WO2022188860A1 - 一种集气装置 - Google Patents

一种集气装置 Download PDF

Info

Publication number
WO2022188860A1
WO2022188860A1 PCT/CN2022/080341 CN2022080341W WO2022188860A1 WO 2022188860 A1 WO2022188860 A1 WO 2022188860A1 CN 2022080341 W CN2022080341 W CN 2022080341W WO 2022188860 A1 WO2022188860 A1 WO 2022188860A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
gas collecting
working medium
channel
flow
Prior art date
Application number
PCT/CN2022/080341
Other languages
English (en)
French (fr)
Inventor
吴会鹏
黄欣培
刘涛
周阿龙
施健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22766382.0A priority Critical patent/EP4280832A4/en
Priority to US18/550,265 priority patent/US20240164056A1/en
Publication of WO2022188860A1 publication Critical patent/WO2022188860A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Definitions

  • the application relates to a gas collecting device, which belongs to the technical field of liquid cooling.
  • the embodiment of the present application provides a gas collecting device for collecting the air bubbles generated by the loss of the working medium during the operation of the liquid cooling device.
  • the embodiments of the present application provide the following technical solutions:
  • an embodiment of the present application provides a gas collecting device, including:
  • a cooling plate the cooling plate includes at least one air collecting structure disposed inside the cooling plate, a first flow channel disposed inside the cooling plate, a second flow channel disposed inside the air collecting structure, and a first flow channel for connecting the first flow channel channel and at least one connecting channel of the second flow channel;
  • the at least one connecting channel is used to transfer the air bubbles carried by the working medium when the first flow channel flows to the second flow channel;
  • the at least one gas collecting structure is used for collecting the air bubbles from the second flow channel.
  • the gas collecting device has the characteristics of smaller volume, easier operation, and does not require external input energy to maintain the operation of the gas collecting device.
  • the local resistance experienced by the working medium during the flow of the second flow channel is greater than the local resistance experienced by the working medium during the flow of the first flow channel.
  • the flow rate of the working medium in the second flow channel is higher than that of the first flow channel.
  • the flow velocity in the first flow channel is low, so that after entering the second flow channel, the air bubbles are not easily brought back to the first flow channel by the working medium.
  • the local resistance received by the working medium during the flow of the second flow channel may be generated in the following manner:
  • the cross section of the at least one connecting channel or, increasing the number of bifurcated and confluent nodes in the second flow channel to generate local resistance, it can be ensured that the working medium can be further increased without increasing the volume of the gas collecting device.
  • the local resistance inside the gas collecting structure reduces the flow velocity of the air bubbles after entering the second flow channel and prevents the air bubbles from being brought back into the main flow channel by the working medium again.
  • the at least one connection channel is in the form of a connection pipe, one end of the connection pipe is connected to a local high point of the first flow channel, and the other end of the connection pipe is connected to the second flow channel.
  • Connecting one end of the connecting pipe to a local high point of the first flow channel can make it easier for bubbles to pass through the connecting pipe and enter the second flow channel from the first flow channel when they rise under the action of buoyancy.
  • the structure of the at least one connection channel is a connection port, the connection port is located at a local high point of the first flow channel, one side of the connection port is connected with the first flow channel, and the other side of the connection port is connected to the first flow channel. One side is connected to the second flow channel.
  • the connection port has the characteristics of taking up less volume.
  • the cross-section of the connecting pipe is smaller than the cross-section of the first flow channel and the second flow channel.
  • the inclination angle between the at least one connecting channel and the flow direction of the working medium in the first flow channel is greater than 90 degrees.
  • the inclination angle between the connecting channel and the flow direction of the working medium in the first flow channel is greater than 90 degrees, it is beneficial to further increase the local resistance of the working medium after entering the second flow channel from the first flow channel through the connecting channel, thereby reducing the entry of air bubbles into the second flow channel.
  • the flow rate after the flow channel prevents air bubbles from being brought back into the first flow channel by the working medium again.
  • the at least one gas collecting structure is a barbed structure, a circular structure, or a labyrinth structure.
  • the gas collecting structure is a barbed structure, a circular structure or a labyrinth structure, which can further increase the local resistance of the working medium inside the gas collecting structure, thereby reducing the flow rate of the air bubbles after entering the second flow channel and preventing the air bubbles from being brought back to the main body by the working medium again. in the runner.
  • the at least one gas collecting structure includes a plurality of baffle bars, and the plurality of baffle bars are used to increase the local resistance of the working medium flow in the second flow channel.
  • an embodiment of the present application further provides an electronic device, including: a power component and a liquid cooling device, the power component generates heat in a working state, and the liquid cooling device transfers the heat to the outside world; the electronic device
  • the apparatus further includes the gas collecting device according to any one of the first aspects, the gas collecting device is located inside the liquid cooling device and is used for collecting air bubbles in the liquid cooling device.
  • FIG. 1 is a schematic structural diagram of a liquid cooling device provided by the application.
  • Fig. 2 is a structural plan view of a liquid cooling device provided by the application
  • FIG. 3 is a structural plan view of a gas collecting structure provided by the application.
  • FIG. 4 is a structural plan view of a gas collecting structure provided by the application.
  • FIG. 5 is a structural plan view of a gas collecting structure provided by the application.
  • FIG. 6 is a structural plan view of a gas collecting structure provided by the application.
  • FIG. 7 is a structural plan view of a gas collecting structure provided by the application.
