WO2022193175A1 - 一种转子冲片、分段斜极的电机转子及电机 - Google Patents

一种转子冲片、分段斜极的电机转子及电机 Download PDF

Info

Publication number
WO2022193175A1
WO2022193175A1 PCT/CN2021/081317 CN2021081317W WO2022193175A1 WO 2022193175 A1 WO2022193175 A1 WO 2022193175A1 CN 2021081317 W CN2021081317 W CN 2021081317W WO 2022193175 A1 WO2022193175 A1 WO 2022193175A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnetic pole
positioning
hole
holes
Prior art date
Application number
PCT/CN2021/081317
Other languages
English (en)
French (fr)
Inventor
徐浩杰
阮鸥
赵前坚
鲁军
茅伟娜
Original Assignee
浙江吉利控股集团有限公司
威睿电动汽车技术(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 威睿电动汽车技术(宁波)有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to EP21930769.1A priority Critical patent/EP4280428A1/en
Priority to CN202180074658.5A priority patent/CN116391314A/zh
Priority to PCT/CN2021/081317 priority patent/WO2022193175A1/zh
Publication of WO2022193175A1 publication Critical patent/WO2022193175A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to the technical field of electric motors, in particular to a motor rotor with a rotor punching sheet, a segmented inclined pole, and a motor.
  • Permanent magnet synchronous motor is used in the field of servo motor, which can greatly improve the power density and efficiency of the motor.
  • the permanent magnet synchronous motor is often accompanied by large tooth harmonic potential, cogging torque and torque ripple, which greatly affects the control accuracy of the motor and limits its high quality.
  • Application of servo system due to the cogging effect and the non-sinusoidal magnetic field, the permanent magnet synchronous motor is often accompanied by large tooth harmonic potential, cogging torque and torque ripple, which greatly affects the control accuracy of the motor and limits its high quality.
  • the stator inclined slot and the rotor inclined pole are the main methods used.
  • the rotor sloping poles are generally divided into two categories, namely continuous sloping poles and segmented sloping poles.
  • the rotor segmented slanted poles not only have better tooth harmonic potential, various harmonics and cogging torque weakening effects, but also help reduce the processing and production cost of magnetic steel, which is suitable for mass production and attracts much attention.
  • the motor rotor includes six rotor iron cores, and the six rotor iron cores are respectively processed by two sets of molds, wherein the rotor iron core 1+ and the rotor iron core 1- are processed by the same set of molds. The difference is that they are turned 180 degrees from each other, and the rotor core 2 is processed by another set of molds.
  • the slanted pole angles of rotor iron core 1+ and rotor iron core 1- differ by 2 ⁇
  • the slanted pole angles of rotor iron core 1+ and rotor iron core 2 differ by ⁇ .
  • symmetrically arranged keyways 1 are provided on the rotating shaft, and each iron core is loaded into the rotating shaft according to the law shown in Figure 1 to realize segmented inclined poles.
  • the present invention provides a rotor punching piece, a motor rotor with a segmented slanted pole, and a motor that overcome the above problems or at least partially solve the above problems.
  • One purpose of the present invention is to improve the versatility of rotor punching, and to achieve the purpose of manufacturing the rotor core of the motor rotor only by using the same rotor punching die.
  • Another object of the present invention is to provide a structure form of a motor rotor that can realize multi-segment sloping poles.
  • a further object of the present invention is to avoid overturning the rotor of the motor, so that the burr surfaces of each rotor core are in the same direction, so as to avoid gaps when multiple rotor cores are stacked.
  • a further object of the present invention is to simplify the processing of the rotating shaft and reduce the cost of the motor.
  • the present invention provides a rotor punch, comprising:
  • a plurality of magnets including the same number of N-pole magnets and S-pole magnets, the N-pole magnets and the S-pole magnets are alternately installed in the magnetic steel fixing slots, forming the same number of alternating N-pole magnetic pole centers
  • a plurality of magnetic pole centerlines composed of lines and S-pole magnetic pole centerlines
  • At least three first positioning through holes with a diameter of d 1 two of the first positioning through holes are located on the center line of the first magnetic pole, and the other first positioning through holes are located on the center line of the second magnetic pole, so
  • the first magnetic pole centerline and the second magnetic pole centerline are two magnetic pole centerlines with different polarities among the plurality of magnetic pole centerlines;
  • the off-line and the second deviation line are straight lines running through the center of the punching body, respectively located on both sides of the center line of the third magnetic pole, and form an included angle of the same preset angle with the center line of the third magnetic pole, so
  • the third magnetic pole centerline is one of the plurality of magnetic pole centerlines and is different from the first magnetic pole centerline and the second magnetic pole centerline; the other second positioning through hole is located on the fourth magnetic pole centerline
  • the fourth magnetic pole centerline is one of the plurality of magnetic pole centerlines, which is different from the first magnetic pole centerline and the second magnetic pole centerline, and has a polarity with the third magnetic pole centerline. on the contrary.
  • the number of the magnetic steel fixing slots is 2n, and n is an integer greater than or equal to 4.
  • first magnetic pole centerline, the second magnetic pole centerline, the third magnetic pole centerline and the fourth magnetic pole centerline are four adjacent magnetic pole centerlines.
  • the rotor punching piece also includes a shaft hole located in the center of the punching piece body;
  • One of the first positioning through holes on the center line of the first magnetic pole and the first positioning through hole on the center line of the second magnetic pole are both located on a first ring that is concentric with the shaft hole;
  • the other first positioning through hole on the center line of the first magnetic pole is located on a second ring that is concentric with the shaft hole, and the diameter of the first ring is different from that of the second ring.
  • the second positioning through holes on the first deviation line and the fourth magnetic pole center line are both located on one of the first circular ring and the second circular ring, so The second positioning through hole on the second deviation line is located on the other one of the first ring and the second ring.
  • the rotor punching sheet also includes:
  • each of the third positioning holes corresponds to the corresponding first positioning hole
  • the through hole is symmetrical about the center of the punching body
  • the through holes are symmetrical with respect to the center of the punch body.
  • the preset angle is in the range of 1.5°-5°.
  • the rotor punching sheet also includes:
  • At least one weight-reducing hole each of which is located on one of the magnetic pole centerlines of the plurality of magnetic pole centerlines;
  • the shape of the weight reduction hole is configured to be different from the shape of the first positioning through hole and/or the second positioning through hole;
  • the size of the weight reduction hole is configured to be different from the size of the first positioning through hole and/or the second positioning through hole;
  • the shape and size of the weight reduction hole are configured to be different from the shape and size of the first positioning through hole and/or the second positioning through hole.
  • the rotor punching sheet also includes:
  • a plurality of weight-reducing grooves are evenly arranged in the circumferential direction around the center of the punching sheet body, and each of the weight-reducing grooves is located between the center lines of two adjacent magnetic poles.
  • the present invention also provides a motor rotor with segmented slanted poles, comprising a rotating shaft and a rotor core set sleeved on the rotating shaft, the rotor core set comprising a plurality of segmented slanted poles press-fitted Rotor iron cores, each of which is formed by laminating a plurality of the same rotor punching sheets as described above.
  • the number of the rotor cores is 2m, and m is an integer greater than or equal to 4;
  • the positioning through holes of the rotor punching sheets stacked together in each of the rotor iron cores are aligned to form the installation holes of the rotor iron core;
  • the rotor iron cores in the rotor iron core group are divided into a first iron core group and a second iron core group with the same number in sequence, and any two adjacent rotor iron cores pass through the diameters of the rotor iron cores are different and are different from those of the rotor punching pieces.
  • the installation holes with the same distance from the center are aligned and fixed, and each adjacent two rotor iron cores in the first iron core group have a first preset oblique pole angle, and each in the second iron core group There is a second preset oblique polar angle between two adjacent rotor cores, and the second preset oblique polar angle and the first oblique polar angle have the same angle value but opposite sign.
  • the mounting hole includes a first mounting hole corresponding to the first positioning through hole of the rotor punch and a second mounting hole corresponding to the second positioning through hole of the rotor punch;
  • One of the first installation holes of one of the two adjacent rotor iron cores in the rotor iron core group is aligned with one of the second installation holes of the other rotor iron core, and is fixed by a fastener , wherein the distances from the aligned first mounting holes and the second mounting holes to the center of the rotor punching piece are equal.
  • the fastener is in the shape of a stepped shaft, having a first end with a diameter of d 3 and a second end with a diameter of d 4 , wherein d 4 ⁇ d 3 ;
