WO2022186030A1 - Compound, mixture, curable resin composition, and cured product thereof - Google Patents

Compound, mixture, curable resin composition, and cured product thereof Download PDF

Info

Publication number
WO2022186030A1
WO2022186030A1 PCT/JP2022/007527 JP2022007527W WO2022186030A1 WO 2022186030 A1 WO2022186030 A1 WO 2022186030A1 JP 2022007527 W JP2022007527 W JP 2022007527W WO 2022186030 A1 WO2022186030 A1 WO 2022186030A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
group
curable resin
resin composition
Prior art date
Application number
PCT/JP2022/007527
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 遠島
政隆 中西
昌典 橋本
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2022541781A priority Critical patent/JP7241246B2/en
Priority to CN202280018318.5A priority patent/CN116917258A/en
Priority to KR1020237029210A priority patent/KR20230154819A/en
Publication of WO2022186030A1 publication Critical patent/WO2022186030A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/50Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/285Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings having unsaturation outside the six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/29Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1642End groups comprising organic end groups comprising reactive double bonds or triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain

Definitions

  • the present invention relates to compounds, mixtures, curable resin compositions, and cured products thereof, and includes electrical and electronic components such as semiconductor sealing materials, printed wiring boards, and build-up laminates, carbon fiber reinforced plastics, and glass fibers. Lightweight high-strength materials such as reinforced plastics are well suited for 3D printing applications.
  • CPUs central processing units
  • PKG semiconductor packages
  • PCB motherboard
  • Non-Patent Document 1 Conductor loss is caused by the resistance component of conductors such as wiring on a substrate, and is divided into loss due to the skin effect at high frequencies and scattering loss due to the roughness of the copper foil surface.
  • SiC semiconductors have begun to be used in trains, air conditioners, and the like, and the encapsulating material for semiconductor elements is required to have extremely high heat resistance.
  • Patent Document 1 proposes a composition containing a maleimide resin and a propenyl group-containing phenolic resin.
  • Patent Document 2 discloses an allyl ether resin in which hydroxyl groups are substituted with allyl groups.
  • Claisen rearrangement occurs at 190°C, and at 200°C, which is a general substrate molding temperature, phenolic hydroxyl groups that do not contribute to the curing reaction are generated, so electrical properties cannot be satisfied. do not have.
  • the present invention has been made in view of such circumstances, and provides compounds, mixtures, curable resin compositions, and cured products thereof exhibiting excellent heat resistance, electrical properties, adhesion, and good curability. intended to provide
  • X represents an arbitrary organic group.
  • the multiple Xs may be the same or different.
  • A is a methylene group or an oxygen atom
  • Q represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.
  • a plurality of R may be the same or different
  • R is a hydrocarbon group having 1 to 10 carbon atoms, or represents a halogenated alkyl group.
  • the multiple Rs may be the same or different.l and m each represent an integer of 0 to 3, and n is a repeating unit.
  • s is a repeating unit, and 1 ⁇ s ⁇ 20.
  • a curable resin composition containing the compound according to any one of [1] to [4] above or the mixture according to [5] above.
  • the curable resin composition according to [6] above further containing one or more selected from the group consisting of polyphenylene ether, polybutadiene and modified products thereof.
  • the curable resin composition according to [7] above, wherein the polybutadiene and its modified product contain one or more selected from the group consisting of a styrene-butadiene copolymer and a butadiene-based thermoplastic elastomer.
  • X represents an arbitrary organic group.
  • the multiple Xs may be the same or different.
  • Z represents a halogen element. Multiple Z may be the same or different, A is a methylene group or an oxygen atom, Q is a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group, and multiple Rs are may be the same or different.
  • R represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.When there are multiple Rs, the multiple Rs may be the same l and m each represent an integer of 0 to 3, n is a repeating unit and satisfies 1 ⁇ n ⁇ 20, p is a repeating unit and satisfies 1 ⁇ p ⁇ 20.
  • the compound of the present invention has excellent curability, and its cured product has high heat resistance, low dielectric properties, and excellent adhesion. Therefore, it is a useful material for sealing electrical and electronic parts, circuit boards, carbon fiber composite materials, and the like. In addition, since the compound of the present invention is excellent in reactivity, curing alone is also one of preferred embodiments.
  • FIG. 1 shows a GPC chart of Example 1.
  • FIG. 1 H-NMR chart of Example 1 is shown.
  • 2 shows a GPC chart of Example 2.
  • FIG. 1 H-NMR chart of Example 2 is shown.
  • the GPC chart of Example 3 is shown.
  • 1 H-NMR chart of Example 3 is shown.
  • the GPC chart of Example 4 is shown.
  • a GPC chart of Reference Example 1 is shown.
  • 1 H-NMR chart of Reference Example 1 is shown.
  • a GPC chart of Reference Example 2 is shown. 1 H-NMR chart of Reference Example 2 is shown.
  • the compound of the present invention is represented by the following formula (1).
  • X represents an arbitrary organic group.
  • the multiple Xs may be the same or different.
  • A is a methylene group or an oxygen atom
  • Q represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.
  • a plurality of R may be the same or different
  • R is a hydrocarbon group having 1 to 10 carbon atoms, or represents a halogenated alkyl group.
  • the multiple Rs may be the same or different.
  • l and m each represent an integer of 0 to 3, and n is a repeating unit. , 1 ⁇ n ⁇ 20, p is a repeating unit, and 1 ⁇ p ⁇ 20.
  • n is usually 1 ⁇ n ⁇ 20, preferably 1.1 ⁇ n ⁇ 20, more preferably 1.1 ⁇ n ⁇ 10, particularly 1.1 ⁇ n ⁇ 5 preferable.
  • Mw weight average molecular weight of the olefin compound determined by gel permeation chromatography
  • the weight average molecular weight is preferably 200 or more and less than 5,000, more preferably 300 or more and less than 3,000, and particularly preferably 400 or more and less than 2,000.
  • p is usually 1 ⁇ p ⁇ 20, preferably 1 ⁇ p ⁇ 5, more preferably 1 ⁇ p ⁇ 3, and particularly preferably 1 ⁇ p ⁇ 2.
  • R is usually a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. Hydrocarbons in which R has 3 or less carbon atoms are less susceptible to molecular vibration when exposed to high frequency waves, and are therefore excellent in electrical properties.
  • Q is generally a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. Hydrocarbons with 3 or less carbon atoms are less susceptible to molecular vibration when exposed to high frequency waves, and are therefore excellent in electrical properties.
  • l is usually 0 to 3, preferably 0 to 2, more preferably 0. When l is 0, it can be said that it is particularly preferable from the viewpoint of molecular symmetry. When it has a highly symmetrical molecular structure, it is easy to obtain a cured product with a highly symmetrical chemical bond pattern.
  • a cured product with a highly symmetrical chemical bond mode is less likely to undergo molecular vibration and has the effect of canceling out dipoles, resulting in excellent dielectric properties. Also, introducing a compound having two or more aromatic rings in the molecule such as diphenylmethane into the molecule lowers the functional group density, thereby exhibiting the effect of reducing cure shrinkage. The smaller the curing shrinkage, the easier it is to improve the adhesion to copper foil and the like.
  • X is preferably any one or more of (a) to (h) described in the following formula (2), and (a) to (c) and (e) to (h) is more preferred, and (a) is particularly preferred. This is because as the conjugation of the aromatic ring increases, the dipole moment increases, possibly deteriorating the dielectric properties.
  • the compound represented by the formula (1) of the present invention is derived from the compound represented by the following formula (3).
  • X represents an arbitrary organic group.
  • the multiple Xs may be the same or different.
  • Z represents a halogen element. Multiple Z may be the same or different, A is a methylene group or an oxygen atom, Q is a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group, and multiple Rs are may be the same or different.
  • R represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.When there are multiple Rs, the multiple Rs may be the same l and m each represent an integer of 0 to 3, n is a repeating unit and satisfies 1 ⁇ n ⁇ 20, p is a repeating unit and satisfies 1 ⁇ p ⁇ 20. be.
  • Z is preferably a bromine atom or a chlorine atom, and particularly preferably a bromine atom.
  • the compound represented by the formula (1) of the present invention is derived from the compound represented by the formula (3). Specifically, it can be obtained by subjecting the compound represented by the formula (3) to a dehydrohalogenation reaction in a solvent in the presence of a basic catalyst. Further, in order to improve the reaction rate of the dehydrohalogenation reaction, the solution subjected to the dehydrohalogenation reaction is washed with water to remove salts, returned to the reaction vessel, and subjected to the dehydrohalogenation reaction again. You can do it multiple times.
  • the amount of halogen remaining in the obtained olefin resin is preferably 10 to 10,000 ppm, more preferably 10 to 1,000 ppm, and more preferably 10 to 900 ppm.
  • solvents to be used include aromatic solvents such as toluene and xylene, aliphatic solvents such as cyclohexane and n-hexane, ethers such as diethyl ether and diisopropyl ether, ester solvents such as ethyl acetate and butyl acetate, and methyl isobutyl.
  • Water-insoluble solvents such as ketone-based solvents such as ketones, cyclopentanone, and acetone can be used, but the solvents are not limited to these, and two or more of them may be used in combination.
  • An aprotic polar solvent can also be used in combination with the water-insoluble solvent.
  • examples thereof include dimethylsulfone, dimethylsulfoxide, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone and the like, and two or more of them may be used in combination.
  • the catalyst is not particularly limited, basic catalysts such as sodium hydroxide, potassium hydroxide and potassium carbonate can be used.
  • the method for producing the compound represented by the formula (3) is not particularly limited.
  • the reaction may be carried out under an acid catalyst such as an acid or activated clay, or a compound having a 2-bromoethylbenzene structure, a bishydroxymethylaryl compound and a diphenylmethane compound or a diphenyl ether compound may be reacted with an acid such as hydrochloric acid, sulfonic acid, or activated clay.
  • the reaction may be carried out under a catalyst.
  • hydrochloric acid neutralize with an alkali metal such as sodium hydroxide or potassium hydroxide, extract with an aromatic hydrocarbon solvent such as toluene or xylene, wash with water until the waste water becomes neutral, and evaporate.
  • the charging ratio of the bishalogenated methylaryl compound (or bishydroxymethylaryl compound) to 1 mol of the compound having a 2-bromoethylbenzene structure is preferably 0.1 to 0.95 mol, more preferably 0.2 to 0.9 mol. Preferably, 0.25 to 0.8 mol is particularly preferred.
  • the ratio of the diphenylmethane compound or diphenyl ether compound to 1 mol of the bishalogenated methylaryl compound (or bishydroxymethylaryl compound) is preferably 0.1 to 0.95 mol, more preferably 0.2 to 0.2 mol. 9 mol is more preferred, and 0.25 to 0.8 mol is particularly preferred.
