根据一个实施例,在工具温度传感器214测量的温度小于第三预定温度阈值且/或触发器70被松开时,满足恢复条件。然而应当理解的是,恢复条件可包括任何合适的其它条件,而不偏离 本发明的范围。如果步骤307为“是”,那么方法前进到步骤308。如果步骤307为“否”,那么方法返回到步骤305。
在步骤308中,方法退出滥用保护模式,且计数值清零。方法从步骤308返回到步骤302。
图4是本发明的另一个实施例的保护电动工具的方法的流程图。图4的实施例与图3相比仅仅增加了步骤401。为了简洁起见,与图3相同的其余步骤不再赘述。在步骤401中,方法确定电动工具100是否处于预定高温工作模式。例如,当由环境温度传感器217测量的温度高于预定环境温度阈值(例如但不限于30℃)和/或由工具温度传感器214测量的温度高于预定工具温度阈值(例如但不限于60℃)时,电动工具100处于预定高温工作模式。如果步骤401为“是”,那么方法前进到步骤302。如果步骤401为“否”,那么方法返回到步骤401。
在本申请中,术语“处理器”或术语“控制器”可用术语“模块”代替。术语“模块”可指代以下各项、作为以下各项的一部分或者包括以下各项:专用集成电路(ASIC);数字、模拟或混合模拟/数字分立电路;数字、模拟或混合模拟/数字集成电路;组合逻辑电路;现场可编程门阵列(FPGA);执行代码的处理器电路(共享、专用或组);存储由处理器电路执行的代码的存储器电路(共享、专用或组);提供所述功能的其它合适的硬件部件;或者以上的一些或全部的组合。
模块可以包括一个或多个接口电路。在一些示例中,接口电路可包括连接到局域网(LAN)、因特网、广域网(WAN)或其组合的有线或无线接口。本公开的任何给定模块的功能可以分布在经由接口电路连接的多个模块中。例如,多个模块可允许载荷平衡。在另外的示例中,服务器(也称为远程或云)模块可代表客户端模块完成一些功能。
如上文所使用的那样,术语“代码”可包括软件、固件和/或微代码,并且可指代程序、例程、函数、类、数据结构和/或对象。术语“共享处理器电路”涵盖执行来自多个模块的一些或所有代码的单个处理器电路。术语“组处理器电路”涵盖与附加处理器电路组合执行来自一个或多个模块的一些或所有代码的处理器电路。对多个处理器电路的引用涵盖分立管芯上的多处理器电路、单个管芯上的多个处理器电路、单个处理器电路的多个核、单个处理器电路的多个线程、或以上 的组合。术语“共享存储器电路”涵盖存储来自多个模块的一些或所有代码的单个存储器电路。术语“组存储器电路”涵盖与附加存储器组合存储来自一个或多个模块的一些或所有代码的存储器电路。
本文公开的过程、方法或算法能够是可提交给处理装置、控制器或计算机和/或由处理装置、控制器或计算机实施,处理装置、控制器或计算机可包括任何现有的可编程电子控制单元或专用电子控制单元。类似地,所述过程、方法或算法可以以许多形式存储为可由控制器或计算机执行的数据和指令,包括但不限于:永久性地存储在不可写存储介质(例如,ROM装置)上的信息和可变地存储在可写存储介质(例如,软盘、磁带、CD、RAM装置和其它磁性和光学介质)上的信息。所述过程、方法或算法还可以以软件可执行目标实施。可选地,所述过程、方法或算法可以整体地或部分地使用合适的硬件部件实施,例如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、状态机、控制器或其它硬件部件或装置、或硬件、软件和固件部件的组合。这种示例装置可以为电动工具的一部分,或者位于电动工具外并与电动工具上的装置进行远程通信。
本发明已经描述了某些优选实施例及其变型。本领域技术人员在阅读和理解说明书以后可以想到其它变型和变化。因而,本发明并不限于作为用于实施本发明的最佳模式公开的具体实施例,本发明将包括落入权利要求范围内的所有实施例。

Claims (20)

