WO2022188852A1 - 一种钙钛矿薄膜及其制备方法、太阳能电池、发光器件 - Google Patents

一种钙钛矿薄膜及其制备方法、太阳能电池、发光器件 Download PDF

Info

Publication number
WO2022188852A1
WO2022188852A1 PCT/CN2022/080283 CN2022080283W WO2022188852A1 WO 2022188852 A1 WO2022188852 A1 WO 2022188852A1 CN 2022080283 W CN2022080283 W CN 2022080283W WO 2022188852 A1 WO2022188852 A1 WO 2022188852A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
heating
substrate
film
coating
Prior art date
Application number
PCT/CN2022/080283
Other languages
English (en)
French (fr)
Inventor
董庆锋
康一飞
王安然
李容
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Publication of WO2022188852A1 publication Critical patent/WO2022188852A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices

Definitions

  • the invention relates to a perovskite film and a preparation method thereof, a solar cell and a light-emitting device.
  • the obstacle to improving the stability of perovskite cells is mainly due to the obvious ion migration of perovskite solar cells under illumination or heating conditions, resulting in device degradation.
  • Existing works on suppressing ion mobility through additive engineering, structural design, and interface engineering have shown that the microscopic morphology and crystalline quality of perovskite films can significantly affect the rate of ion migration.
  • the grain boundary contains more open structures and defects, the probability of carrier recombination and the rate of ion migration are significantly higher than those in the interior of the grain.
  • the increase of the lattice stress caused by the temperature increase will further induce the generation of ion migration.
  • the technical problem to be solved by the present invention is to overcome the defects that the existing perovskite materials and devices are prone to ion migration, which leads to the defects of easy degradation or poor stability in the devices, and provides a perovskite film and a preparation method thereof, a solar energy Batteries, light-emitting devices.
  • the perovskite thin film in the present invention can significantly improve the comprehensive stability of the perovskite thin film and suppress the phenomenon of ion migration.
  • the inventor found that during the preparation of the perovskite film, when the liquid film surface of the precursor solution undergoes an instantaneous and rapid heating process, the solvent immediately vaporizes and evaporates, and the solution instantly nucleates and crystallizes into a solid film. The surface of the film is rapidly cooled, while the internal temperature is slowly cooled. This causes the surface lattice to be compressed and the inner lattice to be stretched. A perovskite film structure with enhanced surface compressive stress is formed, which effectively reduces the ion migration speed of the existing perovskite film and improves the device stability.
  • the invention provides a preparation method of a perovskite film, which comprises the following steps:
  • the perovskite precursor solution layer coated on the substrate forms a perovskite film with a surface compressive stress-enhancing structure
  • the rapid heating process is any of the following schemes:
  • the time of the rapid heating process is 0.1 to 10s, the temperature is increased by 30 to 250°C, the time of the rapid quenching process is 0.1 to 10s, and the temperature is lowered by 30 to 250°C.
  • the rapid heating-quenching process preferably refers to the rapid quenching process immediately after the rapid heating process ends.
  • the maximum heating rate refers to the maximum slope of the temperature-time curve
  • the maximum cooling rate refers to the maximum slope (absolute value) of the temperature-time curve.
  • the rapid heating and rapid quenching time refer to the heating and quenching time of the same area.
  • the maximum heating rate of the perovskite precursor solution layer is preferably 50-250°C/s; for example, 120°C/s, 150°C/s, 180°C/s , 250°C/s.
  • the time of the rapid heating process may be 0.1-10s; for example, 0.5 to 2s; another example is 1s.
  • the temperature is increased by 30 to 200°C.
  • the rapid heating is such that the (perovskite precursor solution layer) surface reaches a temperature of 100-200°C (eg, 130-200°C).
  • the heating temperature of the rapid heating can be conventional in the field, preferably 300-350°C, for example 300°C.
  • the maximum cooling rate of the perovskite film during the rapid heating-quenching process is preferably 15-200°C/s; for example, 100-200°C/s; for example, 100°C/s, 120°C/s .
  • the time of the rapid quenching process may be 0.1-10s; for example, 0.5 to 2s; another example is 1s.
  • the temperature is lowered by 30 to 200°C.
  • the temperature achieved by the rapid quenching process may be (perovskite film surface) cooled to the substrate temperature (where the substrate is located) or room temperature (eg 10°C-30°C); preferably the substrate temperature (eg 70°C-85°C) °C).
  • the rapid heating-quenching process can be carried out according to the following steps.
  • a high temperature hot air heating device is used to rapidly heat up the perovskite precursor solution and the surface of the substrate to 130-200°C within 1s , at this time, the solvent in the precursor solution evaporates to dryness to precipitate a solid phase film, and then in an external cooling atmosphere, such as a low-temperature airflow, the solid phase film and the surface of the substrate are rapidly cooled to achieve a rapid quenching process, that is, a surface compressive stress-enhanced (perovskite) is obtained. ore grain structure) perovskite thin films.
  • the substrate can be a conventional substrate to which a solution film can be attached, such as a silicon battery substrate in a stacked battery structure or a conductive substrate in a single junction battery.
  • the conductive substrate in the single junction cell can be a conventional conductive substrate in the field that can be used for solar cells or light-emitting devices, such as “flexible or rigid ITO transparent conductive glass”, “flexible or rigid AZO transparent conductive glass”, “ Flexible or rigid FTO transparent conductive glass”, “silicon substrate”, “silicon cell”, conductive polymer electrode, graphene or carbon electrode, metal mesh electrode, nano metal wire film, metal film or composite film.
  • the composite film generally refers to a conductive substrate containing two or more electrode materials, such as a composite electrode containing two or more electrode materials among polymer electrodes, metal mesh electrodes, and nano-metal wire electrodes.
  • the composite electrode can be prepared by a conventional preparation method in the art.
  • the conductive substrate in the single junction cell may be a blank conductive substrate or a conductive substrate with a modified layer.
  • pretreatment can be performed according to conventional operations in the art.
  • the pretreatment is preferably cleaning and ultraviolet ozone treatment of the conductive substrate.
  • the substrate may generally be placed on a substrate.
  • the layer of the perovskite precursor solution typically coats the outer surface of the substrate.
  • the outer surface generally refers to the surface opposite the surface of the substrate in contact with the substrate.
  • the rapid heating heating device can be a conventional heating device in the field, for example, a device that rapidly heats the surface of the perovskite precursor solution layer through gas convection, laser, thermal radiation or heat transfer.
  • the heating device is a composite device, its purpose is to work together to satisfy the purpose of rapid heating and film formation in a short time.
  • the perovskite precursor solution layer coated on the substrate should be in a flowing air flow atmosphere of the hot air flow.
  • the air flow atmosphere of the hot air flow can be the air flow atmosphere of the conventional hot air flow in the field.
  • the air flow generated by any means such as a high-pressure gas cylinder, a fan, etc., is used to make the air flow and the perovskite.
  • the ore precursor solution layer is in contact, and the flowing air atmosphere formed can be used.
  • the flowing air atmosphere of the hot air stream can carry away the volatilized solvent.
  • the gas in the hot gas stream can be a conventional heatable gas in the art, such as air and/or an inert gas and a mixture of it and a conventional solvent.
  • the inert gas may be nitrogen and/or argon.
  • the temperature in the airflow atmosphere in which the hot airflow flows may be uniformly distributed or non-uniformly distributed.
  • the temperature distribution of the hot air flow is not uniform, at least ensure that the temperature of the hot air flow is in the range of 250-600°C.
  • the temperature of the hot gas stream is preferably 300-350°C, for example 300°C.
  • the rapid heating heating device can be provided with a hot air blower, an infrared heating device or a heating core according to the routine in the field, and generally the gas can be heated by adjusting the power of the hot air blower, the infrared heating device or the heating core.
  • the heating device When the heating device is a composite device of hot gas flow and heat conduction, the heating device may include a hot gas flow ejection device and a heatable substrate.
  • the substrate can be heated, and the temperature of the substrate is preferably 50-150°C, more preferably 70°C-85°C, such as 70°C, 75°C or 80°C.
  • the rapid quenching can be realized by a cold air cooling system or a heat exchange system.
  • cooling is generally performed by a cold air flow.
  • the direction of the cold air flow may not be specifically limited.
  • the direction of the cold air flow is parallel, perpendicular or at a certain angle to the coating direction.
  • the direction of the cold air flow is the same as the coating direction. vertical.
  • the temperature of the cold air flow may be lower than the temperature of the rapid heating, such as 0°C to 100°C; another example is room temperature (10-30°C).
  • the temperature of the heat exchange system may be lower than the temperature of the heatable substrate (herein "" “Substrate of heating device” refers to the substrate in “composite device”).
  • the temperature of the heatable substrate may be 0-100°C; eg, 70°C-85°C.
  • the rapid heating-quenching process can be implemented by a heating-quenching system.
  • the coating speed is the same as the traveling speed of the heating-quenching system, and the coating direction is the same as the direction of the coating.
  • the heating-quenching system travels in the same direction.
  • the coating can be performed by a conventional process in the art, such as spin coating, spray coating, blade coating, brush printing, screen printing, gravure coating, air knife coating, and slit extrusion coating
  • a conventional process in the art such as spin coating, spray coating, blade coating, brush printing, screen printing, gravure coating, air knife coating, and slit extrusion coating
  • cloth and roll-to-roll printing again such as knife coating and/or slot extrusion coating.
  • the coating speed can be conventional in the art, eg, 25mm/s-30mm/s.
  • the perovskite precursor solution may be a conventional solution in the art for preparing perovskite.
  • the solute is a perovskite material based on mixed components of A, B and X, where A is one or more of methylamine (MA), formamidine (FA), cesium and rubidium, and B is a metal element or mixtures thereof, X is halogen and mixtures thereof.
  • the A can be methylamine
  • B can be lead
  • X can be iodine; for example, CH 3 NH 3 PbI 3 (MAPbI 3 ).
  • the solute of the perovskite material can adopt mixed ions, for example, A can be methylamine, formamidine, cesium and mixtures thereof, B can be conventional metals such as Pb, Sn or their mixtures, X can be chlorine, bromine, Iodine and mixtures thereof; eg MA 0.6 FA 0.38 Cs 0.02 PbI 2.975 Br 0.025 .
  • the solute of the perovskite material may be an all-inorganic component, for example, A may be cesium and/or rubidium, B may be conventional metals such as Pb, Sn or a mixture thereof, and X may be chlorine, bromine, iodine and the like. mixture.
  • the solvent in the perovskite precursor solution can be N,N-dimethylformamide, methylamine acetate, methylamine, dimethyl sulfoxide, ⁇ -butyrolactone, 2-methoxyl One or more of ethanol and acetonitrile.
  • N,N-dimethylformamide or dimethylsulfoxide for example N,N-dimethylformamide or dimethylsulfoxide.
  • the concentration of the solute in the perovskite precursor solution can be selected according to the type of solvent and the type of perovskite precursor, and is preferably 0.3-2 mol/L, such as 1 mol/L or 1.2 mol/L.
  • the thickness of the perovskite thin film is controlled by the concentration of the perovskite precursor solution and the thickness of the coating.
  • annealing treatment can be performed according to conventional operations in the art.
  • the temperature of the annealing is preferably 50-150°C, for example 100°C.
  • the annealing time is preferably within 90 minutes, for example, 10 minutes or 30 minutes. Before and after the annealing treatment, there is no obvious change in the morphology and battery performance.
  • additional annealing treatment may not be performed after the coating is completed.
  • the perovskite thin film prepared by the present invention may not undergo annealing treatment.
  • the heating-quenching process can be realized in air or in an inert gas glove box.
  • the evaporation rate of the solvent in the perovskite precursor solution may be 0.5 ⁇ L/cm 2 /s to 6.5 ⁇ L/cm 2 /s, and the film formation time may be 0.1 s to 0.3 s.