  • the first end of the fastener is configured to be an interference fit with the first mounting hole
  • the second end of the fastener is configured for an interference fit with the second mounting hole.
  • the length of the first end of the fastener is L 1 , and d 3 ⁇ L 1 ⁇ 3d 3 ;
  • the length of the second end of the fastener is L 2 , and d 4 ⁇ L 2 ⁇ 3d 4 .
  • the fastener is arranged such that its first end is inserted into one of the first mounting holes of one of the two adjacent rotor cores, and its second end is inserted into the two adjacent rotors one of the second mounting holes in the other rotor iron core of the iron core, so as to realize the fixing of the two adjacent rotor iron cores.
  • the present invention also provides a motor comprising the aforementioned motor rotor.
  • the structural form of the rotor punching piece that is, setting a plurality of magnetic steel fixing grooves, at least three first positioning through holes and at least three second positioning through holes on the rotor punching piece, and
  • the first positioning through holes and the second positioning through holes are arranged in corresponding positions, so that when the rotor core group is formed by using the rotor punching pieces, the position of each rotor core can only be positioned through different positioning through holes. form different oblique polar angles.
  • the rotor punching piece has strong versatility, and only the same rotor punching die can be used to manufacture the rotor iron core of the motor rotor, which simplifies the die structure and reduces the development and manufacturing costs of the die.
  • center line of the first magnetic pole, the center line of the second magnetic pole, the center line of the third magnetic pole and the center line of the fourth magnetic pole is convenient for the subsequent rotor iron. Assembly between rotor cores in a core pack.
  • the first positioning through hole and the second positioning through hole are located on two different rings, so as to ensure the movement of the rotor punching piece. balance.
  • the burr surface of each rotor iron core can be in the same direction , to avoid gaps in the press-fitting of multiple rotor cores.
  • the shaft does not need a keyway, which greatly reduces the cost of opening the keyway.
  • Figure 1 shows a schematic structural diagram of a rotor core in the prior art
  • FIG. 2 shows a schematic structural diagram of a rotating shaft in the prior art
  • Figure 3 shows a schematic front view of a rotor die according to an embodiment of the present invention
  • FIG. 4 shows a schematic exploded view of a rotor of a motor with segmented sloping poles according to Embodiment 1 of the present invention
  • FIG. 5 shows a schematic structural diagram of the assembled sloping pole motor rotor according to Embodiment 1 of the present invention
  • Fig. 6 shows a schematic structural diagram of the fastener according to the first embodiment of the present invention
  • FIG. 3 shows a schematic front view of a rotor die according to an embodiment of the present invention.
  • each rotor punch 3 has a punch body 31 , an even number of magnetic steel fixing slots 10 , a plurality of magnets, at least three first positioning through holes with a diameter of d 1 and at least three A second positioning through hole of d 2 , where d 2 ⁇ d 1 .
  • a plurality of magnetic steel fixing grooves 10 are evenly arranged on the outer periphery of the punching body 31 .
  • the plurality of magnets include the same number of N-pole magnets and S-pole magnets, and the N-pole magnets and S-pole magnets are alternately installed in the magnetic steel fixing slot 10 to form the same number of alternating N-pole magnetic pole centerlines and S-pole magnetic pole centers. Lines consist of multiple pole centerlines.
  • the first magnetic pole center line 4 and the second magnetic pole center line 6 are two magnetic pole center lines with different polarities among the plurality of magnetic pole center lines.
  • the two second positioning through holes are respectively provided on the first deviation line 8 and the second deviation line 9 .
  • the first deviation line 8 and the second deviation line 9 are straight lines running through the center of the punch body 31 , located on both sides of the third magnetic pole centerline 5 respectively, and form an included angle of the same predetermined angle with the third magnetic pole centerline 5 .
  • the third magnetic pole centerline 5 is one of the plurality of magnetic pole centerlines and is different from the first magnetic pole centerline 4 and the second magnetic pole centerline 6 .
  • Another second positioning through hole is located on the fourth magnetic pole center line 7, and the fourth magnetic pole center line 7 is one of the plurality of magnetic pole center lines, which is different from the first magnetic pole center line 4 and the second magnetic pole center line 6, and is different from the first magnetic pole center line 4 and the second magnetic pole center line 6.
  • the polarities of the three-pole centerlines 5 are opposite.
  • the first deviation line 8 and the second deviation line 9 are deviated in opposite directions with respect to the third magnetic pole centerline 5 .
  • the preset angle at which the first deviation line 8 and the second deviation line 9 deviate from the third magnetic pole centerline 5 is marked as ⁇ , and ⁇ can be any value in the range of 1.5°-5°, specifically, For example, it may be 1.5°, 2°, 3°, 4° or 5°.
  • the number of magnetic steel fixing grooves 10 is 2n, n ⁇ 4, and n is a positive integer.
  • FIG. 4 shows a schematic exploded view of a segmented sloping pole motor rotor according to one embodiment of the present invention.
  • FIG. 5 shows a schematic structural diagram of a rotor of a motor with segmented sloping poles according to an embodiment of the present invention.
  • the motor rotor includes a rotating shaft 2 and a rotor iron core group sleeved on the rotating shaft 2.
  • the rotor iron core group includes a plurality of rotor iron cores, and each rotor iron core is composed of a plurality of rotor punches 3 are stacked.
  • the number of rotor cores in the rotor core group is 2m, m ⁇ 4, and m is a positive integer. It should be noted that there is no corresponding relationship between m and n.
  • the positioning through holes of the stacked rotor punching pieces 3 in each rotor core are aligned to form the mounting holes of the rotor core.
  • the rotor iron cores in the rotor iron core group are divided into the first iron core group and the second iron core group of the same number in sequence, and any two adjacent rotor iron cores are installed by having different diameters and the same distance from the center of the rotor punching piece.
  • the holes are aligned and fixed, and a first preset oblique pole angle is formed between every two adjacent rotor iron cores in the first iron core group, and a second predetermined angle is formed between every two adjacent rotor iron cores in the second iron core group Presetting the oblique polar angle, the second preset oblique polar angle and the first oblique polar angle have the same angle value but opposite sign, thereby forming a segmented oblique stage structure.
  • the installation hole includes a first installation hole corresponding to the first positioning through hole of the rotor punch and a second installation hole corresponding to the second positioning through hole of the rotor punch.
  • One of the first mounting holes of one of the two adjacent rotor cores in the rotor core group is aligned with one of the second mounting holes of the other rotor core, and is fixed by a fastener 17, wherein, The aligned first and second mounting holes are equidistant from the center of the rotor die.
  • the present invention also provides a motor including the aforementioned motor rotor.
  • the structural form of the rotor punch 3 that is, a plurality of magnetic steel fixing grooves 10
  • at least three first positioning through holes and at least three second positioning holes are arranged on the rotor punch 3 Through holes, and each first positioning through hole and each second positioning through hole are arranged in corresponding positions, so that when the rotor iron core group is formed by using the rotor punching pieces 3, each rotor iron is only positioned through different positioning through holes.
  • the position of the core can form different oblique polar angles.
  • the rotor punching piece 3 has strong versatility, and only the same rotor punching piece 3 mold can be used to manufacture the rotor core of the motor rotor, which simplifies the mold structure and reduces the mold development and manufacturing costs.
  • each magnetic steel fixing slot 10 is composed of a first magnetic steel slot 101 and a second magnetic steel slot 102 , and the size of the first magnetic steel slot 101 is larger than the diameter of the second magnetic steel slot 102 .
  • a magnetic pole center line is formed between the center of the magnet (specifically, the magnetic steel) fixed in each magnetic steel fixing slot 10 and the center of the punching body 31 of the rotor punching piece 3, and the magnetic poles formed by the adjacent two magnetic steels are The polarities are opposite, that is, two adjacent magnetic poles must be one N pole and one S pole.
  • the first magnetic pole centerline 4, the second magnetic pole centerline 6, the third magnetic pole centerline 5 and the fourth magnetic pole centerline 7 are four adjacent magnetic pole centerlines, and the second magnetic pole centerline 6 is located on the first magnetic pole centerline 4 and the fourth magnetic pole centerline. Between the third magnetic pole center lines 5 , the third magnetic pole center line 5 is located between the second magnetic pole center line 6 and the fourth magnetic pole center line 7 .
  • the first magnetic pole centerline 4 and the third magnetic pole centerline 5 are the S-pole magnetic pole centerline
  • the second magnetic pole centerline 6 and the fourth magnetic pole centerline 7 are the N-pole magnetic pole centerline
  • the first magnetic pole centerline 4 and the third magnetic pole centerline The magnetic pole centerline 5 is the N-pole magnetic pole centerline
  • the second magnetic pole centerline 6 and the fourth magnetic pole centerline 7 are the S-pole magnetic pole centerline.