  • the effect of introducing a diphenylmethane structure or a diphenyl ether structure can be exhibited without residual raw materials.
  • Compounds having a 2-bromoethylbenzene structure include 2-bromoethylbenzene, 1-(2-bromoethyl)-2-methylbenzene, 1-(2-bromoethyl)-3-methylbenzene, 1-(2-bromoethyl)- 4-methylbenzene, 1-(2-bromoethyl)-2,3-dimethylbenzene, 1-(2-bromoethyl)-2,4-dimethylbenzene, 1-(2-bromoethyl)-2,5-dimethylbenzene, Examples include, but are not limited to, 1-(2-bromoethyl)-2,6-dimethylbenzene. If the number of carbon atoms is large, the solvent solubility is improved, but the heat resistance is lowered. more preferably substituted with a group, and most preferably unsubstituted or substituted with a methyl group.
  • Bishalogenated methylaryl compounds include eaux-xylylene difluoride, m-xylylene difluoride, p-xylylene difluoride, Occasionally-xylylene dichloride, m-xylylene dichloride, p-xylylene dichloride, Occasionally- xylylene dibromide, m-xylylene dibromide, p-xylylene dibromide, o-xylylene diiodide, m-xylylene diiodide, p-xylylene diiodide, 4,4'-bisfluoromethylenebiphenyl, 4,4 '-Bischloromethylenebiphenyl, 4,4'-bisbromomethylenebiphenyl, 4,4'-bisiodomethylenebiphenyl, 2,4-bisfluoromethylenebiphenyl, 2,4-bischloromethylenebiphenyl, 2,4-bis Bromo
  • the bishydroxymethylaryl compounds include o-benzenedimethanol, m-benzenedimethanol, p-benzenedimethanol, 4,4'-bishydroxymethylbiphenyl, 2,4-bishydroxymethylbiphenyl, 2,2'- Bishydroxymethylbiphenyl, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-1,4-benzenedimethanol, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-1,3-benzenedimethanol, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethyl-1,2-benzenedimethanol and the like, but are not limited thereto. These may be used alone or in combination of two or more.
  • hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, as well as aluminum chloride and zinc chloride are used as catalysts.
  • Lewis acid, activated clay, acid clay, white carbon, zeolite, solid acid such as silica alumina, acidic ion exchange resin, and the like can be used. These may be used alone or in combination of two or more.
  • the amount of the catalyst to be used is generally 0.1-0.8 mol, preferably 0.2-0.7 mol, per 1 mol of the compound having a 2-bromoethylbenzene structure. If the amount of the catalyst used is too large, the viscosity of the reaction solution may be too high and stirring may become difficult.
  • the reaction may be carried out using an organic solvent such as hexane, cyclohexane, octane, toluene, xylene, etc., optionally selected, or may be carried out without a solvent.
  • the water is azeotropically removed from the system. After that, the reaction is carried out at 40 to 180°C, preferably 50 to 170°C for 0.5 to 20 hours.
  • the acidic catalyst is neutralized with an alkaline aqueous solution, and a non-water-soluble organic solvent is added to the oil layer, and washing with water is repeated until the wastewater becomes neutral.
  • the softening point of the compound represented by the formula (3) is preferably 80°C or lower, more preferably 70°C or lower.
  • the softening point is 80° C. or less, the viscosity of the olefin resin becomes low, and the impregnation of carbon fibers and glass fibers becomes easy. If the dilution solvent is increased to lower the viscosity, the resin may not sufficiently adhere to the fibrous material in the impregnation step.
  • the mixture of the present invention contains the compound represented by the above formula (1) and the compound represented by the following formula (4).
  • the mixture of the present invention particularly preferably contains a compound represented by the following formula (4-a).
  • the compound represented by the formula (1) is derived from the compound represented by the formula (3). If the isolation step is not included, the compound represented by the above formula (3) is produced containing a certain amount of the compound represented by the following formula (5).
  • the content ratio of the compound represented by the formula (1) and the compound represented by the formula (4) can be defined using GPC (detector: RI), and the formula It is calculated from the mononuclear peak ratios of the compounds represented by (1) and (4).
  • the mononuclear compound of the compound represented by the formula (1) is a component in which p and n in the formula (1) are 1, and the mononuclear compound of the compound represented by the formula (4) is It is a component in which p and s in the formula (4) are 1.
  • ⁇ / ⁇ is 0.1 to 2. 0.0, more preferably 0.2 to 1.5, even more preferably 0.3 to 1.0. Within this range, the mixture of the present invention can improve adhesion without significantly impairing heat resistance.
  • a composition containing the compound or mixture of the present invention contains a polymerization inhibitor.
  • Polymerization inhibitors that can be used include phenol-based, sulfur-based, phosphorus-based, hindered amine-based, nitroso-based, and nitroxyl radical-based polymerization inhibitors.
  • the polymerization inhibitor may be added when synthesizing the compound represented by formula (1), or after synthesis.
  • a polymerization inhibitor can be used individually or in combination of 2 or more types.
  • the amount of polymerization inhibitor used is usually 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, per 100 parts by weight of the resin component.
  • Each of these polymerization inhibitors can be used alone, but two or more of them may be used in combination.
  • phenol-based, hindered amine-based, nitroso-based, and nitroxyl radical-based solvents are preferred.
  • the nitroxyl radical type is particularly preferable because of its excellent storage stability.
  • phenolic polymerization inhibitors include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ -( 3,5-di-t-butyl-4-hydroxyphenyl)propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,4-bis-(n-octylthio) -monophenols such as 6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, 2,4-bis[(octylthio)methyl]-o-cresol;2 , 2′-methylenebis(4-methyl-6-t-butylphenol), 2,2′-methylenebis(4-ethyl-6-t-butylphenol), 4,4′-thiobis(3-methyl-6-t-t
  • sulfur-based polymerization inhibitors include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and the like. be done.
  • phosphorus-based polymerization inhibitors include triphenylphosphite, diphenylisodecylphosphite, phenyldiisodecylphosphite, tris(nonylphenyl)phosphite, diisodecylpentaerythritolphosphite, tris(2,4-di-t -butylphenyl)phosphite, cyclic neopentanetetraylbis(octadecyl)phosphite, cyclic neopentanetetraylbi(2,4-di-t-butylphenyl)phosphite, cyclic neopentanetetraylbi(2, Phosphites such as 4-di-t-butyl-4-methylphenyl)phosphite and bis[2-t-butyl-6-methyl-4- ⁇ 2-(oct)
  • hindered amine-based polymerization inhibitors include Adekastave LA-40MP, Adekastab LA-40Si, Adekastab LA-402AF, Adekastab LA-87, Adekastab LA-82, Adekastab LA-81, Adekastab LA-77Y, and Adekastab LA.
  • nitroso-based polymerization inhibitor examples include p-nitrosophenol, N-nitrosodiphenylamine, ammonium salts of N-nitrosophenylhydroxyamine, (cupferron), and the like, preferably ammonium of N-nitrosophenylhydroxyamine. It is salt (cupferon).
  • nitroxyl radical polymerization inhibitors include di-tert-butyl nitroxide, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6- Tetramethylpiperidine-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 4- Methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-acetoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-benzoyloxy-2,2,6,6 -tetramethylpiperidine-1-oxyl and the like, but are not limited to these.
  • the curable resin composition of the present invention can use any known material as a curable resin other than the compound or mixture of the present invention.
  • Specific examples include phenol resins, epoxy resins, amine resins, active alkene-containing resins, isocyanate resins, polyamide resins, polyimide resins, cyanate ester resins, propenyl resins, methallyl resins, active ester resins, and the like. may be used in combination.
  • the amount of the curable resin used is preferably 10 times by mass or less, more preferably 5 times by mass or less, and particularly preferably 3 times by mass or less the compound represented by the formula (1).
  • the lower limit is preferably 0.5 times by mass or more, more preferably 1 time by mass or more. If the amount is 10 times by mass or less, the effect of the heat resistance and dielectric properties of the compound represented by the formula (1) can be utilized.
  • phenol resins epoxy resins, amine resins, active alkene-containing resins, isocyanate resins, polyamide resins, polyimide resins, cyanate ester resins, and active ester resins
  • epoxy resins epoxy resins, amine resins, active alkene-containing resins, isocyanate resins, polyamide resins, polyimide resins, cyanate ester resins, and active ester resins
  • Phenolic resin phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, hydroquinone, resorcinol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, furfural, etc.), phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinyln
  • Epoxy resins glycidyl ether-based epoxy resins obtained by glycidylating the above phenolic resins, alcohols, etc., 4-vinyl-1-cyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexane carboxylate, etc. Alicyclic epoxy resins, glycidylamine epoxy resins such as tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol, and glycidyl ester epoxy resins.
  • TGDDM tetraglycidyldiaminodiphenylmethane
  • Amine resins diaminodiphenylmethane, diaminodiphenylsulfone, isophoronediamine, naphthalenediamine, aniline novolak, orthoethylaniline novolak, aniline resin obtained by reaction of aniline with xylylene chloride, aniline described in Japanese Patent No.
  • Active alkene-containing resins Polycondensates of the above phenol resins and active alkene-containing halogen compounds (chloromethylstyrene, allyl chloride, methallyl chloride, acrylic acid chloride, allyl chloride, etc.), active alkene-containing phenols (2- allylphenol, 2-propenylphenol, 4-allylphenol, 4-propenylphenol, eugenol, isoeugenol, etc.) and halogen compounds (4,4'-bis(methoxymethyl)-1,1'-biphenyl, 1,4 -Bis(chloromethyl)benzene, 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, cyanuric chloride, etc.) polycondensates, epoxy resins or alcohols and substituted or non-substituted Polycondensates of substituted acrylates (acrylates,
  • Isocyanate resins p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylene diisocyanate, m-xylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, naphthalene diisocyanate, etc.
  • Aromatic diisocyanates areophorone diisocyanate, hexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylene diisocyanate, norbornene diisocyanate, lysine diisocyanate and other aliphatic or alicyclic diisocyanates; one or more types of isocyanate monomers or an isocyanate trimerized from the above diisocyanate compound; a polyisocyanate obtained by a urethanization reaction between the above isocyanate compound and a polyol compound.