  • the solvent volatilization rate is 6.5 ⁇ L/cm 2 /s
  • the film formation time is 0.1 s
  • the evaporation rate of the solvent is 5 ⁇ L/cm 2 /s
  • the film formation time is 0.15 s
  • the perovskite precursor solution is a 1.2 mol/L CsPbI 2 Br solution in dimethyl sulfoxide
  • the evaporation rate of the solvent was 6.5 ⁇ L/cm 2 /s
  • the film forming time was 0.3 s.
  • the rapid heating-quenching process is carried out according to the following steps, the coating speed is 25-30 mm/s, and at the same time of coating, the perovskite precursor is treated with dry hot air at 300° C.
  • the solution is heated, the maximum heating rate is 100-180°C/s, the heating time is 1s, and then the room temperature air is used for cooling, the maximum cooling rate is 100-120°C/s, and the cooling time is 1s.
  • the rapid heating-quenching process is performed according to the following steps, the coating speed of the perovskite precursor solution is 25-30 mm/s, and at the same time of coating, drying at 300° C. is used.
  • the perovskite precursor solution (wet film) is heated by hot air, the maximum heating rate is 100-180°C/s, the heating time is 1s, and then the room temperature air is used for cooling, and the maximum cooling rate is 100-120°C/s,
  • the cooling time is 1s; wherein, the temperature of the substrate is 75°C; the volatilization rate of the solvent in the perovskite precursor solution is 0.5 ⁇ L/cm 2 /s to 6.5 ⁇ L/cm 2 /s, and the film forming time is 0.1s-0.3s.
  • the perovskite film has a surface compressive stress-enhancing structure; for example, when the interplanar spacing of (220) in the surface portion of the crystal grains in the perovskite film is set to A, the calcium In the case where the interplanar spacing of (220) in the center part where the distance between the titanium crystal grains from the surface is 20% or more of the grain size is set to B, relative to the standard interplanar spacing of the perovskite (for example, when the When the perovskite is MAPbI 3 , its standard interplanar spacing is For example in Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications), A shrinks by 1-3.5% and B expands by 1-3%.
  • the crystal grains in the perovskite film of MAPbI 3 component, have a structure in which the surface lattice shrinks by 1-3.5%, and the internal lattice expands by 1-3%; transmission electrons Microscopic characterization shows (Fig.
  • the present invention also provides a perovskite crystal grain or a perovskite thin film containing the perovskite crystal grain, wherein the interplanar spacing of (220) in the surface portion of the perovskite crystal grain is set to A , when the interplanar spacing of (220) in the center part where the perovskite grain distance from the surface is more than 20% of the grain size is set as B, relative to the standard interplanar spacing of the perovskite ( For example, when the perovskite is MAPbI, its standard interplanar spacing is For example in Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3 )PbI 3 for solid-state sensitised solar cell applications), A shrinks by 1-3.5% and B expands by 1-3%.
  • the perovskite can be a conventional perovskite in the field, such as the solute in the perovskite precursor solution as described above; the solute is a perovskite based on the mixed components of A, B and X Mineral materials, wherein, A is one or more of methylamine (MA), formamidine (FA), cesium and rubidium, B is a metal element or a mixture thereof, and X is a halogen and a mixture thereof.
  • A is one or more of methylamine (MA), formamidine (FA), cesium and rubidium
  • B is a metal element or a mixture thereof
  • X is a halogen and a mixture thereof.
  • the A can be methylamine
  • B can be lead
  • X can be iodine; for example, MAPbI 3 .
  • the solute of the perovskite material can adopt mixed ions, for example, A can be methylamine, formamidine, cesium and mixtures thereof, B can be conventional metals such as Pb, Sn or their mixtures, X can be chlorine, bromine, Iodine and mixtures thereof; eg MA 0.6 FA 0.38 Cs 0.02 PbI 2.975 Br 0.025 .
  • the solute of the perovskite material may be an all-inorganic component, for example, A may be cesium and/or rubidium, B may be conventional metals such as Pb, Sn or a mixture thereof, and X may be chlorine, bromine, iodine and the like. mixture; eg CsPbI 2 Br.
  • the perovskite crystal grains have a structure in which the surface lattice shrinks by 1-3.5% and the internal lattice expands by 1-3%; transmission electron microscopy characterization shows that (Fig.
  • the interplanar spacing of its surface (220) is The interplanar spacing of (220) is
  • the X-ray diffraction peaks of the film in terms of 2 ⁇ angle show that (as shown in Figure 3) there are two small shoulders at 13.5-13.6° and 14.5-14.7°, representing the existence of shrinking and expanding lattice parameters, and the film is polished The latter two shoulder peaks disappear, indicating that the structure is stabilized by its internal stress, which is also destroyed when the surface is destroyed.
  • the present invention also provides a perovskite crystal grain or a perovskite film containing the perovskite crystal grain prepared by the above preparation method.
  • the present invention also provides a solar cell, the active layer of the solar cell contains the perovskite thin film containing the perovskite crystal grains according to any one of the above solutions.
  • the active layer of the solar cell is the perovskite thin film containing the perovskite crystal grains as described in any one of the above solutions.
  • the solar cell can be used as a light-emitting device.
  • the perovskite thin film is compatible with general perovskite solar cell structures, such as conventional formal cell structures and trans cell structures in the field.
  • the solar cell generally includes one or more of a conductive substrate, an electron transport layer, a hole transport layer, an electrode layer, an interface layer and a passivation layer.
  • the hole transport layer can be made of conventional hole transport materials in the art, preferably, the hole transport material can be poly[bis(4-phenyl)(2,4,6-trimethyl) phenyl)amine] (PTAA) or nickel oxide (NiOx) cuprous thiocyanate (CuSCN).
  • PTAA poly[bis(4-phenyl)(2,4,6-trimethyl) phenyl)amine]
  • CuSCN nickel oxide
  • the material of the electron transport layer is a conventional material for preparing electron transport layer in the field, such as one of C 60 , C 60 derivatives, C 70 , C 70 derivatives, TiOx, SnO 2 and ZnO or more.
  • the electrode layer can be made of conventional electrode materials in the art, and the electrode material can be metal, conductive polymer or carbon.
  • the electrode material is metal Cu.
  • the interface layer material can be conventional organic interface materials and/or metal interface materials and/or inorganic interface materials in the field of perovskite cells and light-emitting devices.
  • it can be BCP.
  • the conductive substrate can be a conventional rigid or flexible conductive substrate, such as a glass substrate or a plastic substrate (coated with a conductive layer on one side).
  • the plastic substrate may be a plastic substrate such as PEN, PET or PI.
  • the structure of the solar cell is: "substrate/transparent electrode/hole transport layer/passivation layer/the perovskite film/passivation layer/electron transport layer/interface layer/ electrode layer".
  • the structure of the solar cell is: "substrate/transparent electrode/electron transport layer/passivation layer/the perovskite film/passivation layer/hole transport layer/interface layer/ electrode layer".
  • the structure of the solar cell is: "substrate/transparent electrode/hole transport layer/the perovskite film/electron transport layer/interface layer/electrode layer", for example, “substrate/transparent electrode/hole transport layer/the perovskite film/electron transport layer/interface layer/electrode layer” /ITO/PTAA/MAPbI 3 /C 60 /BCP/Cu”.
  • the structure of the solar cell is: "substrate/transparent electrode/electron transport layer/the perovskite film/hole transport layer/electrode layer", such as "substrate/ITO/ C 60 /MAPbI 3 /CuSCN/C”.
  • each layer in the solar cell can be prepared by conventional vacuum evaporation in the field, and the vacuum evaporation can be conventional vacuum evaporation in the field, which generally refers to the condition that the degree of vacuum is less than 10 -5 Pa Thermal evaporation under vacuum evaporation.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the perovskite film prepared by the present invention has significantly improved crystal quality, reduced grain boundaries, and significantly reduced defect concentration.
  • the rigid perovskite solar cell device prepared by using the methylamine lead iodine film with this structure can reach a fill factor of up to 82.26%, a voltage of up to 1.19v, a current density of 22.69mA/cm 2 , and a photoelectric conversion rate of up to 22.21%.
  • the flexible perovskite solar cell device has a voltage of up to 1.18v, a fill factor of up to 82.36%, a current density of 21.02mA/cm 2 , and a photoelectric conversion rate of up to 20.43%.
  • a great improvement has been achieved.
  • the perovskite film prepared by the present invention limits the channel of ion migration due to the reduction of the surface lattice size.
  • methylamine lead iodide perovskite as an example, its ion migration activation energy is significantly higher than that of the reference methylamine lead iodine film, which means that the solar cell made of methylamine lead iodine with enhanced surface compressive stress
  • the device is less prone to ion movement, and the solar cell device prepared by this method still maintains the photoelectric conversion efficiency of 98.6% of the initial efficiency after 1000 hours of continuous output at the maximum power output point under one sunlight intensity, so that the solar cell device can work. Stability is greatly improved.
  • the perovskite film prepared by the present invention can effectively offset the thermal stress and mechanical stress generated during the heating or bending process of the film due to the enhanced compressive stress on the surface.
  • methylamine lead iodine perovskite as an example, its device shows stronger stability than the reference methylamine lead iodine device in thermal cycling tests. Therefore, in the actual working process of the device, there will be no device attenuation caused by frequent phase transitions due to day-night alternation or climate change.
  • the perovskite grains in the present invention significantly reduce the surface lattice parameters due to the surface compressive stress, and the ion migration activation energy of the compressive stress-enhanced perovskite film is greatly increased in both the lateral and vertical structure tests.
  • Exceeding conventional perovskite films, this enables perovskite solar cells based on surface compressive stress enhancement with high working stability under high temperature working conditions in practical application environments.
  • the perovskite solar cells based on MAPbI3 prepared by the coating process have an energy conversion efficiency of more than 22% without obvious hysteresis at high temperatures up to 90 °C even under one solar intensity illumination condition, and at the maximum After 1000 hours of continuous output of the power point, the initial efficiency of 98.6% is still maintained.
  • the inventors found that the thermal expansion coefficient of the device is reduced, and the fracture energy and thermal shock resistance stability are improved through the counteracting effect of the surface compressive stress on the thermal stress and the mechanical stress. More importantly, this method is compatible with high-throughput production, and is compatible with large-scale solution processing processes including lithography and roll-to-roll coating. solution.
  • FIG. 1 is a transmission electron microscope image of the perovskite thin film prepared in Example 1 from the inside to the surface (from 6 to 1).
  • FIG. 2 shows the variation of the temperature of the precursor solution at a certain point on the substrate with the blade coating process in Example 1.
  • FIG. 3 is the change of the X-ray diffraction peak of the crystal plane of the MAPbI 3 film (110) in Example 1 with the number of mechanical polishing.
  • Example 4 is a comparison diagram of X-ray diffraction images of the perovskite thin film prepared in Example 1 and the perovskite thin film prepared in Comparative Example 1.
  • Example 5 is a comparison diagram of the X-ray photoelectron spectra of Pb 4f of the thin films prepared in Example 1 and Comparative Example 1.
  • FIG. 6 is a comparison diagram of ion migration activation energy of the thin films prepared in Example 1 and Comparative Example 1.
  • FIG. 6 is a comparison diagram of ion migration activation energy of the thin films prepared in Example 1 and Comparative Example 1.
  • Figure 7 is a graph showing the comparison of ion movement speeds of the perovskite films prepared in Example 1 (A), Comparative Example 1 (B), Comparative Example 2 (C), and Comparative Example 3 (D); the length of the scale bar is 50 microns.
  • FIG. 8 is a graph showing the comparison of the ion movement speed of the perovskite thin films prepared in Example 4 (A) and Comparative Example 2 (B); the length of the scale bar is 50 ⁇ m.
  • FIG. 9 is an efficiency diagram of the solar cells prepared in Example 1, Example 2, Example 3 and Comparative Example 1.
  • FIG. 9 is an efficiency diagram of the solar cells prepared in Example 1, Example 2, Example 3 and Comparative Example 1.