  • FIG. 8 is a structural plan view of a gas collecting structure provided by the application.
  • FIG. 9 is a partial enlarged view of a gas collecting structure provided by the present application.
  • the gas collecting device may be applied to terminal equipment using a liquid cooling device.
  • the terminal equipment can be a notebook computer, a tablet computer, a mobile phone or other intelligent terminal equipment;
  • the application provides a gas collecting device, and the application scenarios can be cloud computing, video processing, search, or general types that require high power running scene.
  • the working medium in this application refers to the working substance that realizes heat exchange, and is referred to as working medium for short.
  • the working medium is also called cooling liquid or fluid in various liquid cooling devices, and it is a medium material that completes the exchange of heat energy.
  • the working medium can be water, or acetone, methanol, ammonia water or Freon, such as R134a and other working media, which are selected according to the conditions of use.
  • Fluid resistance refers to the resistance encountered by the fluid flowing through. There are two types: (1) the resistance caused by the friction between the working medium and the wall, called frictional resistance; (2) the working medium changes due to the shape of the flow channel boundary during the flow process, for example, the cross-sectional area of the flow channel changes, or A node where the runner bifurcations meet. The speed and direction of the working medium will change, and the working medium is forced to exchange momentum. At this time, due to the viscous effect of the working medium, a huge resistance is caused to the working medium, which is called local resistance.
  • FIG. 1 is a schematic structural diagram of a gas collecting device according to an embodiment of the present application.
  • the electronic device is described by taking a notebook computer as an example, and the notebook computer includes a screen side and a keyboard side. It can be understood that the installation positions of the various components in the schematic diagram are only examples and not limitations.
  • the liquid-gas device includes a cooling plate 100 , a pump 200 , a temperature equalizing plate 300 , a power component 310 , and a pipeline 10 .
  • the cooling plate 100 includes a main flow channel 110 and a gas collecting structure 120; the gas collecting structure 120 further includes a secondary flow channel 130 and a connecting channel 140, wherein the main flow channel 110 can also be called a first flow channel, a secondary flow channel
  • the primary flow channel 130 may also be referred to as a second flow channel, and further reference may be made to FIG. 2 regarding the primary flow channel 110 and the secondary flow channel 130 .
  • the main flow channel 110 is located inside the cooling plate 100 , the main flow channel is the main route for the working medium to flow in the system, and undertakes the heat exchange function of the liquid cooling device.
  • the secondary flow channel 130 is located inside the gas collecting structure 120, and the secondary flow channel is a secondary route for the working medium to flow in the system, and undertakes the function of collecting air bubbles.
  • the connecting channel 140 is located inside the gas collecting structure 120 for connecting the primary flow channel 110 and the secondary flow channel 130, and air bubbles enter the secondary flow channel 130 from the primary flow channel 110 through the connecting channel 140.
  • the pipeline 10 includes a first pipeline 11 , a second pipeline 12 and a third pipeline 13 .
  • the material used for the pipeline 10 may be metal, such as iron, aluminum, etc., or non-metal, such as PTFE, FEP, EPDM, etc., which is not specifically limited here.
  • the cooling plate 100 is located inside the screen side; the power components 310, the vapor chamber 300 and the pump 200 are located inside the keyboard side where the heat source is located.
  • the inside of the pipeline 10 is filled with working medium for connecting the cooling plate 100 , the pump 200 and the vapor chamber 300 . It is worth noting that the pipeline 10 extends from the keyboard side to the cooling plate 100 on the screen side.
  • the pump 200 can pressurize the inside of the liquid cooling device to provide circulating power for the working medium in the liquid cooling device.
  • the power generated by the pump 200 can be used to overcome the resistance of the working medium and the influence of gravity during the circulation process of the closed liquid cooling device, and drive the working medium on the main flow channel 110 and the secondary flow channel 130 on the screen side and the temperature equalizing plate 300 on the keyboard side. It flows inside the pump 200 and between the pipeline 10 to form a complete circulating flow path of the working medium. It can be understood that the effects of the present application can also be achieved by intermodulating the positions of the pump 200 and the vapor chamber 300 .
  • Power components 310 are mounted on the vapor chamber 300 .
  • the power component 310 may include, but is not limited to, one or more of the following power components (not marked in the figure): a circuit board, a sensor, a camera, a microphone, a battery, a graphics processing unit (GPU), and a central processing unit (CPU). CPU), etc., which are not specifically limited here.
  • the power component 310 continuously generates thermal energy during operation.
  • the vapor chamber 300 may be composed of a metal shell, and the metal cover is used to absorb the thermal energy continuously generated by the power components 310 mounted on the vapor chamber 300 during the working process, and evenly disperse the heat energy on the vapor chamber 300 , and the heat energy is absorbed by the working medium flowing through it.
  • the working medium flows through the cooling plate 100, heat energy is transferred to the external environment through the cooling plate 100 through heat exchange, so as to achieve the purpose of reducing the temperature of the working medium.
  • the working medium absorbs the heat energy generated from the power components 310 when flowing through the temperature equalizing plate 300 , and the temperature of the working medium increases after the process is completed.
  • the temperature-raised working medium reaches the cooling plate 100 through the pipeline 10 , and exchanges heat with the external environment through the main flow channel 110 to obtain the reduced-temperature working medium.
  • the temperature-reduced working medium flows through the temperature equalizing plate 300 through the pipeline 10 again to absorb heat, and repeats the above cyclic heat dissipation process to continuously release the heat generated by the power components 310 to the outside to achieve the purpose of lowering the temperature.
  • the display screen and the driver of the display screen will also generate more heat after working for a long time.