  • Polyamide resins amino acids (6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, para-aminomethylbenzoic acid, etc.), lactams ( ⁇ -caprolactam, ⁇ -undecanelactam, ⁇ -laurolactam) and diamines (ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decanediamine, undecanediamine, dodecanediamine, tridecanediamine, tetradecanediamine, pentadecanediamine, hexadecanediamine, Aliphatic diamines such as heptadecanediamine, octadecanediamine, nonadecanediamine, eicosanediamine, 2-methyl-1,5-diaminopent
  • Polyimide resin the above diamine and tetracarboxylic dianhydride (4,4'-(hexafluoroisopropylidene) diphthalic anhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methyl- Cyclohexene-1,2 dicarboxylic anhydride, pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride , 2,2′,3,3′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetra Carboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, methylene-4,4'
  • Cyanate ester resin A cyanate ester compound obtained by reacting a phenolic resin with cyanogen halide.
  • Specific examples include dicyanatobenzene, tricyanatobenzene, dicyanatonaphthalene, dicyanatobiphenyl, 2, 2 '-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)methane, bis(3,5-dimethyl-4-cyanatophenyl)methane, 2,2'-bis(3,5-dimethyl -4-cyanatophenyl)propane, 2,2'-bis(4-cyanatophenyl)ethane, 2,2'-bis(4-cyanatophenyl)hexafluoropropane, bis(4-cyanatophenyl)sulfone , bis(4-cyanatophenyl) thioether, phenol novolak cyanate, and phenol/dicyclopentadiene cocondensate
  • cyanate ester compounds whose synthesis method is described in JP-A-2005-264154 are particularly preferable as cyanate ester compounds because they are excellent in low hygroscopicity, flame retardancy and dielectric properties.
  • the cyanate ester resin may be zinc naphthenate, cobalt naphthenate, copper naphthenate, lead naphthenate, zinc octylate, tin octylate, Catalysts such as lead acetylacetonate, dibutyltin maleate, and the like can also be included.
  • the catalyst is usually used in an amount of 0.0001 to 0.10 parts by weight, preferably 0.00015 to 0.0015 parts by weight, per 100 parts by weight of the total weight of the curable resin composition.
  • Active ester resin A compound having one or more active ester groups in one molecule, such as an epoxy resin, is optionally used as a curing agent for a curable resin other than the compound represented by the formula (1) of the present invention. be able to.
  • Active ester curing agents include compounds having two or more highly reactive ester groups per molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. preferable.
  • the active ester curing agent is preferably obtained by a condensation reaction of at least one of a carboxylic acid compound and a thiocarboxylic acid compound and at least one of a hydroxy compound and a thiol compound.
  • an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from a carboxylic acid compound and at least one of a phenol compound and a naphthol compound. agents are preferred.
  • carboxylic acid compounds include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucine, Benzenetriol, dicyclopentadiene-type diphenol compound, phenol novolak, and the like.
  • dicyclopentadiene-type diphenol compound refers to a diphenol compound obtained by condensing one molecule of dicyclopentadiene with two molecules of phenol.
  • the active ester curing agent include an active ester compound containing a dicyclopentadiene type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated phenol novolac, and a benzoylated phenol novolac.
  • “Dicyclopentadiene-type diphenol structure” represents a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
  • Active ester curing agents include, for example, active ester compounds containing a dicyclopentadiene type diphenol structure such as "EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T”, “HPC- 8000H-65TM”, “EXB-8000L-65TM”, “EXB-8150-65T” (manufactured by DIC); “EXB9416-70BK” (manufactured by DIC) as an active ester compound containing a naphthalene structure; acetylated phenol novolac "DC808” (manufactured by Mitsubishi Chemical Corporation) as an active ester compound containing "DC808” (manufactured by Mitsubishi Chemical Corporation) as an active ester curing agent; "EXB-90
  • the curable resin composition of the present invention can also be used in combination with a curing accelerator (curing catalyst) to improve curability.
  • a curing accelerator curing catalyst
  • Radical polymerization initiators that can be used include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, dicumyl peroxide, 1,3-bis-(t-butylperoxy Isopropyl)-benzene and other dialkyl peroxides, t-butyl peroxybenzoate, 1,1-di-t-butylperoxycyclohexane and other peroxyketals, ⁇ -cumyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, t- Butyl peroxy-2-ethylhexanoate, t
  • the amount of the radical polymerization initiator to be added is preferably 0.01 to 5 parts by mass, particularly preferably 0.01 to 3 parts by mass, per 100 parts by mass of the curable resin composition. If the amount of the radical polymerization initiator used is too large, the molecular weight will not be sufficiently elongated during the polymerization reaction.
  • a curing accelerator other than the radical polymerization initiator may be added or used together.
  • curing accelerators include imidazoles such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole, 2-(dimethylaminomethyl)phenol and 1,8-diaza-bicyclo ( 5,4,0) Tertiary amines such as undecene-7, phosphines such as triphenylphosphine, tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium salt, hexadecyltrimethyl Quaternary ammonium salts such as ammonium hydroxide, triphenylbenzylphosphonium salts, triphenylethylphosphonium salts, quaternary phosphonium salts such as tetrabutylphosphon
  • tin octylate zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, behene transition metal compounds (transition metal salts) such as zinc compounds such as zinc acid, zinc mystate) and zinc phosphate esters (zinc octyl phosphate, zinc stearyl phosphate, etc.);
  • a blending amount of the curing accelerator is 0.01 to 5.0 parts by weight based on 100 parts of the epoxy resin.
  • the curable resin composition of the present invention can also contain a phosphorus-containing compound as a component for imparting flame retardancy.
  • the phosphorus-containing compound may be of a reactive type or an additive type.
  • Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4'-biphenyl (dixylylenyl phosphate) and other phosphoric acid esters; 9,10-dihydro-9-oxa -phosphanes such as 10-phosphaphenanthrene-10-oxide and 10-(2,5-dihydroxyphenyl)-10H-9-o
  • (phosphorus-containing compound)/(total epoxy resin) is preferably in the range of 0.1 to 0.6 (weight ratio). If it is less than 0.1, the flame retardance is insufficient, and if it is more than 0.6, there is a concern that the hygroscopicity and dielectric properties of the cured product may be adversely affected.
  • a light stabilizer may be added to the curable resin composition of the present invention, if necessary.
  • Hindered amine-based light stabilizers particularly HALS, are suitable as the light stabilizer.
  • HALS are not particularly limited, but representative ones include dibutylamine/1,3,5-triazine/N,N'-bis(2,2,6,6-tetramethyl-4- Polycondensation product of piperidyl-1,6-hexamethylenediamine and N-(2,2,6,6-tetramethyl-4-piperidyl)butylamine, dimethyl-1-(2-hydroxyethyl)-4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly[ ⁇ 6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl)imino ⁇ hexamethylene ⁇ (2,2,6,6-
  • the curable resin composition of the present invention can be blended with a binder resin as needed.
  • binder resins include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. , but not limited to these.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, preferably 0.05 to 50 parts by mass, more preferably 0.05 to 50 parts by mass based on 100 parts by mass of the resin component. 0.05 to 20 parts by weight are used as needed.
  • the curable resin composition of the present invention may optionally contain fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, quartz powder, silicon carbide, silicon nitride, boron nitride, zirconia. , powders such as aluminum nitride, graphite, forsterite, steatite, spinel, mullite, titania, talc, clay, iron oxide asbestos, glass powder, etc., or inorganic fillers made of spherical or pulverized powders. can be done.
  • the amount of the inorganic filler used is usually 80 to 92% by mass, preferably 83 to 90% by mass in the curable resin composition. be.
  • the curable resin composition of the present invention can contain known additives as necessary.
  • additives that can be used include polybutadiene and its modified products, modified acrylonitrile copolymers, polyphenylene ethers, polystyrene, polyethylene, polyimide, fluororesins, silicone gels, silicone oils, fillers such as silane coupling agents. Coloring agents such as surface treatment agents for materials, release agents, carbon black, phthalocyanine blue, and phthalocyanine green.
  • the amount of these additives to be added is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less per 100 parts by mass of the curable resin composition.
  • Particularly preferred components for these additives include polybutadiene, modified products thereof, and butadiene-based thermoplastic elastomers. Details regarding these components are provided below.
  • Styrene-butadiene rubber includes, for example, RICON-100, RICON-181, RICON-184 (all manufactured by Clay Valley), and polybutadiene includes B-1000, B-2000, B-3000 ( All of them are manufactured by Nippon Soda Co., Ltd.) and the like. These may be used alone or in combination of two or more.
  • the weight average molecular weight of polybutadiene and styrene-butadiene rubber is preferably from 500 to 10,000, more preferably from 750 to 7,500, still more preferably from 1,000 to 5,000. Below the lower limit of the above range, the amount of volatilization is large, making it difficult to adjust the solid content during preparation of the prepreg. Above the upper limit of the above range, compatibility with other curable resins deteriorates.
  • Butadiene-based thermoplastic elastomer SEP (styrene-ethylene-propylene copolymer: Septon 1020 manufactured by Kuraray Co., Ltd.), SEPS (styrene-ethylene-propylene-styrene copolymer: Septon 2002, Septon 2004F, Septon 2005, Septon 2006 , Septon 2063, Septon 2104, both manufactured by Kuraray Co., Ltd.), SEEPS (Styrene-ethylene/ethylene/propylene-styrene block copolymer: Septon 4003, Septon 4044, Septon 4055, Septon 4077, Septon 4099, both of Kuraray Co., Ltd.
  • SEBS styrene-ethylene/butylene-styrene block copolymer: Septon 8004, Septon 8006, Septon 8007L; all manufactured by Kuraray Co., Ltd.
  • SEEPS-OH styrene-ethylene/ethylene/propylene-styrene block copolymer Compounds having a hydroxyl group at the end of the polymer: Septon HG252 manufactured by Kuraray Co., Ltd.
  • SIS styrene-isoprene-styrene block copolymers: Septon 5125, Septon 5127 manufactured by Kuraray Co., Ltd.
  • hydrogenated SIS water Added styrene-isoprene-styrene block copolymer: Hybler 7125F, Hybler 7311F (both manufactured by Kuraray Co., Ltd.) and the like.
  • butadiene-based thermoplastic elastomers those having no unsaturated bonds are preferred because they have higher heat resistance and are less susceptible to oxidation deterioration.
  • the weight average molecular weight of the butadiene-based thermoplastic elastomer is not particularly limited as long as it is 10,000 or more.
  • the compatibility with oligomer components of about 5,000 deteriorates, making it difficult to ensure mixing and solvent stability.
  • the curable resin composition of the present invention is obtained by uniformly mixing the above-mentioned respective components in a predetermined ratio, usually precured at 130 to 180 ° C. for 30 to 500 seconds, and further cured at 150 to 200 ° C. After curing for 2 to 15 hours at , the curing reaction proceeds sufficiently to obtain the cured product of the present invention. It is also possible to uniformly disperse or dissolve the components of the curable resin composition in a solvent or the like, remove the solvent, and then cure the composition.
