WO2022190659A1 - Fuel production method and fuel production system - Google Patents

Fuel production method and fuel production system Download PDF

Info

Publication number
WO2022190659A1
WO2022190659A1 PCT/JP2022/001909 JP2022001909W WO2022190659A1 WO 2022190659 A1 WO2022190659 A1 WO 2022190659A1 JP 2022001909 W JP2022001909 W JP 2022001909W WO 2022190659 A1 WO2022190659 A1 WO 2022190659A1
Authority
WO
WIPO (PCT)
Prior art keywords
treated
fuel production
fuel
gas
catalyst
Prior art date
Application number
PCT/JP2022/001909
Other languages
French (fr)
Japanese (ja)
Inventor
剛 伊藤
利正 大橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022190659A1 publication Critical patent/WO2022190659A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas

Definitions

  • the present invention relates to a fuel production method for producing fuel from an object to be treated that contains macromolecular organic matter, and a fuel production system to which this fuel production method is applied.
  • waste containing high-molecular organic matter has been treated by burning it at high temperatures.
  • waste resin such as ion exchange resin
  • the volume can be reduced to 1/10 or less.
  • the waste resin is an ion-exchange resin used in a nuclear power plant, it is necessary to recover radioactive substances scattered during combustion. Therefore, in the case of performing a process of burning at a high temperature exceeding 1000° C., the scale of processing equipment such as an off-gas system is increased.
  • CO 2 is generated when high-molecular weight organic matter is burned.
  • CO2 emissions There is a demand for reducing CO2 emissions from the viewpoint of environmental impact. Therefore, as one of the techniques for reducing CO 2 emissions, a technique for converting CO 2 into fuel such as methanol and methane has been proposed. For example, a method of synthesizing methanol by reacting a gas containing carbon monoxide, carbon dioxide, and hydrogen at 50 atm and 250° C. or lower using a copper-based catalyst has been proposed (e.g., See Patent Document 2).
  • Patent Document 1 does not describe the application of methanol synthesis from carbon dioxide to carbon dioxide generated by combustion of high-molecular weight organic matter.
  • the present invention it is possible to reduce the decomposition temperature of an object to be treated that contains high-molecular-weight organic substances and to produce fuel from the object-to-be-treated that contains high-molecular organic substances through a series of operations.
  • a fuel manufacturing method and a fuel manufacturing system are provided.
  • the fuel production method of the present invention is a method for producing fuel from an object to be treated that contains a high-molecular-weight organic substance, wherein the object to be treated contains an oxide semiconductor and a catalyst containing a metal that supplies electrons to the object to be treated. and a heating step of heating the object to be treated in contact with the catalyst in an atmosphere containing hydrogen and oxygen.
  • the fuel production system of the present invention produces fuel from an object to be treated containing macromolecular organic matter.
  • a reaction vessel containing an object to be treated, an oxide semiconductor, and a catalyst containing a metal that supplies electrons to the object to be treated, a heating device for heating the inside of the reaction vessel, and a gas containing hydrogen and oxygen into the reaction vessel. and a supply unit for supplying.
  • the reaction tank has an air supply port for supplying the gas containing hydrogen and oxygen supplied from the supply unit into the reaction tank, and an exhaust port for discharging the exhaust gas generated by the reaction of the object to be treated from the reaction tank.
  • a fuel production method capable of reducing the decomposition temperature of an object to be treated that contains high-molecular organic matter and producing fuel from the object to be treated that includes high-molecular organic matter through a series of operations;
  • a fuel production system can be provided.
  • FIG. 1 is a flow chart of a first embodiment of a fuel manufacturing method
  • 1 is a schematic configuration diagram of one embodiment of a fuel production system to which the fuel production method of which the flow chart is shown in FIG. 1 is applied
  • FIG. Fig. 2 is a flow chart of a second embodiment of a fuel manufacturing method
  • FIG. 4 is a schematic configuration diagram of one embodiment of a fuel production system that applies the fuel production method whose flow chart is shown in FIG. 3
  • 3 is a flow chart of a third embodiment of a fuel manufacturing method
  • FIG. 6 is a schematic configuration diagram of one embodiment of a fuel production system to which the fuel production method whose flow chart is shown in FIG. 5 is applied
  • 1 is a schematic configuration diagram of one form of a fuel production system using exhaust heat from a plant
  • the fuel production method is a method for producing fuel from an object to be treated containing macromolecular organic matter.
  • a catalyst containing an oxide semiconductor and a metal that supplies electrons to an object to be treated in the reaction mechanism of fuel production (hereinafter also simply referred to as a metal that supplies electrons) is brought into contact with the object to be treated. It has a contacting step.
  • the catalyst used in the contact step preferably contains a transition metal different from the electron-supplying metal (hereinafter also simply referred to as a transition metal) together with the oxide semiconductor and the electron-supplying metal.
  • the fuel production method has a heating step of heating the object to be treated with the catalyst in an atmosphere containing hydrogen and oxygen.
  • the fuel manufacturing system performs processing for manufacturing fuel from a processing object containing high-molecular organic matter.
  • the fuel production system includes a reaction vessel containing an object to be treated, an oxide semiconductor, and a catalyst containing a metal that supplies electrons, a heating device for heating the inside of the reaction vessel, and a gas containing hydrogen and oxygen into the reaction vessel. and a supply unit for supplying.
  • the reaction tank has an air supply port for supplying the gas containing hydrogen and oxygen supplied from the supply unit into the reaction tank, and an exhaust port for discharging the fuel gas generated by the reaction of the object to be treated from the reaction tank. , and a recovery facility for recovering the fuel gas.
  • examples of the target macromolecular organic matter include wastes containing various resins such as ion exchange resins and waste plastics.
  • the ion-exchange resin it is possible to apply an ion-exchange resin for water purification treatment or an ion-exchange resin for nuclear reactor plants.
  • the polymer organic material may be a mixture of different types of resins, such as a mixture of an ion exchange resin and other resins. It is desirable that substances other than organic substances (for example, high-melting point inorganic substances, etc.) be as small as possible in the target waste. Therefore, it is desirable to separate substances other than organic substances from organic substances before performing the heating step. However, the heating step may be performed in a state containing substances other than organic substances that could not be separated, and then the residues other than organic substances may be disposed of.
  • an oxide semiconductor with a bandgap of 2.0 eV or more can be used. Examples include TiO 2 , V 2 O 5 , Cr 2 O 3 , NiO, Fe 2 O 3 , Fe 3 O 4 , ZnO, SrTiO 3 and the like.
  • the oxide semiconductor one or more selected from these oxide semiconductors can be used.
  • holes excited in the oxide semiconductor by heat have sufficient oxidizing power and can oxidatively decompose the polymer.
  • an oxide semiconductor with a bandgap of 2.0 eV or more electrons excited in the oxide semiconductor by heat have a sufficient reducing power, and a metal or a transition metal that supplies electrons used as a catalyst can be used. can be recovered.
  • Ag is preferably used as the electron-supplying metal.
  • a metal that supplies electrons to an object to be treated as a catalyst supplies electrons to a functional group contained in a polymer organic substance that is an object to be treated.
  • decomposition of the functional group of the polymer by the electron-supplying metal is promoted.
  • the oxidative decomposition of the high-molecular-weight organic matter, which is the object to be treated can be promoted.
  • metals that supply electrons take oxygen from carbon monoxide (CO) and carbon dioxide (CO 2 ) produced by decomposition of polymers, promoting the production of methanol (CH 3 OH) and methane (CH 4 ). do.
  • the amount of the metal that supplies electrons is preferably 0.02-5 wt. %, more preferably 0.1-1 wt. %.
  • Transition metals different from metals that supply electrons include Ti, V, Cr, Mn, iron group elements (Fe, Co, Ni), platinum group elements (Ru, Rh, Pd, Os, Ir, Pt), It is preferable to use one or more selected from Cu and Au. Among them, it is more preferable to use Ag as the electron-supplying metal and Cu as the transition metal different from the electron-supplying metal.
  • the transition metal element receives electrons excited in the oxide semiconductor, suppresses the recombination of electrons and holes in the oxide semiconductor, and oxidizes the polymer by the holes. It can accelerate decomposition.
  • the transition metal removes electrons to further suppress the recombination of electrons and holes, thereby further promoting oxidative decomposition as compared with the case where a metal that supplies electrons is used alone.
  • the transition metal that has been reduced by receiving electrons takes oxygen from carbon monoxide (CO) and carbon dioxide (CO 2 ) generated by decomposition of the polymer, and converts it into methanol (CH 3 OH) and methane (CH 4 ). promote the generation of
  • the amount of the transition metal different from the electron-supplying metal is preferably 0.02-5 wt. %, more preferably 0.1-1 wt. %.
  • the atmosphere containing hydrogen for example, water vapor or hydrogen gas can be used.
  • the atmosphere containing oxygen for example, water vapor, oxygen gas, or air can be used.
  • the amount of hydrogen and oxygen to be supplied is preferably such that the total number of moles of hydrogen and oxygen is two times or more, particularly preferably four times or more, the number of moles of the object to be treated.
  • the rate of decomposition of the organic matter in the object to be treated is improved.
  • oxygen is supplied at a molar ratio of 2 times or more and hydrogen is supplied at a molar ratio of 4 times or more with respect to the object to be processed.
  • Examples of methods for bringing the object to be treated and the catalyst into contact include a method of mixing powders of oxide semiconductors, electron-supplying metals, and transition metals with the object to be treated. Further, there is a method of mixing particles of an oxide semiconductor, a metal that supplies electrons, and a transition metal with an object to be treated. Furthermore, there is a method of adding a solution of raw materials for an oxide semiconductor, a metal that supplies electrons, and a transition metal to an object to be treated, and heating the object to precipitate the oxide semiconductor, the metal that supplies electrons, and the transition metal. mentioned.
  • the oxide semiconductor, the electron-supplying metal, and the transition metal can also be brought into contact with the object to be treated in separate operations. For example, after mixing an oxide semiconductor powder with an object to be processed, a solution (aqueous solution or the like) containing a metal that supplies electrons and a transition metal is added. By depositing the metal that supplies electrons by heating and the transition metal, the catalyst can be brought into contact with the object to be treated.
  • a solution aqueous solution or the like
  • the above catalysts may be placed on the walls of the reaction vessel or stirred. A method is possible in which the catalyst is attached to a blade and the attached catalyst is brought into contact with the object to be treated.
  • the action of a catalyst containing an oxide semiconductor, a metal that supplies electrons, and a transition metal is estimated as follows.
  • the following explanation is a reaction mechanism assumed by the inventors in the expression of catalytic action, and the fuel production method according to the present embodiment is not limited to the following reaction mechanism.
  • h + generated by thermal excitation has a strong oxidizing power, and oxidatively decomposes the carbon chain of the polymer organic substance in contact with the oxide semiconductor.
  • the electron-supplying metal and the transition metal since the electron-supplying metal and the transition metal are present at the same time, the electron-supplying metal and the transition metal receive e ⁇ generated by the thermal excitation and prevent recombination of h + and e ⁇ . , promotes oxidative decomposition reactions.
  • the following formula (2) represents the case where a metal M is a metal that supplies electrons and a transition metal, and the metal M exists in the state of an oxide MO n .
  • the metal oxide MO n- ⁇ that receives e ⁇ generated by thermal excitation deprives CO and CO 2 generated by the oxidative decomposition of the high-molecular-weight organic matter as shown in the following formula (3), and converts active carbon C give rise to CO 2 +MO n ⁇ ⁇ C+MO n (3)
  • macromolecular organic substances contain not only carbon chains but also functional groups.
  • the decomposition of this functional group is accelerated by the supply of electrons. Electrons supplied from the oxide semiconductor by thermal excitation are consumed in the above equations (1) to (4). Therefore, by adding a metal that supplies electrons, the decomposition of the functional group can be promoted as shown in the following formula (5).
  • the functional group preferably contains sulfide. Polymeric organic substance (functional group) + e ⁇ ⁇ SO 4 +CO 2 +H 2 O (5) The CO 2 generated in the above formula (5) is supplied to the above formula (3), and by further producing active carbon, it becomes possible to produce fuels such as CH 3 OH and CH 4 according to the above formula (4).
  • the degree of reduction in the treatment temperature and the amount of heat generated vary depending on the type and amount of the oxide semiconductor used as the catalyst, the metal that supplies electrons, and the transition metal. can be processed.
  • Table 1 shows the difference in reaction temperature depending on the type of catalyst.
  • the treatment temperature can be lowered to about 250 ° C., which is higher than when TiO 2 or Fe 2 O 3 is used alone. Therefore, the reaction temperature can be greatly reduced.
  • lowering the treatment temperature it becomes possible to carry out the heating step at a temperature of 500°C or less, preferably in the range of 200°C to 500°C.
  • the object to be treated containing high-molecular weight organic matter is brought into contact with a catalyst containing an oxide semiconductor and a metal that supplies electrons. heating in an atmosphere containing As a result, the decomposition temperature of the object to be treated containing high-molecular organic matter can be reduced, and fuel can be produced from the object to be treated including high-molecular organic matter through a series of operations. Furthermore, by using a catalyst containing a transition metal in addition to the oxide semiconductor and the metal that supplies electrons as a catalyst, the decomposition temperature of the object to be treated containing high-molecular organic substances is further reduced, and the high-molecular organic substances are contained. Fuel can be efficiently produced from the object to be treated through a series of operations.
  • the treatment temperature can be lowered to, for example, about 280° C., particularly 250° C. or less, so that exhaust heat from external equipment such as a power plant can be used in the heating process.
  • the treatment temperature can be lowered, so that thermal decomposition can be achieved at a treatment temperature lower than the volatilization temperature of the radionuclide.
  • the volatilization temperature of radionuclides is, for example, about 300° C. for technetium (Tc), about 500° C. for cesium (Cs), and over 1000° C. for cobalt (Co).
  • the fuel production system includes a reaction tank containing the object to be treated and the catalyst, a heating device for heating the inside of the reaction tank, and a supply unit for supplying a gas containing hydrogen and oxygen to the reaction tank.
  • the reaction tank has an air supply port for supplying the gas containing hydrogen and oxygen supplied from the supply unit into the reaction tank.
  • a catalyst containing an oxide semiconductor and a metal that supplies electrons, or a catalyst containing a transition metal in these is brought into contact with the object to be treated, so that hydrogen and oxygen from the supply part are included.
  • a gas is supplied into the reactor from the air supply port.
  • FIG. 1 A flow chart of a first embodiment of a fuel manufacturing method is shown in FIG.
  • an object to be treated 101 containing a polymeric organic substance and a catalyst 102 containing an oxide semiconductor and a metal that supplies electrons are prepared.
  • the catalyst preferably contains a transition metal in addition to the oxide semiconductor and the electron-supplying metal.
  • the oxide semiconductor used for the catalyst 102 the above-described oxide semiconductor (for example, TiO 2 or the like) is used.
  • a solution (aqueous solution or other solution) containing Ag or the like is used as the metal for supplying electrons used in the catalyst 102 .
  • a solution (aqueous solution or other solution) containing the transition metal for example, Cu, Fe, etc.