  • the display screen and the driver of the display screen are usually installed on the side of the screen, and can directly transfer heat to the external environment through heat exchange to achieve the effect of heat dissipation.
  • the air collecting structure 120 is located inside the cooling plate 100 and undertakes the function of collecting air bubbles of the liquid cooling device.
  • the inside of the gas collecting structure 120 includes several baffle bars, which are used to further increase the local resistance of the working medium flowing through the gas collecting structure 120 , thereby reducing the flow rate of the working medium and preventing the air bubbles from entering the main flow channel 110 from the gas collecting structure 120 again. middle.
  • the working process of the gas collecting structure 120 is as follows: under the action of the pump 200 , the air bubbles enter the secondary flow channel 130 under the action of buoyancy during the flow of the working medium in the main flow channel 110 . Compared with the main flow channel 110, the working medium in the secondary flow channel 130 has the characteristics of large resistance and small flow rate. The air bubbles are not easily drawn into the primary flow channel 130 by the working medium again, but stay at the top of the secondary flow channel 110 due to buoyancy.
  • the air collecting structure 120 can be designed in the left region of the cooling plate 100 or in the right region of the cooling plate 100 .
  • the number of the gas collecting structures 120 may be one or more.
  • the shape formed by the baffles in the gas collecting structure 120 may be a barb structure, a circular structure, or a labyrinth structure.
  • the connection channel between the secondary flow channel 130 and the main flow channel 110 may be one or multiple; further, the connection channel 140 may be in the form of a connection pipe or a connection port, which will not be described in detail here. limited.
  • the structure adopted for the connection channel is a structure of a connection port.
  • FIG. 3 is a gas collecting device provided by another embodiment of the present application.
  • the gas collecting structure 120 shown in FIG. 3 has no blocking bars, and the connecting channel 140 adopts the form of a connecting port;
  • Two connecting channels 140 are used between the structure 120 and the cooling plate 100 for connecting the main flow channel 110 and the secondary flow channel 130 ; one side of the connecting channel 140 is the main flow channel 110 and the other half is the secondary flow channel 130 .
  • the cross section of the flow channel changes due to the confluence of the flow channels, which increases the local resistance of the working medium flowing through the connecting channel 140, thereby reducing the working medium after entering the gas collecting structure 120.
  • the flow rate makes it difficult for the air bubbles to be brought back into the main flow channel 110 by the working medium, and the effect of collecting air bubbles can also be achieved. Since the air collecting structure 120 of the air collecting device is designed without baffles, the area occupied by the air collecting structure 120 is smaller than that of the air collecting device in FIG. 1 .
  • the inner baffle of the gas gathering structure 120 is designed in a labyrinth shape, which can further improve the local resistance of the working medium flowing through the gas gathering structure 120 , Thereby, the flow velocity of the air bubbles in the air collecting structure 120 is reduced, so that the air bubbles remain in the air collecting structure 120 .
  • the connection channel 140 adopts a structure in the form of a connection port, which is used to connect the main flow channel 110 and the secondary flow channel 130, and can also achieve the effect of collecting air bubbles. It is worth noting that the connection channel 140 adopted by the gas collecting device shown in FIG. 4 is a connection port structure.
  • the inner baffle of the gas gathering structure 120 can be designed as a barb shape, which can further improve the working medium flowing through the gas gathering structure 120 . local resistance, thereby reducing the flow velocity of the air bubbles in the air collecting structure 120 , so that the air bubbles stay inside the air collecting structure 120 .
  • the number of the barb-shaped gas collecting structures 120 may be one or more. Referring to FIG. 6 , there are two gas collecting structures 120 with barb shapes in the device. If the number of air bubbles is too large, or the volume of the air bubbles is too large, or the flow rate of the working medium is too fast, the first air collecting structure 120 will result.
  • connection channels 140 used in FIGS. 5 and 6 are all connection ports.
  • a connecting channel 140 is provided for collecting air bubbles, and the structure of the connecting channel 140 is as follows Structure in the form of connecting pipes.
  • the number of the connecting pipes is at least one, one end is located at a local high point of the main flow channel 110 and is connected with the main flow channel 110, and the other end is connected with the secondary flow channel 130, and the air bubbles enter the secondary flow through the connecting channel 140 under buoyancy
  • the channel 130 achieves the function of collecting air bubbles.
  • the remaining bubbles can be collected through other connecting pipelines.
  • the cross section of the flow channel changes, thus causing the work
  • the medium flows through the secondary flow channel 130 the local resistance is larger than when it flows through the main flow channel 110 , so that the flow velocity of the working medium slows down when it flows through the secondary flow channel 130 . Since the flow velocity of the working medium is relatively slow when flowing through the secondary flow channel 130 , it is difficult for air bubbles to be drawn into the main flow channel 110 by the working medium again.
  • the arrows in the main flow channel 110 indicate the flow direction of the working medium.
  • the connecting channel 140 in FIG. 8 is in the main flow direction of the working medium
  • the inclination angles between the flow directions of the flow channels 110 are greater than 90 degrees, namely three inclination angles of ⁇ 1 , ⁇ 2 , and ⁇ 3 in FIG. 9 . Due to the increased inclination angle, the local resistance of the working medium when entering the connecting channel 140 can be effectively increased, thereby reducing the flow rate of the working medium in the secondary flow channel 130 .
  • the air bubbles enter the top of the secondary flow channel 130 by buoyancy.
  • connection channel 140 is in the form of a connection pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供一种集气装置,涉及液冷技术领域,用于收集液冷装置中因工作介质流失所产生的气泡。该集气装置包括:冷却板,该冷却板包括设置于该冷却板内部的至少一个集气结构、设置于该冷却板内部的第一流道、设置于该集气结构内部的第二流道和用于连接该第一流道和该第二流道的至少一个连接通道;该至少一个连接通道,用于将工作介质在该第一流道流动时所携带的气泡转移到该第二流道;该至少一个集气结构,用于从所述第二流道中收集该气泡。