  • the curable resin composition of the present invention thus obtained has moisture resistance, heat resistance, and high adhesiveness. Therefore, the curable resin composition of the present invention can be used in a wide range of fields requiring moisture resistance, heat resistance and high adhesion. Specifically, it is useful as an insulating material, laminate (printed wiring board, BGA substrate, build-up substrate, etc.), sealing material, resist, and all other materials for electrical and electronic parts. In addition to molding materials and composite materials, it can also be used in fields such as paint materials, adhesives, and 3D printing. Particularly in semiconductor encapsulation, solder reflow resistance is beneficial.
  • a semiconductor device has one sealed with the curable resin composition of the present invention.
  • semiconductor devices include DIP (dual in-line package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), SOP (small outline package), TSOP (thin small outline package), and TQFP. (think quad flat package) and the like.
  • the method of preparing the curable resin composition of the present invention is not particularly limited, but each component may be mixed uniformly or may be prepolymerized.
  • the curable resin of the present invention is prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent.
  • a curing agent such as an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound, and other additives may be added to form a prepolymer. good.
  • Mixing or prepolymerization of each component is carried out by using, for example, an extruder, kneader, rolls, etc. in the absence of a solvent, and by using a reactor equipped with a stirrer in the presence of a solvent.
  • the components are kneaded at a temperature within the range of 50 to 100° C. using a device such as a kneader, a roll, or a planetary mixer to obtain a uniform resin composition.
  • the obtained resin composition is pulverized and then molded into a cylindrical tablet by a molding machine such as a tablet machine, or formed into granular powder or a powdery molding, or these compositions are placed on a surface support. It can also be melted and molded into a sheet having a thickness of 0.05 mm to 10 mm to form a curable resin composition molding.
  • the obtained molded article becomes a non-sticky molded article at 0 to 20.degree.
  • the resulting molded product can be molded into a cured product using a transfer molding machine or a compression molding machine.
  • An organic solvent can be added to the curable resin composition of the present invention to form a varnish-like composition (hereinafter simply referred to as varnish).
  • the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to form a varnish.
  • a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.
  • Polyester fiber, polyamide fiber, alumina fiber, paper, etc. is impregnated into a base material and heat-dried to obtain a prepreg, which is hot-press molded to obtain a cured product of the curable resin composition of the present invention. .
  • the solvent is usually used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent. Moreover, if it is a liquid composition, it is possible to obtain a curable resin-cured product containing carbon fibers by, for example, the RTM method.
  • the curable composition of the present invention can also be used as a modifier for film-type compositions. Specifically, it can be used to improve flexibility and the like in the B-stage.
  • a film-type resin composition is obtained by applying the curable resin composition of the present invention as the curable resin composition varnish on a release film, removing the solvent under heating, and then performing B-stage. It is obtained as a sheet-like adhesive by This sheet-like adhesive can be used as an interlayer insulating layer in multilayer substrates and the like.
  • a prepreg can be obtained by heating and melting the curable resin composition of the present invention, reducing the viscosity, and impregnating reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers with the melted resin composition.
  • reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers with the melted resin composition.
  • Specific examples thereof include glass fibers such as E glass cloth, D glass cloth, S glass cloth, Q glass cloth, spherical glass cloth, NE glass cloth, and T glass cloth, inorganic fibers other than glass, and poly paraphenylene terephthalamide (Kevlar®, manufactured by DuPont), wholly aromatic polyamides, polyesters; and organic fibers such as polyparaphenylene benzoxazole, polyimides and carbon fibers, but are particularly limited to these.
  • the shape of the substrate is not particularly limited, but examples thereof include woven fabric, nonwoven fabric, roving, chopped strand mat, and the like. Plain weave, Nanako weave, twill weave, and the like are known as weaving methods of woven fabric, and it is possible to appropriately select and use from these known methods depending on the intended use and performance.
  • a woven fabric subjected to opening treatment or a glass woven fabric surface-treated with a silane coupling agent or the like is preferably used.
  • the thickness of the base material is not particularly limited, it is preferably about 0.01 to 0.4 mm.
  • a prepreg can also be obtained by impregnating reinforcing fibers with the varnish and heating and drying the varnish.
  • the laminate of the present embodiment includes one or more prepregs.
  • the laminate is not particularly limited as long as it comprises one or more prepregs, and may have any other layers.
  • a method for producing a laminate generally known methods can be appropriately applied, and there is no particular limitation. For example, when molding a metal foil-clad laminate, a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. can be used, and the above prepregs are laminated and heat-pressed to form a laminate. Obtainable.
  • the heating temperature is not particularly limited, but is preferably 65 to 300°C, more preferably 120 to 270°C.
  • the pressure to be applied is not particularly limited, but if the pressure is too high, it will be difficult to adjust the solid content of the resin in the laminate and the quality will not be stable. 2.0 to 5.0 MPa is preferable, and 2.5 to 4.0 MPa is more preferable, because it deteriorates.
  • the laminate of the present embodiment can be suitably used as a metal-foil-clad laminate described later by including a layer made of metal foil. After cutting the prepreg into a desired shape and laminating it with copper foil or the like if necessary, the curable resin composition is heat-cured while applying pressure to the laminate by a press molding method, an autoclave molding method, a sheet winding molding method, or the like. Electrical and electronic laminates (printed wiring boards) and carbon fiber reinforcing materials can be obtained.
  • the cured product of the present invention can be used for various purposes such as molding materials, adhesives, composite materials, and paints. Since the cured product of the curable resin composition according to the present invention exhibits excellent heat resistance and dielectric properties, it can be used as a sealing material for semiconductor elements, a sealing material for liquid crystal display elements, a sealing material for organic EL elements, and a printed wiring board. , electrical and electronic parts such as build-up laminates, and composite materials for lightweight and high-strength structural materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics.
  • Example 1 Thermometer, condenser, flask equipped with a stirrer 2-bromoethylbenzene (manufactured by Tokyo Kasei Co., Ltd.) 37.0 parts, 4,4'-dichloro-p-xylene (manufactured by Tokyo Kasei Co., Ltd.) 17.5 parts, diphenylmethane 8.4 parts and 3.2 parts of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) were charged and reacted at 130° C. for 5 hours. After standing to cool, it was extracted with 200 parts of toluene, and the organic layer was washed 5 times with 100 parts of water.
  • FIG. 2 shows a 1 H-NMR chart (deuterochloroform) of the obtained compound. A signal derived from a bromoethyl group was observed at 3.05-3.60 ppm in the 1 H-NMR chart.
  • Example 2 BEB-1 obtained in Example 1 (25.0 parts), 20 parts of toluene, 60 parts of dimethyl sulfoxide, 4-hydroxy-2,2,6,6 in a flask equipped with a thermometer, a condenser, and a stirrer 0.0125 parts of tetramethylpiperidine-1-oxyl (manufactured by Tokyo Chemical Industry Co., Ltd.) and 12.0 parts of a 50 wt % sodium hydroxide aqueous solution were added and reacted at 40° C. for 6 hours. Thereafter, 100 parts of water was added and the organic layer was washed with water to remove the produced salt. Furthermore, the organic layer was returned to the reaction vessel again and reacted at 40° C. for 1 hour.
  • Example 3 A thermometer, a cooling tube, a flask equipped with a stirrer, 37.0 parts of 2-bromoethylbenzene (manufactured by Tokyo Kasei Co., Ltd.), 4,4'-dichloro-p-xylene (manufactured by Tokyo Kasei Co., Ltd.) 17.5 parts, diphenyl ether 8.5 parts and 3.2 parts of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) were charged and reacted at 130° C. for 5 hours. After standing to cool, it was extracted with 200 parts of toluene, and the organic layer was washed 5 times with 100 parts of water.
  • 2-bromoethylbenzene manufactured by Tokyo Kasei Co., Ltd.
  • 4,4'-dichloro-p-xylene manufactured by Tokyo Kasei Co., Ltd.
  • methanesulfonic acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • FIG. 6 shows a 1 H-NMR chart (deuterochloroform) of the obtained compound. A signal derived from a bromoethyl group was observed at 3.00-3.60 ppm in the 1 H-NMR chart.
  • Example 4 BEB-2 obtained in Example 3 (25.0 parts), 20 parts of toluene, 60 parts of dimethyl sulfoxide, 4-hydroxy-2,2,6,6 in a flask equipped with a thermometer, a condenser, and a stirrer 0.0125 parts of tetramethylpiperidine-1-oxyl (manufactured by Tokyo Chemical Industry Co., Ltd.) and 12.0 parts of a 50 wt % sodium hydroxide aqueous solution were added and reacted at 40° C. for 6 hours. Thereafter, 100 parts of water was added and the organic layer was washed with water to remove the produced salt. Furthermore, the organic layer was returned to the reaction vessel again and reacted at 40° C. for 1 hour.
  • ⁇ Heat resistance test> Glass transition temperature: measured by a dynamic viscoelasticity tester, the temperature at which tan ⁇ reaches its maximum value.
  • thermometer A thermometer, a condenser, a flask equipped with a stirrer, 296 parts of 2-bromoethylbenzene (manufactured by Tokyo Kasei Co., Ltd.), ⁇ , ⁇ '-dichloro-p-xylene (manufactured by Tokyo Kasei Co., Ltd.) 70 parts, methanesulfonic acid (Tokyo (manufactured by Kasei Co., Ltd.) was charged and reacted at 130° C. for 8 hours. After allowing to cool, the mixture was neutralized with an aqueous sodium hydroxide solution, extracted with 1200 parts of toluene, and the organic layer was washed 5 times with 100 parts of water.
  • 2-bromoethylbenzene manufactured by Tokyo Kasei Co., Ltd.
  • ⁇ , ⁇ '-dichloro-p-xylene manufactured by Tokyo Kasei Co., Ltd.
  • methanesulfonic acid Tokyo
  • a GPC chart of the obtained compound is shown in FIG.
  • the repeating unit n calculated from the area % of the GPC chart was 1.7.
  • 1 H-NMR data (DMSO-d6) of the obtained compound is shown in FIG.
  • Signals derived from vinyl groups were observed at 5.10-5.30 ppm, 5.50-5.85 ppm, and 6.60-6.80 ppm in the 1 H-NMR chart.
