WO2022186390A1 - 有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
WO2022186390A1
WO2022186390A1 PCT/JP2022/009515 JP2022009515W WO2022186390A1 WO 2022186390 A1 WO2022186390 A1 WO 2022186390A1 JP 2022009515 W JP2022009515 W JP 2022009515W WO 2022186390 A1 WO2022186390 A1 WO 2022186390A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
ring
unsubstituted
carbon atoms
Prior art date
Application number
PCT/JP2022/009515
Other languages
English (en)
French (fr)
Inventor
ピエール ブフレ
昭辰 林
トビアス カンツラ-
ペーター ミュラー
アニッキ サンタラ
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021035440A external-priority patent/JP2024084864A/ja
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2022186390A1 publication Critical patent/WO2022186390A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to organic electroluminescence elements and electronic devices.
  • organic electroluminescence device When a voltage is applied to an organic electroluminescence device (hereinafter sometimes referred to as an "organic EL device"), holes are injected into the light-emitting layer from the anode, and electrons are injected into the light-emitting layer from the cathode. Then, in the light-emitting layer, the injected holes and electrons recombine to form excitons. At this time, singlet excitons are generated at a rate of 25% and triplet excitons are generated at a rate of 75% according to the electron spin statistical law.
  • Organic EL elements are applied to full-color displays for mobile phones, televisions, and the like. In order to improve the performance of organic EL devices, various studies have been made on compounds used in organic EL devices.
  • Patent Document 1 discloses a polycyclic heterocyclic compound containing a nitrogen atom and a boron atom as a compound that can be used in an organic EL device.
  • Performance of an organic EL element includes, for example, luminance, emission wavelength, chromaticity, luminous efficiency, driving voltage, and life.
  • An object of the present invention is to provide an organic electroluminescence element that can have a long life and an electronic device equipped with the organic electroluminescence element.
  • an organic electroluminescence device having an anode, a cathode, and a light-emitting layer included between the anode and the cathode, wherein the light-emitting layer is represented by the following general formula (1 ) is provided, containing the first compound represented by the organic electroluminescence device.
  • an electronic device equipped with the above-described organic electroluminescence element according to one aspect of the present invention.
  • an organic electroluminescence element capable of extending the life and an electronic device equipped with the organic electroluminescence element.
  • FIG. 4 is a diagram showing a schematic configuration of another example of the organic electroluminescence device according to the second embodiment
  • a hydrogen atom includes isotopes with different neutron numbers, ie, protium, deuterium, and tritium.
  • a hydrogen atom that is, a hydrogen atom, a deuterium atom, or Assume that the tritium atoms are bonded.
  • the number of ring-forming carbon atoms refers to the ring itself of a compound having a structure in which atoms are bonded in a ring (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compounds, and heterocyclic compounds). represents the number of carbon atoms among the atoms that When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the number of ring-forming carbon atoms. The same applies to the "number of ring-forming carbon atoms" described below unless otherwise specified.
  • a benzene ring has 6 ring carbon atoms
  • a naphthalene ring has 10 ring carbon atoms
  • a pyridine ring has 5 ring carbon atoms
  • a furan ring has 4 ring carbon atoms.
  • the 9,9-diphenylfluorenyl group has 13 ring-forming carbon atoms
  • the 9,9′-spirobifluorenyl group has 25 ring-forming carbon atoms.
  • the number of ring-forming carbon atoms in the benzene ring substituted with the alkyl group is 6.
  • the naphthalene ring substituted with an alkyl group has 10 ring-forming carbon atoms.
  • the number of ring-forming atoms refers to compounds (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compound, and heterocyclic compound) represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring (e.g., a hydrogen atom that terminates the bond of an atom that constitutes a ring) and atoms contained in substituents when the ring is substituted by substituents are not included in the number of ring-forming atoms. The same applies to the "number of ring-forming atoms" described below unless otherwise specified.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • hydrogen atoms bonded to the pyridine ring or atoms constituting substituents are not included in the number of atoms forming the pyridine ring. Therefore, the number of ring-forming atoms of the pyridine ring to which hydrogen atoms or substituents are bonded is 6.
  • the expression "substituted or unsubstituted XX to YY carbon number ZZ group” represents the number of carbon atoms when the ZZ group is unsubstituted, and is substituted. Do not include the number of carbon atoms in the substituents.
  • "YY” is larger than “XX”, “XX” means an integer of 1 or more, and “YY” means an integer of 2 or more.
  • "YY" is larger than “XX”, “XX” means an integer of 1 or more, and "YY” means an integer of 2 or more.
  • an unsubstituted ZZ group represents a case where a "substituted or unsubstituted ZZ group" is an "unsubstituted ZZ group", and a substituted ZZ group is a "substituted or unsubstituted ZZ group”. is a "substituted ZZ group”.
  • "unsubstituted” in the case of "substituted or unsubstituted ZZ group” means that a hydrogen atom in the ZZ group is not replaced with a substituent.
  • a hydrogen atom in the "unsubstituted ZZ group” is a protium atom, a deuterium atom, or a tritium atom.
  • substituted in the case of “substituted or unsubstituted ZZ group” means that one or more hydrogen atoms in the ZZ group are replaced with a substituent.
  • substituted in the case of "a BB group substituted with an AA group” similarly means that one or more hydrogen atoms in the BB group are replaced with an AA group.
  • the number of ring-forming carbon atoms in the "unsubstituted aryl group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5 to 18, unless otherwise specified. be.
  • the number of carbon atoms in the "unsubstituted alkyl group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • the number of carbon atoms in the "unsubstituted alkenyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of carbon atoms in the "unsubstituted alkynyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of ring-forming carbon atoms in the "unsubstituted cycloalkyl group” described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6, unless otherwise specified. be.
  • the number of ring-forming carbon atoms in the "unsubstituted arylene group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted divalent heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5, unless otherwise specified herein. ⁇ 18.
  • the number of carbon atoms in the "unsubstituted alkylene group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • the unsubstituted aryl group refers to the case where the "substituted or unsubstituted aryl group” is the “unsubstituted aryl group", and the substituted aryl group is the “substituted or unsubstituted aryl group” It refers to a "substituted aryl group."
  • the term “aryl group” includes both "unsubstituted aryl group” and "substituted aryl group.”
  • a "substituted aryl group” means a group in which one or more hydrogen atoms of an "unsubstituted aryl group” are replaced with a substituent.
  • substituted aryl group examples include, for example, a group in which one or more hydrogen atoms of the "unsubstituted aryl group” of Specific Example Group G1A below is replaced with a substituent, and a substituted aryl group of Specific Example Group G1B below.
  • Examples include:
  • the examples of the "unsubstituted aryl group” and the examples of the “substituted aryl group” listed here are only examples, and the “substituted aryl group” described herein includes the following specific examples A group in which the hydrogen atom bonded to the carbon atom of the aryl group itself in the "substituted aryl group” of Group G1B is further replaced with a substituent, and the hydrogen atom of the substituent in the "substituted aryl group” of Specific Example Group G1B below Furthermore, groups substituted with substituents are also included.
  • aryl group (specific example group G1A): phenyl group, a p-biphenyl group, m-biphenyl group, an o-biphenyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, benzoanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a pyrenyl group, a chryseny
  • aryl group (specific example group G1B): o-tolyl group, m-tolyl group, p-tolyl group, para-xylyl group, meta-xylyl group, an ortho-xylyl group, para-isopropylphenyl group, meta-isopropylphenyl group, an ortho-isopropylphenyl group, para-t-butylphenyl group, meta-t-butylphenyl group, ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-dimethylfluorenyl group, 9,9-diphenylfluorenyl group, 9,9-bis(4-methylphenyl)fluorenyl group, 9,9-bis(4-isopropylphenyl)fluorenyl group, 9,9-bis(4-t-butylphenyl) fluorenyl group, a cyanophenyl group,
  • heterocyclic group is a cyclic group containing at least one heteroatom as a ring-forming atom. Specific examples of heteroatoms include nitrogen, oxygen, sulfur, silicon, phosphorus, and boron atoms.
  • a “heterocyclic group” as described herein is a monocyclic group or a condensed ring group.
  • a “heterocyclic group” as described herein is either an aromatic heterocyclic group or a non-aromatic heterocyclic group.
  • specific examples of the "substituted or unsubstituted heterocyclic group" described herein include the following unsubstituted heterocyclic groups (specific example group G2A), and substituted heterocyclic groups ( Specific example group G2B) and the like can be mentioned.
  • unsubstituted heterocyclic group refers to the case where “substituted or unsubstituted heterocyclic group” is “unsubstituted heterocyclic group”, and substituted heterocyclic group refers to “substituted or unsubstituted "Heterocyclic group” refers to a "substituted heterocyclic group”.
  • heterocyclic group refers to a "substituted heterocyclic group”.
  • a “substituted heterocyclic group” means a group in which one or more hydrogen atoms of an "unsubstituted heterocyclic group” are replaced with a substituent.
  • Specific examples of the "substituted heterocyclic group” include groups in which the hydrogen atoms of the "unsubstituted heterocyclic group” of the following specific example group G2A are replaced, and examples of the substituted heterocyclic groups of the following specific example group G2B. mentioned.
  • the examples of the "unsubstituted heterocyclic group” and the examples of the “substituted heterocyclic group” listed here are only examples, and the "substituted heterocyclic group” described herein specifically includes A group in which the hydrogen atom bonded to the ring-forming atom of the heterocyclic group itself in the "substituted heterocyclic group" of Example Group G2B is further replaced with a substituent, and a substituent in the "substituted heterocyclic group" of Specific Example Group G2B A group in which a hydrogen atom of is further replaced with a substituent is also included.
  • Specific example group G2A includes, for example, the following nitrogen atom-containing unsubstituted heterocyclic groups (specific example group G2A1), oxygen atom-containing unsubstituted heterocyclic groups (specific example group G2A2), sulfur atom-containing unsubstituted (specific example group G2A3), and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • nitrogen atom-containing unsubstituted heterocyclic groups specifically example group G2A1
  • oxygen atom-containing unsubstituted heterocyclic groups specifically example group G2A2
  • sulfur atom-containing unsubstituted specifically example group G2A3
  • a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • Specific example group G2B includes, for example, the following substituted heterocyclic group containing a nitrogen atom (specific example group G2B1), substituted heterocyclic group containing an oxygen atom (specific example group G2B2), substituted heterocyclic ring containing a sulfur atom group (specific example group G2B3), and one or more hydrogen atoms of a monovalent heterocyclic group derived from a ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) as a substituent Including substituted groups (example group G2B4).
  • an unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1): pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, a thiazolyl group, an isothiazolyl group, a thiadiazolyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, pyrazinyl group, a triazinyl group, an indolyl group, an isoindolyl group, an indolizinyl group, a quinolidinyl group, quinolyl group, an isoquinolyl group, cinnolyl group, a phthalazinyl group, a quinazolinyl
  • an unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2): a furyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, xanthenyl group, benzofuranyl group, an isobenzofuranyl group, a dibenzofuranyl group, a naphthobenzofuranyl group, a benzoxazolyl group, a benzisoxazolyl group, a phenoxazinyl group, a morpholino group, a dinaphthofuranyl group, an azadibenzofuranyl group, a diazadibenzofuranyl group, azanaphthobenzofuranyl group and diazanaphthobenzofuranyl group;
  • X A and Y A are each independently an oxygen atom, a sulfur atom, NH, or CH 2 . However, at least one of X A and Y A is an oxygen atom, a sulfur atom, or NH.
  • the monovalent heterocyclic groups derived from the represented ring structures include monovalent groups obtained by removing one hydrogen atom from these NH or CH2 .
  • a substituted heterocyclic group containing a nitrogen atom (specific example group G2B1): (9-phenyl)carbazolyl group, (9-biphenylyl)carbazolyl group, (9-phenyl) phenylcarbazolyl group, (9-naphthyl)carbazolyl group, diphenylcarbazol-9-yl group, a phenylcarbazol-9-yl group, a methylbenzimidazolyl group, ethylbenzimidazolyl group, a phenyltriazinyl group, a biphenylyltriazinyl group, a diphenyltriazinyl group, a phenylquinazolinyl group and a biphenylquinazolinyl group;
  • a substituted heterocyclic group containing an oxygen atom (specific example group G2B2): a phenyldibenzofuranyl group, methyldibenzofuranyl group, A t-butyldibenzofuranyl group and a monovalent residue of spiro[9H-xanthene-9,9′-[9H]fluorene].
  • a substituted heterocyclic group containing a sulfur atom (specific example group G2B3): a phenyldibenzothiophenyl group, a methyldibenzothiophenyl group, A t-butyldibenzothiophenyl group and a monovalent residue of spiro[9H-thioxanthene-9,9′-[9H]fluorene].
  • the "one or more hydrogen atoms of the monovalent heterocyclic group” means a hydrogen atom bonded to the ring-forming carbon atom of the monovalent heterocyclic group, and at least one of X A and Y A is NH and one or more hydrogen atoms of a methylene group when one of X A and Y A is CH 2 .
  • unsubstituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is “unsubstituted alkyl group”
  • substituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is It refers to a "substituted alkyl group”.
  • alkyl group includes both an "unsubstituted alkyl group” and a "substituted alkyl group”.
  • a “substituted alkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkyl group” (specific example group G3A) are replaced with substituents, and substituted alkyl groups (specific examples Examples of group G3B) and the like can be mentioned.
  • the alkyl group in the "unsubstituted alkyl group” means a chain alkyl group.
  • the "unsubstituted alkyl group” includes a linear “unsubstituted alkyl group” and a branched “unsubstituted alkyl group”.
  • the examples of the "unsubstituted alkyl group” and the examples of the “substituted alkyl group” listed here are only examples, and the "substituted alkyl group” described herein includes specific example group G3B A group in which the hydrogen atom of the alkyl group itself in the "substituted alkyl group” of Specific Example Group G3B is further replaced with a substituent, and a group in which the hydrogen atom of the substituent in the "substituted alkyl group” of Specific Example Group G3B is further replaced by a substituent included.
  • - unsubstituted alkyl group (specific example group G3A): methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, and t-butyl group.
  • Substituted alkyl group (specific example group G3B): heptafluoropropyl group (including isomers), pentafluoroethyl group, 2,2,2-trifluoroethyl group and trifluoromethyl group;
  • Substituted or unsubstituted alkenyl group Specific examples of the "substituted or unsubstituted alkenyl group" described in the specification (specific example group G4) include the following unsubstituted alkenyl groups (specific example group G4A) and substituted alkenyl groups (specific example group G4B) and the like.
  • unsubstituted alkenyl group refers to the case where "substituted or unsubstituted alkenyl group” is “unsubstituted alkenyl group", "substituted alkenyl group” means "substituted or unsubstituted alkenyl group ” is a “substituted alkenyl group”.
  • alkenyl group simply referring to an “alkenyl group” includes both an “unsubstituted alkenyl group” and a “substituted alkenyl group”.
  • a “substituted alkenyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkenyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkenyl group” include groups in which the following "unsubstituted alkenyl group” (specific example group G4A) has a substituent, and substituted alkenyl groups (specific example group G4B). be done.
  • - unsubstituted alkenyl group (specific example group G4A): a vinyl group, allyl group, 1-butenyl group, 2-butenyl group, and 3-butenyl group.
  • - substituted alkenyl group (specific example group G4B): 1,3-butandienyl group, 1-methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, a 2-methylallyl group and a 1,2-dimethylallyl group;
  • Substituted or unsubstituted alkynyl group Specific examples of the "substituted or unsubstituted alkynyl group" described in the specification (specific example group G5) include the following unsubstituted alkynyl groups (specific example group G5A).
  • unsubstituted alkynyl group refers to the case where "substituted or unsubstituted alkynyl group” is "unsubstituted alkynyl group”.
  • alkynyl group means "unsubstituted includes both "alkynyl group” and "substituted alkynyl group”.
  • a “substituted alkynyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkynyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkynyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkynyl group” (specific example group G5A) are replaced with substituents.
  • Substituted or unsubstituted cycloalkyl group Specific examples of the "substituted or unsubstituted cycloalkyl group” described in the specification (specific example group G6) include the following unsubstituted cycloalkyl groups (specific example group G6A), and substituted cycloalkyl groups ( Specific example group G6B) and the like can be mentioned.
  • unsubstituted cycloalkyl group refers to the case where "substituted or unsubstituted cycloalkyl group” is “unsubstituted cycloalkyl group", and substituted cycloalkyl group refers to "substituted or unsubstituted It refers to the case where "cycloalkyl group” is “substituted cycloalkyl group”.
  • cycloalkyl group means "unsubstituted cycloalkyl group” and “substituted cycloalkyl group”. including both.
  • a “substituted cycloalkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted cycloalkyl group” are replaced with a substituent.
  • Specific examples of the "substituted cycloalkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted cycloalkyl group” (specific example group G6A) are replaced with substituents, and substituted cycloalkyl groups (Specific example group G6B) and the like.
  • the examples of the "unsubstituted cycloalkyl group” and the examples of the “substituted cycloalkyl group” listed here are only examples, and the "substituted cycloalkyl group” described herein specifically includes A group in which one or more hydrogen atoms bonded to a carbon atom of the cycloalkyl group itself in the “substituted cycloalkyl group” of Example Group G6B is replaced with a substituent, and in the “substituted cycloalkyl group” of Specific Example Group G6B A group in which a hydrogen atom of a substituent is further replaced with a substituent is also included.
  • an unsubstituted cycloalkyl group (specific example group G6A): a cyclopropyl group, cyclobutyl group, a cyclopentyl group, a cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group and 2-norbornyl group.
  • G7 A group represented by -Si (R 901 ) (R 902 ) (R 903 )
  • Specific examples of the group represented by —Si(R 901 )(R 902 )(R 903 ) described in the specification include: -Si(G1)(G1)(G1), - Si (G1) (G2) (G2), - Si (G1) (G1) (G2), -Si(G2)(G2)(G2), -Si(G3)(G3)(G3) and -Si(G6)(G6)(G6) are mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -Si(G1)(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -Si (G1) (G2) (G2) are the same or different from each other.
  • a plurality of G1's in -Si(G1)(G1)(G2) are the same or different from each other.
  • a plurality of G2 in -Si(G2)(G2)(G2) are the same or different from each other.
  • a plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other.
  • a plurality of G6 in -Si(G6)(G6)(G6) are the same or different from each other.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G9 A group represented by -S- (R 905 )
  • Specific examples of the group represented by -S-(R 905 ) described in the specification include: -S(G1), -S(G2), -S (G3) and -S (G6) is mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -N(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -N(G2)(G2) are the same or different from each other.
  • a plurality of G3s in -N(G3)(G3) are the same or different from each other.
  • a plurality of G6 in -N(G6)(G6) are the same or different from each other.
  • halogen atom described in this specification (specific example group G11) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • Substituted or unsubstituted fluoroalkyl group means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group” is replaced with a fluorine atom. Also includes a group (perfluoro group) in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group" are replaced with fluorine atoms.
  • the carbon number of the “unsubstituted fluoroalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted fluoroalkyl group” means a group in which one or more hydrogen atoms of a “fluoroalkyl group” are replaced with a substituent.
  • substituted fluoroalkyl group described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted fluoroalkyl group” are further replaced with a substituent, and A group in which one or more hydrogen atoms of a substituent in a "substituted fluoroalkyl group” is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted fluoroalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with fluorine atoms.
  • Substituted or unsubstituted haloalkyl group "Substituted or unsubstituted haloalkyl group” described herein means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group" is replaced with a halogen atom Also includes a group in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group” are replaced with halogen atoms.
  • the carbon number of the “unsubstituted haloalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted haloalkyl group” means a group in which one or more hydrogen atoms of a “haloalkyl group” are replaced with a substituent.
  • the "substituted haloalkyl group" described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted haloalkyl group” are further replaced with a substituent group, and a “substituted A group in which one or more hydrogen atoms of the substituent in the "haloalkyl group of" is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted haloalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with halogen atoms.
  • a haloalkyl group may be referred to as a halogenated alkyl group.
  • Substituted or unsubstituted alkoxy group A specific example of the "substituted or unsubstituted alkoxy group" described in this specification is a group represented by -O(G3), where G3 is the "substituted or unsubstituted alkyl group".
  • the carbon number of the "unsubstituted alkoxy group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted alkylthio group A specific example of the "substituted or unsubstituted alkylthio group” described in this specification is a group represented by -S(G3), where G3 is the "substituted or unsubstituted unsubstituted alkyl group".
  • the carbon number of the "unsubstituted alkylthio group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted aryloxy group Specific examples of the “substituted or unsubstituted aryloxy group” described in this specification are groups represented by —O(G1), where G1 is the “substituted or an unsubstituted aryl group”.
  • the number of ring-forming carbon atoms in the "unsubstituted aryloxy group” is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
  • ⁇ "Substituted or unsubstituted trialkylsilyl group” Specific examples of the "trialkylsilyl group” described in this specification are groups represented by -Si(G3)(G3)(G3), where G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group”. A plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other. The number of carbon atoms in each alkyl group of the "trialkylsilyl group” is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified in the specification.
  • a specific example of the "substituted or unsubstituted aralkyl group” described in this specification is a group represented by -(G3)-(G1), wherein G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • an "aralkyl group” is a group in which a hydrogen atom of an "alkyl group” is replaced with an "aryl group” as a substituent, and is one aspect of a “substituted alkyl group”.
  • An “unsubstituted aralkyl group” is an "unsubstituted alkyl group” substituted with an "unsubstituted aryl group", and the number of carbon atoms in the "unsubstituted aralkyl group” is unless otherwise specified herein. , 7-50, preferably 7-30, more preferably 7-18.
  • substituted or unsubstituted aralkyl group include a benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group , 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, and 2- ⁇ -naphthylisopropyl group.
  • a substituted or unsubstituted aryl group described herein is preferably a phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl- 4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl- 2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, phenanthryl group , pyrenyl group, chrysenyl group, triphenylenyl group, fluorenyl group, 9,9′-spirobifluorenyl group,
  • substituted or unsubstituted heterocyclic groups described herein are preferably pyridyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, quinazolinyl, benzimidazolyl, phenyl, unless otherwise stated herein.
  • nantholinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group , dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, ( 9-phenyl)carbazolyl group ((9-phenyl)carbazol-1-yl group, (9-phenyl)carbazol-2-yl group, (9-phenyl)carbazol-3-yl group, or (9-phenyl)carbazole -4-yl group), (9-
  • a carbazolyl group is specifically any one of the following groups unless otherwise specified in the specification.
  • the (9-phenyl)carbazolyl group is specifically any one of the following groups, unless otherwise stated in the specification.
  • a dibenzofuranyl group and a dibenzothiophenyl group are specifically any of the following groups, unless otherwise specified.
  • substituted or unsubstituted alkyl groups described herein are preferably methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, and t- butyl group and the like.
  • the "substituted or unsubstituted arylene group” described herein is derived from the above "substituted or unsubstituted aryl group” by removing one hydrogen atom on the aryl ring. is the base of the valence.
  • Specific examples of the “substituted or unsubstituted arylene group” include the “substituted or unsubstituted aryl group” described in specific example group G1 by removing one hydrogen atom on the aryl ring. Induced divalent groups and the like can be mentioned.
  • Substituted or unsubstituted divalent heterocyclic group Unless otherwise specified, the "substituted or unsubstituted divalent heterocyclic group” described herein is the above “substituted or unsubstituted heterocyclic group” except that one hydrogen atom on the heterocyclic ring is removed. is a divalent group derived from Specific examples of the "substituted or unsubstituted divalent heterocyclic group" (specific example group G13) include one hydrogen on the heterocyclic ring from the "substituted or unsubstituted heterocyclic group” described in specific example group G2. Examples include divalent groups derived by removing atoms.
  • Substituted or unsubstituted alkylene group Unless otherwise specified, the "substituted or unsubstituted alkylene group” described herein is derived from the above “substituted or unsubstituted alkyl group” by removing one hydrogen atom on the alkyl chain. is the base of the valence. Specific examples of the "substituted or unsubstituted alkylene group” (specific example group G14) include the "substituted or unsubstituted alkyl group” described in specific example group G3 by removing one hydrogen atom on the alkyl chain. Induced divalent groups and the like can be mentioned.
  • the substituted or unsubstituted arylene group described in this specification is preferably any group of the following general formulas (TEMP-42) to (TEMP-68), unless otherwise specified in this specification.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • * represents a binding position.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • Formulas Q9 and Q10 may be linked together through a single bond to form a ring.
  • * represents a binding position.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • * represents a binding position.
  • the substituted or unsubstituted divalent heterocyclic group described herein is preferably any group of the following general formulas (TEMP-69) to (TEMP-102), unless otherwise specified herein is.
  • Q 1 to Q 9 are each independently a hydrogen atom or a substituent.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • R 921 and R 922 when “one or more pairs of two or more adjacent pairs of R 921 to R 930 are combined to form a ring", is a pair of R 921 and R 922 , a pair of R 922 and R 923 , a pair of R 923 and R 924 , a pair of R 924 and R 930 , a pair of R 930 and R 925 , R 925 and R 926 , R 926 and R 927 , R 927 and R 928 , R 928 and R 929 , and R 929 and R 921 .
  • one or more pairs means that two or more of the groups consisting of two or more adjacent groups may form a ring at the same time.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 925 and R 926 are bonded together to form ring Q B
  • the general formula (TEMP-103) The represented anthracene compound is represented by the following general formula (TEMP-104).
  • a group consisting of two or more adjacent pairs forms a ring is not limited to the case where a group consisting of two adjacent "two” bonds as in the above example, but It also includes the case where a pair is combined.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 922 and R 923 are bonded together to form ring Q C
  • the adjacent three R 921 , R 922 and R 923
  • the anthracene compound represented by the above general formula (TEMP-103) has It is represented by the general formula (TEMP-105).
  • ring Q A and ring Q C share R 922 .
  • the "monocyclic ring” or “condensed ring” to be formed may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even when “one pair of adjacent pairs" forms a “single ring” or a “fused ring", the “single ring” or “fused ring” is a saturated ring, or Unsaturated rings can be formed.
  • ring Q A and ring Q B formed in the general formula (TEMP-104) are each a “monocyclic ring” or a "fused ring”.
  • the ring Q A and the ring Q C formed in the general formula (TEMP-105) are “fused rings”.
  • the ring Q A and the ring Q C in the general formula (TEMP-105) form a condensed ring by condensing the ring Q A and the ring Q C. If the ring Q A of the general formula (TMEP-104) is a benzene ring, the ring Q A is monocyclic. When the ring Q A of the general formula (TMEP-104) is a naphthalene ring, the ring Q A is a condensed ring.
  • Unsaturated ring means an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • a “saturated ring” means an aliphatic hydrocarbon ring or a non-aromatic heterocyclic ring.
  • Specific examples of the aromatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G1 are terminated with a hydrogen atom.
  • Specific examples of the aromatic heterocyclic ring include structures in which the aromatic heterocyclic groups listed as specific examples in the specific example group G2 are terminated with a hydrogen atom.
  • Specific examples of the aliphatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G6 are terminated with a hydrogen atom.
  • Forming a ring means forming a ring only with a plurality of atoms of the mother skeleton, or with a plurality of atoms of the mother skeleton and one or more arbitrary elements.
  • the ring Q A formed by combining R 921 and R 922 shown in the general formula (TEMP-104) has the carbon atom of the anthracene skeleton to which R 921 is bonded and the anthracene to which R 922 is bonded. It means a ring formed by a skeleton carbon atom and one or more arbitrary elements.
  • R 921 and R 922 form a ring Q A , the carbon atom of the anthracene skeleton to which R 921 is bound, the carbon atom of the anthracene skeleton to which R 922 is bound, and four carbon atoms and form a monocyclic unsaturated ring, the ring formed by R 921 and R 922 is a benzene ring.
  • the "arbitrary element” is preferably at least one element selected from the group consisting of carbon element, nitrogen element, oxygen element, and sulfur element, unless otherwise specified in this specification.
  • a bond that does not form a ring may be terminated with a hydrogen atom or the like, or may be substituted with an “optional substituent” described later.
  • the ring formed is a heterocycle.
  • One or more arbitrary elements constituting a monocyclic or condensed ring are preferably 2 or more and 15 or less, more preferably 3 or more and 12 or less, unless otherwise specified in the present specification. , more preferably 3 or more and 5 or less.
  • “monocyclic ring” and “condensed ring” “monocyclic ring” is preferred, unless otherwise stated in the present specification.
  • the “saturated ring” and the “unsaturated ring” the “unsaturated ring” is preferred, unless otherwise specified in the present specification.
  • “monocyclic” is preferably a benzene ring.
  • the “unsaturated ring” is preferably a benzene ring.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above “monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section “Substituents described herein” above.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above "monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section "Substituents described herein" above. The above is the case where “one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted monocyclic ring", and “one or more pairs of two or more adjacent pairs are combined with each other to form a substituted or unsubstituted condensed ring"("combine to form a ring").
  • the substituent in the case of “substituted or unsubstituted” is, for example, an unsubstituted alkyl group having 1 to 50 carbon atoms, an unsubstituted alkenyl group having 2 to 50 carbon atoms, an unsubstituted alkynyl group having 2 to 50 carbon atoms, an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ), halogen atom, cyano group, nitro group, a group selected from the group consisting of an unsubstituted aryl group
  • the two or more R 901 are the same or different from each other, when two or more R 902 are present, the two or more R 902 are the same or different from each other; when two or more R 903 are present, the two or more R 903 are the same or different from each other, when two or more R 904 are present, the two or more R 904 are the same or different from each other; when two or more R 905 are present, the two or more R 905 are the same or different from each other, when two or more R 906 are present, the two or more R 906 are the same or different from each other; When two or more R 907 are present, the two or more R 907 are the same or different from each other.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 50 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
  • any adjacent substituents may form a “saturated ring” or an “unsaturated ring”, preferably a substituted or unsubstituted saturated 5 forming a membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, more preferably a benzene ring do.
  • any substituent may have further substituents. Substituents further possessed by the optional substituents are the same as the above optional substituents.
  • the numerical range represented using “AA to BB” has the numerical value AA described before “AA to BB” as the lower limit, and the numerical value BB described after “AA to BB” as the upper limit.
  • An organic EL device comprises an organic layer between both electrodes of an anode and a cathode.
  • This organic layer includes at least one layer composed of an organic compound.
  • this organic layer is formed by laminating a plurality of layers composed of an organic compound.
  • the organic layer may further contain an inorganic compound.
  • at least one layer of the organic layers is a light-emitting layer. Therefore, the organic layer may be composed of, for example, one light-emitting layer, or may include layers that can be employed in an organic EL device.
  • the layer that can be employed in the organic EL device is not particularly limited, but for example, at least one selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and a barrier layer. layer.
  • the organic EL element of this embodiment has an anode, a cathode, and a light-emitting layer included between the anode and the cathode, and the light-emitting layer is represented by the following general formula (1): Contains one compound.
  • the first compound represented by the general formula (1) below is a polycyclic heterocyclic compound having two imidazole rings in the molecule. Two imidazole rings in the molecule are bonded to both sides of the boron atom-containing heterocyclic ring and to ring A and ring C, respectively, as shown in the following general formula (1).
  • the present inventors have found that by including the first compound having such a structure in the light-emitting layer, the life of the device can be extended as compared with the case where the conventional polycyclic heterocyclic compound is included in the light-emitting layer. I found what I could do.
  • the first compound By having two imidazole rings, the first compound has an increased Af value compared to the case of having one imidazole ring. As a result, the effect of trapping electrons is increased, so that the electron load on the interface between the hole transport zone (for example, the hole transport layer) and the light emitting layer is reduced, and the life of the device is significantly improved. Since the first compound has an imidazole ring, the Af value increases as compared with the case of having an indole ring. As a result, the effect of trapping electrons is increased, so that the electron load on the interface between the hole transport zone (for example, the hole transport layer) and the light emitting layer is reduced, and the life of the device is significantly improved.
  • the first compound has an increased Af value compared to the compound represented by the following general formula (X1) and the compound represented by the following general formula (X2).
  • the effect of trapping electrons is increased, so that the electron load on the interface between the hole transport zone (for example, the hole transport layer) and the light emitting layer is reduced, and the life of the device is significantly improved.
  • the compound represented by the following general formula (X1) since the compound represented by the following general formula (X1) has two imidazole partial structures in the molecule, it may have the effect of increasing the Af value as described above.
  • the maximum peak wavelength of the spectrum shifts significantly to the short wavelength side. Therefore, for example, when used as a blue light emitting material, it is difficult to obtain an appropriate wavelength. .
  • n, p, ring A, ring C, R A and R C are each independently n, p, ring A and ring C in the following general formula (1) , R A and R C , each R X independently has the same definition as R 1 in the following general formula (1), and when a plurality of R X are present, the plurality of R X are the same as each other or different.
  • the organic EL device according to this embodiment preferably emits light having a maximum peak wavelength of 500 nm or less when the device is driven. More preferably, the organic EL device according to the present embodiment emits light having a maximum peak wavelength of 430 nm or more and 480 nm or less when the device is driven.
  • the measurement of the maximum peak wavelength of the light emitted by the organic EL element when the element is driven is performed as follows. A spectral radiance spectrum is measured by a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.) when a voltage is applied to the organic EL element so that the current density is 10 mA/cm 2 . In the obtained spectral radiance spectrum, the peak wavelength of the emission spectrum at which the emission intensity is maximum is measured, and this is defined as the maximum peak wavelength (unit: nm).
  • the light emitting layer contains a first compound represented by the following general formula (1).
  • the first compound is preferably a compound (dopant material) that emits light having a maximum peak wavelength of 500 nm or less.
  • the first compound is more preferably a compound that emits fluorescence with a maximum peak wavelength of 500 nm or less.
  • the light-emitting layer preferably does not contain a metal complex.
  • the light-emitting layer preferably does not contain a phosphorescent material (phosphorescent dopant material).
  • the light emitting layer preferably does not contain a heavy metal complex and a phosphorescent rare earth metal complex.
  • heavy metal complexes include iridium complexes, osmium complexes, and platinum complexes.
  • a method for measuring the maximum peak wavelength of a compound is as follows. A 5 ⁇ mol/L toluene solution of the compound to be measured is prepared and placed in a quartz cell, and the emission spectrum (vertical axis: emission intensity, horizontal axis: wavelength) of this sample is measured at room temperature (300K). The emission spectrum can be measured with a spectrofluorophotometer (device name: F-7000) manufactured by Hitachi High-Tech Science Co., Ltd. Note that the emission spectrum measuring device is not limited to the device used here. In the emission spectrum, the peak wavelength of the emission spectrum at which the emission intensity is maximum is defined as the maximum peak wavelength. In this specification, the maximum peak wavelength of fluorescence emission may be referred to as fluorescence emission maximum peak wavelength (FL-peak).
  • the peak with the maximum emission intensity is the maximum peak and the height of the maximum peak is 1, the height of other peaks appearing in the emission spectrum is less than 0.6 is preferably In addition, let the peak in an emission spectrum be a maximum value. Moreover, it is preferable that the number of peaks in the emission spectrum of the first compound is less than three.
  • the first compound is represented by the following general formula (1).
  • the substituent R AX , the substituent R BX and the substituent R CX are each independently halogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 50 ring carbon atoms, a substituted or unsubstituted fluorocycloalkyl group having 1 to 50 ring carbon atoms, a group represented
  • the heterocyclic ring includes, for example, a ring structure (heterocyclic ring) obtained by removing the bond from the "heterocyclic group” exemplified in the above “substituent described herein”. These heterocycles may have a substituent or may be unsubstituted.
  • the aryl ring includes, for example, a ring structure (aryl ring) obtained by removing the bond from the "aryl group” exemplified in the above "substituent described herein”. These aryl rings may have a substituent or may be unsubstituted.
  • the first compound is preferably a compound represented by the following general formula (11), (12) or (13) below.
  • R 1 and R 2 are each independently synonymous with R 1 and R 2 in the general formula (1);
  • X 1 to X 3 are each independently CR B or a nitrogen atom;
  • X 4 to X 6 are each independently CR C or a nitrogen atom,
  • X 7 to X 9 are each independently CR A or a nitrogen atom,
  • Y 1 is CR C or a nitrogen atom;
  • Y 2 is an oxygen atom, a sulfur atom , CRCRC or NRC
  • Y 3 is CR A or a nitrogen atom,
  • Y 4 is an oxygen atom, a sulfur atom, CRA R A or NR A ;
  • R A has the same definition as R A in the general formula (1);
  • RB has the same definition as RB in the general formula (1);
  • R C has the same definition as R C in the general formula (1);
  • Y 2 is CRCRC , the two RCs in CRCRC are the same or different from each other;
  • R 1 , R 2 , R A , R B and R C that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted condensed ring are each independently , hydrogen atom, halogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a group represented by —O—(R 81 ), a group represented by —N(R 82 )(R 83 ), a group represented by -S-(R 84 ), a group
  • the first compound is preferably a compound represented by the following general formula (11A), (12A) or (13A).
  • R 1 is R 11 ; combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • R 2 is R 13 ; combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, one or more sets of two or more adjacent ones of R 11 to R 13 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, one or more sets of two or more adjacent ones of R 14 to R 16 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form
  • R A in Y 4 are each independently hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 3 to 18 ring atoms, a substituted or unsubstituted alkyl group having 1 to 25 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 25 carbon atoms, a group represented by —O—(R 81 ), a group represented by —N(R 82 )(R 83 ), a group represented by -S-(R 84 ), a group represented by -B(R 96 )(R 97 ), or -CN, R 81 to R 84 and R 96 to R 97 are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, It is a substituted or unsubstituted heterocyclic group having 3 to 18
  • the first compound is also preferably a compound represented by the following general formula (14A), (15A) or (16A).
  • R 1 , R 2 and R 11 to R 19 are each independently synonymous with R 1 , R 2 and R 11 to R 19 in general formula (11A). is.
  • the first compound is preferably a compound represented by the following general formula (11B), (12B) or (13B).
  • R 14 to R 19 each independently have the same meaning as R 14 to R 19 in the general formula (11); Y 2 , Y 4 , R 21 and R 23 are each independently synonymous with Y 2 , Y 4 , R 21 and R 23 in the general formula (12); R 11 is either R 31 or R 35 ; combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, R 13 is either R 41 or R 45 ; combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, one or more sets of two or more adjacent ones of R 11 to R 13 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each
  • R 1 , R 2 , R 11 to R 19 , R 21 , R 23 and Y which do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring R C in 2 ,
  • R A in Y 4 , R 31 to R 35 and R 41 to R 45 are each independently hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 3 to 18 ring atoms, a substituted or unsubstituted alkyl group having 1 to 25 carbon atoms, a group represented by —Si(R 86 )(R 87 )(R 88 ), or —CN;
  • R 86 to R 88 are each independently A substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms or a substituted or unsubstituted hetero
  • the substituted or unsubstituted monocyclic ring is not formed, and the substituted or unsubstituted R 1 , R 2 , R A , R B , R C , R 11 to R 19 , R 21 , R 23 , R 31 to R 35 and R 41 to R 45 that do not form a substituted condensed ring are each independently , hydrogen atom, -CN, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 3 to 18 ring atoms, A substituted or unsubstituted alkyl group having 1 to 25 carbon atoms, or a group represented by —Si(R 86 )(R 87 )(R 88 ) is preferred, hydrogen atom, -CN, a substituted or unsubstituted
  • R 1 is bonded to one or more selected from the group consisting of RB to form a substituted or unsubstituted monocyclic ring, or bonded to each other to form a substituted or unsubstituted It is also preferred to form fused rings.
  • R 2 is bonded to one or more selected from the group consisting of RB to form a substituted or unsubstituted monocyclic ring, or bonded to each other to form a substituted or unsubstituted It is also preferred to form fused rings.
  • ring B is a substituted or unsubstituted benzene ring
  • R 2 is a substituted or unsubstituted phenyl group
  • the phenyl group and RB are bonded to each other to form a monocyclic ring.
  • the compound include compounds represented by the following general formula (C1).
  • one or more sets of two or more adjacent substituents R AX among the two or more substituents are bonded to each other to form a substituted or unsubstituted monocyclic ring, or bonded to each other to form a substituted or unsubstituted condensed ring.
  • the first compound when the ring A is a substituted or unsubstituted benzene ring, and two adjacent substituents R AX are combined to form a monocyclic ring, the first compound may be represented by the following general formula (C12 ) can be mentioned. Further, for example, when the ring A is a substituted or unsubstituted benzene ring, and a group consisting of two adjacent substituents R AX are bonded to each other to form a condensed ring, the first compound has the following general formula Examples include compounds represented by (C5) to (C10) and (C13) to (C14).
  • one or more sets of two or more adjacent substituents R BX among the two or more substituents RBX are bonded to each other to form a substituted or unsubstituted monocyclic ring, or bonded to each other to form a substituted or unsubstituted condensed ring.
  • the first compound may be represented by the following general formula (C11 ) can be mentioned.
  • the first compound one or more sets of adjacent two or more of the two or more substituents R CX are bonded together to form a substituted or unsubstituted monocyclic ring, or bonded together to form a substituted or unsubstituted condensed ring.
  • the first compound may be represented by the following general formula (C2 ), (C3), (C7), (C8) and (C12).
  • the first compound has the following general formula Examples include compounds represented by (C4), (C9), (C10) and (C14).
  • the single ring or condensed ring mode is not limited to the modes represented by the following general formulas (C1) to (C14).
  • the first compound is also preferably a compound represented by any one of the following general formulas (C1) to (C14).
  • R 1 , R 2 , R A , R B and R C are each independently R 1 , R 2 , R A , R is synonymous with B and R C ;
  • R D each independently has the same definition as R 1 in the general formula (1), and when there are a plurality of R D , the plurality of R D are the same or different, and X D is an oxygen atom , sulfur atom , CRDRD or NRD , and XD is CRDRD , the two RDs in CRDRD are the same or different from each other.
  • the first compound can be produced by a known method.
  • the first compound can also be produced by imitating a known method and using known alternative reactions and raw materials that match the desired product.
  • Specific examples of the first compound include the following compounds. However, the present invention is not limited to these specific examples of the first compound.
  • D represents a deuterium atom and Me represents a methyl group in specific examples of compounds.
  • the light-emitting layer preferably contains a first host material and a first compound (a compound represented by the general formula (1)) as a first dopant material.
  • the first host material include 1) condensed aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, benzanthracene derivatives, fluorene derivatives, fluoranthene derivatives, and chrysene derivatives; Heterocyclic compounds such as thiophene derivatives and benzoxanthene derivatives can be mentioned.
  • the first host material is preferably a condensed aromatic compound, more preferably an anthracene derivative or a pyrene derivative (a compound represented by the general formula (100) described later), and preferably an anthracene derivative. More preferred.
  • the first host material is also preferably a benzanthracene derivative (compound represented by general formula (1X) described below) or a benzoxanthene derivative (compound represented by general formula (14X) described below).
  • a "host material” is, for example, a material contained in "50% by mass or more of the layer". Accordingly, the light-emitting layer contains, for example, 50% by weight or more of the total weight of the light-emitting layer of the first host material.
  • the first host material is an anthracene derivative
  • the first host material is preferably a compound represented by the following general formula (2).
  • R 201 to R 208 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms,
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 , R 907 , R 801 and R 802 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 904 are present, the multiple R 904 are the same or different
  • At least one of R 201 to R 208 in the compound represented by the general formula (2) is preferably not a hydrogen atom. That is, when the first host material is the compound represented by the general formula (2), the compound represented by the general formula (2) is a trisubstituted anthracene derivative substituted with at least three substituents. Preferably.
  • R 201 to R 208 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsub
  • L 201 and L 202 are each independently a single bond, or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms
  • Ar 201 and Ar 202 are each independently preferably a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms.
  • Ar 201 and Ar 202 are each independently phenyl group, naphthyl group, a phenanthryl group, biphenyl group, a terphenyl group, a diphenylfluorenyl group, dimethylfluorenyl group, a benzodiphenyl fluorenyl group, benzodimethylfluorenyl group, a dibenzofuranyl group, a dibenzothienyl group, A naphthobenzofuranyl group or a naphthobenzothienyl group is preferred.
  • the compound represented by the general formula (2) is represented by the following general formula (201), general formula (202), general formula (203), general formula (204), general formula (205), general formula (206), general formula (207), general formula (208) or general formula (209).
  • L 201 and Ar 201 are synonymous with L 201 and Ar 201 in the general formula (2)
  • R 201 to R 208 are each independently synonymous with R 201 to R 208 in the general formula (2).
  • the compound represented by the general formula (2) has the following general formula (221), general formula (222), general formula (223), general formula (224), general formula (225), general formula (226), A compound represented by general formula (227), general formula (228) or general formula (229) is also preferred.
  • R 201 and R 203 to R 208 are each independently synonymous with R 201 and R 203 to R 208 in the general formula (2);
  • L 201 and Ar 201 are respectively synonymous with L 201 and Ar 201 in the general formula (2),
  • L 203 has the same definition as L 201 in the general formula (2),
  • L 203 and L 201 are the same or different from each other,
  • Ar 203 has the same definition as Ar 201 in the general formula (2), Ar 203 and Ar 201 are the same or different from each other.
  • the compound represented by the general formula (2) has the following general formula (241), general formula (242), general formula (243), general formula (244), general formula (245), general formula (246), Compounds represented by general formula (247), general formula (248) or general formula (249) are also preferred.
  • R 201 , R 202 and R 204 to R 208 are each independently synonymous with R 201 , R 202 and R 204 to R 208 in the general formula (2);
  • L 201 and Ar 201 are respectively synonymous with L 201 and Ar 201 in the general formula (2),
  • L 203 has the same definition as L 201 in the general formula (2),
  • L 203 and L 201 are the same or different from each other,
  • Ar 203 has the same definition as Ar 201 in the general formula (2), Ar 203 and Ar 201 are the same or different from each other.
  • R 201 to R 208 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms or a group represented by —Si(R 901 ) (R 902 ) (R 903 ) is preferred.
  • L 201 is a single bond or an unsubstituted arylene group having 6 to 22 ring carbon atoms
  • Ar 201 is preferably a substituted or unsubstituted aryl group having 6 to 22 ring carbon atoms.
  • the substituent of the anthracene skeleton in the compound represented by the general formula (2) Certain R 201 to R 208 are preferably hydrogen atoms from the viewpoint of preventing intermolecular interaction from being suppressed and suppressing a decrease in electron mobility, but R 201 to R 208 are substituted or It may be an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • the organic EL element according to the second embodiment may have an anode, a second light-emitting layer, a first light-emitting layer, and a cathode in this order.
  • the order of the second light-emitting layers can also be reversed.
  • the stacking order of the first light-emitting layer and the second light-emitting layer is the order of the second light-emitting layer and the first light-emitting layer from the anode side.
  • the first host material contained in the first light-emitting layer is the compound represented by the general formula (2), the following phenomenon may occur.
  • R 201 to R 208 in general formula (2) are preferably not bulky substituents.
  • R 201 to R 208 are bulky substituents such as alkyl groups and cycloalkyl groups, the interaction between molecules is suppressed, and the electron mobility with respect to the second host material decreases, and there is a risk that the relationship ⁇ e(H1)> ⁇ e(H2) described in the later-described formula (Equation 3) will not be satisfied.
  • the compound represented by the general formula (2) is used as the first host material in the first light-emitting layer, the second light-emitting layer satisfies the relationship ⁇ e(H1)> ⁇ e(H2).
  • the substituents in the case of "substituted or unsubstituted” in R 201 to R 208 are the aforementioned substituents that may be bulky, particularly substituted or unsubstituted alkyl groups, and substituted Alternatively, it is also preferable not to contain an unsubstituted cycloalkyl group.
  • the substituent in the case of "substituted or unsubstituted” in R 201 to R 208 does not include a substituted or unsubstituted alkyl group and a substituted or unsubstituted cycloalkyl group, so that an alkyl group, a cycloalkyl group, etc.
  • R 201 to R 208 as substituents of the anthracene skeleton are not bulky substituents, and R 201 to R 208 are unsubstituted. Further, in the case where R 201 to R 208 which are substituents of the anthracene skeleton are not bulky substituents, when a substituent is bonded to R 201 to R 208 as a non-bulky substituent, the substituent is also bulky.
  • the compound represented by general formula (2) can be produced by a known method.
  • Specific examples of compounds represented by formula (2) include the following compounds. However, the compound represented by general formula (2) is not limited to the specific examples below.
  • the first host material and the first dopant material preferably satisfy the relationship of the following formula (number A), and more preferably satisfy the following formula (number A1): More preferably, it satisfies the following formula (number A2).
  • Af(D1)-Af(H1) ⁇ 0.40 eV severe A
  • Af(D1)-Af(H1) ⁇ 0.45 eV number A1
  • Af(D1)-Af(H1) ⁇ 0.50 eV number A2
  • Af (H1) is the affinity (unit: eV) of the first host material
  • Af (D1) is the first host It is the affinity of the material (unit: eV).
  • the effect of trapping electrons is increased. reduces the electronic load on the interface. As a result, the device can have a longer life.
  • the affinity Af of a compound can be calculated from the redox potential of each compound determined by various electrochemical measurements. Af, Djulovich, Mayo, Forrest, Thompson, Organic Electronics, 10 (2009) p. 515-520, the first reduction potential (Ere [V]) of the compound measured in dimethylformamide (DMF) solvent and the first oxidation potential of ferrocene similarly measured as an internal standard ( Efc[V]), it can be calculated by the following formula (number C).
  • the redox potential can be measured by techniques such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV).
  • CV cyclic voltammetry
  • DPV differential pulse voltammetry
  • the redox potential of each compound is measured by DPV measurement.
  • a specific measuring method is as described in Examples.
  • the light-emitting layer preferably contains the first dopant material as the first compound in an amount of 0.5% by mass or more of the total mass of the light-emitting layer. It is more preferable to contain more than 1.1% by mass of the mass, more preferably 1.2% by mass or more of the total mass of the light-emitting layer, and more preferably 1.5% by mass or more of the total mass of the light-emitting layer. more preferably.
  • the light-emitting layer preferably contains the first dopant material in an amount of 10% by weight or less of the total weight of the light-emitting layer, more preferably 7% by weight or less of the total weight of the light-emitting layer. It is more preferable to contain 5% by mass or less of the mass.
  • the light-emitting layer preferably contains the first host material in an amount of 60% by mass or more of the total weight of the light-emitting layer, and 70% by weight or more of the total weight of the light-emitting layer. more preferably 80% by mass or more of the total mass of the light-emitting layer, more preferably 90% by mass or more of the total mass of the light-emitting layer, and even more preferably 95% by mass of the total mass of the light-emitting layer It is even more preferable to contain at least 1% by mass.
  • the light-emitting layer preferably contains the first host material in an amount of 99% by weight or less of the total weight of the light-emitting layer. However, when the light-emitting layer contains the first host material and the first dopant material, the upper limit of the total content of the first host material and the first dopant material is 100% by mass.
  • the light-emitting layer contains materials other than the first host material and the first dopant material.
  • the light-emitting layer may contain only one type of the first host material, or may contain two or more types.
  • the light-emitting layer may contain only one kind of the first dopant material, or may contain two or more kinds thereof.
  • the film thickness of the light-emitting layer in the organic EL device of the present embodiment is preferably 5 nm or more and 50 nm or less, more preferably 7 nm or more and 50 nm or less, and most preferably 10 nm or more and 50 nm or less.
  • it is 5 nm or more, formation of a light-emitting layer and adjustment of chromaticity are likely to be facilitated, and when it is 50 nm or less, an increase in driving voltage is likely to be suppressed.
  • the organic EL device according to this embodiment may have two or more light-emitting layers.
  • the organic EL device according to this embodiment may have one or more organic layers in addition to the light-emitting layer.
  • Examples of the organic layer include at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a hole blocking layer and an electron blocking layer.
  • the organic EL device may be composed only of a light-emitting layer, but for example, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a hole blocking layer and an electron blocking layer. It may further have at least one layer selected from the group consisting of
  • FIG. 1 shows a schematic configuration of an example of the organic EL element in this embodiment.
  • the organic EL element 1 includes a translucent substrate 2 , an anode 3 , a cathode 4 , and an organic layer 10 arranged between the anode 3 and the cathode 4 .
  • the organic layer 10 is configured by stacking a hole injection layer 6, a hole transport layer 7, a light emitting layer 5, an electron transport layer 8, and an electron injection layer 9 in this order from the anode 3 side.
  • the present invention is not limited to the organic EL element having the configuration shown in FIG.
  • the light-emitting layers include a first light-emitting layer and a second light-emitting layer.
  • the first light-emitting layer includes a first host material and a first dopant material.
  • the second light-emitting layer includes a second host material and a second dopant material.
  • the first host material and the second host material are different from each other.
  • the first dopant material and the second dopant material are the same or different from each other.
  • the organic EL device according to the second embodiment has at least two light-emitting layers (first light-emitting layer and second light-emitting layer).
  • the first light-emitting layer according to the second embodiment has the same configuration as the light-emitting layer according to the first embodiment. In the following, differences from the first embodiment will be mainly described, and overlapping descriptions will be omitted or simplified.
  • the organic EL device according to the second embodiment can have a longer life and an improved luminous efficiency by using Triplet-Tripret-Annhilation (sometimes referred to as TTA).
  • TTA is a mechanism in which triplet excitons collide with each other to generate singlet excitons. Note that the TTA mechanism may also be referred to as the TTF mechanism as described in WO2010/134350.
  • triplet excitons (hereinafter referred to as 3 A * ) increases, the triplet excitons collide with each other and a reaction occurs as shown in the following formula.
  • 1 A represents the ground state and 1 A * represents the lowest excited singlet exciton.
  • the TTF-derived emission ratio (TTF ratio) in the total emission intensity is 15/40, that is, 37.5%.
  • TTF ratio the TTF-derived emission ratio in the total emission intensity.
  • the initially generated triplet excitons collide with each other to generate singlet excitons (one singlet exciton is generated from two triplet excitons)
  • the triplet energy T 1 (H1) of the first host material and the triplet energy T 1 (H2) of the second host material preferably satisfies the relationship of the following formula (expression 1), and more preferably satisfies the relationship of the following expression (expression 2).
  • the triplet excitons generated by the recombination of holes and electrons in the second light-emitting layer by satisfying the relationship of the formula (Equation 1) are Even if carriers are excessively present at the interface between the second light-emitting layer and the organic layer that is in direct contact with the organic layer, triplet excitons present at the interface between the second light-emitting layer and the organic layer are considered to be less likely to be quenched. . Quenching by excess electrons is possible, for example, if a recombination zone exists locally at the interface between the second light-emitting layer and the hole-transporting layer or the electron-blocking layer.
  • the organic EL device according to the second embodiment is provided with a first light-emitting layer and a second light-emitting layer so as to satisfy the relationship of the formula (Equation 1), so that triplet excitation generated in the second light-emitting layer The electrons migrate to the first emission layer without being quenched by excess carriers, and can be inhibited from migrating back from the first emission layer to the second emission layer.
  • the organic EL device has a second light-emitting layer that mainly generates triplet excitons, and a second light-emitting layer that mainly expresses the TTF mechanism by utilizing the triplet excitons that have moved from the second light-emitting layer. and one light-emitting layer as different regions, using a compound having a lower triplet energy than the second host material in the second light-emitting layer as the first host material in the first light-emitting layer , the luminous efficiency is improved by providing a difference in triplet energy.
  • the organic EL device according to the second embodiment selects a combination of host materials that satisfy the relationship of the formula (Formula 1), and the first light-emitting layer is the first compound according to the first embodiment (the general formula By containing the compound represented by (1), the life of the device can be extended and the luminous efficiency can be improved.
  • the organic EL device according to the second embodiment preferably emits light with a maximum peak wavelength of 500 nm or less, more preferably 420 nm or more and 480 nm or less, when the device is driven.
  • the measurement of the maximum peak wavelength of the light emitted by the organic EL element when the element is driven is as described above.
  • the first light-emitting layer includes a first host material and a first dopant material.
  • the first host material is a compound different from the second host material contained in the second light-emitting layer.
  • the first light-emitting layer according to the second embodiment has the same configuration as the light-emitting layer according to the first embodiment. Therefore, the same material as the first host material described in the first embodiment can be used as the first host material contained in the first light-emitting layer.
  • the same material as the first dopant material (first compound) described in the first embodiment can be used as the first dopant material (first compound) described in the first embodiment.
  • the first light-emitting layer preferably emits light having a maximum peak wavelength of 500 nm or less when the device is driven.
  • the maximum peak wavelength of light emitted from the light-emitting layer when the device is driven can be measured by the method described below.
  • ⁇ Maximum peak wavelength ⁇ p of light emitted from the light-emitting layer when the device is driven is obtained by fabricating an organic EL device using the same material as the first light-emitting layer for the second light-emitting layer, and measuring the current of the organic EL device.
  • a spectral radiance spectrum is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.) when a voltage is applied to the element so that the density becomes 10 mA/cm 2 .
  • the maximum peak wavelength ⁇ p 1 (unit: nm) is calculated from the obtained spectral radiance spectrum.
  • the maximum peak wavelength ⁇ p2 of light emitted from the second light-emitting layer when the device is driven is obtained by fabricating an organic EL device using the same material as the second light-emitting layer for the first light-emitting layer, and measuring the current of the organic EL device.
  • a spectral radiance spectrum is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.) when a voltage is applied to the element so that the density becomes 10 mA/cm 2 .
  • the maximum peak wavelength ⁇ p 2 (unit: nm) is calculated from the obtained spectral radiance spectrum.
  • the maximum peak half width FWHM of the first dopant material is 1 nm or more and 20 nm or less.
  • the Stokes shift of the first dopant material preferably exceeds 7 nm. If the Stokes shift of the first dopant material exceeds 7 nm, it becomes easier to prevent a decrease in luminous efficiency due to self-absorption. Self-absorption is a phenomenon in which emitted light is absorbed by the same compound, and is a phenomenon that causes a decrease in luminous efficiency. Self-absorption is conspicuously observed in compounds with a small Stokes shift (i.e., a large overlap between the absorption spectrum and the fluorescence spectrum). is small) is preferably used. The Stokes shift can be measured by the method described below.
  • a compound to be measured is dissolved in toluene at a concentration of 2.0 ⁇ 10 ⁇ 5 mol/L to prepare a sample for measurement.
  • a measurement sample placed in a quartz cell is irradiated with continuous light in the ultraviolet-visible region at room temperature (300K), and an absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) is measured.
  • a spectrophotometer can be used for the absorption spectrum measurement, for example, spectrophotometer U-3900/3900H manufactured by Hitachi High-Tech Science Co., Ltd. can be used.
  • a compound to be measured is dissolved in toluene at a concentration of 4.9 ⁇ 10 ⁇ 6 mol/L to prepare a sample for measurement.
  • a measurement sample placed in a quartz cell was irradiated with excitation light at room temperature (300 K), and fluorescence spectra (vertical axis: fluorescence intensity, horizontal axis: wavelength) were measured.
  • a spectrophotometer can be used for fluorescence spectrum measurement, for example, spectrofluorophotometer F-7000 manufactured by Hitachi High-Tech Science Co., Ltd. can be used. From these absorption spectra and fluorescence spectra, the difference between the maximum absorption wavelength and the maximum fluorescence wavelength is calculated to determine the Stokes shift (SS).
  • the unit of Stokes shift SS is nm.
  • the triplet energy T 1 (D1) of the first dopant material and the triplet energy T 1 (H1) of the first host material are represented by the following formula (Formula 4A ) is preferably satisfied.
  • the first dopant material and the first host material satisfy the relationship of the formula (Equation 4A), thereby generating triplet excitation in the second light-emitting layer
  • the electrons transfer to the first light-emitting layer, they energy transfer to molecules of the first host material rather than to the first dopant material, which has a higher triplet energy.
  • triplet excitons generated by recombination of holes and electrons on the first host material do not move to the first dopant material having higher triplet energy.
  • Triplet excitons generated by recombination on the molecules of the first dopant material quickly transfer energy to the molecules of the first host material.
  • Triplet excitons of the first host material do not move to the first dopant material, and triplet excitons on the first host material collide efficiently by the TTF phenomenon to generate singlet excitons. is generated.
  • the singlet energy S 1 (H1) of the first host material and the singlet energy S 1 (D1) of the first dopant material are obtained by the following formula (Equation 4 ) is preferably satisfied.
  • the singlet energy of the first dopant material is Since the singlet energy is smaller than that of the first host material, the singlet excitons generated by the TTF phenomenon transfer energy from the first host material to the first dopant material, causing the first dopant material to emit light (preferably contributes to fluorescence emission).
  • a tangent to the fall on the long wavelength side of the absorption spectrum is drawn as follows. Among the maximum values of the absorption spectrum, consider the tangent line at each point on the curve when moving from the maximum value on the longest wavelength side to the long wavelength direction on the spectrum curve. This tangent line repeats the slope decreasing and then increasing as the curve falls (that is, as the value on the vertical axis decreases). The tangent line drawn at the point where the slope value takes the minimum value on the long wavelength side (except when the absorbance is 0.1 or less) is taken as the tangent line to the fall on the long wavelength side of the absorption spectrum. The maximum absorbance value of 0.2 or less is not included in the maximum value on the longest wavelength side.
  • the electron mobility ⁇ e (H2) of the second host material and the electron mobility ⁇ e (H1) of the first host material satisfy the relationship of the following formula (Equation 3).
  • the first host material and the second host material satisfy the relationship of the following formula (Equation 3)
  • the recombination ability of holes and electrons in the second light-emitting layer is improved.
  • the hole mobility ⁇ h(H2) of the second host material and the hole mobility ⁇ h(H1) of the first host material satisfy the relationship of the following formula (Equation 31). ⁇ h(H2)> ⁇ h(H1) (Equation 31)
  • the stacking order of the first light-emitting layer and the second light-emitting layer is the order of the second light-emitting layer and the first light-emitting layer from the anode side
  • Electron mobility can be measured by the following method using impedance spectroscopy.
  • a layer to be measured having a thickness of 100 nm to 200 nm is sandwiched between the anode and the cathode, and a minute AC voltage of 100 mV or less is applied while applying a bias DC voltage.
  • the alternating current value (absolute value and phase) flowing at this time is measured.
  • the main measurement is performed while changing the frequency of the AC voltage, and the complex impedance (Z) is calculated from the current value and the voltage value.
  • Electron mobility (thickness of layer to be measured) 2 / (response time/voltage)
  • Hole mobility can be measured in the same manner as electron mobility using impedance spectroscopy.
  • the content of the first dopant material in the first light-emitting layer is in the same range as the content of the first dopant material described in the first embodiment. is preferred.
  • the content of the first host material in the first light-emitting layer is in the same range as the content of the first host material described in the first embodiment. is preferred.
  • the film thickness of the first light-emitting layer is preferably 5 nm or more, more preferably 15 nm or more. If the thickness of the first light-emitting layer is 5 nm or more, triplet excitons that have moved from the second light-emitting layer to the first light-emitting layer are likely to be prevented from returning to the second light-emitting layer. Moreover, when the film thickness of the first light-emitting layer is 5 nm or more, triplet excitons can be sufficiently separated from recombination sites in the second light-emitting layer.
  • the film thickness of the first light-emitting layer is preferably 20 nm or less. If the film thickness of the first light-emitting layer is 20 nm or less, the density of triplet excitons in the first light-emitting layer can be improved, and the TTF phenomenon can occur more easily. In the organic EL device according to the second embodiment, the film thickness of the first light-emitting layer is preferably 5 nm or more and 20 nm or less.
  • the second light-emitting layer includes a second host material and a second dopant material.
  • the second host material is a compound different from the first host material contained in the first light-emitting layer.
  • the second dopant material is preferably a compound that emits light with a maximum peak wavelength of 500 nm or less.
  • the second dopant material is more preferably a compound that emits fluorescence with a maximum peak wavelength of 500 nm or less.
  • the method for measuring the maximum peak wavelength of the compound is as described above.
  • the second dopant material and the first dopant material are the same or different compounds.
  • the second light-emitting layer preferably does not contain a metal complex. Moreover, in the organic EL device according to this embodiment, it is also preferable that the first light-emitting layer does not contain a boron-containing complex.
  • the second emitting layer preferably does not contain a phosphorescent material (dopant material). Moreover, it is preferable that the second light-emitting layer does not contain a heavy metal complex and a phosphorescent rare earth metal complex.
  • the peak with the maximum emission intensity is the maximum peak and the height of the maximum peak is 1, the height of other peaks appearing in the emission spectrum is 0.6. It is preferably less than In addition, let the peak in an emission spectrum be a maximum value. Moreover, it is preferable that the number of peaks in the emission spectrum of the second light-emitting compound is less than three.
  • the second light-emitting layer preferably emits light with a maximum peak wavelength of 500 nm or less when the device is driven.
  • the second host material examples include 1) condensed aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, benzanthracene derivatives, fluorene derivatives, fluoranthene derivatives, and chrysene derivatives; Heterocyclic compounds such as thiophene derivatives and benzoxanthene derivatives can be mentioned.
  • the second host material is preferably a condensed aromatic compound, more preferably a pyrene derivative (compound represented by general formula (100) described below).
  • the second host material is also preferably a benzanthracene derivative (compound represented by general formula (1X) described below) or a benzoxanthene derivative (compound represented by general formula (14X) described below).
  • the second host material is a pyrene derivative
  • the second host material is preferably a compound represented by the following general formula (100).
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 , R 907 , R 801 and R 802 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 are present, the multiple R 903 are the same or different from each other,
  • multiple R 904 are present, the multiple R 904 are the same or different from each other, When multiple
  • the group represented by the general formula (110) is preferably a group represented by the following general formula (111).
  • X 1 is CR 123 R 124 , an oxygen atom, a sulfur atom, or NR 125 ;
  • L 111 and L 112 are each independently single bond, a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms, ma is 0, 1, 2, 3 or 4; mb is 0, 1, 2, 3 or 4; ma+mb is 0, 1, 2, 3 or 4;
  • Ar 101 has the same definition as Ar 101 in the general formula (110),
  • R 121 , R 122 , R 123 , R 124 and R 125 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having
  • L 111 is bound, R 121 is bound to the remaining three positions of *1 to *4, L 112 is bound to any one position of *5 to *8, and the remaining positions of *5 to *8 are R122 is attached at three positions.
  • L 111 is bonded to the *2 carbon atom position in the ring structure represented by the general formula (111a), and L 112 is the general formula ( When it is bonded to the *7 carbon atom position in the ring structure represented by 111a), the group represented by the general formula (111) is represented by the following general formula (111b).
  • X 1 , L 111 , L 112 , ma, mb, Ar 101 , R 121 , R 122 , R 123 , R 124 and R 125 each independently represent X 1 , L 111 , L in the general formula (111) 112 , ma, mb, Ar 101 , R 121 , R 122 , R 123 , R 124 and R 125 ; the plurality of R 121 are the same or different from each other, A plurality of R 122 are the same or different from each other. )
  • the group represented by general formula (111) is preferably a group represented by general formula (111b).
  • ma is 0, 1 or 2;
  • mb is 0, 1 or 2.
  • ma is 0 or 1
  • mb is preferably 0 or 1.
  • Ar 101 is preferably a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms.
  • Ar 101 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted pyrenyl group, A substituted or unsubstituted phenanthryl group or a substituted or unsubstituted fluorenyl group is preferred.
  • Ar 101 is also preferably a group represented by the following general formula (120), general formula (130) or general formula (140).
  • R 111 to R 120 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); a substituted or unsubstituted aralkyl
  • the second host material is preferably represented by the following general formula (101).
  • L 101 is A single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms is preferred.
  • the second host material is preferably represented by the following general formula (102).
  • R 101 to R 120 each independently have the same meaning as R 101 to R 120 in the general formula (101); provided that one of R 101 to R 110 represents the binding position to L 111 , one of R 111 to R 120 represents the binding position to L 112 , X 1 is CR 123 R 124 , an oxygen atom, a sulfur atom, or NR 125 ; L 111 and L 112 are each independently single bond, a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms, ma is 0, 1, 2, 3 or 4; mb is 0, 1, 2, 3 or 4; ma+mb is 0, 1, 2, 3 or 4; R 121 , R 122 , R 123 , R 124 and R 125 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms
  • ma is 0, 1 or 2; mb is preferably 0, 1 or 2.
  • ma is 0 or 1
  • mb is preferably 0 or 1.
  • R 101 to R 110 are preferably groups represented by the general formula (110).
  • R 101 to R 110 are groups represented by the general formula (110), and Ar 101 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. is preferred.
  • Ar 101 is not a substituted or unsubstituted pyrenyl group
  • L 101 is not a substituted or unsubstituted pyrenylene group
  • the substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms as R 101 to R 110 that is not a group represented by the general formula (110) is preferably not a substituted or unsubstituted pyrenyl group.
  • R 101 to R 110 which are not groups represented by the general formula (110) are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • R 101 to R 110 which are not groups represented by the general formula (110) are each independently hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms is preferred.
  • R 101 to R 110 which are not groups represented by the general formula (110) are preferably hydrogen atoms.
  • the compound represented by general formula (100) can be produced by a known method.
  • Specific examples of compounds represented by general formula (100) include the following compounds. However, the compound represented by general formula (100) is not limited to the specific examples below.
  • the second host material is a benzanthracene derivative
  • the second host material is preferably a compound represented by the following general formula (1X).
  • the group represented by the general formula (11X) is preferably a group represented by the following general formula (111X).
  • X 1 is CR 143 R 144 , an oxygen atom, a sulfur atom, or NR 145 ;
  • L 111 and L 112 are each independently single bond, a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms, ma is 1, 2, 3 or 4;
  • mb is 1, 2, 3 or 4; ma+mb is 2, 3 or 4;
  • Ar 101 has the same definition as Ar 101 in the general formula (11X)
  • R 141 , R 142 , R 143 , R 144 and R 145 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to
  • L 111 is bonded to the *2 carbon atom position in the ring structure represented by the general formula (111aX)
  • L 112 is the general formula ( 111aX)
  • the group represented by the general formula (111X) is represented by the following general formula (111bX) when it is bonded to the *7 carbon atom position in the ring structure represented by the formula (111aX).
  • X 1 , L 111 , L 112 , ma, mb, Ar 101 , R 141 , R 142 , R 143 , R 144 and R 145 each independently represent X 1 , L 111 , L in general formula (111X) 112 , ma, mb, Ar 101 , R 141 , R 142 , R 143 , R 144 and R 145 ; the plurality of R 141 are the same or different from each other, The plurality of R 142 are the same or different from each other. )
  • the group represented by general formula (111X) is preferably a group represented by general formula (111bX).
  • ma is preferably 1 or 2
  • mb is preferably 1 or 2.
  • ma is preferably 1 and mb is preferably 1.
  • Ar 101 is preferably a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms.
  • Ar 101 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted benz[a]anthryl group, a substituted or unsubstituted pyrenyl group, A substituted or unsubstituted phenanthryl group or a substituted or unsubstituted fluorenyl group is preferred.
  • the compound represented by the general formula (1X) is also preferably represented by the following general formula (101X).
  • R 111 and R 112 represents the binding position to L 101
  • one of R 133 and R 134 represents the binding position to L 101
  • R 133 or R 134 not at the bonding position with L 101 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R
  • L 101 is preferably a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms.
  • the compound represented by the general formula (1X) is also preferably represented by the following general formula (102X).
  • R 111 and R 112 represents the binding position to L 111
  • one of R 133 and R 134 represents the binding position to L 112
  • R 101 to R 110 , R 121 to R 130 , R 111 or R 112 which is not in the bonding position with L 111 and R 133 or R 134 which is not in the bonding position with L 112 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R
  • ma in the general formula (102X) is preferably 1 or 2
  • mb is preferably 1 or 2.
  • ma is preferably 1 and mb is preferably 1 in the general formula (102X).
  • the group represented by the general formula (11X) is a group represented by the following general formula (11AX), or a group represented by the following general formula (11BX) It is also preferable that
  • R 121 to R 131 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a group represented by -C(
  • the compound represented by the general formula (1X) is also preferably represented by the following general formula (103X).
  • R 101 to R 110 and R 112 are respectively synonymous with R 101 to R 110 and R 112 in the general formula (1X);
  • R 121 to R 131 , L 131 and L 132 have the same definitions as R 121 to R 131 , L 131 and L 132 in general formula (11BX) above.
  • L 131 is also preferably a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms.
  • L 132 is also preferably a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms.
  • R 101 to R 112 are also preferably groups represented by the general formula (11X).
  • R 101 to R 112 are groups represented by the general formula (11X), and Ar 101 in the general formula (11X) is , a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Ar 101 is not a substituted or unsubstituted benz[a]anthryl group
  • L 101 is not a substituted or unsubstituted benz[a]anthrylene group
  • the substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms as R 101 to R 110 that is not a group represented by the general formula (11X) is not a substituted or unsubstituted benz[a]anthryl group. is also preferred.
  • each of R 101 to R 112 that is not a group represented by the general formula (11X) is independently a hydrogen atom or a substituted or unsubstituted group having 1 to 50 carbon atoms.
  • an alkyl group, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted 5 to 50 ring atoms is preferably a heterocyclic group of
  • R 101 to R 112 which are not groups represented by the general formula (11X) are hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, Alternatively, it is preferably a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms.
  • R 101 to R 112 that are not groups represented by general formula (11X) are preferably hydrogen atoms.
  • the compound represented by general formula (1X) can be produced by a known method.
  • Specific examples of compounds represented by general formula (1X) include the following compounds. However, the compound represented by general formula (1X) is not limited to the specific examples below.
  • the second host material is a benzoxanthene derivative
  • the second host material is preferably a compound represented by the following general formula (14X).
  • the compound represented by general formula (14X) can be produced by a known method.
  • Specific examples of compounds represented by general formula (14X) include the following compounds. However, the compound represented by general formula (14X) is not limited to the specific examples below.
  • Examples of the second dopant material include the first compound represented by the general formula (1), a pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, a triarylamine derivative, an aromatic group amine derivatives, tetracene derivatives and the like.
  • the second dopant material is preferably the first compound represented by the general formula (1), the compound represented by the following general formula (5), or the compound represented by the following general formula (6).
  • R 501 to R 507 and R 511 to R 517 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R
  • R 521 and R 522 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5
  • a set of adjacent two or more of R 501 to R 507 and R 511 to R 517 is, for example, a set of R 501 and R 502 , a set of R 502 and R 503 , R 503 and R 504 , R 505 and R 506 , R 506 and R 507 , R 501 , R 502 and R 503 , and so on.
  • At least one, preferably two of R 501 to R 507 and R 511 to R 517 are groups represented by —N(R 906 )(R 907 ).
  • R 501 -R 507 and R 511 -R 517 are each independently hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • the compound represented by the general formula (5) is a compound represented by the following general formula (52).
  • R 531 to R 534 and R 541 to R 544 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • R 531 to R 534 , R 541 to R 544 , and R 551 and R 552 that do not form a single ring and do not form a condensed ring are each independently hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms
  • R 561 to R 564 are each independently A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring
  • the compound represented by the general formula (5) is a compound represented by the following general formula (53).
  • R 551 , R 552 and R 561 to R 564 are each independently synonymous with R 551 , R 552 and R 561 to R 564 in general formula (52).
  • R 561 to R 564 in the general formulas (52) and (53) are each independently a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms (preferably a phenyl group ).
  • R 521 and R 522 in the general formula (5) and R 551 and R 552 in the general formulas (52) and (53) are hydrogen atoms.
  • the substituents in the case of "substituted or unsubstituted” in the general formulas (5), (52) and (53) are a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • the compound represented by general formula (5) can be produced by a known method.
  • Specific examples of compounds represented by formula (5) include the following compounds. However, the compound represented by general formula (5) is not limited to the specific examples below.
  • a ring, b ring and c ring are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms
  • R 601 and R 602 each independently combine with the a ring, b ring or c ring to form a substituted or unsubstituted heterocyclic ring, or do not form a substituted or unsubstituted heterocyclic ring
  • R 601 and R 602 that do not form a substituted or unsubstituted heterocyclic ring are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms,
  • Rings a, b and c are rings (substituted or unsubstituted ring-forming carbon atoms of 6 to 50 or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring atoms).
  • the "aromatic hydrocarbon ring" of the a ring, b ring and c ring has the same structure as the compound in which a hydrogen atom is introduced into the above "aryl group”.
  • the "aromatic hydrocarbon ring" of ring a includes three carbon atoms on the central condensed two-ring structure of the general formula (6) as ring-forming atoms.
  • the "aromatic hydrocarbon rings” of rings b and c contain two carbon atoms on the central condensed two-ring structure of the general formula (6) as ring-forming atoms.
  • substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms include compounds in which a hydrogen atom is introduced into the "aryl group” described in Specific Example Group G1.
  • the “heterocyclic ring” of rings a, b and c has the same structure as the compound in which a hydrogen atom is introduced into the “heterocyclic group” described above.
  • the “heterocyclic ring” of the a ring contains three carbon atoms on the central condensed two-ring structure of the general formula (6) as ring-forming atoms.
  • heterocyclic rings of rings b and c contain two carbon atoms on the central condensed two-ring structure of the general formula (6) as ring-forming atoms.
  • Specific examples of the "substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms” include compounds in which a hydrogen atom is introduced into the "heterocyclic group" described in Specific Example Group G2.
  • R 601 and R 602 may each independently combine with ring a, ring b or ring c to form a substituted or unsubstituted heterocyclic ring.
  • the heterocyclic ring in this case contains a nitrogen atom on the central condensed two-ring structure of the general formula (6).
  • the heterocyclic ring in this case may contain heteroatoms other than the nitrogen atom.
  • the fact that R 601 and R 602 are bonded to the a ring, b ring, or c ring specifically means that the atoms constituting the a ring, b ring, or c ring are bonded to the atoms constituting R 601 and R 602 .
  • R 601 may combine with the a ring to form a two-ring (or three or more) condensed nitrogen-containing heterocyclic ring in which the ring containing R 601 and the a ring are fused.
  • Specific examples of the nitrogen-containing heterocyclic ring include compounds corresponding to nitrogen-containing heterocyclic groups having two or more condensed rings among the specific example group G2. The same applies when R 601 is bonded to the b ring, when R 602 is bonded to the a ring, and when R 602 is bonded to the c ring.
  • the a-ring, b-ring and c-ring in the general formula (6) are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms. In one embodiment, the a-ring, b-ring and c-ring in the general formula (6) are each independently a substituted or unsubstituted benzene ring or naphthalene ring.
  • R 601 and R 602 in the general formula (6) are each independently a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, Preferred is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound represented by the general formula (6) is a compound represented by the following general formula (62).
  • R 601A is combined with one or more selected from the group consisting of R 611 and R 621 to form a substituted or unsubstituted heterocyclic ring, or does not form a substituted or unsubstituted heterocyclic ring;
  • R 602A combines with one or more selected from the group consisting of R 613 and R 614 to form a substituted or unsubstituted heterocyclic ring, or does not form a substituted or unsubstituted heterocyclic ring;
  • R 601A and R 602A that do not form a substituted or unsubstituted heterocyclic ring are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted
  • R 601A and R 602A in general formula (62) are groups corresponding to R 601 and R 602 in general formula (6), respectively.
  • R 601A and R 611 may combine to form a two-ring (or three or more) condensed nitrogen-containing heterocyclic ring in which a ring containing them and a benzene ring corresponding to ring a are fused.
  • Specific examples of the nitrogen-containing heterocyclic ring include compounds corresponding to nitrogen-containing heterocyclic groups having two or more condensed rings among the specific example group G2. The same applies to the case where R 601A and R 621 are combined, the case where R 602A and R 613 are combined, and the case where R 602A and R 614 are combined.
  • R 611 to R 621 may be joined together to form a substituted or unsubstituted single ring, or may be joined together to form a substituted or unsubstituted fused ring.
  • R 611 and R 612 may combine to form a structure in which a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring, a benzothiophene ring, or the like is condensed with respect to the 6-membered ring to which they are bonded,
  • the formed condensed ring is a naphthalene ring, carbazole ring, indole ring, dibenzofuran ring or dibenzothiophene ring.
  • R 611 to R 621 that do not contribute to ring formation are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • R 611 to R 621 that do not contribute to ring formation are each independently hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • R 611 to R 621 that do not contribute to ring formation are each independently It is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • R 611 to R 621 that do not contribute to ring formation are each independently a hydrogen atom, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, At least one of R 611 to R 621 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the compound represented by the general formula (62) is a compound represented by the following general formula (63).
  • R 631 is combined with R 646 to form a substituted or unsubstituted heterocyclic ring, or does not form a substituted or unsubstituted heterocyclic ring
  • R 633 is combined with R 647 to form a substituted or unsubstituted heterocyclic ring or does not form a substituted or unsubstituted heterocyclic ring
  • R 634 is combined with R 651 to form a substituted or unsubstituted heterocyclic ring or does not form a substituted or unsubstituted heterocyclic ring
  • R 641 is combined with R 642 to form a substituted or unsubstituted heterocyclic ring, or does not form a substituted or unsubstituted heterocyclic ring
  • one or more sets of adjacent two or more of R 631 to R 651 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubsti
  • R 631 may combine with R 646 to form a substituted or unsubstituted heterocyclic ring.
  • R 631 and R 646 are bonded to form a nitrogen-containing heterocyclic ring having three or more condensed rings, in which the benzene ring to which R 646 is bonded, the ring containing N, and the benzene ring corresponding to ring a are condensed.
  • the nitrogen-containing heterocyclic ring include compounds corresponding to nitrogen-containing heterocyclic groups having three or more condensed rings among specific example group G2. The same applies when R633 and R647 are bonded, when R634 and R651 are bonded, and when R641 and R642 are bonded.
  • R 631 to R 651 that do not contribute to ring formation are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • R 631 to R 651 that do not contribute to ring formation are each independently hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • R 631 to R 651 that do not contribute to ring formation are each independently It is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • R 631 to R 651 that do not contribute to ring formation are each independently a hydrogen atom, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, At least one of R 631 to R 651 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the compound represented by the general formula (63) is a compound represented by the following general formula (63A).
  • R661 is hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms
  • R 662 to R 665 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50
  • R 661 -R 665 are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 661 to R 665 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the compound represented by the general formula (63) is a compound represented by the following general formula (63B).
  • R 671 and R 672 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a group represented by —N(R 906 )(R 907 ), or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms
  • R 673 to R 675 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon
  • the compound represented by the general formula (63) is a compound represented by the following general formula (63B').
  • R 672 to R 675 are each independently synonymous with R 672 to R 675 in general formula (63B).
  • At least one of R 671 -R 675 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a group represented by —N(R 906 )(R 907 ), or a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms.
  • R672 is hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a group represented by —N(R 906 )(R 907 ), or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms
  • R 671 and R 673 to R 675 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a group represented by —N(R 906 )(R 907 ), or a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms.
  • the compound represented by the general formula (63) is a compound represented by the following general formula (63C).
  • R 681 and R 682 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 683 to R 686 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound represented by the general formula (63) is a compound represented by the following general formula (63C').
  • R 683 to R 686 are each independently synonymous with R 683 to R 686 in general formula (63C).
  • R 681 to R 686 are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 681 to R 686 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • an intermediate is formed by connecting rings a, b and c with a linking group (a group containing NR 601 and a group containing NR 602 ).
  • the final product can be produced by producing (first reaction) and connecting the a-ring, b-ring and c-ring with a linking group (a group containing a boron atom) (second reaction).
  • first reaction an amination reaction such as the Bachbold-Hartwig reaction can be applied.
  • a tandem hetero Friedel-Crafts reaction or the like can be applied.
  • the compound represented by general formula (6) can be produced by a known method.
  • Specific examples of compounds represented by formula (6) include the following compounds. However, the compound represented by general formula (6) is not limited to the specific examples below.
  • the singlet energy S 1 (H2) of the second host material and the singlet energy S 1 (D2) of the second dopant material are represented by the following formula (Equation 20): It is preferable to satisfy the relationship. S 1 (H2)>S 1 (D2) (Equation 20)
  • the second host material and the second dopant material satisfy the relationship of the formula (Equation 20), so that the singlet excitons generated on the second host material are transferred from the second host material to the second energy transfer to the second dopant material, contributing to the emission (preferably fluorescent emission) of the second dopant material.
  • the triplet energy T 1 (H2) of the second host material and the triplet energy T 1 (D2) of the second dopant material are represented by the following formula (20A) It is preferable to satisfy the relationship. T 1 (D2)>T 1 (H2) (Equation 20A)
  • the second host material and the second dopant material satisfy the relationship of the formula (20A), so that the triplet excitons generated in the second light-emitting layer have a higher triplet energy than the second Since it migrates on the second host material and not on the dopant material of the second layer, it is easier to migrate to the first light-emitting layer.
  • the second light-emitting layer preferably contains the second dopant material in an amount of 0.5% by mass or more of the total mass of the second light-emitting layer. It is more preferable to contain more than 1.1% by weight of the total weight of the light-emitting layer, more preferably 1.2% by weight or more of the total weight of the second light-emitting layer, and the total weight of the second light-emitting layer It is more preferable to contain 1.5% by mass or more of the mass.
  • the second light-emitting layer preferably contains the second dopant material in an amount of 10% by weight or less of the total weight of the second light-emitting layer, and 7% by weight or less of the total weight of the second light-emitting layer. More preferably, it is contained in an amount of 5% by mass or less of the total mass of the second light-emitting layer.
  • the second light-emitting layer preferably contains the second host material in an amount of 60% by mass or more of the total mass of the second light-emitting layer. 70% by mass or more of the total mass of the second light-emitting layer, more preferably 80% by mass or more of the total mass of the second light-emitting layer, more preferably 90% by mass or more of the total mass of the second light-emitting layer , and more preferably 95% by mass or more of the total mass of the second light-emitting layer.
  • the second light-emitting layer preferably contains the second host material in an amount of 99% by mass or less based on the total mass of the second light-emitting layer.
  • the second emitting layer contains the second host material and the second dopant material
  • the upper limit of the total content of the second host material and the second dopant material is 100% by mass.
  • the second embodiment does not exclude that the first emitting layer contains materials other than the second host material and the second dopant material.
  • the second light-emitting layer may contain only one type of the second host material, or may contain two or more types.
  • the second light-emitting layer may contain only one type of the second dopant material, or may contain two or more types.
  • the film thickness of the second light-emitting layer is preferably 3 nm or more, more preferably 5 nm or more. When the film thickness of the second light-emitting layer is 3 nm or more, the film thickness is sufficient to cause recombination of holes and electrons in the second light-emitting layer. In the organic EL device according to the second embodiment, the film thickness of the second light-emitting layer is preferably 15 nm or less, more preferably 10 nm or less. If the film thickness of the second light-emitting layer is 15 nm or less, the film thickness is sufficiently thin for triplet excitons to move to the first light-emitting layer. In the organic EL device according to the second embodiment, the film thickness of the second light-emitting layer is more preferably 3 nm or more and 15 nm or less.
  • the organic EL device according to the second embodiment may have one or more organic layers in addition to the first light-emitting layer and the second light-emitting layer.
  • the organic layer include at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, a light emitting layer, an electron injection layer, an electron transport layer, a hole blocking layer and an electron blocking layer. be done.
  • the organic EL device may have, for example, an anode, a second light-emitting layer, a first light-emitting layer, and a cathode in this order.
  • the order of the first light-emitting layer can be reversed to have an anode, a first light-emitting layer, a second light-emitting layer, and a cathode in that order.
  • a combination of host materials that satisfies the relationship of the formula (Equation 1) is selected, and the first light-emitting layer is the first light-emitting layer according to the first embodiment.
  • the organic EL device according to the second embodiment may be composed of only the first light-emitting layer and the second light-emitting layer, but for example, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport It may further have at least one layer selected from the group consisting of a layer, a hole blocking layer, an electron blocking layer, and the like.
  • the organic EL device according to the second embodiment includes the first light-emitting layer between the anode and the cathode, and the second light-emitting layer between the first light-emitting layer and the anode. is preferred.
  • the organic EL device according to this embodiment includes the first light-emitting layer between the anode and the cathode, and the second light-emitting layer between the first light-emitting layer and the cathode. is also preferred.
  • the organic EL device according to the second embodiment preferably includes a hole transport layer between the light emitting layer and the anode.
  • the organic EL device according to the second embodiment preferably includes an electron transport layer between the light emitting layer and the cathode.
  • FIG. 2 shows a schematic configuration of an example of the organic EL device according to the second embodiment.
  • the organic EL element 1A includes a substrate 2, an anode 3, a cathode 4, and an organic layer 10A arranged between the anode 3 and the cathode 4.
  • FIG. The organic layer 10A includes, in order from the anode 3 side, a hole injection layer 6, a hole transport layer 7, a second light emitting layer 52, a first light emitting layer 51, an electron transport layer 8, and an electron injection layer 9. It is constructed by being laminated in order.
  • FIG. 3 shows a schematic configuration of another example of the organic EL element according to the second embodiment.
  • the organic EL element 1B includes a substrate 2, an anode 3, a cathode 4, and an organic layer 10B arranged between the anode 3 and the cathode 4.
  • FIG. The organic layer 10B includes, in order from the anode 3 side, a hole injection layer 6, a hole transport layer 7, a first light emitting layer 51, a second light emitting layer 52, an electron transport layer 8, and an electron injection layer 9. It is constructed by being laminated in order.
  • the present invention is not limited to the configurations of the organic EL elements shown in FIGS.
  • the organic EL device may further include a third light-emitting layer.
  • the third light-emitting layer comprises a third host material, wherein the first host material, the second host material and the third host material are different from each other, and the third light-emitting layer comprises the third dopant material. wherein the first dopant material, the second dopant material, and the third dopant material are the same or different from each other, and the triplet energy T 1 (H2) of the second host material and The triplet energy T 1 (H3) of the third host material preferably satisfies the relationship of the following formula (Equation 5). T 1 (H2)>T 1 (H3) (Equation 5)
  • the third dopant material is preferably a compound that emits light with a maximum peak wavelength of 500 nm or less, more preferably a compound that emits fluorescence with a maximum peak wavelength of 500 nm or less.
  • the triplet energy T 1 (H1) of the first host material and the triplet energy T 1 (H3) of the third host material preferably satisfies the relationship of the following formula (Equation 6).
  • the third host material is not particularly limited, for example, the host materials exemplified as the first host material and the second host material in the above embodiments can be used.
  • the third dopant material is not particularly limited, for example, the dopant materials exemplified as the first dopant material and the second dopant material in the above embodiments can be used.
  • the first light-emitting layer and the second light-emitting layer are in direct contact with each other.
  • the layer structure in which "the first light-emitting layer and the second light-emitting layer are in direct contact” is, for example, any of the following aspects (LS1), (LS2) and (LS3) Aspects can also be included.
  • (LS1) A region in which both the first host material and the second host material are mixed in the process of vapor-depositing the compound for the first light-emitting layer and the step for vapor-depositing the compound for the second light-emitting layer occurs and the region is present at the interface between the first and second light-emitting layers.
  • the step of vapor-depositing the compound for the first light-emitting layer and the deposition of the compound for the second light-emitting layer A region in which the first host material, the second host material, and the light-emitting compound are mixed occurs in the course of the vapor deposition process, and the region exists at the interface between the first light-emitting layer and the second light-emitting layer. Manner.
  • the step of vapor-depositing the compound for the first light-emitting layer and the step of vapor-depositing the compound for the second light-emitting layer In the process, a region composed of the luminescent compound, a region composed of the first host material, or a region composed of the second host material is generated, and the region is the interface between the first light-emitting layer and the second light-emitting layer.
  • the organic EL device according to the second embodiment includes a third light-emitting layer
  • the first light-emitting layer and the second light-emitting layer are in direct contact
  • the first light-emitting layer and the third light-emitting layer It is preferable that it is in direct contact with the light-emitting layer.
  • the layer structure in which "the first light-emitting layer and the third light-emitting layer are in direct contact” is, for example, any of the following aspects (LS4), (LS5) and (LS6) Aspects can also be included.
  • (LS4) A region in which both the first host material and the third host material are mixed in the process of vapor-depositing the compound for the first light-emitting layer and the step for vapor-depositing the compound for the third light-emitting layer occurs and the region is present at the interface between the first and third light-emitting layers.
  • the step of vapor-depositing the compound for the first light-emitting layer and the deposition of the compound for the third light-emitting layer is performed in the course of the vapor deposition process, and the region exists at the interface between the first light-emitting layer and the third light-emitting layer. Manner.
  • the intermediate layer is preferably arranged between the first light-emitting layer and the second light-emitting layer.
  • the intermediate layer is preferably a non-doped layer.
  • the intermediate layer is preferably a layer containing no luminescent compound (dopant material).
  • the intermediate layer preferably does not contain metal atoms.
  • the intermediate layer includes an intermediate layer material.
  • the interlayer material is preferably not a luminescent compound.
  • the material for the intermediate layer is not particularly limited, it is preferably a material other than a light-emitting compound.
  • Materials for the intermediate layer include, for example, 1) heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, and phenanthroline derivatives; 3) aromatic amine compounds such as triarylamine derivatives or condensed polycyclic aromatic amine derivatives.
  • the intermediate layer material may be one or both of the first host material contained in the first light-emitting layer and the second host material contained in the second light-emitting layer.
  • the content of each intermediate layer material is preferably 10% by mass or more of the total mass of the intermediate layer.
  • the intermediate layer preferably contains the intermediate layer material in an amount of 60% by mass or more of the total mass of the intermediate layer, more preferably 70% by mass or more of the total mass of the intermediate layer. It is more preferable to contain 80% by mass or more of the intermediate layer, even more preferably 90% by mass or more of the total mass of the intermediate layer, and even more preferably 95% by mass or more of the total mass of the intermediate layer. .
  • the intermediate layer may contain only one type of intermediate layer material, or may contain two or more types. When the intermediate layer contains two or more intermediate layer materials, the upper limit of the total content of the two or more intermediate layer materials is 100% by mass. It should be noted that the second embodiment does not exclude that the intermediate layer contains materials other than the intermediate layer material.
  • the intermediate layer may be composed of a single layer, or may be composed of two or more laminated layers.
  • the thickness of the intermediate layer is not particularly limited, it is preferably 3 nm or more and 15 nm or less, more preferably 5 nm or more and 10 nm or less.
  • the substrate is used as a support for organic EL elements.
  • the substrate for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • a flexible substrate is a (flexible) substrate that can be bent, and examples thereof include a plastic substrate.
  • Materials for forming the plastic substrate include, for example, polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, and polyethylene naphthalate. Inorganic deposition films can also be used.
  • anode For the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • ITO Indium Tin Oxide
  • indium oxide-tin oxide containing silicon or silicon oxide indium oxide-zinc oxide, tungsten oxide, and indium oxide containing zinc oxide , graphene and the like.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • nitrides of metal materials eg, titanium nitride
  • indium oxide-zinc oxide can be formed by a sputtering method using a target in which 1% by mass or more and 10% by mass or less of zinc oxide is added to indium oxide.
  • indium oxide containing tungsten oxide and zinc oxide contains 0.5% by mass or more and 5% by mass or less of tungsten oxide and 0.1% by mass or more and 1% by mass or less of zinc oxide relative to indium oxide.
  • a target it can be formed by a sputtering method.
  • it may be produced by a vacuum vapor deposition method, a coating method, an inkjet method, a spin coating method, or the like.
  • the hole injection layer formed in contact with the anode is formed using a composite material that facilitates hole injection regardless of the work function of the anode.
  • materials that can be used as electrode materials such as metals, alloys, electrically conductive compounds, and mixtures thereof, as well as elements belonging to Groups 1 and 2 of the Periodic Table of the Elements.
  • Elements belonging to group 1 or 2 of the periodic table which are materials with a small work function, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca), and strontium Alkaline earth metals such as (Sr), alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs)
  • alloys containing these e.g., MgAg, AlLi
  • rare earth metals such as europium (Eu) and ytterbium (Yb)
  • Yb ytterbium
  • alloys containing these can also be used.
  • cathode For the cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a small work function (specifically, 3.8 eV or less).
  • cathode materials include elements belonging to Group 1 or Group 2 of the periodic table, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca ), alkaline earth metals such as strontium (Sr), and alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these.
  • alkali metals such as lithium (Li) and cesium (Cs)
  • alkaline earth metals such as strontium (Sr)
  • alloys containing these e.g., MgAg, AlLi
  • a vacuum deposition method or a sputtering method can be used.
  • a coating method, an inkjet method, or the like can be used.
  • a cathode is formed using various conductive materials such as Al, Ag, ITO, graphene, silicon, or indium oxide-tin oxide containing silicon oxide, regardless of the magnitude of the work function. can do.
  • These conductive materials can be deposited using a sputtering method, an inkjet method, a spin coating method, or the like.
  • the electron transport layer is a layer containing a substance having a high electron transport property.
  • the electron transport layer contains 1) metal complexes such as aluminum complexes, beryllium complexes and zinc complexes, 2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives and phenanthroline derivatives, and 3) polymer compounds. can be used.
  • low-molecular-weight organic compounds include Alq, tris(4-methyl-8-quinolinolato)aluminum (abbreviation: Almq 3 ), bis(10-hydroxybenzo[h]quinolinato)beryllium (abbreviation: BeBq 2 ), Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used.
  • 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole abbreviation: PBD
  • 1,3-bis[5- (ptert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene abbreviation: OXD-7
  • 3-(4-tert-butylphenyl)-4-phenyl-5-(4- biphenylyl)-1,2,4-triazole abbreviation: TAZ
  • Complex compounds such as triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: BPhen), bathocuproine (abbreviation: BCP), 4,4'-bis(5-methylbenzoxa
  • Benzimidazole compounds can be preferably used in the above embodiments.
  • the substances described here are mainly substances having an electron mobility of 10 ⁇ 6 cm 2 /(V ⁇ s) or more. Note that a substance other than the above substances may be used for the electron-transporting layer as long as the substance has higher electron-transporting property than hole-transporting property. Further, the electron transport layer may be composed of a single layer, or may be composed of two or more layers of the above substances laminated.
  • a polymer compound can also be used for the electron transport layer.
  • poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (abbreviation: PF-Py)
  • poly[(9,9-dioctylfluorene-2 ,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)] abbreviation: PF-BPy
  • PF-BPy poly[(9,9-dioctylfluorene-2 ,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)]
  • the electron injection layer is a layer containing a substance with high electron injection properties.
  • the electron injection layer includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiOx), and the like.
  • Alkali metals such as, alkaline earth metals, or compounds thereof can be used.
  • a substance having an electron-transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a substance containing magnesium (Mg) in Alq, or the like may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material has excellent electron-injecting and electron-transporting properties because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material that is excellent in transporting the generated electrons.
  • a substance (metal complex, heteroaromatic compound, etc.) constituting the electron transport layer described above is used. be able to.
  • the electron donor any substance can be used as long as it exhibits an electron donating property with respect to an organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferred, and examples include lithium, cesium, magnesium, calcium, erbium, and ytterbium.
  • alkali metal oxides and alkaline earth metal oxides are preferred, and examples thereof include lithium oxide, calcium oxide and barium oxide.
  • Lewis bases such as magnesium oxide can also be used.
  • An organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the method for forming each layer of the organic EL element of the above embodiment is not limited to those specifically mentioned above, but a vacuum deposition method, a sputtering method, a plasma method, a dry film formation method such as an ion plating method, a spin coating method, etc.
  • a known method such as a coating method, a dipping method, a flow coating method, or a wet film forming method such as an inkjet method can be employed.
  • each organic layer of the organic EL element of the above embodiment is not limited except for the cases mentioned above. In general, if the film thickness is too thin, defects such as pinholes are likely to occur. A range of nm to 1 ⁇ m is preferred.
  • An electronic device includes the organic EL element according to any one of the above-described embodiments.
  • Examples of electronic devices include display devices and light-emitting devices.
  • Examples of display devices include display components (eg, organic EL panel modules, etc.), televisions, mobile phones, tablets, and personal computers.
  • Light-emitting devices include, for example, illumination and vehicle lamps.
  • the light-emitting layer is not limited to one layer, and a plurality of light-emitting layers may be laminated.
  • the organic EL device has a plurality of light-emitting layers, at least one organic layer may satisfy the conditions described in the above embodiment, and at least one light-emitting layer contains the compound of the first embodiment. is preferred.
  • one of the plurality of light-emitting layers contains the compound of the first embodiment, for example, even if the other light-emitting layers are fluorescent light-emitting layers, It may be a phosphorescent light-emitting layer that utilizes light emission due to electronic transition to a state.
  • the organic EL element has a plurality of light-emitting layers
  • these light-emitting layers may be provided adjacent to each other, or a so-called tandem-type organic EL device in which a plurality of light-emitting units are stacked via an intermediate layer. It may be an EL element.
  • a barrier layer may be provided adjacent to at least one of the anode side and the cathode side of the light emitting layer.
  • a barrier layer is disposed in contact with the light-emitting layer and preferably blocks holes, electrons, and/or excitons.
  • the barrier layer transports electrons, and holes reach a layer closer to the cathode than the barrier layer (e.g., electron transport layer). prevent you from doing
  • the organic EL device includes an electron-transporting layer, it preferably includes the barrier layer between the light-emitting layer and the electron-transporting layer.
  • the barrier layer transports holes, and electrons are transported to a layer closer to the anode than the barrier layer (for example, a hole transport layer). prevent it from reaching.
  • the organic EL device includes a hole-transporting layer, it preferably includes the barrier layer between the light-emitting layer and the hole-transporting layer.
  • a barrier layer may be provided adjacent to the light-emitting layer to prevent excitation energy from leaking from the light-emitting layer to its surrounding layers.
  • Excitons generated in the light-emitting layer are prevented from moving to a layer closer to the electrode than the barrier layer (for example, an electron-transporting layer and a hole-transporting layer). It is preferable that the light-emitting layer and the barrier layer are bonded.
  • Example 1 A glass substrate (size: 25 mm x 25 mm x 0.7 mm, Geomatec Co., Ltd.) provided with a patterned ITO transparent electrode with a thickness of 130 nm was cleaned with nitrogen plasma for 100 seconds. After that, the glass substrate with the ITO transparent electrode was attached to the holder of the vacuum evaporator. First, compound HT1 and compound HA1 were co-deposited on the surface of a patterned ITO transparent electrode on a glass substrate to form a hole injection layer (HI) with a thickness of 10 nm. The ratio of compound HT1 in this hole injection layer was set to 97% by mass, and the ratio of compound HA1 was set to 3% by mass.
  • HI hole injection layer
  • compound HT1 was deposited to form a first hole transport layer (HT) with a thickness of 80 nm.
  • the compound HT2 was deposited to deposit a second hole-transporting layer (also referred to as an electron blocking layer) (EBL) with a thickness of 10 nm.
  • EBL electron blocking layer
  • Compound BH3 (first host material (BH)) and compound BD1 (first dopant material (BD)) are co-deposited on the second hole transport layer so that the proportion of compound BD1 is 1% by mass. Then, a light-emitting layer having a thickness of 25 nm was formed.
  • Compound ET1 was deposited on the light-emitting layer to form a first electron-transporting layer (also referred to as a hole-blocking layer) (HBL) with a thickness of 10 nm.
  • Compound ET2 was deposited on the first electron-transporting layer (HBL) to form a second electron-transporting layer (ET) with a thickness of 15 nm.
  • Lithium fluoride (LiF) was vapor-deposited on the second electron-transporting layer to form an electron-injecting layer with a thickness of 1 nm.
  • Metal Al was deposited on the electron injection layer to form a cathode with a film thickness of 80 nm.
  • the device configuration of Example 1 is schematically shown as follows.
  • the numbers in parentheses indicate the film thickness (unit: nm).
  • Percentage figures (97%:3%) indicate the ratio (mass %) of compound HT1 and compound HA1 in the hole-injection layer, and percentage figures (99%:1%) indicate the proportion in the light-emitting layer.
  • the ratio (% by mass) of the host material (compound BH3) and the dopant material (compound BD1) is shown.
  • Comparative Examples 1 and 2 Organic EL devices of Comparative Examples 1 and 2 were produced in the same manner as in Example 1, except that the light-emitting layer of Example 1 was changed to the compound shown in Table 1.
  • ⁇ Maximum peak wavelength ⁇ p of light emitted from the element when the element is driven A spectral radiance spectrum was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.) when a voltage was applied to the organic EL element so that the current density of the organic EL element was 10 mA/cm 2 .
  • a maximum peak wavelength ⁇ p (unit: nm) was calculated from the obtained spectral radiance spectrum.
  • the organic EL devices of Example 1 that satisfy the formula (number A) are the organic EL devices of Comparative Examples 1 and 2 that do not satisfy the formula (number A). longer life compared to
  • Example 2 A glass substrate (size: 25 mm x 25 mm x 0.7 mm, Geomatec Co., Ltd.) provided with a patterned ITO transparent electrode with a thickness of 130 nm was cleaned with nitrogen plasma for 100 seconds. After that, the glass substrate with the ITO transparent electrode was attached to the holder of the vacuum evaporator. First, compound HT1 and compound HA1 were co-deposited on the surface of a patterned ITO transparent electrode on a glass substrate to form a hole injection layer (HI) with a thickness of 10 nm. The ratio of compound HT1 in this hole injection layer was set to 97% by mass, and the ratio of compound HA1 was set to 3% by mass.
  • HI hole injection layer
  • compound HT1 was deposited to form a first hole transport layer (HT) with a thickness of 80 nm.
  • the compound HT2 was deposited to deposit a second hole-transporting layer (also referred to as an electron blocking layer) (EBL) with a thickness of 10 nm.
  • EBL electron blocking layer
  • Compound BH2 (first host material (BH)) and compound BD1 (first dopant material (BD)) are co-deposited on the second hole transport layer so that the proportion of compound BD1 is 2% by mass. Then, a light-emitting layer having a thickness of 25 nm was formed.
  • Compound ET3 was deposited on the light-emitting layer to form a first electron-transporting layer (also referred to as a hole-blocking layer) (HBL) with a thickness of 10 nm.
  • Compound ET2 was deposited on the first electron-transporting layer (HBL) to form a second electron-transporting layer (ET) with a thickness of 15 nm.
  • Lithium fluoride (LiF) was vapor-deposited on the second electron-transporting layer to form an electron-injecting layer with a thickness of 1 nm.
  • Metal Al was deposited on the electron injection layer to form a cathode with a film thickness of 80 nm.
  • the device configuration of Example 2 is schematically shown as follows.
  • the numbers in parentheses indicate the film thickness (unit: nm).
  • Percentage figures (97%:3%) indicate the ratio (mass %) of compound HT1 and compound HA1 in the hole-injection layer, and percentage figures (98%:2%) indicate the proportion in the light-emitting layer.
  • the ratio (% by mass) of the host material (compound BH2) and the dopant material (compound BD1) is shown.
  • Comparative Example 3 An organic EL device of Comparative Example 3 was produced in the same manner as in Example 2 except that the light-emitting layer of Example 2 was changed to the compound shown in Table 2.
  • Examples 3 to 5 Organic EL devices of Examples 3 to 5 were produced in the same manner as in Example 2 except that the light-emitting layer of Example 2 was changed to the compound shown in Table 3.
  • Examples 6-7 Organic EL devices of Examples 6 and 7 were produced in the same manner as in Example 2, except that the light-emitting layer of Example 2 was changed to the compound shown in Table 2.
  • ⁇ Maximum peak wavelength ⁇ p of light emitted from the element when the element is driven The maximum peak wavelength ⁇ p (unit: nm) was measured in the same manner as in Example 1.
  • the organic The EL device had a longer life and an improved EQE compared to the organic EL device of Example 5 using a disubstituted anthracene derivative as the first host material.
  • the phosphorescence spectrum (vertical axis: phosphorescent emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and a tangent line is drawn to the rise on the short wavelength side of this phosphorescent spectrum.
  • a tangent line to the rise on the short wavelength side of the phosphorescence spectrum is drawn as follows.
  • This tangent line increases in slope as the curve rises (ie as the vertical axis increases).
  • the tangent line drawn at the point where the value of this slope takes the maximum value is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • the maximum point with a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and is closest to the maximum value on the short wavelength side.
  • the tangent line drawn at the point where the value is taken is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • a F-4500 type spectrofluorophotometer body manufactured by Hitachi High Technology Co., Ltd. was used for the measurement of phosphorescence.
  • a tangent to the fall on the long wavelength side of the absorption spectrum is drawn as follows. Among the maximum values of the absorption spectrum, consider the tangent line at each point on the curve when moving from the maximum value on the longest wavelength side to the long wavelength direction on the spectrum curve. This tangent line repeats the slope decreasing and then increasing as the curve falls (that is, as the value on the vertical axis decreases). The tangent line drawn at the point where the slope value takes the minimum value on the long wavelength side (except when the absorbance is 0.1 or less) is taken as the tangent line to the fall on the long wavelength side of the absorption spectrum. The maximum absorbance value of 0.2 or less is not included in the maximum value on the longest wavelength side.
  • Affinity Af of compounds is determined by Djulovich, Mayo, Forrest, Thompson, Organic Electronics, 10 (2009) p. 515-520, the first reduction potential (Ere [V]) of the compound measured in dimethylformamide (DMF) solvent and the first oxidation potential of ferrocene similarly measured as an internal standard ( Efc[V]) was calculated by the following formula (number C).
  • Af [eV] -(-1.19 ⁇ (Ere-Efc)-4.78) ... (number C)
  • the oxidation-reduction potential of each compound was measured by DPV measurement according to the procedure shown below.
  • An electrochemical analyzer (manufactured by ALS Co., model number: ALS 852D) was used for the DPV measurement.
  • Solutions for DPV measurements were prepared as follows. Dimethylformamide (DMF) is used as a solvent, tetrabutylammonium hexafluorophosphate as a supporting electrolyte is dissolved in this solvent to a concentration of 100 mmol/L, and the compound to be measured is dissolved at a concentration of 1.0 mmol/L. Then, as an internal standard, ferrocene was dissolved at a concentration of 1.0 mmol/L to prepare a solution for DPV measurement.
  • DMF Dimethylformamide
  • tetrabutylammonium hexafluorophosphate as a supporting electrolyte is dissolved in this solvent to a concentration of 100 mmol/L
  • the compound to be measured is dissolved at a concentration of 1.0 mmol/L.
  • ferrocene was
  • a platinum electrode was used as the auxiliary electrode, a glassy carbon electrode as the working electrode, and a silver/silver chloride electrode as the reference electrode.
  • the measurement conditions for the DPV measurement were a stepwise voltage increase of 0.01 V, a pulse voltage of 0.025 V, a pulse width of 0.05 seconds, a pulse time of 0.2 seconds, and a potential measurement time of 0.02 seconds.
  • Ere as the first reduction potential of the compound to be measured and Efc as the first oxidation potential of ferrocene measured under the above measurement conditions
  • Af of each compound was calculated using the above formula (number C).
  • Table 4 shows the values related to compound evaluation. Affinity Af is shown in Tables 1-3.
  • 1-bromo-2-fluoro-3-nitrobenzene (87.8 g, 399 mmol) was dissolved in 130 mL of trifluoromethanesulfonic acid (TfOH) and cooled to 0.degree.
  • N-iodosuccinimide (108 g, 479 mmol) was added in portions over 40 minutes and the reaction was allowed to reach room temperature gradually over 19 hours.
  • the reaction was again cooled to 0° C., N-iodosuccinimide (8.5 g, 38 mmol) was added and the reaction was allowed to reach room temperature gradually over 19 hours.
  • the reaction was then poured into 400 mL of water and the resulting mixture was neutralized using 40% sodium hydroxide solution and extracted with heptane.
  • 1,3-dibromo-5-(tert-butyl)benzene 13.0 g, 44.5 mmol
  • tris(dibenzylideneacetone)dipalladium(0) Pd 2 dba 3
  • P(tBu) 3 HBF 4 tri-tert-butylphosphonium tetrafluoroborate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

陽極(3)と、陰極(4)と、陽極(3)と陰極(4)との間に含まれる発光層(5)と、を有し、発光層(5)は、一般式(1)で表される第一の化合物を含む、有機エレクトロルミネッセンス素子(1)。 一般式(1)において、n、m及びpは、それぞれ独立に、0、1、2又は3であり、 RAは、水素原子又は置換基RAX等であり、RBは、水素原子又は置換基RBX等であり、RCは、水素原子又は置換基RCX等であり、R1及びR2は、それぞれ独立に、水素原子又は置換基等であり、環A、環B及び環Cは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール環又は置換もしくは無置換の環形成原子数5~50の複素環である。

Description

有機エレクトロルミネッセンス素子及び電子機器
 本発明は、有機エレクトロルミネッセンス素子及び電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から正孔が発光層に注入され、また陰極から電子が発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
 有機EL素子は、携帯電話及びテレビ等のフルカラーディスプレイへ応用されている。
 有機EL素子の性能向上を図るため、有機EL素子に用いる化合物について様々な検討がなされている。
 例えば、特許文献1には、有機EL素子に用いることのできる化合物として、窒素原子及びホウ素原子を含む多環式複素環化合物が開示されている。
 有機EL素子の性能としては、例えば、輝度、発光波長、色度、発光効率、駆動電圧、及び寿命が挙げられる。
国際公開第2020/217229号
 ディスプレイ等の電子機器の性能を向上させるために、有機EL素子の性能の更なる向上が要望されている。
 本発明の目的は、長寿命化が可能な有機エレクトロルミネッセンス素子、及び当該有機エレクトロルミネッセンス素子を搭載した電子機器を提供することである。
 本発明の一態様によれば、陽極と、陰極と、前記陽極と前記陰極との間に含まれる発光層と、を有する有機エレクトロルミネッセンス素子であって、前記発光層は、下記一般式(1)で表される第一の化合物を含む、有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000006
(前記一般式(1)において、
 nは、0、1、2又は3であり、
 mは、0、1、2又は3であり、
 pは、0、1、2又は3であり、
 Rは、水素原子であるか、又は置換基RAXであり、
 Rは、水素原子であるか、又は置換基RBXであり、
 Rは、水素原子であるか、又は置換基RCXであり、
 環Aは、
  置換基RAXで置換された環形成炭素数6~50のアリール環、
  無置換の環形成炭素数6~50のアリール環、
  置換基RAXで置換された環形成原子数5~50の複素環、又は
  無置換の環形成原子数5~50の複素環であり、
 環Bは、
  置換基RBXで置換された環形成炭素数6~50のアリール環、
  無置換の環形成炭素数6~50のアリール環、
  置換基RBX置換された環形成原子数5~50の複素環、又は
  無置換の環形成原子数5~50の複素環であり、
 環Cは、
  置換基RCXで置換された環形成炭素数6~50のアリール環、
  無置換の環形成炭素数6~50のアリール環、
  置換基RCX置換された環形成原子数5~50の複素環、又は
  無置換の環形成原子数5~50の複素環であり、
 Rは、
 Rからなる群から選択される1以上と、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 Rは、Rからなる群から選択される1以上と、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 2以上の置換基RAXのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 2以上の置換基RBXのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 2以上の置換基RCXのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R、R及びRは、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数1~50のフルオロアルキル基、
  置換もしくは無置換の環形成炭素数1~50のフルオロシクロアルキル基、
  -O-(R81)で表される基、
  -N(R82)(R83)で表される基、
  -S-(R84)で表される基、
  -S(=O)(R85)で表される基、
  -Si(R86)(R87)(R88)で表される基、
  -CN、
  -COOR91で表される基、
  -C(=O)N(R92)(R93)で表される基、
  -P(=O)(R94)(R95)で表される基、又は
  -B(R96)(R97)で表される基であり、
 R81~R88及びR91~R97は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  置換もしくは無置換の炭素数2~50のアルケニル基であり、
 Rが複数存在する場合、複数のRは互いに同一であるか、又は異なり、
 Rが複数存在する場合、複数のRは互いに同一であるか、又は異なり、
 Rが複数存在する場合、複数のRは互いに同一であるか、又は異なる。)
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を搭載した電子機器が提供される。
 本発明の一態様によれば、長寿命化が可能な有機エレクトロルミネッセンス素子、及び当該有機エレクトロルミネッセンス素子を搭載した電子機器を提供できる。
第一実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 第二実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 第二実施形態に係る有機エレクトロルミネッセンス素子の別の一例の概略構成を示す図である。
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、別途記載のない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ベンゼン環の環形成炭素数に含めない。そのため、アルキル基が置換しているベンゼン環の環形成炭素数は、6である。また、ナフタレン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ナフタレン環の環形成炭素数に含めない。そのため、アルキル基が置換しているナフタレン環の環形成炭素数は、10である。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば、単環、縮合環、及び環集合)の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、別途記載のない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。例えば、ピリジン環に結合している水素原子、又は置換基を構成する原子の数は、ピリジン環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているピリジン環の環形成原子数は、6である。また、例えば、キナゾリン環の炭素原子に結合している水素原子、又は置換基を構成する原子については、キナゾリン環の環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているキナゾリン環の環形成原子数は10である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、無置換のZZ基とは「置換もしくは無置換のZZ基」が「無置換のZZ基」である場合を表し、置換のZZ基とは「置換もしくは無置換のZZ基」が「置換のZZ基」である場合を表す。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換」とは、ZZ基における水素原子が置換基と置き換わっていないことを意味する。「無置換のZZ基」における水素原子は、軽水素原子、重水素原子、又は三重水素原子である。
 また、本明細書において、「置換もしくは無置換のZZ基」という場合における「置換」とは、ZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
「本明細書に記載の置換基」
 以下、本明細書に記載の置換基について説明する。
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
・「置換もしくは無置換のアリール基」
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基(具体例群G1A)及び置換のアリール基(具体例群G1B)等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)本明細書において、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は、「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアリール基」としては、例えば、下記具体例群G1Aの「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基、及び下記具体例群G1Bの置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例、及び「置換のアリール基」の例は、一例に過ぎず、本明細書に記載の「置換のアリール基」には、下記具体例群G1Bの「置換のアリール基」におけるアリール基自体の炭素原子に結合する水素原子がさらに置換基と置き換わった基、及び下記具体例群G1Bの「置換のアリール基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアリール基(具体例群G1A):フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基、及び下記一般式(TEMP-1)~(TEMP-15)で表される環構造から1つの水素原子を除くことにより誘導される1価のアリール基。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
・置換のアリール基(具体例群G1B):o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基、
9,9-ビス(4-メチルフェニル)フルオレニル基、
9,9-ビス(4-イソプロピルフェニル)フルオレニル基、
9,9-ビス(4-t-ブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基、及び前記一般式(TEMP-1)~(TEMP-15)で表される環構造から誘導される1価の基の1つ以上の水素原子が置換基と置き換わった基。
・「置換もしくは無置換の複素環基」
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であるか、又は縮合環の基である。
 本明細書に記載の「複素環基」は、芳香族複素環基であるか、又は非芳香族複素環基である。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基(具体例群G2A)、及び置換の複素環基(具体例群G2B)等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)本明細書において、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は、「無置換の複素環基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換の複素環基」の具体例は、下記具体例群G2Aの「無置換の複素環基」の水素原子が置き換わった基、及び下記具体例群G2Bの置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は、一例に過ぎず、本明細書に記載の「置換の複素環基」には、具体例群G2Bの「置換の複素環基」における複素環基自体の環形成原子に結合する水素原子がさらに置換基と置き換わった基、及び具体例群G2Bの「置換の複素環基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
 具体例群G2Aは、例えば、以下の窒素原子を含む無置換の複素環基(具体例群G2A1)、酸素原子を含む無置換の複素環基(具体例群G2A2)、硫黄原子を含む無置換の複素環基(具体例群G2A3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4)を含む。
 具体例群G2Bは、例えば、以下の窒素原子を含む置換の複素環基(具体例群G2B1)、酸素原子を含む置換の複素環基(具体例群G2B2)、硫黄原子を含む置換の複素環基(具体例群G2B3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4)を含む。
・窒素原子を含む無置換の複素環基(具体例群G2A1):ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、及びジアザカルバゾリル基。
・酸素原子を含む無置換の複素環基(具体例群G2A2):フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、及びジアザナフトベンゾフラニル基。
・硫黄原子を含む無置換の複素環基(具体例群G2A3):チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基(ベンゾチエニル基)、
イソベンゾチオフェニル基(イソベンゾチエニル基)、
ジベンゾチオフェニル基(ジベンゾチエニル基)、
ナフトベンゾチオフェニル基(ナフトベンゾチエニル基)、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基(ジナフトチエニル基)、
アザジベンゾチオフェニル基(アザジベンゾチエニル基)、
ジアザジベンゾチオフェニル基(ジアザジベンゾチエニル基)、
アザナフトベンゾチオフェニル基(アザナフトベンゾチエニル基)、及びジアザナフトベンゾチオフェニル基(ジアザナフトベンゾチエニル基)。
・下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、又はCHである。ただし、X及びYのうち少なくとも1つは、酸素原子、硫黄原子、又はNHである。
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYの少なくともいずれかがNH、又はCHである場合、前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基には、これらNH、又はCHから1つの水素原子を除いて得られる1価の基が含まれる。
・窒素原子を含む置換の複素環基(具体例群G2B1):(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、及びビフェニリルキナゾリニル基。
・酸素原子を含む置換の複素環基(具体例群G2B2):フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、及びスピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基。
・硫黄原子を含む置換の複素環基(具体例群G2B3):フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、及びスピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基。
・前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4):
 前記「1価の複素環基の1つ以上の水素原子」とは、該1価の複素環基の環形成炭素原子に結合している水素原子、X及びYの少なくともいずれかがNHである場合の窒素原子に結合している水素原子、及びX及びYの一方がCHである場合のメチレン基の水素原子から選ばれる1つ以上の水素原子を意味する。
・「置換もしくは無置換のアルキル基」
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基(具体例群G3A)及び置換のアルキル基(具体例群G3B)が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は、「無置換のアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキル基」の具体例としては、下記の「無置換のアルキル基」(具体例群G3A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のアルキル基(具体例群G3B)の例等が挙げられる。本明細書において、「無置換のアルキル基」におけるアルキル基は、鎖状のアルキル基を意味する。そのため、「無置換のアルキル基」は、直鎖である「無置換のアルキル基」、及び分岐状である「無置換のアルキル基」が含まれる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルキル基」には、具体例群G3Bの「置換のアルキル基」におけるアルキル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G3Bの「置換のアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルキル基(具体例群G3A):メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、及びt-ブチル基。
・置換のアルキル基(具体例群G3B):ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、及びトリフルオロメチル基。
・「置換もしくは無置換のアルケニル基」
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基(具体例群G4A)、及び置換のアルケニル基(具体例群G4B)等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)本明細書において、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は、「無置換のアルケニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルケニル基」の具体例としては、下記の「無置換のアルケニル基」(具体例群G4A)が置換基を有する基、及び置換のアルケニル基(具体例群G4B)の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、具体例群G4Bの「置換のアルケニル基」におけるアルケニル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G4Bの「置換のアルケニル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルケニル基(具体例群G4A):ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、及び3-ブテニル基。
・置換のアルケニル基(具体例群G4B):1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、及び1,2-ジメチルアリル基。
・「置換もしくは無置換のアルキニル基」
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基(具体例群G5A)等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は、「無置換のアルキニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキニル基」の具体例としては、下記の「無置換のアルキニル基」(具体例群G5A)における1つ以上の水素原子が置換基と置き換わった基等が挙げられる。
・無置換のアルキニル基(具体例群G5A):エチニル基。
・「置換もしくは無置換のシクロアルキル基」
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基(具体例群G6A)、及び置換のシクロアルキル基(具体例群G6B)等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)本明細書において、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は、「無置換のシクロアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のシクロアルキル基」の具体例としては、下記の「無置換のシクロアルキル基」(具体例群G6A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のシクロアルキル基(具体例群G6B)の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、具体例群G6Bの「置換のシクロアルキル基」におけるシクロアルキル基自体の炭素原子に結合する1つ以上の水素原子が置換基と置き換わった基、及び具体例群G6Bの「置換のシクロアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のシクロアルキル基(具体例群G6A):シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、及び2-ノルボルニル基。
・置換のシクロアルキル基(具体例群G6B):4-メチルシクロヘキシル基。
・「-Si(R901)(R902)(R903)で表される基」
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、及び-Si(G6)(G6)(G6)
が挙げられる。ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -Si(G1)(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G1)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G1)(G1)(G2)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G2)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -Si(G6)(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「-O-(R904)で表される基」
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、及び-O(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-S-(R905)で表される基」
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、及び-S(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-N(R906)(R907)で表される基」
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、及び-N(G6)(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -N(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -N(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -N(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -N(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「ハロゲン原子」
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
・「置換もしくは無置換のフルオロアルキル基」
 本明細書に記載の「置換もしくは無置換のフルオロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がフッ素原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がフッ素原子で置き換わった基(パーフルオロ基)も含む。「無置換のフルオロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のフルオロアルキル基」は、「フルオロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のフルオロアルキル基」には、「置換のフルオロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のフルオロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のフルオロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がフッ素原子と置き換わった基の例等が挙げられる。
・「置換もしくは無置換のハロアルキル基」
 本明細書に記載の「置換もしくは無置換のハロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がハロゲン原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がハロゲン原子で置き換わった基も含む。「無置換のハロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のハロアルキル基」は、「ハロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のハロアルキル基」には、「置換のハロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のハロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のハロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がハロゲン原子と置き換わった基の例等が挙げられる。ハロアルキル基をハロゲン化アルキル基と称する場合がある。
・「置換もしくは無置換のアルコキシ基」
 本明細書に記載の「置換もしくは無置換のアルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアルキルチオ基」
 本明細書に記載の「置換もしくは無置換のアルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアリールオキシ基」
 本明細書に記載の「置換もしくは無置換のアリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のアリールチオ基」
 本明細書に記載の「置換もしくは無置換のアリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のトリアルキルシリル基」
 本明細書に記載の「トリアルキルシリル基」の具体例としては、-Si(G3)(G3)(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。-Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。「トリアルキルシリル基」の各アルキル基の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20であり、より好ましくは1~6である。
・「置換もしくは無置換のアラルキル基」
 本明細書に記載の「置換もしくは無置換のアラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」であり、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。従って、「アラルキル基」は、「アルキル基」の水素原子が置換基としての「アリール基」と置き換わった基であり、「置換のアルキル基」の一態様である。「無置換のアラルキル基」は、「無置換のアリール基」が置換した「無置換のアルキル基」であり、「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30であり、より好ましくは7~18である。
 「置換もしくは無置換のアラルキル基」の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジメチルフルオレニル基、及び9,9-ジフェニルフルオレニル基等である。
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、及びフェニルジベンゾチオフェニル基等である。
 本明細書において、カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000011
 本明細書において、(9-フェニル)カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000012
 前記一般式(TEMP-Cz1)~(TEMP-Cz9)中、*は、結合位置を表す。
 本明細書において、ジベンゾフラニル基、及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000013
 前記一般式(TEMP-34)~(TEMP-41)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等である。
・「置換もしくは無置換のアリーレン基」
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換の2価の複素環基」
 本明細書に記載の「置換もしくは無置換の2価の複素環基」は、別途記載のない限り、上記「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換のアルキレン基」
 本明細書に記載の「置換もしくは無置換のアルキレン基」は、別途記載のない限り、上記「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-42)~(TEMP-68)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 前記一般式(TEMP-42)~(TEMP-52)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-42)~(TEMP-52)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000016
 前記一般式(TEMP-53)~(TEMP-62)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 式Q及びQ10は、単結合を介して互いに結合して環を形成してもよい。
 前記一般式(TEMP-53)~(TEMP-62)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000017
 前記一般式(TEMP-63)~(TEMP-68)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-63)~(TEMP-68)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-69)~(TEMP-102)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 前記一般式(TEMP-69)~(TEMP-82)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 前記一般式(TEMP-83)~(TEMP-102)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 以上が、「本明細書に記載の置換基」についての説明である。
・「結合して環を形成する場合」
 本明細書において、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合せず」という場合は、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合しない」場合と、を意味する。
 本明細書における、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(以下、これらの場合をまとめて「結合して環を形成する場合」と称する場合がある。)について、以下、説明する。母骨格がアントラセン環である下記一般式(TEMP-103)で表されるアントラセン化合物の場合を例として説明する。
Figure JPOXMLDOC01-appb-C000025
 例えば、R921~R930のうちの「隣接する2つ以上からなる組の1組以上が、互いに結合して、環を形成する」場合において、1組となる隣接する2つからなる組とは、R921とR922との組、R922とR923との組、R923とR924との組、R924とR930との組、R930とR925との組、R925とR926との組、R926とR927との組、R927とR928との組、R928とR929との組、並びにR929とR921との組である。
 上記「1組以上」とは、上記隣接する2つ以上からなる組の2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Qを形成し、同時にR925とR926とが互いに結合して環Qを形成した場合は、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-104)で表される。
Figure JPOXMLDOC01-appb-C000026
 「隣接する2つ以上からなる組」が環を形成する場合とは、前述の例のように隣接する「2つ」からなる組が結合する場合だけではなく、隣接する「3つ以上」からなる組が結合する場合も含む。例えば、R921とR922とが互いに結合して環Qを形成し、かつ、R922とR923とが互いに結合して環Qを形成し、互いに隣接する3つ(R921、R922及びR923)からなる組が互いに結合して環を形成して、アントラセン母骨格に縮合する場合を意味し、この場合、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-105)で表される。下記一般式(TEMP-105)において、環Q及び環Qは、R922を共有する。
Figure JPOXMLDOC01-appb-C000027
 形成される「単環」、又は「縮合環」は、形成された環のみの構造として、飽和の環であっても不飽和の環であってもよい。「隣接する2つからなる組の1組」が「単環」、又は「縮合環」を形成する場合であっても、当該「単環」、又は「縮合環」は、飽和の環、又は不飽和の環を形成することができる。例えば、前記一般式(TEMP-104)において形成された環Q及び環Qは、それぞれ、「単環」又は「縮合環」である。また、前記一般式(TEMP-105)において形成された環Q、及び環Qは、「縮合環」である。前記一般式(TEMP-105)の環Qと環Qとは、環Qと環Qとが縮合することによって縮合環となっている。前記一般式(TMEP-104)の環Qがベンゼン環であれば、環Qは、単環である。前記一般式(TMEP-104)の環Qがナフタレン環であれば、環Qは、縮合環である。
 「不飽和の環」とは、芳香族炭化水素環、又は芳香族複素環を意味する。「飽和の環」とは、脂肪族炭化水素環、又は非芳香族複素環を意味する。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が水素原子によって終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 「環を形成する」とは、母骨格の複数の原子のみ、あるいは母骨格の複数の原子とさらに1以上の任意の元素で環を形成することを意味する。例えば、前記一般式(TEMP-104)に示す、R921とR922とが互いに結合して形成された環Qは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の元素とで形成する環を意味する。具体例としては、R921とR922とで環Qを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922とが結合するアントラセン骨格の炭素原子と、4つの炭素原子とで単環の不飽和の環を形成する場合、R921とR922とで形成する環は、ベンゼン環である。
 ここで、「任意の元素」は、本明細書に別途記載のない限り、好ましくは、炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素である。任意の元素において(例えば、炭素元素、又は窒素元素の場合)、環を形成しない結合は、水素原子等で終端されてもよいし、後述する「任意の置換基」で置換されてもよい。炭素元素以外の任意の元素を含む場合、形成される環は複素環である。
 単環または縮合環を構成する「1以上の任意の元素」は、本明細書に別途記載のない限り、好ましくは2個以上15個以下であり、より好ましくは3個以上12個以下であり、さらに好ましくは3個以上5個以下である。
 本明細書に別途記載のない限り、「単環」、及び「縮合環」のうち、好ましくは「単環」である。
 本明細書に別途記載のない限り、「飽和の環」、及び「不飽和の環」のうち、好ましくは「不飽和の環」である。
 本明細書に別途記載のない限り、「単環」は、好ましくはベンゼン環である。
 本明細書に別途記載のない限り、「不飽和の環」は、好ましくはベンゼン環である。
 「隣接する2つ以上からなる組の1組以上」が、「互いに結合して、置換もしくは無置換の単環を形成する」場合、又は「互いに結合して、置換もしくは無置換の縮合環を形成する」場合、本明細書に別途記載のない限り、好ましくは、隣接する2つ以上からなる組の1組以上が、互いに結合して、母骨格の複数の原子と、1個以上15個以下の炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素とからなる置換もしくは無置換の「不飽和の環」を形成する。
 上記の「単環」、又は「縮合環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 上記の「飽和の環」、又は「不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 以上が、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(「結合して環を形成する場合」)についての説明である。
・「置換もしくは無置換の」という場合の置換基
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(本明細書において、「任意の置換基」と呼ぶことがある。)は、例えば、
無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び無置換の環形成原子数5~50の複素環基からなる群から選択される基等であり、
 ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
 R901が2個以上存在する場合、2個以上のR901は、互いに同一であるか、又は異なり、
 R902が2個以上存在する場合、2個以上のR902は、互いに同一であるか、又は異なり、
 R903が2個以上存在する場合、2個以上のR903は、互いに同一であるか、又は異なり、
 R904が2個以上存在する場合、2個以上のR904は、互いに同一であるか、又は異なり、
 R905が2個以上存在する場合、2個以上のR905は、互いに同一であるか、又は異なり、
 R906が2個以上存在する場合、2個以上のR906は、互いに同一であるか、又は異なり、
 R907が2個以上存在する場合、2個以上のR907は、互いに同一であるか又は異なる。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び環形成原子数5~50の複素環基からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び環形成原子数5~18の複素環基からなる群から選択される基である。
 上記任意の置換基の各基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基の具体例である。
 本明細書において別途記載のない限り、隣接する任意の置換基同士で、「飽和の環」、又は「不飽和の環」を形成してもよく、好ましくは、置換もしくは無置換の飽和の5員環、置換もしくは無置換の飽和の6員環、置換もしくは無置換の不飽和の5員環、又は置換もしくは無置換の不飽和の6員環を形成し、より好ましくは、ベンゼン環を形成する。
 本明細書において別途記載のない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様である。
 本明細書において、「AA~BB」を用いて表される数値範囲は、「AA~BB」の前に記載される数値AAを下限値とし、「AA~BB」の後に記載される数値BBを上限値として含む範囲を意味する。
〔第一実施形態〕
(有機エレクトロルミネッセンス素子)
 第一実施形態に係る有機EL素子の構成について説明する。
 有機EL素子は、陽極及び陰極の両電極間に有機層を備える。この有機層は、有機化合物で構成される層を少なくとも一つ含む。あるいは、この有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、無機化合物をさらに含んでいてもよい。本実施形態の有機EL素子において、有機層のうち少なくとも一層は、発光層である。ゆえに、有機層は、例えば、一つの発光層で構成されていてもよいし、有機EL素子に採用され得る層を含んでいてもよい。有機EL素子に採用され得る層としては、特に限定されないが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、及び障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
 本実施形態の有機EL素子は、陽極と、陰極と、前記陽極と前記陰極との間に含まれる発光層と、を有し、前記発光層は、下記一般式(1)で表される第一の化合物を含む。
 本実施形態の有機EL素子において、下記一般式(1)で表される第一の化合物は、分子内にイミダゾール環を2つ有する多環式複素環化合物である。分子内の2つのイミダゾール環は、下記一般式(1)に示すように、ホウ素原子を含有する複素環の両側かつ環A及び環Cにそれぞれ結合している。
 本発明者らは、このような構造を有する第一の化合物を発光層に含有させることで、従来の多環式複素環化合物を発光層に含有させた場合に比べて、素子を長寿命化できることを見出した。
 第一の化合物は、イミダゾール環を2つ有することで、イミダゾール環を1つ有する場合に比べて、Af値が増大する。その結果、電子をトラップする効果が増加するため、正孔輸送帯域(例えば正孔輸送層)と発光層との界面に対する電子負荷を軽減し、素子寿命が顕著に向上する。
 第一の化合物は、イミダゾール環を有することで、インドール環を有する場合に比べて、Af値が増大する。その結果、電子をトラップする効果が増加するため、正孔輸送帯域(例えば正孔輸送層)と発光層との界面に対する電子負荷を軽減し、素子寿命が顕著に向上する。
 第一の化合物は、下記一般式(X1)で表される化合物、及び下記一般式(X2)で表される化合物に比べて、Af値が増大する。その結果、電子をトラップする効果が増加するため、正孔輸送帯域(例えば正孔輸送層)と発光層との界面に対する電子負荷を軽減し、素子寿命が顕著に向上する。
 なお、下記一般式(X1)で表される化合物は、分子中にイミダゾール部分構造を2つ有するため、上記のようなAf値が増大する効果を有する場合もある。しかしながら、下記一般式(X1)で表される化合物は、スペクトルの最大ピーク波長が大幅に短波長側へシフトするため、例えば、青色発光材料として用いた場合、適域な波長とすることが難しい。
Figure JPOXMLDOC01-appb-C000028
(前記一般式(X1)及び(X2)において、n、p、環A、環C、R及びRは、それぞれ独立に、下記一般式(1)におけるn、p、環A、環C、R及びRと同義であり、Rは、それぞれ独立に、下記一般式(1)におけるRと同義であり、Rが複数存在する場合、複数のRは互いに同一であるか、又は異なる。)
(有機EL素子の発光波長)
 本実施形態に係る有機EL素子は、素子駆動時に最大ピーク波長が500nm以下の光を放射することが好ましい。
 本実施形態に係る有機EL素子は、素子駆動時に最大ピーク波長が、430nm以上480nm以下の光を放射することがより好ましい。
 素子駆動時に有機EL素子が放射する光の最大ピーク波長の測定は、以下のようにして行う。電流密度が10mA/cmとなるように有機EL素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ社製)で計測する。得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを最大ピーク波長(単位:nm)とする。
<発光層>
 発光層は、下記一般式(1)で表される第一の化合物を含む。
 第一の化合物は、最大ピーク波長が500nm以下の発光を示す化合物(ドーパント材料)であることが好ましい。第一の化合物は、最大ピーク波長が500nm以下の蛍光発光を示す化合物であることがより好ましい。
 本実施形態に係る有機EL素子において、発光層は、金属錯体を含有しないことが好ましい。
 本実施形態に係る有機EL素子において、発光層は、燐光発光性材料(燐光発光性のドーパント材料)を含まないことが好ましい。
 また、発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。ここで、重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
 化合物の最大ピーク波長の測定方法は、次の通りである。測定対象となる化合物の5μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の発光スペクトル(縦軸:発光強度、横軸:波長とする。)を測定する。発光スペクトルは、株式会社日立ハイテクサイエンス製の分光蛍光光度計(装置名:F-7000)により測定できる。なお、発光スペクトル測定装置は、ここで用いた装置に限定されない。
 発光スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を最大ピーク波長とする。なお、本明細書において、蛍光発光の最大ピーク波長を蛍光発光最大ピーク波長(FL-peak)と称する場合がある。
 第一の化合物の発光スペクトルにおいて、発光強度が最大となるピークを最大ピークとし、当該最大ピークの高さを1としたとき、当該発光スペクトルに現れる他のピークの高さは、0.6未満であることが好ましい。なお、発光スペクトルにおけるピークは、極大値とする。
 また、第一の化合物の発光スペクトルにおいて、ピークの数が3つ未満であることが好ましい。
(第一の化合物)
 第一の化合物は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000029
(前記一般式(1)において、
 nは、0、1、2又は3であり、
 mは、0、1、2又は3であり、
 pは、0、1、2又は3であり、
 Rは、水素原子であるか、又は置換基RAXであり、
 Rは、水素原子であるか、又は置換基RBXであり、
 Rは、水素原子であるか、又は置換基RCXであり、
 環Aは、
  置換基RAXで置換された環形成炭素数6~50のアリール環、
  無置換の環形成炭素数6~50のアリール環、
  置換基RAXで置換された環形成原子数5~50の複素環、又は
  無置換の環形成原子数5~50の複素環であり、
 環Bは、
  置換基RBXで置換された環形成炭素数6~50のアリール環、
  無置換の環形成炭素数6~50のアリール環、
  置換基RBX置換された環形成原子数5~50の複素環、又は
  無置換の環形成原子数5~50の複素環であり、
 環Cは、
  置換基RCXで置換された環形成炭素数6~50のアリール環、
  無置換の環形成炭素数6~50のアリール環、
  置換基RCX置換された環形成原子数5~50の複素環、又は
  無置換の環形成原子数5~50の複素環であり、
 Rは、
 Rからなる群から選択される1以上と、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 Rは、Rからなる群から選択される1以上と、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 2以上の置換基RAXのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 2以上の置換基RBXのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 2以上の置換基RCXのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R、R及びRは、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数1~50のフルオロアルキル基、
  置換もしくは無置換の環形成炭素数1~50のフルオロシクロアルキル基、
  -O-(R81)で表される基、
  -N(R82)(R83)で表される基、
  -S-(R84)で表される基、
  -S(=O)(R85)で表される基、
  -Si(R86)(R87)(R88)で表される基、
  -CN、
  -COOR91で表される基、
  -C(=O)N(R92)(R93)で表される基、
  -P(=O)(R94)(R95)で表される基、又は
  -B(R96)(R97)で表される基であり、
 R81~R88及びR91~R97は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  置換もしくは無置換の炭素数2~50のアルケニル基であり、
 Rが複数存在する場合、複数のRは互いに同一であるか、又は異なり、
 Rが複数存在する場合、複数のRは互いに同一であるか、又は異なり、
 Rが複数存在する場合、複数のRは互いに同一であるか、又は異なる。)
 前記一般式(1)において、置換基RAX、置換基RBX及び置換基RCXは、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数1~50のフルオロアルキル基、
  置換もしくは無置換の環形成炭素数1~50のフルオロシクロアルキル基、
  -O-(R81)で表される基、
  -N(R82)(R83)で表される基、
  -S-(R84)で表される基、
  -S(=O)(R85)で表される基、
  -Si(R86)(R87)(R88)で表される基、
  -CN、
  -COOR91で表される基、
  -C(=O)N(R92)(R93)で表される基、
  -P(=O)(R94)(R95)で表される基、又は
  -B(R96)(R97)で表される基であり、
 R81~R88及びR91~R97は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  置換もしくは無置換の炭素数2~50のアルケニル基であり、
 RAXが複数存在する場合、複数のRAXは互いに同一であるか、又は異なり、
 RBXが複数存在する場合、複数のRBXは互いに同一であるか、又は異なり、
 RCXが複数存在する場合、複数のRCXは互いに同一であるか、又は異なる。
 本明細書において、複素環としては、例えば、前述の「本明細書に記載の置換基」で例示した「複素環基」から結合手を除いた環構造(複素環)が挙げられる。これらの複素環は置換基を有していてもよいし、無置換でもよい。
 本明細書において、アリール環としては、例えば、前述の「本明細書に記載の置換基」で例示した「アリール基」から結合手を除いた環構造(アリール環)が挙げられる。これらのアリール環は置換基を有していてもよいし、無置換でもよい。
 本実施形態において、第一の化合物は、下記一般式(11)、下記一般式(12)又は下記一般式(13)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
(前記一般式(11)~(13)において、
 R及びRは、それぞれ独立に、前記一般式(1)におけるR及びRと同義であり、
 X~Xは、それぞれ独立に、CR又は窒素原子であり、
 X~Xは、それぞれ独立に、CR又は窒素原子であり、
 X~Xは、それぞれ独立に、CR又は窒素原子であり、
 Yは、CR又は窒素原子であり、
 Yは、酸素原子、硫黄原子、CR又はNRであり、
 Yは、CR又は窒素原子であり、
 Yは、酸素原子、硫黄原子、CR又はNRであり、
 Rは、前記一般式(1)におけるRと同義であり、
 Rは、前記一般式(1)におけるRと同義であり、
 Rは、前記一般式(1)におけるRと同義であり、
 YがCRである場合、CRにおける2つのRは互いに同一であるか、又は異なり、
 YがCRである場合、CRにおける2つのRは互いに同一であるか、又は異なる。)
 第一の化合物において、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R、R及びRは、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -O-(R81)で表される基、
  -N(R82)(R83)で表される基、
  -S-(R84)で表される基、
  -S(=O)(R85)で表される基、
  -Si(R86)(R87)(R88)で表される基、
  -B(R96)(R97)で表される基、又は
  -CNであり、
 R81~R88及びR96~R97は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基であることが好ましい。
 本実施形態において、第一の化合物は、下記一般式(11A)、(12A)又は(13A)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
(前記一般式(11A)、(12A)及び(13A)において、
 Rは、R11と、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 Rは、R13と、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R11~R13のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R14~R16のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R17~R19のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 Y及びYは、それぞれ独立に、前記一般式(12)におけるY及びYと同義であり、
 R21及びYにおけるRのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R23及びYにおけるRのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 ただし、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R11~R19、R21、R23、YにおけるR及びYにおけるRは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数3~18の複素環基、
  置換もしくは無置換の炭素数1~25のアルキル基、
  置換もしくは無置換の炭素数2~25のアルケニル基、
  -O-(R81)で表される基、
  -N(R82)(R83)で表される基、
  -S-(R84)で表される基、
  -B(R96)(R97)で表される基、又は
  -CNであり、
 R81~R84及びR96~R97は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数3~18の複素環基である。)
 本実施形態において、第一の化合物は、下記一般式(14A)、(15A)又は(16A)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000032
(前記一般式(14A)~(16A)において、R、R及びR11~R19は、それぞれ独立に、前記一般式(11A)におけるR、R及びR11~R19と同義である。)
 本実施形態において、第一の化合物は、下記一般式(11B)(12B)又は(13B)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
(前記一般式(11B)、(12B)及び(13B)において、
 R14~R19は、それぞれ独立に、前記一般式(11)におけるR14~R19と同義であり、
 Y、Y、R21及びR23は、それぞれ独立に、前記一般式(12)におけるY、Y、R21及びR23と同義であり、
 R11は、R31又はR35のいずれかと、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R13は、R41又はR45のいずれかと、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R11~R13のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR11~R13、R31~R35及びR41~R45は、それぞれ独立に、前記一般式(11)におけるR~Rと同義である。)
 第一の化合物において、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R11~R19、R21、R23、YにおけるR、YにおけるR、R31~R35及びR41~R45は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数3~18の複素環基、
  置換もしくは無置換の炭素数1~25のアルキル基、
  -Si(R86)(R87)(R88)で表される基、又は
  -CNであり、
 R86~R88は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30のアリール基、又は
  置換もしくは無置換の環形成原子数3~30の複素環基であることが好ましい。
 前記一般式(1)、(11)~(13)、(11A)~(16A)及び(11B)~(13B)において、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R、R、R、R11~R19、R21、R23、R31~R35及びR41~R45は、それぞれ独立に、
  水素原子、
  -CN、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数3~18の複素環基、
  置換もしくは無置換の炭素数1~25のアルキル基、又は
  -Si(R86)(R87)(R88)で表される基であることが好ましく、
  水素原子、
  -CN、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数1~6のフルオロアルキル基、
  置換もしくは無置換の環形成炭素数3~12のシクロアルキル基、
  置換もしくは無置換の環形成炭素数8~18のビシクロアルキル基、
  置換もしくは無置換の環形成炭素数12~27のトリシクロアルキル基、
  置換もしくは無置換のフェニル基、
  置換もしくは無置換のビフェニル基、
  置換もしくは無置換のターフェニル基、
  置換もしくは無置換のナフチル基、
  置換もしくは無置換のフルオレニル基、
  置換もしくは無置換のピリジル基、
  置換もしくは無置換のピリミジル基、
  置換もしくは無置換のトリアジニル基、
  置換もしくは無置換のカルバゾリル基、
  置換もしくは無置換のジベンゾチオフェニル基
  置換もしくは無置換のジベンゾフラニル基、又は
  -Si(R86)(R87)(R88)で表される基であることがより好ましく、
 R86~R88は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~18のアリール基、又は
  置換もしくは無置換の環形成原子数3~18の複素環基であることが好ましい。
 第一の化合物において、Rは、Rからなる群から選択される1以上と互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 第一の化合物において、Rは、Rからなる群から選択される1以上と互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 例えば環Bが置換もしくは無置換のベンゼン環であって、Rが置換もしくは無置換のフェニル基であり、当該フェニル基が、Rと互いに結合して単環を形成した場合の第一の化合物としては、下記一般式(C1)で表される化合物が挙げられる。
 第一の化合物において、2以上の置換基RAXのうちの隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 例えば環Aが置換もしくは無置換のベンゼン環であって、隣接する2つの置換基RAXからなる組が互いに結合して単環を形成した場合の第一の化合物としては、下記一般式(C12)で表される化合物が挙げられる。また、例えば環Aが置換もしくは無置換のベンゼン環であって、隣接する2つの置換基RAXからなる組が互いに結合して縮合環を形成した場合の第一の化合物としては、下記一般式(C5)~(C10)及び(C13)~(C14)で表される化合物が挙げられる。
 第一の化合物において、2以上の置換基RBXのうちの隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 例えば環Bが置換もしくは無置換のベンゼン環であって、隣接する2つの置換基RBXからなる組が互いに結合して縮合環を形成した場合の第一の化合物としては、下記一般式(C11)で表される化合物が挙げられる。
 第一の化合物において、2以上の置換基RCXのうちの隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 例えば環Cが置換もしくは無置換のベンゼン環であって、隣接する2つの置換基RCXからなる組が互いに結合して単環を形成した場合の第一の化合物としては、下記一般式(C2)、(C3)、(C7)、(C8)及び(C12)で表される化合物が挙げられる。また、例えば環Cが置換もしくは無置換のベンゼン環であって、隣接する2つの置換基RCXからなる組が互いに結合して縮合環を形成した場合の第一の化合物としては、下記一般式(C4)、(C9)、(C10)及び(C14)で表される化合物が挙げられる。
 なお、単環もしくは縮合環の態様は、下記一般式(C1)~(C14)で示す態様に限定されない。
 本実施形態において、第一の化合物は、下記一般式(C1)~(C14)のいずれかで表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
(前記一般式(C1)~(C14)において、R、R、R、R及びRは、それぞれ独立に、前記一般式(1)におけるR、R、R、R及びRと同義であり、
は、それぞれ独立に、前記一般式(1)におけるRと同義であり、Rが複数存在する場合、複数のRは互いに同一であるか、又は異なり、Xは、酸素原子、硫黄原子、CR又はNRであり、XがCRである場合、CRにおける2つのRは互いに同一であるか、又は異なる。)
 第一の化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
(第一の化合物の製造方法)
 第一の化合物は、公知の方法により製造できる。また、第一の化合物は、公知の方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることによっても、製造できる。
(第一の化合物の具体例)
 第一の化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら第一の化合物の具体例に限定されない。
 本明細書において、化合物の具体例中、Dは、重水素原子を示し、Meは、メチル基を示す。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041

 
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
(第一のホスト材料)
 発光層は、第一のホスト材料と、第一のドーパント材料として第一の化合物(前記一般式(1)で表される化合物)と、を含むことが好ましい。
 第一のホスト材料としては、例えば、1)アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、ベンズアントラセン誘導体、フルオレン誘導体、フルオランテン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、2)カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、若しくはベンゾキサンテン誘導体等の複素環化合物が挙げられる。
 第一のホスト材料は、縮合芳香族化合物であることが好ましく、アントラセン誘導体、又はピレン誘導体(後述の一般式(100)で表される化合物)であることがより好ましく、アントラセン誘導体であることがさらに好ましい。
 また、第一のホスト材料は、ベンズアントラセン誘導体(後述の一般式(1X)で表される化合物)又はベンゾキサンテン誘導体(後述の一般式(14X)で表される化合物)であることも好ましい。
 本明細書において、「ホスト材料」とは、例えば「層の50質量%以上」含まれる材料である。したがって、発光層は、例えば、第一のホスト材料を、発光層の全質量の50質量%以上、含有する。
 第一のホスト材料がアントラセン誘導体である場合、第一のホスト材料は、下記一般式(2)で表される化合物であることが好ましい。
(一般式(2)で表される化合物)
Figure JPOXMLDOC01-appb-C000067
(前記一般式(2)において、
 R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 L201及びL202は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar201及びAr202は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(前記一般式(2)で表される化合物中、R901、R902、R903、R904、R905、R906、R907、R801及びR802は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なる。)
 前記一般式(2)で表される化合物中、R201~R208のうち、少なくとも1つは水素原子ではないことが好ましい。すなわち、第一のホスト材料が前記一般式(2)で表される化合物である場合、前記一般式(2)で表される化合物は、少なくとも3つの置換基で置換された3置換アントラセン誘導体であることが好ましい。
 本実施形態に係る有機EL素子において、
 R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、又は
  ニトロ基であり、
 L201及びL202は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar201及びAr202は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 本実施形態に係る有機EL素子において、
 L201及びL202は、それぞれ独立に、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であり、
 Ar201及びAr202は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 本実施形態に係る有機EL素子において、
 Ar201及びAr202は、それぞれ独立に、
  フェニル基、
  ナフチル基、
  フェナントリル基、
  ビフェニル基、
  ターフェニル基、
  ジフェニルフルオレニル基、
  ジメチルフルオレニル基、
  ベンゾジフェニルフルオレニル基、
  ベンゾジメチルフルオレニル基、
  ジベンゾフラニル基、
  ジベンゾチエニル基、
  ナフトベンゾフラニル基、又は
  ナフトベンゾチエニル基であることが好ましい。
 本実施形態に係る有機EL素子において、前記一般式(2)で表される化合物は、下記一般式(201)、一般式(202)、一般式(203)、一般式(204)、一般式(205)、一般式(206)、一般式(207)、一般式(208)又は一般式(209)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
(前記一般式(201)~(209)中、
 L201及びAr201は、前記一般式(2)におけるL201及びAr201と同義であり、
 R201~R208は、それぞれ独立に、前記一般式(2)におけるR201~R208と同義である。)
 前記一般式(2)で表される化合物は、下記一般式(221)、一般式(222)、一般式(223)、一般式(224)、一般式(225)、一般式(226)、一般式(227)、一般式(228)又は一般式(229)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
(前記一般式(221)、一般式(222)、一般式(223)、一般式(224)、一般式(225)、一般式(226)、一般式(227)、一般式(228)及び一般式(229)において、
 R201並びにR203~R208は、それぞれ独立に、前記一般式(2)におけるR201並びにR203~R208と同義であり、
 L201及びAr201は、それぞれ、前記一般式(2)におけるL201及びAr201と同義であり、
 L203は、前記一般式(2)におけるL201と同義であり、
 L203とL201は、互いに同一であるか、又は異なり、
 Ar203は、前記一般式(2)におけるAr201と同義であり、
 Ar203とAr201は、互いに同一であるか、又は異なる。)
 前記一般式(2)で表される化合物は、下記一般式(241)、一般式(242)、一般式(243)、一般式(244)、一般式(245)、一般式(246)、一般式(247)、一般式(248)又は一般式(249)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
(前記一般式(241)、一般式(242)、一般式(243)、一般式(244)、一般式(245)、一般式(246)、一般式(247)、一般式(248)及び一般式(249)において、
 R201、R202並びにR204~R208は、それぞれ独立に、前記一般式(2)におけるR201、R202並びにR204~R208と同義であり、
 L201及びAr201は、それぞれ、前記一般式(2)におけるL201及びAr201と同義であり、
 L203は、前記一般式(2)におけるL201と同義であり、
 L203とL201は、互いに同一であるか、又は異なり、
 Ar203は、前記一般式(2)におけるAr201と同義であり、
 Ar203とAr201は、互いに同一であるか、又は異なる。)
 前記一般式(2)で表される化合物中、R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  -Si(R901)(R902)(R903)で表される基であることが好ましい。
 L201は、単結合、又は無置換の環形成炭素数6~22のアリーレン基であり、
 Ar201は、置換もしくは無置換の環形成炭素数6~22のアリール基であることが好ましい。
 本実施形態に係る有機EL素子において、第一のホスト材料が前記一般式(2)で表される化合物である場合、前記一般式(2)で表される化合物中、アントラセン骨格の置換基であるR201~R208は、分子間の相互作用が抑制されることを防ぎ、電子移動度の低下を抑制する点から、水素原子であることが好ましいが、R201~R208は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基でもよい。
 後述する第二実施形態に係る有機EL素子は、陽極と、第二の発光層と、第一の発光層と、陰極とをこの順に有していることもできるが、第一の発光層と第二の発光層の順序を逆にすることもできる。
 例えば、後述する第二実施形態に係る有機EL素子において、第一の発光層と第二の発光層との積層順が、陽極側から、第二の発光層と第一の発光層との順序であり、かつ第一の発光層に含まれる第一のホスト材料が前記一般式(2)で表される化合物である場合、以下の現象が生じることが考えられる。そのため、前記一般式(2)中、R201~R208は、かさ高い置換基ではないことが好ましい。
 前記一般式(2)中、R201~R208がアルキル基及びシクロアルキル基等のかさ高い置換基となった場合、分子間の相互作用が抑制され、第二のホスト材料に対し電子移動度が低下し、後述する数式(数3)に記載のμe(H1)>μe(H2)の関係を満たさなくなるおそれがある。前記一般式(2)で表される化合物を第一のホスト材料として第一の発光層に用いた場合には、μe(H1)>μe(H2)の関係を満たす事で第二の発光層でのホールと電子との再結合能の低下、及び発光効率の低下を抑制することが期待できる。なお、置換基としては、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基がかさ高くなるおそれがあり、アルキル基、及びシクロアルキル基がさらにかさ高くなるおそれがある。
 前記一般式(2)で表される化合物中、アントラセン骨格の置換基であるR201~R208は、かさ高い置換基ではないことが好ましく、アルキル基及びシクロアルキル基ではないことが好ましく、アルキル基、シクロアルキル基、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基ではないことがより好ましい。
 前記一般式(2)中、R201~R208における「置換もしくは無置換の」という場合における置換基は、前述のかさ高くなるおそれのある置換基、特に置換もしくは無置換のアルキル基、及び置換もしくは無置換のシクロアルキル基を含まないことも好ましい。R201~R208における「置換もしくは無置換の」という場合における置換基が、置換もしくは無置換のアルキル基、及び置換もしくは無置換のシクロアルキル基を含まないことにより、アルキル基及びシクロアルキル基等のかさ高い置換基が存在する事による分子間の相互作用が抑制されるのを防ぎ、電子移動度の低下を防ぐことができ、また、このような化合物を第一のホスト材料として第一の発光層に用いた場合には、第二の発光層でのホールと電子との再結合能の低下、及び発光効率の低下を抑制できる。
 アントラセン骨格の置換基であるR201~R208がかさ高い置換基ではなく、置換基としてのR201~R208は、無置換であることがさらに好ましい。また、アントラセン骨格の置換基であるR201~R208がかさ高い置換基ではない場合において、かさ高くない置換基としてのR201~R208に置換基が結合する場合、当該置換基もかさ高い置換基ではないことが好ましく、置換基としてのR201~R208に結合する当該置換基は、アルキル基及びシクロアルキル基ではないことが好ましく、アルキル基、シクロアルキル基、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基ではないことがより好ましい。
 前記一般式(2)で表される化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
 一般式(2)で表される化合物は、公知の方法により製造できる。
(一般式(2)で表される化合物の具体例)
 一般式(2)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、一般式(2)で表される化合物は、下記具体例に限定されない。
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
 本実施形態に係る有機EL素子において、前記第一のホスト材料及び前記第一のドーパント材料が、下記数式(数A)の関係を満たすことが好ましく、下記数式(数A1)を満たすことがより好ましく、下記数式(数A2)を満たすことがさらに好ましい。
 Af(D1)―Af(H1)≧0.40eV (数A)
 Af(D1)―Af(H1)≧0.45eV (数A1)
 Af(D1)―Af(H1)≧0.50eV (数A2)
(前記数式(数A)、(数A1)及び(数A2)中、Af(H1)は、第一のホスト材料のアフィニティ(単位:eV)であり、Af(D1)は、第一のホスト材料のアフィニティ(単位:eV)である。)
 前記第一のホスト材料及び前記第一のドーパント材料が前記数式(数A)を満たすことで、電子をトラップする効果が増加するため、正孔輸送帯域(例えば正孔輸送層)と発光層との界面に対する電子負荷を軽減することとなる。その結果、素子をさらに長寿命化させることができる。
(化合物のアフィニティAf)
 化合物のアフィニティAfは、種々の電気化学的測定により求めた、それぞれの化合物の酸化還元電位から算出することができる。Afは、Djulovich,Mayo,Forrest,Thompson,Organic Electronics,10(2009)p.515-520に記載される手順に準じて、ジメチルホルムアミド(DMF)溶媒中で測定した化合物の第一還元電位(Ere[V])と、内部標準として同様に測定したフェロセンの第一酸化電位(Efc[V])とから、下記数式(数C)によって算出することができる。
 Af[eV]=-(-1.19×(Ere-Efc)-4.78) … (数C)
 ここで、酸化還元電位は、サイクリックボルタンメトリー(CV)や微分パルスボルタンメトリー(DPV)などの手法により測定することができる。
 本明細書においては、各化合物の酸化還元電位を、DPV測定により測定する。具体的な測定方法は実施例に記載の通りである。
 本実施形態に係る有機EL素子において、発光層は、第一の化合物としての第一のドーパント材料を、発光層の全質量の0.5質量%以上、含有することが好ましく、発光層の全質量の1.1質量%超、含有することがより好ましく、発光層の全質量の1.2質量%以上、含有することがさらに好ましく、発光層の全質量の1.5質量%以上、含有することがさらに好ましい。
 発光層は、第一のドーパント材料を、発光層の全質量の10質量%以下、含有することが好ましく、発光層の全質量の7質量%以下、含有することがより好ましく、発光層の全質量の5質量%以下、含有することがさらに好ましい。
 本実施形態に係る有機EL素子において、発光層は、第一のホスト材料を、発光層の全質量の60質量%以上、含有することが好ましく、発光層の全質量の70質量%以上、含有することがより好ましく、発光層の全質量の80質量%以上、含有することがさらに好ましく、発光層の全質量の90質量%以上、含有することがよりさらに好ましく、発光層の全質量の95質量%以上、含有することがさらになお好ましい。
 発光層は、第一のホスト材料を、発光層の全質量の99質量%以下、含有することが好ましい。
 ただし、発光層が第一のホスト材料と第一のドーパント材料とを含有する場合、第一のホスト材料及び第一のドーパント材料の合計含有率の上限は、100質量%である。
 なお、本実施形態は、発光層に、第一のホスト材料と第一のドーパント材料以外の材料が含まれることを除外しない。
 発光層は、第一のホスト材料を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、第一のドーパント材料を1種のみ含んでもよいし、2種以上含んでもよい。
(発光層の膜厚)
 本実施形態の有機EL素子における発光層の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、最も好ましくは10nm以上50nm以下である。5nm以上であると、発光層形成及び色度の調整が容易になりやすく、50nm以下であると、駆動電圧の上昇が抑制されやすい。
(有機EL素子のその他の層)
 本実施形態に係る有機EL素子は、2以上の発光層を有していてもよい。
 本実施形態に係る有機EL素子は、発光層以外に、1以上の有機層を有していてもよい。有機層としては、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔障壁層及び電子障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
 本実施形態に係る有機EL素子は、発光層だけで構成されていてもよいが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔障壁層及び電子障壁層等からなる群から選択される少なくともいずれかの層をさらに有していてもよい。
 図1に、本実施形態における有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を含む。有機層10は、陽極3側から順に、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。本発明は、図1に示される構成の有機EL素子に限定されない。
〔第二実施形態〕
(有機エレクトロルミネッセンス素子)
 第二実施形態に係る有機EL素子の構成について説明する。
 第二実施形態に係る有機EL素子は、発光層が、第一の発光層及び第二の発光層を含む。第一の発光層は、第一のホスト材料と、第一のドーパント材料とを含む。第二の発光層は、第二のホスト材料と、第二のドーパント材料とを含む。第一のホスト材料と第二のホスト材料とは互いに異なる。第一のドーパント材料と第二のドーパント材料とは互いに同一であるか、又は異なる。
 第二実施形態に係る有機EL素子は、発光層を少なくとも2層(第一の発光層及び第二の発光層)備える。第二実施形態に係る第一の発光層は、第一実施形態に係る発光層と同様の構成である。以下では、第一実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。
 第二実施形態に係る有機EL素子は、Tripret-Tripret-Annhilation(TTAと称する場合がある。)を利用することで、長寿命化が可能であり、かつ発光効率を向上できる。
 TTAは、三重項励起子と三重項励起子とが衝突して、一重項励起子を生成するという機構(メカニズム)である。なお、TTAメカニズムは、国際公開第2010/134350号に記載のようにTTFメカニズムと称する場合もある。
 TTF現象を説明する。陽極から注入された正孔と、陰極から注入された電子とは、発光層内で再結合し励起子を生成する。そのスピン状態は、従来から知られているように、一重項励起子が25%、三重項励起子が75%の比率である。従来知られている蛍光素子においては、25%の一重項励起子が基底状態に緩和するときに光を発するが、残りの75%の三重項励起子については光を発することなく熱的失活過程を経て基底状態に戻る。従って、従来の蛍光素子の内部量子効率の理論限界値は25%といわれていた。
 一方、有機物内部で生成した三重項励起子の挙動が理論的に調べられている。S.M.Bachiloらによれば(J.Phys.Chem.A,104,7711(2000))、五重項等の高次の励起子がすぐに三重項に戻ると仮定すると、三重項励起子(以下、と記載する)の密度が上がってきたとき、三重項励起子同士が衝突し下記式のような反応が起きる。ここで、Aは、基底状態を表し、は、最低励起一重項励起子を表す。
   →(4/9)A+(1/9)+(13/9)
 即ち、5→4A+1Aとなり、当初生成した75%の三重項励起子のうち、1/5即ち20%が一重項励起子に変化することが予測されている。従って、光として寄与する一重項励起子は、当初生成する25%分に75%×(1/5)=15%を加えた40%ということになる。このとき、全発光強度中に占めるTTF由来の発光比率(TTF比率)は、15/40、すなわち37.5%となる。また、当初生成した75%の三重項励起子のお互いが衝突して一重項励起子が生成した(2つの三重項励起子から1つの一重項励起子が生成した)とすると、当初生成する一重項励起子25%分に75%×(1/2)=37.5%を加えた62.5%という非常に高い内部量子効率が得られる。このとき、TTF比率は、37.5/62.5=60%である。
 第二実施形態に係る有機EL素子は、TTFメカニズムを発現する観点から、前記第一のホスト材料の三重項エネルギーT(H1)と前記第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数1)の関係を満たすことが好ましく、下記数式(数2)の関係を満たすことがより好ましい。
 T(H2)>T(H1)        …(数1)
 T(H2)-T(H1)>0.03eV …(数2)
 第二実施形態に係る有機EL素子においては、前記数式(数1)の関係を満たすことにより、第二の発光層で正孔と電子との再結合によって生成した三重項励起子は、当該第二の発光層と直接に接する有機層との界面にキャリアが過剰に存在していても、第二の発光層と当該有機層との界面に存在する三重項励起子がクエンチされ難くなると考えられる。例えば、再結合領域が、第二の発光層と正孔輸送層又は電子障壁層との界面に局所的に存在する場合には、過剰な電子によるクエンチが考えられる。一方、再結合領域が、第二の発光層と電子輸送層又は正孔障壁層との界面に局所的に存在する場合には、過剰な正孔によるクエンチが考えられる。
 第二実施形態に係る有機EL素子は、前記数式(数1)の関係を満たすように第一の発光層及び第二の発光層を備えることで、第二の発光層で生成した三重項励起子は、過剰キャリアによってクエンチされずに第一の発光層へと移動し、また、第一の発光層から第二の発光層へ逆移動することを抑制できる。その結果、第一の発光層において、TTFメカニズムが発現して、一重項励起子が効率良く生成され、発光効率が向上する。
 このように、有機EL素子が、三重項励起子を主に生成させる第二の発光層と、第二の発光層から移動してきた三重項励起子を活用してTTFメカニズムを主に発現させる第一の発光層と、を異なる領域として備え、第一の発光層中の第一のホスト材料として、第二の発光層中の第二のホスト材料よりも小さな三重項エネルギーを有する化合物を用いて、三重項エネルギーの差を設けることで、発光効率が向上する。
 第二実施形態に係る有機EL素子は、前記数式(数1)の関係を満たすホスト材料の組合せを選択し、かつ第一の発光層が第一実施形態に係る第一の化合物(前記一般式(1)で表される化合物)を含有することにより、素子を長寿命化させることができ、さらに発光効率を向上させることができる。
(有機EL素子の発光波長)
 第二実施形態に係る有機EL素子は、素子駆動時に最大ピーク波長が500nm以下の光を放射することが好ましく、420nm以上480nm以下の光を放射することがより好ましい。素子駆動時に有機EL素子が放射する光の最大ピーク波長の測定は、前述の通りである。
(第一の発光層)
 第一の発光層は、第一のホスト材料と、第一のドーパント材料とを含む。第一のホスト材料は、第二の発光層が含有する第二のホスト材料とは、異なる化合物である。
 第二実施形態に係る第一の発光層は、第一実施形態に係る発光層と同様の構成である。そのため、第一の発光層が含有する第一のホスト材料は、第一実施形態で説明した第一のホスト材料と同様の材料を用いることができる。第一の発光層が含有する第一のドーパント材料は、第一実施形態で説明した第一のドーパント材料(第一の化合物)と同様の材料を用いることができる。
 第二実施形態に係る有機EL素子において、前記第一の発光層は、素子駆動時に最大ピーク波長が500nm以下の光を放射することが好ましい。
 素子駆動時に発光層が放射する光の最大ピーク波長の測定は、次に記載の方法で行うことができる。
・素子駆動時に発光層から放射される光の最大ピーク波長λp
 素子駆動時に第一の発光層から放射される光の最大ピーク波長λpは、第二の発光層を第一の発光層と同じ材料を用いて有機EL素子を作製し、有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測する。得られた分光放射輝度スペクトルから、最大ピーク波長λp(単位:nm)を算出する。
 素子駆動時に第二の発光層から放射される光の最大ピーク波長λpは、第一の発光層を第二の発光層と同じ材料を用いて有機EL素子を作製し、有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測する。得られた分光放射輝度スペクトルから、最大ピーク波長λp(単位:nm)を算出する。
 第二実施形態に係る有機EL素子において、前記第一のドーパント材料の最大ピークの半値幅FWHMが、1nm以上、20nm以下であることが好ましい。
 第二実施形態に係る有機EL素子において、前記第一のドーパント材料のストークスシフトは、7nmを超えることが好ましい。
 第一のドーパント材料のストークスシフトが7nmを越えていれば、自己吸収による発光効率の低下を防止し易くなる。
 自己吸収とは、放出した光を同一化合物が吸収する現象であり、発光効率の低下を引き起こす現象である。自己吸収は、ストークスシフトの小さい(すなわち、吸収スペクトルと蛍光スペクトルの重なりが大きい)化合物で顕著に観測されるため、自己吸収を抑制するには、ストークスシフトの大きい(吸収スペクトルと蛍光スペクトルの重なりが小さい)化合物を用いることが好ましい。ストークスシフトは、次に記載する方法で測定できる。
 測定対象となる化合物を2.0×10-5mol/Lの濃度でトルエンに溶解し、測定用試料を調製する。石英セルへ入れた測定用試料に室温(300K)で紫外-可視領域の連続光を照射し、吸収スペクトル(縦軸:吸光度、横軸:波長)を測定する。吸収スペクトル測定には、分光光度計を用いることができ、例えば、日立ハイテクサイエンス社の分光光度計U-3900/3900H形を用いることができる。また、測定対象となる化合物を4.9×10-6mol/Lの濃度でトルエンに溶解し、測定用試料を調製する。石英セルへ入れた測定用試料に室温(300K)で励起光を照射し、蛍光スペクトル(縦軸:蛍光強度、横軸:波長)を測定した。蛍光スペクトル測定には、分光光度計を用いることができ、例えば、日立ハイテクサイエンス社の分光蛍光光度計F-7000形を用いることができる。
 これらの吸収スペクトルと蛍光スペクトルから、吸収極大波長と蛍光極大波長の差を算出し、ストークスシフト(SS)を求める。ストークスシフトSSの単位は、nmである。
 第二実施形態に係る有機EL素子において、前記第一のドーパント材料の三重項エネルギーT(D1)と、前記第一のホスト材料の三重項エネルギーT(H1)とが下記数式(数4A)の関係を満たすことが好ましい。
   T(D1)>T(H1)   …(数4A)
 第二実施形態に係る有機EL素子において、第一のドーパント材料と、第一のホスト材料とが、前記数式(数4A)の関係を満たすことにより、第二の発光層で生成した三重項励起子は、第一の発光層に移動する際、より高い三重項エネルギーを有する第一のドーパント材料ではなく、第一のホスト材料の分子にエネルギー移動する。また、第一のホスト材料上で正孔及び電子が再結合して発生した三重項励起子は、より高い三重項エネルギーを持つ第一のドーパント材料には移動しない。第一のドーパント材料の分子上で再結合し発生した三重項励起子は、速やかに第一のホスト材料の分子にエネルギー移動する。
 第一のホスト材料の三重項励起子が第一のドーパント材料に移動することなく、TTF現象によって第一のホスト材料上で三重項励起子同士が効率的に衝突することで、一重項励起子が生成される。
 第二実施形態に係る有機EL素子において、前記第一のホスト材料の一重項エネルギーS(H1)と前記第一のドーパント材料の一重項エネルギーS(D1)とが、下記数式(数4)の関係を満たすことが好ましい。
   S(H1)>S(D1)   …(数4)
 第二実施形態に係る有機EL素子において、第一のドーパント材料と、第一のホスト材料とが、前記数式(数4)の関係を満たすことにより、第一のドーパント材料の一重項エネルギーは、第一のホスト材料の一重項エネルギーより小さいため、TTF現象によって生成された一重項励起子は、第一のホスト材料から第一のドーパント材料へエネルギー移動し、第一のドーパント材料の発光(好ましくは蛍光性発光)に寄与する。
(一重項エネルギーS
 溶液を用いた一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
 測定対象となる化合物の10-5mol/L以上10-4mol/L以下のトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出する。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
 第二実施形態に係る有機EL素子において、第一の発光層と第二の発光層との積層順が、陽極側から、第二の発光層と第一の発光層との順序である場合、前記第二のホスト材料の電子移動度μe(H2)と、前記第一のホスト材料の電子移動度μe(H1)とが、下記数式(数3)の関係を満たすことが好ましい。第一のホスト材料と第二のホスト材料とが、下記数式(数3)の関係を満たすことで、第二の発光層でのホールと電子との再結合能が向上する。
  μe(H1)>μe(H2) …(数3)
 第二実施形態に係る有機EL素子において、第一の発光層と第二の発光層との積層順が、陽極側から、第二の発光層と第一の発光層との順序である場合、第二のホスト材料の正孔移動度μh(H2)と、第一のホスト材料の正孔移動度μh(H1)とが、下記数式(数31)の関係を満たすことも好ましい。
  μh(H2)>μh(H1) …(数31)
 第二実施形態に係る有機EL素子において、第一の発光層と第二の発光層との積層順が、陽極側から、第二の発光層と第一の発光層との順序である場合、第二のホスト材料の正孔移動度μh(H2)と、第二のホスト材料の電子移動度μe(H2)と、第一のホスト材料の正孔移動度μh(H1)と、第一のホスト材料の電子移動度μe(H1)とが、下記数式(数32)の関係を満たすことも好ましい。
  (μe(H1)/μh(H1))>(μe(H2)/μh(H2)) …(数32)
 電子移動度は、インピーダンス分光法を用い、以下の方法で測定できる。
 陽極及び陰極で厚さ100nm~200nmの測定対象層を挟み、バイアスDC電圧を印加しながら100mV以下の微小交流電圧を印加する。このときに流れる交流電流値(絶対値と位相)を測定する。交流電圧の周波数を変えながら本測定を行い、電流値と電圧値とから、複素インピーダンス(Z)を算出する。このときモジュラスM=iωZ(i:虚数単位、ω:角周波数)の虚数部(ImM)の周波数依存性を求め、ImMが最大値となる周波数ωの逆数を、測定対象層内を伝導する電子の応答時間と定義する。そして以下の式により電子移動度を算出する。
 電子移動度=(測定対象層の膜厚)/(応答時間・電圧)
 正孔移動度は、インピーダンス分光法を用い、電子移動度と同様の方法で測定できる。
 以下の式により正孔移動度を算出する。
 正孔移動度=(測定対象層の膜厚)/(応答時間・電圧)
 第二実施形態に係る有機EL素子において、第一の発光層中における第一のドーパント材料の含有量は、第一実施形態で記載した第一のドーパント材料の含有量と同様の範囲であることが好ましい。
 第二実施形態に係る有機EL素子において、第一の発光層中における第一のホスト材料の含有量は、第一実施形態で記載した第一のホスト材料の含有量と同様の範囲であることが好ましい。
 第二実施形態に係る有機EL素子において、前記第一の発光層の膜厚は、5nm以上であることが好ましく、15nm以上であることがより好ましい。前記第一の発光層の膜厚が5nm以上であれば、第二の発光層から第一の発光層へ移動してきた三重項励起子が、再び第二の発光層に戻ることを抑制し易い。また、前記第一の発光層の膜厚が5nm以上であれば、第二の発光層における再結合部分から三重項励起子を充分離すことができる。
 第二実施形態に係る有機EL素子において、前記第一の発光層の膜厚は、20nm以下であることが好ましい。前記第一の発光層の膜厚が20nm以下であれば、第一の発光層中の三重項励起子の密度を向上させて、TTF現象をさらに起こり易くすることができる。
 第二実施形態に係る有機EL素子において、前記第一の発光層の膜厚は、5nm以上、20nm以下であることが好ましい。
(第二の発光層)
 第二の発光層は、第二のホスト材料と、第二のドーパント材料とを含む。第二のホスト材料は、第一の発光層が含有する第一のホスト材料とは、異なる化合物である。
 第二のドーパント材料は、最大ピーク波長が500nm以下の発光を示す化合物であることが好ましい。第二のドーパント材料は、最大ピーク波長が500nm以下の蛍光発光を示す化合物であることがより好ましい。
 化合物の最大ピーク波長の測定方法は、前述の通りである。
 第二実施形態に係る有機EL素子において、前記第二のドーパント材料と前記第一のドーパント材料とは、同一又は異なる化合物である。
 第二実施形態に係る有機EL素子において、第二の発光層は、金属錯体を含有しないことが好ましい。また、本実施形態に係る有機EL素子において、第一の発光層は、ホウ素含有錯体を含有しないことも好ましい。
 第二実施形態に係る有機EL素子において、第二の発光層は、燐光発光性材料(ドーパント材料)を含まないことが好ましい。
 また、第二の発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。
 第二のドーパント材料の発光スペクトルにおいて、発光強度が最大となるピークを最大ピークとし、当該最大ピークの高さを1としたとき、当該発光スペクトルに現れる他のピークの高さは、0.6未満であることが好ましい。なお、発光スペクトルにおけるピークは、極大値とする。
 また、第二の発光性化合物の発光スペクトルにおいて、ピークの数が3つ未満であることが好ましい。
 本実施形態に係る有機EL素子において、第二の発光層は、素子駆動時に最大ピーク波長が500nm以下の光を放射することが好ましい。
(第二のホスト材料)
 第二のホスト材料としては、例えば、1)アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、ベンズアントラセン誘導体、フルオレン誘導体、フルオランテン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、2)カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、若しくはベンゾキサンテン誘導体等の複素環化合物が挙げられる。
 第二のホスト材料は、縮合芳香族化合物であることが好ましく、ピレン誘導体(後述の一般式(100)で表される化合物)であることがより好ましい。
 また、第二のホスト材料は、ベンズアントラセン誘導体(後述の一般式(1X)で表される化合物)又はベンゾキサンテン誘導体(後述の一般式(14X)で表される化合物)であることも好ましい。
 第二のホスト材料がピレン誘導体である場合、第二のホスト材料は、下記一般式(100)で表される化合物であることが好ましい。
(一般式(100)で表される化合物)
Figure JPOXMLDOC01-appb-C000122
(前記一般式(100)において、
 R101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(110)で表される基であり、
 ただし、R101~R110の少なくとも1つは、前記一般式(110)で表される基であり、
 前記一般式(11)で表される基が複数存在する場合、複数の前記一般式(11)で表される基は、互いに同一であるか又は異なり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar101は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mxは、0、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なり、
 Ar101が2以上存在する場合、2以上のAr101は、互いに同一であるか、又は異なり、
 前記一般式(110)中の*は、前記一般式(100)中のピレン環との結合位置を示す。)
(前記一般式(100)中、R901、R902、R903、R904、R905、R906、R907、R801及びR802は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なる。)
 本実施形態に係る有機EL素子において、前記一般式(110)で表される基は、下記一般式(111)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000123
(前記一般式(111)において、
 Xは、CR123124、酸素原子、硫黄原子、又はNR125であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、0、1、2、3又は4であり、
 mbは、0、1、2、3又は4であり、
 ma+mbは、0、1、2、3又は4であり、
 Ar101は、前記一般式(110)におけるAr101と同義であり、
 R121、R122、R123、R124及びR125は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR121は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR122は、互いに同一であるか、又は異なる。)
 前記一般式(111)で表される基における下記一般式(111a)で表される環構造中の炭素原子*1~*8の位置のうち、*1~*4のいずれか1つの位置にL111が結合し、*1~*4の残りの3つの位置にR121が結合し、*5~*8のいずれか1つの位置にL112が結合し、*5~*8の残りの3つの位置にR122が結合する。
Figure JPOXMLDOC01-appb-C000124
 例えば、前記一般式(111)で表される基において、L111が前記一般式(111a)で表される環構造中の*2の炭素原子の位置に結合し、L112が前記一般式(111a)で表される環構造中の*7の炭素原子の位置に結合する場合、前記一般式(111)で表される基は、下記一般式(111b)で表される。
Figure JPOXMLDOC01-appb-C000125
(前記一般式(111b)において、
 X、L111、L112、ma、mb、Ar101、R121、R122、R123、R124及びR125は、それぞれ独立に、前記一般式(111)におけるX、L111、L112、ma、mb、Ar101、R121、R122、R123、R124及びR125と同義であり、
 複数のR121は、互いに同一であるか、又は異なり、
 複数のR122は、互いに同一であるか、又は異なる。)
 本実施形態に係る有機EL素子において、前記一般式(111)で表される基は、前記一般式(111b)で表される基であることが好ましい。
 本実施形態に係る有機EL素子において、
  maは、0、1又は2であり、
  mbは、0、1又は2である、ことが好ましい。
 本実施形態に係る有機EL素子において、
  maは、0又は1であり、
  mbは、0又は1であることが好ましい。
 本実施形態に係る有機EL素子において、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 本実施形態に係る有機EL素子において、
 Ar101は、
  置換もしくは無置換のフェニル基、
  置換もしくは無置換のナフチル基、
  置換もしくは無置換のビフェニル基、
  置換もしくは無置換のターフェニル基、
  置換もしくは無置換のピレニル基、
  置換もしくは無置換のフェナントリル基、又は
  置換もしくは無置換のフルオレニル基であることが好ましい。
 本実施形態に係る有機EL素子において、
 Ar101は、下記一般式(120)、一般式(130)又は一般式(140)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000126
(前記一般式(120)、一般式(130)及び一般式(140)において、
 R111~R120は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R124で表される基、
  -COOR125で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(120)、一般式(130)及び一般式(140)中の*は、前記一般式(110)中のL101との結合位置、又は前記一般式(111)もしくは一般式(111b)中のL112との結合位置を示す。)
 本実施形態に係る有機EL素子において、
 前記第二のホスト材料は、下記一般式(101)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000127
(前記一般式(101)において、
 R101~R120は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 ただし、R101~R110のうち1つがL101との結合位置を示し、R111~R120のうち1つがL101との結合位置を示し、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 mxは、0、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なる。)
 本実施形態に係る有機EL素子において、
 L101は、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 本実施形態に係る有機EL素子において、
 前記第二のホスト材料は、下記一般式(102)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000128
(前記一般式(102)において、
 R101~R120は、それぞれ独立に、前記一般式(101)におけるR101~R120と同義であり、
 ただし、R101~R110のうち1つがL111との結合位置を示し、R111~R120のうち1つがL112との結合位置を示し、
 Xは、CR123124、酸素原子、硫黄原子、又はNR125であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、0、1、2、3又は4であり、
 mbは、0、1、2、3又は4であり、
 ma+mbは、0、1、2、3又は4であり、
 R121、R122、R123、R124及びR125は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR121は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR122は、互いに同一であるか、又は異なる。)
 前記一般式(102)で表される化合物において、
 maは、0、1又は2であり、
 mbは、0、1又は2であることが好ましい。
 前記一般式(102)で表される化合物において、
 maは、0又は1であり、
 mbは、0又は1であることが好ましい。
 本実施形態に係る有機EL素子において、
 R101~R110のうち2つ以上が、前記一般式(110)で表される基であることが好ましい。
 本実施形態に係る有機EL素子において、
 R101~R110のうち2つ以上が、前記一般式(110)で表される基であり、かつ、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 本実施形態に係る有機EL素子において、
 Ar101は、置換もしくは無置換のピレニル基ではなく、
 L101は、置換もしくは無置換のピレニレン基ではなく、
 前記一般式(110)で表される基ではないR101~R110としての置換もしくは無置換の環形成炭素数6~50のアリール基は、置換もしくは無置換のピレニル基ではないことが好ましい。
 本実施形態に係る有機EL素子において、
 前記一般式(110)で表される基ではないR101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 本実施形態に係る有機EL素子において、
 前記一般式(110)で表される基ではないR101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基であることが好ましい。
 本実施形態に係る有機EL素子において、前記一般式(110)で表される基ではないR101~R110は、水素原子であることが好ましい。
 前記一般式(100)で表される化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
 一般式(100)で表される化合物は、公知の方法により製造できる。
(一般式(100)で表される化合物の具体例)
 一般式(100)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、一般式(100)で表される化合物は、下記具体例に限定されない。 
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
 第二のホスト材料がベンズアントラセン誘導体である場合、第二のホスト材料は、下記一般式(1X)で表される化合物であることが好ましい。
(一般式(1X)で表される化合物)
Figure JPOXMLDOC01-appb-C000151
(前記一般式(1X)において、
 R101~R112は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(11X)で表される基であり、
 ただし、R101~R112の少なくとも1つは、前記一般式(11X)で表される基であり、
 前記一般式(11X)で表される基が複数存在する場合、複数の前記一般式(11X)で表される基は、互いに同一であるか又は異なり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar101は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mxは、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なり、
 Ar101が2以上存在する場合、2以上のAr101は、互いに同一であるか、又は異なり、
 前記一般式(11X)中の*は、前記一般式(1X)中のベンズ[a]アントラセン環との結合位置を示す。)
 本実施形態に係る有機EL素子において、前記一般式(11X)で表される基は、下記一般式(111X)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000152
(前記一般式(111X)において、
 Xは、CR143144、酸素原子、硫黄原子、又はNR145であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、1、2、3又は4であり、
 mbは、1、2、3又は4であり、
 ma+mbは、2、3又は4であり、
 Ar101は、前記一般式(11X)におけるAr101と同義であり、
 R141、R142、R143、R144及びR145は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR141は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR142は、互いに同一であるか、又は異なる。)
 前記一般式(111X)で表される基における下記一般式(111aX)で表される環構造中の炭素原子*1~*8の位置のうち、*1~*4のいずれか1つの位置にL111が結合し、*1~*4の残りの3つの位置にR141が結合し、*5~*8のいずれか1つの位置にL112が結合し、*5~*8の残りの3つの位置にR142が結合する。
Figure JPOXMLDOC01-appb-C000153
 例えば、前記一般式(111X)で表される基において、L111が前記一般式(111aX)で表される環構造中の*2の炭素原子の位置に結合し、L112が前記一般式(111aX)で表される環構造中の*7の炭素原子の位置に結合する場合、前記一般式(111X)で表される基は、下記一般式(111bX)で表される。
Figure JPOXMLDOC01-appb-C000154
(前記一般式(111bX)において、
 X、L111、L112、ma、mb、Ar101、R141、R142、R143、R144及びR145は、それぞれ独立に、前記一般式(111X)におけるX、L111、L112、ma、mb、Ar101、R141、R142、R143、R144及びR145と同義であり、
 複数のR141は、互いに同一であるか、又は異なり、
 複数のR142は、互いに同一であるか、又は異なる。)
 本実施形態に係る有機EL素子において、前記一般式(111X)で表される基は、前記一般式(111bX)で表される基であることが好ましい。
 前記一般式(1X)で表される化合物において、maは、1又は2であり、mbは、1又は2であることが好ましい。
 前記一般式(1X)で表される化合物において、maは、1であり、mbは、1であることが好ましい。
 前記一般式(1X)で表される化合物において、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(1X)で表される化合物において、Ar101は、
  置換もしくは無置換のフェニル基、
  置換もしくは無置換のナフチル基、
  置換もしくは無置換のビフェニル基、
  置換もしくは無置換のターフェニル基、
  置換もしくは無置換のベンズ[a]アントリル基、
  置換もしくは無置換のピレニル基、
  置換もしくは無置換のフェナントリル基、又は
  置換もしくは無置換のフルオレニル基であることが好ましい。
 前記一般式(1X)で表される化合物は、下記一般式(101X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000155
(前記一般式(101X)において、
 R111及びR112のうち1つがL101との結合位置を示し、R133及びR134のうち1つがL101との結合位置を示し、
 R101~R110、R121~R130、L101との結合位置ではないR111又はR112、並びにL101との結合位置ではないR133又はR134は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 mxは、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なる。)
 前記一般式(1X)で表される化合物において、L101は、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 前記一般式(1X)で表される化合物は、下記一般式(102X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000156
(前記一般式(102X)において、
 R111及びR112のうち1つがL111との結合位置を示し、R133及びR134のうち1つがL112との結合位置を示し、
 R101~R110、R121~R130、L111との結合位置ではないR111又はR112並びにL112との結合位置ではないR133又はR134は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 Xは、CR143144、酸素原子、硫黄原子、又はNR145であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、1、2、3又は4であり、
 mbは、1、2、3又は4であり、
 ma+mbは、2、3、4又は5であり、
 R141、R142、R143、R144及びR145は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR141は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR142は、互いに同一であるか、又は異なる。)
 前記一般式(1X)で表される化合物において、前記一般式(102X)中のmaは、1又は2であり、mbは、1又は2であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(102X)中のmaは、1であり、mbは、1であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基は、下記一般式(11AX)で表される基、又は下記一般式(11BX)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000157
(前記一般式(11AX)及び前記一般式(11BX)において、
 R121~R131は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(11AX)で表される基が複数存在する場合、複数の前記一般式(11AX)で表される基は、互いに同一であるか又は異なり、
 前記一般式(11BX)で表される基が複数存在する場合、複数の前記一般式(11BX)で表される基は、互いに同一であるか又は異なり、
 L131及びL132は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 前記一般式(11AX)及び前記一般式(11BX)中の*は、それぞれ、前記一般式(1X)中のベンズ[a]アントラセン環との結合位置を示す。)
 前記一般式(1X)で表される化合物は、下記一般式(103X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000158
(前記一般式(103X)において、
 R101~R110並びにR112は、それぞれ、前記一般式(1X)におけるR101~R110並びにR112と同義であり、
 R121~R131、L131及びL132は、それぞれ、前記一般式(11BX)におけるR121~R131、L131及びL132と同義である。)
 前記一般式(1X)で表される化合物において、L131は、置換もしくは無置換の環形成炭素数6~50のアリーレン基であることも好ましい。
 前記一般式(1X)で表される化合物において、L132は、置換もしくは無置換の環形成炭素数6~50のアリーレン基であることも好ましい。
 前記一般式(1X)で表される化合物において、R101~R112のうち2つ以上が、前記一般式(11X)で表される基であることも好ましい。
 本前記一般式(1X)で表される化合物において、R101~R112のうち2つ以上が、前記一般式(11X)で表される基であり、一般式(11X)中のAr101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(1X)で表される化合物において、
 Ar101は、置換もしくは無置換のベンズ[a]アントリル基ではなく、
 L101は、置換もしくは無置換のベンズ[a]アントリレン基ではなく、
 前記一般式(11X)で表される基ではないR101~R110としての置換もしくは無置換の環形成炭素数6~50のアリール基は、置換もしくは無置換のベンズ[a]アントリル基ではないことも好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数3~50のシクロアルキル基であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、水素原子であることが好ましい。
 一般式(1X)で表される化合物は、公知の方法により製造できる。
(一般式(1X)で表される化合物の具体例)
 一般式(1X)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、一般式(1X)で表される化合物は、下記具体例に限定されない。
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160

 
Figure JPOXMLDOC01-appb-C000161

 
Figure JPOXMLDOC01-appb-C000162
 第二のホスト材料がベンゾキサンテン誘導体である場合、第二のホスト材料は、下記一般式(14X)で表される化合物であることが好ましい。
(一般式(14X)で表される化合物)
Figure JPOXMLDOC01-appb-C000163
(前記一般式(14X)において、
 R1401~R1410は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(141)で表される基であり、
 ただし、R1401~R1410の少なくとも1つは、前記一般式(141)で表される基であり、
 前記一般式(141)で表される基が複数存在する場合、複数の前記一般式(141)で表される基は、互いに同一であるか又は異なり、
 L1401は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1401は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx4は、0、1、2、3、4又は5であり、
 L1401が2以上存在する場合、2以上のL1401は、互いに同一であるか、又は異なり、
 Ar1401が2以上存在する場合、2以上のAr1401は、互いに同一であるか、又は異なり、
 前記一般式(141)中の*は、前記一般式(14X)で表される環との結合位置を示す。)
 一般式(14X)で表される化合物は、公知の方法により製造できる。
(一般式(14X)で表される化合物の具体例)
 一般式(14X)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、一般式(14X)で表される化合物は、下記具体例に限定されない。
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
(第二のドーパント材料)
 第二のドーパント材料としては、例えば、前記一般式(1)で表される第一の化合物、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体、芳香族アミン誘導体、及びテトラセン誘導体等が挙げられる。
 第二のドーパント材料は、前記一般式(1)で表される第一の化合物、下記一般式(5)で表される化合物、又は下記一般式(6)で表される化合物が好ましい。
(一般式(5)で表される化合物)
Figure JPOXMLDOC01-appb-C000166
(前記一般式(5)において、
 R501~R507及びR511~R517のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないR501~R507及びR511~R517は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 R521及びR522は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 「R501~R507及びR511~R517のうちの隣接する2つ以上からなる組の1組」は、例えば、R501とR502からなる組、R502とR503からなる組、R503とR504からなる組、R505とR506からなる組、R506とR507からなる組、R501とR502とR503からなる組等の組合せである。
 一実施形態において、R501~R507及びR511~R517の少なくとも1つ、好ましくは2つが-N(R906)(R907)で表される基である。
 一実施形態においては、R501~R507及びR511~R517は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態においては、前記一般式(5)で表される化合物は、下記一般式(52)で表される化合物である。
Figure JPOXMLDOC01-appb-C000167
(前記一般式(52)において、
 R531~R534及びR541~R544のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないR531~R534、R541~R544、並びにR551及びR552は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R561~R564は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 一実施形態においては、前記一般式(5)で表される化合物は、下記一般式(53)で表される化合物である。
Figure JPOXMLDOC01-appb-C000168
(前記一般式(53)において、R551、R552及びR561~R564は、それぞれ独立に、前記一般式(52)におけるR551、R552及びR561~R564と同義である。)
 一実施形態においては、前記一般式(52)及び一般式(53)におけるR561~R564は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基(好ましくはフェニル基)である。
 一実施形態においては、前記一般式(5)におけるR521及びR522、前記一般式(52)及び一般式(53)におけるR551及びR552は、水素原子である。
 一実施形態においては、前記一般式(5)、一般式(52)及び一般式(53)における、「置換もしくは無置換の」という場合における置換基は、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一般式(5)で表される化合物は、公知の方法により製造できる。
(一般式(5)で表される化合物の具体例)
 一般式(5)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、一般式(5)で表される化合物は、下記具体例に限定されない。
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
(一般式(6)で表される化合物)
Figure JPOXMLDOC01-appb-C000184
(前記一般式(6)において、
 a環、b環及びc環は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は
  置換もしくは無置換の環形成原子数5~50の複素環であり、
 R601及びR602は、それぞれ独立に、前記a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 前記置換もしくは無置換の複素環を形成しないR601及びR602は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 a環、b環及びc環は、ホウ素原子及び2つの窒素原子から構成される前記一般式(6)中央の縮合2環構造に縮合する環(置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環)である。
 a環、b環及びc環の「芳香族炭化水素環」は、上述した「アリール基」に水素原子を導入した化合物と同じ構造である。
 a環の「芳香族炭化水素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子3つを環形成原子として含む。
 b環及びc環の「芳香族炭化水素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子2つを環形成原子として含む。
 「置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環」の具体例としては、具体例群G1に記載の「アリール基」に水素原子を導入した化合物等が挙げられる。
 a環、b環及びc環の「複素環」は、上述した「複素環基」に水素原子を導入した化合物と同じ構造である。
 a環の「複素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子3つを環形成原子として含む。b環及びc環の「複素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子2つを環形成原子として含む。「置換もしくは無置換の環形成原子数5~50の複素環」の具体例としては、具体例群G2に記載の「複素環基」に水素原子を導入した化合物等が挙げられる。
 R601及びR602は、それぞれ独立に、a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成してもよい。この場合における複素環は、前記一般式(6)中央の縮合2環構造上の窒素原子を含む。この場合における複素環は、窒素原子以外のヘテロ原子を含んでいてもよい。R601及びR602がa環、b環又はc環と結合するとは、具体的には、a環、b環又はc環を構成する原子とR601及びR602を構成する原子が結合することを意味する。例えば、R601がa環と結合して、R601を含む環とa環が縮合した2環縮合(又は3環縮合以上)の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む2環縮合以上の複素環基に対応する化合物等が挙げられる。
 R601がb環と結合する場合、R602がa環と結合する場合、及びR602がc環と結合する場合も上記と同じである。
 一実施形態において、前記一般式(6)におけるa環、b環及びc環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環である。
 一実施形態において、前記一般式(6)におけるa環、b環及びc環は、それぞれ独立に、置換もしくは無置換のベンゼン環又はナフタレン環である。
 一実施形態において、前記一般式(6)におけるR601及びR602は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 好ましくは置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、前記一般式(6)で表される化合物は下記一般式(62)で表される化合物である。
Figure JPOXMLDOC01-appb-C000185
(前記一般式(62)において、
 R601Aは、R611及びR621からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 R602Aは、R613及びR614からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 前記置換もしくは無置換の複素環を形成しないR601A及びR602Aは、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R611~R621のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の複素環を形成せず、前記単環を形成せず、かつ前記縮合環を形成しないR611~R621は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 前記一般式(62)のR601A及びR602Aは、それぞれ、前記一般式(6)のR601及びR602に対応する基である。
 例えば、R601AとR611が結合して、これらを含む環とa環に対応するベンゼン環が縮合した2環縮合(又は3環縮合以上)の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む2環縮合以上の複素環基に対応する化合物等が挙げられる。R601AとR621が結合する場合、R602AとR613が結合する場合、及びR602AとR614が結合する場合も上記と同じである。
 R611~R621のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成してもよい。
 例えば、R611とR612が結合して、これらが結合する6員環に対して、ベンゼン環、インドール環、ピロール環、ベンゾフラン環又はベンゾチオフェン環等が縮合した構造を形成してもよく、形成された縮合環は、ナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環又はジベンゾチオフェン環となる。
 一実施形態において、環形成に寄与しないR611~R621は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態において、環形成に寄与しないR611~R621は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態において、環形成に寄与しないR611~R621は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、環形成に寄与しないR611~R621は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の炭素数1~50のアルキル基であり、
 R611~R621のうち少なくとも1つは、置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、前記一般式(62)で表される化合物は、下記一般式(63)で表される化合物である。
Figure JPOXMLDOC01-appb-C000186
(前記一般式(63)において、
 R631は、R646と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 R633は、R647と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 R634は、R651と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 R641は、R642と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 R631~R651のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の複素環を形成せず、前記単環を形成せず、かつ前記縮合環を形成しないR631~R651は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 R631は、R646と結合して、置換もしくは無置換の複素環を形成してもよい。例えば、R631とR646が結合して、R646が結合するベンゼン環と、Nを含む環と、a環に対応するベンゼン環とが縮合した3環縮合以上の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む3環縮合以上の複素環基に対応する化合物等が挙げられる。R633とR647が結合する場合、R634とR651が結合する場合、及びR641とR642が結合する場合も上記と同じである。
 一実施形態において、環形成に寄与しないR631~R651は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態において、環形成に寄与しないR631~R651は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態において、環形成に寄与しないR631~R651は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、環形成に寄与しないR631~R651は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の炭素数1~50のアルキル基であり、
 R631~R651のうち少なくとも1つは置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、前記一般式(63)で表される化合物は、下記一般式(63A)で表される化合物である。
Figure JPOXMLDOC01-appb-C000187
(前記一般式(63A)において、
 R661は、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 R662~R665は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基である。)
 一実施形態において、R661~R665は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、R661~R665は、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、前記一般式(63)で表される化合物は、下記一般式(63B)で表される化合物である。
Figure JPOXMLDOC01-appb-C000188
(前記一般式(63B)において、
 R671及びR672は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -N(R906)(R907)で表される基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 R673~R675は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -N(R906)(R907)で表される基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基である。)
 一実施形態において、前記一般式(63)で表される化合物は、下記一般式(63B’)で表される化合物である。
Figure JPOXMLDOC01-appb-C000189
(前記一般式(63B’)において、R672~R675は、それぞれ独立に、前記一般式(63B)におけるR672~R675と同義である。)
 一実施形態において、R671~R675のうち少なくとも1つは、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -N(R906)(R907)で表される基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、
 R672は、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  -N(R906)(R907)で表される基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 R671及びR673~R675は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  -N(R906)(R907)で表される基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、前記一般式(63)で表される化合物は、下記一般式(63C)で表される化合物である。
Figure JPOXMLDOC01-appb-C000190
(前記一般式(63C)において、
 R681及びR682は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基である。
 R683~R686は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基である。)
 一実施形態において、前記一般式(63)で表される化合物は、下記一般式(63C’)で表される化合物である。
Figure JPOXMLDOC01-appb-C000191
(前記一般式(63C’)において、R683~R686は、それぞれ独立に、前記一般式(63C)におけるR683~R686と同義である。)
 一実施形態において、R681~R686は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、R681~R686は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 前記一般式(6)で表される化合物は、まずa環、b環及びc環を連結基(N-R601を含む基及びN-R602を含む基)で結合させることで中間体を製造し(第1反応)、a環、b環及びc環を連結基(ホウ素原子を含む基)で結合させることで最終生成物を製造することができる(第2反応)。第1反応ではバッハブルト-ハートウィッグ反応等のアミノ化反応を適用できる。第2反応では、タンデムヘテロフリーデルクラフツ反応等を適用できる。
 一般式(6)で表される化合物は、公知の方法により製造できる。
(一般式(6)で表される化合物の具体例)
 一般式(6)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、一般式(6)で表される化合物は、下記具体例に限定されない。
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
 第二実施形態に係る有機EL素子において、第二のホスト材料の一重項エネルギーS(H2)と、第二のドーパント材料の一重項エネルギーS(D2)とが下記数式(数20)の関係を満たすことが好ましい。
   S(H2)>S(D2)   …(数20)
 第二のホスト材料と第二のドーパント材料とが、数式(数20)の関係を満たすことにより、第二のホスト材料上で生成された一重項励起子は、第二のホスト材料から第二のドーパント材料へエネルギー移動し易くなり、第二のドーパント材料の発光(好ましくは蛍光性発光)に寄与する。
 第二実施形態に係る有機EL素子において、第二のホスト材料の三重項エネルギーT(H2)と、第二のドーパント材料の三重項エネルギーT(D2)とが下記数式(数20A)の関係を満たすことが好ましい。
   T(D2)>T(H2)   …(数20A)
 第二のホスト材料と第二のドーパント材料とが、数式(数20A)の関係を満たす事により、第二の発光層内で生成した三重項励起子は、より高い三重項エネルギーを有する第二のドーパント材料ではなく、第二のホスト材料上を移動するため、第一の発光層へ移動し易くなる。
 第二実施形態に係る有機EL素子において、第二の発光層は、第二のドーパント材料を、第二の発光層の全質量の0.5質量%以上、含有することが好ましく、第二の発光層の全質量の1.1質量%超、含有することがより好ましく、第二の発光層の全質量の1.2質量%以上、含有することがさらに好ましく、第二の発光層の全質量の1.5質量%以上、含有することがさらに好ましい。
 第二の発光層は、第二のドーパント材料を、第二の発光層の全質量の10質量%以下、含有することが好ましく、第二の発光層の全質量の7質量%以下、含有することがより好ましく、第二の発光層の全質量の5質量%以下、含有することがさらに好ましい。
 第二実施形態に係る有機EL素子において、第二の発光層は、第二のホスト材料を、第二の発光層の全質量の60質量%以上、含有することが好ましく、第二の発光層の全質量の70質量%以上、含有することがより好ましく、第二の発光層の全質量の80質量%以上、含有することがさらに好ましく、第二の発光層の全質量の90質量%以上、含有することがよりさらに好ましく、第二の発光層の全質量の95質量%以上、含有することがさらになお好ましい。
 第二の発光層は、第二のホスト材料を、第二の発光層の全質量の99質量%以下、含有することが好ましい。
 ただし、第二の発光層が第二のホスト材料と第二のドーパント材料とを含有する場合、第二のホスト材料及び第二のドーパント材料の合計含有率の上限は、100質量%である。
 なお、第二実施形態は、第一の発光層に、第二のホスト材料と第二のドーパント材料以外の材料が含まれることを除外しない。
 第二の発光層は、第二のホスト材料を1種のみ含んでもよいし、2種以上含んでもよい。第二の発光層は、第二のドーパント材料を1種のみ含んでもよいし、2種以上含んでもよい。
 第二実施形態に係る有機EL素子において、第二の発光層の膜厚は、3nm以上であることが好ましく、5nm以上であることがより好ましい。第二の発光層の膜厚が3nm以上であれば、第二の発光層において、正孔と電子との再結合を起こすのに充分な膜厚である。
 第二実施形態に係る有機EL素子において、第二の発光層の膜厚は、15nm以下であることが好ましく、10nm以下であることがより好ましい。第二の発光層の膜厚が15nm以下であれば、第一の発光層へ三重項励起子が移動するのに充分に薄い膜厚である。
 第二実施形態に係る有機EL素子において、第二の発光層の膜厚は、3nm以上、15nm以下であることがより好ましい。
(有機EL素子のその他の層)
 第二実施形態に係る有機EL素子は、第一の発光層及び第二の発光層以外に、1以上の有機層を有していてもよい。有機層としては、例えば、正孔注入層、正孔輸送層、発光層、電子注入層、電子輸送層、正孔障壁層及び電子障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
 第二実施形態に係る有機EL素子は、例えば、陽極と、第二の発光層と、第一の発光層と、陰極とをこの順に有していることもできるが、第二の発光層と第一の発光層の順序を逆にし、陽極と、第一の発光層と、第二の発光層と、陰極とをこの順に有することもできる。第一の発光層と第二の発光層の順序がいずれの場合も、前記数式(数1)の関係を満たすホスト材料の組合せを選択し、かつ第一の発光層が第一実施形態に係る第一の化合物(前記一般式(1)で表される化合物)を含有することにより、前述の発光層を積層構成とすることによる効果(素子を長寿命化させる効果及び発光効率を向上させる効果)が期待される。
 第二実施形態に係る有機EL素子において、第一の発光層及び第二の発光層だけで構成されていてもよいが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔障壁層、及び電子障壁層等からなる群から選択される少なくともいずれかの層をさらに有していてもよい。
 第二実施形態に係る有機EL素子は、前記陽極と前記陰極との間に前記第一の発光層を含み、前記第一の発光層と前記陽極との間に前記第二の発光層を含むことが好ましい。
 本実施形態に係る有機EL素子は、前記陽極と前記陰極との間に前記第一の発光層を含み、前記第一の発光層と前記陰極との間に前記第二の発光層を含むことも好ましい。
 第二実施形態に係る有機EL素子において、前記発光層と前記陽極との間に正孔輸送層を含むことが好ましい。
 第二実施形態に係る有機EL素子において、前記発光層と前記陰極との間に電子輸送層を含むことが好ましい。
 図2に、第二実施形態に係る有機EL素子の一例の概略構成を示す。
 有機EL素子1Aは、基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10Aと、を含む。有機層10Aは、陽極3側から順に、正孔注入層6、正孔輸送層7、第二の発光層52、第一の発光層51、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。
 図3に、第二実施形態に係る有機EL素子の別の一例の概略構成を示す。
 有機EL素子1Bは、基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10Bと、を含む。有機層10Bは、陽極3側から順に、正孔注入層6、正孔輸送層7、第一の発光層51、第二の発光層52、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。
 本発明は、図2、図3に示す有機EL素子の構成に限定されない。
(第三の発光層)
 第二実施形態に係る有機EL素子は、第三の発光層をさらに含んでいてもよい。
 第三の発光層は、第三のホスト材料を含み、第一のホスト材料と第二のホスト材料と第三のホスト材料とは、互いに異なり、第三の発光層は、第三のドーパント材料を少なくとも含み、第一のドーパント材料と、第二のドーパント材料と、第三のドーパント材料とが、互いに同一であるか、又は異なり、第二のホスト材料の三重項エネルギーT(H2)と第三のホスト材料の三重項エネルギーT(H3)とが、下記数式(数5)の関係を満たすことが好ましい。
  T(H2)>T(H3) …(数5)
 第三のドーパント材料は、最大ピーク波長が500nm以下の発光を示す化合物であることが好ましく、最大ピーク波長が500nm以下の蛍光発光を示す化合物であることがより好ましい。
 第二実施形態に係る有機EL素子が第三の発光層を含んでいる場合、第一のホスト材料の三重項エネルギーT(H1)と第三のホスト材料の三重項エネルギーT(H3)とが、下記数式(数6)の関係を満たすことが好ましい。
  T(H1)>T(H3) …(数6)
 第三のホスト材料としては特に限定されないが、例えば、前記実施形態において第一のホスト材料及び第二のホスト材料として例示したホスト材料を用いることができる。
 第三のドーパント材料としては特に限定されないが、例えば、前記実施形態において第一のドーパント材料及び第二のドーパント材料として例示したドーパント材料を用いることができる。
 第二実施形態に係る有機EL素子において、第一の発光層と第二の発光層とが、直接、接していることが好ましい。
 本明細書において、「第一の発光層と第二の発光層とが、直接、接している」層構造は、例えば、以下の態様(LS1)、(LS2)及び(LS3)のいずれかの態様も含み得る。
 (LS1)第一の発光層に係る化合物の蒸着の工程と第二の発光層に係る化合物の蒸着の工程を経る過程で第一のホスト材料及び第二のホスト材料の両方が混在する領域が生じ、当該領域が第一の発光層と第二の発光層との界面に存在する態様。
 (LS2)第一の発光層及び第二の発光層が発光性の化合物(ドーパント材料)を含む場合に、第一の発光層に係る化合物の蒸着の工程と第二の発光層に係る化合物の蒸着の工程を経る過程で第一のホスト材料、第二のホスト材料及び発光性の化合物が混在する領域が生じ、当該領域が第一の発光層と第二の発光層との界面に存在する態様。
 (LS3)第一の発光層及び第二の発光層が発光性の化合物を含む場合に、第一の発光層に係る化合物の蒸着の工程と第二の発光層に係る化合物の蒸着の工程を経る過程で当該発光性の化合物からなる領域、第一のホスト材料からなる領域、又は第二のホスト材料からなる領域が生じ、当該領域が第一の発光層と第二の発光層との界面に存在する態様。
 第二実施形態に係る有機EL素子が第三の発光層を含んでいる場合、第一の発光層と第二の発光層とが、直接、接しており、第一の発光層と第三の発光層とが、直接、接していることが好ましい。
 本明細書において、「第一の発光層と第三の発光層とが、直接、接している」層構造は、例えば、以下の態様(LS4)、(LS5)及び(LS6)のいずれかの態様も含み得る。
 (LS4)第一の発光層に係る化合物の蒸着の工程と第三の発光層に係る化合物の蒸着の工程を経る過程で第一のホスト材料及び第三のホスト材料の両方が混在する領域が生じ、当該領域が第一の発光層と第三の発光層との界面に存在する態様。
 (LS5)第一の発光層及び第三の発光層が発光性の化合物(ドーパント材料)を含む場合に、第一の発光層に係る化合物の蒸着の工程と第三の発光層に係る化合物の蒸着の工程を経る過程で第一のホスト材料、第三のホスト材料及び発光性の化合物が混在する領域が生じ、当該領域が第一の発光層と第三の発光層との界面に存在する態様。
 (LS6)第一の発光層及び第三の発光層が発光性の化合物を含む場合に、第一の発光層に係る化合物の蒸着の工程と第三の発光層に係る化合物の蒸着の工程を経る過程で当該発光性の化合物からなる領域、第一のホスト材料からなる領域、又は第三のホスト材料からなる領域が生じ、当該領域が第一の発光層と第三の発光層との界面に存在する態様。
 第二実施形態に係る有機EL素子が中間層を有する場合、中間層は、第一の発光層と第二の発光層との間に配置されていることが好ましい。
 中間層は、ノンドープ層であることが好ましい。中間層は、発光性化合物(ドーパント材料)を含有しない層であることが好ましい。中間層は、金属原子を含まないことが好ましい。
 中間層は、中間層材料を含む。中間層材料は、発光性化合物ではないことが好ましい。
 中間層材料としては、特に限定されないが、発光性化合物以外の材料であることが好ましい。
 中間層材料としては、例えば、1)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、2)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、3)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物が挙げられる。
 中間層材料は、第一の発光層が含有する第一のホスト材料及び第二の発光層が含有する第二のホスト材料の一方、又は両方のホスト材料であってもよい。
 中間層が複数の中間層材料を含有する場合、それぞれの中間層材料の含有率は、いずれも、中間層の全質量の10質量%以上であることが好ましい。
 中間層は、前記中間層材料を、中間層の全質量の60質量%以上、含有することが好ましく、中間層の全質量の70質量%以上、含有することがより好ましく、中間層の全質量の80質量%以上、含有することがさらに好ましく、中間層の全質量の90質量%以上、含有することがよりさらに好ましく、中間層の全質量の95質量%以上、含有することがさらになお好ましい。
 中間層は、中間層材料を1種のみ含んでもよいし、2種以上含んでもよい。
 中間層が中間層材料を2種以上含有する場合、2種以上の中間層材料の合計含有率の上限は、100質量%である。
 なお、第二実施形態は、中間層に、中間層材料以外の材料が含まれることを除外しない。
 中間層は単層で構成されていてもよいし、二層以上積層されて構成されていてもよい。
 中間層の膜厚は、特に制限は無いが、1層あたり、3nm以上15nm以下であることが好ましく、5nm以上10nm以下であることがより好ましい。
 有機EL素子の構成についてさらに説明する。第一実施形態及び第二実施形態に共通する構成である。以下、符号の記載は省略することがある。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(電子輸送層)
 前記実施形態に係る有機EL素子において、発光層と陰極との間に電子輸送層を含むことが好ましい。
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。前記実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層で構成されていてもよいし、上記物質からなる層が二層以上積層されて構成されていてもよい。
 また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(層形成方法)
 前記実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(膜厚)
 前記実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した場合を除いて限定されない。一般に、膜厚が薄すぎるとピンホール等の欠陥が生じやすく、膜厚が厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常、有機EL素子の各有機層の膜厚は、数nmから1μmの範囲が好ましい。
〔第三実施形態〕
(電子機器)
 本実施形態に係る電子機器は、上述の実施形態のいずれかの有機EL素子を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。
〔実施形態の変更〕
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良などは、本発明に含まれる。
 例えば、発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの有機層が上記実施形態で説明した条件を満たしていればよく、少なくとも1つの発光層が、第一実施形態の化合物を含んでいることが好ましい。複数の発光層のうち1つの発光層が、第一実施形態の化合物を含んでいる場合、例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
 また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
 また、例えば、発光層の陽極側、及び陰極側の少なくとも一方に障壁層を隣接させて設けてもよい。障壁層は、発光層に接して配置され、正孔、電子、及び励起子の少なくともいずれかを阻止することが好ましい。
 例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むことが好ましい。
 また、発光層の陽極側で接して障壁層が配置された場合、当該障壁層は、正孔を輸送し、かつ電子が当該障壁層よりも陽極側の層(例えば、正孔輸送層)に到達することを阻止する。有機EL素子が、正孔輸送層を含む場合は、発光層と正孔輸送層との間に当該障壁層を含むことが好ましい。
 また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。発光層で生成した励起子が、当該障壁層よりも電極側の層(例えば、電子輸送層及び正孔輸送層等)に移動することを阻止する。
 発光層と障壁層とは接合していることが好ましい。
 その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
<化合物>
 実施例に係る有機EL素子の製造に用いた第一の化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
 比較例に係る有機EL素子の製造に用いた化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000206
 実施例及び比較例に係る有機EL素子の製造に用いた他の化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
<有機EL素子の作製1>
 有機EL素子を以下のように作製し、評価した。
〔実施例1〕
 厚さ130nmのパターン化されたITO透明電極を備えたガラス基板(サイズ:25mm×25mm×0.7mm、ジオマテック株式会社製)を窒素プラズマで100秒間洗浄した。
 その後、ITO透明電極を備えたガラス基板を真空蒸発装置のホルダーに取り付けた。
 まず、ガラス基板のパターン化されたITO透明電極の表面に化合物HT1及び化合物HA1を共蒸着し、膜厚10nmの正孔注入層(HI)を形成した。この正孔注入層中の化合物HT1の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 正孔注入層の成膜に続けて化合物HT1を蒸着し、膜厚80nmの第一の正孔輸送層(HT)を成膜した。
 第一の正孔輸送層の成膜に続けて化合物HT2を蒸着し、膜厚10nmの第二の正孔輸送層(電子障壁層ともいう)(EBL)を成膜した。
 第二の正孔輸送層上に化合物BH3(第一のホスト材料(BH))及び化合物BD1(第一のドーパント材料(BD))を、化合物BD1の割合が1質量%となるように共蒸着し、膜厚25nmの発光層を成膜した。
 発光層上に化合物ET1を蒸着し、膜厚10nmの第1の電子輸送層(正孔障壁層ともいう)(HBL)を形成した。
 第1の電子輸送層(HBL)上に化合物ET2を蒸着し、膜厚15nmの第2の電子輸送層(ET)を形成した。
 第2の電子輸送層上にフッ化リチウム(LiF)を蒸着して膜厚1nmの電子注入層を形成した。
 電子注入層上に金属Alを蒸着して膜厚80nmの陰極を形成した。
 実施例1の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT1:HA1(10:97%,3%)/HT1(80)/HT2(10)/BH3:BD1(25:99%,1%)/ET1(10)/ET2(15)/LiF(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。パーセント表示された数字(97%:3%)は、正孔注入層における化合物HT1及び化合物HA1の割合(質量%)を示し、パーセント表示された数字(99%:1%)は、発光層におけるホスト材料(化合物BH3)及びドーパント材料(化合物BD1)の割合(質量%)を示す。
〔比較例1~2〕 
 比較例1~2の有機EL素子は、実施例1の発光層を表1に記載の化合物に変更したこと以外、実施例1と同様にして作製した。
<有機EL素子の評価1>
 実施例1及び比較例1~2で作製した有機EL素子について、以下の評価を行った。評価結果を表1に示す。
・寿命LT95
 作製した有機EL素子に、電流密度が50mA/cmとなるように電圧を印加し、初期輝度に対して輝度が95%となるまでの時間(LT95(単位:時間))を測定した。輝度は、分光放射輝度計CS-2000(コニカミノルタ株式会社製)を用いて測定した。
・素子駆動時の素子から放射される光の最大ピーク波長λp
 有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、最大ピーク波長λp(単位:nm)を算出した。
Figure JPOXMLDOC01-appb-T000211
 前記数式(数A)(Af(D1)―Af(H1)≧0.4eV)を満たす実施例1の有機EL素子は、前記数式(数A)を満たさない比較例1~2の有機EL素子に比べ、寿命が長くなった。
<有機EL素子の作製2>
〔実施例2〕
 厚さ130nmのパターン化されたITO透明電極を備えたガラス基板(サイズ:25mm×25mm×0.7mm、ジオマテック株式会社製)を窒素プラズマで100秒間洗浄した。
 その後、ITO透明電極を備えたガラス基板を真空蒸発装置のホルダーに取り付けた。
 まず、ガラス基板のパターン化されたITO透明電極の表面に化合物HT1及び化合物HA1を共蒸着し、膜厚10nmの正孔注入層(HI)を形成した。この正孔注入層中の化合物HT1の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 正孔注入層の成膜に続けて化合物HT1を蒸着し、膜厚80nmの第一の正孔輸送層(HT)を成膜した。
 第一の正孔輸送層の成膜に続けて化合物HT2を蒸着し、膜厚10nmの第二の正孔輸送層(電子障壁層ともいう)(EBL)を成膜した。
 第二の正孔輸送層上に化合物BH2(第一のホスト材料(BH))及び化合物BD1(第一のドーパント材料(BD))を、化合物BD1の割合が2質量%となるように共蒸着し、膜厚25nmの発光層を成膜した。
 発光層上に化合物ET3を蒸着し、膜厚10nmの第1の電子輸送層(正孔障壁層ともいう)(HBL)を形成した。
 第1の電子輸送層(HBL)上に化合物ET2を蒸着し、膜厚15nmの第2の電子輸送層(ET)を形成した。
 第2の電子輸送層上にフッ化リチウム(LiF)を蒸着して膜厚1nmの電子注入層を形成した。
 電子注入層上に金属Alを蒸着して膜厚80nmの陰極を形成した。
 実施例2の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT1:HA1(10:97%,3%)/HT1(80)/HT2(10)/BH2:BD1(25:98%,2%)/ET3(10)/ET2(15)/LiF(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。パーセント表示された数字(97%:3%)は、正孔注入層における化合物HT1及び化合物HA1の割合(質量%)を示し、パーセント表示された数字(98%:2%)は、発光層におけるホスト材料(化合物BH2)及びドーパント材料(化合物BD1)の割合(質量%)を示す。
〔比較例3〕 
 比較例3の有機EL素子は、実施例2の発光層を表2に記載の化合物に変更したこと以外、実施例2と同様にして作製した。
〔実施例3~5〕 
 実施例3~5の有機EL素子は、実施例2の発光層を表3に記載の化合物に変更したこと以外、実施例2と同様にして作製した。
〔実施例6~7〕 
 実施例6~7の有機EL素子は、実施例2の発光層を表2に記載の化合物に変更したこと以外、実施例2と同様にして作製した。
<有機EL素子の評価2>
 実施例2~7及び比較例3で作製した有機EL素子について、以下の評価を行った。評価結果を表2、3に示す。
・外部量子効率EQE
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し外部量子効率EQE(単位:%)を算出した。
・寿命LT95
 実施例1と同様の方法でLT95(単位:時間))を測定した。
・素子駆動時の素子から放射される光の最大ピーク波長λp
 実施例1と同様の方法で最大ピーク波長λp(単位:nm)を測定した。
Figure JPOXMLDOC01-appb-T000212
 前記数式(数A)(Af(D1)―Af(H1)≧0.4eV)を満たす実施例2及び実施例6~7の有機EL素子は、前記数式(数A)を満たさない比較例3の有機EL素子に比べ、寿命が長くなった。
Figure JPOXMLDOC01-appb-T000213
 前記数式(数A)(Af(D1)―Af(H1)≧0.4eV)を満たす実施例3~5において、第一のホスト材料として3置換アントラセン誘導体を用いた実施例3~4の有機EL素子は、第一のホスト材料として2置換アントラセン誘導体を用いた実施例5の有機EL素子に比べ、寿命が長くなり、かつEQEが向上した。
<化合物の評価方法>
(三重項エネルギーT
 測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))、または2-MeTHF(2-メチルテトラヒドロフラン)中に、濃度が10~15μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とした。なお、化合物がBH1、BH2及びBH3の時は、EPA中に溶解させ、化合物がBD1、Ref-1及びRef-2の時は2-MeTHF中に溶解させた。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を三重項エネルギーTとした。なお、三重項エネルギーTは、測定条件によっては上下0.02eV程度の誤差が生じ得る。
  換算式(F1):T[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いた。
(一重項エネルギーS
 測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定した。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出した。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、日立社製の分光光度計(装置名:U3310)を用いた。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
(化合物のアフィニティAf)
 化合物のアフィニティAfは、Djulovich,Mayo,Forrest,Thompson,Organic Electronics,10(2009)p.515-520に記載される手順に準じて、ジメチルホルムアミド(DMF)溶媒中で測定した化合物の第一還元電位(Ere[V])と、内部標準として同様に測定したフェロセンの第一酸化電位(Efc[V])とから、下記数式(数C)により算出した。
 Af[eV]=-(-1.19×(Ere-Efc)-4.78) … (数C)
 具体的には、各化合物の酸化還元電位を、以下に示す手順でDPV測定により測定した。DPV測定には、電気化学アナライザー(エー・エル・エス社製、型番:ALS 852D)を用いた。DPV測定における溶液は以下のように調製した。
 ジメチルホルムアミド(DMF)を溶媒とし、この溶媒に支持電解質としてテトラブチルアンモニウムヘキサフルオロリン酸を100mmol/Lの濃度となるように溶解し、さらに測定対象の化合物を1.0mmol/Lの濃度で溶解し、さらに内部標準としてフェロセンを1.0mmol/Lの濃度で溶解して、DPV測定用の溶液を調製した。
 DPV測定において、補助電極には白金電極を、作用電極にはグラッシーカーボン電極を、参照電極には銀/塩化銀電極をそれぞれ用いた。DPV測定の測定条件は、ステップ毎の電圧増加0.01V、パルス電圧0.025V、パルス幅0.05秒、パルス時間0.2秒、電位測定時間0.02秒とした。
 上記測定条件で測定した、測定対象の化合物の第一還元電位をEreとし、フェロセンの第一酸化電位をEfcとして、上記数式(数C)を用いてそれぞれの化合物のAfを算出した。
(蛍光発光最大ピーク波長(FL-peak)の測定)
 測定対象となる化合物を、4.9×10-6mol/Lの濃度でトルエンに溶解し、トルエン溶液を調製した。蛍光スペクトル測定装置(分光蛍光光度計F-7000(株式会社日立ハイテクサイエンス製))を用いて、トルエン溶液を390nmで励起した場合の蛍光発光最大ピーク波長λ(単位:nm)を測定した。
 化合物評価に関する値を表4に示す。アフィニティAfは、表1~3に示した。
Figure JPOXMLDOC01-appb-T000214
 
<化合物の合成>
 一般式(1)で表される化合物BD1、BD2及びBD3を合成した。
[合成実施例1:化合物BD1の合成]
(中間体1-1の合成)
Figure JPOXMLDOC01-appb-C000215
 1-ブロモ-2-フルオロ-3-ニトロベンゼン(87.8g、399mmol)を130mLのトリフルオロメタンスルホン酸(TfOH)に溶解し、0℃に冷却した。N-ヨードスクシンイミド(108g、479mmol)を40分かけて少しずつ加え、反応物を19時間かけて徐々に室温に到達させた。再び、反応物を0℃に冷却し、N-ヨードスクシンイミド(8.5g、38mmol)を加え、反応物を19時間かけて徐々に室温に到達させた。次に、反応物を400mLの水に注ぎ、得られた混合物を、40%水酸化ナトリウム溶液を使用して中和し、ヘプタンで抽出した。有機抽出物を10%亜硫酸ナトリウムで無色になるまで洗浄し、次に飽和食塩水で洗浄し、最後に硫酸マグネシウムで乾燥させた。溶媒をロータリーエバポレーターで除去し、得られた黄色の油を120℃で蒸留して、中間体1-1(102.5g、71%の収率)を黄色油状物質として得た。
 中間体1-1の分析結果は以下の通りであった。LC-MSは、Liquid chromatography mass spectrometryの略称である。
 LC-MS:346[M+H]
(中間体1-2の合成)
Figure JPOXMLDOC01-appb-C000216
 中間体1-1(70.0g、202mmol)、(4-(tert-ブチル)フェニル)ボロン酸(39.6g、223mmol)及びリン酸カリウム(107g、506mmol)を、280mLのトルエン、210mLの1,4-ジオキサン及び140mLの水の混合物に加えた。得られた黄色のエマルジョンを、窒素ガスをバブリングすることによって30分間脱気した。テトラキス(トリフェニルホスフィン)パラジウム(4.68g、4.05mmol)を加え、反応混合物を窒素下、80℃で24時間撹拌した。反応混合物を室温に冷却し、分液漏斗にて分取し、有機相を中性pHになるまで水で洗浄し、水相をトルエンで洗浄した。合わせた有機相を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。ロータリーエバポレーターで溶媒を除去し、得られた褐色油状物質に550mLのメタノールを加えた。結晶化が始まるまでエマルジョンを超音波処理し、次にホモジナイザーを使用して混合物を均質化した。ベージュ色の懸濁液を濾過し、20mLの冷メタノールで洗浄し、固体を真空下で乾燥させて、中間体1-2(43g、収率60%)をオフホワイトの固体として得た。
 中間体1-2の分析結果は以下の通りであった。
 LC-MS:353[M+H]/
(中間体1-3の合成)
Figure JPOXMLDOC01-appb-C000217
 中間体1-2(35.2g、100mmol)、1,3-ジアミノベンゼン(4.5g、41.6mmol)、及び重炭酸ナトリウム(7.7g、92mmol)を60mLのジメチルスルホキシド(DMSO)に加え、窒素下で48時間100℃に加熱した。反応物を室温に冷却し、反応混合物に30mLのメタノール及び15mLの水を加えた。得られた赤色の懸濁液を濾過し、固体を30mLのメタノール、60mLの水、更に30mLのメタノールで2回洗浄した。得られた固体を80mLのエタノール中で還流し、懸濁液を熱濾過した。得られた真っ赤な固体を真空下で乾燥させて、中間体1-3(26.7g、83%収率)を得た。
 中間体1-3の分析結果は以下の通りであった。
 LC-MS:773[M+H]
(中間体1-4の合成)
Figure JPOXMLDOC01-appb-C000218
 中間体1-3(17.7g、22.9mmol)を650mLのTHF(テトラヒドロフラン)に溶解し、60mLのメタノールを50℃で加え、続いて塩化アンモニウム(73.5g、1.375mol)を加えた。亜鉛粉末(33.7、412mmol)を50℃で少しずつ加え、反応混合物を2時間撹拌した後、塩化アンモニウム(35.0g、654mmol)及び亜鉛粉末(17.5g、267mmol)を加えた。得られた懸濁液を50℃で18時間撹拌し、セライトを通して濾過した。濾液をロータリーエバポレーターで濃縮し、次に200mLの水を加え、エマルジョンを酢酸エチルで抽出した。有機抽出物を水及び飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ、溶媒をロータリーエバポレーターで除去して、中間体1-4(14.3g、87%収率)をピンク色の固体として得た。
 中間体1-4の分析結果は以下の通りであった。
 LC-MS:713[M+H]
(中間体1-5の合成)
Figure JPOXMLDOC01-appb-C000219
 1-(tert-ブチル)-3,5-ジメチルベンゼン(100g、616mmol)を700mLの酢酸に溶解し、10℃に冷却した。300mLの酢酸で希釈した臭素(89g、555mmol)溶液を、温度を15℃未満に保ちながら、1時間にわたって反応に滴下して加えた。オレンジ色の溶液を一晩室温で攪拌し、その後、チオ硫酸ナトリウムの3%溶液300mLでクエンチした。得られた白色懸濁液を1時間撹拌し、次に濾過し、真空下で乾燥させた。固体を40℃で1000mLのエタノールに溶解し、300mLの水を加える前に室温に冷却した。濃厚な白色懸濁液を15分間撹拌し、濾過し、300mLのエタノール/水(2:1v/v)で洗浄し、得られた固体を真空下で乾燥させた。固体を94℃で蒸留して、中間体1-5(79.6g、60%収率)を無色の液体として得た。さらに、無色の液体を冷却させて白色結晶として得た。
 中間体1-5の分析結果は以下の通りであった。
 LC-MS:242[M+H]
(中間体1-6の合成)
Figure JPOXMLDOC01-appb-C000220
 窒素下、中間体1-5(22.2g、92.0mmol)を200mLの無水THFに溶解し、-78℃に冷却した。無色の溶液に、ヘキサン中のn-ブチルリチウム(40.5mL、101mmol)の2.5Mの溶液を滴下し、温度を-60℃未満に保った。添加中に反応物は白色の沈殿物に変わり、添加の完了後、反応物を-78℃で2時間撹拌し、無水DMF(8.07g、110mmol)を、温度を-60℃未満に保ちながら滴下した。添加が完了した後、反応混合物は無色透明の溶液に変わった。反応溶液を一晩室温で攪拌し、その後、500mLの氷水に注いだ。エマルジョンを酢酸エチルで抽出し、有機抽出物を水と飽和食塩水で洗浄した。次に、有機抽出物を硫酸マグネシウムで乾燥させ、溶媒をロータリーエバポレーターで除去して、中間体1-6(17.2g、収率98%)を白色結晶として得た。
 中間体1-6の分析結果は以下の通りであった。
 LC-MS:191[M+H]
(中間体1-7の合成)
Figure JPOXMLDOC01-appb-C000221
 亜硫酸水素ナトリウム(31.5g、303mmol)を30mLのDMAに懸濁し、120℃に加熱した。撹拌した懸濁液に、30mLのN、N-ジメチルアセトアミド(DMA)中の中間体1-4(9.00g、12.6mmol)の溶液を加え、続いて中間体1-6(9.61g、50.5mmol)の溶液を滴下して加えた。30mのLDMAで。懸濁液を130℃で24時間撹拌した。反応混合物を室温に冷却し、500mLのメタノールに注ぎ、撹拌した溶液に500mLの水、続いて500mLのメタノールを加えた。緑色の懸濁液を10分間撹拌し、濾過した。黄色/茶色の固体が得られるまで、緑色の固体をメタノールで洗浄した。得られた固体を250mLのジクロロメタンに溶解し、100mLのヘプタンを加え、懸濁液が形成されるまで溶液をロータリーエバポレーターで濃縮した。懸濁液を濾過し、オフホワイトの固体を冷却したヘプタンで洗浄して、中間体1-7(10.1g、74%収率)を得た。
 中間体1-7の分析結果は以下の通りであった。
 LC-MS:1053[M+H]
(化合物BD1の合成)
Figure JPOXMLDOC01-appb-C000222
 中間体1-7(6.70g、6.36mmol)を室温で400mLのtert-ブチルベンゼンに溶解した。透明な溶液に、ペンタン中のtert-ブチルリチウムの1.7M溶液(15.0mL、25.4mmol)を滴下して加え、得られた褐色の懸濁液を室温で45分間撹拌し、次に-50℃に冷却した。次に、BBr(6.38g、25.4mmol)をゆっくりと加え、オレンジ色の懸濁液を室温に温め、2時間撹拌した。キャヌラーを使用して、反応混合物を、1200mLの氷水と200mLの1M水酸化ナトリウム溶液の撹拌溶液を含む容器に滴下して加えた。得られた黄色の乳濁液を酢酸エチルで抽出し、有機抽出物を中性のpHに達するまで水で洗浄した。有機相をMgSOで乾燥し、溶媒をロータリーエバポレーターで除去した。残留物を、ヘプタン中の5%アセトンを使用するカラムクロマトグラフィーによって精製した。生成物をジクロロメタンで再溶解した。30mLのアセトニトリルを加え、懸濁液が形成され始めるまでジクロロメタンをロータリーエバポレーターで除去した。黄色の懸濁液を室温で1時間撹拌し、濾過し、そして洗浄して、化合物BD1(0.36g、収率6%)を黄色の固体として得た。
 化合物BD1の分析結果は以下の通りであった。
 LC-MS:904[M+H]
[合成実施例2:化合物BD2の合成]
(中間体2-1の合成)
Figure JPOXMLDOC01-appb-C000223
 1,3-ジブロモ-5-(tert-ブチル)ベンゼン(13.0g、44.5mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pddba)(1.66g、1.78mmol)及びトリ-tert-ブチルホスホニウムテトラフルオロボラート(P(tBu)HBF)(2.11g、7.12mmol)を170mLのトルエンに加えた。得られた暗赤色の懸濁液を窒素ガスで30分バブリングすることで脱気した。その後、1Mのリチウムビス(トリメチルシリル)アミド(LiHMDS)のトルエン溶液(134mL、134mmol)を加え、80℃で24時間攪拌した。室温に冷却した後、再び、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.85g、0.89mmol)及びトリ-tert-ブチルホスホニウムテトラフルオロボラート(1.03g、3.56mmol)を加えて、更に80℃で24時間攪拌した。室温に冷却した後、300mLの1M塩酸を加え、10分攪拌した。2Mの炭酸ナトリウム水溶液で中和した後、水層を酢酸エチルで抽出した。合わせた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。ロータリーエバポレーターで溶媒を除去し、残留物をジクロロメタン中の5%メタノールを使用するカラムクロマトグラフィーによって精製し、中間体2-1(6.55g、収率89%)を得た。
 中間体2-1の分析結果は以下の通りであった。
 LC-MS:165[M+H]
(中間体2-2の合成)
Figure JPOXMLDOC01-appb-C000224
 中間体1-2(32.2g、91.0mmol)、中間体2-1(6.25g、38.1mmol)及び炭酸水素ナトリウム(7.03g、84.0mmol)を60mLのジメチルスルホキシドに加え、100℃で96時間攪拌した。室温に冷却した後、150mLのメタノール及び100mLの水を反応混合物に加え、得られた赤色懸濁液を濾過し、固体を150mLのメタノール及び150mLの水で2回、更に150mLのメタノールで洗浄した。洗浄した固体をメタノール中で激しく攪拌し、濾過をすることにより中間体2-2(30.0g、収率94%)を得た。
 中間体2-2の分析結果は以下の通りであった。
 LC-MS:829[M+H]
(中間体2-3の合成)
Figure JPOXMLDOC01-appb-C000225
 中間体2-2(30.0g、36.2mmol)を750mLのテトラヒドロフランに溶解させ、塩化アンモニウム(116g、2.192mol)及び75mLのメタノールを加えた。その薄赤懸濁液を0℃に冷却し、亜鉛粉末(42.6g、652mmol)を少しずつ加え、室温で終夜攪拌した。その反応混合物を1Mの水酸化ナトリウムで中和し、ロータリーエバポレーターでメタノールを除去し、200mLの水を加え、水層を酢酸エチルで洗浄した。合わせた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。ロータリーエバポレーターで溶媒を除去し、中間体2-3(19.5g、収率69%)を得た。
  中間体2-3の分析結果は以下の通りであった。
 LC-MS:769[M+H]
(中間体2-4の合成)
Figure JPOXMLDOC01-appb-C000226
 亜硫酸水素ナトリウム(29.9g、287mmol)を50mLのN,N-ジメチルアセトアミドに懸濁し、100℃に加熱した。攪拌した懸濁液に、50mLのN,N-ジメチルアセトアミドに溶解させた中間体2-3(9.20g、12.0mmol)を加え、60mLのN,N-ジメチルアセトアミドに溶解させた中間体1-6(9.11g、47.9mmol)を滴下した。その懸濁液を100℃で72時間攪拌した。室温に冷却した後、500mLのメタノールに加えた。得られた白色の固体を濾別し、200mLの水及び250mLのメタノールで洗浄した。洗浄した固体を塩化メチレンに溶解した後、メタノールを加え、沈殿が析出するまでロータリーエバポレーターで溶媒を除去した。得られた固体を濾別することにより、中間体2-4(10.1g、収率75%)を得た。
中間体2-4の分析結果は以下の通りであった。
 LC-MS:1110[M+H]
(化合物BD2の合成)
Figure JPOXMLDOC01-appb-C000227
 中間体2-4(7.56g、6.81mmol)を室温で570mLのクロロベンゼンに溶解した。透明な溶液に、ペンタン中のn-ブチルリチウムの2.5M溶液(10.9mL、27.2mmol)を滴下して加え、得られた褐色の懸濁液を室温で2時間撹拌し、次に-40℃に冷却した。次に、BBr(6.83g、27.2mmol)をゆっくりと加え、薄茶色の懸濁液を室温に温め、2時間撹拌した。その反応混合物に10%酢酸ナトリウム水溶液を加え、水層を酢酸エチルで抽出した。合わせた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し、溶媒をロータリーエバポレーターで除去した。残留物を、1%トリエチルアミンを含むヘプタン及び酢酸エチル使用するカラムクロマトグラフィーによって精製した。精製物をジクロロメタンで再溶解し、アセトニトリルを加え、懸濁液が形成され始めるまでジクロロメタンをロータリーエバポレーターで除去した。黄色の懸濁液を室温で1時間撹拌し、濾過および洗浄により、化合物BD2(0.49g、収率8%)を黄色の固体として得た。
 化合物BD2の分析結果は以下の通りであった。
 LC-MS:960[M+H]
[合成実施例3:化合物BD3の合成]
(中間体3-1の合成)
Figure JPOXMLDOC01-appb-C000228
 亜硫酸水素ナトリウム(28.4g、273mmol)を40mLのN,N-ジメチルアセトアミドに懸濁し、100℃に加熱した。攪拌した懸濁液に、40mLのN,N-ジメチルアセトアミドに溶解させた中間体2-3(8.74g、11.37mmol)を加え、48mLのN,N-ジメチルアセトアミドに溶解させた4-(tert-ブチル)ベンズアルデヒド(7.77g、45.5mmol)を滴下した。その懸濁液を100℃で5時間攪拌した。室温に冷却した後、250mLのメタノールに加えた。得られたピンク色の固体を濾別し、200mLの水及び250mLのメタノールで洗浄した。洗浄した固体を塩化メチレンに溶解し、メタノールを加え、沈殿が析出するまでロータリーエバポレーターで溶媒を除去した。得られた固体を濾別し、中間体3-1(10.51g、収率88%)を得た。
 中間体3-1の分析結果は以下の通りであった。
 LC-MS:1054[M+H]
(化合物BD3の合成)
Figure JPOXMLDOC01-appb-C000229
 中間体3-1(10.5g、9.98mmol)を室温で624mLのtert-ブチルベンゼンに溶解した。透明な溶液に、ペンタン中のtert-ブチルリチウムの1.9M溶液(21.0mL、39.9mmol)を滴下して加え、得られた赤色の懸濁液を室温で1時間撹拌し、次に-40℃に冷却した。次に、BBr(10.0g、39.9mmol)をゆっくりと加え、黄土色の懸濁液を室温に温め、2時間撹拌した。その反応混合物に10%酢酸ナトリウム水溶液を加え、水層を酢酸エチルで抽出した。合わせた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し、溶媒をロータリーエバポレーターで除去した。残留物を、1%トリエチルアミンを含むヘプタン及び酢酸エチル使用するカラムクロマトグラフィーによって精製した。精製物をジクロロメタンで再溶解し、懸濁液が形成され始めるまでジクロロメタンをロータリーエバポレーターで除去した。黄色の懸濁液を室温で1時間撹拌し、濾過し、そして塩化メチレン及びヘプタンで洗浄して、化合物BD3(1.00g、収率11%)を黄色の固体として得た。
 化合物BD3の分析結果は以下の通りであった。
 LC-MS:904[M+H]
 1,1A,1B…有機EL素子、2…基板、3…陽極、4…陰極、51…第一の発光層、52…第二の発光層、6…正孔注入層、7…正孔輸送層、8…電子輸送層、9…電子注入層。

Claims (17)

  1.  陽極と、陰極と、前記陽極と前記陰極との間に含まれる発光層と、を有する有機エレクトロルミネッセンス素子であって、
     前記発光層は、下記一般式(1)で表される第一の化合物を含む、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    (前記一般式(1)において、
     nは、0、1、2又は3であり、
     mは、0、1、2又は3であり、
     pは、0、1、2又は3であり、
     Rは、水素原子であるか、又は置換基RAXであり、
     Rは、水素原子であるか、又は置換基RBXであり、
     Rは、水素原子であるか、又は置換基RCXであり、
     環Aは、
      置換基RAXで置換された環形成炭素数6~50のアリール環、
      無置換の環形成炭素数6~50のアリール環、
      置換基RAXで置換された環形成原子数5~50の複素環、又は
      無置換の環形成原子数5~50の複素環であり、
     環Bは、
      置換基RBXで置換された環形成炭素数6~50のアリール環、
      無置換の環形成炭素数6~50のアリール環、
      置換基RBX置換された環形成原子数5~50の複素環、又は
      無置換の環形成原子数5~50の複素環であり、
     環Cは、
      置換基RCXで置換された環形成炭素数6~50のアリール環、
      無置換の環形成炭素数6~50のアリール環、
      置換基RCX置換された環形成原子数5~50の複素環、又は
      無置換の環形成原子数5~50の複素環であり、
     Rは、Rからなる群から選択される1以上と、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     Rは、Rからなる群から選択される1以上と、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     2以上のRのうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     2以上のRのうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     2以上のRのうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R、R及びRは、それぞれ独立に、
      水素原子、
      ハロゲン原子、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数2~50のアルケニル基、
      置換もしくは無置換の炭素数2~50のアルキニル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      置換もしくは無置換の環形成炭素数1~50のフルオロアルキル基、
      置換もしくは無置換の環形成炭素数1~50のフルオロシクロアルキル基、
      -O-(R81)で表される基、
      -N(R82)(R83)で表される基、
      -S-(R84)で表される基、
      -S(=O)(R85)で表される基、
      -Si(R86)(R87)(R88)で表される基、
      -CN、
      -COOR91で表される基、
      -C(=O)N(R92)(R93)で表される基、
      -P(=O)(R94)(R95)で表される基、又は
      -B(R96)(R97)で表される基であり、
     R81~R88及びR91~R97は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
      置換もしくは無置換の炭素数2~50のアルケニル基であり、
     Rが複数存在する場合、複数のRは互いに同一であるか、又は異なり、
     Rが複数存在する場合、複数のRは互いに同一であるか、又は異なり、
     Rが複数存在する場合、複数のRは互いに同一であるか、又は異なる。)
  2.  前記第一の化合物は、下記一般式(11)、下記一般式(12)又は下記一般式(13)で表される化合物である、
     請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002

    (前記一般式(11)~(13)において、
     R及びRは、それぞれ独立に、前記一般式(1)におけるR及びRと同義であり、
     X~Xは、それぞれ独立に、CR又は窒素原子であり、
     X~Xは、それぞれ独立に、CR又は窒素原子であり、
     X~Xは、それぞれ独立に、CR又は窒素原子であり、
     Yは、CR又は窒素原子であり、
     Yは、酸素原子、硫黄原子、CR又はNRであり、
     Yは、CR又は窒素原子であり、
     Yは、酸素原子、硫黄原子、CR又はNRであり、
     Rは、前記一般式(1)におけるRと同義であり、
     Rは、前記一般式(1)におけるRと同義であり、
     Rは、前記一般式(1)におけるRと同義であり、
     YがCRである場合、CRにおける2つのRは互いに同一であるか、又は異なり、
     YがCRである場合、CRにおける2つのRは互いに同一であるか、又は異なる。)
  3.  前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R、R及びRは、それぞれ独立に、
      水素原子、
      ハロゲン原子、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数2~50のアルケニル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      -O-(R81)で表される基、
      -N(R82)(R83)で表される基、
      -S-(R84)で表される基、
      -S(=O)(R85)で表される基、
      -Si(R86)(R87)(R88)で表される基、
      -B(R96)(R97)で表される基、又は
      -CNであり、
     R81~R88及びR96~R97は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、
      置換もしくは無置換の炭素数1~50のアルキル基、又は
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基である、
     請求項2に記載の有機エレクトロルミネッセンス素子。
  4.  前記第一の化合物は、下記一般式(11A)、(12A)又は(13A)で表される化合物である、
     請求項2または請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
    (前記一般式(11A)、(12A)及び(13A)において、
     Rは、R11と、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     Rは、R13と、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R11~R13のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R14~R16のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R17~R19のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     Y及びYは、それぞれ独立に、前記一般式(12)におけるY及びYと同義であり、
     R21及びYにおけるRのうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R23及びYにおけるRのうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     ただし、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R11~R19、R21、R23、YにおけるR及びYにおけるRは、それぞれ独立に、
      水素原子、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数3~18の複素環基、
      置換もしくは無置換の炭素数1~25のアルキル基、
      置換もしくは無置換の炭素数2~25のアルケニル基、
      -O-(R81)で表される基、
      -N(R82)(R83)で表される基、
      -S-(R84)で表される基、
      -B(R96)(R97)で表される基、又は
      -CNであり、
     R81~R84及びR96~R97は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~30のアリール基、又は
      置換もしくは無置換の環形成原子数3~18の複素環基である。)
  5.  前記第一の化合物は、下記一般式(11B)(12B)又は(13B)で表される化合物である、
     請求項2または請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004

    (前記一般式(11B)、(12B)及び(13B)において、Y及びYは、それぞれ独立に、前記一般式(12)におけるY及びYと同義であり、
     R14~R16のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R17~R19のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R21及びYにおけるRのうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R23及びYにおけるRのうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     ただし、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR14~R19及びR21、R23は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数3~18の複素環基、
      置換もしくは無置換の炭素数1~25のアルキル基、
      置換もしくは無置換の炭素数2~25のアルケニル基、
      -O-(R81)で表される基、
      -N(R82)(R83)で表される基、
      -S-(R84)で表される基、
      -B(R96)(R97)で表される基、又は
      -CNであり、
     R81~R84及びR96~R97は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~30のアリール基、又は
      置換もしくは無置換の環形成原子数3~18の複素環基であり、
     R11は、R31又はR35のいずれかと、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R13は、R41又はR45のいずれかと、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R11~R13のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR11~R13、R31~R35及びR41~R45は、それぞれ独立に、前記一般式(11)におけるR~Rと同義である。)
  6.  前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR、R、R11~R19、R21、R23、YにおけるR、YにおけるR、R31~R35及びR41~R45は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数3~18の複素環基、
      置換もしくは無置換の炭素数1~25のアルキル基、
      -Si(R86)(R87)(R88)で表される基、又は
      -CNであり、
     R86~R88は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~30のアリール基、又は
      置換もしくは無置換の環形成原子数3~30の複素環基である、
     請求項4または請求項5に記載の有機エレクトロルミネッセンス素子。
  7.  前記発光層は、第一のホスト材料と、第一のドーパント材料として前記第一の化合物と、を含み、
     前記第一のホスト材料及び前記第一のドーパント材料が、下記数式(数A)の関係を満たす、
     請求項1から請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
     Af(D1)―Af(H1)≧0.40eV (数A)
    (前記数式(数A)中、Af(H1)は、前記第一のホスト材料のアフィニティ(単位:eV)であり、Af(D1)は、前記第一のドーパント材料のアフィニティ(単位:eV)である。)
  8.  前記第一のホスト材料は、下記一般式(2)で表される化合物である、
     請求項7に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005

    (前記一般式(2)において、
     R201~R208は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数1~50のハロアルキル基、
      置換もしくは無置換の炭素数2~50のアルケニル基、
      置換もしくは無置換の炭素数2~50のアルキニル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      -Si(R901)(R902)(R903)で表される基、
      -O-(R904)で表される基、
      -S-(R905)で表される基、
      -N(R906)(R907)で表される基、
      置換もしくは無置換の炭素数7~50のアラルキル基、
      -C(=O)R801で表される基、
      -COOR802で表される基、
      ハロゲン原子、
      シアノ基、
      ニトロ基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     L201及びL202は、それぞれ独立に、
      単結合、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     Ar201及びAr202は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基である。)
    (前記一般式(2)で表される化合物中、R901、R902、R903、R904、R905、R906、R907、R801及びR802は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
     R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
     R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
     R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
     R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
     R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
     R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
     R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
     R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なる。)
  9.  R201~R208のうち、少なくとも1つは水素原子ではない、
     請求項8に記載の有機エレクトロルミネッセンス素子。
  10.  前記発光層は、第一の発光層及び第二の発光層を含み、
     前記第一の発光層は、前記第一のホスト材料と、前記第一のドーパント材料とを含み、
     前記第二の発光層は、第二のホスト材料と、第二のドーパント材料とを含み、
     前記第一のホスト材料と前記第二のホスト材料とは互いに異なり、
     前記第一のドーパント材料と前記第二のドーパント材料とは互いに同一であるか、又は異なる、
     請求項7から請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  11.  前記第一のホスト材料の三重項エネルギーT(H1)と前記第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数1)の関係を満たす、
     T(H2)>T(H1) …(数1)
     請求項10に記載の有機エレクトロルミネッセンス素子。
  12.  前記陽極と前記陰極との間に前記第一の発光層を含み、
     前記第一の発光層と前記陰極との間に前記第二の発光層を含む、
     請求項10に記載の有機エレクトロルミネッセンス素子。
  13.  前記陽極と前記陰極との間に前記第一の発光層を含み、
     前記第一の発光層と前記陽極との間に前記第二の発光層を含む、
     請求項10に記載の有機エレクトロルミネッセンス素子。
  14.  前記発光層と前記陽極との間に、正孔輸送層を含む、
     請求項1から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  15.  前記発光層と前記陰極との間に、電子輸送層を含む、
     請求項1から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  16.  前記発光層は、金属錯体を含有しない、
     請求項1から請求項15のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  17.  請求項1から請求項16のいずれか一項に記載の有機エレクトロルミネッセンス素子を搭載した、電子機器。
PCT/JP2022/009515 2021-03-05 2022-03-04 有機エレクトロルミネッセンス素子及び電子機器 WO2022186390A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-035440 2021-03-05
JP2021035440A JP2024084864A (ja) 2021-03-05 有機エレクトロルミネッセンス素子及び電子機器

Publications (1)

Publication Number Publication Date
WO2022186390A1 true WO2022186390A1 (ja) 2022-09-09

Family

ID=83154530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009515 WO2022186390A1 (ja) 2021-03-05 2022-03-04 有機エレクトロルミネッセンス素子及び電子機器

Country Status (1)

Country Link
WO (1) WO2022186390A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217229A1 (en) * 2019-04-26 2020-10-29 Idemitsu Kosan Co., Ltd. Polycyclic compound and an organic electroluminescence device comprising the polycyclic compound or the composition
KR20210043415A (ko) * 2019-10-11 2021-04-21 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021090934A1 (ja) * 2019-11-08 2021-05-14 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021185712A1 (de) * 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217229A1 (en) * 2019-04-26 2020-10-29 Idemitsu Kosan Co., Ltd. Polycyclic compound and an organic electroluminescence device comprising the polycyclic compound or the composition
KR20210043415A (ko) * 2019-10-11 2021-04-21 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021090934A1 (ja) * 2019-11-08 2021-05-14 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021185712A1 (de) * 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen

Similar Documents

Publication Publication Date Title
KR20220061138A (ko) 유기 일렉트로루미네센스 소자 및 전자 기기
WO2021015177A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022196749A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
WO2022260119A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022260117A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022260118A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022230844A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022196634A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021215446A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022186390A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2022123149A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2023068155A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023210737A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022230843A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2023017704A1 (ja) 有機エレクトロルミネッセンス素子、電子機器及び化合物
WO2022191234A1 (ja) 有機エレクトロルミネッセンス素子、電子機器及び有機エレクトロルミネッセンス素子の製造方法
WO2023190597A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2023171688A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023127844A1 (ja) 化合物、有機エレクトロルミネッセンス素子、及び電子機器
WO2023120485A1 (ja) 有機エレクトロルミネッセンス素子、電子機器、組成物及び混合粉体
WO2023238769A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
WO2022158578A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2023210770A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子及び電子機器
WO2022191237A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022191326A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763440

Country of ref document: EP

Kind code of ref document: A1