Description

一种集气装置
相关申请的交叉引用
本申请要求在2021年03月12日提交中国专利局、申请号为202110268559.2、申请名称为“一种集气装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种集气装置,属于液冷技术领域。
背景技术
近些年来,随着智能终端朝着轻薄、小型、携带方便等趋势发展;并伴随着智能终端的功率密度不断增加所带来更高的散热需求。然而,传统的散热手段在小型智能终端内的散热效果并不理想。在现有的液冷装置中,通过高比热系数的液体,例如水作为工作介质,通过内部循环流动带走内部功率元器件所产生的热量。然而,在现有的液冷装置中,泄露、蒸散等导致工作介质流失是很难避免的。在液冷工作介质流失后,外部气体就会填补进入液冷装置中,补充工作介质流失的那部分体积。外部气体在模组内部以气柱或者气泡的形式存在,影响泵的正常运转,造成泵在运行过程中有着噪声过大、降低散热性能、影响泵的寿命等问题。
针对液冷装置内因工作介质流失而产生的气泡的问题,目前采用的技术方案为:1,通过补充装置来补充液冷装置内流失的工作介质。2,通过排气装置排出进入液冷装置内的外部气体。但是,由于补充装置和排气装置体积均比较大,无法应用在例如手机、手提电脑等小型终端设备。因此,提出一种应用于小型终端设备内的液冷装置,用于收集该液冷装置的气泡的一种集气装置是很有必要的。
发明内容
本申请实施例提供了一种集气装置,用以收集液冷装置在工作中因工作介质流失而产生的气泡。为了达到上述目的,本申请实施例提供如下技术方案:
第一方面,本申请实施例提供了一种集气装置,包括:
冷却板,该冷却板包括设置于该冷却板内部的至少一个集气结构、设置于该冷却板内部的第一流道、设置于该集气结构内部的第二流道和用于连接该第一流道和该第二流道的至少一个连接通道;
该至少一个连接通道,用于将工作介质在该第一流道流动时所携带的气泡转移到该第二流道;
该至少一个集气结构,用于从该第二流道中收集该气泡。
在上述结构中,该集气装置相较于传统的补充装置和排气装置,有着体积更小,操作更简易,不需要外界输入能量以维持该集气装置运行的特点。在一种可能实现方式中,该工作介质在该第二流道流动过程中所受到的局部阻力大于该工作介质在该第一流道流动过程中所受到的局部阻力。
由于该第二流道的工作介质在流动过程中所受到的局部阻力大于该第一流道的工作介质在流动过程中所受到的局部阻力,导致工作介质在该第二流道中的流速相较于在该第一 流道中的流速较低,从而使得气泡在进入该第二流道后不容易被工作介质重新带回该第一流道。
在一种可能实现方式中,该工作介质在该第二流道流动过程中所受到的局部阻力可以通过以下方式产生:
改变该至少一个连接通道的横截面;或者,增加该第二流道中的分叉汇合的节点数量。
通过改变该至少一个连接通道的横截面;或者,增加该第二流道中的分叉汇合的节点数量的方式产生局部阻力,可以保证在不更加集气装置体积的情况下,进一步增加工作介质在该集气结构内部的局部阻力,从而降低气泡进入第二流道后的流速,防止气泡再次被工作介质带回主要流道中。
在一种可能实现方式中,该至少一个连接通道的机构形式为连接管道,该连接管道的一端连接于该第一流道的局部高点,该连接管道的另一端连接于该第二流道。
将该连接管道的一端连接于该第一流道的局部高点,可以使得气泡在受到浮力的作用下上升时,更容易地通过该连接管道,从该第一流道进入该第二流道。
在一种可能实现方式中,该至少一个连接通道的结构形式为连接口,该连接口位于该第一流道的局部高点,该连接口的一边与该第一流道相连,该连接口的另一边与第二流道相连。该连接口相较于连接管道,有着占用体积小的特点。
在一种可能实现方式中,该连接管道的横截面小于该第一流道和该第二流道的横截面。
工作介质从第一流道进入连接管道时,流经横截面突然缩小;工作介质从连接管道进入第二流道时,流经横截面突然扩大。导致工作介质所受到的局部阻力的增加,从而降低气泡进入第二流道后的流速,防止气泡再次被工作介质带回第一流道中。
在一种可能实现方式中,该至少一个连接通道与工作介质在该第一流道中的流动方向之间的倾斜角度大于90度。
由于连接通道与第一流道中的工作介质流动方向之间的倾斜角度大于90度,有利于进一步增加工作介质从第一流道通过连接通道进入第二流道后的局部阻力,从而降低气泡进入第二流道后的流速,防止气泡再次被工作介质带回第一流道中。
在一种可能实现方式中,该至少一个集气结构为倒刺结构、圆形结构、或迷宫结构。
集气结构为倒刺结构、圆形结构或迷宫结构可以进一步增加工作介质在该集气结构内部的局部阻力,从而降低气泡进入第二流道后的流速,防止气泡再次被工作介质带回主要流道中。