  • Examples 8 and 9, Comparative Example 2 Two parts each of the olefin resins (O-1 and O-2) obtained in Examples 2 and 4 and the olefin resin (O-3) obtained in Reference Example 2 were weighed out. After applying each olefin resin to the matte surface of a low-roughness copper foil (T-4X, thickness 18 ⁇ m) manufactured by Fukuda Metal Copper Foil, the central part of the cushion paper was cut out 15 cm square (after curing, the film thickness will be 300 ⁇ m. Thickness) was used as a spacer, and a low-roughness copper foil (T-4X, thickness 18 ⁇ m) manufactured by Fukuda Metal Copper Foil was overlaid thereon so that the matte surface was in contact with the resin. It was cured at 220° C. for 1 hour while applying a vacuum pressure of 1 MPa using a vacuum press. Table 2 shows the results of a copper foil adhesion test using this sample.
  • Table 2 shows that Examples 8 and 9 are superior to Comparative Example 2 in adhesion.
  • the compound of the present invention can be used as an insulating material for electric and electronic parts (such as a highly reliable semiconductor sealing material), a laminate (such as a printed wiring board, a BGA substrate, and a build-up substrate), an adhesive (such as a conductive adhesive), or It is useful for various composite materials such as CFRP, paints, and 3D printing.

Abstract

A compound represented by formula (1). In formula (1), X represents an arbitrary organic group. If there are a plurality of Xs, the plurality of Xs may be the same or may differ from one other. A represents a methylene group or an oxygen atom, and Q represents a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group. The plurality of Rs may be the same or may differ from one another. R represents a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group. If there are a plurality of Rs, the plurality of Rs may be the same or may differ from one other. l and m each represent an integer from 0 to 3; n is a repeating unit, where 1≤n≤20; and p is a repeating unit, where 1≤p≤20.

Description

化合物、混合物、硬化性樹脂組成物およびその硬化物Compound, mixture, curable resin composition and cured product thereof
 本発明は、化合物、混合物、硬化性樹脂組成物、及びその硬化物に関するものであり、半導体封止材、プリント配線基板、ビルドアップ積層板などの電気・電子部品、炭素繊維強化プラスチック、ガラス繊維強化プラスチックなどの軽量高強度材料、3Dプリンティング用途に好適に使用される。 The present invention relates to compounds, mixtures, curable resin compositions, and cured products thereof, and includes electrical and electronic components such as semiconductor sealing materials, printed wiring boards, and build-up laminates, carbon fiber reinforced plastics, and glass fibers. Lightweight high-strength materials such as reinforced plastics are well suited for 3D printing applications.
 近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。従来の半導体チップは金属製のリードフレームに搭載することが主流であったが、中央処理装置(以下、CPUと表す。)などの処理能力の高い半導体チップは高分子材料で作られる積層板に搭載されることが多くなってきている。 In recent years, due to the expansion of the fields of application of laminates on which electrical and electronic parts are mounted, the required properties are becoming more extensive and sophisticated. Conventional semiconductor chips are mainly mounted on metal lead frames, but semiconductor chips with high processing power such as central processing units (hereinafter referred to as CPUs) are mounted on laminates made of polymer materials. It is being installed more and more often.
 特にスマートフォンなどに使用されている半導体パッケージ(以下、PKGと表す。)では小型化、薄型化および高密度化の要求に応えるために、PKG基板の薄型化が求められているが、PKG基板が薄くなると剛性が低下するため、PKGをマザーボード(PCB)に半田実装する際の加熱によって、大きな反りが発生するなど不具合が発生する。これを低減するために高TgのPKG基板材料が求められている。 In particular, semiconductor packages (hereinafter referred to as PKG) used in smartphones and the like are required to be thinner in order to meet the demands for smaller, thinner, and higher density PKG substrates. As the PKG becomes thinner, its rigidity decreases, and problems such as large warping occur due to heating when the PKG is solder-mounted to the motherboard (PCB). A high Tg PKG substrate material is sought to reduce this.
 加えて、現在開発が加速している第5世代通信システム「5G」では、さらなる大容量化と高速通信が進むことが予想されている。5Gでは使用する周波数の高周波化が進むことになるが、高周波を利用した高速通信の実現には基板材料の更なる性能向上が求められることとなる。例えば、伝送損失低減のために低誘電特性を有すること等が重要であり、誘電正接としては少なくとも10GHzにおいて0.005以下が要求される。プリント基板上で発生する伝送損失は導体損失と誘電体損失に由来する(非特許文献1)。導体損失は基板上の配線などの導体の抵抗成分に起因するものであり、高周波での表皮効果による損失と、銅箔表面の粗さによる散乱損失に分けられる。高周波ほど銅箔表面近傍に電気信号が流れるため(銅箔表面からの距離としては、1GHz:2.1μm、10GHz:0.66μm)、表皮効果低減のため近年では銅箔の低粗度化が進んでいる。こうしたことから、樹脂材料への要求の一つとして低粗度銅箔に対する密着性担保が課題となってきているが、低誘電材料はPTFE(ポリテトラフルオロエチレン)やLCP(液晶ポリマー)に代表されるように密着性に乏しく、またこれらの材料は熱可塑性材料であるため、成形性にも乏しい。これを踏まえ、密着性と低誘電特性、成形性に優れた熱硬化性樹脂の開発が望まれている。 In addition, in the 5th generation communication system "5G", which is currently being developed, it is expected that further increase in capacity and high-speed communication will progress. In 5G, higher frequencies will be used, and in order to realize high-speed communication using high frequencies, further improvement in the performance of substrate materials will be required. For example, it is important to have low dielectric properties to reduce transmission loss, and the dielectric loss tangent is required to be 0.005 or less at least at 10 GHz. Transmission loss that occurs on a printed circuit board originates from conductor loss and dielectric loss (Non-Patent Document 1). Conductor loss is caused by the resistance component of conductors such as wiring on a substrate, and is divided into loss due to the skin effect at high frequencies and scattering loss due to the roughness of the copper foil surface. Since electric signals flow closer to the surface of the copper foil at higher frequencies (distance from the surface of the copper foil is 1 GHz: 2.1 μm, 10 GHz: 0.66 μm), the surface roughness of the copper foil has been reduced in recent years in order to reduce the skin effect. progressing. For this reason, securing adhesion to low-roughness copper foil has become an issue as one of the requirements for resin materials. Low dielectric materials are represented by PTFE (polytetrafluoroethylene) and LCP (liquid crystal polymer). In addition, since these materials are thermoplastic materials, their moldability is also poor. Based on this, the development of thermosetting resins with excellent adhesion, low dielectric properties, and moldability is desired.
 更に、自動車分野においては電子化が進み、エンジン駆動部付近に精密電子機器が配置されることもあるため、より高水準での耐熱・耐湿性が求められる。電車やエアコン等にはSiC半導体が使用され始めており、半導体素子の封止材には極めて高い耐熱性が要求されるため、従来のエポキシ樹脂封止材では対応できなくなっている。 Furthermore, in the automotive field, electronics is progressing, and precision electronic equipment is sometimes placed near the engine drive, so a higher level of heat and moisture resistance is required. SiC semiconductors have begun to be used in trains, air conditioners, and the like, and the encapsulating material for semiconductor elements is required to have extremely high heat resistance.
 このような背景を受けて、耐熱性と低誘電正接特性を両立できる高分子材料が検討されている。例えば、特許文献1ではマレイミド樹脂とプロペニル基含有フェノール樹脂を含む組成物が提案されている。しかしながら、一方で硬化反応時に反応に関与しないフェノール性水酸基が残存するため、電気特性が十分とは言えない。また特許文献2では水酸基をアリル基で置換したアリルエーテル樹脂が開示されている。しかしながら、190℃においてクライゼン転位が起こることが示されており、一般的な基板の成型温度である200℃においては、硬化反応に寄与しないフェノール性水酸基が生成することから電気特性を満足できるものではない。 Against this background, polymer materials that can achieve both heat resistance and low dielectric loss tangent characteristics are being investigated. For example, Patent Document 1 proposes a composition containing a maleimide resin and a propenyl group-containing phenolic resin. However, since phenolic hydroxyl groups that do not participate in the reaction remain during the curing reaction, it cannot be said that the electrical properties are sufficient. Patent Document 2 discloses an allyl ether resin in which hydroxyl groups are substituted with allyl groups. However, it has been shown that Claisen rearrangement occurs at 190°C, and at 200°C, which is a general substrate molding temperature, phenolic hydroxyl groups that do not contribute to the curing reaction are generated, so electrical properties cannot be satisfied. do not have.
 また、近年、三次元造形の手法として3Dプリンティングが注目されており、航空・宇宙、車、さらにそれらに使用される電子部品のコネクタといった信頼性が求められる分野において、この3Dプリンティングの手法が適用され始めている。特に、光硬化系、熱硬化系の樹脂はステレオリソグラフィ(SLA)やデジタル・ライト・プロセッシング(DLP)に代表される用途での検討が進んでいる。そのため、従来の金型から転写する方式では、形状の安定性、正確性が主に求められていたが、3Dプリンティング用途では、耐熱性、機械特性、強靭性、難燃性、さらには電気特性と言った様々な特性が求められ、その材料開発が進められている。また、構造部材に使用される場合には吸湿等による特性変化が課題となっている。現在、このような用途においてアクリレート樹脂やエポキシ樹脂が適用されているがいずれもその硬化物においては、多数のエステル結合、エーテル結合、更には水酸基が含まれており、吸湿における特性が十分でない。 In recent years, 3D printing has been attracting attention as a three-dimensional modeling method, and this 3D printing method is applied in fields where reliability is required, such as aerospace, automobiles, and electronic component connectors used in them. is beginning to be In particular, photo-curing and thermosetting resins are being studied for applications such as stereolithography (SLA) and digital light processing (DLP). Therefore, in the conventional method of transferring from a mold, stability and accuracy of shape were mainly required, but in 3D printing applications, heat resistance, mechanical properties, toughness, flame resistance, and even electrical properties are required. Such various characteristics are required, and material development is underway. In addition, when it is used for structural members, there is a problem of characteristic change due to moisture absorption and the like. At present, acrylate resins and epoxy resins are applied for such applications, but the cured products thereof contain many ester bonds, ether bonds, and hydroxyl groups, and their moisture absorption properties are not sufficient.
日本国特開平04-359911号公報Japanese Patent Laid-Open No. 04-359911 国際公開第2016/002704号WO2016/002704
 本発明は、このような状況を鑑みてなされたものであり、優れた耐熱性、電気特性、密着性を示し、良好な硬化性を有する化合物、混合物、硬化性樹脂組成物及びその硬化物を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides compounds, mixtures, curable resin compositions, and cured products thereof exhibiting excellent heat resistance, electrical properties, adhesion, and good curability. intended to provide
 すなわち本発明は、下記[1]~[11]に関する。
[1]
 下記式(1)で表される化合物。
That is, the present invention relates to the following [1] to [11].
[1]
A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Xは任意の有機基を表す。Xが複数ある場合、複数のXは互いに同一であってもよいし、異なっていてもよい。Aはメチレン基または酸素原子、Qは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。複数のRは互いに同一であってもよいし、異なっていてもよい。Rは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。Rが複数ある場合、複数のRは互いに同一であってもよいし、異なっていてもよい。l、mはそれぞれ0~3の整数を表し、nは繰り返し単位であり、1≦n≦20であり、pは繰り返し単位であり、1≦p≦20である。)
[2]
 前記式(1)中、nが、1.1≦n≦20である前項[1]に記載の化合物。
[3]
 前記式(1)中、Xが下記式(2)に記載の(a)~(h)のいずれか1種以上である前項[1]または[2]に記載の化合物。
(In the formula (1), X represents an arbitrary organic group. When there are multiple Xs, the multiple Xs may be the same or different. A is a methylene group or an oxygen atom, Q represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.A plurality of R may be the same or different, R is a hydrocarbon group having 1 to 10 carbon atoms, or represents a halogenated alkyl group.When there are multiple Rs, the multiple Rs may be the same or different.l and m each represent an integer of 0 to 3, and n is a repeating unit. , 1 ≤ n ≤ 20, p is a repeating unit, and 1 ≤ p ≤ 20.)
[2]
The compound according to the preceding item [1], wherein n is 1.1≦n≦20 in the formula (1).
[3]
The compound according to the preceding item [1] or [2], wherein in the formula (1), X is any one or more of (a) to (h) described in the following formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(*は結合位置を示す。)
[4]
 前記式(1)中、Xが前記式(2)に記載の(a)である前項[3]に記載の化合物。
[5]
 前項[1]から[4]のいずれか一項に記載の化合物と下記式(4-a)で表される化合物を含有する混合物。
(* indicates the binding position.)
[4]
The compound according to the above item [3], wherein in the formula (1), X is (a) according to the formula (2).
[5]
A mixture containing the compound according to any one of [1] to [4] above and a compound represented by the following formula (4-a).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(4-a)中、sは繰り返し単位であり、1≦s≦20である。)
[6]
 前項[1]から[4]のいずれか一項に記載の化合物、または前項[5]に記載の混合物を含有する硬化性樹脂組成物。
[7]
 さらに、ポリフェニレンエーテル、ポリブタジエンおよびこの変性物からなる群から選択される1種以上を含有する前項[6]に記載の硬化性樹脂組成物。
[8]
 前記ポリブタジエンおよびこの変性物が、スチレンブタジエン共重合体、およびブタジエン系熱可塑性エラストマーからなる群から選択される1種以上を含有する前項[7]に記載の硬化性樹脂組成物。
[9]
 前項[1]から[4]のいずれか一項に記載の化合物、前項[5]に記載の混合物、または前項[6]から[8]のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。
[10]
 下記式(3)で表される化合物。
(In formula (4-a), s is a repeating unit, and 1 ≤ s ≤ 20.)
[6]
A curable resin composition containing the compound according to any one of [1] to [4] above or the mixture according to [5] above.
[7]
The curable resin composition according to [6] above, further containing one or more selected from the group consisting of polyphenylene ether, polybutadiene and modified products thereof.
[8]
The curable resin composition according to [7] above, wherein the polybutadiene and its modified product contain one or more selected from the group consisting of a styrene-butadiene copolymer and a butadiene-based thermoplastic elastomer.
[9]
The compound according to any one of the preceding items [1] to [4], the mixture according to the preceding item [5], or the curable resin composition according to any one of the preceding items [6] to [8] Cured product obtained by curing.
[10]
A compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(3)中、Xは任意の有機基を表す。Xが複数ある場合、複数のXは互いに同一であってもよいし、異なっていてもよい。Zはハロゲン元素を表す。複数のZは互いに同一であってもよいし、異なっていてもよい。Aはメチレン基または酸素原子、Qは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。複数のRは互いに同一であってもよいし、異なっていてもよい。Rは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。Rが複数ある場合、複数のRは互いに同一であってもよいし、異なっていてもよい。l、mはそれぞれ0~3の整数を表し、nは繰り返し単位であり、1≦n≦20であり、pは繰り返し単位であり、1≦p≦20である。)
[11]
 前項[10]に記載の前記式(3)で表される化合物を塩基性触媒存在下で脱ハロゲン化水素反応させる工程を含む、前項[1]から[4]のいずれか一項に記載の化合物の製造方法。
(In formula (3), X represents an arbitrary organic group. When there are multiple Xs, the multiple Xs may be the same or different. Z represents a halogen element. Multiple Z may be the same or different, A is a methylene group or an oxygen atom, Q is a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group, and multiple Rs are may be the same or different.R represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.When there are multiple Rs, the multiple Rs may be the same l and m each represent an integer of 0 to 3, n is a repeating unit and satisfies 1≦n≦20, p is a repeating unit and satisfies 1≦p≦20. be.)
[11]
Any one of the preceding items [1] to [4], comprising a step of subjecting the compound represented by the formula (3) according to the preceding item [10] to a dehydrohalogenation reaction in the presence of a basic catalyst. A method for producing a compound.
 本発明の化合物は硬化性に優れ、その硬化物は高耐熱性、低誘電特性、密着性に優れた特性を有する。そのため、電気電子部品の封止や回路基板、炭素繊維複合材などに有用な材料である。
 また、本発明の化合物は反応性に優れることから、単独で硬化させることも好ましい態様の一つである。
The compound of the present invention has excellent curability, and its cured product has high heat resistance, low dielectric properties, and excellent adhesion. Therefore, it is a useful material for sealing electrical and electronic parts, circuit boards, carbon fiber composite materials, and the like.
In addition, since the compound of the present invention is excellent in reactivity, curing alone is also one of preferred embodiments.
実施例1のGPCチャートを示す。1 shows a GPC chart of Example 1. FIG. 実施例1のH-NMRチャートを示す。 1 H-NMR chart of Example 1 is shown. 実施例2のGPCチャートを示す。2 shows a GPC chart of Example 2. FIG. 実施例2のH-NMRチャートを示す。 1 H-NMR chart of Example 2 is shown. 実施例3のGPCチャートを示す。The GPC chart of Example 3 is shown. 実施例3のH-NMRチャートを示す。 1 H-NMR chart of Example 3 is shown. 実施例4のGPCチャートを示す。The GPC chart of Example 4 is shown. 実施例4のH-NMRチャートを示す。 1 H-NMR chart of Example 4 is shown. 参考例1のGPCチャートを示す。A GPC chart of Reference Example 1 is shown. 参考例1のH-NMRチャートを示す。 1 H-NMR chart of Reference Example 1 is shown. 参考例2のGPCチャートを示す。A GPC chart of Reference Example 2 is shown. 参考例2のH-NMRチャートを示す。 1 H-NMR chart of Reference Example 2 is shown.
 本発明の化合物は下記式(1)で表される。 The compound of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(1)中、Xは任意の有機基を表す。Xが複数ある場合、複数のXは互いに同一であってもよいし、異なっていてもよい。Aはメチレン基または酸素原子、Qは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。複数のRは互いに同一であってもよいし、異なっていてもよい。Rは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。Rが複数ある場合、複数のRは互いに同一であってもよいし、異なっていてもよい。l、mはそれぞれ0~3の整数を表し、nは繰り返し単位であり、1≦n≦20であり、pは繰り返し単位であり、1≦p≦20である。) (In the formula (1), X represents an arbitrary organic group. When there are multiple Xs, the multiple Xs may be the same or different. A is a methylene group or an oxygen atom, Q represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.A plurality of R may be the same or different, R is a hydrocarbon group having 1 to 10 carbon atoms, or represents a halogenated alkyl group.When there are multiple Rs, the multiple Rs may be the same or different.l and m each represent an integer of 0 to 3, and n is a repeating unit. , 1 ≤ n ≤ 20, p is a repeating unit, and 1 ≤ p ≤ 20.)
 前記式(1)中、mは通常0~3の整数であり、好ましくは0~2の整数、さらに好ましくは0である。nは通常1≦n≦20であり、1.1≦n≦20であることが好ましく、1.1≦n≦10であることがさらに好ましく、1.1≦n≦5であることが特に好ましい。nの値はオレフィン化合物のゲルパーミエーションクロマトグラフィー(GPC)の測定により求められた重量平均分子量(Mw)の値から算出することができる。重量平均分子量は、200以上5000未満であるときが好ましく、300以上3000未満であるときがさらに好ましく、400以上2000未満であるときが特に好ましい。重量平均分子量が5000未満であると水洗による精製が容易となり、200以上であると溶剤留去工程において目的化合物が揮発するおそれが少ない。
 pは通常1≦p≦20であり、1≦p≦5であることが好ましく、1≦p≦3であることがさらに好ましく、1≦p≦2であることが特に好ましい。
 Rは通常、炭素数1~10の炭化水素基であり、好ましくは炭素数1~5であり、さらに好ましくは炭素数1~3である。Rが炭素数3以下の炭化水素は高周波に晒された際に分子振動をしにくいため、電気特性に優れる。
In the above formula (1), m is usually an integer of 0 to 3, preferably an integer of 0 to 2, more preferably 0. n is usually 1 ≤ n ≤ 20, preferably 1.1 ≤ n ≤ 20, more preferably 1.1 ≤ n ≤ 10, particularly 1.1 ≤ n ≤ 5 preferable. The value of n can be calculated from the weight average molecular weight (Mw) of the olefin compound determined by gel permeation chromatography (GPC). The weight average molecular weight is preferably 200 or more and less than 5,000, more preferably 300 or more and less than 3,000, and particularly preferably 400 or more and less than 2,000. When the weight-average molecular weight is less than 5000, purification by water washing becomes easy, and when it is 200 or more, there is little possibility that the target compound will volatilize in the solvent distillation step.
p is usually 1≦p≦20, preferably 1≦p≦5, more preferably 1≦p≦3, and particularly preferably 1≦p≦2.
R is usually a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. Hydrocarbons in which R has 3 or less carbon atoms are less susceptible to molecular vibration when exposed to high frequency waves, and are therefore excellent in electrical properties.
 前記式(1)中、Qは通常、炭素数1~10の炭化水素基であり、好ましくは炭素数1~5であり、さらに好ましくは炭素数1~3である。炭素数3以下の炭化水素は高周波に晒された際に分子振動をしにくいため、電気特性に優れる。
 前記式(1)中、lは通常0~3であり、好ましくは0~2、さらに好ましくは0である。lが0のときは分子の対称性の観点から、特に好ましいと言える。対称性の高い分子構造を有する場合、硬化物も同様に化学結合様式として対称性の高い硬化物が得やすい。化学結合様式として対称性の高い硬化物は分子振動しにくく、双極子を打ち消しあう効果が生じるため、誘電特性などに優れる。また、ジフェニルメタンのような分子内に2つ以上芳香環を有する化合物を分子内に導入することは官能基密度を低下させ、硬化収縮を低減する効果を発現する。硬化収縮が小さいほど銅箔などへの密着性も向上しやすい。
In the above formula (1), Q is generally a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. Hydrocarbons with 3 or less carbon atoms are less susceptible to molecular vibration when exposed to high frequency waves, and are therefore excellent in electrical properties.
In formula (1), l is usually 0 to 3, preferably 0 to 2, more preferably 0. When l is 0, it can be said that it is particularly preferable from the viewpoint of molecular symmetry. When it has a highly symmetrical molecular structure, it is easy to obtain a cured product with a highly symmetrical chemical bond pattern. A cured product with a highly symmetrical chemical bond mode is less likely to undergo molecular vibration and has the effect of canceling out dipoles, resulting in excellent dielectric properties. Also, introducing a compound having two or more aromatic rings in the molecule such as diphenylmethane into the molecule lowers the functional group density, thereby exhibiting the effect of reducing cure shrinkage. The smaller the curing shrinkage, the easier it is to improve the adhesion to copper foil and the like.
 また、前記式(1)中、Xは下記式(2)に記載の(a)~(h)のいずれか1種以上であるときが好ましく、(a)~(c)および(e)~(h)のいずれか1種以上であるときがさらに好ましく、(a)であるときが特に好ましい。芳香環の共役が大きくなると双極子モーメントが大きくなり、誘電特性を悪化させる恐れがあるためである。 Further, in the above formula (1), X is preferably any one or more of (a) to (h) described in the following formula (2), and (a) to (c) and (e) to (h) is more preferred, and (a) is particularly preferred. This is because as the conjugation of the aromatic ring increases, the dipole moment increases, possibly deteriorating the dielectric properties.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(*は結合位置を示す。) (* indicates the binding position.)
 本発明の前記式(1)で表される化合物は、下記式(3)で表される化合物から誘導される。 The compound represented by the formula (1) of the present invention is derived from the compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(3)中、Xは任意の有機基を表す。Xが複数ある場合、複数のXは互いに同一であってもよいし、異なっていてもよい。Zはハロゲン元素を表す。複数のZは互いに同一であってもよいし、異なっていてもよい。Aはメチレン基または酸素原子、Qは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。複数のRは互いに同一であってもよいし、異なっていてもよい。Rは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。Rが複数ある場合、複数のRは互いに同一であってもよいし、異なっていてもよい。l、mはそれぞれ0~3の整数を表し、nは繰り返し単位であり、1≦n≦20であり、pは繰り返し単位であり、1≦p≦20である。) (In formula (3), X represents an arbitrary organic group. When there are multiple Xs, the multiple Xs may be the same or different. Z represents a halogen element. Multiple Z may be the same or different, A is a methylene group or an oxygen atom, Q is a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group, and multiple Rs are may be the same or different.R represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.When there are multiple Rs, the multiple Rs may be the same l and m each represent an integer of 0 to 3, n is a repeating unit and satisfies 1≦n≦20, p is a repeating unit and satisfies 1≦p≦20. be.)
 前記式(3)のX、l、m、n、p、A、Q、Rの好ましい範囲は、前記式(1)と同様である。また、Zは臭素原子または塩素原子であるときが好ましく、臭素原子であることが特に好ましい。 The preferred ranges of X, l, m, n, p, A, Q, and R in formula (3) are the same as in formula (1). Also, Z is preferably a bromine atom or a chlorine atom, and particularly preferably a bromine atom.
 本発明の前記式(1)で表される化合物は、前記式(3)で表される化合物から誘導される。具体的には、前記式(3)で表される化合物を塩基性触媒存在下、溶剤中で脱ハロゲン化水素反応させる方法で得ることができる。また、脱ハロゲン化水素反応の反応率を向上させるために、脱ハロゲン化水素反応を施した溶液から水洗で塩を除いたのちに反応容器に戻し、再び脱ハロゲン化水素反応を施すという操作を複数回行ってもよい。得られたオレフィン樹脂に残存するハロゲン量としては10~10000ppmが好ましく、10~1000ppmがより好ましく、10~900ppmがより好ましい。脱ハロゲン化水素反応が不十分だった場合、残存ハロゲン化エチル基が電気特性を悪化させる場合がある。使用する溶剤としては、例えばトルエン、キシレンなどの芳香族溶剤、シクロヘキサン、n-ヘキサンなどの脂肪族溶剤、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、酢酸エチル、酢酸ブチルなどのエステル系溶剤、メチルイソブチルケトン、シクロペンタノン、アセトンなどのケトン系溶剤などの非水溶性溶剤が挙げられるがこれらに限定されるものではなく、2種以上を併用しても良い。また、前記非水溶性溶剤に加えて非プロトン性極性溶剤を併用することもできる。例えば、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどが挙げられ、2種以上を併用しても良い。触媒は特に限定されないが、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等の塩基性触媒が挙げられる。 The compound represented by the formula (1) of the present invention is derived from the compound represented by the formula (3). Specifically, it can be obtained by subjecting the compound represented by the formula (3) to a dehydrohalogenation reaction in a solvent in the presence of a basic catalyst. Further, in order to improve the reaction rate of the dehydrohalogenation reaction, the solution subjected to the dehydrohalogenation reaction is washed with water to remove salts, returned to the reaction vessel, and subjected to the dehydrohalogenation reaction again. You can do it multiple times. The amount of halogen remaining in the obtained olefin resin is preferably 10 to 10,000 ppm, more preferably 10 to 1,000 ppm, and more preferably 10 to 900 ppm. If the dehydrohalogenation reaction is insufficient, residual ethyl halide groups may deteriorate the electrical properties. Examples of solvents to be used include aromatic solvents such as toluene and xylene, aliphatic solvents such as cyclohexane and n-hexane, ethers such as diethyl ether and diisopropyl ether, ester solvents such as ethyl acetate and butyl acetate, and methyl isobutyl. Water-insoluble solvents such as ketone-based solvents such as ketones, cyclopentanone, and acetone can be used, but the solvents are not limited to these, and two or more of them may be used in combination. An aprotic polar solvent can also be used in combination with the water-insoluble solvent. Examples thereof include dimethylsulfone, dimethylsulfoxide, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone and the like, and two or more of them may be used in combination. Although the catalyst is not particularly limited, basic catalysts such as sodium hydroxide, potassium hydroxide and potassium carbonate can be used.
 前記式(3)で表される化合物の製法は特に限定されないが、例えば、2-ブロモエチルベンゼン構造を有する化合物と、ビスハロゲン化メチルアリール化合物と、ジフェニルメタン系化合物またはジフェニルエーテル系化合物とを塩酸やスルホン酸、活性白土等の酸触媒下反応させても良いし、2-ブロモエチルベンゼン構造を有する化合物とビスヒドロキシメチルアリール化合物とジフェニルメタン系化合物またはジフェニルエーテル系化合物とを塩酸やスルホン酸、活性白土等の酸触媒下反応させても良い。塩酸を触媒とした場合、水酸化ナトリウムや水酸化カリウム等のアルカリ金属で中和を行い、トルエンやキシレン等の芳香族炭化水素溶媒で抽出後、排水が中性になるまで水洗し、エバポレータ等を用いて溶剤を留去することで目的の分子内に少なくとも2つ以上、2-ブロモエチルベンゼン構造を有する化合物を得ることができる。この際の原料仕込み比率としての好ましい範囲を以下に示す。2-ブロモエチルベンゼン構造を有する化合物1モルに対するビスハロゲン化メチルアリール化合物(もしくはビスヒドロキシメチルアリール化合物)の仕込み比率は0.1~0.95モルが好ましく、0.2~0.9モルがより好ましく、0.25~0.8モルが特に好ましい。また、この際、ビスハロゲン化メチルアリール化合物(もしくはビスヒドロキシメチルアリール化合物)1モルに対するジフェニルメタン系化合物またはジフェニルエーテル系化合物の仕込み比率は0.1~0.95モルが好ましく、0.2~0.9モルがより好ましく、0.25~0.8モルが特に好ましい。上記範囲内であれば、残存原料もなく、ジフェニルメタン構造またはジフェニルエーテル構造導入の効果を発現することが可能である。 The method for producing the compound represented by the formula (3) is not particularly limited. The reaction may be carried out under an acid catalyst such as an acid or activated clay, or a compound having a 2-bromoethylbenzene structure, a bishydroxymethylaryl compound and a diphenylmethane compound or a diphenyl ether compound may be reacted with an acid such as hydrochloric acid, sulfonic acid, or activated clay. The reaction may be carried out under a catalyst. When hydrochloric acid is used as a catalyst, neutralize with an alkali metal such as sodium hydroxide or potassium hydroxide, extract with an aromatic hydrocarbon solvent such as toluene or xylene, wash with water until the waste water becomes neutral, and evaporate. By distilling off the solvent using , a compound having at least two 2-bromoethylbenzene structures in the target molecule can be obtained. A preferable range of the raw material charging ratio at this time is shown below. The charging ratio of the bishalogenated methylaryl compound (or bishydroxymethylaryl compound) to 1 mol of the compound having a 2-bromoethylbenzene structure is preferably 0.1 to 0.95 mol, more preferably 0.2 to 0.9 mol. Preferably, 0.25 to 0.8 mol is particularly preferred. In this case, the ratio of the diphenylmethane compound or diphenyl ether compound to 1 mol of the bishalogenated methylaryl compound (or bishydroxymethylaryl compound) is preferably 0.1 to 0.95 mol, more preferably 0.2 to 0.2 mol. 9 mol is more preferred, and 0.25 to 0.8 mol is particularly preferred. Within the above range, the effect of introducing a diphenylmethane structure or a diphenyl ether structure can be exhibited without residual raw materials.
