WO2022190731A1 - Power supply device and power supply method - Google Patents

Power supply device and power supply method Download PDF

Info

Publication number
WO2022190731A1
WO2022190731A1 PCT/JP2022/004449 JP2022004449W WO2022190731A1 WO 2022190731 A1 WO2022190731 A1 WO 2022190731A1 JP 2022004449 W JP2022004449 W JP 2022004449W WO 2022190731 A1 WO2022190731 A1 WO 2022190731A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
temporary
voltage
supply device
Prior art date
Application number
PCT/JP2022/004449
Other languages
French (fr)
Japanese (ja)
Inventor
孝平 久保
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2023505219A priority Critical patent/JPWO2022190731A1/ja
Publication of WO2022190731A1 publication Critical patent/WO2022190731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to technology for supplying temporary power to a power supply target.
  • Patent Document 1 discloses a power supply device for a server that switches to a secondary battery as an emergency power supply when the commercial power supply fails.
  • the secondary battery is normally charged with power from a commercial power supply that has been stepped down by a step-down DC/DC converter, and in the event of a power outage, a step-up DC/DC converter boosts the power to the same voltage as the commercial power supply and supplies it to the server. supply.
  • the present invention has been made in view of this situation, and its purpose is to provide a power supply device capable of stably supplying temporary power.
  • a power supply device is a power supply device that supplies temporary power to a power supply target, and detects disconnection of the power supply target from a normal power source.
  • a detection unit and a temporary power supply unit that supplies temporary power having a voltage higher than that of a normal power supply to a power supply target in response to detection of disconnection.
  • the temporary power having a voltage higher than that of the normal power source is supplied to the power supply target, even if the load of the power supply target fluctuates significantly, the possibility of exceeding the power supply capacity of the power supply device is low. Become. Therefore, it is possible to stably supply temporary power to a power supply target whose load fluctuates greatly.
  • This method is a power supply method for temporarily supplying power to a power supply target, and includes a disconnection detection step of detecting disconnection from a normal power source of the power supply target, and a temporary power supply step of supplying temporary power with a high voltage to a power supply target.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a coke oven in which a power supply device is used;
  • FIG. It is a functional block diagram of a power supply device.
  • FIG. 4 is a diagram schematically showing the effect of making the voltage of temporary power higher than that of the commercial power supply;
  • FIG. 4 is a diagram showing the results of tests conducted using an actual charging vehicle.
  • 1 is a diagram schematically showing a configuration of an electric vehicle in which a power supply device is used; FIG.
  • the power supply device of the present invention can be used for temporary power supply to any power supply target. Therefore, the power supply object is not particularly limited, but in the present embodiment, an example in which power is supplied to a charging car in a coke oven will be described first. Other examples of power supply targets will be described later.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a coke oven 1 in which the power supply device of this embodiment is used.
  • the up-down direction in the drawing is the vertical direction, and the left-right direction in the drawing is the horizontal direction.
  • the coke oven 1 is an oven that produces coke by carbonization of coal.
  • Coal as a raw material is charged from the upper coal tower 10 into the coking chamber 30 through the coal charging car 20 .
  • Coal is dry-distilled in the carbonization chamber 30 to become coke, which is pushed out of the carbonization chamber 30 in the left-right direction by an extrusion device (not shown).
  • a plurality of carbonization chambers 30 are provided side by side in a direction perpendicular to the paper surface.
  • the coal tower 10 has a coal tank 12 containing coal as a raw material.
  • a conveyor 14 for carrying coal is provided above the coal tank 12 , and the coal is thrown into the coal tank 12 from the conveyor 14 .
  • a plurality of outlets 16 are arranged side by side in the left-right direction at the bottom of the coal tank 12 .
  • Each outlet 16 is bounded by a partition 18 and coal is guided to each outlet 16 by sliding down the sloped sidewalls of each partition 18 .
  • a coal charging car 20 provided between the coal tower 10 and the plurality of coking chambers 30 is movably provided along a pair of rails 22 laid in a direction perpendicular to the plane of the paper, and feeds coal charged from the coal tower 10. It is transported to each carbonization chamber 30 and charged.
  • FIG. 1 shows the coking chamber 30 positioned immediately below the coal tower 10, the two are actually separated in the direction perpendicular to the plane of the paper.
  • the coal charging car 20 moves cyclically between the coal tower 10 and the plurality of coking chambers 30 to repeatedly transport coal from the coal tower 10 and charge coal into each coking chamber 30 .
  • each cutting device 26 provided below each charging hopper 24 cuts coal, corresponding to each cutting device 26 on the upper surface of each coking chamber 30. It is charged (charging) into each carbonization chamber 30 through each charging hole 32 provided at a position where the coal is charged. After the coal is carbonized in each carbonization chamber 30 and turned into coke, it is taken out of the carbonization chamber 30 by an extrusion device. Note that the coal charging into a plurality of coking chambers 30 may be performed simultaneously by a plurality of sets of charging hoppers 24 and discharging devices 26 .
  • FIG. 2 is a functional block diagram of the power supply device 100 of this embodiment that supplies power to the coal charging car 20.
  • the power supply device 100 includes a converter 120 that rectifies three-phase AC power supplied from a commercial power source 110 as a normal power source and converts it into DC power (pulsating current), and a converter 120 that smoothes the DC power converted by the converter 120. and an inverter 140 for converting the DC power smoothed by the capacitor 130 into AC power.
  • the converter 120 includes diodes 121 to 126 that rectify the three-phase (U, V, W) AC power supplied from the commercial power supply 110 in a certain direction (upward direction in the figure).
  • Diode 121 allows current to flow when the U-phase AC voltage is positive
  • diode 122 allows current to flow when the U-phase AC voltage is negative
  • diode 123 allows current to flow when the V-phase AC voltage is positive
  • diode 124 allows current to flow when the U-phase AC voltage is positive.
  • diode 125 conducts current when the W-phase AC voltage is positive
  • diode 126 conducts current when the W-phase AC voltage is negative.
  • VDC the DC voltage input between high potential input terminal 141 and low potential input terminal 142 of inverter 140 via converter 120 and capacitor 130 .
  • V DC V dd -V ss .
  • Inverter 140 generates three-phase AC power based on DC voltage VDC input between high potential input terminal 141 and low potential input terminal 142 .
  • a U-phase inverter 140U that generates U-phase AC power based on the DC voltage VDC
  • a V-phase inverter 140V that generates V-phase AC power based on the DC voltage VDC
  • a DC voltage V A W-phase inverter 140W that generates W-phase AC power based on DC is provided in parallel. Since the configurations of the inverters 140U, 140V, and 140W for each phase are common, they will be collectively referred to as the inverter 140 as appropriate below.
  • the inverter 140 has a high potential input terminal 141 to which a high DC power supply potential Vdd is input, a low potential input terminal 142 to which a low DC power supply potential Vss is input, and a high potential input terminal 141 and a low potential input terminal 142.
  • An output terminal 143 is provided therebetween for outputting an alternating voltage that varies between Vdd and Vss .
  • a high potential transistor 144H is connected between the high potential input terminal 141 and the output terminal 143, and a low potential transistor 144L is connected between the low potential input terminal 142 and the output terminal 143.
  • the high potential transistor 144H is switched between conductive states in response to a control signal from a high potential driver 145H connected to its control electrode.
  • the low potential transistor 144L is switched between conductive states according to a control signal from a low potential driver 145L connected to its control electrode.
  • a driver pair 145 consisting of a high-potential driver 145H and a low-potential driver 145L performs switching control to complementarily switch the conductive state of a transistor pair 144 consisting of a high-potential transistor 144H and a low-potential transistor 144L, thereby providing direct current. Converts electrical power to AC power.
  • "complementary switching" means that the on/off states of the transistors 144H and 144L are controlled to be opposite to each other. That is, when the transistor 144H is on, the transistor 144L is turned off, and when the transistor 144H is off, the transistor 144L is turned on.
  • a high potential Vdd appears at the output terminal 143 when the high potential transistor 144H is on, and a low potential Vss appears at the output terminal 143 when the low potential transistor 144L is on.
  • a high potential Vdd and a low potential Vss appear alternately at the output terminal 143, thereby generating AC power.
  • the three-phase AC power generated by the inverter 140 is supplied to a motor 200 that rotates the wheels 23 provided on the rails 22 of the car 20, for example.
  • the motor 200 is a three-phase brushless motor having three-phase coils 200U, 200V, and 200W of U-phase, V-phase, and W-phase.
  • U-phase current from U-phase inverter 140U flows through U-phase coil 200U
  • V-phase current from V-phase inverter 140V flows through V-phase coil 200V
  • W-phase current from W-phase inverter 140W flows through W-phase coil 200W. current flows.