在一种可能实现方式中,该至少一个集气结构包含若干个挡条,该若干个挡条用于增加该工作介质流在该第二流道的局部阻力。
第二方面,本申请实施例还提供了一种电子设备,包括:功率元器件和液冷装置,该功率元器件在工作状态时产生热量,该液冷装置将该热量传递至外界;该电子设备还包含如第一方面任一项该集气装置,该集气装置位于该液冷装置内部并用于收集该液冷装置中的气泡。
附图说明
图1为本申请提供的一种液冷装置的结构示意图;
图2为本申请提供的一种液冷装置的结构平面图;
图3为本申请提供的一种集气结构的结构平面图;
图4为本申请提供的一种集气结构的结构平面图;
图5为本申请提供的一种集气结构的结构平面图;
图6为本申请提供的一种集气结构的结构平面图;
图7为本申请提供的一种集气结构的结构平面图;
图8为本申请提供的一种集气结构的结构平面图;
图9为本申请提供的一种集气结构的局部放大图。
具体实施方式
为了使本申请的目的,技术方案和优点更加清楚,下面将结合附图对本申请的实施例作进一步地详细描述。
以下将参照相关图式,说明依本申请较佳实施例的集气装置,本申请所有实施方式的图示只是示意,不代表真实尺寸与比例。
关于申请中所使用的方向用语,例如上、下、左、右、前或后等,仅是参考附加图示的方向界定,用以方便说明并非是限定本申请。
为了方便理解本申请实施例提供的集气装置,说明一下其应用设备和场景,该集气装置可以应用于采用液冷装置的终端设备中。该终端设备可以为笔记本电脑,平板电脑,手机或其他智能终端设备中;所述含有的本申请提供集气装置,应用场景可以是云计算,视频处理,搜索,或是通用类型等需要大功率运行的场景。
在阐述本申请的具体实施方式之前,对以下本领域的专业术语进行定义:
1,工作介质:工作介质在本申请中是指实现热交换的工作物质,简称工质。工作介质在各种液冷装置中也称为冷却液或者称为流体,是一种完成热能交换的媒介物质。工作介质可以是水,也可以是丙酮,甲醇,氨水或氟立昂类,例如R134a等其它工作介质,根据使用的条件而选择。
2,流体阻力:流体阻力是指流体流经所遇到的阻力。包括两种:(1)工作介质与器壁相摩擦而产生的阻力,称摩擦阻力;(2)工作介质在流动过程中由于流道边界形状改变,例如流道的横截面积发生变化,或者遇到流道分叉汇合的节点。工作介质速度大小和方向将发生变化,工作介质被迫进行动量交换,此时由于工作介质的粘性作用,对工作介质造成巨大的阻力,将该阻力称为局部阻力。
图1为本申请实施例提供的一种集气装置的结构示意图。在图1的申请实施例中,电子设备以笔记本电脑为例进行说明,该笔记本电脑包括屏幕侧和键盘侧。可以理解的是,该示意图中的各个元器件的安装位置仅作为示例而非限定。
该液气装置包括冷却板100、泵200、均温板300、功率元器件310、和管路10。
其中,冷却板100内包括主要流道110、集气结构120;该集气结构120进一步包括了次要流道130和连接通道140,其中,主要流道110又可以称为第一流道,次要流道130又可以称为第二流道,关于主要流道110和次要流道130可进一步参考图2。
主要流道110位于冷却板100内部,该主要流道是工作介质在***中流动的主要路线,承担液冷装置的热交换功能。次要流道130位于集气结构120内部,该次要流道是工作介质在***中流动的次要路线,承担着收集气泡的功能。连接通道140位于集气结构120内部,用于连接主要流道110和次要流道130,气泡通过该连接通道140从主要流道110进 入次要流道130。
其中,管路10包括第一管路11、第二管路12和第三管路13。该管路10所采用的材质可以是金属,例如铁、铝等;也可以是非金属,例如PTFE、FEP、EPDM等,在此不做具体限定。
进一步地,冷却板100位于屏幕侧内部;功率元器件310、均温板300和泵200位于有发热源的键盘侧内部。管路10内部充满工作介质,用于将冷却板100、泵200和均温板300连接起来,值得注意的是,该管路10从键盘侧延伸至屏幕侧的冷却板100。
泵200的两端分别连接于冷却板100和均温板300。该泵200可对液冷装置内部进行加压,为液冷装置中的工作介质提供循环动力。泵200产生的动力可以用于克服工作介质在密闭液冷装置循环过程中的阻力和重力影响,驱使工作介质在屏幕侧的主要流道110和次要流道130、键盘侧的均温板300和泵200内部、以及管路10之间流动,以形成完整的工作介质循环流动路径。可以理解的是,泵200和均温板300位置互调,也能达到本申请的效果。