  • FIG. 10 shows the external quantum efficiency and integrated current of the solar cell devices prepared in Example 1 and Comparative Example 1.
  • FIG. 11 is a graph showing the efficiency of forward scanning and reverse scanning of the solar cell of Comparative Example 1 at different temperatures.
  • FIG. 12 is a diagram showing the efficiency of forward scanning and reverse scanning of the solar cell of Example 1 at different temperatures.
  • Example 13 is a comparison diagram of the efficiency hysteresis of the solar cells prepared in Example 1 and Comparative Example 1 at different temperatures.
  • FIG. 14 is a graph showing the change in efficiency of the solar cells prepared in Example 1 and Comparative Example 1 under ten temperature cycles from -15 degrees Celsius to 85 degrees Celsius.
  • FIG. 15 is a comparison diagram of the stability of the output of the highest efficiency point of the solar cells prepared in Example 1 and Comparative Example 1 under continuous illumination.
  • Figure 16 shows the stability of Example 1 as an electroluminescent device.
  • FIG. 17 shows the electroluminescence spectra of Example 1 as the electroluminescence device under different bias voltages.
  • step 2) On the PTAA film in step 1), keeping the substrate temperature at 75° C., prepare the perovskite film by the blade coating method, setting the blade coating speed to 30 mm/s, and the distance from the ITO glass to 50 ⁇ m.
  • the heating-quenching system is fixed on the first speed control system.
  • the heating-quenching system adopts hot air heating, room temperature air cooling and quenching (other methods that can achieve this maximum cooling rate range can also be used), and the drying heat is set.
  • the air temperature was 300°C.
  • the specific preparation process is as follows:
  • step 3 Take the film obtained in step 2), and coat a 1 nm choline chloride passivation layer film on the film, and the coating area is half of the area of the film.
  • the structures of the two solar cells prepared in this example are:
  • step 2) On the PTAA film in step 1), keeping the substrate temperature at 75° C., prepare the perovskite film by the blade coating method, setting the blade coating speed to 30 mm/s, and the distance from the ITO glass to 50 ⁇ m.
  • the heating-quenching system is fixed on the first speed control system.
  • the heating-quenching system adopts hot air heating, room temperature air cooling and quenching, and the drying hot air temperature is set to 300°C.
  • the specific preparation process is as follows:
  • step 2) The thin film obtained in step 2) is coated with a 1 nm choline chloride passivation layer thin film on the thin film.
  • step 3 On the film obtained in step 3), vacuum evaporation of 20 nm thick C 60 , 7 nm thick BCP, and 100 nm thick copper electrodes is performed in sequence. Vacuum degree ⁇ 10 -5 Pa during evaporation.
  • the structure of the solar cell prepared in this example is:
  • the 2 ⁇ 10cm glass ITO substrate was cleaned and treated with ultraviolet ozone, uniformly coated with 15mg/mL C 60 -1,2-dichlorobenzene solution liquid film, annealed at 100 degrees for 15min, and the thickness was about 20nm.
  • step 2) On the C 60 film prepared in step 1), adjust the substrate temperature to 75° C., set the blade coating speed to 30 mm/s, and set the distance from the ITO substrate to 50 ⁇ m.
  • the heating-quenching system is fixed on the first speed control system.
  • the heating-quenching system adopts hot air heating, room temperature air cooling and quenching, and the drying hot air temperature is set to 300°C.
  • the specific preparation process is as follows:
  • step 3 Print a 10 ⁇ m thick conductive carbon paste on the film obtained in step 2, and anneal in air at 100° C. for 20 min.
  • the structure of the solar cell prepared in this example is: ITO/C 60 /MAPbI 3 /C.
  • step 2) On the PTAA film in step 1), keeping the substrate temperature at 75° C., prepare the perovskite film by the blade coating method, setting the blade coating speed to 25 mm/s, and the distance from the ITO glass to 50 ⁇ m.
  • the heating-quenching system is fixed on the first speed control system.
  • the heating-quenching system adopts hot air heating, room temperature air cooling and quenching (other methods that can achieve this maximum cooling rate range can also be used), and the drying heat is set.
  • the air temperature was 300°C.
  • the specific preparation process is as follows:
  • the maximum heating rate is 180 °C/s
  • the heating time is After 1 s, the solution nucleated and crystallized into a solid film instantaneously, and then was cooled by air at room temperature (10-30 °C) with a maximum cooling rate of 120 °C/s and a cooling time of 1 s. After heating with hot air and air cooling at room temperature, it can be seen that the solvent quickly evaporates to dryness, and the yellow perovskite wet film immediately turns into a black, dense and uniform solid film with a mirror surface.
  • the evaporation rate of the solvent in the MA 0.6 FA 0.38 Cs 0.02 PbI 2.975 Br 0.025 solution was 5 ⁇ L/cm 2 /s, and the film-forming time was 0.15 s.
  • step 2) 2) On the SnO 2 film prepared in step 1), adjust the substrate temperature to 85° C., set the blade coating speed to 10 mm/s, and set the distance from the ITO substrate to 50 ⁇ m.
  • the heating-quenching system is fixed on the first speed control system. In this embodiment, the heating-quenching system adopts hot air heating, room temperature air cooling and quenching, and the drying hot air temperature is set to 500°C.
  • the specific preparation process is as follows:
  • the MAPbI 3 thin films were prepared by the traditional blade coating method.
  • step 2) On the PTAA film in step 1), keeping the substrate temperature at 135°C, dropwise add 1 mol/L N,N-dimethylformamide solution of MAPbI 3 to the gap between the blade and the ITO glass, and keep the blade coating
  • the speed was 7 mm/s, and the distance from the ITO glass was 50 ⁇ m.
  • the coated perovskite films were annealed on a hot stage at 100 °C for 30 min.
  • step 2) On the thin film obtained in step 2), vacuum evaporation of 20 nm thick C 60 , 7 nm thick BCP, and 100 nm thick copper electrodes is performed in sequence. Vacuum degree ⁇ 10 -5 Pa during evaporation.
  • the structure of the solar cell prepared in this example is:
  • the films of other representative components MA 0.6 FA 0.38 Cs 0.02 PbI 2.975 Br 0.025 were prepared by the traditional blade coating method.
  • step 2) On the PTAA film in step 1), keeping the substrate temperature at 135°C, dropwise add 1 mol/L MA 0.6 FA 0.38 Cs 0.02 PbI 2.975 Br 0.025 N,N-dimethyl group at the gap between the scraper and the ITO glass For the formamide solution, keep the blade coating speed at 5 mm/s and the distance between the ITO glass at 50 ⁇ m.
  • the coated perovskite films were annealed on a hot stage at 100 °C for 30 min.
  • step 2) On the PTAA film in step 1), keep the substrate temperature at 135°C, and dropwise add 1 mol/L CsPbI 2 Br solution to the gap between the scraper and the ITO glass, the solvent is N,N-dimethylformamide: dimethylformamide.
  • Base sulfoxide 4:1 to keep the blade coating speed at 5 mm/s and the distance from the ITO glass at 50 ⁇ m.
  • the coated perovskite films were annealed on a hot stage at 100 °C for 30 min.
  • Example 1 The temperature of the drying hot air in step 2) of Example 1 was greatly reduced, and the maximum heating rate was adjusted to 2°C/s or 8°C/s respectively.
  • N,N-dimethylformamide coated with MAPbI 3 solution, and other parameters are the same as in step 2) of Example 1.
  • the scanning electron microscope images of the prepared perovskite films are shown in Figures A and B in Figure 19.
  • step 2) of Example 1 was adjusted to be the N,N-dimethylformamide solution of MAPbI 3 coated under the condition of 10°C/s, and other parameters were the same as those in step 2) of Example 1.
  • the scanning electron microscope image of the prepared perovskite film is shown in Figure 19, Panel D.
  • the MAPbI 3 film prepared based on the method in Example 1 was used for X-ray diffraction characterization.
  • the perovskite film has a structure in which the surface lattice shrinks and the internal lattice expands.
  • the (110) interplanar spacing changes in order of shrinkage by 2.8%, shrinkage by 0.25%, expansion by 0.38%, expansion by 0.54%, expansion by 1.9%, expansion by 3.09%, and the structure of the internal lattice expansion by 1-3% , while the MAPbI 3 grains prepared in Comparative Example 1 had no surface shrinkage and a center-expanded structure (as shown in Figure 18).
  • the X-ray diffraction peaks of the film show two small shoulders at 13.6 degrees and 14.5 degrees (as shown in Figure 3), representing the existence of shrinking and expanding lattice parameters, and the two shoulder peaks disappear after polishing the film , indicating that the structure is stabilized by its internal stress, and when the surface is damaged, the stress structure is also destroyed.
  • the MAPbI 3 film prepared based on the method in Example 1 was used for X-ray diffraction characterization. The results are shown in Figure 3. There are two small shoulders at 13.6 degrees and 14.5 degrees, representing the existence of shrinking and expanding crystallites. However, the two shoulder peaks disappear after polishing the film, indicating that this structure is stabilized by its internal stress, and when the surface is damaged, this stress structure is also destroyed. However, the MAPbI 3 film in Comparative Example 1 (as shown in Figure 4 ) has no shoulder at the same position.
  • the MAPbI 3 thin film prepared by the method of Example 1 (using Step 2) and Comparative Example 1 was used for X-ray photoelectron spectroscopy characterization.
  • the binding energies of Pb elements 4f5/2 and 4f7/2 on the surface of the film in Example 1 are 143.15 and 138.3 eV
  • the binding energies of Pb elements 4f5/2 and 4f7/2 on the surface of the film in Comparative Example 1 are 142.90 and 138.05eV. It can be seen that the binding energy of the Pb element on the surface of the film in Example 1 is larger, indicating that the outer electron cloud density is lower, and the interaction force with iodine is stronger, that is, the Pb-I bond length is shorter. Greater stability.
  • the MAPbI 3 thin films were prepared by the preparation methods in Example 1 (step 2) and Comparative Example 1, respectively, and 60 nm of gold was vacuum-evaporated to prepare ITO/Au/MAPbI 3 /Au structure devices, and a constant constant was applied to the devices. 1V DC voltage for 100s, then immediately remove the voltage, observe the current decay, by measuring the current decay curve at different temperatures, the activation energy of ion migration can be obtained.
  • Example 1 the activation energy of ion migration in Example 1 is 0.543 eV, while that in Comparative Example 1 is 0.341 eV, indicating that the surface compressive stress-enhanced MAPbI 3 film significantly increases the barrier for ion migration. .
  • MAPbI 3 MA 0.6 FA 0.38 Cs 0.02 PbI 2.975 Br 0.025 and CsPbI 2 Br films prepared by the preparation methods in Example 1 (step 2), 4 and Comparative Examples 1, 2, and 3, respectively, at a distance of 50 microns.
  • Au/MAPbI 3 /Au lateral structure device was prepared at the position of .
  • An electric field of 1 V/ ⁇ m was applied across the electrodes, respectively.
  • Example 1 Take the perovskite solar cell prepared by the method of Example 1 and Comparative Example 1, and detect its J-V curve (current density and voltage characteristic curve).
  • the detection method is as follows: place the device under the simulated sunlight of AM1.5 standard, Use a Keithley 2400 digital source meter to apply a voltage across the device to scan from -0.5V to 1.5V (forward scan) at a speed of 0.05V/s, and then from 1.5V to -0.5V (reverse scan), the scan step is 0.01V.
  • the resulting J-V curves were recorded. See Figure 9. The specific data are shown in Table 1 below.
  • the open circuit voltage of the rigid perovskite solar cell device prepared in Example 1 can reach 1.19V
  • the fill factor can reach 82.26%
  • the current density can reach 22.69mA/cm 2
  • the photoelectric conversion rate It can be seen from Table 2 and Figure 9 that the voltage of the flexible perovskite solar cell device prepared in Example 2 can reach 1.18V
  • the fill factor can reach up to 82.36%
  • the current density is 21.02mA/cm 2
  • the photoelectric conversion rate can reach up to 20.43%. were significantly higher than the comparative example.
  • the perovskite solar cell device prepared in Comparative Example 1 has an open circuit voltage of 1.04V, a fill factor of 75.31%, a current density of 22mA/cm 2 , and a photoelectric conversion rate of 17.23%.
  • the performance is significantly lower than the perovskite solar cell devices based on surface compressive stress enhancement in Examples 1-2.
  • the perovskite solar cell in Example 1 still maintains an efficiency of more than 90% after 36 hours, while the device efficiency of the perovskite solar cell in Comparative Example 1 is greatly attenuated.
  • the perovskite solar cell in Example 1 still maintains 98.6% of the initial efficiency after 1000 hours, while the device efficiency of the perovskite solar cell in Comparative Example 1 decays by more than 20% within 27 hours .
  • the perovskite solar cell without passivation layer prepared based on the method of Example 1 can also become an electroluminescent device under the condition of applied voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种钙钛矿薄膜及其制备方法、太阳能电池、发光器件。本发明提供了一种钙钛矿薄膜的制备方法,其包括下述步骤:通过快速加热-淬火过程使得涂布于衬底上的钙钛矿前驱体溶液层形成具有表面压应力增强结构的钙钛矿薄膜,即可。本发明的钙钛矿薄膜可显著提升钙钛矿薄膜的综合稳定性,并抑制离子迁移现象。