  • Inverters 140U, 140V, and 140W for each phase apply AC power with different phases to coils 200U, 200V, and 200W for each phase based on the rotational position of the rotor detected by Hall elements H1, H2, and H3 of motor 200. By doing so, a rotating magnetic field is generated. Desired rotational power is obtained from the rotor rotating by this rotating magnetic field.
  • the motor 200 may be another type of motor driven by an AC voltage.
  • the number of phases of the motor 200 is not limited to 3, and may be any natural number of 2 or more. Since the wheels 23 are rotated on the rails 22 by the rotational driving of the motor 200 as described above, the charging car 20 can move along the rails 22 .
  • the above configuration of the power supply device 100 supplies power to the coal charging vehicle 20 as a power supply target during a non-power failure or the like when the commercial power supply 110 is normally supplied.
  • the power supply device 100 includes a disconnection detection unit 150 and a temporary power supply unit 160 for temporarily supplying power to the coal charging vehicle 20 when the commercial power supply 110 is cut off.
  • the disconnection detection unit 150 detects disconnection from the commercial power supply 110 to which power is supplied. Specifically, the disconnection detection unit 150 constantly monitors the potential Vdd of the high-potential input line, and if the state in which Vdd is lower than a predetermined threshold continues for a certain period of time, it is determined that the commercial power supply 110 is not normally supplied. Then, a command to switch to temporary power from the temporary power supply unit 160 is issued. Typically, the loss of power due to a power failure of commercial power source 110 is detected by disconnection detection unit 150, and switching to temporary power is performed.
  • the temporary power supply unit 160 includes a charge/discharge switching unit 161 , a DC/DC converter 162 and a secondary battery 163 .
  • the charge/discharge switching unit 161 switches between charging and discharging of the secondary battery 163 .
  • the charge/discharge switching unit 161 operates the DC/DC converter 162 in the step-down mode, and charges the secondary battery 163 with the power from the commercial power supply 110 that has been stepped down for charging. do.
  • the charging/discharging switching unit 161 switches the DC/DC converter 162 to the step-up mode in response to a switch command from the disconnection detection unit 150 to temporary power, and the secondary battery 163 boosts the electric power discharged and supplies the inverter 140 and the coal loader 20 with extra electric power.
  • the DC/DC converter 162 functions as a booster that boosts the power generated by the secondary battery 163 to the voltage of temporary power.
  • the temporary power supply unit 160 of the present embodiment supplies temporary power with a higher voltage than the commercial power supply 110 to the power supply target. For example, when the commercial power supply 110 has a voltage of 600 V, the temporary power supply unit 160 supplies the temporary power boosted to 680 V by the DC/DC converter 162 to the inverter 140 and the coal packing car 20 .
  • FIG. 3 schematically illustrates the effect of raising the voltage of the temporary power above the mains power supply 110 .
  • a power failure of the commercial power supply 110 occurs at time T0 , and the potential Vdd of the high - potential input line temporarily drops . recovers.
  • FIG. 3A shows a comparative example in which the voltage of the temporary power is 600V equal to the commercial power supply 110, and FIG.
  • the DC potential Vdd is greatly affected by fluctuations in the load of the car 20 .
  • a temporary drop (negative peak) in the DC potential Vdd may occur as schematically illustrated.
  • the amount of drop in the DC potential Vdd due to load fluctuations gradually increases as the power supply capacity decreases due to discharging of the secondary battery 163 .
  • the inverter 140 cannot supply power to the coal loader 20, and the inverter 140 and the coal loader 20 may stop abnormally.
  • the DC potential Vdd of the temporary power is as low as 600V (equal to the commercial power supply 110), the margin voltage ⁇ V between it and the threshold potential Vth is small. discharge progresses, the DC potential Vdd tends to fall below the threshold potential Vth .
  • the DC potential Vdd of the temporary power is as high as 680V (higher than the commercial power supply 110), so the margin voltage ⁇ V between the threshold potential Vth is large, and the secondary battery Even if the discharge of 163 progresses, there is a low possibility that the DC potential Vdd will fall below the threshold potential Vth .
  • the voltage of the temporary power supplied by the temporary power supply unit 160 should be higher than that of the commercial power supply 110 .
  • the voltage of the temporary power is 5% or more higher than the voltage of the commercial power supply 110 (630V or more when the voltage of the commercial power supply 110 is 600V). More preferably, the voltage of the temporary power is 10% or more higher than the voltage of the commercial power supply 110 (660V or more when the voltage of the commercial power supply 110 is 600V).
  • the voltage of the temporary electric power be lower than the rated voltage of the inverter 140 and the coal packing car 20 .
  • the rated voltage is 720V. That is, the temporary power voltage of 680V in the embodiment of FIG. 3B is 10% or higher (660V or higher) than the voltage of the commercial power supply 110 and lower than the rated voltage of 720V.
  • the power supply device 100 of the present embodiment performs power supply control with an emphasis on product life when there is no power failure, and performs power supply control with an emphasis on safety and the like when there is a power failure.
  • FIG. 4 shows the results of tests conducted using an actual charging car 20 .
  • the 600 V commercial power supply 110 was cut off from the inverter 140 and the coal packing car 20 to cause a pseudo power failure, and then the power was switched to temporary power from the temporary power supply unit 160 .
  • the voltage of the temporary power is 680V, which is higher than the commercial power supply 110, and this appears as the DC potential Vdd .
  • the charging car 20 was caused to reciprocate between a first position and a second position on the rail 22 .
  • a peak of about 18 kW that appears periodically in the inverter power is observed in response to a temporary increase in load when the car 20 changes its traveling direction on the rail 22 .
  • the state of charge (SOC) of the secondary battery 163 is improved in response to the peak of the inverter power (indicated by the dotted line circle). This is because the secondary battery 163 is charged with the regenerated electric power generated when the rotation direction of the motor 200 of the coal charging car 20 changing direction is reversed.
  • the power supply device 100 is applied to a machine that performs repetitive motions such as the charging car 20, it is possible to extend the temporary power supply period by the regenerative power obtained periodically.
  • the regenerative power is also charged based on the high DC potential Vdd of 680V, so the charging efficiency is improved. Also, since the amount of current in the high-potential input line can be reduced by the higher DC potential Vdd , energy loss due to wiring resistance can also be reduced.
  • FIG. 5 schematically shows the configuration of an electric vehicle 21 in which the power supply device 100 of this embodiment is used.
  • the electric vehicle 21 is provided movably on rails 22 in the same manner as the charging vehicle 20 of FIGS. Specifically, the electric vehicle 21 reciprocates between a first position A and a second position B repetitively.
  • a commercial power supply 110A and a commercial power supply 110B are provided at the first position A and the second position B, respectively, and electric power is supplied by connecting the commercial power supply connection part 111 of the electric vehicle 21 moved to each of the positions A and B. to charge the secondary battery 163 . Since there is no commercial power supply available between the first position A and the second position B, the electric vehicle 21 drives the motor 200 with temporary power supplied from the temporary power supply unit 160 to , B.
  • the disconnection detection unit 150 may detect disconnection of the electric vehicle 21 from the commercial power sources 110A and 110B by constantly monitoring the potential Vdd of the high-potential input line as in FIG. It may be detected based on the operation information of the electric vehicle 21 acquired by the unit 151 . That is, since the movement of the electric vehicle 21 from the positions A and B can be detected based on the operation information, disconnection from the commercial power sources 110A and 110B linked to the positions A and B can be indirectly detected.
  • the charging vehicle 20 of the coke oven 1 and the electric vehicle 21 are exemplified as the power supply target of the power supply device 100, but the power supply target is not limited to this.
  • the power supply target may be industrial facilities and equipment such as environmental plants and water treatment facilities, and industrial machines such as boilers and construction machines used in such industrial sites.
  • each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources.
  • Processors, ROMs, RAMs, and other LSIs can be used as hardware resources.
  • Programs such as operating systems and applications can be used as software resources.
  • the present invention relates to technology for supplying temporary power to a power supply target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This power supply device 100 for supplying a temporary power to a coke oven larry car 20 comprises: a cutoff detection unit 150 for detecting a cutoff from the commercial power supply 110 of the larry car 20; a temporary power supply unit 160 for supplying the temporary power having a voltage higher than that of the commercial power supply 110 to the larry car 20 in response to the cutoff detection in the cutoff detection unit 150; and an inverter 140 for converting temporary DC power supplied from the temporary power supply unit 160 to AC power and supplying the AC power to the motor 200 of the larry car 20.