  • step S1 the catalyst 102 is brought into contact with the processing object 101 by supplying the processing object 101 with the catalyst 102 and mixing the processing object 101 and the catalyst 102 together.
  • step S2 the atmosphere gas 103 is supplied to the object 101 to be processed which is brought into contact with the catalyst 102 .
  • the atmosphere gas 103 the above-described gas containing hydrogen and oxygen (for example, a mixed gas of water vapor, hydrogen, and oxygen) is used.
  • the object to be treated 101 in contact with the catalyst 102 is placed in the atmospheric gas 103 .
  • step S3 the processing object 101 brought into contact with the catalyst 102 in the atmosphere gas 103 is heated.
  • the object 101 to be treated is decomposed into a solid residue 104 and a gaseous exhaust gas 105 containing fuel components (CH 3 OH, CH 4 ).
  • the object 101 to be treated is brought into contact with the catalyst 102 , and then the object 101 to be treated is heated in the atmosphere gas 103 .
  • the decomposition temperature of the object to be treated containing high-molecular organic matter can be reduced, and fuel can be produced from the object to be treated including high-molecular organic matter through a series of operations.
  • FIG. 2 shows a schematic configuration diagram of one form of a fuel production system to which the fuel production method whose flow chart is shown in FIG. 1 is applied.
  • the fuel production system shown in FIG. 2 includes a reaction tank 6, a heating device 4, and a recovery device 8.
  • the reaction tank 6 has an air supply port 5 and an exhaust port 7. As shown in FIG.
  • the reaction tank 6 accommodates an object to be treated (including high-molecular organic matter such as resin) 2 and a catalyst 1 .
  • the air supply port 5 is provided on the lower surface of the reaction vessel 6
  • the exhaust port 7 is provided on the upper surface of the reaction vessel 6 .
  • a supply unit 3 for supplying gas containing hydrogen and oxygen is connected to the air supply port 5 .
  • Specific configurations of the supply unit 3 include, for example, a vaporizer for generating steam, a gas cylinder (hydrogen cylinder, oxygen cylinder, etc.), a compressor for supplying air, a gas purification device, and the like. Then, the gas supply port 5 supplies the gas containing hydrogen and oxygen supplied from the supply unit 3 into the reaction vessel 6 .
  • the heating device 4 heats the inside of the reaction tank 6 by heating the gas containing hydrogen and oxygen supplied from the supply unit 3 . Thereby, the heating device 4 heats the processing object 2 accommodated in the reaction tank 6, and causes the processing object 2 to react with the atmospheric gas and decompose.
  • fuel can be produced as described below.
  • a catalyst 1 containing an oxide semiconductor and a metal that supplies electrons, or a catalyst 1 containing a transition metal together with these, and an object to be treated containing a high-molecular organic substance are placed in a reaction vessel 6 in advance. It contains thing 2.
  • the inside of the reaction vessel 6 is heated.
  • the inside of the reaction tank 6 is heated by heating the supplied gas with the heating device 4 while supplying the gas containing hydrogen and oxygen into the reaction tank 6 from the air supply port 5 .
  • the object to be treated 2 is decomposed by reacting with hydrogen and oxygen, and a residue and an exhaust gas, which is a gas containing fuel components (CH 3 OH, CH 4 ), are generated.
  • Exhaust gas generated by the reaction of the object 2 during heating is discharged from the exhaust port 7 .
  • Exhaust gas, which is a gas containing fuel components, discharged from the exhaust port 7 is recovered by a recovery device 8 . After heating is completed, the residue (and catalyst 1) remaining in the reactor 6 is removed.
  • the fuel production system can produce fuel as described above.
  • a catalyst 1 containing an oxide semiconductor and a metal that supplies electrons, or a catalyst 1 containing a transition metal together with these, and an object to be processed containing a high-molecular organic substance are placed in the reaction tank 6. 2 is housed again and heated.
  • the catalyst 1 and the object 2 to be treated containing high-molecular organic matter are placed in advance in the reaction tank 6, so that the catalyst 1 and the object 2 to be treated are brought into contact with each other. can be done.
  • the fuel production system is provided with an air supply port 5, a gas containing hydrogen and oxygen is supplied from the air supply port 5, and the object 2 to be processed contained in the reaction tank 6 is caused to react with hydrogen and oxygen. be able to.
  • the fuel production system is provided with the heating device 4, it is possible to heat and decompose the object to be treated 2 contained in the reaction tank 6.
  • the fuel production system includes the exhaust port 7 and the recovery device 8 , the exhaust gas generated by heating can be discharged from the exhaust port 7 to the outside of the reaction tank 6 and recovered by the recovery device 8 . . Then, in the reaction tank 6 , the catalyst 1 and the object 2 to be treated containing high-molecular-weight organic substances are heated by the heating device 4 while being in contact with each other in an atmosphere containing hydrogen and oxygen. As a result, the decomposition temperature of the processing object 2 containing high-molecular organic matter can be reduced, and fuel can be produced from the processing object 2 containing high-molecular organic matter through a series of operations.
  • FIG. 3 A flow chart of a second embodiment of the fuel manufacturing method is shown in FIG. As shown in FIG. 3, in the second embodiment, the residue 104 generated in the heating step of step S3 is separated from the fuel production method of the first embodiment shown in FIG. 102 is recovered. It should be noted that redundant description of the same configuration as in the first embodiment will be omitted.
  • a step (solid separation step) of solid separation of the residue 104 in step S4 is performed to separate the incombustible waste 106 and the catalyst 107 .
  • the catalyst 107 obtained in the solid separation step of step S4 is recovered and supplied to the object 101 to be treated in the same manner as the catalyst 102 supplied first.
  • the non-combustible waste 106 is disposed of.
  • the particle-shaped catalyst 107 and the catalyst 102 are used in order to perform the step of solid separation of the residue 104 in step S4. Then, a sieve or the like having openings smaller than the particles of the catalyst 107 and the catalyst 102 is used to separate the residue 104 in step S4 into solids.
  • the catalyst 102 is brought into contact with the object 101 to be treated, and the object 101 is heated in an atmosphere containing hydrogen and oxygen. to heat. This makes it possible to decompose the object 101 to be treated at a significantly lower temperature than in the conventional combustion method, and to produce fuel from the object to be treated including macromolecular organic matter through a series of operations. can.
  • step S4 the step of separating the residue 104 into solids in step S4 is performed to separate the incombustible waste 106 and the catalyst 107, and the obtained catalyst 107 is recovered and treated.
  • the object 101 is supplied. Since the catalyst 107 is recovered and reused in this manner, the amount of the catalyst 102 used can be reduced.
  • FIG. 4 shows a schematic configuration diagram of one embodiment of a fuel production system to which the fuel production method whose flow chart is shown in FIG. 3 is applied.
  • the fuel production system shown in FIG. 4 further differs from the fuel production system shown in FIG. 2 in that a stirrer 9, a stirring blade 10, an inlet 11 and an outlet 12 are provided.
  • a stirring blade 10 is provided in the reaction vessel 6 .
  • the agitating blade 10 agitates the catalyst 1 and the object 2 to be treated by rotating a shaft powered by the agitator 9 .
  • the discharge port 12 is provided at the bottom inside the reaction tank 6 .
  • the outlet 12 has separation equipment such as a sieve with openings smaller than the particles of the catalyst 1 . Separation equipment such as this sieve can separate the catalyst 1 from the incombustible wastes in which the objects to be treated are decomposed. The non-combustible waste passes through openings in the separation equipment and is discharged from outlet 12 .
  • the inlet 11 is provided on the upper surface of the reaction vessel 6 . Since the incombustible waste is discharged from the discharge port 12, a new processing object 2 can be added from the input port 11, and the processing object 2 can be heated and decomposed. Since other configurations are the same as those of the fuel production system shown in FIG. 2, redundant description will be omitted.
  • the incombustible waste generated by the decomposition of the object 2 to be treated is separated. It can be discharged separately from the catalyst 1 .
  • the inlet 11 is provided on the upper surface of the reaction tank 6 , a new processing object 2 can be additionally introduced through the inlet 11 .
  • the stirring blades 10 are provided in the reaction vessel 6, by stirring with the stirring blades 10, it is possible to maintain the contact between the object to be treated 2 added from the inlet 11 and the catalyst 1. can.
  • the object 2 to be treated can be added and the contact between the object 2 to be treated and the catalyst 1 can be maintained, and the object 2 to be treated can be continuously fed. can be processed.
  • the catalyst 1 can be separated from the non-combustible waste by the separation equipment of the discharge port 12, and the catalyst 1 can be continuously used while the object 2 to be treated is continuously treated. . Therefore, the amount of catalyst 1 used can be reduced.
  • the catalyst can be applied to the inner wall of the reaction tank 6 or the stirring blade 10 and the catalyst can be used continuously. .
  • this catalyst if the catalyst decreases due to abrasion or the like, the catalyst is applied again to the inner wall of the reaction tank 6 and the stirring blade 10 to replenish the catalyst.
  • this configuration for imparting the catalyst can be applied to the fuel production system of FIG. 2 for batch processing, or applied to the fuel production system of FIG. 4 for continuous processing.
  • FIG. 5 A flow chart of a third embodiment of the fuel production method is shown in FIG. As shown in FIG. 5, the third embodiment separates the exhaust gas 105 generated in the heating process of step S3 in contrast to the fuel production method of the first embodiment shown in FIG. It should be noted that redundant description of the same configuration as in the first embodiment will be omitted.
  • a step (gas separation step) of gas separation of the exhaust gas 105 in step S5 is performed, and the exhaust gas 105 is separated into the fuel gas 109 (CH 4 OH, CH 4 ) and the non-fuel gas 110 ( H 2 O, CO 2 , SO x , NO x ).
  • the non-fuel gas 110 contained in the exhaust gas 105 is removed in order to reduce the impurities mixed in when the fuel gas 109 is recovered.
  • H2O is separated through a hygroscopic material, and CO2 , SOx , NOx are removed through an alkali trap. This reduces the non-fuel gas concentration in the recovered fuel gas.
  • the catalyst 102 is brought into contact with the object 101 to be treated, and the object 101 is heated in an atmosphere containing hydrogen and oxygen. to heat.
  • the generated exhaust gas 105 is separated into the fuel gas 109 and the non-fuel gas 110 by the step of gas separation of the exhaust gas 105 in step S5, and the purity of the recovered fuel gas is can increase
  • FIG. 6 shows a schematic configuration diagram of one embodiment of a fuel production system to which the fuel production method whose flow chart is shown in FIG. 5 is applied.
  • the fuel production system shown in FIG. 6 further differs from the fuel production system shown in FIG. 2 in that a trap 13 connected to the exhaust port 7 on the upper surface of the reaction vessel 6 is provided.
  • the trap 13 is arranged between the exhaust port 7 of the reaction vessel 6 and the recovery device 8 .
  • the trap 13 has a hygroscopic agent inside, and causes water vapor (H 2 O) in the exhaust gas from the exhaust port 7 to react with the hygroscopic agent.
  • the trap 13 removes water vapor from the exhaust gas and suppresses the discharge of the water vapor to the outside.
  • the trap 13 has an alkaline compound inside, and causes acid gases (CO 2 , SO x , NO x ) in the exhaust gas from the exhaust port 7 to react with the alkaline compound.
  • the trap 13 converts the acid gas into a salt or an aqueous salt solution, etc., and suppresses the gas from being discharged to the outside.
  • the hygroscopic agent and alkaline compound that have disappeared due to the reaction are replenished to the trap 13 as necessary. Since other configurations are the same as those of the fuel production system shown in FIG. 2, redundant description will be omitted.
  • the trap 13 connected to the exhaust port 7 on the upper surface of the reaction tank 6 is provided, so that the water vapor and acid gas in the exhaust gas are discharged to the outside as gas. can be suppressed.
  • FIG. 7 shows a schematic configuration diagram of one mode of a fuel production system for a fourth embodiment of the fuel production method.
  • the fuel production system shown in FIG. 7 shows a schematic configuration of one form of the fuel production system in the case of utilizing the waste heat of the plant.
  • the fuel production system shown in FIG. 7 further includes heat exchangers 14 and 15 as compared with the fuel production systems shown in FIGS. Also, the fuel production system shown in FIG. 7 is connected to the plant 16 .
  • the heat exchanger 14 is connected to the exhaust port 7 on the upper surface of the reaction vessel 6 . Also, the heat exchanger 14 is connected to the air supply port 5 on the bottom surface of the reaction vessel 6 . A gas containing hydrogen and oxygen is supplied to the heat exchanger 14 from the lower side in the figure. A gas containing hydrogen and oxygen is supplied to the air supply port 5 on the bottom surface of the reaction tank 6 through the heat exchanger 14 . Exhaust gas is supplied to the heat exchanger 14 from the exhaust port 7 . The exhaust gas passes through the heat exchanger 14 , is discharged from the heat exchanger 14 to the right side in the figure, passes through the trap 13 and is recovered by the recovery device 8 .
  • the heat exchanger 14 is composed of separate pipes so that the gas flow path containing hydrogen and oxygen and the exhaust gas flow path do not mix with each other. Also, the heat exchanger 14 is configured such that the contact area between the two tubes is large so that heat can be exchanged between the exhaust gas and the gas containing hydrogen and oxygen.
  • the heat exchanger 15 is connected to the air supply port 5 on the lower surface of the reaction vessel 6 on the upstream side (supply section 3 side) of the heat exchanger 14 .
  • the heat exchanger 15 is also connected to a plant 16 outside the fuel production system.
  • a gas containing hydrogen and oxygen is supplied to the heat exchanger 15 from the lower side in the drawing.
  • a gas containing hydrogen and oxygen is supplied to the air supply port 5 on the bottom surface of the reaction tank 6 through the heat exchanger 15 .
  • the heat exchanger 15 is also connected to a high-temperature exhaust system 18 of the plant 16 , and high-temperature exhaust gas is supplied from the high-temperature exhaust system 18 to the heat exchanger 15 as a heat medium.
  • the high temperature exhaust passes through the heat exchanger 15 and is discharged to the outside of the fuel production system.
  • the heat exchanger 15 is composed of separate tubes so that the gas flow path containing hydrogen and oxygen and the heat medium flow path supplied from the outside of the plant 16 or the like do not mix with each other. Also, the heat exchanger 15 is configured such that the two tubes have a large contact area so that heat can be exchanged between the high-temperature heat medium and the gas containing hydrogen and oxygen.
  • the air supply port 5 is connected to the supply unit 3 for supplying gas containing hydrogen and oxygen and to the steam discharge device 17 of the plant 16 .
  • the supply unit 3 and the steam discharge device 17 of the plant 16 are joined upstream of the heat exchangers 14 and 15 and connected to the air supply port 5 .
  • the steam discharge device 17 supplies the preheated steam generated in the plant 16 into the reaction vessel 6 from the air supply port 5 as part of the gas containing hydrogen and oxygen.
  • the supply unit 3 of the fuel production system reacts not only the above-mentioned gas cylinder, compressor, gas purification device, etc., but also the gas introduced from the outside of the fuel production system as part of the gas containing hydrogen and oxygen. It can be fed into tank 6 . Since other configurations are the same as those of the fuel production system shown in FIG. 2, redundant description will be omitted.
  • the atmospheric gas supplied to the air supply port 5 is heat-exchanged with the exhaust gas from the exhaust port 7 and the high-temperature exhaust gas from the high-temperature exhaust device 18. can be heated with Therefore, in this fuel production system, the energy applied from the heating device 4 can be reduced.
  • the steam discharged from the steam discharge device 17 can be used as part of the atmospheric gas supplied from the supply unit 3 into the reaction tank 6 . Therefore, in this fuel production system, the energy used to generate steam in the supply section 3 can be reduced.
  • each embodiment from the second embodiment to the fourth embodiment described above is the configuration of a plurality of embodiments as long as it does not cause problems in the fuel production process and the operation of the fuel production system. can be combined as appropriate.

Abstract

Provided is a method for producing a fuel from an object to be processed containing a polymer organic material. The method includes: a contact step for bringing a catalyst, which includes an oxide semiconductor and a metal supplying electrons to the object to be processed, into contact with the object to be processed; and a heating step for heating the object to be processed, which has been brought into contact with the catalyst, in an atmosphere that contains hydrogen and oxygen. The fuel production method enables: a fuel to be produced, through a series of operations, from an object to be processed containing a polymer organic material; and a reduction in the decomposition temperature of the object to be processed containing a polymer organic material.

Description

燃料製造方法および燃料製造システムFuel production method and fuel production system
 本発明は、高分子の有機物を含む処理対象物から燃料を製造する燃料製造方法、および、この燃料製造方法を適用する燃料製造システムに関する。 The present invention relates to a fuel production method for producing fuel from an object to be treated that contains macromolecular organic matter, and a fuel production system to which this fuel production method is applied.
 高分子の有機物を含む廃棄物は、従来から、高温で燃焼させることにより、処理されてきた。例えば、イオン交換樹脂等の廃樹脂を、1000℃を超える高温で燃焼させることにより、1/10以下に減容させることができる。しかしながら、このような高温で燃焼させた場合、大量のエネルギーを消費し、運転コストが大きくなってしまう問題や、燃焼に伴い発生する不要な物質の処理が必要となる問題があった。特に、廃樹脂が原子力プラントで使用されたイオン交換樹脂である場合、燃焼する際に飛散する放射性物質を回収する必要がある。そのため、1000℃を超える高温で燃焼させる処理を行う場合には、オフガス系等の処理設備が大規模化する。 Conventionally, waste containing high-molecular organic matter has been treated by burning it at high temperatures. For example, by burning waste resin such as ion exchange resin at a high temperature exceeding 1000° C., the volume can be reduced to 1/10 or less. However, when burning at such a high temperature, there is a problem that a large amount of energy is consumed and the operating cost increases, and there is a problem that it is necessary to dispose of unnecessary substances generated by combustion. In particular, when the waste resin is an ion-exchange resin used in a nuclear power plant, it is necessary to recover radioactive substances scattered during combustion. Therefore, in the case of performing a process of burning at a high temperature exceeding 1000° C., the scale of processing equipment such as an off-gas system is increased.
 そこで、廃樹脂等の高分子の有機物を含む廃棄物を処理する際に、ポリカーボネート等の有機化合物を、TiO等の半導体粉末に接触させて、600℃以下のより低い温度で処理する方法が提案されている(例えば、特許文献1参照)。 Therefore, when treating waste containing high-molecular organic matter such as waste resin, there is a method of contacting an organic compound such as polycarbonate with a semiconductor powder such as TiO 2 and treating it at a lower temperature of 600 ° C. or less. It has been proposed (see Patent Document 1, for example).
 また、高分子の有機物の燃焼時にはCOが発生する。環境への影響の観点からCO排出量削減が求められている。そこで、CO排出量削減の技術の一つとして、COをメタノールやメタン等の燃料に転換する技術が提案されている。例えば、銅を主成分とする触媒を用いて、一酸化炭素、二酸化炭素および水素を含有するガスを50気圧、250℃以下で反応させて、メタノールを合成する方法が提案されている(例えば、特許文献2参照)。 In addition, CO 2 is generated when high-molecular weight organic matter is burned. There is a demand for reducing CO2 emissions from the viewpoint of environmental impact. Therefore, as one of the techniques for reducing CO 2 emissions, a technique for converting CO 2 into fuel such as methanol and methane has been proposed. For example, a method of synthesizing methanol by reacting a gas containing carbon monoxide, carbon dioxide, and hydrogen at 50 atm and 250° C. or lower using a copper-based catalyst has been proposed (e.g., See Patent Document 2).
特開2005-139440号公報JP-A-2005-139440 特開平9-249594号公報JP-A-9-249594
 使用済みイオン交換樹脂の主成分であるスチレンジビニルベンゼンのように、高分子の有機物の中でも安定な化合物を完全に燃焼させるためには、500~600℃の加熱が必要になる。しかしながら、スチレンジビニルベンゼンのような安定な化合物に対し、特許文献1の半導体粉末に接触させる方法を適用しても、燃焼温度を下げる効果を十分に得られなかった。
 また、特許文献2では、二酸化炭素からのメタノール合成を、高分子の有機物の燃焼によって発生した二酸化炭素に適用することは記載されていない。
Heating at 500 to 600° C. is necessary to completely burn stable compounds among macromolecular organic substances, such as styrene-divinylbenzene, which is the main component of used ion-exchange resins. However, even if the method of contacting a semiconductor powder of Patent Document 1 is applied to a stable compound such as styrenedivinylbenzene, the effect of lowering the combustion temperature was not sufficiently obtained.
In addition, Patent Document 2 does not describe the application of methanol synthesis from carbon dioxide to carbon dioxide generated by combustion of high-molecular weight organic matter.
 上述した問題の解決のため、本発明においては、高分子の有機物を含む処理対象物の分解温度を低減し、高分子の有機物を含む処理対象物から一連の操作で燃料を製造することが可能な燃料製造方法、および、燃料製造システムを提供する。 In order to solve the above-mentioned problems, in the present invention, it is possible to reduce the decomposition temperature of an object to be treated that contains high-molecular-weight organic substances and to produce fuel from the object-to-be-treated that contains high-molecular organic substances through a series of operations. A fuel manufacturing method and a fuel manufacturing system are provided.
 本発明の燃料製造方法は、高分子の有機物を含む処理対象物から燃料を製造する方法であって、処理対象物に、酸化物半導体と、処理対象物に電子を供給する金属とを含む触媒を接触させる接触工程と、触媒に接触させた処理対象物を、水素および酸素を含む雰囲気中で加熱する加熱工程とを有する。 The fuel production method of the present invention is a method for producing fuel from an object to be treated that contains a high-molecular-weight organic substance, wherein the object to be treated contains an oxide semiconductor and a catalyst containing a metal that supplies electrons to the object to be treated. and a heating step of heating the object to be treated in contact with the catalyst in an atmosphere containing hydrogen and oxygen.
 また、本発明の燃料製造システムは、高分子の有機物を含む処理対象物から燃料を製造する。処理対象物と、酸化物半導体および処理対象物に電子を供給する金属を含む触媒とを収容する反応槽と、反応槽内を加熱する加熱装置と、反応槽内へ水素および酸素を含む気体を供給する供給部とを備える。そして、反応槽は、供給部から供給された水素および酸素を含む気体を、反応槽内に供給する送気口と、処理対象物の反応により生じた排ガスを反応槽内から排出する排気口とを有する。 In addition, the fuel production system of the present invention produces fuel from an object to be treated containing macromolecular organic matter. A reaction vessel containing an object to be treated, an oxide semiconductor, and a catalyst containing a metal that supplies electrons to the object to be treated, a heating device for heating the inside of the reaction vessel, and a gas containing hydrogen and oxygen into the reaction vessel. and a supply unit for supplying. The reaction tank has an air supply port for supplying the gas containing hydrogen and oxygen supplied from the supply unit into the reaction tank, and an exhaust port for discharging the exhaust gas generated by the reaction of the object to be treated from the reaction tank. have
 本発明によれば、高分子の有機物を含む処理対象物の分解温度を低減し、高分子の有機物を含む処理対象物から一連の操作で燃料を製造することが可能な燃料製造方法、および、燃料製造システムを提供することができる。 According to the present invention, a fuel production method capable of reducing the decomposition temperature of an object to be treated that contains high-molecular organic matter and producing fuel from the object to be treated that includes high-molecular organic matter through a series of operations; A fuel production system can be provided.
燃料製造方法の第1の実施の形態のフローチャートである。1 is a flow chart of a first embodiment of a fuel manufacturing method; 図1にフローチャートを示した燃料製造方法を適用した燃料製造システムの一形態の概略構成図である。1 is a schematic configuration diagram of one embodiment of a fuel production system to which the fuel production method of which the flow chart is shown in FIG. 1 is applied; FIG. 燃料製造方法の第2の実施の形態のフローチャートである。Fig. 2 is a flow chart of a second embodiment of a fuel manufacturing method; 図3にフローチャートを示した燃料製造方法を適用する燃料製造システムの一形態の概略構成図である。FIG. 4 is a schematic configuration diagram of one embodiment of a fuel production system that applies the fuel production method whose flow chart is shown in FIG. 3 ; 燃料製造方法の第3の実施の形態のフローチャートである。3 is a flow chart of a third embodiment of a fuel manufacturing method; 図5にフローチャートを示した燃料製造方法を適用する燃料製造システムの一形態の概略構成図である。FIG. 6 is a schematic configuration diagram of one embodiment of a fuel production system to which the fuel production method whose flow chart is shown in FIG. 5 is applied; プラントの排熱を利用した燃料製造システムの一形態の概略構成図である。1 is a schematic configuration diagram of one form of a fuel production system using exhaust heat from a plant; FIG.
 以下、本発明に係る実施の形態および実施例について、文章または図面を用いて説明する。ただし、以下の説明において示す構造、材料、その他具体的な各種の構成等は、ここで取り上げた実施の形態や実施例に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。また、本発明に直接関係のない要素は図示を省略する。 Hereinafter, embodiments and examples according to the present invention will be described using text or drawings. However, the structures, materials, and other specific configurations shown in the following description are not limited to the embodiments and examples taken up here, and can be appropriately combined and improved within the scope of not changing the gist. It is possible. Elements that are not directly related to the present invention are omitted from the drawing.
 本実施形態に係わる燃料製造方法は、高分子の有機物を含む処理対象物から燃料を製造する方法である。燃料製造方法は、酸化物半導体、および、燃料製造の反応機構において処理対象物に電子を供給する金属(以下、単に電子を供給する金属ともいう。)を含む触媒を、処理対象物に接触させる接触工程を有する。さらに、接触工程に用いる触媒として、酸化物半導体および電子を供給する金属とともに、電子を供給する金属とは異なる遷移金属を(以下、単に遷移金属ともいう。)含むことが好ましい。
 さらに、燃料製造方法は、上記触媒を接触させた処理対象物を、水素および酸素を含む雰囲気中で加熱する加熱工程を有する。
The fuel production method according to the present embodiment is a method for producing fuel from an object to be treated containing macromolecular organic matter. In the fuel production method, a catalyst containing an oxide semiconductor and a metal that supplies electrons to an object to be treated in the reaction mechanism of fuel production (hereinafter also simply referred to as a metal that supplies electrons) is brought into contact with the object to be treated. It has a contacting step. Further, the catalyst used in the contact step preferably contains a transition metal different from the electron-supplying metal (hereinafter also simply referred to as a transition metal) together with the oxide semiconductor and the electron-supplying metal.
Furthermore, the fuel production method has a heating step of heating the object to be treated with the catalyst in an atmosphere containing hydrogen and oxygen.
 また、本実施形態に係わる燃料製造システムは、高分子の有機物を含む処理対象物から燃料を製造する処理を行う。燃料製造システムは、処理対象物と酸化物半導体および電子を供給する金属を含む触媒とを収容する反応槽と、反応槽内を加熱する加熱装置と、反応槽内へ水素および酸素を含む気体を供給する供給部とを備える。さらに、反応槽は、供給部から供給された水素および酸素を含む気体を反応槽内に供給する送気口と、反応槽内から処理対象物の反応により生じた燃料ガスを排出する排気口と、燃料ガスを回収する回収設備とを有する。 In addition, the fuel manufacturing system according to the present embodiment performs processing for manufacturing fuel from a processing object containing high-molecular organic matter. The fuel production system includes a reaction vessel containing an object to be treated, an oxide semiconductor, and a catalyst containing a metal that supplies electrons, a heating device for heating the inside of the reaction vessel, and a gas containing hydrogen and oxygen into the reaction vessel. and a supply unit for supplying. Furthermore, the reaction tank has an air supply port for supplying the gas containing hydrogen and oxygen supplied from the supply unit into the reaction tank, and an exhaust port for discharging the fuel gas generated by the reaction of the object to be treated from the reaction tank. , and a recovery facility for recovering the fuel gas.
 高分子の有機物を含む処理対象物において、対象となる高分子の有機物としては、イオン交換樹脂や廃プラスチック等の各種の樹脂を含む廃棄物が挙げられる。
 イオン交換樹脂については、水浄化処理用のイオン交換樹脂や原子炉プラント用のイオン交換樹脂を適用することが可能である。また、高分子の有機物としては、イオン交換樹脂と他の樹脂とが混在したもの等のように、複数の種類の樹脂が混在したものであってもよい。
 対象となる廃棄物において、有機物以外の物質(例えば、高融点の無機物等)は、できる限り少ないことが望ましい。そのため、有機物以外の物質は、加熱工程を行う前に、有機物から分離しておくことが望ましい。しかし、分離ができなかった有機物以外の物質を含んだ状態で加熱工程を行い、その後に有機物以外の残渣を処分してもよい。
Among the objects to be treated containing macromolecular organic matter, examples of the target macromolecular organic matter include wastes containing various resins such as ion exchange resins and waste plastics.
As for the ion-exchange resin, it is possible to apply an ion-exchange resin for water purification treatment or an ion-exchange resin for nuclear reactor plants. In addition, the polymer organic material may be a mixture of different types of resins, such as a mixture of an ion exchange resin and other resins.
It is desirable that substances other than organic substances (for example, high-melting point inorganic substances, etc.) be as small as possible in the target waste. Therefore, it is desirable to separate substances other than organic substances from organic substances before performing the heating step. However, the heating step may be performed in a state containing substances other than organic substances that could not be separated, and then the residues other than organic substances may be disposed of.
 酸化物半導体としては、バンドギャップが2.0eV以上の酸化物半導体を使用することができる。例えば、TiO、V、Cr、NiO、Fe、Fe、ZnO、SrTiO等が挙げられる。酸化物半導体としては、これらの酸化物半導体から選ばれる1種以上を使用することができる。酸化物半導体を使用することにより、熱によって酸化物半導体内で励起される正孔が十分な酸化力を持ち、高分子を酸化分解できる。さらに、バンドギャップが2.0eV以上の酸化物半導体を使用することにより、熱によって酸化物半導体内で励起される電子が十分な還元力を持ち、触媒として用いる電子を供給する金属や遷移金属を還元することができる。 As the oxide semiconductor, an oxide semiconductor with a bandgap of 2.0 eV or more can be used. Examples include TiO 2 , V 2 O 5 , Cr 2 O 3 , NiO, Fe 2 O 3 , Fe 3 O 4 , ZnO, SrTiO 3 and the like. As the oxide semiconductor, one or more selected from these oxide semiconductors can be used. By using an oxide semiconductor, holes excited in the oxide semiconductor by heat have sufficient oxidizing power and can oxidatively decompose the polymer. Furthermore, by using an oxide semiconductor with a bandgap of 2.0 eV or more, electrons excited in the oxide semiconductor by heat have a sufficient reducing power, and a metal or a transition metal that supplies electrons used as a catalyst can be used. can be recovered.
 電子を供給する金属としては、Agを使用することが好ましい。触媒として処理対象物に電子を供給する金属は、処理対象物である高分子有機物に含まれる官能基に電子を供給する。これにより、上述の酸化物半導体による高分子の炭素鎖の酸化分解に加えて、電子を供給する金属による高分子の官能基の分解が促進される。この結果、処理対象物である高分子有機物の酸化分解を促進できる。
 また、電子を供給する金属は、高分子の分解により生成する一酸化炭素(CO)や二酸化炭素(CO)から酸素を奪い、メタノール(CHOH)やメタン(CH)の生成を促進する。
 なお、電子を供給する金属の量は、好ましくは、酸化物半導体の量に対して0.02-5wt.%、より好ましくは、酸化物半導体の量に対して0.1-1wt.%とする。
Ag is preferably used as the electron-supplying metal. A metal that supplies electrons to an object to be treated as a catalyst supplies electrons to a functional group contained in a polymer organic substance that is an object to be treated. As a result, in addition to the above-described oxidative decomposition of the carbon chain of the polymer by the oxide semiconductor, decomposition of the functional group of the polymer by the electron-supplying metal is promoted. As a result, the oxidative decomposition of the high-molecular-weight organic matter, which is the object to be treated, can be promoted.
In addition, metals that supply electrons take oxygen from carbon monoxide (CO) and carbon dioxide (CO 2 ) produced by decomposition of polymers, promoting the production of methanol (CH 3 OH) and methane (CH 4 ). do.
Note that the amount of the metal that supplies electrons is preferably 0.02-5 wt. %, more preferably 0.1-1 wt. %.
 また、電子を供給する金属と異なる遷移金属としては、Ti、V、Cr、Mn、鉄族元素(Fe、Co、Ni)、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、Cu、Auのうち選ばれる1種類以上を使用することが好ましい。中でも、電子を供給する金属としてAgを使用し、電子を供給する金属と異なる遷移金属としてCuを使用することがより好ましい。
 触媒に遷移金属を使用することにより、遷移金属元素が酸化物半導体内で励起された電子を受け取り、酸化物半導体内での電子と正孔の再結合を抑制し、正孔による高分子の酸化分解を促進することができる。また、遷移金属が電子を奪い去ることで電子と正孔の再結合をさらに抑制して、電子を供給する金属を単独で用いる場合よりも、酸化分解を更に促進する。