均温板300上搭载有功率元器件310。其中,该功率元器件310可以包括但不限于以下一个或者多个功率元器件(图中未标示):电路板、传感器、摄像头、麦克风、电池、图像处理器(GPU)、和中央处理器(CPU)等等,在此不做具体限定。该功率元器件310在工作过程中持续产生热能。
均温板300可以由金属壳体组成,金属盖用于吸收该均温板300上搭载的功率元器件310在工作过程中所持续产生的热能,并将该热能均匀分散至均温板300上,并被流经的工作介质吸收热能。该工作介质在流经的冷却板100过程中,通过热交换将热能通过冷却板100传递给外界环境,达到降低工作介质温度的目的。
结合上述集气装置结构,下面将描述工作介质如何在该结构中流动以实现降温。
工作介质在流经均温板300时吸收来自于功率元器件310产生的热能,完成该过程后工作介质温度升高。温度升高后的工作介质经过管路10到达冷却板100,通过主要流道110与外界环境进行热交换,得到降低温度后的工作介质。降低温度后的工作介质,再次通过管路10流经均温板300吸收热量,并重复以上循环散热过程,不断地将功率元器件310产生的热量释放到外界,达到降低温度的目的。
值得注意的是,显示屏及显示屏的驱动器,在长时间工作后也会产生较多的热量。该显示屏及显示屏的驱动器通常安装于屏幕侧,可以直接通过热交换将热量传递至外部环境,达到散热的效果。
集气结构120位于冷却板100的内部,承担液冷装置的收集气泡功能。该集气结构120的内部包含若干个档条,用于进一步提升工作介质流经集气结构120的局部阻力,进而降低工作介质的流速,并防止气泡从集气结构120再次进入主要流道110中。
集气结构120的工作流程为:气泡在泵200的作用下随着工作介质在主要流道110流动的过程中,受到浮力的作用进入次要流道130。工作介质在次要流道130相较于主要流道110,有着阻力大,流速小的特点。气泡不容易再次被工作介质卷入主要流道130中,而是受浮力作用停留在次要流道110的顶部。
可以理解的是,集气结构120可以设计在冷却板100左侧区域,也可以设计在冷却板100的右侧区域。集气结构120的数量可以为一个,也可以为多个。集气结构120内的挡条所组成的形状,可以是倒刺结构、圆形结构、或迷宫结构中。次要流道130与主要流道 110之间的连接通道可以为一个,也可以为多个;进一步地,该连接通道140可以是连接管道形式,也可以为连接口形式,在此不做具体限定。在图1实施例中,连接通道所采用的结构为一个连接口的结构。
图3为本申请又一个实施例提供的一种集气装置,相较于图1,图3所示的集气结构120内没有设计挡条,且连接通道140采用了连接口形式;集气结构120和冷却板100之间采用两个连接通道140用于连接主要流道110和次要流道130;该连接通道140的一边为主要流道110,另一半为次要流道130。气泡通过工作介质流动经过该连接通道140时,由于流道汇合从而导致流道横截面的改变,增加了流经该连接通道140工作介质的局部阻力,从而降低工作介质进入集气结构120之后的流速,使得气泡很难被工作介质带回主要流道110中,也能达到收集气泡的效果。由于该集气装置的集气结构120内为没有挡条的设计,相较于图1的集气装置,该集气结构120所占用的面积更小。
参考图4,示例性地,在另一种可能的集气装置中,集气结构120的内部档条设计为迷宫形状,可以进一步提高工作介质在流经该集气结构120内的局部阻力,从而降低气泡在该集气结构120内的流速,使得气泡留在该集气结构120内部。该连接通道140所采用的结构为连接口的形式,用于连接主要流道110和次要流道130,也能达到收集气泡的效果。值得注意的是,图4所示的集气装置所采用的连接通道140为连接口的结构。
参考图5,示例性地,在另一种可能的集气装置中,集气结构120的内部挡条可以设计为倒刺形状,这可以进一步提高工作介质在流经该集气结构120内的局部阻力,从而降低气泡在该集气结构120的流速,使得该气泡留在该集气结构120内部。其中,该倒刺形状的集气结构120数量可以是1个或多个。可参考图6,该装置中的带有倒刺形状的集气结构120为两个,若气泡数量过多,或者气泡体积过大,或者工作介质流速太快,导致第一个集气结构120来不及收集所有的气泡,则可以通过第二个集气结构120收集剩余的气泡,从而可以更好的达到收集气泡的效果。值得注意的是,图5和图6所采用的连接通道140均为连接口的结构。