Description

電力供給装置、電力供給方法Power supply device, power supply method
 本発明は電力供給対象に臨時の電力を供給する技術に関する。 The present invention relates to technology for supplying temporary power to a power supply target.
 特許文献1には、商用電源の停電時に非常用電源としての二次電池に切り替えるサーバ用の電力供給装置が開示されている。二次電池は、通常時に降圧用のDC/DCコンバータによって降圧された商用電源からの電力で充電され、停電時に昇圧用のDC/DCコンバータによって商用電源と同等の電圧に昇圧した電力をサーバに供給する。 Patent Document 1 discloses a power supply device for a server that switches to a secondary battery as an emergency power supply when the commercial power supply fails. The secondary battery is normally charged with power from a commercial power supply that has been stepped down by a step-down DC/DC converter, and in the event of a power outage, a step-up DC/DC converter boosts the power to the same voltage as the commercial power supply and supplies it to the server. supply.
特開2011-125124号公報JP 2011-125124 A
 一方、製鉄所等の産業施設、産業施設に設けられるコークス炉等の産業設備、産業設備で使用される装炭車等の産業機械等に臨時の電力を供給する電力供給装置では、電力供給対象の負荷の変動が大きいことが考えられ、このような産業現場には負荷の変動が小さいサーバを電力供給対象とする特許文献1の技術が適用できないことが想定される。また、産業現場では電力供給対象が行う作業に応じて負荷が急激に大きくなることも想定されるが、臨時の電源の電力供給能力を超える負荷が加わった場合は電力供給装置が異常停止する恐れもある。 On the other hand, power supply equipment that supplies temporary power to industrial facilities such as steelworks, industrial equipment such as coke ovens installed in industrial facilities, and industrial machinery such as coal charging vehicles used in industrial facilities It is conceivable that load fluctuations are large, and it is assumed that the technology of Patent Document 1, which supplies power to servers with small load fluctuations, cannot be applied to such industrial sites. In addition, at industrial sites, it is assumed that the load will suddenly increase according to the work performed by the power supply target, but if the load exceeds the power supply capacity of the temporary power supply, there is a risk that the power supply device will stop abnormally. There is also
 本発明はこうした状況に鑑みてなされたものであり、その目的は、臨時の電力を安定して供給可能な電力供給装置を提供することにある。 The present invention has been made in view of this situation, and its purpose is to provide a power supply device capable of stably supplying temporary power.
 上記課題を解決するために、本発明のある態様の電力供給装置は、電力供給対象に臨時の電力を供給する電力供給装置であって、電力供給対象の通常の電源からの切断を検知する切断検知部と、切断の検知に応じて、通常の電源より電圧が高い臨時の電力を電力供給対象に供給する臨時電力供給部とを備える。 In order to solve the above problems, a power supply device according to one aspect of the present invention is a power supply device that supplies temporary power to a power supply target, and detects disconnection of the power supply target from a normal power source. A detection unit and a temporary power supply unit that supplies temporary power having a voltage higher than that of a normal power supply to a power supply target in response to detection of disconnection.
 この態様によれば、通常の電源より電圧が高い臨時の電力が電力供給対象に供給されるため、電力供給対象の負荷が大きく変動したとしても電力供給装置の電力供給能力を超える可能性が低くなる。したがって、負荷変動の大きい電力供給対象に安定して臨時の電力を供給できる。 According to this aspect, since the temporary power having a voltage higher than that of the normal power source is supplied to the power supply target, even if the load of the power supply target fluctuates significantly, the possibility of exceeding the power supply capacity of the power supply device is low. Become. Therefore, it is possible to stably supply temporary power to a power supply target whose load fluctuates greatly.
 本発明の別の態様は、電力供給方法である。この方法は、電力供給対象に臨時の電力を供給する電力供給方法であって、電力供給対象の通常の電源からの切断を検知する切断検知ステップと、切断の検知に応じて、通常の電源より電圧が高い臨時の電力を電力供給対象に供給する臨時電力供給ステップとを備える。 Another aspect of the present invention is a power supply method. This method is a power supply method for temporarily supplying power to a power supply target, and includes a disconnection detection step of detecting disconnection from a normal power source of the power supply target, and a temporary power supply step of supplying temporary power with a high voltage to a power supply target.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above constituent elements, and any conversion of the expression of the present invention between methods, devices, systems, recording media, computer programs, etc. are also effective as embodiments of the present invention.
 本発明によれば、臨時の電力を安定して供給可能な電力供給装置を提供できる。 According to the present invention, it is possible to provide a power supply device capable of stably supplying temporary power.
電力供給装置が用いられるコークス炉の構成を模式的に示す断面図である。1 is a cross-sectional view schematically showing the configuration of a coke oven in which a power supply device is used; FIG. 電力供給装置の機能ブロック図である。It is a functional block diagram of a power supply device. 臨時の電力の電圧を商用電源より高くする効果を模式的に示す図である。FIG. 4 is a diagram schematically showing the effect of making the voltage of temporary power higher than that of the commercial power supply; 実際の装炭車を用いて行った試験の結果を示す図である。FIG. 4 is a diagram showing the results of tests conducted using an actual charging vehicle. 電力供給装置が用いられる電動車両の構成を模式的に示す図である。1 is a diagram schematically showing a configuration of an electric vehicle in which a power supply device is used; FIG.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施形態は例示であり、本発明の範囲を何ら限定するものではない。実施形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate. The scales and shapes of the illustrated parts are set for convenience in order to facilitate explanation, and should not be construed as limiting unless otherwise specified. The embodiments are illustrative and do not limit the scope of the invention in any way. Not all features or combinations thereof described in the embodiments are essential to the invention.
 本発明の電力供給装置は、任意の電力供給対象への臨時の電力の供給に利用できる。したがって電力供給対象が特に限定されるものではないが、本実施形態ではコークス炉における装炭車を電力供給対象とする例を最初に説明する。電力供給対象の他の例については後述する。 The power supply device of the present invention can be used for temporary power supply to any power supply target. Therefore, the power supply object is not particularly limited, but in the present embodiment, an example in which power is supplied to a charging car in a coke oven will be described first. Other examples of power supply targets will be described later.
 図1は、本実施形態の電力供給装置が用いられるコークス炉1の構成を模式的に示す断面図である。図の上下方向は鉛直方向であり、図の左右方向は水平方向である。コークス炉1は、石炭の乾留によってコークスを生成する炉である。原料の石炭は上方の石炭塔10から装炭車20を介して炭化室30に装入される。石炭は炭化室30内で乾留されてコークスとなり、図示しない押出装置によって左右方向に炭化室30外へ押し出される。なお、炭化室30は紙面に垂直な方向に複数並んで設けられる。 FIG. 1 is a cross-sectional view schematically showing the configuration of a coke oven 1 in which the power supply device of this embodiment is used. The up-down direction in the drawing is the vertical direction, and the left-right direction in the drawing is the horizontal direction. The coke oven 1 is an oven that produces coke by carbonization of coal. Coal as a raw material is charged from the upper coal tower 10 into the coking chamber 30 through the coal charging car 20 . Coal is dry-distilled in the carbonization chamber 30 to become coke, which is pushed out of the carbonization chamber 30 in the left-right direction by an extrusion device (not shown). Note that a plurality of carbonization chambers 30 are provided side by side in a direction perpendicular to the paper surface.
 石炭塔10は、原料としての石炭を収容する石炭槽12を有する。石炭槽12の上方には石炭を運搬するコンベア14が設けられ、石炭はコンベア14から石炭槽12に投入される。石炭槽12の底部には、複数の排出口16が左右方向に並んで設けられる。各排出口16は仕切18によって仕切られており、石炭は各仕切18の傾斜した側壁を滑り落ちるように各排出口16に導かれる。 The coal tower 10 has a coal tank 12 containing coal as a raw material. A conveyor 14 for carrying coal is provided above the coal tank 12 , and the coal is thrown into the coal tank 12 from the conveyor 14 . A plurality of outlets 16 are arranged side by side in the left-right direction at the bottom of the coal tank 12 . Each outlet 16 is bounded by a partition 18 and coal is guided to each outlet 16 by sliding down the sloped sidewalls of each partition 18 .
 石炭塔10と複数の炭化室30の間に設けられる装炭車20は、紙面の垂直な方向に敷設された一対のレール22に沿って移動可能に設けられ、石炭塔10から投入された石炭を各炭化室30まで運搬して装入する。図1の断面図では石炭塔10の直下に炭化室30が位置するように示されるが、実際には両者は紙面に垂直な方向に隔たった位置にある。装炭車20は石炭塔10と複数の炭化室30の間で巡回的に移動して石炭塔10からの石炭の運搬と各炭化室30への石炭の装入を反復的に行う。 A coal charging car 20 provided between the coal tower 10 and the plurality of coking chambers 30 is movably provided along a pair of rails 22 laid in a direction perpendicular to the plane of the paper, and feeds coal charged from the coal tower 10. It is transported to each carbonization chamber 30 and charged. Although the cross-sectional view of FIG. 1 shows the coking chamber 30 positioned immediately below the coal tower 10, the two are actually separated in the direction perpendicular to the plane of the paper. The coal charging car 20 moves cyclically between the coal tower 10 and the plurality of coking chambers 30 to repeatedly transport coal from the coal tower 10 and charge coal into each coking chamber 30 .
 装炭車20が石炭塔10の直下に位置する状態で、各排出口16から排出される石炭は、その下方に位置する装炭車20の各装入ホッパ24に投入される。装炭車20が各炭化室30の直上に移動した後、各装入ホッパ24の下方に設けられた各切出装置26は石炭を切り出し、各炭化室30の上面の各切出装置26に対応する位置に設けられた各装炭孔32を通じて各炭化室30に投入(装炭)する。石炭は各炭化室30内で乾留されてコークスとなった後、押出装置によって炭化室30外に取り出される。なお、複数の炭化室30への装炭は複数の組の装入ホッパ24と切出装置26によって同時に行ってもよい。 With the coal loader 20 positioned directly below the coal tower 10, the coal discharged from each discharge port 16 is thrown into each charging hopper 24 of the coal loader 20 positioned below. After the coal charging car 20 moves directly above each coking chamber 30, each cutting device 26 provided below each charging hopper 24 cuts coal, corresponding to each cutting device 26 on the upper surface of each coking chamber 30. It is charged (charging) into each carbonization chamber 30 through each charging hole 32 provided at a position where the coal is charged. After the coal is carbonized in each carbonization chamber 30 and turned into coke, it is taken out of the carbonization chamber 30 by an extrusion device. Note that the coal charging into a plurality of coking chambers 30 may be performed simultaneously by a plurality of sets of charging hoppers 24 and discharging devices 26 .
 図2は、装炭車20に電力を供給する本実施形態の電力供給装置100の機能ブロック図である。電力供給装置100は、通常の電源としての商用電源110から供給される3相の交流電力を整流して直流電力(脈流)に変換するコンバータ120と、コンバータ120で変換された直流電力を平滑して波形を整えるコンデンサ130と、コンデンサ130で平滑された直流電力を交流電力に変換するインバータ140を備える。 FIG. 2 is a functional block diagram of the power supply device 100 of this embodiment that supplies power to the coal charging car 20. As shown in FIG. The power supply device 100 includes a converter 120 that rectifies three-phase AC power supplied from a commercial power source 110 as a normal power source and converts it into DC power (pulsating current), and a converter 120 that smoothes the DC power converted by the converter 120. and an inverter 140 for converting the DC power smoothed by the capacitor 130 into AC power.
 コンバータ120は、商用電源110から供給される3相(U,V,W)の交流電力を一定の方向(図の下から上に向かう方向)に整流するダイオード121~126を備える。ダイオード121はU相の交流電圧が正の時に電流を流し、ダイオード122はU相の交流電圧が負の時に電流を流し、ダイオード123はV相の交流電圧が正の時に電流を流し、ダイオード124はV相の交流電圧が負の時に電流を流し、ダイオード125はW相の交流電圧が正の時に電流を流し、ダイオード126はW相の交流電圧が負の時に電流を流す。これらのブリッジ状に接続されたダイオード121~126によって、コンバータ120の出力端子間には、方向が一定で大きさが変動する脈流が現われる。コンデンサ130は、コンバータ120で得られた脈流を平滑した直流電力をインバータ140に供給する。 The converter 120 includes diodes 121 to 126 that rectify the three-phase (U, V, W) AC power supplied from the commercial power supply 110 in a certain direction (upward direction in the figure). Diode 121 allows current to flow when the U-phase AC voltage is positive, diode 122 allows current to flow when the U-phase AC voltage is negative, diode 123 allows current to flow when the V-phase AC voltage is positive, and diode 124 allows current to flow when the U-phase AC voltage is positive. current when the V-phase AC voltage is negative, diode 125 conducts current when the W-phase AC voltage is positive, and diode 126 conducts current when the W-phase AC voltage is negative. These bridge-connected diodes 121 to 126 produce a pulsating current between the output terminals of the converter 120 whose direction is constant and whose magnitude varies. Capacitor 130 supplies DC power obtained by smoothing pulsating current obtained in converter 120 to inverter 140 .
 以下、コンバータ120およびコンデンサ130を経て、インバータ140の高電位入力端子141と低電位入力端子142の間に入力される直流電圧をVDCと表す。高電位入力端子141が接続される高電位入力ラインの電位をVdd、低電位入力端子142が接続される低電位入力ラインの電位をVssとすれば、VDC=Vdd-Vssである。以下では説明を単純化するためVssは0とする。したがって、VDC=Vddである。 Hereinafter, the DC voltage input between high potential input terminal 141 and low potential input terminal 142 of inverter 140 via converter 120 and capacitor 130 is represented as VDC. Assuming that the potential of the high potential input line to which the high potential input terminal 141 is connected is V dd and the potential of the low potential input line to which the low potential input terminal 142 is connected is V ss , V DC =V dd -V ss . be. In the following, Vss is assumed to be 0 for simplicity of explanation. Therefore, V DC =V dd .
 インバータ140は、高電位入力端子141と低電位入力端子142の間で入力される直流電圧VDCに基づいて3相の交流電力を生成する。具体的には、直流電圧VDCに基づいてU相の交流電力を生成するU相インバータ140Uと、直流電圧VDCに基づいてV相の交流電力を生成するV相インバータ140Vと、直流電圧VDCに基づいてW相の交流電力を生成するW相インバータ140Wが並列に設けられる。各相のインバータ140U、140V、140Wの構成は共通であるため、以下では適宜インバータ140と総称してまとめて説明する。 Inverter 140 generates three-phase AC power based on DC voltage VDC input between high potential input terminal 141 and low potential input terminal 142 . Specifically, a U-phase inverter 140U that generates U-phase AC power based on the DC voltage VDC, a V-phase inverter 140V that generates V-phase AC power based on the DC voltage VDC , and a DC voltage V A W-phase inverter 140W that generates W-phase AC power based on DC is provided in parallel. Since the configurations of the inverters 140U, 140V, and 140W for each phase are common, they will be collectively referred to as the inverter 140 as appropriate below.
 インバータ140は、高い直流電源電位Vddが入力される高電位入力端子141と、低い直流電源電位Vssが入力される低電位入力端子142と、高電位入力端子141と低電位入力端子142の間に設けられてVddとVssの間で変動する交流電圧を出力する出力端子143を備える。高電位入力端子141と出力端子143の間には高電位トランジスタ144Hが接続され、低電位入力端子142と出力端子143の間には低電位トランジスタ144Lが接続される。高電位トランジスタ144Hは、その制御電極に接続された高電位ドライバ145Hからの制御信号に応じて導通状態が切り替えられる。低電位トランジスタ144Lは、その制御電極に接続された低電位ドライバ145Lからの制御信号に応じて導通状態が切り替えられる。 The inverter 140 has a high potential input terminal 141 to which a high DC power supply potential Vdd is input, a low potential input terminal 142 to which a low DC power supply potential Vss is input, and a high potential input terminal 141 and a low potential input terminal 142. An output terminal 143 is provided therebetween for outputting an alternating voltage that varies between Vdd and Vss . A high potential transistor 144H is connected between the high potential input terminal 141 and the output terminal 143, and a low potential transistor 144L is connected between the low potential input terminal 142 and the output terminal 143. FIG. The high potential transistor 144H is switched between conductive states in response to a control signal from a high potential driver 145H connected to its control electrode. The low potential transistor 144L is switched between conductive states according to a control signal from a low potential driver 145L connected to its control electrode.
 具体的には、高電位ドライバ145Hおよび低電位ドライバ145Lからなるドライバ対145は、高電位トランジスタ144Hおよび低電位トランジスタ144Lからなるトランジスタ対144の導通状態を相補的に切り替えるスイッチング制御を行うことで直流電力を交流電力に変換する。ここで「相補的に切り替える」とは、各トランジスタ144H、144Lのオンオフ状態が互いに逆となるように制御することを意味する。すなわち、トランジスタ144Hがオンの時はトランジスタ144Lをオフとし、トランジスタ144Hがオフの時はトランジスタ144Lをオンとする。これによって、高電位トランジスタ144Hがオンの時は出力端子143に高電位Vddが現われ、低電位トランジスタ144Lがオンの時は出力端子143に低電位Vssが現われる。このようなスイッチング制御を繰り返すことで、出力端子143には高電位Vddと低電位Vssが交互に現われるため交流電力が生成される。 Specifically, a driver pair 145 consisting of a high-potential driver 145H and a low-potential driver 145L performs switching control to complementarily switch the conductive state of a transistor pair 144 consisting of a high-potential transistor 144H and a low-potential transistor 144L, thereby providing direct current. Converts electrical power to AC power. Here, "complementary switching" means that the on/off states of the transistors 144H and 144L are controlled to be opposite to each other. That is, when the transistor 144H is on, the transistor 144L is turned off, and when the transistor 144H is off, the transistor 144L is turned on. Thus, a high potential Vdd appears at the output terminal 143 when the high potential transistor 144H is on, and a low potential Vss appears at the output terminal 143 when the low potential transistor 144L is on. By repeating such switching control, a high potential Vdd and a low potential Vss appear alternately at the output terminal 143, thereby generating AC power.
 インバータ140で生成された3相の交流電力は、例えば装炭車20のレール22上に設けられる車輪23を回転駆動するモータ200に供給される。モータ200は、U相、V相、W相の3相のコイル200U、200V、200Wを持つ3相ブラシレスモータである。U相コイル200UにはU相インバータ140UからのU相電流が流れ、V相コイル200VにはV相インバータ140VからのV相電流が流れ、W相コイル200WにはW相インバータ140WからのW相電流が流れる。各相のインバータ140U、140V、140Wは、モータ200のホール素子H1、H2、H3が検知した回転子の回転位置に基づき、互いに位相が異なる交流電力を各相のコイル200U、200V、200Wに印加することで回転磁界を発生させる。この回転磁界によって回転する回転子から所望の回転動力が得られる。なお、モータ200は、交流電圧で駆動される他のタイプのモータでもよい。また、モータ200の相の数は3に限られず、2以上の任意の自然数でよい。以上のようなモータ200の回転駆動によって車輪23がレール22上で回転するため、装炭車20はレール22に沿って移動可能である。 The three-phase AC power generated by the inverter 140 is supplied to a motor 200 that rotates the wheels 23 provided on the rails 22 of the car 20, for example. The motor 200 is a three-phase brushless motor having three- phase coils 200U, 200V, and 200W of U-phase, V-phase, and W-phase. U-phase current from U-phase inverter 140U flows through U-phase coil 200U, V-phase current from V-phase inverter 140V flows through V-phase coil 200V, and W-phase current from W-phase inverter 140W flows through W-phase coil 200W. current flows. Inverters 140U, 140V, and 140W for each phase apply AC power with different phases to coils 200U, 200V, and 200W for each phase based on the rotational position of the rotor detected by Hall elements H1, H2, and H3 of motor 200. By doing so, a rotating magnetic field is generated. Desired rotational power is obtained from the rotor rotating by this rotating magnetic field. It should be noted that the motor 200 may be another type of motor driven by an AC voltage. Also, the number of phases of the motor 200 is not limited to 3, and may be any natural number of 2 or more. Since the wheels 23 are rotated on the rails 22 by the rotational driving of the motor 200 as described above, the charging car 20 can move along the rails 22 .
 電力供給装置100の以上の構成は、商用電源110が正常に供給されている非停電時等に電力供給対象としての装炭車20に電力を供給するものである。これに加えて電力供給装置100は、商用電源110の停電時等に装炭車20に臨時の電力を供給するための切断検知部150と臨時電力供給部160を備える。 The above configuration of the power supply device 100 supplies power to the coal charging vehicle 20 as a power supply target during a non-power failure or the like when the commercial power supply 110 is normally supplied. In addition, the power supply device 100 includes a disconnection detection unit 150 and a temporary power supply unit 160 for temporarily supplying power to the coal charging vehicle 20 when the commercial power supply 110 is cut off.
 切断検知部150は、電力供給対象の商用電源110からの切断を検知する。具体的には、切断検知部150は高電位入力ラインの電位Vddを常時監視し、Vddが所定の閾値より低い状態が一定時間継続した場合、商用電源110が正常に供給されていないと判断して、臨時電力供給部160による臨時の電力に切り替える指令を発する。典型的には、商用電源110の停電による電力の喪失が切断検知部150によって検知されて臨時の電力への切替えが行われる。 The disconnection detection unit 150 detects disconnection from the commercial power supply 110 to which power is supplied. Specifically, the disconnection detection unit 150 constantly monitors the potential Vdd of the high-potential input line, and if the state in which Vdd is lower than a predetermined threshold continues for a certain period of time, it is determined that the commercial power supply 110 is not normally supplied. Then, a command to switch to temporary power from the temporary power supply unit 160 is issued. Typically, the loss of power due to a power failure of commercial power source 110 is detected by disconnection detection unit 150, and switching to temporary power is performed.
 臨時電力供給部160は、充放電切替部161と、DC/DCコンバータ162と、二次電池163を備える。充放電切替部161は二次電池163の充電と放電を切り替える。商用電源110が正常に供給されている場合、充放電切替部161はDC/DCコンバータ162を降圧モードで動作させて、充電用に降圧された商用電源110からの電力によって二次電池163を充電する。商用電源110が正常に供給されていない場合、切断検知部150からの臨時の電力への切替え指令に応じて、充放電切替部161はDC/DCコンバータ162を昇圧モードに切り替えて、二次電池163が放電する電力を昇圧した臨時の電力をインバータ140および装炭車20に供給する。この際、DC/DCコンバータ162は、二次電池163で発生した電力を臨時の電力の電圧に昇圧する昇圧部として機能する。 The temporary power supply unit 160 includes a charge/discharge switching unit 161 , a DC/DC converter 162 and a secondary battery 163 . The charge/discharge switching unit 161 switches between charging and discharging of the secondary battery 163 . When the commercial power supply 110 is normally supplied, the charge/discharge switching unit 161 operates the DC/DC converter 162 in the step-down mode, and charges the secondary battery 163 with the power from the commercial power supply 110 that has been stepped down for charging. do. When the commercial power supply 110 is not normally supplied, the charging/discharging switching unit 161 switches the DC/DC converter 162 to the step-up mode in response to a switch command from the disconnection detection unit 150 to temporary power, and the secondary battery 163 boosts the electric power discharged and supplies the inverter 140 and the coal loader 20 with extra electric power. At this time, the DC/DC converter 162 functions as a booster that boosts the power generated by the secondary battery 163 to the voltage of temporary power.
 本実施形態の臨時電力供給部160は、商用電源110より電圧が高い臨時の電力を電力供給対象に供給する。例えば商用電源110の電圧が600Vの場合、臨時電力供給部160はDC/DCコンバータ162によって680Vに昇圧した臨時の電力をインバータ140および装炭車20に供給する。 The temporary power supply unit 160 of the present embodiment supplies temporary power with a higher voltage than the commercial power supply 110 to the power supply target. For example, when the commercial power supply 110 has a voltage of 600 V, the temporary power supply unit 160 supplies the temporary power boosted to 680 V by the DC/DC converter 162 to the inverter 140 and the coal packing car 20 .
 図3は、臨時の電力の電圧を商用電源110より高くする効果を模式的に示す。時刻Tに商用電源110の停電が発生して高電位入力ラインの電位Vddが一時的に低下するが、時刻T以降は臨時電力供給部160から供給される臨時の電力によって電位Vddが回復する。図3(A)は臨時の電力の電圧が商用電源110と等しい600Vの比較例を示し、図3(B)は臨時の電力の電圧が商用電源110より高い680Vの実施例を示す。 FIG. 3 schematically illustrates the effect of raising the voltage of the temporary power above the mains power supply 110 . A power failure of the commercial power supply 110 occurs at time T0 , and the potential Vdd of the high - potential input line temporarily drops . recovers. FIG. 3A shows a comparative example in which the voltage of the temporary power is 600V equal to the commercial power supply 110, and FIG.
 時刻T以降は電力供給能力が限られた二次電池163から電力が供給されるため、直流電位Vddは装炭車20の負荷の変動の影響を大きく受ける。例えば、装炭車20の負荷が一時的に増大すると、模式的に図示するような直流電位Vddの一時的な降下
(負のピーク)が生じうる。負荷変動による直流電位Vddの降下量は、二次電池163の放電による電力供給能力の低下に伴って徐々に大きくなる。そして、直流電位Vddが閾値電位Vthを下回ると、インバータ140による装炭車20への電力供給が不可能な状態となり、インバータ140および装炭車20が異常停止する可能性がある。
After time T1, power is supplied from the secondary battery 163 with limited power supply capacity, so the DC potential Vdd is greatly affected by fluctuations in the load of the car 20 . For example, when the load of the charging car 20 temporarily increases, a temporary drop (negative peak) in the DC potential Vdd may occur as schematically illustrated. The amount of drop in the DC potential Vdd due to load fluctuations gradually increases as the power supply capacity decreases due to discharging of the secondary battery 163 . When the DC potential Vdd falls below the threshold potential Vth , the inverter 140 cannot supply power to the coal loader 20, and the inverter 140 and the coal loader 20 may stop abnormally.
 図3(A)の比較例では、臨時の電力の直流電位Vddが600Vと低い(商用電源110と等しい)ため、閾値電位Vthとの間の余裕電圧ΔVが小さく、特に二次電池163の放電が進むと直流電位Vddが閾値電位Vthを下回りやすくなる。一方、図3(B)の実施例では、臨時の電力の直流電位Vddが680Vと高い(商用電源110より高い)ため、閾値電位Vthとの間の余裕電圧ΔVが大きく、二次電池163の放電が進んでも直流電位Vddが閾値電位Vthを下回る可能性が低い。 In the comparative example of FIG. 3A, since the DC potential Vdd of the temporary power is as low as 600V (equal to the commercial power supply 110), the margin voltage ΔV between it and the threshold potential Vth is small. discharge progresses, the DC potential Vdd tends to fall below the threshold potential Vth . On the other hand, in the example of FIG. 3B, the DC potential Vdd of the temporary power is as high as 680V (higher than the commercial power supply 110), so the margin voltage ΔV between the threshold potential Vth is large, and the secondary battery Even if the discharge of 163 progresses, there is a low possibility that the DC potential Vdd will fall below the threshold potential Vth .
 したがって、図3(B)の実施例によれば、インバータ140および装炭車20が異常停止する可能性を低減できる。特に、高熱を発生するコークス炉1のような危険を伴う産業設備では、機器の異常停止を防止することで安全性を飛躍的に高めることができる。また、石炭を運搬する装炭車20が停止すると、装炭車20で運搬中の石炭が変質して実用に耐えなくなる可能性や、炭化室30内に十分な量の石炭が供給されないことから炭化室30内に既にある過小量の石炭が過熱される可能性がある。図3(B)の実施例によれば、このような廃棄すべき石炭の発生を防止できるため、経済的に産業設備を稼働できる。 Therefore, according to the embodiment of FIG. 3(B), it is possible to reduce the possibility that the inverter 140 and the carburettor 20 will stop abnormally. In particular, in dangerous industrial equipment such as the coke oven 1 that generates high heat, safety can be dramatically improved by preventing abnormal shutdown of the equipment. In addition, if the coal-packing car 20 that transports coal stops, the coal being transported by the coal-packing car 20 may deteriorate and become unusable for practical use. Too little coal already in 30 can be overheated. According to the embodiment of FIG. 3(B), it is possible to prevent the generation of such coal to be discarded, so that the industrial equipment can be operated economically.
 以上のような効果を奏するためには、臨時電力供給部160の供給する臨時の電力の電圧が商用電源110より高ければよい。好ましくは、臨時の電力の電圧は商用電源110の電圧より5%以上高くする(商用電源110の電圧が600Vの場合は630V以上にする)。より好ましくは、臨時の電力の電圧は商用電源110の電圧より10%以上高くする(商用電源110の電圧が600Vの場合は660V以上にする)。但し、臨時の電力の電圧はインバータ140や装炭車20の定格電圧より低くするのが好ましい。図3の例では定格電圧が720Vである。すなわち、図3(B)の実施例における臨時の電力の電圧680Vは、商用電源110の電圧より10%以上高く(660V以上)、かつ、定格電圧720Vより低くなっている。 In order to achieve the effects described above, the voltage of the temporary power supplied by the temporary power supply unit 160 should be higher than that of the commercial power supply 110 . Preferably, the voltage of the temporary power is 5% or more higher than the voltage of the commercial power supply 110 (630V or more when the voltage of the commercial power supply 110 is 600V). More preferably, the voltage of the temporary power is 10% or more higher than the voltage of the commercial power supply 110 (660V or more when the voltage of the commercial power supply 110 is 600V). However, it is preferable that the voltage of the temporary electric power be lower than the rated voltage of the inverter 140 and the coal packing car 20 . In the example of FIG. 3, the rated voltage is 720V. That is, the temporary power voltage of 680V in the embodiment of FIG. 3B is 10% or higher (660V or higher) than the voltage of the commercial power supply 110 and lower than the rated voltage of 720V.
 なお、定格電圧が720Vなのであれば、停電時(T以降)のみならず非停電時(T以前)でも直流電位Vddを600Vより高くしても問題ない。但し、高い直流電位Vddによって大きな負荷がかかるコンデンサ130等の回路素子が低寿命化する可能性があるため、非停電時は電力供給装置100が動作可能な範囲で直流電位Vddを低めに設定するのが好ましい。このように本実施形態の電力供給装置100は、非停電時は製品寿命を重視した電力供給制御を行い、停電時は安全性等を重視した電力供給制御を行う。 If the rated voltage is 720V, there is no problem even if the DC potential Vdd is higher than 600V not only during power failure (after T1) but also during non - power failure (before T0 ). However, the high DC potential Vdd may shorten the life of circuit elements such as the capacitor 130, which is heavily loaded . preferably set. As described above, the power supply device 100 of the present embodiment performs power supply control with an emphasis on product life when there is no power failure, and performs power supply control with an emphasis on safety and the like when there is a power failure.
 図4は、実際の装炭車20を用いて行った試験の結果を示す。試験開始直後に600Vの商用電源110をインバータ140および装炭車20から切断して擬似的に停電を発生させた後、臨時電力供給部160からの臨時の電力に切り替えられた。前述の通り、臨時の電力の電圧は商用電源110より高い680Vであり、これが直流電位Vddとして現われる。 FIG. 4 shows the results of tests conducted using an actual charging car 20 . Immediately after the start of the test, the 600 V commercial power supply 110 was cut off from the inverter 140 and the coal packing car 20 to cause a pseudo power failure, and then the power was switched to temporary power from the temporary power supply unit 160 . As mentioned above, the voltage of the temporary power is 680V, which is higher than the commercial power supply 110, and this appears as the DC potential Vdd .
 680Vの臨時の電力が供給された状態で、装炭車20にレール22上の第1の位置と第2の位置の間で往復移動を行わせた。インバータ電力に周期的に現われる18kW程度のピークは、装炭車20がレール22上の進行方向を転換する際の一時的な負荷の増大に対応して観測されたものである。また、インバータ電力のピークに対応して、二次電池163の充電率SOC(State Of Charge)に改善が見られる(点線の丸で示す)。これは方向転換する装炭車20のモータ200の回転方向が逆転する際に発生した回生電力が二次電池163に充電されるためである。このように、装炭車20のような反復的な運動を行う機械に電力供給装置100を適用すれば、周期的に得られる回生電力によって臨時の電力の供給可能期間を長くすることができる。特に、本実施形態では回生電力の充電も680Vと高めの直流電位Vddに基づいて行われるため充電効率が向上する。また、高めの直流電位Vddによって高電位入力ラインの電流量を低減できるため、配線抵抗によるエネルギー損失も低減できる。 With an interim power supply of 680 volts, the charging car 20 was caused to reciprocate between a first position and a second position on the rail 22 . A peak of about 18 kW that appears periodically in the inverter power is observed in response to a temporary increase in load when the car 20 changes its traveling direction on the rail 22 . In addition, the state of charge (SOC) of the secondary battery 163 is improved in response to the peak of the inverter power (indicated by the dotted line circle). This is because the secondary battery 163 is charged with the regenerated electric power generated when the rotation direction of the motor 200 of the coal charging car 20 changing direction is reversed. In this way, if the power supply device 100 is applied to a machine that performs repetitive motions such as the charging car 20, it is possible to extend the temporary power supply period by the regenerative power obtained periodically. In particular, in the present embodiment, the regenerative power is also charged based on the high DC potential Vdd of 680V, so the charging efficiency is improved. Also, since the amount of current in the high-potential input line can be reduced by the higher DC potential Vdd , energy loss due to wiring resistance can also be reduced.
 この試験では、二次電池163の充電率SOCが当初の75.0%から15.5%に低下するまでの約11分に亘って680Vの直流電位Vddが維持されることが確認された。これは停電が発生してから必要な対処を行うために十分な時間であるため、停電中にインバータ140や装炭車20が異常停止する事態の発生を防止できる。なお、より長い対処時間が必要な産業現場では、二次電池163の容量を増加させる等によって必要な対処時間を確保できる。 In this test, it was confirmed that the DC potential Vdd of 680V was maintained for about 11 minutes until the charging rate SOC of the secondary battery 163 decreased from the initial 75.0% to 15.5%. Since this is a sufficient time to take necessary measures after the power failure occurs, it is possible to prevent the occurrence of a situation in which the inverter 140 and the coal charging vehicle 20 stop abnormally during the power failure. In an industrial field where a longer coping time is required, the required coping time can be ensured by increasing the capacity of the secondary battery 163 or the like.
 図5は、本実施形態の電力供給装置100が用いられる電動車両21の構成を模式的に示す。電動車両21は、図1および2の装炭車20と同様に、レール22上を移動可能に設けられる。具体的には、電動車両21は第1の位置Aと第2の位置Bの間を反復的に往復移動する。第1の位置Aと第2の位置Bにはそれぞれ商用電源110Aと商用電源110Bが設けられ、各位置A、Bに移動した電動車両21の商用電源接続部111が接続されることで電力を供給して二次電池163を充電する。第1の位置Aと第2の位置Bの間には利用可能な商用電源がないため、電動車両21は臨時電力供給部160から供給される臨時の電力でモータ200を駆動して両位置A、Bの間を移動する。 FIG. 5 schematically shows the configuration of an electric vehicle 21 in which the power supply device 100 of this embodiment is used. The electric vehicle 21 is provided movably on rails 22 in the same manner as the charging vehicle 20 of FIGS. Specifically, the electric vehicle 21 reciprocates between a first position A and a second position B repetitively. A commercial power supply 110A and a commercial power supply 110B are provided at the first position A and the second position B, respectively, and electric power is supplied by connecting the commercial power supply connection part 111 of the electric vehicle 21 moved to each of the positions A and B. to charge the secondary battery 163 . Since there is no commercial power supply available between the first position A and the second position B, the electric vehicle 21 drives the motor 200 with temporary power supplied from the temporary power supply unit 160 to , B.
 この際、電動車両21が両位置A、Bの間で異常停止しないように、臨時の電力の電圧を商用電源110A、110Bよりも高くする。切断検知部150は、図2と同様に、高電位入力ラインの電位Vddを常時監視することで、電動車両21の商用電源110A、110Bからの切断を検知してもよいが、操作情報取得部151で取得した電動車両21の操作情報に基づいて検知してもよい。すなわち、操作情報に基づいて電動車両21が位置A、Bから移動することを検知できるため、各位置A、Bに紐付いた各商用電源110A、110Bからの切断を間接的に検知できる。 At this time, the voltage of the temporary power is made higher than the commercial power sources 110A and 110B so that the electric vehicle 21 does not stop abnormally between the positions A and B. The disconnection detection unit 150 may detect disconnection of the electric vehicle 21 from the commercial power sources 110A and 110B by constantly monitoring the potential Vdd of the high-potential input line as in FIG. It may be detected based on the operation information of the electric vehicle 21 acquired by the unit 151 . That is, since the movement of the electric vehicle 21 from the positions A and B can be detected based on the operation information, disconnection from the commercial power sources 110A and 110B linked to the positions A and B can be indirectly detected.
 以上、本発明を実施形態に基づいて説明した。実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. It should be understood by those skilled in the art that the embodiments are examples, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are also within the scope of the present invention.
 実施形態では、電力供給装置100の電力供給対象としてコークス炉1の装炭車20や、電動車両21を例示したが、電力供給対象はこれに限定されない。例えば、電力供給対象は、環境プラントや水処理施設等の産業施設や産業設備、このような産業現場で使用されるボイラーや建設機械等の産業機械等でもよい。 In the embodiment, the charging vehicle 20 of the coke oven 1 and the electric vehicle 21 are exemplified as the power supply target of the power supply device 100, but the power supply target is not limited to this. For example, the power supply target may be industrial facilities and equipment such as environmental plants and water treatment facilities, and industrial machines such as boilers and construction machines used in such industrial sites.
 なお、実施形態で説明した各装置の機能構成はハードウェア資源またはソフトウェア資源により、あるいはハードウェア資源とソフトウェア資源の協働により実現できる。ハードウェア資源としてプロセッサ、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーション等のプログラムを利用できる。 Note that the functional configuration of each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources. Processors, ROMs, RAMs, and other LSIs can be used as hardware resources. Programs such as operating systems and applications can be used as software resources.
 本発明は電力供給対象に臨時の電力を供給する技術に関する。 The present invention relates to technology for supplying temporary power to a power supply target.
 1 コークス炉、10 石炭塔、20 装炭車、21 電動車両、22 レール、23 車輪、30 炭化室、100 電力供給装置、110 商用電源、111 商用電源接続部、120 コンバータ、130 コンデンサ、140 インバータ、150 切断検知部、151 操作情報取得部、160 臨時電力供給部、161 充放電切替部、162 DC/DCコンバータ、163 二次電池、200 モータ。 1 coke oven, 10 coal tower, 20 coal car, 21 electric vehicle, 22 rail, 23 wheel, 30 carbonization chamber, 100 power supply device, 110 commercial power supply, 111 commercial power connection, 120 converter, 130 capacitor, 140 inverter, 150 disconnection detection unit, 151 operation information acquisition unit, 160 temporary power supply unit, 161 charge/discharge switching unit, 162 DC/DC converter, 163 secondary battery, 200 motor.

Claims (9)

  1.  電力供給対象に臨時の電力を供給する電力供給装置であって、
     前記電力供給対象の通常の電源からの切断を検知する切断検知部と、
     前記切断の検知に応じて、前記通常の電源より電圧が高い臨時の電力を前記電力供給対象に供給する臨時電力供給部と
     を備える電力供給装置。
    A power supply device that supplies temporary power to a power supply target,
    a disconnection detection unit that detects disconnection from a normal power source to which the power is to be supplied;
    A power supply device comprising: a temporary power supply unit that supplies temporary power having a voltage higher than that of the normal power supply to the power supply target in response to detection of the disconnection.
  2.  前記電力供給対象は産業現場で使用される産業機械である請求項1に記載の電力供給装置。 The power supply device according to claim 1, wherein the power supply target is an industrial machine used at an industrial site.
  3.  前記臨時の電力の電圧は前記通常の電源の電圧より10%以上高い請求項1または2に記載の電力供給装置。 The power supply device according to claim 1 or 2, wherein the voltage of the temporary power is 10% or more higher than the voltage of the normal power supply.
  4.  前記臨時電力供給部は、電池と、当該電池で発生した電力を前記臨時の電力の電圧に昇圧する昇圧部とを備える請求項1から3のいずれかに記載の電力供給装置。 The power supply device according to any one of claims 1 to 3, wherein the temporary power supply unit includes a battery and a voltage booster that boosts the power generated by the battery to the voltage of the temporary power.
  5.  前記切断検知部は、停電による前記電力供給対象の前記通常の電源からの切断を検知する請求項1から4のいずれかに記載の電力供給装置。 The power supply device according to any one of claims 1 to 4, wherein the disconnection detection unit detects disconnection of the power supply target from the normal power supply due to a power failure.
  6.  前記電力供給対象は移動可能であり、
     前記通常の電源は所定の位置にある前記電力供給対象に電力を供給し、
     前記切断検知部は、前記電力供給対象の前記所定の位置からの移動による前記通常の電源からの切断を検知する
     請求項1から5のいずれかに記載の電力供給装置。
    the power supply target is movable,
    said conventional power source powering said power target at a predetermined location;
    The power supply device according to any one of claims 1 to 5, wherein the disconnection detection unit detects disconnection from the normal power source due to movement of the power supply target from the predetermined position.
  7.  前記電力供給対象は供給される電力によって駆動されるモータを備え、
     前記臨時電力供給部は、前記臨時の電力を発生する電池であって、前記モータで発生する回生電力によって充電可能な電池を備える
     請求項1から6のいずれかに記載の電力供給装置。
    the power supply target comprises a motor driven by the power supplied;
    The power supply device according to any one of claims 1 to 6, wherein the temporary power supply unit is a battery that generates the temporary power, and includes a battery that can be charged with regenerated power generated by the motor.
  8.  前記電力供給対象は前記モータによって第1の位置と第2の位置の間を反復的に移動可能である請求項7に記載の電力供給装置。 The power supply device according to claim 7, wherein the power supply object is repetitively movable between a first position and a second position by the motor.
  9.  電力供給対象に臨時の電力を供給する電力供給方法であって、
     前記電力供給対象の通常の電源からの切断を検知する切断検知ステップと、
     前記切断の検知に応じて、前記通常の電源より電圧が高い臨時の電力を前記電力供給対象に供給する臨時電力供給ステップと
     を備える電力供給方法。
    A power supply method for supplying temporary power to a power supply target,
    a disconnection detection step of detecting disconnection from a normal power source of the power supply target;
    and a temporary power supply step of supplying temporary power having a voltage higher than that of the normal power supply to the power supply target in response to detection of the disconnection.
PCT/JP2022/004449 2021-03-08 2022-02-04 Power supply device and power supply method WO2022190731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505219A JPWO2022190731A1 (en) 2021-03-08 2022-02-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021036349 2021-03-08
JP2021-036349 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022190731A1 true WO2022190731A1 (en) 2022-09-15

Family

ID=83227868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004449 WO2022190731A1 (en) 2021-03-08 2022-02-04 Power supply device and power supply method

Country Status (2)

Country Link
JP (1) JPWO2022190731A1 (en)
WO (1) WO2022190731A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51149U (en) * 1974-06-18 1976-01-05
JPS5594546A (en) * 1979-01-13 1980-07-18 Matsushita Electric Works Ltd Electric power interruption compensating circuit
JP2016187284A (en) * 2015-03-27 2016-10-27 住友重機械工業株式会社 Power conversion device and industrial machine using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51149U (en) * 1974-06-18 1976-01-05
JPS5594546A (en) * 1979-01-13 1980-07-18 Matsushita Electric Works Ltd Electric power interruption compensating circuit
JP2016187284A (en) * 2015-03-27 2016-10-27 住友重機械工業株式会社 Power conversion device and industrial machine using the same

Also Published As

Publication number Publication date
JPWO2022190731A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP5563615B2 (en) Railway vehicle energy storage system based automatic tuning method
US7388353B2 (en) Discharging system for smoothing capacitor
CN103545902B (en) There is the electrical system of DC chain
CN109428473A (en) The power-supply system of vehicle
WO2012164680A1 (en) Vehicle and method of controlling vehicle
CN104512275A (en) Electric vehicle power conversion system
JP6413905B2 (en) Control device for power conversion device for vehicle
CN102891649B (en) For controlling the apparatus and method of medium voltage frequency converter
KR101071208B1 (en) energy storage system of AC method of electric supply
KR20010083169A (en) Injection Molding Machine And Injection Molding Method Capable Of Reducing Power Consumption
JP2015220961A (en) vehicle
JP2015073423A (en) Power conversion system for motor car
JP2015213419A (en) Electric vehicle
CN109428389A (en) The power-supply system of vehicle
JP2014195341A (en) Charge controller for vehicle
CN101473523A (en) Regenerative braking device
JP2004056934A (en) Auxiliary power unit
US20190149068A1 (en) Motor controller, power converter, auxiliary power source, and method for controlling auxiliary power source
Al-Sheikh et al. Study on power converters used in hybrid vehicles with monitoring and diagnostics techniques
RU2646770C2 (en) Energy storage arrangement, energy storage system and method for operating energy storage arrangement
WO2022190731A1 (en) Power supply device and power supply method
KR101816448B1 (en) Method for enforced discharge of hybrid electric vehicle
JP4552738B2 (en) Motor control device for washing machine
JP6786268B2 (en) Power storage system
JP6259778B2 (en) Railway vehicle drive system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766696

Country of ref document: EP

Kind code of ref document: A1