 また、電子を受け取って還元された遷移金属は、高分子の分解により生成する一酸化炭素(CO)や二酸化炭素(CO)から酸素を奪い、メタノール(CHOH)やメタン(CH)の生成を促進する。
 電子を供給する金属と異なる遷移金属の量は、好ましくは、酸化物半導体の量に対して0.02-5wt.%、より好ましくは、酸化物半導体の量に対して0.1-1wt.%とする。
Transition metals different from metals that supply electrons include Ti, V, Cr, Mn, iron group elements (Fe, Co, Ni), platinum group elements (Ru, Rh, Pd, Os, Ir, Pt), It is preferable to use one or more selected from Cu and Au. Among them, it is more preferable to use Ag as the electron-supplying metal and Cu as the transition metal different from the electron-supplying metal.
By using a transition metal as a catalyst, the transition metal element receives electrons excited in the oxide semiconductor, suppresses the recombination of electrons and holes in the oxide semiconductor, and oxidizes the polymer by the holes. It can accelerate decomposition. In addition, the transition metal removes electrons to further suppress the recombination of electrons and holes, thereby further promoting oxidative decomposition as compared with the case where a metal that supplies electrons is used alone.
In addition, the transition metal that has been reduced by receiving electrons takes oxygen from carbon monoxide (CO) and carbon dioxide (CO 2 ) generated by decomposition of the polymer, and converts it into methanol (CH 3 OH) and methane (CH 4 ). promote the generation of
The amount of the transition metal different from the electron-supplying metal is preferably 0.02-5 wt. %, more preferably 0.1-1 wt. %.
 水素を含む雰囲気としては、例えば、水蒸気、水素ガスを用いることができる。また、酸素を含む雰囲気としては、例えば、水蒸気、酸素ガス、空気を用いることができる。
 水素および酸素の供給量は、水素と酸素との合計のモル数が、処理対象物のモル数の2倍以上とすることが好ましく、特に、4倍以上とすることが好ましい。水素と酸素との合計量を処理対象物の2倍以上のモル比で供給することにより、処理対象物の有機物の分解速度が向上する。例えば、処理対象物に対し、酸素を2倍以上のモル比で供給し、水素を4倍以上のモル比で供給する。これにより、高分子有機物の酸化分解が促進される。また、一酸化炭素(CO)や二酸化炭素(CO)からメタノール(CHOH)やメタン(CH)の生成が促進される。
As the atmosphere containing hydrogen, for example, water vapor or hydrogen gas can be used. As the atmosphere containing oxygen, for example, water vapor, oxygen gas, or air can be used.
The amount of hydrogen and oxygen to be supplied is preferably such that the total number of moles of hydrogen and oxygen is two times or more, particularly preferably four times or more, the number of moles of the object to be treated. By supplying the total amount of hydrogen and oxygen at a molar ratio of at least twice the amount of the object to be treated, the rate of decomposition of the organic matter in the object to be treated is improved. For example, oxygen is supplied at a molar ratio of 2 times or more and hydrogen is supplied at a molar ratio of 4 times or more with respect to the object to be processed. This promotes oxidative decomposition of the high-molecular-weight organic matter. Moreover, the production of methanol (CH 3 OH) and methane (CH 4 ) from carbon monoxide (CO) and carbon dioxide (CO 2 ) is promoted.
 また、水素および酸素を含む混合雰囲気において酸素の供給量や比率を大きくすることにより、一酸化炭素(CO)や二酸化炭素(CO)の生成を促進し、処理対象物の分解速度が向上しやすい。
 さらに、水素および酸素を含む混合雰囲気において水素の供給量や比率を大きくすることにより、メタノール(CHOH)やメタン(CH)の生成を促進し、燃料の製造速度が向上しやすい。
In addition, by increasing the supply amount and ratio of oxygen in a mixed atmosphere containing hydrogen and oxygen, the generation of carbon monoxide (CO) and carbon dioxide (CO 2 ) is promoted, and the decomposition rate of the object to be treated is improved. Cheap.
Furthermore, by increasing the supply amount and ratio of hydrogen in a mixed atmosphere containing hydrogen and oxygen, the production of methanol (CH 3 OH) and methane (CH 4 ) is promoted, and the production rate of fuel tends to increase.
 処理対象物と触媒とを接触させる方法としては、例えば、酸化物半導体、電子を供給する金属、および、遷移金属の粉末を処理対象物と混合する方法が挙げられる。また、酸化物半導体、電子を供給する金属、および、遷移金属の粒子を処理対象物と混合する方法が挙げられる。さらに、酸化物半導体、電子を供給する金属、および、遷移金属の原料となる溶液を処理対象物に添加し、加熱により酸化物半導体、電子を供給する金属、および、遷移金属を析出させる方法が挙げられる。 Examples of methods for bringing the object to be treated and the catalyst into contact include a method of mixing powders of oxide semiconductors, electron-supplying metals, and transition metals with the object to be treated. Further, there is a method of mixing particles of an oxide semiconductor, a metal that supplies electrons, and a transition metal with an object to be treated. Furthermore, there is a method of adding a solution of raw materials for an oxide semiconductor, a metal that supplies electrons, and a transition metal to an object to be treated, and heating the object to precipitate the oxide semiconductor, the metal that supplies electrons, and the transition metal. mentioned.
 酸化物半導体、電子を供給する金属、および、遷移金属は、それぞれ別々の操作で処理対象物と接触させることも可能である。例えば、酸化物半導体の粉末を処理対象物と混合した後、電子を供給する金属と遷移金属と含む溶液(水溶液等)を添加する。そして、加熱により電子を供給する金属、および、遷移金属を析出させることで、触媒と処理対象物とを接触させることができる。
 また、酸化物半導体、電子を供給する金属、および、遷移金属を含む触媒の粉末や粒子を反応槽に入れて処理対象物と混合する方法の他に、上記の触媒を反応槽の壁面や撹拌翼に付着させて、付着させた触媒を処理対象物に接触させる方法が可能である。
The oxide semiconductor, the electron-supplying metal, and the transition metal can also be brought into contact with the object to be treated in separate operations. For example, after mixing an oxide semiconductor powder with an object to be processed, a solution (aqueous solution or the like) containing a metal that supplies electrons and a transition metal is added. By depositing the metal that supplies electrons by heating and the transition metal, the catalyst can be brought into contact with the object to be treated.
In addition to the method of placing catalyst powders and particles containing oxide semiconductors, electron-supplying metals, and transition metals in a reaction vessel and mixing them with the object to be treated, the above catalysts may be placed on the walls of the reaction vessel or stirred. A method is possible in which the catalyst is attached to a blade and the attached catalyst is brought into contact with the object to be treated.
 ここで、酸化物半導体、電子を供給する金属、および、遷移金属を含む触媒の作用は、以下のように推定される。なお、以下の説明は触媒作用の発現において発明者によって推測される反応機構であり、本実施形態による燃料製造方法が以下の反応機構に限定されるものではない。 Here, the action of a catalyst containing an oxide semiconductor, a metal that supplies electrons, and a transition metal is estimated as follows. In addition, the following explanation is a reaction mechanism assumed by the inventors in the expression of catalytic action, and the fuel production method according to the present embodiment is not limited to the following reaction mechanism.
 まず、酸化物半導体を加熱すると、酸化物半導体内部に熱励起によって正孔(h)と電子(e)が生じる。
 下記(1)式のように、熱励起によって生じたhは酸化力が強く、酸化物半導体と接触した高分子有機物の炭素鎖を酸化分解する。
 高分子有機物(炭素鎖)+h→CO+HO ・・・(1)
First, when the oxide semiconductor is heated, holes (h + ) and electrons (e ) are generated inside the oxide semiconductor by thermal excitation.
As shown in the following formula (1), h + generated by thermal excitation has a strong oxidizing power, and oxidatively decomposes the carbon chain of the polymer organic substance in contact with the oxide semiconductor.
Macromolecular organic substance (carbon chain) + h + →CO 2 +H 2 O (1)
 この際に、電子を供給する金属と遷移金属とが同時に存在することで、電子を供給する金属と遷移金属とが熱励起によって生じたeを受け取り、hとeの再結合を防ぎ、酸化分解反応を促進する。
 電子を供給する金属および遷移金属を金属Mとし、酸化物MOの状態で存在する場合を下記(2)式に表す。
 MO+e→MOn-δ ・・・(2)
At this time, since the electron-supplying metal and the transition metal are present at the same time, the electron-supplying metal and the transition metal receive e generated by the thermal excitation and prevent recombination of h + and e . , promotes oxidative decomposition reactions.
The following formula (2) represents the case where a metal M is a metal that supplies electrons and a transition metal, and the metal M exists in the state of an oxide MO n .
MO n + e → MO n-δ (2)
 熱励起によって生じたeを受け取った金属酸化物MOn-δは、下記(3)式のように高分子有機物の酸化分解で生じたCOやCOから酸素を奪い、活性な炭素Cを生じさせる。
 CO+MOn-δ→C+MO ・・・(3)
The metal oxide MO n-δ that receives e generated by thermal excitation deprives CO and CO 2 generated by the oxidative decomposition of the high-molecular-weight organic matter as shown in the following formula (3), and converts active carbon C give rise to
CO 2 +MO n−δ →C+MO n (3)
 上記(3)式で発生した活性な炭素は、下記(4)式のように水素酸素含有ガスと反応することで、CHOHやCHを生じる。
 C+水素酸素含有ガス(HO、H、O)→CHOH、CH ・・・(4)
The active carbon generated in the formula (3) above reacts with the hydrogen-oxygen-containing gas as in the formula (4) below to generate CH 3 OH and CH 4 .
C + hydrogen oxygen-containing gas (H 2 O, H 2 , O 2 )→CH 3 OH, CH 4 (4)
 一方で、高分子有機物には炭素鎖だけでなく官能基が存在している。この官能基の分解は、電子が供給されることで促進される。熱励起によって酸化物半導体から供給される電子は、上記(1)~(4)式において消費されてしまう。そこで、電子を供給する金属を加えることで、下記(5)式に示すように官能基の分解を促進することができる。ここで、官能基には硫化物が含まれていることが好ましい。
 高分子有機物(官能基)+e→SO+CO+HO ・・・(5)
 上記(5)式で発生したCOは上記(3)式に供給され、更に活性な炭素を生成することで上記(4)式に従ってCHOHやCHの燃料の生成が可能になる。
On the other hand, macromolecular organic substances contain not only carbon chains but also functional groups. The decomposition of this functional group is accelerated by the supply of electrons. Electrons supplied from the oxide semiconductor by thermal excitation are consumed in the above equations (1) to (4). Therefore, by adding a metal that supplies electrons, the decomposition of the functional group can be promoted as shown in the following formula (5). Here, the functional group preferably contains sulfide.
Polymeric organic substance (functional group) + e →SO 4 +CO 2 +H 2 O (5)
The CO 2 generated in the above formula (5) is supplied to the above formula (3), and by further producing active carbon, it becomes possible to produce fuels such as CH 3 OH and CH 4 according to the above formula (4).
 処理温度の低下の程度と発熱量は、触媒に用いる酸化物半導体、電子を供給する金属、および、遷移金属の種類や量によって変わるが、高分子の分解による発熱によって、従来よりも低い温度で処理を行うことができる。
 表1に、触媒の種類による反応温度の違いを示す。
The degree of reduction in the treatment temperature and the amount of heat generated vary depending on the type and amount of the oxide semiconductor used as the catalyst, the metal that supplies electrons, and the transition metal. can be processed.
Table 1 shows the difference in reaction temperature depending on the type of catalyst.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、例えば、TiOとAgとを含む触媒を用いた場合、250℃程度まで処理温度を低下させることができ、TiOやFeを単独で用いた場合に比べて、反応温度を大幅に低減できる。
 そして、処理温度を低下させることにより、加熱工程を500℃以下の温度、好ましくは200℃~500℃の範囲内の温度で行うことが可能になる。
As shown in Table 1, for example, when a catalyst containing TiO 2 and Ag is used, the treatment temperature can be lowered to about 250 ° C., which is higher than when TiO 2 or Fe 2 O 3 is used alone. Therefore, the reaction temperature can be greatly reduced.
By lowering the treatment temperature, it becomes possible to carry out the heating step at a temperature of 500°C or less, preferably in the range of 200°C to 500°C.
 また、有機物の分解速度を比較すると、酸化物半導体と電子を供給する金属を含む触媒、および、この触媒にさらに遷移金属を含む触媒を用いた場合、TiOやFeを単独で用いた場合に比べて約1/10の時間で分解できることが確認できる。
 つまり、上記の触媒を用いることにより、加熱工程の低温化だけでなく、処理対象物の分解速度が向上するため、さらに燃料の製造効率が向上する。
In addition, when comparing the decomposition rate of organic substances, when a catalyst containing an oxide semiconductor and a metal that supplies electrons is used, and when this catalyst further contains a transition metal, TiO 2 and Fe 2 O 3 are used alone. It can be confirmed that it can be decomposed in about 1/10 the time compared to the case where the
In other words, the use of the above catalyst not only lowers the temperature of the heating process, but also improves the decomposition rate of the object to be treated, thereby further improving the fuel production efficiency.
 上述の燃料製造方法によれば、高分子の有機物を含む処理対象物に酸化物半導体と電子を供給する金属を含む触媒を接触させ、さらに、触媒を接触させた処理対象物を、水素および酸素を含む雰囲気中で加熱する。
 これにより、高分子の有機物を含む処理対象物の分解温度を低減し、高分子の有機物を含む処理対象物から一連の操作で燃料を製造することができる。
 さらに、触媒として酸化物半導体と電子を供給する金属とに、さらに遷移金属を含む触媒を用いることにより、高分子の有機物を含む処理対象物の分解温度をさらに低減し、高分子の有機物を含む処理対象物から一連の操作で効率よく燃料を製造することができる。
According to the fuel production method described above, the object to be treated containing high-molecular weight organic matter is brought into contact with a catalyst containing an oxide semiconductor and a metal that supplies electrons. heating in an atmosphere containing
As a result, the decomposition temperature of the object to be treated containing high-molecular organic matter can be reduced, and fuel can be produced from the object to be treated including high-molecular organic matter through a series of operations.
Furthermore, by using a catalyst containing a transition metal in addition to the oxide semiconductor and the metal that supplies electrons as a catalyst, the decomposition temperature of the object to be treated containing high-molecular organic substances is further reduced, and the high-molecular organic substances are contained. Fuel can be efficiently produced from the object to be treated through a series of operations.
 上述の加熱工程において処理温度を、例えば280℃程度、特に250℃以下まで低下できることにより、発電所等の外部の設備の排熱等を加熱工程に利用できる。
 また、上述の加熱工程では、処理温度を低下できることにより、放射性核種の揮発温度未満の処理温度で、熱分解を達成できる。なお、放射性核種の揮発温度は、例えば、テクネチウム(Tc)で約300℃、セシウム(Cs)で約500℃、コバルト(Co)で1000℃超である。
 放射性核種の揮発温度未満の温度で高分子の有機物を含む処理対象物を熱分解できるため、特に、処理対象物が原子力プラント用のイオン交換樹脂等の放射性核種を含む樹脂で構成されている場合には、熱分解の際の放射性物質の飛散を抑制することができる。これにより、廃棄物を処理する設備の大規模化を防ぐことが可能になる。
In the heating process described above, the treatment temperature can be lowered to, for example, about 280° C., particularly 250° C. or less, so that exhaust heat from external equipment such as a power plant can be used in the heating process.
Moreover, in the above-described heating step, the treatment temperature can be lowered, so that thermal decomposition can be achieved at a treatment temperature lower than the volatilization temperature of the radionuclide. The volatilization temperature of radionuclides is, for example, about 300° C. for technetium (Tc), about 500° C. for cesium (Cs), and over 1000° C. for cobalt (Co).
Since it is possible to thermally decompose the object containing macromolecular organic matter at a temperature below the volatilization temperature of the radionuclide, especially when the object to be treated is composed of resin containing radionuclides such as ion exchange resin for nuclear power plants. can suppress scattering of radioactive substances during thermal decomposition. As a result, it becomes possible to prevent an increase in the scale of equipment for treating waste.
 また、燃料製造システムは、処理対象物と上記の触媒とを収容する反応槽と、反応槽内を加熱する加熱装置と、反応槽内へ水素および酸素を含む気体を供給する供給部とを備える。そして、反応槽は、供給部から供給された水素および酸素を含む気体を反応槽内に供給する送気口を有する。
 これにより、反応槽内で、酸化物半導体と電子を供給する金属とを含む触媒、または、これらに遷移金属を含む触媒を、処理対象物に接触させて、供給部からの水素および酸素を含む気体を送気口から反応槽内へ供給する。そして、加熱装置により反応槽内を加熱することにより、上述の燃料製造方法を実施することができる。
 また、反応槽は、反応槽内から燃料ガスを排出する排気口を有するため、処理対象物の反応で発生した燃料ガスを、排気口から排出して回収設備で回収することができる。
Further, the fuel production system includes a reaction tank containing the object to be treated and the catalyst, a heating device for heating the inside of the reaction tank, and a supply unit for supplying a gas containing hydrogen and oxygen to the reaction tank. . The reaction tank has an air supply port for supplying the gas containing hydrogen and oxygen supplied from the supply unit into the reaction tank.
As a result, in the reaction tank, a catalyst containing an oxide semiconductor and a metal that supplies electrons, or a catalyst containing a transition metal in these, is brought into contact with the object to be treated, so that hydrogen and oxygen from the supply part are included. A gas is supplied into the reactor from the air supply port. By heating the inside of the reaction vessel with a heating device, the above fuel production method can be carried out.
Further, since the reaction tank has an exhaust port for discharging fuel gas from the inside of the reaction tank, the fuel gas generated by the reaction of the object to be treated can be discharged from the exhaust port and recovered by the recovery equipment.
[第1の実施の形態]
 次に、上述の燃料製造方法、および、燃料製造システムの第1の実施の形態について説明する。
 燃料製造方法の第1の実施の形態のフローチャートを、図1に示す。
 図1に示すように、まず、高分子の有機物を含む処理対象物101、および、酸化物半導体と電子を供給する金属とを含む触媒102を用意する。触媒は、酸化物半導体と電子を供給する金属とともに、遷移金属を含んでいることが好ましい。
 触媒102に用いる酸化物半導体としては、前述した酸化物半導体(例えば、TiO等)を使用する。また、触媒102に用いる電子を供給する金属としてはAg等を含む溶液(水溶液やその他の溶液)を使用する。触媒102として遷移金属も用いる場合には、前述した遷移金属(例えば、Cu、Fe等)を含む溶液(水溶液やその他の溶液)を使用する。
[First embodiment]
Next, a first embodiment of the fuel production method and fuel production system described above will be described.
A flow chart of a first embodiment of a fuel manufacturing method is shown in FIG.
As shown in FIG. 1, first, an object to be treated 101 containing a polymeric organic substance and a catalyst 102 containing an oxide semiconductor and a metal that supplies electrons are prepared. The catalyst preferably contains a transition metal in addition to the oxide semiconductor and the electron-supplying metal.
As the oxide semiconductor used for the catalyst 102, the above-described oxide semiconductor (for example, TiO 2 or the like) is used. A solution (aqueous solution or other solution) containing Ag or the like is used as the metal for supplying electrons used in the catalyst 102 . When a transition metal is also used as the catalyst 102, a solution (aqueous solution or other solution) containing the transition metal (for example, Cu, Fe, etc.) is used.
 そして、ステップS1において、処理対象物101に触媒102を供給して、処理対象物101と触媒102を混合することにより、処理対象物101に触媒102を接触させる。
 次に、ステップS2において、触媒102と接触させた処理対象物101に対して、雰囲気ガス103を供給する。
 雰囲気ガス103としては、前述した水素および酸素を含むガス(例えば、水蒸気と水素と酸素の混合ガス)を使用する。
 これにより、触媒102と接触させた処理対象物101は雰囲気ガス103中に置かれる。
Then, in step S1, the catalyst 102 is brought into contact with the processing object 101 by supplying the processing object 101 with the catalyst 102 and mixing the processing object 101 and the catalyst 102 together.
Next, in step S2, the atmosphere gas 103 is supplied to the object 101 to be processed which is brought into contact with the catalyst 102 .
As the atmosphere gas 103, the above-described gas containing hydrogen and oxygen (for example, a mixed gas of water vapor, hydrogen, and oxygen) is used.
As a result, the object to be treated 101 in contact with the catalyst 102 is placed in the atmospheric gas 103 .
 次に、ステップS3において、雰囲気ガス103中にある触媒102と接触させた処理対象物101に対して、加熱を行う。
 これにより、処理対象物101が、固体である残渣104と、燃料となる成分(CHOH、CH)を含む気体である排ガス105とに分解される。
Next, in step S3, the processing object 101 brought into contact with the catalyst 102 in the atmosphere gas 103 is heated.
As a result, the object 101 to be treated is decomposed into a solid residue 104 and a gaseous exhaust gas 105 containing fuel components (CH 3 OH, CH 4 ).
 本実施の形態の燃料製造方法によれば、処理対象物101に触媒102を接触させて、その後、雰囲気ガス103中において処理対象物101を加熱する。これにより、高分子の有機物を含む処理対象物の分解温度を低減し、高分子の有機物を含む処理対象物から一連の操作で燃料を製造することができる。 According to the fuel production method of the present embodiment, the object 101 to be treated is brought into contact with the catalyst 102 , and then the object 101 to be treated is heated in the atmosphere gas 103 . As a result, the decomposition temperature of the object to be treated containing high-molecular organic matter can be reduced, and fuel can be produced from the object to be treated including high-molecular organic matter through a series of operations.
(燃料製造システム)
 次に、図1にフローチャートを示した燃料製造方法を適用する、燃料製造システムの一形態の概略構成図を、図2に示す。
 図2に示す燃料製造システムは、反応槽6と加熱装置4と回収装置8とを備え、反応槽6は送気口5と排気口7を有している。
(Fuel production system)
Next, FIG. 2 shows a schematic configuration diagram of one form of a fuel production system to which the fuel production method whose flow chart is shown in FIG. 1 is applied.
The fuel production system shown in FIG. 2 includes a reaction tank 6, a heating device 4, and a recovery device 8. The reaction tank 6 has an air supply port 5 and an exhaust port 7. As shown in FIG.
 反応槽6は、処理対象物(樹脂等の高分子の有機物を含む)2と触媒1とを収容する。
 送気口5は、反応槽6の下面に設けられ、排気口7は、反応槽6の上面に設けられている。
 また、送気口5には、水素および酸素を含む気体を供給する供給部3が接続する。供給部3の具体的な構成としては、例えば、水蒸気を発生させる気化器や、ガスボンベ(水素ボンベ、酸素ボンベ等)や、空気を供給するコンプレッサーや、ガスの精製装置等が挙げられる。そして、送気口5は、供給部3から供給された水素および酸素を含む気体を、反応槽6内へ供給する。
 加熱装置4は、供給部3から供給された水素および酸素を含む気体を加熱することで、反応槽6内を加熱する。これにより、加熱装置4は、反応槽6内に収容された処理対象物2を加熱し、処理対象物2を雰囲気ガスと反応させて分解させる。
The reaction tank 6 accommodates an object to be treated (including high-molecular organic matter such as resin) 2 and a catalyst 1 .
The air supply port 5 is provided on the lower surface of the reaction vessel 6 , and the exhaust port 7 is provided on the upper surface of the reaction vessel 6 .
A supply unit 3 for supplying gas containing hydrogen and oxygen is connected to the air supply port 5 . Specific configurations of the supply unit 3 include, for example, a vaporizer for generating steam, a gas cylinder (hydrogen cylinder, oxygen cylinder, etc.), a compressor for supplying air, a gas purification device, and the like. Then, the gas supply port 5 supplies the gas containing hydrogen and oxygen supplied from the supply unit 3 into the reaction vessel 6 .
The heating device 4 heats the inside of the reaction tank 6 by heating the gas containing hydrogen and oxygen supplied from the supply unit 3 . Thereby, the heating device 4 heats the processing object 2 accommodated in the reaction tank 6, and causes the processing object 2 to react with the atmospheric gas and decompose.
 そして、図2に示す燃料製造システムでは、以下に説明するように、燃料を製造することができる。
 まず、図2に示すように、反応槽6内に、予め酸化物半導体と電子を供給する金属を含む触媒1、または、これらと共に遷移金属を含む触媒1と、高分子の有機物を含む処理対象物2を収容する。
 次に、この状態で、反応槽6内の加熱を行う。反応槽6内の加熱は、送気口5から反応槽6内へ水素および酸素を含む気体を供給しながら、加熱装置4により供給する気体を加熱することで行う。これにより、処理対象物2が水素および酸素と反応して分解され、残渣と、燃料となる成分(CHOH、CH)を含む気体である排ガスとが発生する。
In the fuel production system shown in FIG. 2, fuel can be produced as described below.
First, as shown in FIG. 2, a catalyst 1 containing an oxide semiconductor and a metal that supplies electrons, or a catalyst 1 containing a transition metal together with these, and an object to be treated containing a high-molecular organic substance are placed in a reaction vessel 6 in advance. It contains thing 2.
Next, in this state, the inside of the reaction vessel 6 is heated. The inside of the reaction tank 6 is heated by heating the supplied gas with the heating device 4 while supplying the gas containing hydrogen and oxygen into the reaction tank 6 from the air supply port 5 . As a result, the object to be treated 2 is decomposed by reacting with hydrogen and oxygen, and a residue and an exhaust gas, which is a gas containing fuel components (CH 3 OH, CH 4 ), are generated.
 加熱の際に、処理対象物2の反応により生じた排ガスは、排気口7から排出される。
 排気口7から排出された、燃料となる成分を含む気体である排ガスは、回収装置8により回収される。
 加熱が終了したら、反応槽6内に残る残渣(および触媒1)を除去する。
 燃料製造システムでは、以上のように燃料を製造することができる。
Exhaust gas generated by the reaction of the object 2 during heating is discharged from the exhaust port 7 .
Exhaust gas, which is a gas containing fuel components, discharged from the exhaust port 7 is recovered by a recovery device 8 .
After heating is completed, the residue (and catalyst 1) remaining in the reactor 6 is removed.
The fuel production system can produce fuel as described above.
 また、次回の燃料製造処理では、反応槽6内に、酸化物半導体と電子を供給する金属を含む触媒1、または、これらと共に遷移金属を含む触媒1と、高分子の有機物を含む処理対象物2を再び収容して、加熱を行う。 In the next fuel production process, a catalyst 1 containing an oxide semiconductor and a metal that supplies electrons, or a catalyst 1 containing a transition metal together with these, and an object to be processed containing a high-molecular organic substance are placed in the reaction tank 6. 2 is housed again and heated.
 図2に示す燃料製造システムによれば、反応槽6内に、予め触媒1と、高分子の有機物を含む処理対象物2を収容することで、触媒1と処理対象物2とを接触させることができる。
 また、燃料製造システムは、送気口5を備えているため、送気口5から水素および酸素を含む気体を供給し、反応槽6内に収容した処理対象物2を水素および酸素と反応させることができる。
 さらに、燃料製造システムは、加熱装置4を備えているため、反応槽6内に収容した、処理対象物2を加熱して、分解することができる。
According to the fuel production system shown in FIG. 2, the catalyst 1 and the object 2 to be treated containing high-molecular organic matter are placed in advance in the reaction tank 6, so that the catalyst 1 and the object 2 to be treated are brought into contact with each other. can be done.
In addition, since the fuel production system is provided with an air supply port 5, a gas containing hydrogen and oxygen is supplied from the air supply port 5, and the object 2 to be processed contained in the reaction tank 6 is caused to react with hydrogen and oxygen. be able to.
Furthermore, since the fuel production system is provided with the heating device 4, it is possible to heat and decompose the object to be treated 2 contained in the reaction tank 6. FIG.
 また、燃料製造システムは、排気口7および回収装置8を備えているため、加熱によった発生した排ガスを排気口7から反応槽6の外部に排出し、回収装置8で回収することができる。
 そして、反応槽6において、水素および酸素を含む雰囲気下で、上記の触媒1と、高分子の有機物を含む処理対象物2とを接触させた状態で加熱装置4により加熱する。これにより、高分子の有機物を含む処理対象物2の分解温度を低減し、高分子の有機物を含む処理対象物2から一連の操作で燃料を製造することができる。
In addition, since the fuel production system includes the exhaust port 7 and the recovery device 8 , the exhaust gas generated by heating can be discharged from the exhaust port 7 to the outside of the reaction tank 6 and recovered by the recovery device 8 . .
Then, in the reaction tank 6 , the catalyst 1 and the object 2 to be treated containing high-molecular-weight organic substances are heated by the heating device 4 while being in contact with each other in an atmosphere containing hydrogen and oxygen. As a result, the decomposition temperature of the processing object 2 containing high-molecular organic matter can be reduced, and fuel can be produced from the processing object 2 containing high-molecular organic matter through a series of operations.
[第2の実施の形態]
 次に、上述の燃料製造方法、および、燃料製造システムの第2の実施の形態について説明する。
 燃料製造方法の第2の実施の形態のフローチャートを、図3に示す。
 図3に示すように、第2の実施の形態は、図1に示した第1の実施の形態の燃料製造方法に対して、ステップS3の加熱工程で生成した残渣104を分離して、触媒102を回収している点が異なる。なお、第1の実施の形態と同様の構成については、重複説明を省略する。
[Second embodiment]
Next, a second embodiment of the fuel production method and fuel production system described above will be described.
A flow chart of a second embodiment of the fuel manufacturing method is shown in FIG.
As shown in FIG. 3, in the second embodiment, the residue 104 generated in the heating step of step S3 is separated from the fuel production method of the first embodiment shown in FIG. 102 is recovered. It should be noted that redundant description of the same configuration as in the first embodiment will be omitted.
 具体的には、図3に示すように、ステップS4の残渣104を固体分離する工程(固体分離工程)を行い、不燃廃棄物106と触媒107とに分離している。そして、ステップS4の固体分離工程で得られた触媒107を回収して、最初に供給する触媒102と同様に、処理対象物101に供給する。
 不燃廃棄物106は、処分する。
Specifically, as shown in FIG. 3, a step (solid separation step) of solid separation of the residue 104 in step S4 is performed to separate the incombustible waste 106 and the catalyst 107 . Then, the catalyst 107 obtained in the solid separation step of step S4 is recovered and supplied to the object 101 to be treated in the same manner as the catalyst 102 supplied first.
The non-combustible waste 106 is disposed of.
 ステップS4の残渣104を固体分離する工程を行うために、粒子形状の触媒107および触媒102を使用する。そして、触媒107および触媒102の粒子よりも小さい開口を有する篩等を使用して、ステップS4の残渣104を固体分離する工程を行う。 The particle-shaped catalyst 107 and the catalyst 102 are used in order to perform the step of solid separation of the residue 104 in step S4. Then, a sieve or the like having openings smaller than the particles of the catalyst 107 and the catalyst 102 is used to separate the residue 104 in step S4 into solids.
 本実施の形態の燃料製造方法によれば、第1の実施の形態の燃料製造方法と同様に、処理対象物101に触媒102を接触させて、水素および酸素を含む雰囲気中で処理対象物101を加熱する。これにより、従来の燃焼方法と比較して大幅に低い温度で、処理対象物101を分解することができ、さらに、高分子の有機物を含む処理対象物から一連の操作で燃料を製造することができる。 According to the fuel production method of the present embodiment, as in the fuel production method of the first embodiment, the catalyst 102 is brought into contact with the object 101 to be treated, and the object 101 is heated in an atmosphere containing hydrogen and oxygen. to heat. This makes it possible to decompose the object 101 to be treated at a significantly lower temperature than in the conventional combustion method, and to produce fuel from the object to be treated including macromolecular organic matter through a series of operations. can.
 さらに、本実施の形態の燃料製造方法によれば、ステップS4において残渣104を固体分離する工程を行い、不燃廃棄物106と触媒107とに分離し、得られた触媒107を回収して、処理対象物101に供給する。このように、触媒107を回収して再利用するため、触媒102の使用量を低減することができる。 Furthermore, according to the fuel production method of the present embodiment, the step of separating the residue 104 into solids in step S4 is performed to separate the incombustible waste 106 and the catalyst 107, and the obtained catalyst 107 is recovered and treated. The object 101 is supplied. Since the catalyst 107 is recovered and reused in this manner, the amount of the catalyst 102 used can be reduced.
(燃料製造システム)
 また、図3にフローチャートを示した燃料製造方法を適用した、燃料製造システムの一形態の概略構成図を、図4に示す。
 図4に示す燃料製造システムは、図2に示した燃料製造システムと比較すると、さらに、撹拌機9、撹拌翼10、投入口11および排出口12が設けられている点が異なる。
(Fuel production system)
FIG. 4 shows a schematic configuration diagram of one embodiment of a fuel production system to which the fuel production method whose flow chart is shown in FIG. 3 is applied.
The fuel production system shown in FIG. 4 further differs from the fuel production system shown in FIG. 2 in that a stirrer 9, a stirring blade 10, an inlet 11 and an outlet 12 are provided.
 撹拌翼10は、反応槽6内に設けられている。撹拌翼10は、撹拌機9を動力源とする軸の回転により、触媒1と処理対象物2とを撹拌する。
 排出口12は、反応槽6内の下部に設けられている。排出口12は、触媒1の粒子より小さい開口の篩等の分離設備を有する。この篩等の分離設備によって、触媒1と、処理対象物が分解した不燃廃棄物とを分離することができる。不燃廃棄物は、分離設備の開口を通過して、排出口12から排出される。
A stirring blade 10 is provided in the reaction vessel 6 . The agitating blade 10 agitates the catalyst 1 and the object 2 to be treated by rotating a shaft powered by the agitator 9 .
The discharge port 12 is provided at the bottom inside the reaction tank 6 . The outlet 12 has separation equipment such as a sieve with openings smaller than the particles of the catalyst 1 . Separation equipment such as this sieve can separate the catalyst 1 from the incombustible wastes in which the objects to be treated are decomposed. The non-combustible waste passes through openings in the separation equipment and is discharged from outlet 12 .
 投入口11は、反応槽6の上面に設けられている。不燃廃棄物が排出口12から排出されるので、投入口11から新たな処理対象物2を追加投入して、また処理対象物2を加熱して分解することができる。
 その他の構成は、図2に示した燃料製造システムと同様のため、重複説明を省略する。
The inlet 11 is provided on the upper surface of the reaction vessel 6 . Since the incombustible waste is discharged from the discharge port 12, a new processing object 2 can be added from the input port 11, and the processing object 2 can be heated and decomposed.
Since other configurations are the same as those of the fuel production system shown in FIG. 2, redundant description will be omitted.
 図4に示す燃料製造システムによれば、反応槽6内の下部の排出口12に、触媒1の粒子より小さい開口を有する分離設備を備えることにより、処理対象物2が分解した不燃廃棄物を触媒1から分離して排出することができる。
 また、反応槽6の上面に投入口11が設けられていることにより、投入口11から新たな処理対象物2を追加投入することができる。
 さらに、反応槽6内に撹拌翼10が設けられていることにより、撹拌翼10で撹拌することで、投入口11から追加投入した処理対象物2と、触媒1との接触を維持することができる。
According to the fuel production system shown in FIG. 4, by providing a separation facility having an opening smaller than the particles of the catalyst 1 at the discharge port 12 at the bottom of the reaction tank 6, the incombustible waste generated by the decomposition of the object 2 to be treated is separated. It can be discharged separately from the catalyst 1 .
Further, since the inlet 11 is provided on the upper surface of the reaction tank 6 , a new processing object 2 can be additionally introduced through the inlet 11 .
Furthermore, since the stirring blades 10 are provided in the reaction vessel 6, by stirring with the stirring blades 10, it is possible to maintain the contact between the object to be treated 2 added from the inlet 11 and the catalyst 1. can.
 図4に示す燃料製造システムによれば、上述したように、処理対象物2を追加投入して、処理対象物2と触媒1との接触を維持することができ、処理対象物2を連続して処理できる。そして、上記の燃料製造システムは、排出口12の分離設備によって、触媒1を不燃廃棄物と分離することができ、処理対象物2を連続して処理する間、触媒1を継続して利用できる。このため、触媒1の使用量を低減することができる。 According to the fuel production system shown in FIG. 4, as described above, the object 2 to be treated can be added and the contact between the object 2 to be treated and the catalyst 1 can be maintained, and the object 2 to be treated can be continuously fed. can be processed. In the above fuel production system, the catalyst 1 can be separated from the non-combustible waste by the separation equipment of the discharge port 12, and the catalyst 1 can be continuously used while the object 2 to be treated is continuously treated. . Therefore, the amount of catalyst 1 used can be reduced.
(変形例)
 なお、反応槽6において触媒1と処理対象物2とを混合し接触させる代わりに、反応槽6の内壁や撹拌翼10に触媒を付与して、触媒を継続して使用することも可能である。
 この触媒を付与する場合には、摩耗等により触媒が減少したら、反応槽6の内壁や撹拌翼10に触媒を再度付与して補充する。
 また、この触媒を付与する構成は、図2の燃料製造システムに適用してバッチ式で処理することも、図4の燃料製造システムに適用して連続式で処理することも可能である。
(Modification)
Instead of mixing and contacting the catalyst 1 and the object to be treated 2 in the reaction tank 6, the catalyst can be applied to the inner wall of the reaction tank 6 or the stirring blade 10 and the catalyst can be used continuously. .
In the case of applying this catalyst, if the catalyst decreases due to abrasion or the like, the catalyst is applied again to the inner wall of the reaction tank 6 and the stirring blade 10 to replenish the catalyst.
Moreover, this configuration for imparting the catalyst can be applied to the fuel production system of FIG. 2 for batch processing, or applied to the fuel production system of FIG. 4 for continuous processing.
[第3の実施の形態]
 次に、上述の燃料製造方法、および、燃料製造システムの第3の実施の形態について説明する。
 燃料製造方法の第3の実施の形態のフローチャートを、図5に示す。
 図5に示すように、第3の実施の形態は、図1に示した第1の実施の形態の燃料製造方法に対して、ステップS3の加熱工程で生成した排ガス105を分離している。なお、第1の実施の形態と同様の構成については、重複説明を省略する。
[Third Embodiment]
Next, a third embodiment of the fuel production method and fuel production system described above will be described.
A flow chart of a third embodiment of the fuel production method is shown in FIG.
As shown in FIG. 5, the third embodiment separates the exhaust gas 105 generated in the heating process of step S3 in contrast to the fuel production method of the first embodiment shown in FIG. It should be noted that redundant description of the same configuration as in the first embodiment will be omitted.
 具体的には、図5に示すように、ステップS5の排ガス105を気体分離する工程(気体分離工程)を行い、排ガス105を燃料ガス109(CHOH、CH)と非燃料ガス110(HO、CO、SO、NO)とに分離している。
 気体分離工程では、燃料ガス109を回収する際に混入する不純物を低減するため、排ガス105中に含まれる非燃料ガス110を取り除く。例えば、吸湿材を通してHOを分離し、さらに、アルカリトラップを通してCO、SO、NOを取り除く。これにより、回収する燃料ガス中の非燃料ガス濃度を低減する。
Specifically, as shown in FIG. 5, a step (gas separation step) of gas separation of the exhaust gas 105 in step S5 is performed, and the exhaust gas 105 is separated into the fuel gas 109 (CH 4 OH, CH 4 ) and the non-fuel gas 110 ( H 2 O, CO 2 , SO x , NO x ).
In the gas separation step, the non-fuel gas 110 contained in the exhaust gas 105 is removed in order to reduce the impurities mixed in when the fuel gas 109 is recovered. For example, H2O is separated through a hygroscopic material, and CO2 , SOx , NOx are removed through an alkali trap. This reduces the non-fuel gas concentration in the recovered fuel gas.
 本実施の形態の燃料製造方法によれば、第1の実施の形態の燃料製造方法と同様に、処理対象物101に触媒102を接触させて、水素および酸素を含む雰囲気中で処理対象物101を加熱する。これにより、従来の燃焼方法と比較して大幅に低い温度で、処理対象物101を分解することができ、さらに、高分子の有機物を含む処理対象物から一連の操作で燃料を製造することができる。
 さらに、本実施の形態の燃料製造方法によれば、ステップS5の排ガス105を気体分離する工程により、生成した排ガス105を燃料ガス109と非燃料ガス110とに分離し、回収する燃料ガスの純度を高めることができる。
According to the fuel production method of the present embodiment, as in the fuel production method of the first embodiment, the catalyst 102 is brought into contact with the object 101 to be treated, and the object 101 is heated in an atmosphere containing hydrogen and oxygen. to heat. This makes it possible to decompose the object 101 to be treated at a significantly lower temperature than in the conventional combustion method, and to produce fuel from the object to be treated including macromolecular organic matter through a series of operations. can.
Furthermore, according to the fuel production method of the present embodiment, the generated exhaust gas 105 is separated into the fuel gas 109 and the non-fuel gas 110 by the step of gas separation of the exhaust gas 105 in step S5, and the purity of the recovered fuel gas is can increase
(燃料製造システム)
 また、図5にフローチャートを示した燃料製造方法を適用した、燃料製造システムの一形態の概略構成図を、図6に示す。
 図6に示す燃料製造システムは、図2に示した燃料製造システムと比較すると、さらに、反応槽6の上面の排気口7に接続されたトラップ13が設けられている点が異なる。
(Fuel production system)
FIG. 6 shows a schematic configuration diagram of one embodiment of a fuel production system to which the fuel production method whose flow chart is shown in FIG. 5 is applied.
The fuel production system shown in FIG. 6 further differs from the fuel production system shown in FIG. 2 in that a trap 13 connected to the exhaust port 7 on the upper surface of the reaction vessel 6 is provided.
 トラップ13は、反応槽6の排気口7と回収装置8との間に配置されている。トラップ13は、内部に吸湿剤を有し、排気口7からの排ガスのうち、水蒸気(HO)を吸湿剤と反応させる。これにより、トラップ13は、排ガスから水蒸気を除去し、水蒸気の外部への排出を抑制する。
 また、トラップ13は、内部にアルカリ化合物を有し、排気口7からの排ガスのうち、酸性ガス(CO、SO、NO)をアルカリ化合物と反応させる。これにより、トラップ13は、酸性ガスを塩や塩の水溶液等に変えて、気体での外部への排出を抑制する。 反応により消失した分の吸湿剤やアルカリ化合物は、必要に応じてトラップ13に補充される。
 その他の構成は、図2に示した燃料製造システムと同様であるので、重複説明を省略する。
The trap 13 is arranged between the exhaust port 7 of the reaction vessel 6 and the recovery device 8 . The trap 13 has a hygroscopic agent inside, and causes water vapor (H 2 O) in the exhaust gas from the exhaust port 7 to react with the hygroscopic agent. As a result, the trap 13 removes water vapor from the exhaust gas and suppresses the discharge of the water vapor to the outside.
Moreover, the trap 13 has an alkaline compound inside, and causes acid gases (CO 2 , SO x , NO x ) in the exhaust gas from the exhaust port 7 to react with the alkaline compound. As a result, the trap 13 converts the acid gas into a salt or an aqueous salt solution, etc., and suppresses the gas from being discharged to the outside. The hygroscopic agent and alkaline compound that have disappeared due to the reaction are replenished to the trap 13 as necessary.
Since other configurations are the same as those of the fuel production system shown in FIG. 2, redundant description will be omitted.
 図6に示す燃料製造システムによれば、反応槽6の上面の排気口7に接続されたトラップ13が設けられていることにより、排ガスのうちの水蒸気や酸性ガスの気体としての外部への排出を抑制することができる。 According to the fuel production system shown in FIG. 6, the trap 13 connected to the exhaust port 7 on the upper surface of the reaction tank 6 is provided, so that the water vapor and acid gas in the exhaust gas are discharged to the outside as gas. can be suppressed.
[第4の実施の形態]
 次に、燃料製造方法の第4の実施の形態について、燃料製造システムの一形態の概略構成図を、図7に示す。図7に示す燃料製造システムは、プラントの排熱を利用する場合の燃料製造システムの一形態の概略構成を示している。
[Fourth embodiment]
Next, FIG. 7 shows a schematic configuration diagram of one mode of a fuel production system for a fourth embodiment of the fuel production method. The fuel production system shown in FIG. 7 shows a schematic configuration of one form of the fuel production system in the case of utilizing the waste heat of the plant.
 図7に示す燃料製造システムは、図2、図4および図6に示した燃料製造システムと比較すると、さらに熱交換器14,15を備えている。また、図7に示す燃料製造システムは、プラント16に接続されている。 The fuel production system shown in FIG. 7 further includes heat exchangers 14 and 15 as compared with the fuel production systems shown in FIGS. Also, the fuel production system shown in FIG. 7 is connected to the plant 16 .
 熱交換器14は、反応槽6の上面の排気口7に接続されている。また、熱交換器14は、反応槽6の下面の送気口5に接続されている。
 熱交換器14には、図中下側から、水素および酸素を含む気体が供給される。水素および酸素を含む気体は、熱交換器14を経て、反応槽6の下面の送気口5に供給される。
 また、熱交換器14には、排気口7から排ガスが供給される。排ガスは、熱交換器14を通り、熱交換器14から図中右側に排出され、トラップ13を通過して回収装置8によって回収される。
 熱交換器14は、水素および酸素を含む気体の流路と、排ガスの流路とが、互いのガスが混ざらないように別々の管で構成されている。また、熱交換器14は、排ガスと水素および酸素を含む気体との間で熱交換を行えるように、2つの管の接触面積が大きくなるように構成される。
The heat exchanger 14 is connected to the exhaust port 7 on the upper surface of the reaction vessel 6 . Also, the heat exchanger 14 is connected to the air supply port 5 on the bottom surface of the reaction vessel 6 .
A gas containing hydrogen and oxygen is supplied to the heat exchanger 14 from the lower side in the figure. A gas containing hydrogen and oxygen is supplied to the air supply port 5 on the bottom surface of the reaction tank 6 through the heat exchanger 14 .
Exhaust gas is supplied to the heat exchanger 14 from the exhaust port 7 . The exhaust gas passes through the heat exchanger 14 , is discharged from the heat exchanger 14 to the right side in the figure, passes through the trap 13 and is recovered by the recovery device 8 .
The heat exchanger 14 is composed of separate pipes so that the gas flow path containing hydrogen and oxygen and the exhaust gas flow path do not mix with each other. Also, the heat exchanger 14 is configured such that the contact area between the two tubes is large so that heat can be exchanged between the exhaust gas and the gas containing hydrogen and oxygen.
 熱交換器15は、熱交換器14よりも上流側(供給部3側)で、反応槽6の下面の送気口5に接続されている。また、熱交換器15は、燃料製造システムの外部のプラント16に接続されている。
 熱交換器15には、図中下側から、水素および酸素を含む気体が供給される。水素および酸素を含む気体は、熱交換器15を経て、反応槽6の下面の送気口5に供給される。
 また、熱交換器15は、プラント16の高温排気装置18に接続されて、高温排気装置18から熱媒体として高温の排気が熱交換器15に供給される。高温の排気は、熱交換器15を通り、燃料製造システムの外部に排出される。
 熱交換器15は、水素および酸素を含む気体の流路と、プラント16等の外部から供給される熱媒体の流路とが、互いに混ざらないように別々の管で構成されている。また、熱交換器15は、高温の熱媒体と水素および酸素を含む気体との間で熱交換を行えるように、2つの管の接触面積が大きくなるように構成される。
The heat exchanger 15 is connected to the air supply port 5 on the lower surface of the reaction vessel 6 on the upstream side (supply section 3 side) of the heat exchanger 14 . The heat exchanger 15 is also connected to a plant 16 outside the fuel production system.
A gas containing hydrogen and oxygen is supplied to the heat exchanger 15 from the lower side in the drawing. A gas containing hydrogen and oxygen is supplied to the air supply port 5 on the bottom surface of the reaction tank 6 through the heat exchanger 15 .
The heat exchanger 15 is also connected to a high-temperature exhaust system 18 of the plant 16 , and high-temperature exhaust gas is supplied from the high-temperature exhaust system 18 to the heat exchanger 15 as a heat medium. The high temperature exhaust passes through the heat exchanger 15 and is discharged to the outside of the fuel production system.
The heat exchanger 15 is composed of separate tubes so that the gas flow path containing hydrogen and oxygen and the heat medium flow path supplied from the outside of the plant 16 or the like do not mix with each other. Also, the heat exchanger 15 is configured such that the two tubes have a large contact area so that heat can be exchanged between the high-temperature heat medium and the gas containing hydrogen and oxygen.
 また、燃料製造システムは、送気口5が、水素および酸素を含む気体を供給する供給部3と、プラント16の蒸気排出装置17とに接続されている。供給部3とプラント16の蒸気排出装置17とは、熱交換器14および熱交換器15よりも上流側で合流して送気口5に接続される。
 蒸気排出装置17は、プラント16で発生した予熱による水蒸気を、水素および酸素を含む気体の一部として送気口5から反応槽6内に供給する。
 このように燃料製造システムの供給部3は、上述のガスボンベ、コンプレッサーおよびガスの精製装置等だけでなく、燃料製造システムの外部から導入される気体を、水素および酸素を含む気体の一部として反応槽6内に供給することができる。
 その他の構成は、図2に示した燃料製造システムと同様であるので、重複説明を省略する。
Further, in the fuel production system, the air supply port 5 is connected to the supply unit 3 for supplying gas containing hydrogen and oxygen and to the steam discharge device 17 of the plant 16 . The supply unit 3 and the steam discharge device 17 of the plant 16 are joined upstream of the heat exchangers 14 and 15 and connected to the air supply port 5 .
The steam discharge device 17 supplies the preheated steam generated in the plant 16 into the reaction vessel 6 from the air supply port 5 as part of the gas containing hydrogen and oxygen.
In this way, the supply unit 3 of the fuel production system reacts not only the above-mentioned gas cylinder, compressor, gas purification device, etc., but also the gas introduced from the outside of the fuel production system as part of the gas containing hydrogen and oxygen. It can be fed into tank 6 .
Since other configurations are the same as those of the fuel production system shown in FIG. 2, redundant description will be omitted.
 図7に示す燃料製造システムによれば、熱交換器14,15において、送気口5に供給する雰囲気ガスを、排気口7からの排ガスおよび高温排気装置18からの高温の排気との熱交換で加熱することができる。このため、この燃料製造システムでは、加熱装置4から加えるエネルギーを減らすことができる。
 さらに、図7に示す燃料製造システムによれば、蒸気排出装置17から排出される水蒸気を、供給部3から反応槽6内に供給する雰囲気ガスの一部として利用できる。このため、この燃料製造システムでは、供給部3で水蒸気を発生させるために用いるエネルギーを減らすことができる。
According to the fuel production system shown in FIG. 7, in the heat exchangers 14 and 15, the atmospheric gas supplied to the air supply port 5 is heat-exchanged with the exhaust gas from the exhaust port 7 and the high-temperature exhaust gas from the high-temperature exhaust device 18. can be heated with Therefore, in this fuel production system, the energy applied from the heating device 4 can be reduced.
Furthermore, according to the fuel production system shown in FIG. 7 , the steam discharged from the steam discharge device 17 can be used as part of the atmospheric gas supplied from the supply unit 3 into the reaction tank 6 . Therefore, in this fuel production system, the energy used to generate steam in the supply section 3 can be reduced.
 上述した第2の実施の形態から第4の実施の形態までの各実施の形態の構成は、燃料の製造処理や燃料製造システムの動作に問題を生じない限りにおいて、複数の実施の形態の構成を適宜組み合わせることが可能である。 The configuration of each embodiment from the second embodiment to the fourth embodiment described above is the configuration of a plurality of embodiments as long as it does not cause problems in the fuel production process and the operation of the fuel production system. can be combined as appropriate.
 なお、本発明は、上述した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した各実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, each of the embodiments described above has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
 1,102,107・・・触媒、2,101・・・処理対象物、3・・・供給部、4・・・加熱装置、5・・・送気口、6・・・反応槽、7・・・排気口、8・・・回収装置、9・・・撹拌機、10・・・撹拌翼、11・・・投入口、12・・・排出口、13・・・トラップ、14,15・・・熱交換器、16・・・プラント、17・・・蒸気排出装置、18・・・高温排気装置、103・・・雰囲気ガス、104・・・残渣、105・・・排ガス、106・・・不燃廃棄物、109・・・燃料ガス、110・・・非燃料ガス DESCRIPTION OF SYMBOLS 1,102,107...Catalyst, 2,101...Object to be treated, 3...Supply unit, 4...Heater, 5...Air supply port, 6...Reaction tank, 7 ... Exhaust port, 8 ... Recovery device, 9 ... Stirrer, 10 ... Stirring blade, 11 ... Input port, 12 ... Discharge port, 13 ... Trap, 14, 15 Heat exchanger 16 Plant 17 Steam discharge device 18 High temperature exhaust device 103 Atmosphere gas 104 Residue 105 Exhaust gas 106 ... non-burnable waste, 109 ... fuel gas, 110 ... non-fuel gas

Claims (19)

  1.  高分子の有機物を含む処理対象物から燃料を製造する方法であって、
     前記処理対象物に、酸化物半導体と、前記処理対象物に電子を供給する金属とを含む触媒を接触させる接触工程と、
     前記触媒に接触させた前記処理対象物を、水素および酸素を含む雰囲気中で加熱する加熱工程と、を有する
     燃料製造方法。
    A method for producing a fuel from an object to be treated containing high-molecular organic matter,
    a contacting step of contacting the object to be treated with a catalyst containing an oxide semiconductor and a metal that supplies electrons to the object to be treated;
    a heating step of heating the object to be treated in contact with the catalyst in an atmosphere containing hydrogen and oxygen.
  2.  前記触媒が、前記処理対象物に電子を供給する前記金属と異なる遷移金属を含む
     請求項1に記載の燃料製造方法。
    The fuel production method according to claim 1, wherein the catalyst contains a transition metal different from the metal that supplies electrons to the object to be treated.
  3.  前記処理対象物が、前記高分子の有機物として廃樹脂を含む
     請求項1に記載の燃料製造方法。
    2. The fuel manufacturing method according to claim 1, wherein the object to be treated includes waste resin as the high-molecular organic matter.
  4.  前記酸化物半導体のバンドギャップが2.0eV以上である
     請求項1に記載の燃料製造方法。
    The fuel production method according to claim 1, wherein the oxide semiconductor has a bandgap of 2.0 eV or more.
  5.  前記処理対象物に電子を供給する前記金属がAgを含む
     請求項1に記載の燃料製造方法。
    The fuel manufacturing method according to claim 1, wherein the metal that supplies electrons to the object to be processed contains Ag.
  6.  前記遷移金属が、Ti、V、Cr、Mn、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Auから選ばれる1種以上を含む
     請求項2に記載の燃料製造方法。
    The fuel production according to claim 2, wherein the transition metal includes one or more selected from Ti, V, Cr, Mn, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, and Au. Method.
  7.  前記加熱工程を200℃~500℃の温度で行う
     請求項1に記載の燃料製造方法。
    The fuel production method according to claim 1, wherein the heating step is performed at a temperature of 200°C to 500°C.
  8.  前記加熱工程において、雰囲気中の水素および酸素の合計量が前記処理対象物に対してモル比で2倍以上となるように、水素および酸素を供給する
     請求項1に記載の燃料製造方法。
    2. The fuel production method according to claim 1, wherein in said heating step, hydrogen and oxygen are supplied such that the total amount of hydrogen and oxygen in the atmosphere is at least twice the molar ratio of said object to be treated.
  9.  前記加熱工程の後に、前記処理対象物の反応による残渣から前記触媒を分離する固体分離工程を有する
     請求項1に記載の燃料製造方法。
    2. The fuel production method according to claim 1, further comprising a solid separation step of separating the catalyst from a residue resulting from the reaction of the object to be treated after the heating step.
  10.  前記加熱工程の後に、前記加熱工程で排出される排ガスから燃料ガスを分離する気体分離工程を有する
     請求項1に記載の燃料製造方法。
    2. The fuel production method according to claim 1, further comprising, after the heating step, a gas separation step of separating the fuel gas from the exhaust gas discharged in the heating step.
  11.  前記加熱工程で排出される排ガスと、前記水素および酸素を含む雰囲気との間で熱交換を行う
     請求項1に記載の燃料製造方法。
    2. The fuel production method according to claim 1, wherein heat is exchanged between the exhaust gas discharged in the heating step and the atmosphere containing hydrogen and oxygen.
  12.  高分子の有機物を含む処理対象物から燃料を製造する、燃料製造システムであって、
     前記処理対象物と、酸化物半導体および前記処理対象物に電子を供給する金属を含む触媒とを収容する反応槽と、
     前記反応槽内を加熱する加熱装置と、
     前記反応槽内へ水素および酸素を含む気体を供給する供給部と、を備え、
     前記反応槽は、
     前記供給部から供給された水素および酸素を含む気体を、前記反応槽内に供給する送気口と、
     前記処理対象物の反応により生じた排ガスを前記反応槽内から排出する排気口と、を有する
     燃料製造システム。
    A fuel production system for producing fuel from an object to be treated containing high-molecular organic matter,
    a reaction vessel containing the object to be treated, an oxide semiconductor, and a catalyst containing a metal that supplies electrons to the object to be treated;
    a heating device for heating the inside of the reaction vessel;
    a supply unit that supplies a gas containing hydrogen and oxygen into the reaction vessel,
    The reaction vessel is
    an air supply port for supplying the gas containing hydrogen and oxygen supplied from the supply unit into the reaction vessel;
    and an exhaust port for discharging exhaust gas generated by the reaction of the object to be treated from the reaction tank.
  13.  前記反応槽は、前記触媒として、前記処理対象物に電子を供給する前記金属と異なる遷移金属を含む
     請求項12に記載の燃料製造システム。
    13. The fuel production system according to claim 12, wherein the reaction vessel contains, as the catalyst, a transition metal different from the metal that supplies electrons to the object to be treated.
  14.  前記反応槽が、前記処理対象物を撹拌する撹拌翼を備える
     請求項12に記載の燃料製造システム。
    13. The fuel production system according to claim 12, wherein the reaction tank includes a stirring blade for stirring the object to be treated.
  15.  前記反応槽に、前記処理対象物の反応による残渣と前記触媒とを分離する設備が設けられている
     請求項12に記載の燃料製造システム。
    13. The fuel production system according to claim 12, wherein the reaction tank is provided with a facility for separating a residue from the reaction of the object to be treated and the catalyst.
  16.  前記反応槽の前記排気口に接続された、内部に吸湿剤およびアルカリの少なくとも一方が収容され、前記反応槽から排出される前記排ガス中の非燃料ガスを処理するトラップを備える
     請求項12に記載の燃料製造システム。
    13. The trap according to claim 12, which is connected to the exhaust port of the reaction vessel and contains at least one of a moisture absorbent and an alkali therein and treats non-fuel gas in the exhaust gas discharged from the reaction vessel. fuel production system.
  17.  前記反応槽の前記送気口と前記排気口とにそれぞれ接続された、前記送気口に供給する前記気体と前記排気口から排出される前記排ガスとを熱交換する熱交換器を備える
     請求項12に記載の燃料製造システム。
    A heat exchanger connected to the gas inlet and the gas outlet of the reaction tank, which exchanges heat between the gas supplied to the gas gas inlet and the exhaust gas discharged from the gas outlet, is provided. 13. The fuel production system according to 12.
  18.  前記反応槽の前記送気口に接続された、前記送気口に供給する前記気体と前記燃料製造システムの外部から導入された熱媒体とを熱交換する熱交換器を備える
     請求項12に記載の燃料製造システム。
    13. The method according to claim 12, further comprising a heat exchanger connected to the air inlet of the reaction tank for exchanging heat between the gas supplied to the air inlet and a heat medium introduced from outside the fuel production system. fuel production system.
  19.  前記供給部は、前記反応槽の前記送気口に供給する前記気体の一部として、前記燃料製造システムの外部から導入された水蒸気を供給する
     請求項12に記載の燃料製造システム。
    13. The fuel manufacturing system according to claim 12, wherein the supply unit supplies water vapor introduced from the outside of the fuel manufacturing system as part of the gas supplied to the air supply port of the reaction tank.
PCT/JP2022/001909 2021-03-09 2022-01-20 Fuel production method and fuel production system WO2022190659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021037295A JP2022137689A (en) 2021-03-09 2021-03-09 Fuel production method and fuel production system
JP2021-037295 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022190659A1 true WO2022190659A1 (en) 2022-09-15

Family

ID=83226596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001909 WO2022190659A1 (en) 2021-03-09 2022-01-20 Fuel production method and fuel production system

Country Status (2)

Country Link
JP (1) JP2022137689A (en)
WO (1) WO2022190659A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103602A (en) * 1998-09-30 2000-04-11 Toshiba Corp Production of hydrogen and conversion of resins into fuel
JP2009513466A (en) * 2005-10-31 2009-04-02 エレクトロファック アクチェンゲゼルシャフト Use of hydrogen production method
JP2016159190A (en) * 2015-02-26 2016-09-05 Jfeエンジニアリング株式会社 Harmful low density waste treating method and harmful low density waste treating apparatus
JP2020185513A (en) * 2019-05-10 2020-11-19 国立大学法人東北大学 Solid catalyst and method for producing the same and method for producing oily matter
WO2021192034A1 (en) * 2020-03-24 2021-09-30 株式会社日立製作所 Volume reduction method for waste, volume reduction device for waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103602A (en) * 1998-09-30 2000-04-11 Toshiba Corp Production of hydrogen and conversion of resins into fuel
JP2009513466A (en) * 2005-10-31 2009-04-02 エレクトロファック アクチェンゲゼルシャフト Use of hydrogen production method
JP2016159190A (en) * 2015-02-26 2016-09-05 Jfeエンジニアリング株式会社 Harmful low density waste treating method and harmful low density waste treating apparatus
JP2020185513A (en) * 2019-05-10 2020-11-19 国立大学法人東北大学 Solid catalyst and method for producing the same and method for producing oily matter
WO2021192034A1 (en) * 2020-03-24 2021-09-30 株式会社日立製作所 Volume reduction method for waste, volume reduction device for waste

Also Published As

Publication number Publication date
JP2022137689A (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP3724438B2 (en) Method and apparatus for treating heavy oil with supercritical water, and power generation system equipped with heavy oil treatment apparatus
EP1453130B1 (en) Powder metal hydride hydrogen generator
EP1670090B1 (en) Molten carbonate fuel cell, operating method thereof, sintering furnace, and power generator
KR101858075B1 (en) Method and apparatus for separation of offgas in the combustion of particular metals
EP1294955B1 (en) Platinum group metal recovery from organics-pgm compositions with supercritical water reactant
JP2011121052A (en) Oxidative decomposition treatment apparatus
JP2013103220A (en) Method and system for stabilizing volatile radionuclide during denitration at high temperature
JPWO2006118280A1 (en) How to recover iodine
RU2664510C2 (en) Transformation of metal carbonate into metal chloride
WO2022190659A1 (en) Fuel production method and fuel production system
CN111185077B (en) Flue gas denitration device and method based on gaseous oxidizing ions
WO2022070464A1 (en) Fuel production method and fuel production system
JP2002093452A (en) Impurity gas removing method for fuel cell power generation facility and impurity gas removing device thereof
RU2652635C2 (en) Transformation of metal carbonate into metal chloride
WO2021192034A1 (en) Volume reduction method for waste, volume reduction device for waste
KR101011205B1 (en) Process for treating the organic and nitrogenous compounds contained in saturated steam by using oxidation and reduction catalyst
US6838065B2 (en) Method and apparatus for treating waste gas containing PFC and/or HFC
JP2005230795A (en) Method for decomposing nitrous oxide and its reactor
JP2001288480A (en) Method and apparatus for plastic waste gasification
JP2009102594A (en) Gasification furnace system
JP2011246525A (en) Gasification treatment system and method of gasification treatment by using the same
JP6759026B2 (en) Hydrogen production equipment
JP3669341B2 (en) Heavy oil reforming method and reformer
JP3495616B2 (en) Hydrothermal decomposition method of chlorine-containing organic compounds
WO2023032494A1 (en) Method for decomposing halogen-containing organic substances, and system for decomposing halogen-containing substances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766626

Country of ref document: EP

Kind code of ref document: A1