参考图7,示例性地,在一种可能的集气装置中,在次要流道130和主要流道110之间,设置连接通道140用于收集气泡,该连接通道140所采用的结构为连接管道形式的结构。该连接管道数量至少为一个,一端位于主要流道110的局部高点,并且与主要流道110相连接,另一端与次要流道130相连接,气泡受到浮力通过连接通道140进入次要流道130,达到收集气泡的作用。若气泡数量过多,或者气泡体积过大,或者工作介质流速太快,导致第一个连接管道来不及收集所有的气泡,则可以通过其他连接管道收集剩余的气泡。气泡进入集气结构120后,由于集气结构120内有多个流道汇合分叉的节点,且工作介质在通过连接管道140进入次要流道130时,流道截面产生变化,因此导致工作介质在流经次要流道130时比流经主要流道110时局部阻力大,使得工作介质在流经次要流道130时流速放缓。由于工作介质在流经次要流道130时流速较缓,气泡很难被工作介质再次卷入到主要流道110中。
参考图8可知,示例性地,在一种可能的集气装置中,主要流道110内的箭头表示工作介质流动方向,与图7相比,图8的该连接通道140与工作介质在主要流道110流动方向之间的倾斜角度大于90度,即图9中的θ 1、θ 2、θ 3三个倾斜角度。由于该倾斜角度增大,可有效地增加工作介质在进入连接通道140时的局部阻力,从而降低工作介质在次要流道130的流速。气泡通过浮力进入到次要流道130顶部,由于工作介质在次要流道130流速 相较于主要流道110流速较缓,气泡很难被工作介质带走重新进入主要流道110中。值得注意的是,该连接通道140所采用的结构为连接管道的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种集气装置,其特征在于,包括:
    冷却板,所述冷却板包括设置于所述冷却板内部的至少一个集气结构、设置于所述冷却板内部的第一流道、设置于所述集气结构内部的第二流道和用于连接所述第一流道和所述第二流道的至少一个连接通道;
    所述至少一个连接通道,用于将工作介质在所述第一流道流动时所携带的气泡转移到所述第二流道;
    所述至少一个集气结构,用于从所述第二流道中收集所述气泡。
  2. 根据权利要求1所述的集气装置,其特征在于,所述工作介质在所述第二流道流动过程中所受到的局部阻力大于所述工作介质在所述第一流道流动过程中所受到的局部阻力。
  3. 根据权利要求2所述的集气装置,其特征在于,所述工作介质在所述第二流道流动过程中所受到的局部阻力可以通过以下方式产生:改变所述至少一个连接通道的横截面;或者,增加所述第二流道中的分叉汇合的节点数量。
  4. 根据权利要求1或2所述的集气装置,其特征在于,所述至少一个连接通道的结构形式为连接管道,所述连接管道的一端连接于所述第一流道的局部高点,所述连接管道的另一端连接于所述第二流道。
  5. 根据权利要求1或2所述的集气装置,其特征在于,所述至少一个连接通道的结构形式为连接口,所述连接口位于所述第一流道的局部高点,所述连接口的一边与所述第一流道相连,所述连接口的另一边与所述第二流道相连。
  6. 根据权利要求4所述的集气装置,其特征在于,所述连接管道的横截面小于所述第一流道和所述第二流道的横截面。
  7. 根据权利要求1-6任一所述的集气装置,其特征在于,所述至少一个连接通道与所述工作介质在所述第一流道中的流动方向之间的倾斜角度大于90度。
  8. 根据权利要求1所述的集气装置,其特征在于,所述至少一个集气结构为倒刺结构、圆形结构、或迷宫结构。
  9. 根据权利要求1所述的集气装置,其特征在于,所述至少一个集气结构包含若干个挡条,所述若干个挡条用于增加所述工作介质在所述第二流道流动过程中的局部阻力。
  10. 一种电子设备,其特征在于,包括:功率元器件和液冷装置,所述功率元器件在工作状态时产生热量,所述液冷装置将所述热量传递至外界;所述电子设备还包含如权利要求1~9任一项所述的集气装置,所述集气装置位于所述液冷装置内部并用于收集所述液冷装置中的气泡。
PCT/CN2022/080341 2021-03-12 2022-03-11 一种集气装置 WO2022188860A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22766382.0A EP4280832A4 (en) 2021-03-12 2022-03-11 BUBBLE COLLECTION DEVICE
US18/550,265 US20240164056A1 (en) 2021-03-12 2022-03-11 Gas collection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110268559.2 2021-03-12
CN202110268559.2A CN115087300A (zh) 2021-03-12 2021-03-12 一种集气装置