  • Two first positioning through holes are arranged on the center line 4 of the first magnetic pole, and another first positioning through hole is arranged on the center line 6 of the second magnetic pole.
  • the two second positioning through holes are respectively arranged on the first deviation line 8 and the second deviation line 9.
  • the first deviation line 8 and the second deviation line 9 are straight lines passing through the center of the punch body 31 and are respectively located at the center of the third magnetic pole.
  • the two sides of the line 5 and the third magnetic pole center line 5 form an included angle ⁇ of the same predetermined angle.
  • Another second positioning through hole is arranged on the center line 7 of the fourth magnetic pole.
  • the angle of the included angle ⁇ is in the range of 1.5°-5°, for example, 1.5°, 2°, 3°, 4° or 5°.
  • the rotor punch 3 includes a shaft hole 32 located in the center of the punch body 31 .
  • the two first positioning through holes located on the center line 4 of the first magnetic pole are the first process hole 11 and the second process hole 12 respectively, and the first positioning through hole located on the center line 6 of the second magnetic pole is the third process hole 13.
  • the center of the first process hole 11 is located at the intersection of the first magnetic pole centerline 4 and a first ring (not shown) concentric with the shaft hole 32 , the diameter of the first ring is larger than that of the shaft hole 32 .
  • the center of the second process hole 12 is located at the intersection of the first magnetic pole centerline 4 and a second ring (not shown in the figure) that is concentric with the shaft hole 32, and the diameter of the second ring is smaller than that of the first ring and larger than the diameter of the shaft hole 32 .
  • the center of the third process hole 13 is located at the intersection of the second magnetic pole centerline 6 and the first circular ring.
  • the second positioning through hole located on the first deviation line 8 is the fourth process hole 14
  • the second positioning through hole located on the second deviation line 9 is the fifth process hole 15
  • the second positioning through hole located on the fourth magnetic pole center line 7 is the fifth process hole 15 .
  • the positioning through hole is the sixth process hole 16 .
  • the rotor core is formed by laminating a plurality of the aforementioned rotor punching pieces 3 .
  • the rotor punches 3 of all rotor cores in the rotor core group are manufactured by using the same mold.
  • FIG. 4 shows a schematic structural diagram of the fastener according to the first embodiment of the present invention.
  • the fastener 17 has a first end 171 having a diameter d 3 and a second end 172 having a diameter d 4 , where d 4 ⁇ d 3 .
  • the fastener 17 is arranged such that its first end 171 is inserted into one of the first mounting holes of one of the two adjacent rotor iron cores, and its second end 172 is inserted into the two adjacent rotor iron cores one of the second mounting holes in the other rotor iron core of the core, so as to realize the fixing of the two adjacent rotor iron cores.
  • the length of the first end 171 of the fastener 17 is L 1 , and d 3 ⁇ L 1 ⁇ 3d 3 .
  • the length of the second end 172 of the fastener 17 is L 2 , and d 4 ⁇ L 2 ⁇ 3d 4 .
  • the fastener 17 can be, for example, a positioning pin.
  • the eight-pole rotor core is the first rotor core 18 , the second rotor core 19 , and the third rotor core 20 in sequence. , a fourth rotor core 21 , a fifth rotor core 22 , a sixth rotor core 23 , a seventh rotor core 24 and an eighth rotor core 25 .
  • the specific implementation method is as follows:
  • the first magnetic pole center line 4, the second magnetic pole center line 6, the third magnetic pole center line 5 and the fourth magnetic pole center line 7 is made to be four adjacent magnetic pole center lines, it is convenient for the subsequent rotor iron Assembly between rotor cores in a core pack.
  • each of the first positioning through hole and the second positioning through hole is located on two different rings, so as to realize the segmentation of the motor rotor.
  • the layout is more regular, which is conducive to dynamic balance, and the structure is reasonable and beautiful.
  • the burr surface of each rotor iron core can be in the same direction , to avoid gaps in the press-fitting of multiple rotor cores.
  • the shaft 2 does not need a keyway, which greatly reduces the cost of opening a keyway.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the difference between the second embodiment and the first embodiment is that the number of magnetic poles of each rotor core is 8, and the number of rotor cores in the rotor core group is 10, 12, 14 or 16, or is an even number greater than 16.
  • the number of magnetic poles of each rotor core is 2n, n ⁇ 5, and the number of rotor cores in the rotor core group is 10, 12, 14 or 16, or an even number greater than 16 .
  • the burr surfaces of the rotor iron cores are in the same direction, and one of the first positioning through holes in the adjacent two rotor iron cores is in the same direction as the other rotor iron core.
  • One of the second positioning through holes is aligned, and it is ensured that the aligned first positioning through hole and the second positioning through hole are located on the center line of the magnetic pole or the center line of the magnetic pole that is close to it (this is relatively located on the first deviation line and the second deviation line).
  • the polarity is the same.
  • the rotor punching piece 3 further includes at least one weight reduction hole, and each weight reduction hole is respectively located on one of the plurality of magnetic pole centerlines.
  • the shape of the weight reduction hole is configured to be different from the shape of the first positioning through hole located on the second magnetic pole centerline 6 and/or the second positioning through hole located on the fourth magnetic pole centerline 7; or the size of the weight reduction hole It is configured to be different in size from the first positioning through hole and/or the second positioning through hole; or the shape and size of the weight reduction hole are configured to be different from the first positioning through hole and/or the second positioning through hole.
  • the shapes and sizes of the two positioning through holes are different. As shown in FIG.
  • the number of the weight reduction holes is two, which are the first weight reduction hole 26 and the second weight reduction hole 27 respectively.
  • the first weight-reducing hole 26 is located on the second magnetic pole centerline 6, and its center is located at the intersection of the second magnetic pole centerline 6 and the second circular ring.
  • the second weight reduction hole 27 is located on the fourth magnetic pole centerline 7, and its center is located at the intersection of the fourth magnetic pole centerline 7 and the second ring.
  • the shape of the first weight reduction hole 26 is set to be the same as the shape of the third process hole 13 , but the size is smaller than that of the third process hole 13
  • the shape of the second weight reduction hole 27 is set to be the same as the shape of the sixth process hole 16 . , but the size is smaller than the sixth process hole 16 .
  • the shape of the first weight reduction hole 26 is set to be different from the shape of the third process hole 13
  • the shape of the second weight reduction hole 27 is set to be different from the shape of the sixth process hole 16 .
  • the shape and size of the first weight reduction hole 26 are set to be different from the shape and size of the third process hole 13
  • the shape and size of the second weight reduction hole 27 are set to be different from the shape and size of the sixth process hole 16 and All sizes are different.
  • the weight reducing hole By arranging the weight reducing hole, the weight of the rotor core can be reduced. Moreover, the positions of the first weight reduction hole 26 and the second weight reduction hole 27 are set as above, which can ensure the symmetry and aesthetics of the rotor core while reducing weight.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the rotor punch 3 further includes a plurality of weight reduction grooves 28 , and the plurality of weight reduction grooves 28 surround the center of the punch body 31 (specifically, the rotating shaft).
  • the holes 32) are evenly arranged in the circumferential direction, and each weight-reducing slot 28 is located between the centerlines of two adjacent magnetic poles.
  • the shape of the weight reduction groove 28 is different from the shape of each process hole.
  • the weight of the rotor core can be reduced.
  • the plurality of weight-reducing grooves 28 are circumferentially arranged around the center of the punching piece, which can ensure the symmetry and aesthetics of the rotor core while reducing the weight.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the rotor punching piece 3 further includes at least three first positioning through holes corresponding to at least three first positioning through holes with a diameter of d 1 respectively.
  • Each of the third positioning through holes and the corresponding first positioning through holes are symmetrical with respect to the center of the punch body 31 .
  • Each of the fourth positioning through holes and the corresponding second positioning through holes are symmetrical with respect to the center of the punch body 31 .
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the difference between the sixth embodiment and the first embodiment is that the center of the third process hole 13 is located at the intersection of the second magnetic pole centerline 6 and the second circular ring.
  • the center of the fourth process hole 14 is located at the intersection of the first deviation line 8 and the second circular ring.
  • the center of the fifth process hole 15 is located at the intersection of the second deviation line 9 and the first circular ring.
  • the center of the sixth process hole 16 is located at the intersection of the fourth magnetic pole centerline 7 and the second circular ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

本发明提供了一种转子冲片、分段斜极的电机转子及电机。该转子冲片包括冲片本体;偶数个磁钢固定槽;多个磁体,形成极性相互交替的多条磁极中心线;至少三个直径为d1的第一定位通孔,其中两个第一定位通孔位于第一磁极中心线上,另一个第一定位通孔位于第二磁极中心线上,第一磁极中心线和第二磁极中心线为极性不同的两条磁极中心线;至少三个直径为d2的第二定位通孔,其中d2<d1,两个第二定位通孔分别设置在第一偏离线和第二偏离线上,第一偏离线和第二偏离线分别位于第三磁极中心线两侧,另一个第二定位通孔位于第四磁极中心线上。本发明方案可采用由同一模具制造的转子冲片且在不翻转铁芯情况下实现转子的分段斜极。

Description

一种转子冲片、分段斜极的电机转子及电机 技术领域
本发明涉及电动机技术领域,尤其涉及一种转子冲片、分段斜极的电机转子及电机。
背景技术
永磁同步电动机应用于伺服电机领域,可以极大提高电机的功率密度和效率。然而由于齿槽效应和磁场非正弦性的影响,永磁同步电动机往往伴随着较大的齿谐波电势、齿槽转矩以及转矩脉动,大大影响电机的控制精度,限制了它在高质量伺服***的应用。
为了提高电机的控制精度,定子斜槽和转子斜极是主要采用的方法。而转子斜极大体上分为两类,分别为连续斜极和分段斜极。而转子分段斜极不仅有较好的齿谐波电势、各次谐波以及齿槽转矩削弱效果,而且有利于降低磁钢的加工生产成本,适合大批量生产而备受关注。
为了实现转子铁芯的分段斜级,一般会采用多套模具加工转子铁芯,加工得到不同角度的转子铁芯,以实现转子的斜级结构。如图1所示,该电机转子包括六个转子铁芯,该六个转子铁芯分别由两套模具加工而成,其中,转子铁芯1+和转子铁芯1-由同一套模具加工而成,区别是彼此间翻转180度,转子铁芯2由另一套模具加工而成。在转子铁芯叠压在一起组成电机转子时,转子铁芯1+和转子铁芯1-的斜极角度相差2α,转子铁芯1+和转子铁芯2的斜极角度相差α。如图2所示,转轴上开设有对称设置的键槽1,把各个铁芯按照如图1所示的规律装入转轴,实现分段斜极。
在上述方案中,需要设计两套模具来制备上述两种转子铁芯,并且转子铁芯1+和转子铁芯1-需要翻转180°,在转子铁芯叠压在一起时,容易使各转子铁芯之间产生间隙,这是由于毛刺面都在铁芯同一侧,铁芯翻转后,两个相邻铁芯的毛刺面会靠在一起,从而可能产生间隙。并且,需要额外在转轴上开设双键槽,增加转轴的设计难度以及开模成本。
发明内容
鉴于上述问题,本发明提供一种克服上述问题或者至少部分地解决上述问题的转子冲片、分段斜极的电机转子及电机。
本发明的一个目的在于提高转子冲片的通用性,实现仅使用同一转子冲片模具制造电机转子的转子铁芯的目的。
本发明的另一个目的在于提供一种可以实现多段斜极的电机转子的结构形式。
本发明的一个进一步的目的在于避免翻转电机转子,使各个转子铁芯的毛刺面在同一方向上,避免多个转子铁芯在叠压时产生缝隙。
本发明的一个进一步的目的在于简化转轴的加工,降低电机的成本。
特别地,本发明提供了一种转子冲片,包括:
冲片本体;
偶数个磁钢固定槽,均匀排列在所述冲片本体的外周缘;
多个磁体,包括数量相同的N极磁体和S极磁体,所述N极磁体和所述S极磁体交替安装在所述磁钢固定槽内,形成由数量相同且相互交替的N极磁极中心线和S极磁极中心线组成的多条磁极中心线;
至少三个直径为d 1的第一定位通孔,其中两个所述第一定位通孔位于第一磁极中心线上,另一个所述第一定位通孔位于第二磁极中心线上,所述第一磁极中心线和所述第二磁极中心线为所述多条磁极中心线中极性不同的两条磁极中心线;
至少三个直径为d 2的第二定位通孔,其中d 2<d 1,其中两个所述第二定位通孔分别设置在第一偏离线和第二偏离线上,所述第一偏离线和所述第二偏离线为贯穿所述冲片本体的中心的直线,分别位于第三磁极中心线的两侧,且与所述第三磁极中心线形成相同预设角度的夹角,所述第三磁极中心线为所述多条磁极中心线之一且不同于所述第一磁极中心线和所述第二磁极中心线;另一个所述第二定位通孔位于第四磁极中心线上,所述第四磁极中心线为所述多条磁极中心线之一,不同于所述第一磁极中心线和所述第二磁极中心线,且与所述第三磁极中心线的极性相反。
进一步地,所述磁钢固定槽的数量为2n个,n为大于或等于4的整数。
进一步地,所述第一磁极中心线、所述第二磁极中心线、所述第三磁极中心线和所述第四磁极中心线为相邻的四条磁极中心线。
进一步地,所述转子冲片还包括位于所述冲片本体的中心的转轴孔;
所述第一磁极中心线上的其中一个所述第一定位通孔与所述第二磁极中心线上的所述第一定位通孔均位于与所述转轴孔同心的第一圆环上;
所述第一磁极中心线上的另一个所述第一定位通孔位于与所述转轴孔同心的第二圆环上,所述第一圆环的直径与第二圆环的直径不同。
进一步地,所述第一偏离线和所述第四磁极中心线上的所述第二定位通孔均位于所述第一圆环和所述第二圆环中的其中一个圆环上,所述第二偏离线上的所述第二定位通孔位于所述第一圆环和所述第二圆环中的另一个圆环上。
进一步地,所述转子冲片还包括:
分别与至少三个直径为d 1的所述第一定位通孔对应的至少三个直径为d 1的第三定位通孔,每个所述第三定位通孔与对应的所述第一定位通孔关于所述冲片本体的中心对称;
分别与至少三个直径为d 2的所述第二定位通孔对应的至少三个直径为d 2的第四定位通孔,每个所述第四定位通孔与对应的所述第二定位通孔关于所述冲片本体的中心对称。
进一步地,所述预设角度在1.5°-5°范围内。
进一步地,所述转子冲片还包括:
至少一个减重孔,各所述减重孔分别位于所述多条磁极中心线中的一条磁极中心线上;
其中,所述减重孔的形状构造成与所述第一定位通孔和/或所述第二定位通孔的形状不同;或者
所述减重孔的大小构造成与所述第一定位通孔和/或所述第二定位通孔的大小不同;或者
所述减重孔的形状以及大小构造成与所述第一定位通孔和/或所述第二定位通孔的形状以及大小均不同。
进一步地,所述转子冲片还包括:
多个减重槽,围绕所述冲片本体的中心沿周向均匀布置,每个所述减重槽均位于相邻两条磁极中心线之间。
特别地,本发明还提供了一种分段斜极的电机转子,包括转轴和套设在所述转轴上的转子铁芯组,所述转子铁芯组包括分段斜极压装的多个转子铁芯,每个所述转子铁芯由多个相同的如前述的转子冲片叠压而成。
进一步地,所述转子铁芯的数量为2m个,m为大于或等于4的整数;
各所述转子铁芯中叠压在一起的所述转子冲片的各定位通孔对齐组成 该转子铁芯的安装孔;
所述转子铁芯组中的转子铁芯按顺序分成数量相同的第一铁芯组和第二铁芯组,任意相邻两个所述转子铁芯通过直径不同且与所述转子冲片的中心的距离相同的安装孔对齐固定,且使所述第一铁芯组中每相邻两个所述转子铁芯之间具有第一预设斜极角,所述第二铁芯组中每相邻两个所述转子铁芯之间具有第二预设斜极角,所述第二预设斜极角与所述第一斜极角的角度值相同但符号相反。
进一步地,所述安装孔包括与所述转子冲片的所述第一定位通孔对应的第一安装孔以及与所述转子冲片的所述第二定位通孔对应的第二安装孔;
所述转子铁芯组中相邻两个所述转子铁芯的其中一个转子铁芯的其中一个第一安装孔与另一个转子铁芯的其中一个第二安装孔对齐,并通过紧固件固定,其中,对齐的所述第一安装孔和所述第二安装孔至所述转子冲片的中心的距离相等。
进一步地,所述紧固件为台阶轴状,具有直径为d 3的第一端和直径为d 4的第二端,其中,d 4<d 3
所述紧固件的所述第一端构造成与所述第一安装孔过盈配合;
所述紧固件的所述第二端构造成与所述第二安装孔过盈配合。
进一步地,所述紧固件的所述第一端的长度为L 1,d 3≤L 1≤3d 3
所述紧固件的所述第二端的长度为L 2,d 4≤L 2≤3d 4
进一步地,所述紧固件设置成使其第一端***相邻两个转子铁芯的其中一个转子铁芯的其中一个第一安装孔中,并使其第二端***相邻两个转子铁芯的另一个转子铁芯中的其中一个第二安装孔中,从而实现该相邻两个转子铁芯的固定。
特别地,本发明还提供了一种电机,包括如前述的电机转子。
根据本发明实施例的方案,通过合理设计转子冲片的结构形式,即在转子冲片上设置多个磁钢固定槽、至少三个第一定位通孔以及至少三个第二定位通孔,并使各第一定位通孔和各第二定位通孔布置在相应的位置上,使得在利用该转子冲片组成转子铁芯组时,仅通过不同定位通孔定位各转子铁芯的位置即可形成不同的斜极角。如此,使得该转子冲片具有较强的通用性,可以仅使用同一转子冲片模具制造电机转子的转子铁芯,简化模具结构,降低模具开发以及制造成本。
进一步地,通过使得所述第一磁极中心线、所述第二磁极中心线、所述第三磁极中心线和所述第四磁极中心线为相邻的四条磁极中心线,从而便于后续转子铁芯组中各个转子铁芯之间的装配。
进一步地,通过合理布置第一定位通孔、第二定位通孔的具***置,使各第一定位通孔和第二定位通孔位于不同的两个圆环上,从而保证转子冲片的动平衡。
进一步地,通过使得相邻两个转子铁芯中其中一个转子铁芯的第一定位通孔与另一个转子铁芯的第二定位通孔对齐,并使相邻两个转子铁芯之间具有预设斜极角,从而在不翻转铁芯的情况下实现转子铁芯的固定以及转子的分段斜极,并且由于无需翻转铁芯,从而可以使得各个转子铁芯的毛刺面在同一方向上,避免多个转子铁芯在压装时产生缝隙。
进一步地,该转轴无需开设键槽,极大降低键槽开设成本。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1示出了现有技术中转子铁芯的示意性结构图;
图2示出了现有技术中转轴的示意性结构图;
图3示出了根据本发明一个实施例的转子冲片的示意性主视图;
图4示出了根据本发明实施例一的分段斜极的电机转子的示意性分解图;
图5示出了根据本发明实施例一的分段斜极的电机转子组装后的示意性结构图;
图6示出了根据本发明实施例一的紧固件的示意性结构图;
图中:1-键槽,2-转轴,3-转子冲片,31-冲片本体,32-转轴孔,4-第一磁极中心线,6-第二磁极中心线,5-第三磁极中心线,7-第四磁极中心线, 8-第一偏离线,9-第二偏离线,10-磁钢固定槽,101-第一磁钢槽,102-第二磁钢槽,11-第一工艺孔,12-第二工艺孔,13-第三工艺孔,14-第四工艺孔,15-第五工艺孔,16-第六工艺孔,17-紧固件,171-第一端,172-第二端,18-第一转子铁芯,19-第二转子铁芯,20-第三转子铁芯,21-第四转子铁芯,22-第五转子铁芯,23-第六转子铁芯,24-第七转子铁芯,25-第八转子铁芯,26-第一减重孔,27-第二减重孔,28-减重槽。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
图3示出了根据本发明一个实施例的转子冲片的示意性主视图。如图3所示,每个转子冲片3均具有冲片本体31、偶数个磁钢固定槽10、多个磁体、至少三个直径为d 1的第一定位通孔以及至少三个直径为d 2的第二定位通孔,其中d 2<d 1
多个磁钢固定槽10均匀排列在冲片本体31的外周缘。多个磁体包括数量相同的N极磁体和S极磁体,N极磁体和S极磁体交替安装在磁钢固定槽10内,形成由数量相同且相互交替的N极磁极中心线和S极磁极中心线组成的多条磁极中心线。
两个第一定位通孔和另一个第一定位通孔分别位于第一磁极中心线4和第二磁极中心线6上。第一磁极中心线4和第二磁极中心线6为多条磁极中心线中极性不同的两条磁极中心线。两个第二定位通孔分别设置在第一偏离线8和第二偏离线9上。第一偏离线8和第二偏离线9为贯穿冲片本体31中心的直线,分别位于第三磁极中心线5的两侧,且与第三磁极中心线5形成相同预设角度的夹角。第三磁极中心线5为多条磁极中心线之一且不同于第一磁极中心线4和第二磁极中心线6。另一个第二定位通孔位于第四磁极中心线7上,第四磁极中心线7为多条磁极中心线之一,不同于第一磁极中心线4和第二磁极中心线6,且与第三磁极中心线5的极性相反。
第一偏离线8和第二偏离线9相对于第三磁极中心线5偏离方向相反。图3中将第一偏离线8和第二偏离线9相对于第三磁极中心线5偏离的预设 角度标为β,β可为范围在1.5°-5°中任一值,具体地,例如可以为1.5°、2°、3°、4°或5°。
在一种具体的实施方案中,磁钢固定槽10的数量为2n个,n≥4,且n为正整数。
图4示出了根据本发明一个实施例的分段斜极的电机转子的示意性分解图。图5示出了根据本发明一个实施例的分段斜极的电机转子的示意性结构图。如图4和图5所示,该电机转子包括转轴2和套设在转轴2上的转子铁芯组,转子铁芯组包括多个转子铁芯,每个转子铁芯由多个转子冲片3叠压而成。转子铁芯组中转子铁芯的数量为2m个,m≥4,且m为正整数。需要说明的是,m与n之间不存在对应关系。
各转子铁芯中叠压在一起的转子冲片3的各定位通孔对齐组成该转子铁芯的安装孔。转子铁芯组中的转子铁芯按顺序分成数量相同的第一铁芯组和第二铁芯组,任意相邻两个转子铁芯通过直径不同且与转子冲片的中心的距离相同的安装孔对齐固定,且使第一铁芯组中每相邻两个转子铁芯之间具有第一预设斜极角,第二铁芯组中每相邻两个转子铁芯之间具有第二预设斜极角,第二预设斜极角与第一斜极角的角度值相同但符号相反,从而形成分段斜级结构。
该安装孔包括与转子冲片的第一定位通孔对应的第一安装孔以及与转子冲片的第二定位通孔对应的第二安装孔。转子铁芯组中相邻两个转子铁芯的其中一个转子铁芯的其中一个第一安装孔与另一个转子铁芯的其中一个第二安装孔对齐,并通过紧固件17固定,其中,对齐的第一安装孔和第二安装孔至转子冲片的中心的距离相等。
本发明还提供了一种电机,该电机包括前述的电机转子。
根据本发明实施例的方案,通过合理设计转子冲片3的结构形式,即在转子冲片3上设置多个磁钢固定槽10、至少三个第一定位通孔以及至少三个第二定位通孔,并使各第一定位通孔和各第二定位通孔布置在相应的位置上,使得在利用该转子冲片3组成转子铁芯组时,仅通过不同定位通孔定位各转子铁芯的位置即可形成不同的斜极角。如此,使得该转子冲片3具有较强的通用性,可以仅使用同一转子冲片3模具制造电机转子的转子铁芯,简化模具结构,降低模具开发以及制造成本。
以下以具体实施例来详细说明:
实施例一:
如图3所示,在本实施例的转子冲片3的结构中,每个磁钢固定槽10由第一磁钢槽101和第二磁钢槽102组成,第一磁钢槽101的尺寸大于第二磁钢槽102的直径。每个磁钢固定槽10中固定的磁体(具体为磁钢)的中心与转子冲片3的冲片本体31的中心之间形一条磁极中心线,相邻两个磁钢所形成的磁极是极性相反的,即相邻两个磁极必然是一个N极和一个S极。
第一磁极中心线4、第二磁极中心线6、第三磁极中心线5和第四磁极中心线7为相邻的四条磁极中心线,第二磁极中心线6位于第一磁极中心线4和第三磁极中心线5之间,第三磁极中心线5位于第二磁极中心线6和第四磁极中心线7之间。第一磁极中心线4和第三磁极中心线5为S极磁极中心线,第二磁极中心线6和第四磁极中心线7为N极磁极中心线,或者第一磁极中心线4和第三磁极中心线5为N极磁极中心线,第二磁极中心线6和第四磁极中心线7为S极磁极中心线。
两个第一定位通孔设置在第一磁极中心线4上,另一个第一定位通孔设置在第二磁极中心线6上。两个第二定位通孔分别设置在第一偏离线8和第二偏离线9上,第一偏离线8和第二偏离线9为贯穿冲片本体31中心的直线,分别位于第三磁极中心线5的两侧,且与第三磁极中心线5形成相同预设角度的夹角β。另一个第二定位通孔设置在第四磁极中心线7上。夹角β的角度在1.5°-5°范围内,例如为1.5°、2°、3°、4°或5°。
转子冲片3包括位于冲片本体31中心的转轴孔32。以位于第一磁极中心线4上的两个第一定位通孔分别为第一工艺孔11和第二工艺孔12,位于第二磁极中心线6上的第一定位通孔为第三工艺孔13。第一工艺孔11的中心位于第一磁极中心线4和与转轴孔32同心的第一圆环(图中未示出)的交叉点处,第一圆环的直径大于转轴孔32的直径。第二工艺孔12的中心位于第一磁极中心线4和与转轴孔32同心的第二圆环(图中未示出)的交叉点处,第二圆环的直径小于第一圆环的直径且大于转轴孔32的直径。第三工艺孔13的中心位于第二磁极中心线6和第一圆环的交叉点处。以位于第一偏离线8的第二定位通孔为第四工艺孔14,位于第二偏离线9的第二定位通孔为第五工艺孔15,位于第四磁极中心线7上的第二定位通孔为第六工艺孔16。第四工艺孔14的中心位于第一偏离线8和第一圆环的交叉点处。第 五工艺孔15的中心位于第二偏离线9和第二圆环的交叉点处。第六工艺孔16的中心位于第四磁极中心线7和第一圆环的交叉点处。
如图4和图5所示,本发明实施例还提供了一种电机转子,该电机转子包括转子铁芯组,该转子铁芯组中转子铁芯的数量为8个,即m=4,每个转子铁芯中磁极的数量为8个,即n=4。转子铁芯由多个前述的转子冲片3叠压而成。该转子铁芯组中所有转子铁芯的转子冲片3使用同一模具制造而成。
如图4所示,该转子铁芯组中任意相邻两个转子铁芯通过紧固件17紧固。图6示出了根据本发明实施例一的紧固件的示意性结构图。该紧固件17具有直径为d 3的第一端171和直径为d 4的第二端172,其中,d 4<d 3。该紧固件17设置成使其第一端171***相邻两个转子铁芯的其中一个转子铁芯的其中一个第一安装孔中,并使其第二端172***相邻两个转子铁芯的另一个转子铁芯中的其中一个第二安装孔中,从而实现该相邻两个转子铁芯的固定。
该紧固件17的第一端171的长度为L 1,d 3≤L 1≤3d 3。该紧固件17的第二端172的长度为L 2,d 4≤L 2≤3d 4。具体地,该紧固件17例如可以为定位销。
以下以利用该八极转子铁芯实现八段转子铁芯的斜极为例进行说明,该八段转子铁芯依次为第一转子铁芯18、第二转子铁芯19、第三转子铁芯20、第四转子铁芯21、第五转子铁芯22、第六转子铁芯23、第七转子铁芯24和第八转子铁芯25。具体实现方法如下:
1)将一紧固件17的第一端171压入第一转子铁芯18的第四工艺孔14中,并将第一转子铁芯18以过盈连接的方式压入转轴2;
2)将第二转子铁芯19的第一工艺孔11对准第一转子铁芯18上的紧固件17的第二端172,将该紧固件17的第二端172压入第二转子铁芯19的第一工艺孔11中并将第二转子铁芯19压入转轴2,将另一紧固件17的第二端172压入第二转子铁芯19的第四工艺孔14中;
3)将第三转子铁芯20的第一工艺孔11对准第一转子铁芯19上的紧固件17的第一端171,将该紧固件17的第一端171压入第三转子铁芯20的第一工艺孔11中并将第三转子铁芯20压入转轴2,将另一紧固件17的第二端172压入第三转子铁芯20的第四工艺孔14中;
4)将第四转子铁芯21的第一工艺孔11对准第三转子铁芯20上的紧固 件17的第一端171,将该紧固件17的第一端171压入第四转子铁芯21的第一工艺孔11中并将第四转子铁芯21压入转轴2,将另一紧固件17的第二端172压入第四转子铁芯21的第六工艺孔16中;
5)将第五转子铁芯22的第三工艺孔13对准第四转子铁芯21上的紧固件17的第一端171,将该紧固件17的第一端171压入第五转子铁芯22的第三工艺孔13中并将第五转子铁芯22压入转轴2,将另一紧固件17的第二端172压入第五转子铁芯22的第五工艺孔15中;
6)将第六转子铁芯23的第二工艺孔12对准第五转子铁芯22上的紧固件17的第一端171,将该紧固件17的第一端171压入第六转子铁芯23的第二工艺孔12中并将第六转子铁芯23压入转轴2,将另一紧固件17的第二端172压入第六转子铁芯23的第五工艺孔15中;
7)将第七转子铁芯24的第二工艺孔12对准第六转子铁芯23上的紧固件17的第一端171,将该紧固件17的第一端171压入第七转子铁芯24的第二工艺孔12中并将第七转子铁芯24压入转轴2,将另一紧固件17的第二端172压入第七转子铁芯24的第五工艺孔15中;
8)将第八转子铁芯25的第二工艺孔12对准第七转子铁芯24上的紧固件17的第一端171,将该紧固件17的第一端171压入第八转子铁芯25的第二工艺孔12中并将第七转子铁芯24压入转轴2;
9)把所有转子铁芯压入转轴2直到底部,并使铁芯之间完全贴合,实现八段转子铁芯的斜极。
该转子铁芯组中各个转子铁芯在组装在一起时,各转子铁芯的毛刺面在同一方向。
本发明实施例的方案,通过使得第一磁极中心线4、第二磁极中心线6、第三磁极中心线5和第四磁极中心线7为相邻的四条磁极中心线,从而便于后续转子铁芯组中各个转子铁芯之间的装配。
进一步地,通过合理布置第一定位通孔、第二定位通孔的具***置,使各第一定位通孔和第二定位通孔位于不同的两个圆环上,在实现电机转子的分段斜极的基础上,布置更加具有规律性,有利于动平衡,且结构合理美观。
进一步地,通过使得相邻两个转子铁芯中其中一个转子铁芯的第一定位通孔与另一个转子铁芯的第二定位通孔对齐,并使相邻两个转子铁芯之间具有预设斜极角,从而在不翻转铁芯的情况下实现转子铁芯的固定以及转子的 分段斜极,并且由于无需翻转铁芯,从而可以使得各个转子铁芯的毛刺面在同一方向上,避免多个转子铁芯在压装时产生缝隙。
进一步地,该转轴2无需开设键槽,极大降低键槽开设成本。
实施例二:
该实施例二与实施例一的区别在于,每个转子铁芯的磁极数量为8个,该转子铁芯组中转子铁芯的数量为10个、12个、14个或16个,也可以为大于16的偶数个。或者,每个转子铁芯的磁极数量为2n个,n≥5,该转子铁芯组中转子铁芯的数量为10个、12个、14个或16个,也可以为大于16的偶数个。
该转子铁芯组中各个转子铁芯在组装在一起时,各转子铁芯的毛刺面在同一方向,且相邻两个转子铁芯中其中一个第一定位通孔与另一转子铁芯中其中一个第二定位通孔对齐,并保证该对齐的第一定位通孔和第二定位通孔所位于的磁极中心线或所靠近的磁极中心线(此相对位于第一偏离线和第二偏离线上的第二定位通孔而言)的极性相同。
实施例三:
该实施例三与实施例一的区别在于,该转子冲片3还包括至少一个减重孔,各减重孔分别位于多条磁极中心线中的一条磁极中心线上。该减重孔的形状构造成与位于第二磁极中心线6的第一定位通孔和/或位于第四磁极中心线7的第二定位通孔的形状不同;或者所述减重孔的大小构造成与所述第一定位通孔和/或所述第二定位通孔的大小不同;或者所述减重孔的形状以及大小构造成与所述第一定位通孔和/或所述第二定位通孔的形状以及大小均不同。如图3所示,该减重孔的数量为两个,分别为第一减重孔26和第二减重孔27。该第一减重孔26位于第二磁极中心线6上,且其中心位于第二磁极中心线6和第二圆环的交叉点处。该第二减重孔27位于第四磁极中心线7上,且其中心位于第四磁极中心线7和第二圆环的交叉点处。
该第一减重孔26的形状设置为与第三工艺孔13的形状相同,但尺寸小于第三工艺孔13,该第二减重孔27的形状设置为与第六工艺孔16的形状相同,但尺寸小于第六工艺孔16。或者,该第一减重孔26的形状设置为与第三工艺孔13的形状不同,该第二减重孔27的形状设置为与第六工艺孔16的形状不同。或者,该第一减重孔26的形状以及大小设置为与第三工艺孔13的形状以及大小均不同,该第二减重孔27的形状以及大小设置为与第六 工艺孔16的形状以及大小均不同。由此,可以明显区别出工艺孔和减重孔,从而避免在安装紧固件17时出现安装错误。
通过设置减重孔,可以减小转子铁芯的重量。并且,将第一减重孔26和第二减重孔27的位置设置如上,在减重的同时可以保证转子铁芯的对称性以及美观性。
实施例四:
该实施例四的技术方案与实施例一或实施例三的区别在于,该转子冲片3还包括多个减重槽28,多个减重槽28围绕冲片本体31的中心(具体为转轴孔32)周向均匀布置,每个减重槽28位于相邻两条磁极中心线之间。该减重槽28的形状与各个工艺孔的形状不同。
通过设置减重槽28,可以减小转子铁芯的重量。并且,将多个减重槽28围绕冲片中心周向布置,在减重的同时可以保证转子铁芯的对称性以及美观性。
实施例五:
该实施例五的技术方案与实施例一、实施例三或实施例四的区别在于,该转子冲片3还包括分别与至少三个直径为d 1的第一定位通孔对应的至少三个直径为d 1的第三定位通孔以及分别与至少三个直径为d 2的第二定位通孔对应的至少三个直径为d 2的第四定位通孔。每个第三定位通孔与对应的第一定位通孔关于冲片本体31的中心对称。每个第四定位通孔与对应的第二定位通孔关于冲片本体31的中心对称。通过对称设计,提高转子铁芯的动平衡性能。
实施例六:
该实施例六与实施例一的区别在于,第三工艺孔13的中心位于第二磁极中心线6和第二圆环的交叉点处。第四工艺孔14的中心位于第一偏离线8和第二圆环的交叉点处。第五工艺孔15的中心位于第二偏离线9和第一圆环的交叉点处。第六工艺孔16的中心位于第四磁极中心线7和第二圆环的交叉点处。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。 因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (16)

  1. 一种转子冲片,包括:
    冲片本体;
    偶数个磁钢固定槽,均匀排列在所述冲片本体的外周缘;
    多个磁体,包括数量相同的N极磁体和S极磁体,所述N极磁体和所述S极磁体交替安装在所述磁钢固定槽内,形成由数量相同且相互交替的N极磁极中心线和S极磁极中心线组成的多条磁极中心线;
    至少三个直径为d 1的第一定位通孔,其中两个所述第一定位通孔位于第一磁极中心线,另一个所述第一定位通孔位于第二磁极中心线上,所述第一磁极中心线和所述第二磁极中心线为所述多条磁极中心线中极性不同的两条磁极中心线;
    至少三个直径为d 2的第二定位通孔,其中d 2<d 1,其中两个所述第二定位通孔分别设置在第一偏离线和第二偏离线上,所述第一偏离线和所述第二偏离线为贯穿所述冲片本体的中心的直线,分别位于第三磁极中心线的两侧,且与所述第三磁极中心线形成相同预设角度的夹角,所述第三磁极中心线为所述多条磁极中心线之一且不同于所述第一磁极中心线和所述第二磁极中心线;另一个所述第二定位通孔位于第四磁极中心线上,所述第四磁极中心线为所述多条磁极中心线之一,不同于所述第一磁极中心线和所述第二磁极中心线,且与所述第三磁极中心线的极性相反。
  2. 根据权利要求1所述的转子冲片,其中,所述磁钢固定槽的数量为2n个,n为大于或等于4的整数。
  3. 根据权利要求2所述的转子冲片,其中,所述第一磁极中心线、所述第二磁极中心线、所述第三磁极中心线和所述第四磁极中心线为相邻的四条磁极中心线。
  4. 根据权利要求2所述的转子冲片,其中,还包括位于所述冲片本体的中心的转轴孔;
    所述第一磁极中心线上的其中一个所述第一定位通孔与所述第二磁极中心线上的所述第一定位通孔均位于与所述转轴孔同心的第一圆环上;
    所述第一磁极中心线上的另一个所述第一定位通孔位于与所述转轴孔同心的第二圆环上,所述第一圆环的直径与第二圆环的直径不同。
  5. 根据权利要求4所述的转子冲片,其中,所述第一偏离线和所述第四磁极中心线上的所述第二定位通孔均位于所述第一圆环和所述第二圆环中的其中一个圆环上,所述第二偏离线上的所述第二定位通孔位于所述第一圆环和所述第二圆环中的另一个圆环上。
  6. 根据权利要求1-5中任一项所述的转子冲片,其中,还包括:
    分别与至少三个直径为d 1的所述第一定位通孔对应的至少三个直径为d 1的第三定位通孔,每个所述第三定位通孔与对应的所述第一定位通孔关于所述冲片本体的中心对称;
    分别与至少三个直径为d 2的所述第二定位通孔对应的至少三个直径为d 2的第四定位通孔,每个所述第四定位通孔与对应的所述第二定位通孔关于所述冲片本体的中心对称。
  7. 根据权利要求1-5中任一项所述的转子冲片,其中,所述预设角度在1.5°-5°范围内。
  8. 根据权利要求1-5中任一项所述的转子冲片,其中,还包括:
    至少一个减重孔,各所述减重孔分别位于所述多条磁极中心线中的一条磁极中心线上;
    其中,所述减重孔的形状构造成与所述第一定位通孔和/或所述第二定位通孔的形状不同;或者
    所述减重孔的大小构造成与所述第一定位通孔和/或所述第二定位通孔的大小不同;或者
    所述减重孔的形状以及大小构造成与所述第一定位通孔和/或所述第二定位通孔的形状以及大小均不同。
  9. 根据权利要求1-5中任一项所述的转子冲片,其中,还包括:
    多个减重槽,围绕所述冲片本体的中心沿周向均匀布置,每个所述减重槽均位于相邻两条磁极中心线之间。
  10. 一种分段斜极的电机转子,包括转轴和套设在所述转轴上的转子铁芯组,所述转子铁芯组包括分段斜极压装的多个转子铁芯,每个所述转子铁芯由多个相同的如权利要求1-9中任一项所述的转子冲片叠压而成。
  11. 根据权利要求10所述的电机转子,其中,所述转子铁芯的数量为2m个,m为大于或等于4的整数;
    各所述转子铁芯中叠压在一起的所述转子冲片的各定位通孔对齐组成 该转子铁芯的安装孔;
    所述转子铁芯组中的转子铁芯按顺序分成数量相同的第一铁芯组和第二铁芯组,任意相邻两个所述转子铁芯通过直径不同且与所述转子冲片的中心的距离相同的安装孔对齐固定,且使所述第一铁芯组中每相邻两个所述转子铁芯之间具有第一预设斜极角,所述第二铁芯组中每相邻两个所述转子铁芯之间具有第二预设斜极角,所述第二预设斜极角与所述第一斜极角的角度值相同但符号相反。
  12. 根据权利要求11所述的电机转子,其中,所述安装孔包括与所述转子冲片的所述第一定位通孔对应的第一安装孔以及与所述转子冲片的所述第二定位通孔对应的第二安装孔;
    所述转子铁芯组中相邻两个所述转子铁芯的其中一个转子铁芯的其中一个第一安装孔与另一个转子铁芯的其中一个第二安装孔对齐,并通过紧固件固定,其中,对齐的所述第一安装孔和所述第二安装孔至所述转子冲片的中心的距离相等。
  13. 根据权利要求12所述的电机转子,其中,所述紧固件为台阶轴状,具有直径为d 3的第一端和直径为d 4的第二端,其中,d 4<d 3
    所述紧固件的所述第一端构造成与所述第一安装孔过盈配合;
    所述紧固件的所述第二端构造成与所述第二安装孔过盈配合。
  14. 根据权利要求13所述的电机转子,其中,所述紧固件的所述第一端的长度为L 1,d 3≤L 1≤3d 3
    所述紧固件的所述第二端的长度为L 2,d 4≤L 2≤3d 4
  15. 根据权利要求13或14所述的电机转子,其中,所述紧固件设置成使其第一端***相邻两个转子铁芯的其中一个转子铁芯的其中一个第一安装孔中,并使其第二端***相邻两个转子铁芯的另一个转子铁芯中的其中一个第二安装孔中,从而实现该相邻两个转子铁芯的固定。
  16. 一种电机,包括如权利要求10-15中任一项所述的电机转子。
PCT/CN2021/081317 2021-03-17 2021-03-17 一种转子冲片、分段斜极的电机转子及电机 WO2022193175A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21930769.1A EP4280428A1 (en) 2021-03-17 2021-03-17 Rotor punching sheet, step-skew motor rotor, and motor
CN202180074658.5A CN116391314A (zh) 2021-03-17 2021-03-17 转子冲片、分段斜极的电机转子及电机
PCT/CN2021/081317 WO2022193175A1 (zh) 2021-03-17 2021-03-17 一种转子冲片、分段斜极的电机转子及电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081317 WO2022193175A1 (zh) 2021-03-17 2021-03-17 一种转子冲片、分段斜极的电机转子及电机

Publications (1)

Publication Number Publication Date
WO2022193175A1 true WO2022193175A1 (zh) 2022-09-22

Family

ID=83321809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081317 WO2022193175A1 (zh) 2021-03-17 2021-03-17 一种转子冲片、分段斜极的电机转子及电机

Country Status (3)

Country Link
EP (1) EP4280428A1 (zh)
CN (1) CN116391314A (zh)
WO (1) WO2022193175A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236639A (ja) * 1999-02-16 2000-08-29 Toshiba Tec Corp 回転子およびブラシレスモータ並びに電動送風機
CN102545425A (zh) * 2010-12-28 2012-07-04 中山大洋电机股份有限公司 一种扭斜磁条的转子组件结构
CN203774914U (zh) * 2014-02-10 2014-08-13 珠海格力节能环保制冷技术研究中心有限公司 永磁转子
CN106712351A (zh) * 2017-02-17 2017-05-24 安徽美芝制冷设备有限公司 压缩机的转子组件、压缩机的电机组件及压缩机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236639A (ja) * 1999-02-16 2000-08-29 Toshiba Tec Corp 回転子およびブラシレスモータ並びに電動送風機
CN102545425A (zh) * 2010-12-28 2012-07-04 中山大洋电机股份有限公司 一种扭斜磁条的转子组件结构
CN203774914U (zh) * 2014-02-10 2014-08-13 珠海格力节能环保制冷技术研究中心有限公司 永磁转子
CN106712351A (zh) * 2017-02-17 2017-05-24 安徽美芝制冷设备有限公司 压缩机的转子组件、压缩机的电机组件及压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAN, RONG: "A Method of a Manufacturing Rotor Assembly for a Permanent Magnet Motor", MANUFACTURING TECHNOLOGY & MACHINE TOOL, no. 5, 31 May 2014 (2014-05-31), pages 111 - 113, XP009539789, ISSN: 1005-2402 *

Also Published As

Publication number Publication date
CN116391314A (zh) 2023-07-04
EP4280428A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
CN203850942U (zh) 单一冲片构成的分四段斜极永磁电机转子
US8102092B2 (en) Split cores for motor stator, motor stator, permanent magnet type synchronous motor and punching method by split core punching die
CN102684337B (zh) 分段斜极式永磁同步电机转子
US20070247015A1 (en) Rotor having lobed bore and method of assembling same
CN105529852A (zh) 一种内置式永磁电机转子结构及具有其的电机
CN107294243B (zh) 低转矩波动内置式永磁电机转子及优化电机磁密的方法
JPH02111238A (ja) 永久磁石形同期電動機
EP2779386A2 (en) Interior permanent magnet motor with shifted rotor laminations
WO2023284219A1 (zh) 一种车用永磁电机转子冲片及其斜极结构
CN111769670A (zh) 一种分段斜极电机的转子铁芯和永磁同步电机
CN110022016A (zh) 一种转子芯片及其转子和电机
CN206149053U (zh) 一种错极永磁转子
CN105932846B (zh) 一种低转矩脉动永磁同步电机转子结构
CN214205130U (zh) 永磁同步电机转子
WO2022193175A1 (zh) 一种转子冲片、分段斜极的电机转子及电机
CN113507177A (zh) 一种内置式分段等效转子斜极结构
CN215911958U (zh) 一种电机转子、驱动电机和电动汽车
CN219499060U (zh) 一种低速永磁同步电机的定转子结构
CN111953100A (zh) 适用于任意分段斜极的电机转子设计方法及电机转子
CN219717972U (zh) 一种永磁同步电机转子冲片
CN217159394U (zh) 一种无键槽可斜极的永磁电机转子冲片结构
CN217388351U (zh) 一种斜极转子铁芯和斜极转子
CN112152350A (zh) 转子、马达以及驱动装置
CN213521423U (zh) 电机、机床
CN211859751U (zh) 一种电机转子总成及电机转子斜极结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021930769

Country of ref document: EP

Effective date: 20230817

NENP Non-entry into the national phase

Ref country code: DE