  1. 一种用于保护电动工具以防止滥用的***,包括:
    至少一个传感器,所述至少一个传感器检测电动工具的至少一种操作状态;和
    处理器,所述处理器配置成:
    基于电动工具的至少一种操作状态来确定是否检测到预定故障模式;
    如果检测到预定故障模式,那么累加计数值;
    确定所述计数值是否超过预定阈值;以及
    如果所述计数值超过预定阈值,那么进入滥用保护模式。
  2. 根据权利要求1所述的***,其特征在于,所述至少一个传感器包括:
    速度传感器,所述速度传感器测量电动马达的速度;和/或
    电流传感器,所述电流传感器测量通过电动工具的电动马达的电流;和/或
    工具温度传感器,所述工具温度传感器测量电动工具的电子部件的温度。
  3. 根据权利要求2所述的***,其特征在于,所述处理器还配置成:
    确定由速度传感器测量的速度是否低于第一预定速度阈值;
    如果由速度传感器测量的速度低于第一预定速度阈值,那么检测到第一预定故障模式;和/或
    确定由电流传感器测量的电流是否超过第一预定电流阈值;
    如果由电流传感器测量的电流超过第一预定电流阈值,那么检测到第二预定故障模式;和/或
    确定由工具温度传感器测量的温度是否超过第一预定温度阈值;
    如果由工具温度传感器测量的温度超过第一预定温度阈值,那么检测到第三预定故障模式。
  4. 根据权利要求1所述的***,其特征在于,所述滥用保护模式包括将触发器开关和/或开关网络设置成断开状态,并启动计时器。
  5. 根据权利要求4所述的***,其特征在于,所述处理器还配置 成:
    在计时器的计时到期之后,确定电动工具是否满足恢复条件;和
    如果电动工具满足恢复条件,那么退出滥用保护模式。
  6. 根据权利要求3所述的***,其特征在于,计数值是预定故障模式的次数的加权求和。
  7. 根据权利要求6所述的***,其特征在于,所述处理器配置成对不同的预定故障模式使用不同的权重。
  8. 根据权利要求6所述的***,其特征在于,所述处理器配置成对不同的时间使用不同的权重或者对于不同的环境温度和/或工具温度使用不同的权重。
  9. 根据权利要求5所述的***,其特征在于,所述处理器还配置成:
    确定由工具温度传感器测量的温度是否小于第三预定温度阈值;以及
    如果由工具温度传感器测量的温度小于第三预定温度阈值且/或触发器被松开,那么满足恢复条件。
  10. 根据权利要求1所述的***,其特征在于,滥用保护模式还包括启用指示器。
  11. 一种电动工具,包括:
    壳体;
    电动马达;
    由电动马达驱动的传动机构;以及
    根据权利要求1至10中任一项所述的***。
  12. 一种用于保护电动工具以防止滥用的方法,包括:
    检测电动工具的至少一种操作状态;
    基于电动工具的至少一种操作状态来确定是否检测到预定故障模式;
    如果检测到预定故障模式,那么累加计数值;
    确定所述计数值是否超过预定阈值;以及
    如果所述计数值超过预定阈值,那么进入滥用保护模式。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    由速度传感器测量电动马达的速度;
    确定由速度传感器测量的速度是否低于第一预定速度阈值;
    如果由速度传感器测量的速度低于第一预定速度阈值,那么检测到第一预定故障模式;和/或
    由电流传感器测量通过电动工具的电动马达的电流;
    确定由电流传感器测量的电流是否超过第一预定电流阈值;
    如果由电流传感器测量的电流超过第一预定电流阈值,那么检测到第二预定故障模式;和/或
    由工具温度传感器测量电动工具的电子部件的温度;
    确定由工具温度传感器测量的温度是否超过第一预定温度阈值;
    如果由工具温度传感器测量的温度超过第一预定温度阈值,那么检测到第三预定故障模式。
  14. 根据权利要求12所述的方法,其特征在于,所述滥用保护模式包括将触发器开关和/或开关网络设置成断开状态,并启动计时器。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    在计时器的计时到期之后,确定电动工具是否满足恢复条件;和如果电动工具满足恢复条件,那么退出滥用保护模式。
  16. 根据权利要求13所述的方法,其特征在于,计数值是预定故障模式的次数的加权求和。
  17. 根据权利要求16所述的方法,其特征在于,对不同的预定故障模式使用不同的权重。
  18. 根据权利要求16所述的方法,其特征在于,对不同的时间使用不同的权重或者对于不同的环境温度和/或工具温度使用不同的权重。
  19. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    确定由工具温度传感器测量的温度是否小于第三预定温度阈值;以及
    如果由工具温度传感器测量的温度小于第三预定温度阈值且/或触发器被松开,那么满足恢复条件。
  20. 根据权利要求12所述的方法,其特征在于,滥用保护模式还包括启用指示器。
PCT/CN2021/081442 2021-03-18 2021-03-18 电动工具及其保护方法和*** WO2022193208A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/081442 WO2022193208A1 (zh) 2021-03-18 2021-03-18 电动工具及其保护方法和***
CN202180004281.6A CN115380466A (zh) 2021-03-18 2021-03-18 电动工具及其保护方法和***
EP21930801.2A EP4311100A1 (en) 2021-03-18 2021-03-18 Electric tool and protection method and system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081442 WO2022193208A1 (zh) 2021-03-18 2021-03-18 电动工具及其保护方法和***

Publications (1)

Publication Number Publication Date
WO2022193208A1 true WO2022193208A1 (zh) 2022-09-22

Family

ID=83321618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081442 WO2022193208A1 (zh) 2021-03-18 2021-03-18 电动工具及其保护方法和***

Country Status (3)

Country Link
EP (1) EP4311100A1 (zh)
CN (1) CN115380466A (zh)
WO (1) WO2022193208A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104128A (zh) * 2013-04-05 2014-10-15 株式会社牧田 电动设备***及电池组
CN106896763A (zh) * 2015-12-17 2017-06-27 米沃奇电动工具公司 用于配置具有冲击机构的电动工具的***和方法
US20180099392A1 (en) * 2016-10-07 2018-04-12 Makita Corporation Electric power tool and method of detecting twisted-motion of main body of electric power tool
US20190126456A1 (en) * 2017-10-26 2019-05-02 Milwaukee Electric Tool Corporation Kickback control methods for power tools

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104128A (zh) * 2013-04-05 2014-10-15 株式会社牧田 电动设备***及电池组
CN106896763A (zh) * 2015-12-17 2017-06-27 米沃奇电动工具公司 用于配置具有冲击机构的电动工具的***和方法
US20180099392A1 (en) * 2016-10-07 2018-04-12 Makita Corporation Electric power tool and method of detecting twisted-motion of main body of electric power tool
CN107914249A (zh) * 2016-10-07 2018-04-17 株式会社牧田 电动工具及检测电动工具的主体的扭转运动的方法
US20190126456A1 (en) * 2017-10-26 2019-05-02 Milwaukee Electric Tool Corporation Kickback control methods for power tools

Also Published As

Publication number Publication date
EP4311100A1 (en) 2024-01-24
CN115380466A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
US9114519B2 (en) Electric rotating tool
US11919129B2 (en) Adaptive impact blow detection
JP4819037B2 (ja) 工具識別回路を備えるコードレス電動工具
US8093863B2 (en) Battery pack for cordless power tools
JP2004523200A (ja) 電動工具内のモータシャフトの速度及び周波数を制御するマイクロプロセッサ
EP3372347B1 (en) Sensorless thermal protection for power tools
US10486281B2 (en) Overload detection in a power tool
WO2022193208A1 (zh) 电动工具及其保护方法和***
EP3759811B1 (en) Simulated bog-down system and method for power tools
US20230294264A1 (en) Power Tool
WO2018137693A1 (zh) 电动工具控制方法和电动工具
US20210234481A1 (en) Motor braking coil for a power tool
JP2017193016A (ja) 電動作業機
GB2385434A (en) Method and device for temperature-dependent control of the power of an elec trical appliance.
JP2021049587A (ja) 電動作業機
US20220137147A1 (en) Detecting battery pack type based on battery pack impedance
US10778138B2 (en) Drilling device and method for operating a drilling device
CN220945226U (zh) 动力工具及电池组供电的设备
WO2022178774A1 (en) Power tool having variable output
WO2022232434A1 (en) Power tool including a machine learning block for controlling field weaken of a permanent magnet motor
US20130257320A1 (en) Method for operating an electric tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021930801

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021930801

Country of ref document: EP

Effective date: 20231018