Publications (1)

Publication Number Publication Date
WO2022188860A1 true WO2022188860A1 (zh) 2022-09-15

Family

ID=83226321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080341 WO2022188860A1 (zh) 2021-03-12 2022-03-11 一种集气装置

Country Status (4)

Country Link
US (1) US20240164056A1 (zh)
EP (1) EP4280832A4 (zh)
CN (1) CN115087300A (zh)
WO (1) WO2022188860A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001312A1 (en) * 2002-06-28 2004-01-01 Daichi Hotta Electronic device, liquid cooling system and tank
CN1625928A (zh) * 2002-05-15 2005-06-08 松下电器产业株式会社 用于电子设备的冷却装置
CN1813230A (zh) * 2003-06-27 2006-08-02 日本电气株式会社 电子设备的冷却装置
CN101107896A (zh) * 2004-12-31 2008-01-16 英特尔公司 用于整合的泵和冷板的***
US20080013278A1 (en) * 2006-06-30 2008-01-17 Fredric Landry Reservoir for liquid cooling systems used to provide make-up fluid and trap gas bubbles
JP2018011001A (ja) * 2016-07-15 2018-01-18 富士通株式会社 電子機器の液浸槽
CN108029221A (zh) * 2015-09-14 2018-05-11 三菱电机株式会社 冷却器、电力转换装置及冷却***
WO2019043835A1 (ja) * 2017-08-30 2019-03-07 日本電気株式会社 電子装置
KR102091698B1 (ko) * 2019-01-08 2020-03-20 한국기계연구원 상변화 냉각장치 및 상변화 냉각방법
CN112177759A (zh) * 2019-07-01 2021-01-05 泰贺斯聚合物股份有限公司 蓄液罐

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045333A1 (en) * 2003-11-11 2005-05-19 Showa Denko K.K. Expansion tank device, process for fabricating expansion tank device, and liquid cooling radiator
TWI510902B (zh) * 2013-11-07 2015-12-01 Acer Inc 散熱組件與應用其之電子裝置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625928A (zh) * 2002-05-15 2005-06-08 松下电器产业株式会社 用于电子设备的冷却装置
US20040001312A1 (en) * 2002-06-28 2004-01-01 Daichi Hotta Electronic device, liquid cooling system and tank
CN1813230A (zh) * 2003-06-27 2006-08-02 日本电气株式会社 电子设备的冷却装置
CN101107896A (zh) * 2004-12-31 2008-01-16 英特尔公司 用于整合的泵和冷板的***
US20080013278A1 (en) * 2006-06-30 2008-01-17 Fredric Landry Reservoir for liquid cooling systems used to provide make-up fluid and trap gas bubbles
CN108029221A (zh) * 2015-09-14 2018-05-11 三菱电机株式会社 冷却器、电力转换装置及冷却***
JP2018011001A (ja) * 2016-07-15 2018-01-18 富士通株式会社 電子機器の液浸槽
WO2019043835A1 (ja) * 2017-08-30 2019-03-07 日本電気株式会社 電子装置
KR102091698B1 (ko) * 2019-01-08 2020-03-20 한국기계연구원 상변화 냉각장치 및 상변화 냉각방법
CN112177759A (zh) * 2019-07-01 2021-01-05 泰贺斯聚合物股份有限公司 蓄液罐

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4280832A4 *

Also Published As

Publication number Publication date
US20240164056A1 (en) 2024-05-16
EP4280832A4 (en) 2024-07-03
EP4280832A1 (en) 2023-11-22
CN115087300A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US11291136B2 (en) Liquid-cooled cold plate device
CN107567248A (zh) 液冷散热装置
CN113301770A (zh) 通用可插拔数据中心冷却***
JP2023535803A (ja) 液冷放熱構造及びトランスミッションケース
US20110168360A1 (en) Heat exchanger
Ming et al. The thermal analysis of the heat dissipation system of the charging module integrated with ultra-thin heat pipes
TWI548976B (zh) 循環散熱模組
WO2022188860A1 (zh) 一种集气装置
WO2018192463A1 (zh) 一种电子设备机壳
CN206451121U (zh) 一种计算机用水冷机构
CN204695207U (zh) 散热模块
CN220123320U (zh) 液冷散热器
CN209461449U (zh) 一种计算机芯片水冷散热结构
CN210515205U (zh) 一种用于笔记本电路板的散热片
CN209946807U (zh) 用于电脑机箱的辅助散热装置
WO2017067220A1 (zh) 一种移动终端的中框和移动终端
CN213755477U (zh) 液冷散热器
CN201893331U (zh) 散热结构
CN211956368U (zh) 一种计算机水冷散热装置
CN213457866U (zh) 一种穿透式风冷低噪机箱
CN212256198U (zh) 一种计算机自冷却机箱
JP3165057U (ja) 冷媒の蒸発と凝縮に伴う圧力勾配により駆動される放熱装置
CN215494811U (zh) 一种加固笔记本的隔离式散热***
CN107734916B (zh) 液冷式散热***
CN221264343U (zh) 回路式热管单向循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022766382

Country of ref document: EP

Effective date: 20230817

WWE Wipo information: entry into national phase

Ref document number: 18550265

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE