WO2022191262A1 - 新規ホウ素薬剤 - Google Patents

新規ホウ素薬剤 Download PDF

Info

Publication number
WO2022191262A1
WO2022191262A1 PCT/JP2022/010452 JP2022010452W WO2022191262A1 WO 2022191262 A1 WO2022191262 A1 WO 2022191262A1 JP 2022010452 W JP2022010452 W JP 2022010452W WO 2022191262 A1 WO2022191262 A1 WO 2022191262A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
boron
compound
formula
represented
Prior art date
Application number
PCT/JP2022/010452
Other languages
English (en)
French (fr)
Inventor
浩之 中村
大輝 盛田
智 岡田
開 西村
信司 川端
昌彦 鰐渕
祐介 福尾
秀基 柏木
Original Assignee
国立大学法人東京工業大学
学校法人大阪医科薬科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 学校法人大阪医科薬科大学 filed Critical 国立大学法人東京工業大学
Priority to JP2023505620A priority Critical patent/JPWO2022191262A1/ja
Publication of WO2022191262A1 publication Critical patent/WO2022191262A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/69Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting

Definitions

  • the present invention relates to a boron drug for boron neutron capture therapy and a PET (Positron Emission Tomography) imaging agent for predicting the effect of this boron drug for boron neutron capture therapy.
  • BPA Boron neutron capture therapy
  • Patent Document 1 As candidates for boron drugs to replace BPA, the present inventors have developed a conjugate (Patent Document 1) in which boron clusters and albumin are bound by maleimide and folic acid receptors that are highly expressed in many cancer cells. Targeted folic acid derivatives (Patent Document 2) have been developed.
  • the above boron drug developed by the present inventor is expected to have a high antitumor effect, but the development of a new boron drug is desired for more effective cancer treatment.
  • the present invention has been made under such a background, and an object of the present invention is to provide a novel boron agent for BNCT.
  • the BNCT drug labeled with 18 F is administered and examined by PET to predict the effect of the drug.
  • Another object of the present invention is to provide such a drug for PET.
  • the present inventor found that the anti-tumor effect of boron drugs can be improved by binding boron to albumin ligands.
  • the present inventors have found that the antitumor effect of the boron drug can be further improved by binding a folic acid receptor recognition site to the boron drug.
  • the present invention has been completed based on these findings.
  • the present invention provides the following (1) to (12).
  • (1) Formula (I) or (II) below [Wherein, C represents a carbon atom, L 1 , L 2 , L 3 and L 4 each independently represents a divalent group that functions as a spacer, and X represents a group that binds to albumin. , Y represents a group containing 10 B, and Z represents a group that binds to the folate receptor. ]
  • a boron agent for boron neutron capture therapy characterized by containing a compound represented by:
  • L 1 , L 2 , L 3 and L 4 in formulas (I) and (II) are alkylene groups (provided that one or more -CH 2 - of the alkylene group is -O-, -S- , -NH-, or -CO-).
  • X in formulas (I) and (II) is represented by the following formulas (A) to (C) (Wherein, * represents a binding site, and R represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.)
  • Z in formula (II) is the following formula (D) (In the formula, * represents a binding site.)
  • a PET imaging agent comprising a compound represented by:
  • L 5 , L 6 , L 8 , L 9 and L 10 in formulas (III) and (IV) are alkylene groups (provided that one or more -CH 2 - of the alkylene group is -O-, - optionally substituted with S-, -NH-, or -CO-), and L 7 is an alkylene group (provided that one or more -CH 2 - of the alkylene group is -O-, -S -, -NH-, or -CO-, and -CH 2 - in 1 of the alkylene group may be substituted with a divalent group formed by a click reaction.
  • the PET imaging agent according to (7) characterized by:
  • X in formulas (III) and (IV) is represented by the following formulas (A) to (C) (Wherein, * represents a binding site, and R represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.)
  • Z in formula (IV) is the following formula (D) (In the formula, * represents a binding site.)
  • the compound represented by the formula (IV) is represented by the following formula (IVa)
  • the PET imaging agent according to (7) which is a compound represented by:
  • the present invention provides a novel boron drug used in BNCT and a novel PET imaging agent for predicting the effects of this boron drug.
  • Fig. 2 shows the effect of BNCT treatment of PBC-IP on malignant glioblastoma cell (F98 and C6)-implanted rat brain tumor models.
  • the present invention will be described in detail below.
  • the boron agent for BNCT of the present invention has the following formula (I) or (II). It is characterized by containing a compound represented by.
  • BNCT boron neutron capture therapy
  • a neutron beam is irradiated to a patient who has been given a boron agent in advance.
  • the "boron drug for BNCT" in the present invention means the boron drug used in this BNCT.
  • X in formulas (I) and (II) is not particularly limited as long as it is a group that binds to albumin, but a group that non-covalently binds to albumin is preferred. This is because if the boron drug is covalently bound to albumin, the boron drug may not be released within the tumor and may not exhibit sufficient efficacy.
  • Many groups that bind to albumin and groups that non-covalently bind to albumin are known, and in the present invention, such known groups can be appropriately selected and used.
  • group that non-covalently binds to albumin include an iodobutyrate group represented by formula (A) below, a group contained in Evans blue represented by formula (B) below, and a group represented by formula (C) below.
  • the group shown in can be mentioned.
  • Y in formulas (I) and (II) is not particularly limited as long as it is a group containing 10 B, and may be a group derived from a compound having one boron atom in the molecule such as BPA. Groups derived from clusters are preferred.
  • Boron clusters can be of any polyhedral structure that can be used in boron neutron capture therapy, such as closododecaborate ([B 12 H 12 ] 2- ), ionic 11 H 12 ] - ), fat-soluble closocarborane ([C 2 B 10 H 12 ]), nidocarborane ([C 2 B 9 H 11 ] - ), bisdicarbolide metal complex ([(C 2 B 9 H 11 ) 2 M ]), GB10 ([B 10 H 12 ] 2- ), and the like.
  • closododecaborate [B 12 H 12 ] 2-
  • ionic 11 H 12 ] - fat-soluble closocarborane
  • nidocarborane [C 2 B 9 H 11 ] -
  • bisdicarbolide metal complex [(C 2 B 9 H 11 ) 2 M ]
  • GB10 [B 10 H 12 ] 2-
  • Boron clusters are preferably water-soluble boron clusters such as closododecaborate, ionic closocarborane, nidocarborane, GB10 and the like. All of the boron atoms contained in the boron cluster may be 10B , or only a portion thereof may be 10B .
  • the expression "derived group” such as "a group derived from a boron cluster” is used, which means, for example, removing one hydrogen atom in the boron cluster means a group derived from
  • Z in formula (II) is not particularly limited as long as it is a group that binds to a folate receptor.
  • a large number of groups that bind to folic acid receptors are known, and in the present invention, such known groups can be appropriately selected and used.
  • Specific examples of groups that bind to folate receptors include groups contained in folic acid represented by the following formula (D).
  • boron drug By using a compound that has a group that binds to folate receptors as a boron drug, it becomes possible for the boron drug to be taken up by cancer cells via the folate receptors that are highly expressed in many cancer cells. Become.
  • BPA a known boron drug, is taken up by cells through an amino acid transporter called LAT-1, and the expression of this LAT-1 is decreased in BPA-insensitive cancers.
  • Compounds with a group that binds to folate receptors are taken up by cancer cells not through LAT-1, so they are also effective against BPA-insensitive cancers.
  • the group that binds to the folate receptor is for uptake into cancer cells, but as shown in Example 6, having such a group improves the binding to albumin. As a result, the retention in blood is improved, and the delivery to cancer cells is also improved.
  • L 1 , L 2 , L 3 , and L 4 in formulas (I) and (II) are not particularly limited as long as they are divalent groups that function as spacers, but they are linear divalent groups. is preferred, and an alkylene group is more preferred. However, one or more -CH 2 - in the alkylene group may be substituted with -O-, -S-, -NH- or -CO-.
  • the number of carbon atoms in the alkylene group is the distance between the group that binds to albumin and the group containing 10B , or the group that binds to albumin, the group containing 10B , and the group that binds to the folate receptor.
  • L 3 is preferably 5-20, more preferably 10-15, and L 4 is preferably 2-10, more preferably 3-8.
  • L 4 is preferably 2-10, more preferably 3-8.
  • -CH 2 - in the alkylene group is substituted with -O-, -S-, or -NH-, these groups are assumed to have one carbon. ” to include.
  • L 1 examples include -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -NH-CH 2 -CH 2 -O-CH contained in the compound represented by formula (Ia) 2 -CH 2 -O- and a divalent group having a similar length can be mentioned, and a specific example of L 2 is -CH 2 - contained in the compound represented by formula (IIa).
  • L 3 are those of the formula (IIa) -NH-CO- CH2 - CH2 -CO-NH- CH2 - CH2 -O- CH2 - CH2 -O- contained in the compound represented by Specific examples of L 4 include -CH 2 -CH 2 -CH 2 -CH 2 - contained in the compound represented by formula (IIa) and having a similar length Divalent groups may be mentioned.
  • the compounds represented by formula (I) or (II) can be synthesized according to the methods described in the Examples, or according to methods obtained by appropriately modifying or modifying those methods with reference to the descriptions. .
  • a compound represented by formula (I) can be synthesized, and a compound having a group that binds to albumin and 10B
  • a compound represented by formula (II) can be synthesized by combining a compound having a group containing and then combining a compound having a group that binds to a folate receptor.
  • the boron drug for BNCT of the present invention is administered to humans or non-human animals.
  • Animals other than humans include, for example, mice, rats, hamsters, rabbits, cats, dogs, cows, sheep, and monkeys.
  • malignant tumors such as brain tumor, malignant melanoma, head and neck cancer, lung cancer, liver cancer, thyroid cancer, skin cancer, bladder cancer, mesothelioma, pancreatic cancer, breast cancer, meningioma, and sarcoma. can be mentioned, but are not limited to these.
  • BPA-insensitive patients are not particularly limited, but BPA-insensitive patients are preferred.
  • the term "BPA-insensitive patient” refers to a patient with a low accumulation of BPA in tumor cells.
  • PET diagnosis using 18 F-BPA is usually performed to estimate the amount of BPA accumulated in tumor cells.
  • Boron neutron capture therapy is recommended for patients with a blood concentration ratio of 2.5 (or 3) or more. Therefore, in the present invention, in the above-described PET diagnosis, a patient whose tumor/normal tissue ratio, tumor/blood concentration ratio, or both is less than 3 or less than 2.5 is referred to as a "BPA-insensitive patient.” can do.
  • the boron drug for BNCT of the present invention can be formulated by mixing with a pharmaceutically acceptable carrier or diluent according to known methods.
  • the dosage form is not particularly limited, and may be injections, tablets, powders, granules, capsules, liquids, suppositories, sustained-release preparations, and the like.
  • the method of administration is also not particularly limited, and can be administered orally or parenterally. Examples of parenteral administration methods include intradermal, intraperitoneal, intravenous, arterial, or spinal fluid injection or drip infusion.
  • topical administration by CED Convection Enhanced Delivery
  • the dosage varies depending on the subject of administration, the administration method, etc.
  • the formula (I) when administering the compound represented by formula (I) or (II) as an injection to an adult, the formula (I) Alternatively, the compound represented by (II) can be administered in 1 to several divided doses per treatment so that the dose is 5 to 1000 mg/kg. Also, before administering the boron agent for BNCT of the present invention, the PET imaging agent of the present invention described later is administered, and based on the biodistribution and temporal change of the compound represented by formula (III) or (IV) may be used to determine dosage.
  • the boron drug for BNCT of the present invention may be used in combination with known boron drugs for BNCT (eg, BPA, BSH).
  • BPA known boron drugs for BNCT
  • FIG. 7(A) when the boron drug for BNCT (PBC-IP) of the present invention is used in combination with BPA, the effect of prolonging the survival period is further improved. , BPA is preferred.
  • the boron drug for BNCT of the present invention can bind to albumin, it can also be bound to albumin before administration and administered as an albumin complex.
  • Imaging agent for PET has the following formula (III) or (IV). It is characterized by containing a compound represented by.
  • the compounds of formulas (III) and (IV) are analogous to the compounds of formulas (I) and (II), respectively, except that they are labeled with 18 F, thus the formula ( From the biodistribution and temporal changes of the compounds represented by III) and (IV), it is possible to estimate the biodistribution and temporal changes of the compounds represented by formulas (I) and (II).
  • administering a compound of formula (III) or (IV) to a patient determines whether the patient is susceptible to the compounds of formulas (I) and (II), or It is possible to estimate how much of the compounds represented by (I) and (II) should be administered to obtain an anticancer effect.
  • X, Y, and Z in formulas (III) and (IV) can be exemplified by the same groups as X, Y, and Z in formulas (I) and (II).
  • L 5 , L 6 , L 7 , L 8 , L 9 and L 10 in formulas (III) and (IV) are not particularly limited as long as they are divalent groups that function as spacers. is preferably a group, more preferably an alkylene group. However, in L 5 , L 6 , L 8 , L 9 and L 10 , one or more -CH 2 - of the alkylene group is substituted with -O-, -S-, -NH- or -CO-.
  • one or more -CH 2 - of the alkylene group in L 7 may be substituted with -O-, -S-, -NH-, or -CO-, and one -CH 2 of the alkylene group - may be substituted with a divalent group formed by a click reaction.
  • the divalent group formed by the click reaction is, for example, a divalent group formed by reacting an alkyne and an azide group.
  • a number of divalent groups formed by a click reaction and divalent groups formed by the reaction of an alkyne and an azide group are known, and in the present invention, such known groups are appropriately selected and used. can do.
  • Examples of the divalent group formed by reacting an alkyne with an azide group include a divalent group formed by reacting a bicyclononine contained in the compound represented by formula (IVa) with an azide group.
  • the number of carbon atoms in the alkylene group is the distance between the group that binds to albumin, the group containing 10B , and 18F , or the distance between the group that binds to albumin, the group containing 10B , 18F , and the folate receptor.
  • L 5 is preferably 5 to 25, more preferably 10 to 20, L 6 is preferably 3 to 15, 5 ⁇ 10 is more preferred, L7 is preferably 5-25, 10-20 is more preferred, L8 is preferably 3-15, 5-10 is more preferred, L9 is preferably 3-20 , more preferably 5-15, L 10 preferably 2-10, more preferably 3-8.
  • L 5 is preferably 5 to 25, more preferably 10 to 20
  • L 6 is preferably 3 to 15, 5 ⁇ 10 is more preferred
  • L7 is preferably 5-25
  • 10-20 is more preferred
  • L8 is preferably 3-15
  • 5-10 is more preferred
  • L9 is preferably 3-20 , more preferably 5-15
  • L 10 preferably 2-10, more preferably 3-8.
  • these groups are assumed to have one carbon. ” to include.
  • L 6 include -CO-NH-CH 2 -CH 2 -O-CH 2 -CH 2 -O- contained in the compound represented by formula (IVa) and A divalent group can be mentioned, and a specific example of L 7 is -NH-CO-CH 2 - (a divalent group formed by a click reaction) contained in the compound represented by formula (IVa).
  • L 8 include -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -NH-CO- contained in the compound represented by formula (IVa) and similar long-chain
  • L 9 include -NH-CO-CH 2 -CH 2 -CO-NH-CH 2 contained in the compound represented by formula (IVa) -CH 2 -CH 2 -CH 2 - and divalent groups having a similar length can be mentioned
  • specific examples of L 10 include the compound represented by formula (IVa) - Mention may be made of CH2 - CH2 - CH2 -CH2- and divalent groups of similar length.
  • the compound represented by formula (III) or (IV) can be synthesized according to the methods described in the Examples, or according to methods obtained by appropriately modifying or modifying those methods with reference to the descriptions thereof. .
  • the PET imaging agent of the present invention can be formulated by mixing with a pharmaceutically acceptable carrier or diluent according to known methods.
  • the dosage form is not particularly limited, and may be injections, tablets, powders, granules, capsules, liquids, suppositories, sustained-release preparations, and the like.
  • the method of administration is also not particularly limited, and the drug can be administered orally or parenterally (intradermal, intraperitoneal, intravenous, arterial, or spinal fluid injection, drip, etc.).
  • the dosage varies depending on the subject of administration, administration method, etc. For example, when administering a compound represented by formula (III) or (IV) as an injection to an adult, The compound represented by can be administered at 1 ⁇ g to 1000 ⁇ g/kg.
  • the obtained yellow solid was dissolved in dichloromethane (3.0 mL) and methanol (3.0 mL), and a methanol solution (3.0 mL) of tetramethylammonium chloride (1.053 g, 9.61 mmol) was added at room temperature. After stirring for 30 minutes, the mixture was filtered and the resulting orange solid was washed with ethanol/methanol (1:1, 20 mL) and dried under reduced pressure.
  • HSA human serum albumin
  • MID human serum albumin
  • BC-IP boron compounds
  • the mixture was then washed 9 times (10,000 rpm, 4°C, 5 min) using a filter (Amicon® Ultra-0.5 mL, 30 K).
  • the sample was diluted with distilled water to a total of 5 mL, the boron concentration of the solution was measured by ICP-OES (iCAP 7400 Duo, Thermo), and the affinity evaluation was calculated as the number of bound molecules per HSA molecule.
  • Example 7 Verification of folate receptor (FR ⁇ ) expression level in each human cancer cell (1) Western Blotting Analysis of FR Expression HeLa (human cervical cancer), MCF-7 (human breast cancer), U-87 MG (human brain tumor), CT26 (mouse colorectal cancer), A549 (human lung cancer) 1 ⁇ 10 6 cells of each cell are SDS-PAGE After adding to sample buffer (1 mL) and boiling at 95°C for 5 minutes, the cell lysate was electrophoresed on a 10% SDS polyacrylamide gel and transferred to a PVDF membrane. An anti-FR ⁇ antibody (primary antibody) was added, incubated at 4°C for 12 hours, and then washed three times with TBS buffer.
  • Fig. 1 A HRP-conjugated secondary antibody was added, and after further incubation for 1 hour at room temperature, a detection reagent was added, and the protein expression level was detected by chemiluminescence intensity (Fig. 1). As shown in FIG. 1, folate receptors were relatively highly expressed in U87MG cells, HeLa cells and CT26 cells, whereas their expression was low in MCF-7 cells and A549 cells.
  • Example 8 Verification of BNCT antitumor effect of PBC-IP (in vitro) Cells (A549 1000 cells/well or U-87 MG 500 cells/well) seeded in a 96-well plate were cultured with PBC-IP and L-BPA-fructose at a concentration of 25 ppm [ 10 B] at 37°C for 3 hours. After that, thermal neutrons were irradiated from one side of the plate for 12 minutes. Subsequently, the medium was exchanged and the cells were cultured for 96 hours, and then MTT assay was performed to evaluate the survival rate of the cells (Fig. 3).
  • the thermal neutron irradiation was carried out using the irradiation facility of Kyoto University Research Institute for Integrated Radiation and Radiation (KUR), and the cells after irradiation were cultured in the controlled area of KUR. Moreover, the survival rate is calculated based on the following formula.
  • Liver, kidney, spleen and tumor were excised, washed with 0.9% NaCl solution and weighed. After treating the resected organs with 1 mL of concentrated nitric acid (ultra-trace analysis grade) at 90°C for 2 hours, digested samples were diluted with distilled water. After filtering with a hydrophobic filter, the boron concentration was measured by ICP-OES (Fig. 4A). As shown in FIG. 4A, PBC-IP-HSA was observed to be more accumulated in the tumor than BPA. In addition to the tumor, accumulation in the liver and spleen was observed.
  • concentrated nitric acid ultra-trace analysis grade
  • Example 10 Ability of PBC-IP to selectively accumulate in various cells Regarding the accumulation of the PBC-IP complex at the cellular level, human lung cancer cells (A549), human glioblastoma cells (U87MG), rat nerve cells When compared with existing boron agents (BPA) using glioblastoma cells (C6, F98), PBC-IP was 20 to 150 times better than BPA in terms of cell accumulation and intracellular retention. (Fig. 5). Among these four types of cells, BPA showed selective accumulation in A549 cells in which LAT1 is highly expressed, while PBC-IP showed selective accumulation in U87MG and F98.
  • F98 rat malignant glioblastoma cells were provided by Dr. Rolf Barth (Department of Pathology, The Ohio State University, Columbus, OH, US) and were supplemented with 10% fetal bovine serum (FBS) and 10% penicillin/streptomycin/ Dulbecco's modified Eagle's medium (DMEM) supplemented with amphotericin B was used and cultured at 37°C in 5% CO 2 .
  • F98 rat malignant glioblastoma cells were histologically characterized as anaplastic astrocytomas. All materials for cell culture were purchased from Gibco Invitrogen Corporation (Grand Island, NY).
  • Example 11 BNCT therapeutic effect of PBC-IP on F98 and C6 malignant glioblastoma cell-implanted rat brain tumor models Optimum administration conditions by intravenous administration were examined for F98 rat malignant glioblastoma models.
  • PBC-IP is administered at high concentrations and high doses, it has been confirmed that the boron concentration in the blood is as high as 150 ppm or more (about 20-30 ppm for BPA). It was judged that an effect could be expected by administering about 10 doses.
  • a dose escalation test was conducted in the lower dose range, and it was found that the toxicity of this drug tends to depend on the concentration rather than the dose of the administered drug.
  • CED Convection Enhanced Delivery
  • the PBC-IP (CED) group has a very high effect of prolonging the survival period, and more than half of the patients survived even at the observation point of 90 days, and the median value was not calculated. The effect was even higher in the group that used PBC-IP (CED) alone and combined with intravenous BPA, demonstrating the antitumor effect of PBC-IP on BPA-refractory tumors.
  • the tumor boron concentration by PBC-IP (CED) was about 36 ppm, which was higher than that of F98. Neutron irradiation experiments in this model remain in a small number of pilot studies, but long-term survival of rats was obtained only with PBC-IP (CED).
  • Neutron irradiation was performed after local administration (CED) of the PBC-IP complex into the rat brain, and the effect of BNCT using the same drug on normal brain tissue was pathologically examined. There were no obvious physical or neurological effects during the post-irradiation observation period, and pathological examination of brain tissue after neutron irradiation was limited to the insertion site of the catheter used for topical administration (CED) and its surroundings. No obvious tissue adverse events were observed other than mild tissue reactions (Fig. 8).
  • a 25 ⁇ L Hamilton syringe with a 26 gauge needle (model 1700RN; Hamilton Bonaduz, Switzerland) was inserted into the rat brain and implanted with F98 tumor cells.
  • the needle was first inserted to a depth of 6 mm from the dura mater and then withdrawn to a distance of 1 mm to the intracerebral target (5 mm from the dura mater).
  • F98 cell suspension diluted in 10 ⁇ L of DMEM containing 1.4% agarose was injected at a rate of 20 ⁇ L/min using an autoinfusion pump to achieve a concentration of 10 3 for treatment experiments and 10 5 for biodistribution experiments.
  • the needle was immediately withdrawn, the burr hole was covered with bone wax, and the scalp was sutured.
  • CED CED is a direct drug administration method that can locally inject drugs into the interstitium of the brain under sustained low positive pressure, resulting in high drug concentrations and broad distribution (Yin et al. Cancer Gene Ther. 2013, 20: 336-341; Bobo et al. Proc. Natl. Acad. Sci. USA, 1994, 91: 2076-2080).
  • an Alzet osmotic pump model #2001D; DURECT Corporation, Cupertino, California
  • an intracerebral infusion kit rigid stainless-steel cannula, 5-mm 28 gauge
  • an infusion pump was subcutaneously implanted in the rat's back. A needle connected to an infusion cannula was inserted into the same burr hole where the tumor cells were implanted. This infusion pump was able to administer boron compounds at a rate of 8 ⁇ L/h for over 24 hours.
  • each boron compound (boron concentration in each tissue) Fourteen days after tumor implantation, each boron compound (BPA and PBC-IP) was administered to F98 malignant glioblastoma cell-bearing rats. 2 and 6 hours after intravenous administration of 12 mg B/kg body mass (bm) of BPA, and 2, 6, and 24 hours after the end of PBC-IP (CED) administration, the biodistribution of 3 to 5 mice per group was performed. Measured using rats. Rats were euthanized after each administration, and tumor, normal brain, blood, heart, lung, liver, spleen, kidney, skin and muscle were excised, weighed and digested with 1N nitric acid solution. Boron concentration ( ⁇ g B/g) in each organ was measured by ICP-AES.
  • BNCT experiment 14 days after transplantation of 10 3 F98 malignant glioblastoma cells, neutron irradiation was performed using KURRI. Malignant glioblastoma cell-bearing rats were randomly divided into 5 groups (groups 1-5), each group consisting of 6-10 rats. Group 1, an untreated control group, was transported to the reactor, anesthetized, and treated like the animals in the other groups only without neutron irradiation (sham irradiation). Group 2 is the neutron irradiation control group. Group 3 is a group that was irradiated with neutrons after intravenous administration of BPA.
  • Group 4 is a group that was irradiated with neutrons after administration of PBC-IP ( 10 B-enrich) by CED.
  • Group 5 is a group that was irradiated with neutrons after administration of PBC-IP ( 10 B-enrich) by CED and intravenous injection of BPA in combination (combination group).
  • the rats were anesthetized with a mixed anesthetic, the whole body except the head was shielded and fixed on a board.
  • Two hours after the end of intravenous administration or 3 hours after the end of CED neutron beams with a reactor output of 5 MW were irradiated for 20 minutes.
  • neutron-unirradiated and neutron-irradiated animals were left at KURRI for observation. Treatment efficacy was assessed by the survival time of all rats.
  • the present invention can be used in industries related to pharmaceuticals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

下記の式(I)又は(II)〔式中、Cは、炭素原子を表し、L1、L2、L3、及びL4は、それぞれ独立して、スペーサーとして機能する二価の基を表し、Xは、アルブミンと結合する基を表し、Yは、10Bを含有する基を表し、Zは、葉酸受容体と結合する基を表す。〕で表される化合物を含有することを特徴とするホウ素中性子捕捉療法用ホウ素薬剤を提供する。

Description

新規ホウ素薬剤
 本発明は、ホウ素中性子捕捉療法用ホウ素薬剤、及びこのホウ素中性子捕捉療法用ホウ素薬剤の効果を予測するためのPET(陽電子放射断層撮影)用イメージング剤に関する。
 ホウ素中性子捕捉療法(BNCT)は、低エネルギーである熱・熱外中性子がホウ素との核反応により生ずる強力な粒子線を用いるものであり、究極の低侵襲治療法として注目されている。BNCTの先行薬剤であるBPAは、令和2年3月に「切除不能な局所進行又は局所再発の頭頸部癌」に対して、BNCT用国産小型加速器とともに承認され、6月より保険治療が始まった。BNCTに用いられているホウ素薬剤はBPAの1剤のみであるが、BNCT治療対象患者のおよそ4割はBPAに非感受性であり、BNCTを受けることのできない患者も多いことから、新しい薬剤の開発が急務である。
 本発明者は、これまでにBPAに代わるホウ素薬剤の候補として、ホウ素クラスターとアルブミンをマレイミドによって結合させたコンジュゲート(特許文献1)や多くのがん細胞に高発現している葉酸受容体を標的とする葉酸誘導体(特許文献2)などを開発してきた。
国際公開第2017/026276号 特開2019-38778号公報
 本発明者によって開発された上記のホウ素薬剤は、高い抗腫瘍効果が期待できるものであるが、より効果的ながん治療のためには新しいホウ素薬剤の開発が望まれる。本発明は、このような背景の下になされたものであり、BNCT用の新規なホウ素薬剤を提供することを目的とする。
 また、上記のBNCT用薬剤を患者に投与する前に、このBNCT用薬剤を18Fで標識したものを投与し、PETで検査することにより、薬剤の効果を予測することが可能である。本発明は、このようなPET用の薬剤を提供することも目的とする。
 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、ホウ素を、アルブミンのリガンドと結合させることにより、ホウ素薬剤の抗腫瘍効果を向上できることを見出した。また、このホウ素薬剤に葉酸受容体認識部位を結合させることにより、ホウ素薬剤の抗腫瘍効果を更に向上できることを見出した。本発明は、これらの知見に基づき、完成されたものである。
 即ち、本発明は、以下の(1)~(12)を提供するものである。
(1)下記の式(I)又は(II)
Figure JPOXMLDOC01-appb-C000009
〔式中、Cは、炭素原子を表し、L1、L2、L3、及びL4は、それぞれ独立して、スペーサーとして機能する二価の基を表し、Xは、アルブミンと結合する基を表し、Yは、10Bを含有する基を表し、Zは、葉酸受容体と結合する基を表す。〕で表される化合物を含有することを特徴とするホウ素中性子捕捉療法用ホウ素薬剤。
(2)式(I)及び(II)におけるL1、L2、L3、及びL4が、アルキレン基(但し、アルキレン基の1以上の-CH2-は、-O-、-S-、-NH-、又は-CO-で置換されていてもよい。)であることを特徴とする(1)に記載のホウ素中性子捕捉療法用ホウ素薬剤。
(3)式(I)及び(II)におけるXが、下記の式(A)~(C)
Figure JPOXMLDOC01-appb-C000010
(式中、*は結合部位を表し、Rは水素原子、フッ素原子、塩素原子、臭素原子、又はヨウ素原子を表す。)
で示される基であることを特徴とする(1)又は(2)に記載のホウ素中性子捕捉療法用ホウ素薬剤。
(4)式(I)及び(II)におけるYが、ホウ素クラスターから誘導される基であることを特徴とする(1)乃至(3)のいずれかに記載のホウ素中性子捕捉療法用ホウ素薬剤。
(5)式(II)におけるZが、下記の式(D)
Figure JPOXMLDOC01-appb-C000011
(式中、*は結合部位を表す。)
で示される基であることを特徴とする(1)乃至(4)のいずれかに記載のホウ素中性子捕捉療法用ホウ素薬剤。
(6)式(I)及び式(II)で表される化合物が、それぞれ下記の式(Ia)及び(IIa)
Figure JPOXMLDOC01-appb-C000012
で表される化合物であることを特徴とする(1)に記載のホウ素中性子捕捉療法用ホウ素薬剤。
(7)下記の式(III)又は(IV)
Figure JPOXMLDOC01-appb-C000013
〔式中、Cは、炭素原子を表し、18Fは、質量数18の放射性フッ素原子を表し、L5、L6、L7、L8、L9及びL10は、それぞれ独立して、スペーサーとして機能する二価の基を表し、Xは、アルブミンと結合する基を表し、Yは、10Bを含有する基を表し、Zは、葉酸受容体と結合する基を表す。〕で表される化合物を含有することを特徴とするPET用イメージング剤。
(8)式(III)及び(IV)におけるL5、L6、L8、L9及びL10が、アルキレン基(但し、アルキレン基の1以上の-CH2-は、-O-、-S-、-NH-、又は-CO-で置換されていてもよい。)であり、L7が、アルキレン基(但し、アルキレン基の1以上の-CH2-は、-O-、-S-、-NH-、又は-CO-で置換されていてもよく、アルキレン基の1の-CH2-は、クリック反応により形成される二価の基で置換されていてもよい。)であることを特徴とする(7)に記載のPET用イメージング剤。
(9)式(III)及び(IV)におけるXが、下記の式(A)~(C)
Figure JPOXMLDOC01-appb-C000014
(式中、*は結合部位を表し、Rは水素原子、フッ素原子、塩素原子、臭素原子、又はヨウ素原子を表す。)
で示される基であることを特徴とする(7)又は(8)に記載のPET用イメージング剤。
(10)式(III)及び(IV)におけるYが、ホウ素クラスターから誘導される基であることを特徴とする(7)乃至(9)のいずれかに記載のPET用イメージング剤。
(11)式(IV)におけるZが、下記の式(D)
Figure JPOXMLDOC01-appb-C000015
(式中、*は結合部位を表す。)
で示される基であることを特徴とする(7)乃至(10)のいずれかに記載のPET用イメージング剤。
(12) 式(IV)で表される化合物が、下記の式(IVa)
Figure JPOXMLDOC01-appb-C000016
で表される化合物であることを特徴とする(7)に記載のPET用イメージング剤。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2021-039885及び特願2021-096432の明細書及び/又は図面に記載される内容を包含する。
 本発明は、BNCTに用いられる新規なホウ素薬剤、及びこのホウ素薬剤の効果を予測するための新規なPET用イメージング剤を提供する。
各がん細胞における葉酸受容体(FRα)発現量を示す図。 フローサイトメトリーによる葉酸受容体 (FRα)量の定量結果を示す図。 熱中性子線量依存的BNCT抗腫瘍効果を示す図。(A)ヒト脳腫瘍細胞U87MG(FRα(+))、(B)ヒト肺がん細胞A549(FRα(-))。薬剤10B濃度25 ppm、3時間培養後薬剤除去して照射。 ヒト脳腫瘍細胞U87MG(FRα(+))皮下移植マウスにおけるPBC-IPアルブミン複合体及びBPAの(A)薬物動態(7.5 mg(10B)/kg)と(B)抗腫瘍効果と(C)体重変化を示す図。 PBC-IP(A)及びBPA(B)の様々な細胞に対する選択的集積能に関する図。 F98及びC6同所移植脳腫瘍ラットのホウ素薬剤の分布を示す表。 PBC-IPの悪性膠芽腫細胞(F98及びC6)移植ラット脳腫瘍モデルに対するBNCT治療効果に関する図。照射後3ヶ月後、PBC-IP投与群で50%の生存、BPAとの併用で70%の生存を確認した(図7(A))。 BNCT施行100日後のラット(A)及び未治療ラット(B)の脳組織染色画像。
 以下、本発明を詳細に説明する。
(1)BNCT用ホウ素薬剤
 本発明のBNCT用ホウ素薬剤は、下記の式(I)又は(II)
Figure JPOXMLDOC01-appb-C000017
で表される化合物を含有することを特徴とするものである。
 BNCT(ホウ素中性子捕捉療法)においては、あらかじめホウ素薬剤を投与した患者等に中性子ビームを照射し、ホウ素薬剤と中性子との反応により、一細胞内の微小環境でリチウムとα線を発生させて、がん細胞を破壊する。本発明における「BNCT用ホウ素薬剤」とは、このBNCTにおいて使用されるホウ素薬剤を意味する。
 式(I)及び(II)におけるXは、アルブミンと結合する基であれば特に限定されないが、アルブミンと非共有結合的に結合する基が好ましい。ホウ素薬剤がアルブミンと共有結合的に結合していると、腫瘍内でホウ素薬剤がリリースされず、十分な薬効が発揮できない可能性があるからである。アルブミンと結合する基やアルブミンと非共有結合的に結合する基は数多く知られており、本発明においては、そのような既知の基から適宜選択して使用することができる。アルブミンと非共有結合的に結合する基の具体例としては、下記の式(A)に示すヨードブチレート基や下記の式(B)に示すエバンスブルーに含まれる基や下記の式(C)に示す基を挙げることができる。
Figure JPOXMLDOC01-appb-C000018
 式(I)及び(II)におけるYは、10Bを含有する基であれば特に限定されず、BPAのように分子中に一つホウ素原子を持つ化合物から誘導される基でもよいが、ホウ素クラスターから誘導される基が好ましい。ホウ素クラスターは、ホウ素中性子捕捉療法に用いることができる多面体構造のものであればどのようなものでもよく、例えば、クロソドデカボレート([B12H12]2-)、イオン性クロソカルボラン([CB11H12]-)、脂溶性クロソカルボラン([C2B10H12])、ニドカルボラン([C2B9H11]-)、ビスジカルボリド金属錯体([(C2B9H11)2M])、GB10([B10H12]2-)などを挙げることができる。ホウ素クラスターは、クロソドデカボレート、イオン性クロソカルボラン、ニドカルボラン、GB10などの水溶性ホウ素クラスターが好ましい。ホウ素クラスター中に含まれるホウ素原子は、すべて10Bであってもよいが、一部のみが10Bであってもよい。なお、本明細書中では、「ホウ素クラスターから誘導される基」というように「誘導される基」という表現が用いられているが、これは、例えば、ホウ素クラスター中の一つの水素原子を除去することによって誘導される基を意味する。
 式(II)におけるZは、葉酸受容体と結合する基であれば特に限定されない。葉酸受容体と結合する基は数多く知られており、本発明においては、そのような既知の基から適宜選択して使用することができる。葉酸受容体と結合する基の具体例としては、下記の式(D)に示す葉酸に含まれる基を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
 葉酸受容体と結合する基を有する化合物をホウ素薬剤として使用することにより、多くのがん細胞に高発現している葉酸受容体を介して、ホウ素薬剤をがん細胞に取り込ませることが可能になる。また、既知のホウ素薬剤であるBPAは、LAT-1というアミノ酸トランスポーターを介して細胞に取り込まれるが、BPA非感受性がんでは、このLAT-1の発現が低下している。葉酸受容体と結合する基を有する化合物は、LAT-1を介さずにがん細胞に取り込まれるので、BPA非感受性がんに対しても有効である。
 葉酸受容体と結合する基は、がん細胞への取り込みのためのものであるが、実施例6に示すように、このような基を有することにより、アルブミンに対する結合性が向上する。この結果、血中滞留性が向上し、がん細胞への送達性も向上する。
 式(I)及び(II)におけるL1、L2、L3、及びL4は、スペーサーとして機能する二価の基であれば特に限定されないが、直鎖状の二価の基であることが好ましく、アルキレン基であることがより好ましい。但し、アルキレン基の1以上の-CH2-は、-O-、-S-、-NH-、又は-CO-で置換されていてもよい。アルキレン基の炭素数は、アルブミンと結合する基と10Bを含有する基の二者間の距離、又はアルブミンと結合する基と10Bを含有する基と葉酸受容体と結合する基の三者間の距離を十分確保できる数であれば特に限定されないが、L1については、5~20が好ましく、10~15がより好ましく、L2については3~15が好ましく、5~10がより好ましく、L3については5~20が好ましく、10~15がより好ましく、L4については2~10が好ましく、3~8がより好ましい。なお、アルキレン基中の-CH2-を、-O-、-S-、又は-NH-で置換した場合も、これらの基は1つの炭素を持つものとして、前記した「アルキレン基の炭素数」に含める。L1の具体例としては、式(Ia)で表される化合物に含まれる-CH2-CH2-CH2-CH2-CH2-CH2-NH-CH2-CH2-O-CH2-CH2-O-やこれと同様の長さを有する二価の基を挙げることができ、L2の具体例としては、式(IIa)で表される化合物に含まれる-CH2-CH2-CH2-CH2-CH2-CH2-NH-CO-やこれと同様の長さを有する二価の基を挙げることができ、L3の具体例としては、式(IIa)で表される化合物に含まれる-NH-CO-CH2-CH2-CO-NH-CH2-CH2-O-CH2-CH2-O-やこれと同様の長さを有する二価の基を挙げることができ、L4の具体例としては、式(IIa)で表される化合物に含まれる-CH2-CH2-CH2-CH2-やこれと同様の長さを有する二価の基を挙げることができる。
 式(I)又は(II)で表される化合物は、実施例に記載された方法に従って、あるいはその記述を参照しつつそれらの方法に適宜に改変や修飾を加えた方法に従って合成することができる。例えば、アルブミンと結合する基を有する化合物と10Bを含有する基を有する化合物を結合させることにより、式(I)で表される化合物を合成でき、アルブミンと結合する基を有する化合物と10Bを含有する基を有する化合物を結合させ、その後、葉酸受容体と結合する基を有する化合物を結合させることにより、式(II)で表される化合物を合成できる。
 式(I)で表される化合物及び式(II)で表される化合物の具体例としては、例えば、それぞれ下記の式(Ia)及び(IIa)
Figure JPOXMLDOC01-appb-C000020
で表される化合物を挙げることができる。なお、以下、式(Ia)で表される化合物を「BC-IP」という場合があり、式(IIa)で表される化合物を「PBC-IP」という場合がある。
 本発明のBNCT用ホウ素薬剤は、ヒト又はヒト以外の動物に投与する。ヒト以外の動物としては、例えば、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル等を挙げることができる。
 治療対象とする疾患としては、悪性腫瘍、例えば、脳腫瘍、悪性黒色腫、頭頚部癌、肺癌、肝癌、甲状腺癌、皮膚癌、膀胱癌、中皮腫、膵癌、乳癌、髄膜腫、肉腫などを挙げることができるが、これらに限定されるわけではない。
 治療対象とする患者は特に限定されないが、BPA非感受性の患者を対象とすることが好ましい。ここで、「BPA非感受性の患者」とは、腫瘍細胞へのBPAの集積量が少ない者をいう。通常、BPAによるホウ素中性子捕捉療法を行う前に18F-BPAを用いたPET診断を行い、腫瘍細胞へのBPAの集積量を推定するが、このPET診断で、腫瘍/正常組織比、腫瘍/血中濃度比が2.5(あるいは3)以上ある患者に対して、ホウ素中性子捕捉療法を行うことが望ましいとされている。従って、本発明においては、上記PET診断で、腫瘍/正常組織比、腫瘍/血中濃度比のいずれか一方、又は両方が3未満、又は2.5未満である患者を「BPA非感受性の患者」とすることができる。
 本発明のBNCT用ホウ素薬剤は、公知の方法に従い薬学的に許容される担体又は希釈剤と混合することにより、製剤化することができる。剤型は特に限定されず、注射剤、錠剤、散剤、顆粒剤、カプセル剤、液剤、坐剤、徐放剤などとすることができる。投与方法も特に限定されず、経口的又は非経口的に投与することができる。非経口的投与方法としては、皮内、腹腔内、静脈、動脈、又は脊髄液への注射又は点滴等による投与方法を例示できる。また、CED(Convection Enhanced Delivery)による局所投与を行うこともできる。投与量は、投与対象、投与方法などにより異なるが、例えば、成人に対して、注射剤として式(I)又は(II)で表される化合物を投与する場合、1回当たり、式(I)又は(II)で表される化合物が5~1000mg/kgとなるように1度の治療に1~数回に分けて投与することができる。また、本発明のBNCT用ホウ素薬剤を投与する前に、後述する本発明のPET用イメージング剤を投与し、式(III)又は(IV)で表される化合物の体内分布や経時的変化に基づいて、投与量を決めてもよい。
 本発明のBNCT用ホウ素薬剤を既知のBNCT用ホウ素薬剤(例えば、BPA、BSH)と併用してもよい。図7(A)に示すように、本発明のBNCT用ホウ素薬剤(PBC-IP)をBPAと併用することで、生存期間延長効果が更に向上するので、併用する既知のBNCT用ホウ素薬剤としては、BPAが好ましい。
 本発明のBNCT用ホウ素薬剤は、アルブミンと結合することができるので、投与前にアルブミンと結合させ、アルブミン複合体として投与することもできる。
(2)PET用イメージング剤
 本発明のPET用イメージング剤は、下記の式(III)又は(IV)
Figure JPOXMLDOC01-appb-C000021
で表される化合物を含有することを特徴とするものである。
 式(III)及び(IV)で表される化合物は、18Fで標識されているのでポジトロンを放出することができる。放出されたポジトロンはすぐに電子と結合してγ線を放出する。このγ線をPETに用いられる装置で測定することによって、式(III)及び(IV)で表される化合物の体内分布を定量的かつ経時的に画像化することができる。式(III)及び(IV)で表される化合物は、18Fで標識されている点を除けば、それぞれ式(I)及び(II)で表される化合物と類似しているので、式(III)及び(IV)で表される化合物の体内分布や経時的変化から、式(I)及び(II)で表される化合物の体内分布や経時的変化を推測することが可能である。従って、式(III)又は(IV)で表される化合物を患者に投与することにより、その患者が式(I)及び(II)で表される化合物に対して感受性であるかどうか、あるいは式(I)及び(II)で表される化合物をどのくらい投与すれば抗がん効果が得られるか、などを推測できる。
 式(III)及び(IV)におけるX、Y、及びZは、式(I)及び(II)におけるX、Y、及びZと同様の基を例示できる。
 式(III)及び(IV)におけるL5、L6、L7、L8、L9及びL10はスペーサーとして機能する二価の基であれば特に限定されないが、直鎖状の二価の基であることが好ましく、アルキレン基であることがより好ましい。但し、L5、L6、L8、L9及びL10においてはアルキレン基の1以上の-CH2-は、-O-、-S-、-NH-、又は-CO-で置換されていてもよい。また、L7においてはアルキレン基の1以上の-CH2-は、-O-、-S-、-NH-、又は-CO-で置換されていてもよく、アルキレン基の1の-CH2-は、クリック反応により形成される二価の基で置換されていてもよい。ここで、クリック反応により形成される二価の基とは、例えば、アルキンとアジド基が反応して形成される二価の基である。クリック反応により形成される二価の基やアルキンとアジド基が反応して形成される二価の基は数多く知られており、本発明においては、そのような既知の基から適宜選択して使用することができる。アルキンとアジド基が反応して形成される二価の基としては、式(IVa)で表される化合物に含まれるビシクロノニンとアジド基が反応して形成される二価の基を挙げることができる。アルキレン基の炭素数は、アルブミンと結合する基と10Bを含有する基と18Fの三者間の距離、又はアルブミンと結合する基と10Bを含有する基と18Fと葉酸受容体と結合する基の四者間の距離を十分確保できる数であれば特に限定されないが、L5については5~25が好ましく、10~20がより好ましく、L6については3~15が好ましく、5~10がより好ましく、L7については5~25が好ましく、10~20がより好ましいく、L8については3~15が好ましく、5~10がより好ましく、L9については3~20が好ましく、5~15がより好ましく、L10については2~10が好ましく、3~8がより好ましい。なお、アルキレン基中の-CH2-を、-O-、-S-、又は-NH-で置換した場合も、これらの基は1つの炭素を持つものとして、前記した「アルキレン基の炭素数」に含める。一方、L7においてアルキレン基の1の-CH2-を、クリック反応により形成される二価の基で置換した場合は、この二価の基は前記した「アルキレン基の炭素数」に含めない。L6の具体例としては、式(IVa)で表される化合物に含まれる-CO-NH-CH2-CH2-O-CH2-CH2-O-やこれと同様の長さを有する二価の基を挙げることができ、L7の具体例としては、式(IVa)で表される化合物に含まれる-NH-CO-CH2-(クリック反応により形成される二価の基)-CH2-O-CO-NH-CH2-CH2-O-CH2-CH2-O-CH2-CH2-やこれと同様の長さを有する二価の基を挙げることができ、L8の具体例としては、式(IVa)で表される化合物に含まれる-CH2-CH2-CH2-CH2-CH2-CH2-NH-CO-やこれと同様の長さを有する二価の基を挙げることができ、L9の具体例としては、式(IVa)で表される化合物に含まれる-NH-CO-CH2-CH2-CO-NH-CH2-CH2-CH2-CH2-やこれと同様の長さを有する二価の基を挙げることができ、L10の具体例としては、式(IVa)で表される化合物に含まれる-CH2-CH2-CH2-CH2-やこれと同様の長さを有する二価の基を挙げることができる。
 式(III)又は(IV)で表される化合物は、実施例に記載された方法に従って、あるいはその記述を参照しつつそれらの方法に適宜に改変や修飾を加えた方法に従って合成することができる。
 式(IV)で表される化合物の具体例としては、例えば、下記の式(IVa)
Figure JPOXMLDOC01-appb-C000022
で表される化合物を挙げることができる。
 本発明のPET用イメージング剤は、公知の方法に従い薬学的に許容される担体又は希釈剤と混合することにより、製剤化することができる。剤型は特に限定されず、注射剤、錠剤、散剤、顆粒剤、カプセル剤、液剤、坐剤、徐放剤などとすることができる。投与方法も特に限定されず、経口的又は非経口的(皮内、腹腔内、静脈、動脈、又は脊髄液への注射又は点滴等による投与)に投与することができる。投与量は、投与対象、投与方法などにより異なるが、例えば、成人に対して、注射剤として式(III)又は(IV)で表される化合物を投与する場合、式(III)又は(IV)で表される化合物が1μg~1000 μg/kgとなるように投与することができる。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕 PBC-IPの合成スキーム
Figure JPOXMLDOC01-appb-C000023
 化合物2(Li, Y. X.; Qiu, Z. Asian, J. Chem. 2014, 26, 3219)、こはく酸モノベンジル(Isomura, S.; Wirs, ing, P.; Janda, K. D. J. Org. Chem. 2001, 66, 4115)、化合物9(Ishii, S.; Nakamura, H. J. Organomet. Chem. 2018, 865, 178)、プテロイルアジド(Luo, J.; Smith, M. D.; Lantrip, D. A.; Wang, S.; Fuchs, P. L. J. Am. Chem. Soc. 1997, 119, 10004)は公知の方法にしたがって合成した。
<化合物2から化合物3の合成>
Figure JPOXMLDOC01-appb-C000024
 アルゴン雰囲気下、4-ヨードフェニル酪酸(4.787 g, 16.5 mmol)とN-メチルモルホリン(1.91 mL, 17.3 mmol)をジクロロメタン(33 mL)に溶解させたのち、-15℃にてクロロギ酸イソブチル(2.28 mL, 17.3 mmol)を滴下した。-15℃で20分間攪拌させたのち、化合物2(4.1049 g, 19.0 mmol)とN-メチルモルホリン(1.81 mL, 16.5 mmol)のジクロロメタン溶液(33 mL)を-15℃で滴下した。滴下後、室温で30分間攪拌させたのち、水を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物を60℃でクロロホルム/メタノールに溶解させ、ヘキサンを加えたのち室温に冷却した。生じた個体をろ過し、減圧下で乾燥させて化合物3(6.5081 g, 収率81%)を白色個体として得た。
1H NMR (400 MHz, DMSO-d6) δ 7.71 (t, J = 5.4 Hz, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.74 (brs, 1H), 3.00 (q, J = 6.0 Hz, 2H), 2.88 (q, J = 6.4 Hz, 2H), 2.50 (t, J = 7.3 Hz, 2H), 2.03 (t, J = 7.3 Hz, 2H), 1.75 (quint, J = 7.5 Hz, 2H), 1.36 (brs, 13H), 1.23-1.21 (m, 4H).
<化合物3から化合物4の合成>
Figure JPOXMLDOC01-appb-C000025
 アルゴン雰囲気下、化合物3(6.300 g, 12.9 mmol)をジクロロメタン(65 mL)に溶解させたのち、0℃にてトリフルオロ酢酸(8.0 mL)を滴下した。0℃で9時間攪拌させたのち、1 M水酸化ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去し、化合物4(5.446 g)を白色個体として定量的に得た。
1H NMR (400 MHz, DMSO-d6) δ 7.73 (d, J = 5.3 Hz, 1H), δ 7.78-7.66 (m, 2H), 7.63 (d, J = 8.2 Hz, 1H), 7.01 (d, J = 8.3 Hz, 2H), 3.01 (q, J = 6.8 Hz, 3H), 2.61 (qt, J = 7.0 Hz, 3H), 2.04 (t, J = 7.4 Hz, 1H), 1.76 (quin, J = 7.6 Hz, 2H), 1.48-1.32 (m, 4H), 1.31-1.18 (m, 4H).
<化合物4から化合物5の合成>
Figure JPOXMLDOC01-appb-C000026
 アルゴン雰囲気下、Fmoc-Lys(Boc)-OH(6.150 g, 13.1 mmol)とN-メチルモルホリン(1.44 mL, 13.1 mmol)をジクロロメタン(40 mL)に溶解させたのち、-15℃にてクロロギ酸イソブチル(1.72 mL, 13.1 mmol)を滴下した。-15℃で20分間攪拌させたのち、化合物4(4.854 g, 12.5 mmol)とN-メチルモルホリン(1.30 mL, 12.5 mmol)のジクロロメタン溶液(40 mL)を-15℃で滴下した。滴下後、室温で60分間攪拌させたのち、水を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物を60℃でクロロホルム/メタノールに溶解させ、ヘキサンを加えたのち室温に冷却した。生じた個体をろ過し、減圧下で乾燥させて化合物5(7.1211 g, 収率68%)を白色個体として得た。
1H NMR (500 MHz, DMSO-d6) δ 7.89 (d, J = 7.5 Hz, 2H), δ 7.82 (t, J = 5.3 Hz, 1H), δ 7.78-7.66 (m, 2H), 7.62 (d, J = 8.1 Hz, 1H), 7.46-7.37 (m, 3H), 7.33 (t, J = 7.3 Hz, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.77 (d, J = 5.1 Hz, 1H), 4.35-4.20 (m, 3H), 3.98-3.88 (m, 1H), 3.13-2.96 (m, 4H), 2.89 (t, J = 5.0 Hz, 1H), 2.50-2.45 (m, 2H), 2.04 (t, J = 7.4 Hz, 1H), 1.76 (quin, J = 7.5 Hz, 2H), 1.65-1.47 (m, 2H), 1.44-1.32 (m, 15H), 1.31-1.17 (m, 6H).
<化合物5から化合物6の合成>
Figure JPOXMLDOC01-appb-C000027
 アルゴン雰囲気下、化合物5(6.513 g, 7.76 mmol)をN, N-ジメチルホルムアミド(24 mL)に溶解させたのち、室温でピぺリジン(2.4 mL)を加えた。60分間攪拌させたのち、水を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を1M塩酸、飽和炭酸水素ナトリウム水溶液で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール = 90 : 10)により精製することで、化合物6(4.078 g, 収率85%)を白色個体として得た。
1H NMR (500 MHz, DMSO-d6) δ 7.89 (d, J = 7.5 Hz, 2H), δ 7.82 (t, J = 5.3 Hz, 1H), δ 7.78-7.66 (m, 2H), 7.62 (d, J = 8.1 Hz, 1H), 7.46-7.37 (m, 3H), 7.33 (t, J = 7.3 Hz, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.77 (d, J = 5.1 Hz, 1H), 4.35-4.20 (m, 3H), 3.98-3.88 (m, 1H), 3.13-2.96 (m, 4H), 2.89 (t, J = 5.0 Hz, 1H), 2.50-2.45 (m, 2H), 2.04 (t, J = 7.4 Hz, 1H), 1.76 (quin, J = 7.5 Hz, 2H), 1.65-1.47 (m, 2H), 1.44-1.32 (m, 15H), 1.31-1.17 (m, 6H).
<化合物6から化合物8の合成>
Figure JPOXMLDOC01-appb-C000028
 アルゴン雰囲気下、こはく酸モノベンジル(687.1 mg, 3.3 mmol)とN-メチルモルホリン(363 μL, 3.30 mmol,)をジクロロメタン(9.0 mL)に溶解させたのち、-15℃にてクロロギ酸イソブチル(433 μL, 3.30 mmol)を滴下した。-15℃で20分間攪拌させたのち、化合物6(1.850 g, 3.00 mmol)とN-メチルモルホリン(330 μL, 3.00 mmol)のジクロロメタン溶液(9.0 mL)を-15℃で滴下した。滴下後、室温で60分間攪拌させたのち、水を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール = 95 : 5)で精製することで、化合物7を含む混合を得た。
 得られた混合物をメタノール(6.0 mL)と蒸留水(1.5 mL)に溶解させたのち、水酸化リチウム一水和物(378 mg, 9.00 mmol)を室温で加えた。30分攪拌させた後、1M HClを加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた個体をジエチルエーテルで洗浄し、減圧下で乾燥させ、化合物8(2.120 g, 2工程で収率99%)を白色個体として得た。
1H NMR (500 MHz, DMSO-d6) δ 7.95 (d, J = 8.1 Hz, 1H), 7.78-7.71 (m, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.00 (d, J = 8.3 Hz, 2H), 6.72 (t, J = 5.5 Hz, 1H), 4.17-4.11 (m, 1H), 3.09-2.94 (m, 4H), 2.94-2.82 (m, 2H), 2.6-2.34 (m, 6H), 2.04 (d, J = 7.4 Hz, 2H), 1.76 (quin, J = 7.4 Hz, 2H), 1.64-1.41 (m, 2H), 1.41-1.29 (m, 15H), 1.29-1.14 (m, 6H).
<化合物8から化合物10の合成>
Figure JPOXMLDOC01-appb-C000029
 アルゴン雰囲気下、化合物8(716.7 mg, 1.00 mmol)と化合物9(730.0 mg, 1.00 mmol)、及びHOBt・H2O(168.5 mg, 1.10 mmol)をジクロロメタン(6.0 mL)に溶解させたのち、ジイソプロピルエチルアミン(209 μL, 1.20 mmol)とEDCI・HCl (210.9 mg, 1.10 mmol)を室温で加えた。1.5時間攪拌させたのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール = 95 : 5)で精製することで、化合物10(1.3631 g, 収率95%)を白色のアモルファス個体として得た。
1H NMR (500 MHz, DMSO-d6) δ 8.01 (t, J = 5.4 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 5.5 Hz, 1H), 7.71 (t, J = 8.2 Hz, 1H), 7.62 (d, J = 8.3 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.73 (t, J = 5.3 Hz, 1H), 4.10-4.03 (m, 1H), 3.42-3.33 (m, 6H), 3.22-3.10 (m, 18H), 3.04-2.97 (m, 4H), 2.90-2.83 (m, 2H), 2.57-2.32 (m, 4H), 2.04 (t, J = 7.5 Hz, 2H), 1.80-1.70 (quin, J = 7.5 Hz, 2H), 1.57 (quin, J = 7.8 Hz, 16H),1.41-1.16 (m, 37H), 0.93 (t, J = 7.4 Hz, 24H). HRMS (ESI-TOF): calcd for [C35H68B12IN5O8]2- 471.7667: found 471.7667.
<化合物10から化合物11の合成>
Figure JPOXMLDOC01-appb-C000030
 アルゴン雰囲気下、化合物10(571.2 mg, 0.400 mmol)をアセトニトリル(6.0 mL)に溶解させたのち、塩酸の1, 4-ジオキサン溶液(4 M, 2.0 mL)を0℃で加えた。室温で60分間攪拌したのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去することで、化合物11(453.6 mg, 収率86%)を白色のアモルファス個体として得た。
1H NMR (500 MHz, DMSO-d6) δ 8.00 (s, J = 5.5 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.84 (t, J = 5.6 Hz, 1H), 7.72 (t, J = 5.5 Hz, 1H), 7.62 (d, J = 8.3 Hz, 1H), 7.01 (d, J = 8.3 Hz, 1H), 4.13-4.04 (m, 1H), 3.42-3.33 (m, 6H), 3.16 (t, J = 8.5 Hz, 16H), 3.04-2.93 (m, 4H), 2.45-2.32 (m, 4H), 2.04 (t, J = 7.4 Hz, 2H), 1.80-1.70 (m, 2H), 1.57 (quin, J = 8.2 Hz, 16H), 1.41-1.16 (m, 28H), 0.93 (t, J = 7.5 Hz, 24H). HRMS (ESI-TOF): calcd for [C30H60B12IN5O6]2- 421.7403: found 421.7393.
<化合物11から化合物12の合成>
Figure JPOXMLDOC01-appb-C000031
 アルゴン雰囲気下、化合物11(1.277 g, 0.961 mmol)とプテロイルアジド(324.0 mg, 0.961 mmol)をジメチルスルホキシド(4.0 mL)に溶解させたのち、1,1,3,3-テトラメチルグアニジン(481 μL, 3.84 mmol)を室温で加えた。室温で4時間攪拌したのち、ジクロロメタン/メタノールで希釈し、ジエチルエーテルを加えて化合物を沈殿させた。混合物をろ過し、得られた黄色個体をジエチルエーテルで洗浄したのち、減圧下で乾燥させた。
 得られた黄色個体をジクロロメタン(3.0 mL)とメタノール(3.0 mL)に溶解させ、テトラメチルアンモニウムクロリド(1.053 g, 9.61 mmol)のメタノール溶液(3.0 mL)を室温で加えた。30分間攪拌させたのち、混合物をろ過し、得られた橙色個体をエタノール/メタノール(1 : 1, 20 mL)で洗浄したのち、減圧下で乾燥させた。
 得られた橙色個体をアセトニトリル(6.0 mL)と蒸留水(6.0 mL)に溶解させ、Amberlite(登録商標) IR-120(12.0 g)を室温で加えた。12時間攪拌させたのち、ろ過し、減圧下で有機溶媒を除去し、さらに凍結乾燥により水を除去することで、化合物12(609.6 mg, 3工程収率56%)を橙色個体として得た。
1H NMR (500 MHz, DMSO-d6) δ 8.71 (s, 1H), 8.04-7.78 (m, 7H), 7.84 (s, 1H), 7.71 (d, J = 6.2 Hz, 2H), 7.60-7.55 (m, 4H), 7.00 (d, J = 8.2 Hz, 2H), 4.54 (s, 2H), 4.12-4.02 (m, 2H), 3.50 (t, J = 5.4 Hz, 1H), 3.46-3.30 (m, 4H), 3.23-3.09 (m, 4H), 3.09-2.93 (m, 4H), 2.33 (s, 2H), 2.04 (t, J = 7.4 Hz, 2H), 1.81-1.69 (m, 2H), 1.69-1.59 (m, 1H), 1.59-1.16 (m, 12H). HRMS (ESI-TOF): calcd for [C44H70B12IN11O8]2-, 568.7840: found 568.7834.
〔実施例2〕 BC-IPの合成
Figure JPOXMLDOC01-appb-C000032
 化合物13(Ishii, S.; Nakamura, H. J. Organomet. Chem. 2018, 865, 178)は公知の方法にしたがって合成した。
<化合物13から化合物14の合成>
 アルゴン雰囲気下、化合物4(448.5 mg, 1.155 mmol)をアセトニトリル(5.0 mL)に溶解させたのち、炭酸カリウム(1.596 g, 11.55 mmol)、及び化合物13(619.7 mg, 1.155 mmol)を室温で加えた。加熱環流下で8時間攪拌したのち、水を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を希釈し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。
 残渣をジクロロメタン(0.8 mL)とエタノール(6.5 mL)に溶解させ、テトラメチルアンモニウムクロリド(1.458 g, 13.3 mmol)のメタノール溶液(6.5 mL)を室温で加えた。30分間攪拌させたのち、混合物をろ過し、得られた白色個体をエタノール/メタノール(1 : 1, 12 mL)で洗浄したのち、減圧下で乾燥させた。
 得られた白色個体をアセトニトリル(4.0 mL)と蒸留水(4.0 mL)に溶解させ、Amberlite(登録商標)IR-120(7.0 g)を室温で加えた。12時間攪拌させたのち、ろ過し、減圧下で有機溶媒を除去し、さらに凍結乾燥により水を除去することで、化合物14(500.4 mg, 3工程収率70%)を白色個体として得た。
1H NMR (400 MHz, D2O) δ 7.65 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 3.83-3.62 (m, 8H), 3.29-3.23 (m, 2H), 3.16-3.11 (m, 2H), 2.66-2.61 (m, 2H), 2.31-2.24 (m, 2H), 1.96-1.92 (m, 2H), 1.76-1.73 (m, 2H), 1.54-1.49 (m, 2H), 1.44-1.35 (m, 4H).
〔実施例3〕 PETイメージング用分子PBC-IP-N3の合成
Figure JPOXMLDOC01-appb-C000033
 化合物15(Robertson, M.; Bremner, J. B.; Coates, J.; Deadman, J.; Keller, P. A.; Pyne, S. G.; Somphol, K.; Rhodes, D. I. Eur. J. Med. Chem. 2011, 46, 4201)は公知の方法にしたがって合成した。
<化合物15から化合物16の合成>
Figure JPOXMLDOC01-appb-C000034
 アルゴン雰囲気下、化合物15(1.041 g, 4.00 mmol)をジクロロメタン(12 mL)に溶解させたのち、トリエチルアミン(836 μL, 6.00 mmol)とブロモアセチルクロリド (362 μL, 4.40 mmol)を0℃で加えた。50分間攪拌させたのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル = 55 : 45)で精製することで、化合物16(1.258 g, 収率83%)を黄色液体として得た。
1H NMR (400 MHz, CDCl3) δ 6.99 (d, J = 1.9 Hz, 1H), 4.60-4.54 (m, 2H), 3.88 (s, 2H), 3.75 (s, 3H), 3.09 (q, J = 6.3 Hz, 2H), 1.93-1.84 (m, 1H), 1.78-1.68 (m, 1H), 1.53-1.43 (m, 13H).
<化合物16から化合物17の合成>
Figure JPOXMLDOC01-appb-C000035
 アルゴン雰囲気下、化合物16(3.014 g, 7.91 mmol)をN, N-ジメチルホルムアミド(15 mL)に溶解させたのち、アジ化ナトリウム((1.541 g, 23.7 mmol)を室温で加えた。50℃で2時間攪拌させたのち、水を加えて反応を停止させ、酢酸エチルで3回抽出した。有機層を1M塩酸で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル = 55 : 45)で精製することで、化合物17(2.7477 g)を無色液体として定量的に得た。
1H NMR (400 MHz, CDCl3) δ 6.81 (d, J = 6.8 Hz, 1H), δ 4.62-4.57 (m, 2H), 4.04-3.95 (m, 2H), 3.74 (s, 3H), 3.09 (q, J = 6.3 Hz, 2H), 1.91-1.82 (m, 1H), 1.76-1.67 (m, 1H), 1.52-1.42 (m, 11H), 1.37-1.30 (m, 2H).
<化合物17から化合物18の合成>
Figure JPOXMLDOC01-appb-C000036
 化合物17(1.889 g, 5.50 mmol)をメタノール(17.6 mL)と蒸留水(4.4 mL)に溶解させたのち、水酸化リチウム一水和物(1.154 g, 27.5 mmol)を室温で加えた。30分攪拌させた後、1M HClを加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去し、化合物18(1.4758 g, 収率81%)を黄色液体として得た。
1H NMR (400 MHz, CDCl3) δ 11.4 (brs, 1H), δ 7.17 (d, J = 7.8 Hz, 1H), 4.56 (brs, 1H), 3.98 (s, 2H), 3.04 (brs, 2H), 1.92-1.83 (m, 1H), 1.77-1.68 (m, 1H), 1.47-1.35 (m, 13H).
<化合物18から化合物19の合成>
Figure JPOXMLDOC01-appb-C000037
 アルゴン雰囲気下、化合物18(420.5 mg, 1.28 mmol)と化合物9(931.7 mg, 1.28 mmol)、及びHOBt・H2O(183.0 mg, 1.41 mmol)をジクロロメタン(7.7 mL)に溶解させたのち、ジイソプロピルエチルアミン(267 μL, 1.53 mmol)とEDCI・HCl (269.5 mg, 1.41 mmol)を0℃で加えた。0℃で2時間攪拌させたのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール = 98 : 2)で精製することで、化合物19(869.7 mg, 収率 65%)を白色のアモルファス個体として得た。
1H NMR (400 MHz, CDCl3) δ 8.69 (brs, 1H), 7.41 (d, J = 9.1 Hz, 1H), 4.77 (brs, 1H), 4.46 (q, J = 7.4 Hz, 1H), 4.09 (d, J = 16.1 Hz, 1H), 4.01 (d, J = 16.1 Hz, 1H), 3.94-3.66 (m, 5H), 3.54-3.51 (m, 1H), 3.41-3.36 (m, 1H), 3.29-3.16 (m, 17H), 3.06 (brs, 2H), 1.95-1.86 (m, 4H), 1.67-1.59 (m, 16H), 1.49-1.39 (m, 27H), 0.99 (t, J = 7.3 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 172.1, 167.8, 156.0, 78.5, 71.8, 69.9, 69.2, 58.9, 54.3, 51.9, 41.3, 40.3, 32., 29.3, 28.4, 24.1, 23.1, 19.7, 13.7.
<化合物19から化合物20の合成>
Figure JPOXMLDOC01-appb-C000038
 アルゴン雰囲気下、化合物19(860.0 mg, 0.826 mmol)をアセトニトリル(12.0 mL)に溶解させたのち、塩酸の1, 4-ジオキサン溶液(4.0 M, 4.0 mL)を0℃で加えた。0℃で1時間攪拌したのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去することで、化合物20(728.8 mg, 収率94%)を白色のアモルファス個体として得た。
HRMS (ESI-TOF): calcd for [C12H34B12N6O4]2- 455.3766: found 455.3773.
<化合物20から化合物22の合成>
Figure JPOXMLDOC01-appb-C000039
 アルゴン雰囲気下、化合物20(990.0 mg, 1.05 mmol)と化合物8(791.6 mg, 1.105 mmol)、及びHOBt・H2O(165.7 mg, 1.16 mmol)をジクロロメタン(6.3 mL)に溶解させたのち、ジイソプロピルエチルアミン(220 μL, 1.26 mmol)とEDCI・HCl (221.8 mg, 1.16 mmol)を0℃で加えた。室温で2時間攪拌させたのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール = 98 : 2)で精製することで、化合物21(616.9 mg, 収率36%)を白色のアモルファス個体として得た。
13C NMR (125 MHz, CDCl3) δ173.0, 172.8, 172.7, 172.1, 172.0, 167.8, 156.1, 141.7, 137.2, 130.7, 90.6, 78.7, 71.7, 69.7, 69.1, 58.7, 54., 53.9, 51.7, 41.3, 40.1, 39.0, 39.0, 38.8, 35.7, 34.7, 34.7, 34.7, 32.5, 31.9, 31.1, 29.5, 29.1, 28.8, 28.4, 28.2, 27.2, 27.1, 26.1, 26.0, 23.9, 23.0, 22.8, 19.6, 13.6; HRMS (ESI-TOF): calcd for [C43H81B12IN10O10]2- 577.3204: found 577.3209.
 アルゴン雰囲気下、化合物21(316.5 mg, 0.193 mmol)をアセトニトリル(3.9 mL)に溶解させたのち、塩酸の1, 4-ジオキサン溶液(4 M, 0.97 mL)を0℃で加えた。0℃で1時間攪拌したのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで5回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去することで、化合物22(336.5 mg)を白色のアモルファス個体として定量的に得た。
HRMS (ESI-TOF): calcd for [C38H73B12IN10O8]2- 527.2940: found 527.2937.
<化合物22から化合物24の合成>
Figure JPOXMLDOC01-appb-C000040
 アルゴン雰囲気下、化合物22(152.8 mg, 0.105 mmol)とプテロイルアジド(33.7 mg, 0.100 mmol)をジメチルスルホキシド(1.0 mL)に溶解させたのち、1,1,3,3-テトラメチルグアニジン(50 μL, 0.400 mmol)を室温で加えた。室温で2時間攪拌したのち、ジクロロメタン/メタノールで希釈し、ジエチルエーテルを加えて目的物を沈殿させた。混合物をろ過し、得られた黄色個体をアセトンとジエチルエーテルで洗浄したのち、減圧下で乾燥させて化合物23(96.5 mg, 収率61%)を黄色個体として得た。HRMS (ESI-TOF): calcd for [C52H83B12IN16O10]2- 674.3376: found 674.3372.
 得られた黄色個体(92.0 mg, 0.0582 mmol)をジクロロメタン(1.0 mL)とメタノール(1.0 mL)に溶解させ、テトラメチルアンモニウムクロリド(110.9 mg, 0.582 mmol)のメタノール溶液(1.0 mL)を室温で加えた。30分間攪拌させたのち、混合物をろ過し、得られた橙色個体をエタノール/メタノール(1 : 1, 20 mL)で洗浄したのち、減圧下で乾燥させて化合物24(63.0 mg, 収率73%)を黄色個体として得た。
HRMS (ESI-TOF): calcd for [C52H83B12IN16O10]2- 674.3376: found 674.3381.
〔実施例4〕 PET用分子プラットホームBCN-Fの合成
Figure JPOXMLDOC01-appb-C000041
 化合物25(DeForest, C. A.; Tirrell, D. A. Nat. Mater. 2015, 14, 523)は公知の方法にしたがって合成した。
<化合物25から化合物26の合成>
Figure JPOXMLDOC01-appb-C000042
 アルゴン雰囲気下、化合物25(190.0 mg, 0.652 mmol)をジクロロメタン(3.3 mL)に溶解させたのち、トリエチルアミン(178 μL, 1.30 mmol)とトリグリコールアミン(108 μL, 0.783 mmol)を0℃で加えた。0℃で1時間攪拌したのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル = 40 : 60)で精製することで、化合物26(207.1 mg, 収率98%)を無色液体として得た。
1H NMR (400 MHz, CDCl3) δ 5.30 (brs, 1H), 4.16 (d, J = 8.1 Hz, 2H), 3.76 (t, J = 4.2 Hz, 2H), 3.66-3.52 (m, 9H), 3.39 (q, J = 5.1 Hz, 2H), 2.29-2.18 (m, 5H), 1.2-1.57 (m, 2H), 1.41-1.32 (m, 1H), 0.97-0.92 (m, 2H).
<化合物26から化合物27の合成>
Figure JPOXMLDOC01-appb-C000043
 アルゴン雰囲気下、化合物26(98.1 mg, 0.302 mmol)をジクロロメタン(1.5 mL)に溶解させたのち、トリエチルアミン(84 μL, 0.603 mmol)とトシルクロリド(63.2 mg, 0.332 mmol)を0℃で加えた。0℃で3時間攪拌したのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、ジクロロメタンで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル = 50 : 50)で精製することで、化合物27(31.2 mg, 収率22%)を無色液体として得た。
1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 5.12 (brs, 1H), 4.19-4.11 (m, 4H), 3.71-3.68 (m, 2H), 3.60-3.51 (m, 6H), 3.35 (q, J = 5.2 Hz, 2H), 2.45 (s, 3H), 2.32-2.18 (m, 6H), 1.59-1.56 (m, 2H), 1.37-1.33 (m, 1H), 0.96-0.91 (m, 2H).
<化合物27から化合物28の合成>
Figure JPOXMLDOC01-appb-C000044
 アルゴン雰囲気下、化合物27(10.7 mg, 0.0223 mmol)アセトニトリル(1.5 mL)に溶解させたのち、テトラブチルアンモニウムフルオリドのテトラヒドロフラン溶液(1.0 M, 89 μL)を室温で加えた。95℃で10時間攪拌したのち、飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、酢酸エチルで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、ろ過後、溶媒を減圧下で除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル = 30 : 70)で精製することで、化合物28(3.0 mg, 収率41%)を無色液体として得た。
1H NMR (400 MHz, CDCl3) δ 5.15 (brs, 1H), 4.65-4.63 (m, 1H), 4.53-4.51 (m, 1H), 4.15 (d, J = 8.0 Hz, 2H), 3.80-3.76 (m, 1H), 3.72-3.63 (m, 5H), 3.57 (t, J = 5.3 Hz, 2H), 3.39 (q, J = 5.0 Hz, 2H), 2.33-2.17 (m, 6H), 1.63-1.57 (m, 2H), 1.42-1.32 (m, 1H), 0.97-0.92 (m, 2H). 
〔実施例5〕 PBC-IP PET Probeの合成
Figure JPOXMLDOC01-appb-C000045
<化合物23及び化合物28から化合物29の合成>
 アルゴン雰囲気下、化合物23(3.8 mg, 0.00246 mmol)及び化合物28(0.8 mg)をジメチルスルホキシド(0.2 mL)に溶解させた。40℃で2時間攪拌させたのち、凍結乾燥により溶媒を除去することで化合物29(4.5 mg)を黄色個体として得た。LRMS (ESI-TOF): calcd for [C69H109B12FIN17O14]2- 838.43: found 838.41.
〔実施例6〕 PBC-IPのヒト血清アルブミンへの結合の評価
 ヒト血清アルブミンに対するPBC-IPの結合能を以下の方法によって評価した。また、比較のため、葉酸を持たないBC-IP及びアルブミンに対して共有結合をすることが確認されているMID(国際公開WO2017/026276)についても、同様に結合能を評価した。
 ヒト血清アルブミン(HSA、10μM、200μL)をリン酸緩衝液中のホウ素化合物(MID、PBC-IP, BC-IP)(10当量、10 mM、20μL)と緩衝生理食塩水(PBS)中で混合し、37℃で1時間反応させた。 次に、この混合物をフィルター(Amicon R Ultra-0.5 mL、30 K)を用いて9回(10,000 rpm、4℃、5分)洗浄した。 最後に、サンプルを蒸留水で合計5mLに希釈し、その溶液のホウ素濃度をICP-OES(iCAP 7400 Duo、Thermo)で測定し、親和性評価をHSA1分子あたりの結合分子数として計算した。
 この結果、PBC-IPは、アルブミン1分子に対して9.0分子結合することが明らかとなった。一方、MIDは2.8分子結合し、BC-IPは3.4分子結合し、PBC-IPに比べると結合分子数が少なかった。
〔実施例7〕 各ヒトがん細胞における葉酸受容体(FRα)発現量の検証
(1)Western Blotting Analysis of FR Expression
 HeLa(ヒト子宮頸がん)、MCF-7(ヒト乳がん)、U-87 MG(ヒト脳腫瘍)、CT26(マウス大腸がん)、A549(ヒト肺がん)各細胞1×106 cells をSDS-PAGE sample buffer(1 mL)に加え、95℃で5分煮沸したのち、細胞ライセートを10%SDSポリアクリルアミドゲルで電気泳動しPVDFメンブランに転写させた。抗FRα抗体(一次抗体)を加え、4℃ で12時間インキュベートした後、TBSバッファーで3回洗浄した。HRP-conjugate二次抗体を加え、室温でさらに1時間インキュベート後、検出試薬を添加し、化学発光強度によりタンパク質の発現量を検出した(図1)。図1に示すように、葉酸受容体はU87MG細胞、HeLa細胞、及びCT26細胞で比較的高発現しているのに対し、MCF-7細胞やA549細胞では、発現は低かった。
(2)Flow Cytometry Analysis of FR Expression
 HeLa、MCF-7、U-87 MG、CT26又はA549細胞(5×105細胞)を1 mL PBSで洗浄し、免疫ブロック溶液を添加した。 4℃で15分間インキュベートした後、溶液を遠心分離した(3分、2000rpm)。 次に、上清を除去し、一次抗体(PBS中20 μg / mL)を添加し、 4℃で30分間インキュベートした後、溶液を遠心分離し、上清を除去した。 PBSで3回洗浄した後、FITC標識二次抗体(PBS中2 μg / mL)を添加した。 4℃で30分間インキュベートした後、溶液を遠心分離し、上清を除去し、PBSで3回洗浄した。 そして、この細胞ペレットを500 μLのPBSで溶解した。 フローサイトメーターを使用して蛍光シグナルを観察した(図2)。図2に示すように、FRαの発現はU87MG細胞、HeLa細胞、及びCT26細胞において高かった。
〔実施例8〕 PBC-IPのBNCT抗腫瘍効果の検証(in vitro)
 96 well plateに播種した細胞(A549 1000cells/well or U-87 MG 500 cells/well)を25 ppm [10B]の濃度でPBC-IP, L-BPA-fructoseとともに、37℃で3時間培養したのち、プレートの側面一方向から熱中性子を12分間照射した。続いて培地を交換し、96時間培養した後、MTT assayをおこない細胞の生存率を評価した(図3)。なお、熱中性子の照射は京都大学複合原子力研究所(KUR)の照射設備を用い、照射後の細胞はKURの管理区域で培養した。また、生存率は以下の式に基づいて算出をしている。
Figure JPOXMLDOC01-appb-M000046
 図3に示すように、PBC-IPは、U87MG細胞に対してBPAよりも高いBNCT抗腫瘍効果を線量依存的に示す一方で、A549細胞に対してはBPAの方が高いBNCT抗腫瘍効果を示した。これらの結果は、PBC-IPがFRαを介して取り込まれたことを示唆する。
〔実施例9〕 PBC-IPの薬物動態とBNCT抗腫瘍効果の検証(in vivo)
 PBC-IP-HSAの調製:HSA (170.3 mg, 2.56 μmol) と PBC-IP (59.8 mg, 50.9 μmol) を PBS (1.8mL) に溶解し、 37 ℃ で 23 時間攪拌した。この溶液を30K限外ろ過(Amicon Ultra-0.5 mL, Merck Millipore Ltd.)を行い、ICP-OES測定によりホウ素濃度を2500 ppmに調整して得られたPBC-IP-アルブミン複合体(PBC-IP-HSA)のPBS溶液を、以下の実験に使用した。
(A) 薬物動態
 ヌードマウス(Balb / cSlc-nu / nu、雌、5~6週齢、14~20 g)の右大腿にU-87MG細胞皮下移植し、通常の固形飼料と水で飼育し、周囲雰囲気で12時間の明/暗サイクル下で維持した。腫瘍のサイズが直径5~7 mmになったら、マウスの尾静脈からホウ素化合物の200 μL PBS溶液(PBC-IP-HSA及びBPA: 25 mgB/kg)を注射した。注射の3時間後(BPA)ならびに6時間後(PBC-IP-HSA)に、マウスを軽く麻酔し、心臓穿刺により血液サンプルを採取した。次に、マウスを頸椎脱臼し、解剖した。肝臓、腎臓、脾臓、及び腫瘍を切除し、0.9%NaCl溶液で洗浄し、重量を測定した。切除した臓器を1mLの濃硝酸(超微量分析グレード)を用いて90℃で2時間処理した後、分解したサンプルを蒸留水で希釈した。疎水性フィルターでろ過した後、ICP-OESでホウ素濃度を測定した(図4A)。図4Aに示すように、BPAよりもPBC-IP-HSAの方がより腫瘍への集積がみられた。また、腫瘍以外に肝臓、脾臓への集積がみられた。
(B)BNCT抗腫瘍効果
 (A)に述べたように、U-87MG担癌マウスに、ホウ素化合物の200 μL PBS溶液(PBC-IP-HSA、L-BPA:各々25 mg(10B)/kg)を尾静脈から注射した。マウスの全身をアクリル製のマウスホルダーに入れ、厚さ5mmの熱可塑性プレートに固定した。 投与後3時間(L-BPA)あるいは6時間(PBC-IP-HSA)後に、マウスの右大腿部にKUR原子炉内で4.5~6.1×1012中性子/ cm2の線量範囲で中性子を照射した。 BNCT効果は、マウスの腫瘍体積の変化に基づいて評価した(図4B)。 腫瘍体積を決定するために、腫瘍の2つの垂直直径をスライドキャリパーで測定し、球体積式{4 /3π×(R / 2)3}を使用して計算した。ここで、Rは腫瘍の最長寸法と最短寸法(それぞれミリメートル単位)の平均である。図4Bに示すように、PBC-IP-HSA(25 mg(10B)/kg, 6h後)がL-BPA(25 mg(10B)/kg, 3h後)よりも有意に高いBNCT抗腫瘍効果が得られた。
(C)BNCT照射後の体重変化
(B)で行なった照射実験において、照射後の体重変化を測定した。図4Cに示すように、コントロール群にくらべて、BPA照射群、PBC-IP-HSA照射群いずれも体重変化に有意差は観察されなかったことから、PBC-IP-HSAは毒性が十分に低いことがわかった。
〔実施例10〕 PBC-IPの様々な細胞に対する選択的集積能
 PBC-IP複合体の細胞レベルでの集積性に関し、ヒト肺がん細胞(A549)、ヒト神経膠芽腫細胞(U87MG)、ラット神経膠芽腫細胞(C6、F98)を用いて既存のホウ素薬剤(BPA)と比較したところ、PBC-IPの細胞集積性及び細胞内での滞留性に関し、BPAに比べて20~150倍優れている結果が示された(図5)。これらの4種類の細胞に対し、BPAはLAT1が高発現しているA549細胞に対し選択的集積性を示すのに対し、PBC-IPはU87MGならびにF98に対し、選択的集積性を示した。
〔実験方法〕
(細胞)
 F98ラット悪性膠芽腫細胞は、Rolf Barth博士(Department of Pathology, The Ohio State University, Columbus, OH, US)から提供されたもので、10%牛胎児血清(FBS)と10%ペニシリン/ストレプトマイシン/アンフォテリシンBを添加したダルベッコ変法イーグル培地(DMEM)を用いて、5%CO2、37℃で培養した。F98ラット悪性膠芽腫細胞は、組織学的に退形成性星細胞腫として特徴づけられていた。細胞培養のための材料はすべてGibco Invitrogen Corporation (Grand Island, NY)から購入した。
(細胞内ホウ素集積濃度)
 まず、5×105個の各細胞を100mmディッシュ(Becton Dickinson, Franklin Lakes, New Jersey)に入れ、上記の培地を用いて、5% CO2、37℃で培養した。72時間培養した後、培地を5μg B/mLのBPA、BSH、又はPBC-IPを含む培地に交換し、2.5時間、6時間、24時間培養した。その後、ホウ素化合物を含む培地を除去し、細胞を4%リン酸緩衝生理食塩水(PBS)で2回洗浄した後、トリプシン-エチレンジアミン四酢酸溶液で剥離した。その後、培地を加え、遠心分離(200×g、5分間)を2回行い、細胞を数え、最後に沈降させた。その後、1 N硝酸溶液(Wako Pure Chemical Industries, Osaka Japan)で一晩消化し、iCAP6300発光分光装置(Hitachi High-Technologies, Tokyo, Japan)を用いた誘導結合プラズマ発光分光法(ICP-AES)でホウ素の取り込み量を測定した。
〔実施例11〕 PBC-IPのF98及びC6悪性膠芽腫細胞移植ラット脳腫瘍モデルに対するBNCT治療効果
 F98ラット悪性膠芽腫モデルに対し、経静脈投与による至適投与条件を検討した。PBC-IPの高濃度・高用量での投薬において、血中のホウ素濃度は150ppm以上(BPAでは20-30ppm程度)と高値を示すことが確認され、安全性を担保するため治療にあたっては1/10程度の投与で効果が期待できると判断した。さらに至適用量を決定するため、低用量域での用量増加試験を行い、同薬剤の毒性は投与薬剤の用量ではなく濃度に依存する傾向が見出されている。Convection Enhanced Delivery(CED)を用いる局所投与では、25 ppm程度と安定的に高い腫瘍内ホウ素集積が確認できており、正常脳との集積比は30倍以上で血中濃度は極めて低いため濃度比は100倍程度となっている。
 F98及びC6移植ラット脳腫瘍モデルを用い、PBC-IPの局所投薬(CED)による至適投与条件を検討した(図6)。BPAの経静脈投与(10 mgB/kg)では、投与後1時間で、F98腫瘍ホウ素濃度は、16 ppm程度であり、正常脳組織(T/N)比は5.4、血液濃度比(T/B)は2.2であった。一方、PBC-IPの低用量(0.5 mgB/kg)での投薬では、F98腫瘍ホウ素濃度は、PBC-IP (CED)の投与後3時間で、26.5 ppm程度であり、正常脳組織(T/N)比は29、血液濃度比(T/B)は92と極めて高い値である。同様に、C6腫瘍ホウ素濃度は、36.6 ppmに達し、正常脳組織(T/N)比は63、血液濃度比(T/B)は78と高値である。
 PBC-IP (CED)の投与後3時間で中性子照射を行い、中性子捕捉療法による治療効果を検証した(図7)。脳腫瘍モデルは、未治療、中性子照射のみ、BPA (iv)によるBNCT、PBC-IPの局所投薬(CED)によるBNCTと、PBC-IP (CED)にBPA (iv)を加えた併用群に分けて治療実験を実施し、腫瘍移植からの生存期間で比較を行っている。BNCT治療のコントロールとしたBPA静注による治療効果は、生存期間中央値で37日と有意な生存期間の延長がみられている。これに対しPBC-IP (CED)群の生存期間延長効果は極めて高く、90日の観察時点においても半数以上が生存し、中央値算出に至っていないと好成績である。このPBC-IP (CED)単独使用の治療にBPA静注を併用した群ではさらに効果が高く、BPA不応腫瘍部に対するPBC-IPの抗腫瘍効果が示されている。C6移植ラット脳腫瘍モデルでは、PBC-IP (CED)による腫瘍ホウ素濃度が36ppm程度とF98と比較しても高値であった。このモデルでの中性子照射実験は少数のパイロット研究にとどまるが、PBC-IP (CED)でのみラットの長期生存が得られた。
 PBC-IP複合体のラット脳内への局所投薬(CED)後に中性子照射を行い、正常脳組織への同薬剤を用いるBNCTによる影響を病理学的に検討した。照射後の観察期間において明らかな身体的・神経学的影響はなく、中性子照射後の脳組織に対する病理学的検討では、脳局所投薬(CED)に使用したカテーテル刺入部とその周辺のみに限局した軽度の組織反応以外に明らかな組織への有害事象は見られていない(図8)。
〔実験方法〕
(F98脳腫瘍同所モデルラット)
 体重200~240gの雄のフィッシャーラット(F344 Japan SLC; Hamamatsu, Shizuoka, Japan)全てに、メデトミジン(0.4 mg/kg)、ミダゾラム(2.0 mg/kg)、ブトルファノール(5.0 mg/kg)の3種類の混合麻酔薬を腹腔内に注射して麻酔をかけた後、定位フレーム(Model 900; David Kopf Instruments, Tujunga, California)に固定した。その後、頭皮の正中を切開し、電気ドリルを用いてブレグマの1mm後方と4mm右横の位置に1mmの穿頭孔を開けた。26ゲージの針が付いた25μLのハミルトン社製シリンジ(model 1700RN; Hamilton Bonaduz, Switzerland)をラット脳内に挿入し、F98腫瘍細胞を移植した。注射針は、まず硬膜から6mmの深さまで挿入し、その後、脳内の標的(硬膜から5mm)まで1mmの距離まで引き抜いた。1.4%のアガロースを含むDMEM10μLで希釈したF98細胞懸濁液を、治療実験では103個、生体内分布実験では105個の濃度になるように、自動注入ポンプを用いて20μL/minの速度で注入した。注入後、直ちに針を引き抜き、バリの穴を骨用ワックスで覆い、頭皮を縫合した。
(CED法)
 CEDは、持続的な低陽圧下で脳の間質に薬物を局所的に注入し、薬物の高濃度と広い分布を得ることができる直接薬物投与法である(Yin et al. Cancer Gene Ther. 2013, 20: 336-341; Bobo et al. Proc. Natl. Acad. Sci. USA, 1994, 91: 2076-2080)。薬物のCEDのために、Alzet浸透圧ポンプ(モデル#2001D; DURECT Corporation, Cupertino, California)と脳内注入キット(rigid stainless-steel cannula, 5-mm 28 gauge)を組み立て、ホウ素化合物溶液を200μL充填した。F98悪性膠芽腫細胞保有ラットに麻酔をかけた後、ラットの背中に輸液ポンプを皮下に埋め込んだ。腫瘍細胞を移植したのと同じ穿頭孔に、輸液カニューレに接続した針を挿入した。この輸液ポンプは、ホウ素化合物を8μL/hの速度で24時間以上投与することができた。
(各組織内ホウ素濃度)
 腫瘍移植の14日後、F98悪性膠芽腫細胞保有ラットに各ホウ素化合物(BPA及びPBC-IP)を投与した。BPAを12 mg B/kg body mass (b.m.)静脈内投与後2及び6時間、PBC-IP(CED)投与終了後2、6、24時間の生体内分布を、1グループあたり3~5匹のラットを用いて測定した。ラットは投与毎に安楽死させ、腫瘍、正常脳、血液、心臓、肺、肝臓、脾臓、腎臓、皮膚、筋肉を摘出して重量を測定した後、1 N硝酸溶液で消化した。各臓器に含まれるホウ素濃度(μg B/g)をICP-AESで測定した。
(中性子照射実験)
 BNCT実験では、103個のF98悪性膠芽腫細胞を移植してから14日後にKURRIを用いて中性子照射を行った。悪性膠芽腫細胞保有ラットを無作為に5つのグループ(グループ1~5)に分け、各グループは6~10匹で構成されるようにした。グループ1は、無処置の対照群であり、原子炉に運ばれて麻酔をかけられ、中性子を照射しない(偽照射)だけで他のグループの動物と同様に扱った。グループ2は中性子照射対照群である。グループ3はBPAを静脈内投与した後に中性子を照射した群である。グループ4はCEDによるPBC-IP(10B-enrich)の投与後に中性子を照射した群である。グループ5はCEDによるPBC-IP(10B-enrich)の投与とBPAの静脈内注射を併用した後に中性子を照射した群(併用群)である。ラットを混合麻酔薬で麻酔した後、頭部を除く全身を遮蔽し、ボード上に固定した。静脈内投与終了2時間後又はCED終了3時間後に、原子炉出力5MWの中性子線を20分間照射した。中性子照射後、中性子未照射動物と中性子照射動物は観察のためKURRIに残された。治療効果は、すべてのラットの生存期間で評価した。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。
 本発明のホウ素薬剤は医薬品として使用されるので、本発明は医薬品に関連する産業において利用可能である。

Claims (12)

  1.  下記の式(I)又は(II)
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Cは、炭素原子を表し、L1、L2、L3、及びL4は、それぞれ独立して、スペーサーとして機能する二価の基を表し、Xは、アルブミンと結合する基を表し、Yは、10Bを含有する基を表し、Zは、葉酸受容体と結合する基を表す。〕で表される化合物を含有することを特徴とするホウ素中性子捕捉療法用ホウ素薬剤。
  2.  式(I)及び(II)におけるL1、L2、L3、及びL4が、アルキレン基(但し、アルキレン基の1以上の-CH2-は、-O-、-S-、-NH-、又は-CO-で置換されていてもよい。)であることを特徴とする請求項1に記載のホウ素中性子捕捉療法用ホウ素薬剤。
  3.  式(I)及び(II)におけるXが、下記の式(A)~(C)
    Figure JPOXMLDOC01-appb-C000002
    (式中、*は結合部位を表し、Rは水素原子、フッ素原子、塩素原子、臭素原子、又はヨウ素原子を表す。)
    で示される基であることを特徴とする請求項1又は2に記載のホウ素中性子捕捉療法用ホウ素薬剤。
  4.  式(I)及び(II)におけるYが、ホウ素クラスターから誘導される基であることを特徴とする請求項1乃至3のいずれか一項に記載のホウ素中性子捕捉療法用ホウ素薬剤。
  5.  式(II)におけるZが、下記の式(D)
    Figure JPOXMLDOC01-appb-C000003
    (式中、*は結合部位を表す。)
    で示される基であることを特徴とする請求項1乃至4のいずれか一項に記載のホウ素中性子捕捉療法用ホウ素薬剤。
  6.  式(I)及び式(II)で表される化合物が、それぞれ下記の式(Ia)及び(IIa)
    Figure JPOXMLDOC01-appb-C000004
    で表される化合物であることを特徴とする請求項1に記載のホウ素中性子捕捉療法用ホウ素薬剤。
  7.  下記の式(III)又は(IV)
    Figure JPOXMLDOC01-appb-C000005
    〔式中、Cは、炭素原子を表し、18Fは、質量数18の放射性フッ素原子を表し、L5、L6、L7、L8、L9及びL10は、それぞれ独立して、スペーサーとして機能する二価の基を表し、Xは、アルブミンと結合する基を表し、Yは、10Bを含有する基を表し、Zは、葉酸受容体と結合する基を表す。〕で表される化合物を含有することを特徴とするPET用イメージング剤。
  8.  式(III)及び(IV)におけるL5、L6、L8、L9及びL10が、アルキレン基(但し、アルキレン基の1以上の-CH2-は、-O-、-S-、-NH-、又は-CO-で置換されていてもよい。)であり、L7が、アルキレン基(但し、アルキレン基の1以上の-CH2-は、-O-、-S-、-NH-、又は-CO-で置換されていてもよく、アルキレン基の1の-CH2-は、クリック反応により形成される二価の基で置換されていてもよい。)であることを特徴とする請求項7に記載のPET用イメージング剤。
  9.  式(III)及び(IV)におけるXが、下記の式(A)~(C)
    Figure JPOXMLDOC01-appb-C000006
    (式中、*は結合部位を表し、Rは水素原子、フッ素原子、塩素原子、臭素原子、又はヨウ素原子を表す。)
    で示される基であることを特徴とする請求項7又は8に記載のPET用イメージング剤。
  10.  式(III)及び(IV)におけるYが、ホウ素クラスターから誘導される基であることを特徴とする請求項7乃至9のいずれか一項に記載のPET用イメージング剤。
  11.  式(IV)におけるZが、下記の式(D)
    Figure JPOXMLDOC01-appb-C000007
    (式中、*は結合部位を表す。)
    で示される基であることを特徴とする請求項7乃至10のいずれか一項に記載のPET用イメージング剤。
  12.  式(IV)で表される化合物が、下記の式(IVa)
    Figure JPOXMLDOC01-appb-C000008
    で表される化合物であることを特徴とする請求項7に記載のPET用イメージング剤。
PCT/JP2022/010452 2021-03-12 2022-03-10 新規ホウ素薬剤 WO2022191262A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505620A JPWO2022191262A1 (ja) 2021-03-12 2022-03-10

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021039885 2021-03-12
JP2021-039885 2021-03-12
JP2021096432 2021-06-09
JP2021-096432 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022191262A1 true WO2022191262A1 (ja) 2022-09-15

Family

ID=83228017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010452 WO2022191262A1 (ja) 2021-03-12 2022-03-10 新規ホウ素薬剤

Country Status (2)

Country Link
JP (1) JPWO2022191262A1 (ja)
WO (1) WO2022191262A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026276A1 (ja) * 2015-08-07 2017-02-16 国立大学法人東京工業大学 ホウ素含有化合物とタンパク質とのコンジュゲートを含む医薬組成物
JP2019001761A (ja) * 2017-06-19 2019-01-10 浜松ホトニクス株式会社 腫瘍イメージング剤、及びホウ素中性子捕捉療法用腫瘍治療剤
JP2019038778A (ja) * 2017-08-25 2019-03-14 国立大学法人東京工業大学 ホウ素含有葉酸誘導体
JP2020066619A (ja) * 2018-04-04 2020-04-30 株式会社Cics アミロイドβ疾患のホウ素中性子捕捉療法用化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026276A1 (ja) * 2015-08-07 2017-02-16 国立大学法人東京工業大学 ホウ素含有化合物とタンパク質とのコンジュゲートを含む医薬組成物
JP2019001761A (ja) * 2017-06-19 2019-01-10 浜松ホトニクス株式会社 腫瘍イメージング剤、及びホウ素中性子捕捉療法用腫瘍治療剤
JP2019038778A (ja) * 2017-08-25 2019-03-14 国立大学法人東京工業大学 ホウ素含有葉酸誘導体
JP2020066619A (ja) * 2018-04-04 2020-04-30 株式会社Cics アミロイドβ疾患のホウ素中性子捕捉療法用化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROYUKI NAKAMURA: "Developement of serum albumin-based boron delivery system", BIO CLINICA, vol. 32, no. 7, 1 January 2017 (2017-01-01), JP , pages 61 (699) - 65 (703), XP009539522, ISSN: 0919-8237 *

Also Published As

Publication number Publication date
JPWO2022191262A1 (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
ES2595128T3 (es) Complejos de tecnecio y renio-bis(heteroarilo) y métodos de uso de los mismos para inhibir PSMA
Ishiwata 4-Borono-2-18F-fluoro-L-phenylalanine PET for boron neutron capture therapy-oriented diagnosis: Overview of a quarter century of research
CN108430520A (zh) 长效钆基肿瘤靶向成像与治疗剂
AU2014262653B2 (en) Targeting corroles for tumor toxicity and MRI
KR20220010525A (ko) 보론산 에스테르 전구약물 및 그의 용도
JP2022552416A (ja) ブラシプロドラッグおよびその使用
JP2018518509A (ja) 白金化合物、組成物及びその使用
CA3205844A1 (en) Ligands and their use
Nishimura et al. Efficient neutron capture therapy of glioblastoma with pteroyl-closo-dodecaborate-conjugated 4-(p-iodophenyl) butyric acid (PBC-IP)
WO2022191262A1 (ja) 新規ホウ素薬剤
EP3816156A1 (en) Radioactive compound for treatment of melanoma and use thereof
US7582280B2 (en) Conjugates of antioxidants with metal chelating ligands for use in diagnostic and therapeutic applications
CN102526038B (zh) 替莫唑胺的脑靶向药物组合物及其应用
Cheng et al. In vivo clinical molecular imaging of T cell activity
Okada et al. Development of a Gadolinium–Boron-Conjugated Albumin for MRI-Guided Neutron Capture Therapy
JP2006096870A (ja) ホウ素含有化合物
US11504439B2 (en) Radioactive compound for diagnosis of malignant melanoma and use thereof
JP7154528B2 (ja) ホウ素含有葉酸誘導体
KR20170089245A (ko) 방사성 금속 표지 벤조사이아졸 유도체 및 그 유도체를 포함하는 방사성 의약품
CN101830819B (zh) 苯丁酰基姜黄素衍生物及其在制备抗肿瘤药物中的应用
Hou et al. GSH-activatable camptothecin prodrug-loaded gold nanostars coated with hyaluronic acid for targeted breast cancer therapy via multiple radiosensitization strategies
Luderer Development of Novel Tumor-Targeted Compounds for Boron Neutron Capture Therapy
WO2018218025A1 (en) Radiolabeled and fluorescent parp inhibitors for imaging and radiotherapy
Tang et al. 68Ga-pAKTi PET/CT imaging as a non-invasive method to assess tumor response to PI3Kα Inhibitor in breast cancer
KR102203483B1 (ko) 방사성 금속 및 유로피움을 포함하는 광역동 요법용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023505620

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767216

Country of ref document: EP

Kind code of ref document: A1