Description

一种钙钛矿薄膜及其制备方法、太阳能电池、发光器件
本申请要求申请日为2021/3/11的中国专利申请2021102679939的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种钙钛矿薄膜及其制备方法、太阳能电池、发光器件。
背景技术
有机无机杂化的钙钛矿材料本身优秀的光物理性质,例如:超长的激子传输长度,可见光谱范围内的高吸收系数,较少的深能级缺陷,使其在过去几年迎来了井喷发展。但相对于可以和单晶硅电池相媲美的25.5%的效率,钙钛矿电池稳定性的进展仍有待提升。在保证效率的情况下,如何利用可大规模生产的制备工艺提升稳定性,是我们当前面临的关键问题。
目前,提升钙钛矿电池稳定性的障碍主要源于钙钛矿太阳能电池在光照或加热条件下会发生明显的离子迁移导致器件降解。现有的通过添加剂工程、结构设计、界面工程等抑制离子移动的工作表明,钙钛矿膜的微观形貌和结晶质量会显著影响离子迁移的速率。尤其地,晶界由于含有更多的开放结构和缺陷,使其载流子复合几率和发生离子迁移的速度显著高于晶粒内部。除此之外,在器件热退火或实际工作的过程中,由温度升高引起的晶格应力的增加会进一步诱导离子迁移的产生。
因此,如何减弱钙钛矿材料在实际工作中的离子迁移,进而提升钙钛矿太阳能电池的工作寿命是钙钛矿太阳能电池未来产业化需要解决的重要问题之一。
发明内容
本发明所要解决的技术问题在于克服现有的钙钛矿材料及器件易发生离子迁移,进而导致器件存在易降解或稳定性差的缺陷,而提供了一种钙钛矿薄膜及其制备方法、太阳能电池、发光器件。本发明中的钙钛矿薄膜可显著提升钙钛矿薄膜的综合稳定性,并抑制离子迁移现象。
发明人经过大量研究发现,在钙钛矿薄膜的制备过程中,当前驱体溶液的液膜表面经历瞬时快速升温的过程时,溶剂立即气化蒸发,溶液瞬间成核结晶为固体薄膜,此时将薄膜表面迅速降温,而内部温度缓慢冷却。这导致表面晶格被压缩,内部晶格被拉伸。 形成了表面压应力增强的钙钛矿薄膜结构,有效降低了现有的钙钛矿薄膜的离子迁移速度,提升了器件稳定性。
为实现以上目的,本发明采用如下技术方案:
本发明提供了一种钙钛矿薄膜的制备方法,其包括下述步骤:
通过快速加热-淬火过程(快速加热及快速淬火过程)使得涂布于衬底上的钙钛矿前驱体溶液层形成具有表面压应力增强结构的钙钛矿薄膜,即可;
其中,所述快速加热过程为如下任一方案:
方案1、所述快速加热过程中,钙钛矿前驱体溶液层(表面)的最大升温速率为10-500℃/s;所述快速淬火过程中,钙钛矿薄膜(表面)的最大降温速率为15-500℃/s;
方案2、所述快速加热过程的时间在0.1至10s,升温30至250℃,所述快速淬火过程的时间为0.1至10s,降温30至250℃。
本发明中,本领域技术人员可以理解,所述快速加热-淬火过程较佳地是指快速加热过程结束后,立即进行快速淬火过程。所述的最大升温速率是指温度时间曲线的最大斜率,最大降温速率是指温度时间曲线的最大斜率(绝对值)。
本领域技术人员能够理解,由于快速加热-淬火过程为在涂布的运动状态进行的,所述快速加热、所述快速淬火的时间是指同一区域的加热、淬火时间。
本领域技术人员能够理解,由于快速加热-淬火过程中,特别是淬火过程中,由于外部(例如基底温度)和内部温度(例如钙钛矿前驱体溶液层内或钙钛矿薄膜内)与钙钛矿前驱体溶液层(表面)或钙钛矿薄膜(表面)存在温差,因此,所述快速淬火过程结束后,钙钛矿薄膜(表面)的温度仍会存在一定的、小范围的波动。
本发明的某一方案中,所述快速加热过程中,钙钛矿前驱体溶液层的最大升温速率为优选50-250℃/s;例如120℃/s、150℃/s、180℃/s、250℃/s。
本发明中,所述快速加热过程的时间可为0.1-10s;例如0.5至2s;又例如1s。
本发明的某一方案中,所述快速加热过程中,升温30至200℃。例如,快速加热为使(钙钛矿前驱体溶液层)表面达到温度为100-200℃(例如130-200℃)。
本发明中,所述快速加热(过程)的加热温度可为本领域常规的,优选为300-350℃,例如300℃。
本发明中,所述快速加热-淬火过程中所述钙钛矿薄膜的最大降温速率优选为15-200℃/s;例如100-200℃/s;又例如100℃/s、120℃/s。
本发明中,所述快速淬火过程的时间可为0.1-10s;例如0.5至2s;又例如1s。
本发明的某一方案中,所述快速淬火过程中,降温30至200℃。例如,所述快速淬 火过程实现的温度可为(钙钛矿薄膜表面)冷却至(衬底所在的)基底温度或室温(例如10℃-30℃);优选为基底温度(例如70℃-85℃)。
本发明的某一方案中,所述快速加热-淬火过程可按照下述步骤进行,通过一高温热风加热装置使钙钛矿前驱体溶液及衬底表面在1s之内迅速升温至130-200℃,此时前驱体溶液中溶剂蒸干析出固相薄膜,随后在外加冷却氛围下,如低温气流,固相薄膜及衬底表面迅速冷却实现快速淬火过程,即得到表面压应力增强的(钙钛矿晶粒结构的)钙钛矿薄膜。
本发明中,所述衬底可为本领域常规的可附着溶液薄膜的衬底,例如叠层电池结构中的硅电池基底或单结电池中的导电基板。
其中,所述单结电池中的导电基板可为本领域常规的可用于太阳能电池或发光器件的导电基板,例如“柔性或刚性ITO透明导电玻璃”、“柔性或刚性AZO透明导电玻璃”、“柔性或刚性FTO透明导电玻璃”、“硅衬底”、“硅电池”、导电聚合物电极、石墨烯或碳电极、金属网格电极、纳米金属线薄膜、金属薄膜或复合薄膜。
所述复合薄膜一般是指含有两种或两种以上电极材料的导电基板,例如含有聚合物电极、金属网格电极和纳米金属线电极中两种以上电极材料的复合电极。
所述复合电极可采用本领域常规的制备方法制得。
其中,所述单结电池中的导电基板可为空白导电基板或带有修饰层的导电基板。
当所述导电基板为空白导电基板时,在所述涂布之前,可按本领域常规操作进行前处理。所述前处理优选为将所述导电基板经清洗处理和紫外臭氧处理。
本发明中,所述衬底一般可置于一基底上。
当所述衬底置于一基底上时,所述钙钛矿前驱体溶液层一般涂布于所述衬底的外表面。所述外表面一般是指所述衬底与所述基底接触面的相对面。
本发明中,所述快速加热的加热装置可为本领域常规加热装置,例如通过气体对流、激光、热辐射或热传递作用使钙钛矿前驱体溶液层表面迅速升温的装置均可。再例如通过热气流、激光、微波、红外灯或其他高温产生热辐射的装置及其共同作用的加热装置等。
当所述加热装置为复合装置时,其目的为共同作用满足短时间迅速加热及薄膜形成的目的。
所述快速加热的加热方式为通过热气流加热时,一般应使得涂布于衬底上的钙钛矿前驱体溶液层处于所述热气流的流动的气流氛围中。
所述热气流的流动的气流氛围可为本领域常规的热气流的流动的气流氛围,一般而 言,采用任意手段产生的气流,如高压气瓶,风机等,使该气流与所述钙钛矿前驱体溶液层接触,所形成的流动的气流氛围均可。一般而言,所述热气流的流动的气流氛围能够将挥发的溶剂带走。
所述热气流中的气体可为本领域常规的可加热的气体,例如空气和/或惰性气体及其与常规溶剂的混合气。所述惰性气体可为氮气和/或氩气。
本领域技术人员知晓,所述热气流的流动的气流氛围中的温度可以均匀分布也可以不均匀分布。当所述热气流的温度分布不均匀时,至少保证所述热气流的温度在250-600℃的范围内。较佳地,所述热气流的温度优选为300-350℃,例如300℃。
本领域技术人员知晓,所述快速加热的加热装置可按本领域常规设置有热风机、红外加热装置或发热芯,一般可通过调节所述热风机、红外加热装置或发热芯的功率使气体加热。
当所述加热装置为热气流及热传导复合装置时,所述加热装置可包括热气流喷出装置及可加热基底。
其中,所述基底可进行加热处理,所述基底的温度优选为50-150℃,更优选为70℃-85℃,例如70℃、75℃或80℃。
本发明中,所述快速淬火可通过冷风冷却***或热交换***实现。
当所述快速淬火的淬火***为冷风冷却***时,一般通过冷风气流进行冷却。
所述冷风气流的方向可不作具体限制,例如,所述冷风气流的方向与所述涂布的方向平行、垂直或成一定角度,优选地,所述冷风气流的方向与所述涂布的方向垂直。所述冷风气流温度可为低于所述快速加热的温度,例如0℃至100℃;又例如室温(10-30℃)。
当所述快速淬火的淬火***为热交换***、且加热***包括热气流喷出装置及可加热基底时,所述热交换***的温度可低于所述可加热基底的温度(此处的“加热装置的基底”是指“复合装置”中的基底)。
所述可加热基底的温度可为0-100℃;例如70℃-85℃。
本发明中,所述快速加热-淬火过程可通过加热-淬火***实施。
本发明中,优选地,当所述快速加热-淬火过程通过加热-淬火***实施时,所述涂布的速度与所述加热-淬火***的行进速度相同,所述涂布的方向与所述加热-淬火***的行进方向相同。
本发明中,所述涂布可采用本领域常规的工艺进行涂布,例如旋涂,喷涂、刮涂、刷子印刷、丝网印刷、微凹涂布、风刀涂布、狭缝挤出涂布和辊对辊印刷中的一种或多种,再例如刮涂和/或狭缝挤出涂布。
涂布速度可为本领域常规的,例如25mm/s-30mm/s。
本发明中,所述钙钛矿前驱体溶液可为本领域常规的可制得钙钛矿的溶液。例如,溶质为基于A、B和X混合组分的钙钛矿材料,其中,A为甲胺(MA)、甲脒(FA)、铯和铷中的一种或多种,B为金属元素或其混合物,X为卤素及其混合物。
其中,所述A可为甲胺,B可为铅,X可为碘;例如CH 3NH 3PbI 3(MAPbI 3)。
其中,所述钙钛矿材料的溶质可采用混合离子,例如A可为甲胺、甲脒、铯及其混合物,B可为Pb、Sn等常规金属或其混合物,X可为氯、溴、碘及其混合物;例如MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025
其中,所述钙钛矿材料的溶质可为全无机组分,例如A可为铯和/或铷,B可为Pb、Sn等常规金属或其混合物,X可为氯、溴、碘及其混合物。
本发明中,所述钙钛矿前驱体溶液中的溶剂可为N,N-二甲基甲酰胺、醋酸甲胺、甲胺、二甲基亚砜、γ-丁内酯、2-甲氧基乙醇、乙腈中的一种或多种。例如N,N-二甲基甲酰胺或二甲基亚砜。
本发明中,所述钙钛矿前驱体溶液中溶质的浓度可根据溶剂种类及钙钛矿前驱体的种类进行选择,优选为0.3-2mol/L,例如1mol/L或1.2mol/L。
本发明中,本领域技术人员知晓,所述的钙钛矿薄膜的厚度由所述钙钛矿前驱体溶液浓度、所述涂布的厚薄共同进行控制。
本发明中,所述涂布结束后可按本领域常规操作进行退火处理。所述退火的温度优选为50-150℃,例如100℃。所述退火的时间优选为90min内,例如10min或30min,在经退火处理之前和退火处理之后,其形貌及电池性能无明显变化。
本发明中,所述涂布结束后可不额外进行退火处理。
本发明制备得到的钙钛矿薄膜可不经过退火处理。
本发明中,所述加热-淬火过程可在空气中实现,也可在惰性气体手套箱中实现。
本发明的某一方案中,所述钙钛矿前驱体溶液中溶剂的挥发速度可为0.5μL/cm 2/s至6.5μL/cm 2/s,成膜时间可为0.1s至0.3s。
例如,当所述钙钛矿前驱体溶液为1mol/L的MAPbI 3的N,N-二甲基甲酰胺溶液时,溶剂的挥发速度为6.5μL/cm 2/s,成膜时间为0.1s,或,溶剂的挥发速度为5μL/cm 2/s、成膜时间为0.15s;或者,当所述钙钛矿前驱体溶液为1.2mol/L的CsPbI 2Br的二甲基亚砜溶液时,溶剂的挥发速度为6.5μL/cm 2/s,成膜时间为0.3s。
本发明的某一方案中,所述快速加热-淬火过程按照下述步骤进行,涂布速度为25-30mm/s,在涂布的同时,利用300℃的干燥热空气对钙钛矿前驱体溶液进行加热,最大 升温速率为100-180℃/s,加热时间为1s,之后利用室温空气进行冷却,最大冷却速率为100-120℃/s,冷却时间为1s。
本发明的某一方案中,所述快速加热-淬火过程按照下述步骤进行,所述钙钛矿前驱体溶液涂布速度为25-30mm/s,在涂布的同时,利用300℃的干燥热空气对钙钛矿前驱体溶液(湿膜)进行加热,最大升温速率为100-180℃/s,加热时间为1s,之后利用室温空气进行冷却,最大冷却速率为100-120℃/s,冷却时间为1s;其中,所述基底的温度为75℃;所述钙钛矿前驱体溶液中溶剂的挥发速度为0.5μL/cm 2/s至6.5μL/cm 2/s,成膜时间为0.1s-0.3s。
本发明中,所述的钙钛矿薄膜具有表面压应力增强结构;例如在将所述钙钛矿薄膜中的晶粒的表面部的(220)的晶面间距设为A,将所述钙钛矿晶粒距离表面距离达20%晶粒尺寸以上的中心部的(220)的晶面间距设为B的情况下,相对于所述钙钛矿的标准晶面间距(例如,当所述钙钛矿为MAPbI 3时,其标准晶面间距为
Figure PCTCN2022080283-appb-000001
例如Synthesis and crystal chemistry of the hybrid perovskite(CH3NH3)PbI3 for solid-state sensitised solar cell applications中所示),A收缩1-3.5%,B扩大1-3%。
本发明中,例如在MAPbI 3组分的钙钛矿薄膜中,所述钙钛矿薄膜中,晶粒具有表面晶格收缩1-3.5%,内部晶格扩大1-3%的结构;透射电子显微镜表征显示(图1),其表面(220)的晶面间距为
Figure PCTCN2022080283-appb-000002
内部(220)的晶面间距为
Figure PCTCN2022080283-appb-000003
以2θ角表示薄膜X射线衍射峰显示(如图3)在13.5-13.6°和14.5-14.7°存在着两个小的肩锋,代表着其中存在收缩和扩大的晶格参数,而将薄膜打磨后两个肩峰消失,说明这种结构是由其内部的应力稳定的,当表面被破坏时,这种应力结构也被破坏。(主峰和肩峰代表的都是110晶面之间的晶面间距,由于压应力增强的钙钛矿的晶面间距表面和内部不同,所以会出现小的肩峰。)
本发明还提供了一种钙钛矿晶粒或包含所述钙钛矿晶粒的钙钛矿薄膜,在将所述钙钛矿晶粒的表面部的(220)的晶面间距设为A,将所述钙钛矿晶粒距离表面距离达20%晶粒尺寸以上的中心部的(220)的晶面间距设为B的情况下,相对于所述钙钛矿的标准晶面间距(例如,当所述钙钛矿为MAPbI 3时,其标准晶面间距为
Figure PCTCN2022080283-appb-000004
例如Synthesis and crystal chemistry of the hybrid perovskite(CH 3NH 3)PbI 3for solid-state sensitised solar cell applications中所示),A收缩1-3.5%,B扩大1-3%。
本发明中,所述钙钛矿可为本领域常规的钙钛矿,例如如上所述钙钛矿前驱体溶液中溶质所述;所述溶质为基于A、B和X混合组分的钙钛矿材料,其中,A为甲胺(MA)、甲脒(FA)、铯和铷中的一种或多种,B为金属元素或其混合物,X为卤素及其混合物。
其中,所述A可为甲胺,B可为铅,X可为碘;例如MAPbI 3
其中,所述钙钛矿材料的溶质可采用混合离子,例如A可为甲胺、甲脒、铯及其混合物,B可为Pb、Sn等常规金属或其混合物,X可为氯、溴、碘及其混合物;例如MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025
其中,所述钙钛矿材料的溶质可为全无机组分,例如A可为铯和/或铷,B可为Pb、Sn等常规金属或其混合物,X可为氯、溴、碘及其混合物;例如CsPbI 2Br。
本发明中,例如在MAPbI 3组分的钙钛矿薄膜中,所述钙钛矿晶粒具有表面晶格收缩1-3.5%,内部晶格扩大1-3%的结构;透射电子显微镜表征显示(图1),其表面(220)的晶面间距为
Figure PCTCN2022080283-appb-000005
内部(220)的晶面间距为
Figure PCTCN2022080283-appb-000006
以2θ角表示薄膜X射线衍射峰显示(如图3)在13.5-13.6°和14.5-14.7°存在着两个小的肩锋,代表着其中存在收缩和扩大的晶格参数,而将薄膜打磨后两个肩峰消失,说明这种结构是由其内部的应力稳定的,当表面被破坏时,这种应力结构也被破坏。
本发明还提供了一种由上述制备方法制得的钙钛矿晶粒或含所述钙钛矿晶粒的钙钛矿薄膜。
本发明还提供了一种太阳能电池,所述太阳能电池的活性层含如上任一方案所述的含所述钙钛矿晶粒的钙钛矿薄膜。
本发明中,优选地,所述太阳能电池的活性层为如上任一方案所述的含所述钙钛矿晶粒的钙钛矿薄膜。
本发明中,所述太阳能电池可作为发光器件。
本发明中,所述的钙钛矿薄膜兼容通用的钙钛矿太阳能电池结构,如领域内常规的正式电池结构及反式电池结构。
本发明中,所述太阳能电池一般包括导电基底、电子传输层、空穴传输层、电极层、界面层和钝化层中的一种或多种。
其中,所述空穴传输层可采用本领域常规的空穴传输材料制得,优选的,所述空穴传输材料可为聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)或氧化镍(NiOx)硫氰酸亚铜(CuSCN)。
其中,所述的电子传输层的材料为本领域常规的制备电子传输层的材料,例如为C 60、C 60衍生物、C 70、C 70衍生物、TiOx、SnO 2和ZnO中的一种或多种。
其中,所述电极层可采用本领域内常规的电极材料制得,所述电极材料可为金属、导电聚合物或碳。优选地,所述电极材料为金属Cu。
其中,所述界面层材料可为钙钛矿电池及发光器件领域内常规的有机界面材料及/或 金属界面材料及/或无机界面材料。优选地,可为BCP。
其中,所述导电基底可采用常规刚性或者柔性导电基底,如(一面镀有导电层的)玻璃基底或塑料基底。所述塑料基底可为PEN、PET或PI等塑料基底。
本发明中,优选地,所述太阳能电池的结构为:“衬底/透明电极/空穴传输层/钝化层/所述的钙钛矿薄膜/钝化层/电子传输层/界面层/电极层”。
本发明中,优选地,所述太阳能电池的结构为:“衬底/透明电极/电子传输层/钝化层/所述的钙钛矿薄膜/钝化层/空穴传输层/界面层/电极层”。
本发明中,优选地,所述太阳能电池的结构为:“衬底/透明电极/空穴传输层/所述的钙钛矿薄膜/电子传输层/界面层/电极层”,例如“衬底/ITO/PTAA/MAPbI 3/C 60/BCP/Cu”。
本发明中,优选地,所述太阳能电池的结构为:“衬底/透明电极/电子传输层/所述的钙钛矿薄膜/空穴传输层/电极层”,例如“衬底/ITO/C 60/MAPbI 3/CuSCN/C”。
本发明中,所述太阳能电池中各层可采用本领域常规的真空蒸镀制备,所述真空蒸镀可为本领域常规的真空蒸镀,一般是指在真空度<10 -5Pa的条件下进行的热蒸发真空蒸镀。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
(1)本发明制备的钙钛矿薄膜相比于同样原料制备的参比薄膜,其结晶质量明显提高,晶界减少,缺陷浓度显著降低。应用该结构的甲胺铅碘薄膜制得的刚性钙钛矿太阳能电池器件填充因子最高可达82.26%,电压可达1.19v,电流密度为22.69mA/cm 2,光电转换率最高可达22.21%;柔性钙钛矿太阳能电池器件电压可达1.18v,填充因子最高可达82.36%,电流密度为21.02mA/cm 2,光电转换率最高可达20.43%。相较于常规方法制得的甲胺铅碘膜制备的器件,均取得了大幅度的提升。
(2)本发明制备的钙钛矿薄膜由于表面晶格尺寸的降低,限制了离子迁移的通道。以甲胺铅碘钙钛矿为例,其离子迁移激活能显著高于参比的甲胺铅碘薄膜的离子迁移激活能,这意味着表面压应力增强的甲胺铅碘制得的太阳能电池器件更不易发生离子移动,以此制得的太阳能电池器件在一个太阳光照强度下以最大功率输出点持续输出1000小时后,仍保持了初始效率98.6%的光电转换效率,使太阳能电池器件得工作稳定性大大提升。
(3)本发明制备的钙钛矿薄膜由于表面增强的压缩应力,可有效抵消薄膜在加热或 弯折过程中产生的热应力和机械应力。以甲胺铅碘钙钛矿为例,其器件在热循环测试中显示出比参比甲胺铅碘器件更强的稳定性。因此在器件的实际工作过程中,不会因昼夜交替或气候变化产生由频繁相变引起的器件衰减。
(4)本发明中的钙钛矿晶粒由于表面压应力的存在显著降低了表面晶格参数,压应力增强的钙钛矿薄膜无论在横向还是纵向结构的测试中,离子迁移激活能都大幅超过传统钙钛矿薄膜,这使得基于表面压应力增强的钙钛矿太阳能电池在实际应用环境的高温工作条件下具有高工作稳定性。例如,基于涂布工艺制备的MAPbI 3的钙钛矿太阳能电池具有超过22%的能量转换效率,即使在一个太阳强度光照条件下,在高达90℃的高温下也没有明显的迟滞现象,在最大功率点持续输出1000小时后,仍保持了初始效率98.6%。发明人发现,通过表面压应力对热应力和机械应力的抵消作用,使器件的热膨胀系数变小,断裂能和抗热冲击稳定性提高。更重要的是,此方法兼容高通量生产,兼容包括平板印刷及辊对辊涂布等大规模溶液加工工艺,为高效率、高稳定性的钙钛矿电池的商业化生产提供了一种解决方案。
附图说明
图1为实施例1中的制得的钙钛矿薄膜从内部到表面(从⑥到①)的透射电子显微镜图像。
图2为实施例1中衬底上某一点上前驱体溶液随刮涂过程中温度的变化。
图3为实施例1中的MAPbI 3薄膜(110)晶面的X射线衍射峰随机械打磨次数的变化。
图4为实施例1中制备的钙钛矿薄膜与对比例1中制备的钙钛矿薄膜X射线衍射图像对比图。
图5为实施例1与对比例1制备的薄膜的Pb 4f的X射线光电子能谱对比图。
图6为实施例1与对比例1制备的薄膜的离子迁移激活能对比图。
图7为实施例1(A)与对比例1(B)、对比例2(C)、对比例3(D)制备的钙钛矿薄膜的离子移动速度对比图;比例尺长度单位为50微米。
图8为实施例4(A)与对比例2(B)制备的钙钛矿薄膜的离子移动速度对比图;比例尺长度单位为50微米。
图9为实施例1、实施例2、实施例3以及对比例1中制得的太阳能电池效率图。
图10为实施例1与对比例1制备的太阳能电池器件的外量子效率及积分电流。
图11为对比例1的太阳能电池在不同温度下正向扫描及反向扫描效率图。
图12为实施例1的太阳能电池在不同温度下正向扫描及反向扫描效率图。
图13为实施例1与对比例1制备的太阳能电池在不同温度下效率迟滞情况的对比图。
图14为实施例1与对比例1制备的太阳能电池在-15摄氏度到85摄氏度十个温度循环下效率的变化图。
图15为实施例1与对比例1制备的太阳能电池在连续光照下最高效率点输出的稳定性对比图。
图16为实施例1作为电致发光器件稳定性。
图17为实施例1作为电致发光器件在不同偏压下的电致发光光谱。
图18为对比例4中的刮涂工艺制得的钙钛矿薄膜从内部到表面的透射电子显微镜图像。
图19为对比例4(A,B)、对比例5(D)与实施例1(C)制备得到的钙钛矿薄膜的扫描电子显微镜图像。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
1)将2×10cm规格的ITO导电玻璃基底清洗干净并做紫外臭氧处理,均匀铺展5nm PTAA(聚[双(4-苯基)(2,4,6-三甲基苯基)胺])薄膜后置于涂布基底上。
2)在步骤1)的PTAA薄膜上,保持基底温度为75℃,通过刮涂法制备钙钛矿薄膜,设置刮刀涂布速度为30mm/s,距ITO玻璃之间距离为50μm。将加热-淬火***固定于第一控速***上,本实施例加热-淬火***中采用热空气加热、室温空气冷却淬火(也可采用其他能达到此最大降温速率范围的方法),设置干燥热空气温度为300℃。具体制备过程如下:
在刮刀与ITO玻璃的缝隙处滴加1mol/L的MAPbI 3的N,N-二甲基甲酰胺溶液,启动控速***,保持刮刀的涂布速度与第一控制***速度一致,开始以预定速度30mm/s涂布,在刮刀涂布的同时,利用300℃的干燥热空气对钙钛矿湿膜进行加热,最大升温速率为150℃/s,加热时间为1s,溶液瞬间成核结晶为固体薄膜,之后利用室温(10-30℃)空气进行冷却,最大冷却速率为100℃/s,冷却时间为1s。经热空气加热,室温空气冷却 后可看到溶剂迅速蒸干,黄色钙钛矿湿膜立即变为黑色致密均匀有镜面的固体薄膜。MAPbI 3溶液中溶剂的挥发速度为6.5μL/cm 2/s,成膜时间为0.1s。
3)取步骤2)得到的薄膜,在该薄膜上涂布1nm氯化胆碱钝化层薄膜,涂布面积为该薄膜面积的一半。
4)在步骤2)或3)得到的薄膜上依次真空蒸镀20nm厚C 60、7nm厚BCP、100nm厚铜电极。蒸镀过程中真空度<10 -5Pa。
本实施例制得的两种太阳能电池的结构分别为:
玻璃/ITO/PTAA/MAPbI 3/钝化层(氯化胆碱)/C 60/BCP/Cu或玻璃/ITO/PTAA/MAPbI 3/C 60/BCP/Cu。
实施例2
1)将2×10cm规格的PET-ITO导电柔性衬底清洗干净并做紫外臭氧处理,均匀铺展5nm PTAA薄膜后置于涂布基台上。
2)在步骤1)的PTAA薄膜上,保持基底温度为75℃,通过刮涂法制备钙钛矿薄膜,设置刮刀涂布速度为30mm/s,距ITO玻璃之间距离为50μm。将加热-淬火***固定于第一控速***上,本实施例加热-淬火***中采用热空气加热、室温空气冷却淬火,设置干燥热空气温度为300℃。具体制备过程如下:
在刮刀与ITO玻璃的缝隙处滴加1mol/L的MAPbI 3的N,N-二甲基甲酰胺溶液,启动控速***,保持刮刀的涂布速度与第一控制***速度一致,开始以预定速度30mm/s涂布,刮刀涂布的同时,利用250℃的干燥热空气对钙钛矿湿膜进行加热,最大升温速率为120℃/s,加热时间为1s,溶液瞬间成核结晶为固体薄膜,之后利用室温空气进行冷却,最大冷却速率为100℃/s,冷却时间为1s。经热空气加热,室温空气冷却后可看到溶剂迅速蒸干,黄色钙钛矿湿膜立即变为黑色致密均匀有镜面的固体薄膜。MAPbI 3溶液中溶剂的挥发速度为5μL/cm 2/s,成膜时间为0.15s。
3)在步骤2)得到的薄膜,在该薄膜上涂布1nm氯化胆碱钝化层薄膜。
4)在步骤3)得到的薄膜上依次真空蒸镀20nm厚C 60、7nm厚BCP、100nm厚铜电极。蒸镀过程中真空度<10 -5Pa。
本实施例制得的太阳能电池的结构为:
PET/ITO/PTAA/MAPbI 3/氯化胆碱/C 60/BCP/Cu。
实施例3
1)将2×10cm规格的玻璃ITO基底清洗干净并做紫外臭氧处理,均匀涂布15mg/mL的C 60-1,2-二氯苯溶液液膜,100度退火15min,厚度约为20nm。
2)在步骤1)制得的C 60薄膜上,调节基底温度为75℃,设置刮刀涂布速度为30mm/s,距ITO基底之间距离为50μm。将加热-淬火***固定于第一控速***上,本实施例加热-淬火***中采用热空气加热、室温空气冷却淬火,设置干燥热空气温度为300℃。具体制备过程如下:
在刮刀与ITO玻璃的缝隙处滴加1mol/L的MAPbI 3的N,N-二甲基甲酰胺溶液,启动控速***,保持刮刀的涂布速度与第一控制***速度一致,开始以预定速度30mm/s涂布,刮刀涂布的同时,利用300℃的干燥热空气对钙钛矿湿膜进行加热,最大升温速率为150℃/s,加热时间为1s,溶液瞬间成核结晶为固体薄膜,之后利用室温(10-30℃)空气进行冷却,最大冷却速率为100℃/s,冷却时间为1s。经热空气加热,室温空气冷却后可看到溶剂迅速蒸干,黄色钙钛矿湿膜立即变为黑色致密均匀有镜面的固体薄膜。MAPbI 3溶液中溶剂的挥发速度为5μL/cm 2/s,成膜时间为0.15s。
3)在步骤2得到的薄膜上印刷10μm厚的导电碳浆,并在在空气中100℃退火20min。
本实施例制得的太阳能电池的结构为:ITO/C 60/MAPbI 3/C。
实施例4
1)将2×10cm规格的ITO导电玻璃基底清洗干净并做紫外臭氧处理,均匀铺展5nm PTAA薄膜后置于涂布基底上。
2)在步骤1)的PTAA薄膜上,保持基底温度为75℃,通过刮涂法制备钙钛矿薄膜,设置刮刀涂布速度为25mm/s,距ITO玻璃之间距离为50μm。将加热-淬火***固定于第一控速***上,本实施例加热-淬火***中采用热空气加热、室温空气冷却淬火(也可采用其他能达到此最大降温速率范围的方法),设置干燥热空气温度为300℃。具体制备过程如下:
在刮刀与ITO玻璃的缝隙处滴加1mol/L的MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025的N,N-二甲基甲酰胺溶液,启动控速***,保持刮刀的涂布速度与第一控制***速度一致,开始以预定速度25mm/s涂布,在刮刀涂布的同时,利用300℃的干燥热空气对钙钛矿湿膜进行加热,最大升温速率为180℃/s,加热时间为1s,溶液瞬间成核结晶为固体薄膜,之后利用室温(10-30℃)空气进行冷却,最大冷却速率为120℃/s,冷却时间为1s。经热空气加热,室温空气冷却后可看到溶剂迅速蒸干,黄色钙钛矿湿膜立即变为黑色致密均匀有镜面的固体薄膜。MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025溶液中溶剂的挥发速度为5μL/cm 2/s,成膜时间为0.15s。
实施例5
1)将2×10cm规格的ITO导电玻璃基底清洗干净并做紫外臭氧处理,均匀铺展20 nm SnO 2薄膜后置于涂布基底上。在空气中150℃退火30min。
2)2)在步骤1)制得的SnO 2薄膜上,调节基底温度为85℃,设置刮刀涂布速度为10mm/s,距ITO基底之间距离为50μm。将加热-淬火***固定于第一控速***上,本实施例加热-淬火***中采用热空气加热、室温空气冷却淬火,设置干燥热空气温度为500℃。具体制备过程如下:
在刮刀与ITO基底(2cm×10cm)的缝隙处滴加1.2mol/L的CsPbI 2Br的二甲基亚砜溶液,保持刮刀的涂布速度与第一控制***速度一致,开始以预定速度30mm/s涂布,刮刀涂布的同时,利用500℃的干燥热空气对钙钛矿湿膜进行加热,最大升温速率为250℃/s,加热时间为1s,溶液瞬间成核结晶为固体薄膜,之后利用室温(10-30℃)空气进行冷却,最大冷却速率为100℃/s,冷却时间为1s。经热空气加热,室温空气冷却后可看到溶剂迅速蒸干,黄色钙钛矿湿膜立即变为黑色致密均匀有镜面的固体薄膜。CsPbI 2Br溶液中溶剂的挥发速度为6.5μL/cm 2/s,成膜时间为0.3s。
启动控速***,开始以预定速度涂布。经热空气吹扫后可看到溶剂迅速蒸干,黄色钙钛矿湿膜立即变为棕红色致密均匀有镜面的固体薄膜。
对比例1
采用传统刮涂法制备得到MAPbI 3薄膜。
1)将ITO导电玻璃清洗干净并做紫外臭氧处理,均匀铺展5nm PTAA薄膜后置于涂布基台上。
2)在步骤1)的PTAA薄膜上,保持基底温度为135℃,在刮刀与ITO玻璃的缝隙处滴加1mol/L的MAPbI 3的N,N-二甲基甲酰胺溶液,保持刮刀涂布速度为7mm/s,距ITO玻璃之间距离为50μm。涂布得到的钙钛矿薄膜在100℃的热台上退火30min。
3)在步骤2)得到的薄膜上依次真空蒸镀20nm厚C 60、7nm厚BCP、100nm厚铜电极。蒸镀过程中真空度<10 -5Pa。
本实施例制得的太阳能电池的结构为:
玻璃/ITO/PTAA/MAPbI 3/C 60/BCP/Cu。
对比例2
采用传统刮涂法制备得到其他代表性组分MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025薄膜。
1)将ITO导电玻璃清洗干净并做紫外臭氧处理,均匀铺展5nm PTAA薄膜后置于涂布基台上。
2)在步骤1)的PTAA薄膜上,保持基底温度为135℃,在刮刀与ITO玻璃的缝隙处滴加1mol/L的MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025的N,N-二甲基甲酰胺溶液,保持刮刀涂 布速度为5mm/s,距ITO玻璃之间距离为50μm。涂布得到的钙钛矿薄膜在100℃的热台上退火30min。
对比例3
采用传统刮涂法制备得到其他代表性组分CsPbI 2Br薄膜。
1)将ITO导电玻璃清洗干净并做紫外臭氧处理,均匀铺展5nm PTAA薄膜后置于涂布基台上。
2)在步骤1)的PTAA薄膜上,保持基底温度为135℃,在刮刀与ITO玻璃的缝隙处滴加1mol/L CsPbI 2Br溶液,溶剂为N,N-二甲基甲酰胺∶二甲基亚砜=4∶1保持刮刀涂布速度为5mm/s,距ITO玻璃之间距离为50μm。涂布得到的钙钛矿薄膜在100℃的热台上退火30min。
对比例4
将实施例1步骤2)中的干燥热空气温度大幅降低,将最大升温速率分别调整为2℃/s或,8℃/s的条件下涂布MAPbI 3的N,N-二甲基甲酰胺溶液,其余参数与实施例1步骤2)相同。制得的钙钛矿膜的扫描电子显微镜图像见图19中A,B图。
对比例5
将实施例1步骤2)中的最大温度冷却速率调整为10℃/s条件下涂布MAPbI 3的N,N-二甲基甲酰胺溶液,其余参数与实施例1步骤2)相同。制得的钙钛矿膜的扫描电子显微镜图像见图19中D图。
效果实施例1
取基于实施例1中的方法制备的MAPbI 3薄膜做X射线衍射表征,如图1所示,该钙钛矿薄膜中,具有表面晶格收缩,内部晶格扩大的结构。
如图1所示,在MAPbI 3(实施例1步骤2)中的MAPbI 3薄膜)组分的钙钛矿晶粒中,相比于(110)晶面标准的晶面间距,由表面向中心依次选取的六个区域,(110)晶面间距变化依次为收缩2.8%,收缩0.25%,扩张0.38%,扩张0.54%,扩张1.9%,扩张3.09%,内部晶格扩大1-3%的结构,而对比例1中制备的MAPbI 3晶粒,没有表面收缩,中心扩张的结构(如图18)。薄膜X射线衍射峰显示在13.6度和14.5度存在着两个小的肩锋(如图3所示),代表着其中存在收缩和扩大的晶格参数,而将薄膜打磨后两个肩峰消失,说明这种结构是由其内部的应力稳定的,当表面被破坏时,这种应力结构也被破坏。
取基于实施例1中的方法制备的MAPbI 3薄膜做X射线衍射表征,结果如图3所示,在13.6度和14.5度存在着两个小的肩锋,代表着其中存在收缩和扩大的晶格参数,而将 薄膜打磨后两个肩峰消失,说明这种结构是由其内部的应力稳定的,当表面被破坏时,这种应力结构也被破坏。而对比例1中的MAPbI 3薄膜(如图4所示)在同样的位置没有肩峰的存在。
效果实施例2
取基于实施例1(采用步骤2)、对比例1方法制备得到的MAPbI 3薄膜做X射线光电子能谱表征。
如图5所示,实施例1中薄膜表面Pb元素4f5/2,4f7/2的结合能为143.15和138.3eV,对比例1中薄膜表面Pb元素4f5/2,4f7/2的结合能为142.90和138.05eV。可见,实施例1中薄膜表面Pb元素的结合能更大,说明其外层电子云密度更低,和碘的作用力更强,也就是Pb-I键长更短。稳定性更强。
效果实施例3
分别取以实施例1(采用步骤2)和对比例1中的制备方法制备MAPbI 3薄膜,并真空蒸镀60nm的金,制备ITO/Au/MAPbI 3/Au结构器件,为器件施加一恒定的1V直流电压100s,再立即撤去电压,观察电流的衰减情况,通过测量不同温度下电流的衰减曲线,可得到离子迁移激活能。
如图6所示,实施例1中的离子迁移激活能为0.543ev,而对比例1中的离子迁移激活能为0.341ev,说明表面压应力增强的MAPbI 3薄膜显著增加了离子迁移的势垒。
效果实施例4
分别取以实施例1(采用步骤2)、4和对比例1、2、3中的制备方法制备的MAPbI 3,MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025及CsPbI 2Br薄膜,在间距50微米的位置制备Au/MAPbI 3/Au横向结构器件。分别在电极两端施加1V/μm的电场。
如图7、图8所示,在电场的作用下,对比例1、2、3中由于甲胺离子的迁移,薄膜形貌均发生变化,而实施例1中薄膜形貌基本没有变化。说明表面压应力增强的MAPbI 3薄膜显著抑制了离子迁移,而MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025组分薄膜在采用实施例4中的制备方法后离子迁移的速度也大大减慢,说明表面压应力增强薄膜抑制离子迁移适用于多种组分。
效果实施例5
取基于实施例1、对比例1方法制备得到的钙钛矿太阳能电池,检测其J-V曲线(电流密度与电压特性曲线),检测方法如下:将器件置于AM1.5标准的模拟太阳光下,用Keithley 2400数字源表在器件两端加电压以0.05V/s的速度从-0.5V扫描至1.5V(正扫),再从1.5V扫描至-0.5V(反扫),扫描步长为0.01V。记录所得到的J-V曲线。参 见图9。具体数据如下表1所示。
表1
Figure PCTCN2022080283-appb-000007
由表2及图9可知,实施例1中制得的刚性钙钛矿太阳能电池器件开路电压可达1.19V,填充因子最高可达82.26%,电流密度可达22.69mA/cm 2,光电转换率最高可达22.21%;由表2及图9可知,实施例2中制得的柔性钙钛矿太阳能电池器件电压可达1.18V,填充因子最高可达82.36%,电流密度为21.02mA/cm 2,光电转换率最高可达20.43%。均显著高于对比例。
由表2及图9可知,对比例1中制得的钙钛矿太阳能电池器件,其开路电压为1.04V,填充因子为75.31%,电流密度为22mA/cm 2,光电转换率为17.23%,性能明显低于实施例1-2中基于表面压应力增强的钙钛矿太阳能电池器件。
效果实施例6
取基于实施例1(无钝化层)、对比例1方法制备得到的无钝化层钙钛矿太阳能电池,测定其EQE,检测方法如下:使用Enli Technology公司的量子效率测试***,在暗室下从300nm到850nm每隔10nm用相应的单色光测量其外量子效率,并积分出对应的短路电流。
结果可参见图10。由图10可知,基于实施例1中的方法制得器件(不含钝化层的器件)由EQE测得的短路电流为22.16mA/cm 2,基于对比例1中的方法制得器件中由EQE测得的短路电流为21.84mA/cm 2,可以看到积分电流也有一定提升。
效果实施例7
取基于实施例1(无钝化层)、对比例1方法制备得到的无钝化层钙钛矿太阳能电池, 测定其随温度升高,I-V曲线的变化。
如图11-12所示,温度升高加剧了离子迁移,使对比例1器件衰减的更快,迟滞也更加明显(如图13所示),而实施例1的器件衰减的较慢,且没有出现迟滞增大的现象。
如图11所示数据如下
Figure PCTCN2022080283-appb-000008
如图12所示数据如下
Figure PCTCN2022080283-appb-000009
如图13所示数据如下
Figure PCTCN2022080283-appb-000010
Figure PCTCN2022080283-appb-000011
效果实施例8
取基于实施例1(不含钝化层的器件)、对比例1方法制备得到的无钝化层钙钛矿太阳能电池,测定其热循环稳定性,即将环境温度在85℃和-15℃下交替,记录器件效率变化。
如图14所示,实施例1中的钙钛矿太阳能电池36小时后仍维持90%以上的效率,而对比例1中的钙钛矿太阳能电池器件效率出现大幅衰减。
Figure PCTCN2022080283-appb-000012
效果实施例9
取基于实施例1(不含钝化层的器件)、对比例1方法制备得到的无钝化层钙钛矿太阳能电池,测定其持续输出稳定性,即在一个太阳强度的光照下,在最大输出功率对应的电压处持续输出。
如图15所示,实施例1中的钙钛矿太阳能电池1000小时后仍维持初始效率的98.6%,而对比例1中的钙钛矿太阳能电池器件效率在27小时内就衰减超过了20%。
Figure PCTCN2022080283-appb-000013
Figure PCTCN2022080283-appb-000014
效果实施例10
基于实施例1(不含钝化层的器件)方法制备得到的无钝化层钙钛矿太阳能电池也可在外加电压情况下,成为电致发光器件。
如图16、图17所示,随着外加电压的升高,发射光强度越来越高,且发射波长未发生移动。用Keithley 2400数字源表在器件两极间保持恒流30mA/cm 2持续输出,观察亮度的变化。
图16的结果显示,发光器件在60h的持续输出后,亮度变为初始亮度的82%,这可以和最稳定的钙钛矿电致发光器件相媲美。
图17的结果显示,发光器件在不同偏压下,发射波长没有明显偏移。
效果实施例11
取实施例1(采用步骤2),对比例4,对比例5中得到的钙钛矿薄膜,用扫描电子显微镜观察薄膜形貌,由图19中A,B图可知,对比例4制备得到的钙钛矿薄膜覆盖不均匀,存在大量针孔现象,应用于太阳能电池时易造成电池短路。图19中D图中对比4制备得到的钙钛矿薄膜相比图19中C图中实施例1(采用步骤2)制备得到的钙钛矿薄膜粗糙度明显增大,结晶性明显降低,易产生缺陷和短路。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (10)

  1. 一种钙钛矿薄膜的制备方法,其特征在于,其包括下述步骤:
    通过快速加热-淬火过程使得涂布于衬底上的钙钛矿前驱体溶液层形成具有表面压应力增强结构的钙钛矿薄膜,即可;
    其中,所述快速加热过程为如下任一方案:
    方案1、所述快速加热过程中,钙钛矿前驱体溶液层的最大升温速率为10-500℃/s;所述快速淬火过程中,钙钛矿薄膜的最大降温速率为15-500℃/s;
    方案2、所述快速加热过程的时间在0.1至10s,升温30至250℃,所述快速淬火过程的时间为0.1至10s,降温30至250℃。
  2. 如权利要求1所述的制备方法,其特征在于,
    所述快速加热-淬火过程为快速加热过程结束后,立即进行快速淬火过程;
    和/或,所述最大升温速率为50-250℃/s;例如120℃/s、150℃/s、180℃/s、250℃/s;
    和/或,方案1中,所述快速加热的时间为0.1-10s;例如0.5至2s;又例如1s;
    和/或,方案2中,所述快速加热的时间为0.5至2s;例如1s;
    和/或,所述快速加热过程中,升温30至200℃;例如,所述快速加热为使表面达到温度为100-200℃;又例如130-200℃;
    和/或,所述快速加热的加热温度为300-500℃,例如300℃;
    和/或,所述加热-淬火过程中所述钙钛矿薄膜的最大降温速率为15-200℃/s;例如100-200℃/s;
    和/或,方案1中,所述快速淬火过程的时间为0.1-10s;例如0.5至2s;又例如1s;
    和/或,方案2中,所述快速淬火过程的时间为0.5至2s;例如1s;
    和/或,所述快速淬火过程中,降温30至200℃;例如,所述的快速淬火过程实现的温度为冷却至基底温度或室温;优选为基底温度;
    和/或,所述衬底为可附着溶液薄膜的衬底,例如叠层电池结构中的硅电池基底或单结电池中的导电基板;
    和/或,所述衬底置于一基底上;
    和/或,所述涂布为旋涂,喷涂、刮涂、刷子印刷、丝网印刷、微凹涂布、风刀涂布、狭缝挤出涂布和辊对辊印刷中的一种或多种,例如刮涂和/或狭缝挤出涂布;
    和/或,所述钙钛矿前驱体溶液为可制得钙钛矿的溶液,其中的溶质为基于A、B和X混合组分的钙钛矿材料;A可为甲胺、甲脒、铯和铷中的一种或多种,B可为金属元素 或其混合物,X可为卤素及其混合物;
    和/或,所述钙钛矿前驱体溶液中的溶剂为N,N-二甲基甲酰胺、醋酸甲胺、甲胺、二甲基亚砜、γ-丁内酯、2-甲氧基乙醇、乙腈中的一种或多种;例如N,N-二甲基甲酰胺或二甲基亚砜;
    和/或,所述钙钛矿前驱体溶液中溶质的浓度为0.3-2mol/L,例如1mol/L或1.2mol/L;
    和/或,所述的钙钛矿薄膜的厚度由所述钙钛矿前驱体溶液浓度、所述涂布的厚薄共同进行控制;
    和/或,所述涂布速度为25mm/s-30mm/s;
    和/或,所述涂布结束后不额外进行退火处理,或者,所述涂布结束后进行退火处理,所述退火的温度为50-150℃,例如100℃;所述退火的时间优选为90min内,例如10min或30min;
    和/或,所述快速加热-淬火过程通过加热-淬火***实施;
    和/或,所述快速加热-淬火过程在空气中实现,或者在惰性气体手套箱中实现;
    和/或,所述钙钛矿薄膜为表面压应力增强的钙钛矿薄膜;
    和/或,所述钙钛矿前驱体溶液中溶剂的挥发速度为0.5μL/cm 2/s至6.5μL/cm 2/s;
    和/或,所述钙钛矿前驱体溶液的成膜时间为0.1s至0.3s。
  3. 如权利要求2所述的制备方法,其特征在于,
    所述快速加热-淬火过程按照下述步骤进行,通过一高温热风加热装置使钙钛矿前驱体溶液及衬底表面在1s之内迅速升温至130-200℃,此时前驱体溶液中溶剂蒸干析出固相薄膜,随后在外加冷却氛围下,固相薄膜及衬底表面迅速冷却实现淬火过程,即得到表面压应力增强的钙钛矿薄膜;
    和/或,所述快速加热的加热装置为通过气体对流、激光、热辐射或热传递作用使钙钛矿前驱体溶液层表面迅速升温的装置均可;例如通过热气流、激光、微波、红外灯或其他高温产生热辐射的装置及其共同作用的加热装置;
    和/或,所述快速淬火通过冷风冷却***或热交换***实现;
    和/或,当所述快速加热-淬火过程通过加热-淬火***实施时,所述涂布的速度与所述加热-淬火***的行进速度相同,所述涂布的方向与所述加热-淬火***的行进方向相同;
    和/或,当所述钙钛矿前驱体溶液中,溶质为基于A、B和X混合组分的钙钛矿材料时,所述钙钛矿材料的溶质为混合离子,例如A可为甲胺、甲脒、铯及其混合物,B可为Pb、Sn金属元素或其混合物,X可为氯、溴、碘及其混合物,例如MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025;或,当所述钙钛矿前驱体溶液中,溶质为基于A、B和X 混合组分的钙钛矿材料时,所述钙钛矿材料的溶质为全无机组分,例如A可为铯和/或铷,B可为Pb、Sn等常规金属或其混合物,X可为氯、溴、碘及其混合物,例如CsPbI 2Br;或,当所述钙钛矿前驱体溶液中,溶质为基于A、B和X混合组分的钙钛矿材料时,其中,所述A为甲胺,B为铅,X为碘,例如CH 3NH 3PbI 3
  4. 如权利要求3所述的制备方法,其特征在于,
    当所述衬底为单结电池中的导电基板时,所述单结电池中的导电基板为可用于太阳能电池或发光器件的导电基板,例如“柔性或刚性ITO透明导电玻璃”、“柔性或刚性AZO透明导电玻璃”、“柔性或刚性FTO透明导电玻璃”、“硅衬底”、“硅电池”、导电聚合物电极、石墨烯或碳电极、金属网格电极、纳米金属线薄膜、金属薄膜或复合薄膜;
    和/或,当所述衬底为单结电池中的导电基板时,所述单结电池中的导电基板为空白导电基板或带有修饰层的导电基板;
    和/或,当所述衬底置于一基底上时,所述钙钛矿前驱体溶液层涂布于所述衬底的外表面;
    和/或,当所述快速加热的加热方式为通过热气流加热时,应使得涂布于衬底上的钙钛矿前驱体溶液层处于所述热气流的流动的气流氛围中;
    和/或,当所述快速加热的加热方式为通过热气流加热时,所述热气流中的气体为可加热的空气和/或惰性气体及其与溶剂的混合气;所述惰性气体可为氮气和/或氩气;
    和/或,当所述快速加热的加热方式为通过热气流加热,所述热气流的温度分布不均匀时,所述热气流的温度在250-600℃的范围内;较佳地,所述热气流的温度为300-500℃,例如300℃;
    和/或,当所述快速加热的加热方式为通过热气流加热时,所述快速加热的加热装置为设置有热风机、红外加热装置或发热芯;
    和/或,当所述快速加热的加热装置为热气流及热传导复合装置时,所述加热装置包括热气流喷出装置及可加热基底;所述可加热基底的温度可为50-150℃,优选为70℃-85℃;
    和/或,当所述快速淬火通过冷风冷却***实现时,通过冷风气流进行冷却;
    和/或,所述快速加热-淬火过程按照下述步骤进行,涂布速度为25-30mm/s,在涂布的同时,利用300℃的干燥热空气对钙钛矿前驱体溶液进行加热,最大升温速率为100-180℃/s,加热时间为1s,之后利用室温空气进行冷却,最大冷却速率为100-120℃/s,冷却时间为1s;
    和/或,所述钙钛矿前驱体溶液中溶剂的挥发速度可为0.5μL/cm 2/s至6.5μL/cm 2/s, 成膜时间可为0.1s至0.3s;
    和/或,在将所述钙钛矿薄膜中的晶粒的表面部的(220)的晶面间距设为A,将所述钙钛矿晶粒距离表面距离达20%晶粒尺寸以上的中心部的(220)的晶面间距设为B的情况下,相对于所述钙钛矿的标准晶面间距,A收缩1-3.5%,B扩大1-3%。
  5. 如权利要求4所述的制备方法,其特征在于,
    当所述衬底为单结电池中的导电基板,所述导电基板为复合薄膜时,所述复合薄膜为含有两种或两种以上电极材料的导电基板,例如含有聚合物电极、金属网格电极和纳米金属线电极中两种以上电极材料的复合电极;
    和/或,当所述衬底为单结电池中的导电基板,所述导电基板为空白导电基板时,在所述涂布之前,任选前处理,所述前处理为将所述导电基板经清洗处理和紫外臭氧处理;
    和/或,当所述快速加热的加热方式为通过热气流加热时,所述热气流的流动的气流氛围为能够将挥发的溶剂带走即可;
    和/或,当所述快速淬火为通过冷风气流进行冷却时,所述冷风气流的方向与所述涂布的方向平行、垂直或成一定角度,优选地,所述冷风气流的方向与所述涂布的方向垂直;
    和/或,当所述快速淬火为通过冷风气流进行冷却时,所述冷风气流温度为低于所述快速加热的温度,例如0℃至100℃;
    和/或,当所述加热-淬火***中淬火***为热交换***、且加热***包括热气流喷出装置及可加热基底时,所述热交换***的温度低于所述可加热基底的温度;
    和/或,当所述加热-淬火***中淬火***为热交换***、且加热***包括热气流喷出装置及可加热基底时,所述可加热基底的温度为0-100℃;例如70℃-85℃;
    和/或,在MAPbI 3组分的钙钛矿薄膜中,其表面(220)的晶面间距为
    Figure PCTCN2022080283-appb-100001
    内部(220)的晶面间距为
    Figure PCTCN2022080283-appb-100002
    例如透射电子显微镜表征如图1所示;
    和/或,在MAPbI 3组分的钙钛矿薄膜中,其以2θ角表示的X射线粉末衍射图在13.5-13.6°和14.5-14.7°处具有特征峰;例如如图3所示。
  6. 一种钙钛矿晶粒或含所述钙钛矿晶粒的钙钛矿薄膜,其特征在于,
    在将所述钙钛矿晶粒的表面部的(220)的晶面间距设为A,将所述钙钛矿晶粒距离表面距离达20%晶粒尺寸以上的中心部的(220)的晶面间距设为B的情况下,相对于所述钙钛矿的标准晶面间距,A收缩1-3.5%,B扩大1-3%。
  7. 如权利要求6所述的钙钛矿晶粒或含所述钙钛矿晶粒的钙钛矿薄膜,其特征在于,
    所述钙钛矿的定义如权利要求2或3中所述钙钛矿前驱体溶液中溶质所述;例如为 MAPbI 3或MA 0.6FA 0.38Cs 0.02PbI 2.975Br 0.025
    较佳地,当所述钙钛矿为MAPbI 3时,其表面(220)的晶面间距为
    Figure PCTCN2022080283-appb-100003
    内部(220)的晶面间距为
    Figure PCTCN2022080283-appb-100004
    例如透射电子显微镜表征如图1所示;其以2θ角表示的X射线粉末衍射图在13.5-13.6°和14.5-14.7°处具有特征峰;例如如图3所示。
  8. 一种由如权利要求1-5中任一项所述的制备方法得到的钙钛矿晶粒或含所述钙钛矿晶粒的钙钛矿薄膜。
  9. 一种太阳能电池,其特征在于,所述太阳能电池的活性层含如权利要求6至8中任一项所述的含所述钙钛矿晶粒的钙钛矿薄膜。
  10. 如权利要求9所述的太阳能电池,其特征在于,
    所述太阳能电池的活性层为如权利要求6至8中任一项所述的含所述钙钛矿晶粒的钙钛矿薄膜;
    和/或,所述太阳能电池作为发光器件;
    和/或,所述钙钛矿太阳能电池结构为正式电池结构及反式电池结构;
    和/或,所述太阳能电池包括导电基底、电子传输层、空穴传输层、电极层、界面层和钝化层中的一种或多种;其中,当所述太阳能电池包括所述空穴传输层时,所述空穴传输层中的空穴传输材料可为聚[双(4-苯基)(2,4,6-三甲基苯基)胺]或氧化镍硫氰酸亚铜;和/或,当所述太阳能电池包括所述电子传输层时,所述的电子传输层中的材料可为C 60、C 60衍生物、C 70、C 70衍生物、TiOx、SnO 2和ZnO中的一种或多种;和/或,当所述太阳能电池包括所述电极层时,所述电极层中,电极材料可为金属、导电聚合物或碳,优选地,所述电极材料为金属Cu;和/或,当所述太阳能电池包括所述界面层时,所述界面层材料可为有机界面材料及/或金属界面材料及/或无机界面材料,优选地,可为BCP;和/或,当所述太阳能电池包括所述导电基底时,所述导电基底可采用刚性或者柔性导电基底,如玻璃基底或塑料基底,所述塑料基底可为PEN、PET或PI等塑料基底;和/或,所述太阳能电池的结构可为:“衬底/透明电极/空穴传输层/钝化层/所述的钙钛矿薄膜/钝化层/电子传输层/界面层/电极层”,或,所述太阳能电池的结构可为:“衬底/透明电极/电子传输层/钝化层/所述的钙钛矿薄膜/钝化层/空穴传输层/界面层/电极层”;和/或,所述太阳能电池的结构为:“衬底/透明电极/空穴传输层/所述的钙钛矿薄膜/电子传输层/界面层/电极层”,例如“衬底/ITO/PTAA/MAPbI 3/C 60/BCP/Cu”,或,“衬底/透明电极/电子传输层/所述的钙钛矿薄膜/空穴传输层/电极层”,例如“衬底/ITO/C 60/MAPbI 3/CuSCN/C”;和/或,所述太阳能电池可包括导电基底、电子传输层、空穴传输层、电极层、界面层和钝化层中的一种或多种时,采用真空蒸镀制备,所述的真空蒸镀可为在真空度<10 -5Pa的条件下进 行的热蒸发真空蒸镀。
PCT/CN2022/080283 2021-03-11 2022-03-11 一种钙钛矿薄膜及其制备方法、太阳能电池、发光器件 WO2022188852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110267993.9 2021-03-11
CN202110267993 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022188852A1 true WO2022188852A1 (zh) 2022-09-15

Family

ID=83226305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080283 WO2022188852A1 (zh) 2021-03-11 2022-03-11 一种钙钛矿薄膜及其制备方法、太阳能电池、发光器件

Country Status (2)

Country Link
CN (1) CN115084393A (zh)
WO (1) WO2022188852A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117684248A (zh) * 2023-11-21 2024-03-12 浙江大学 一种透气柔性容器促进钙钛矿单晶生长的方法、x射线探测器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050000898A (ko) * 2003-06-25 2005-01-06 주식회사 하이닉스반도체 강유전체 메모리 소자의 제조방법
CN109148697A (zh) * 2018-09-21 2019-01-04 北京恒信卓元科技有限公司 一种钙钛矿太阳能电池的制备方法
WO2019141961A1 (en) * 2018-01-18 2019-07-25 Xaar Technology Limited A method for fabricating a lead-free thin film element and uses thereof
CN110600616A (zh) * 2019-08-08 2019-12-20 上海黎元新能源科技有限公司 一种低温淬冷制备钙钛矿薄膜的方法及其应用
CN111416006A (zh) * 2020-02-27 2020-07-14 北京科技大学 一种二维层状钙钛矿铁电多功能薄膜及其制备工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050000898A (ko) * 2003-06-25 2005-01-06 주식회사 하이닉스반도체 강유전체 메모리 소자의 제조방법
WO2019141961A1 (en) * 2018-01-18 2019-07-25 Xaar Technology Limited A method for fabricating a lead-free thin film element and uses thereof
CN109148697A (zh) * 2018-09-21 2019-01-04 北京恒信卓元科技有限公司 一种钙钛矿太阳能电池的制备方法
CN110600616A (zh) * 2019-08-08 2019-12-20 上海黎元新能源科技有限公司 一种低温淬冷制备钙钛矿薄膜的方法及其应用
CN111416006A (zh) * 2020-02-27 2020-07-14 北京科技大学 一种二维层状钙钛矿铁电多功能薄膜及其制备工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117684248A (zh) * 2023-11-21 2024-03-12 浙江大学 一种透气柔性容器促进钙钛矿单晶生长的方法、x射线探测器

Also Published As

Publication number Publication date
CN115084393A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Bian et al. Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbI 3 perovskite solar cells with efficiency beyond 16%
Wang et al. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells
KR102306134B1 (ko) 페로브스카이트 광전 소자, 제조 방법 및 페로브스카이트 재료
Zhang et al. Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells
JP6455944B2 (ja) デバイス及びカーボンナノチューブ複合膜の製造方法
BRPI0821501B1 (pt) Método para preparação de uma camada de absorção leve de célula solar de filme fino de cobre-índio-gálio-enxofre-selênio.
Ullah et al. Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer
Li et al. (C 6 H 5 NH 3) BiI 4: a lead-free perovskite with> 330 days humidity stability for optoelectronic applications
Sun et al. Ternary oxide BaSnO3 nanoparticles as an efficient electron-transporting layer for planar perovskite solar cells
CN105609652A (zh) 一种基于钙钛矿材料的发光二极管及其制备方法
Zong et al. Highly stable hole-conductor-free CH3NH3Pb (I1-xBrx) 3 perovskite solar cells with carbon counter electrode
Li et al. Perovskite films with a sacrificial cation for solar cells with enhanced stability based on carbon electrodes
WO2022188852A1 (zh) 一种钙钛矿薄膜及其制备方法、太阳能电池、发光器件
Peng et al. Fully Doctor-bladed efficient perovskite solar cells in ambient condition via composition engineering
Du et al. Precursor engineering for performance enhancement of hole-transport-layer-free carbon-based MAPbBr3 perovskite solar cells
Ye et al. Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication
WO2023098022A1 (zh) 一种钙钛矿材料层的制备方法和电池器件
Ou et al. Boosting the stability and efficiency of Cs2AgBiBr6 perovskite solar cells via Zn doping
JPWO2018056295A1 (ja) 太陽電池
US20210159356A1 (en) Integrated tandem solar cell and manufacturing method thereof
Sajid et al. Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells
US20110024792A1 (en) Photovoltaic Device Using Single Wall Carbon Nanotubes and Method of Fabricating the Same
Bhattacharjee et al. Polyvinyl-alcohol based devices with highly conductive, optically active boron-doped ZnO nanoparticles for efficient resistive-switching at ultralow operating voltage
Zhang et al. Pre-crystallisation applied in sequential deposition approaches to improve the photovoltaic performance of perovskite solar cells
Zeng et al. Enhanced Sn-based perovskite solar cells with PEDOT: PSS layer doped with edetate disodium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766374

Country of ref document: EP

Kind code of ref document: A1