 2-ブロモエチルベンゼン構造を有する化合物としては、2-ブロモエチルベンゼン、1-(2-ブロモエチル)-2-メチルベンゼン、1-(2-ブロモエチル)-3-メチルベンゼン、1-(2-ブロモエチル)-4-メチルベンゼン、1-(2-ブロモエチル)-2,3-ジメチルベンゼン、1-(2-ブロモエチル)-2,4-ジメチルベンゼン、1-(2-ブロモエチル)-2,5-ジメチルベンゼン、1-(2-ブロモエチル)-2,6-ジメチルベンゼン等が挙げられるが、これらに限定されるものではない。炭素数が多いと溶剤溶解性は向上するが、耐熱性が低下するため、無置換または炭素数1~3のアルキル基で置換されていることが好ましく、無置換または炭素数1~2のアルキル基で置換されていることがより好ましく、無置換またはメチル基で置換されていることが最も好ましい。 Compounds having a 2-bromoethylbenzene structure include 2-bromoethylbenzene, 1-(2-bromoethyl)-2-methylbenzene, 1-(2-bromoethyl)-3-methylbenzene, 1-(2-bromoethyl)- 4-methylbenzene, 1-(2-bromoethyl)-2,3-dimethylbenzene, 1-(2-bromoethyl)-2,4-dimethylbenzene, 1-(2-bromoethyl)-2,5-dimethylbenzene, Examples include, but are not limited to, 1-(2-bromoethyl)-2,6-dimethylbenzene. If the number of carbon atoms is large, the solvent solubility is improved, but the heat resistance is lowered. more preferably substituted with a group, and most preferably unsubstituted or substituted with a methyl group.
 ビスハロゲン化メチルアリール化合物としては、о-キシリレンジフルオライド、m-キシリレンジフルオライド、p-キシリレンジフルオライド、о-キシリレンジクロリド、m-キシリレンジクロリド、p-キシリレンジクロリド、о-キシリレンジブロミド、m-キシリレンジブロミド、p-キシリレンジブロミド、о-キシリレンジアイオダイド、m-キシリレンジアイオダイド、p-キシリレンジアイオダイド、4,4’-ビスフルオロメチレンビフェニル、4,4’-ビスクロロメチレンビフェニル、4,4’-ビスブロモメチレンビフェニル、4,4’-ビスヨードメチレンビフェニル、2,4-ビスフルオロメチレンビフェニル、2,4-ビスクロロメチレンビフェニル、2,4-ビスブロモメチレンビフェニル、2,4-ビスヨードメチレンビフェニル、2,2’-ビスフルオロメチレンビフェニル、2,2’-ビスクロロメチレンビフェニル、2,2’-ビスブロモメチレンビフェニル、2,2’-ビスヨードメチレンビフェニルが挙げられ、合成時の原料の反応性の観点から、クロライド系化合物、ブロマイド系化合物、アイオダイド系化合物が好ましく、より好ましくはクロライド系化合物、ブロマイド系化合物が挙げられる。また、その他、任意のハロゲン化合物としては、シアヌルフルオライド、シアヌルクロリド、シアヌルブロミド、シアヌルアイオダイド等が挙げられるが、これに限定されるものではない。 Bishalogenated methylaryl compounds include о-xylylene difluoride, m-xylylene difluoride, p-xylylene difluoride, о-xylylene dichloride, m-xylylene dichloride, p-xylylene dichloride, о- xylylene dibromide, m-xylylene dibromide, p-xylylene dibromide, o-xylylene diiodide, m-xylylene diiodide, p-xylylene diiodide, 4,4'-bisfluoromethylenebiphenyl, 4,4 '-Bischloromethylenebiphenyl, 4,4'-bisbromomethylenebiphenyl, 4,4'-bisiodomethylenebiphenyl, 2,4-bisfluoromethylenebiphenyl, 2,4-bischloromethylenebiphenyl, 2,4-bis Bromomethylenebiphenyl, 2,4-bisiodomethylenebiphenyl, 2,2'-bisfluoromethylenebiphenyl, 2,2'-bischloromethylenebiphenyl, 2,2'-bisbromomethylenebiphenyl, 2,2'-bisiodine Examples include methylene biphenyl, and from the viewpoint of the reactivity of raw materials during synthesis, preferred are chloride-based compounds, bromide-based compounds, and iodide-based compounds, and more preferred are chloride-based compounds and bromide-based compounds. In addition, other optional halogen compounds include cyanuric fluoride, cyanuric chloride, cyanuric bromide, cyanuric iodide and the like, but are not limited thereto.
 ビスヒドロキシメチルアリール化合物としては、о-ベンゼンジメタノール、m-ベンゼンジメタノール、p-ベンゼンジメタノール、4,4’-ビスヒドロキシメチルビフェニル、2,4-ビスヒドロキシメチルビフェニル、2,2’- ビスヒドロキシメチルビフェニル、α,α,α’,α’-テトラメチル-1,4-ベンゼンジメタノール、α,α,α’,α’-テトラメチル-1,3-ベンゼンジメタノール、α,α,α’,α’-テトラメチル-1,2-ベンゼンジメタノール等が挙げられるが、これに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。 The bishydroxymethylaryl compounds include o-benzenedimethanol, m-benzenedimethanol, p-benzenedimethanol, 4,4'-bishydroxymethylbiphenyl, 2,4-bishydroxymethylbiphenyl, 2,2'- Bishydroxymethylbiphenyl, α,α,α',α'-tetramethyl-1,4-benzenedimethanol, α,α,α',α'-tetramethyl-1,3-benzenedimethanol, α,α , α′,α′-tetramethyl-1,2-benzenedimethanol and the like, but are not limited thereto. These may be used alone or in combination of two or more.
 2-ブロモエチルベンゼン構造を有する化合物とハロゲン化メチルアリール化合物等の反応の際、必要により、触媒として塩酸、燐酸、硫酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸のほか、塩化アルミニウム、塩化亜鉛等のルイス酸、活性白土、酸性白土、ホワイトカーボン、ゼオライト、シリカアルミナ等の固体酸、酸性イオン交換樹脂等を用いることができる。これらは単独でも二種以上併用しても良い。触媒の使用量は、使用される2-ブロモエチルベンゼン構造を有する化合物1モルに対して通常0.1~0.8モルであり、好ましくは0.2~0.7モルである。触媒の使用量が多すぎると反応溶液の粘度が高すぎて攪拌が困難になる恐れがあり、少なすぎると反応の進行が遅くなる恐れがある。反応はヘキサン、シクロヘキサン、オクタン、トルエン、キシレンなどの有機溶剤を必要により選択して使用して行っても良く、無溶剤で行っても良い。例えば、2-ブロモエチルベンゼン構造を有する化合物、ハロゲン化メチルアリール化合物、および溶剤の混合溶液に酸性触媒を添加した後、触媒が水を含む場合は共沸により水を系内から除く。しかる後に、40~180℃、好ましくは50~170℃で0.5~20時間反応を行う。反応終了後、アルカリ水溶液で酸性触媒を中和後、油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返す。 When reacting a compound having a 2-bromoethylbenzene structure with a methylaryl halide compound, if necessary, hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, as well as aluminum chloride and zinc chloride are used as catalysts. Lewis acid, activated clay, acid clay, white carbon, zeolite, solid acid such as silica alumina, acidic ion exchange resin, and the like can be used. These may be used alone or in combination of two or more. The amount of the catalyst to be used is generally 0.1-0.8 mol, preferably 0.2-0.7 mol, per 1 mol of the compound having a 2-bromoethylbenzene structure. If the amount of the catalyst used is too large, the viscosity of the reaction solution may be too high and stirring may become difficult. The reaction may be carried out using an organic solvent such as hexane, cyclohexane, octane, toluene, xylene, etc., optionally selected, or may be carried out without a solvent. For example, after adding an acidic catalyst to a mixed solution of a compound having a 2-bromoethylbenzene structure, a methylaryl halide compound, and a solvent, if the catalyst contains water, the water is azeotropically removed from the system. After that, the reaction is carried out at 40 to 180°C, preferably 50 to 170°C for 0.5 to 20 hours. After the completion of the reaction, the acidic catalyst is neutralized with an alkaline aqueous solution, and a non-water-soluble organic solvent is added to the oil layer, and washing with water is repeated until the wastewater becomes neutral.
 前記式(3)で表される化合物の軟化点は80℃以下が好ましく、70℃以下がより好ましい。軟化点が80℃以下であるとオレフィン樹脂とした際の粘度が低くなり、炭素繊維やガラス繊維へ含浸しやすくなる。希釈溶剤を増やして粘度を下げた場合、含浸工程において樹脂が繊維状材料に対して十分に付着しない可能性がある。 The softening point of the compound represented by the formula (3) is preferably 80°C or lower, more preferably 70°C or lower. When the softening point is 80° C. or less, the viscosity of the olefin resin becomes low, and the impregnation of carbon fibers and glass fibers becomes easy. If the dilution solvent is increased to lower the viscosity, the resin may not sufficiently adhere to the fibrous material in the impregnation step.
 本発明の混合物は、前記式(1)で表される化合物と下記式(4)で表される化合物を含有する。 The mixture of the present invention contains the compound represented by the above formula (1) and the compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(4)中、sは繰り返し単位であり、1≦s≦20である。X、R、mは前記式(1)において示したものと同じである。) (In formula (4), s is a repeating unit, and 1 ≤ s ≤ 20. X, R, and m are the same as those shown in formula (1).)
 本発明の混合物においては、前記式(4)で表される化合物のうち、下記式(4-a)で表される化合物を含有することが特に好ましい。 Among the compounds represented by the formula (4), the mixture of the present invention particularly preferably contains a compound represented by the following formula (4-a).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(4-a)中、sは繰り返し単位であり、1≦s≦20である。) (In formula (4-a), s is a repeating unit, and 1 ≤ s ≤ 20.)
 前記式(1)で表される化合物は、上述したように、前記式(3)で表される化合物から誘導されるものであるが、前記式(3)で表される化合物を製造する際、単離工程を入れなければ、前記式(3)で表される化合物は下記式(5)で表される化合物を一定量含んで製造される。 As described above, the compound represented by the formula (1) is derived from the compound represented by the formula (3). If the isolation step is not included, the compound represented by the above formula (3) is produced containing a certain amount of the compound represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(5)中、X、R、m、Zは前記式(3)において示したものと同じである。sは繰り返し単位であり、1≦s≦20である。) (In formula (5), X, R, m, and Z are the same as those shown in formula (3) above. s is a repeating unit, and 1 ≤ s ≤ 20.)
 そのため、前記式(3)で表される化合物と前記式(5)で表される化合物の混合物を出発原料とすることで、前記式(1)で表される化合物と前記式(4)で表される化合物を含有する本発明の混合物が製造される。 Therefore, by using a mixture of the compound represented by the formula (3) and the compound represented by the formula (5) as a starting material, the compound represented by the formula (1) and the compound represented by the formula (4) Mixtures of the invention containing the represented compounds are prepared.
 本発明の混合物において、前記式(1)で表される化合物と前記式(4)で表される化合物の含有割合は、GPC(検出器:RI)を用いて規定することができ、前記式(1)および(4)で表される化合物の単核体ピーク比率より計算される。前記式(1)で表される化合物の単核体とは前記式(1)中のp及びnが1である成分であり、前記式(4)で表される化合物の単核体とは前記式(4)中のp及びsが1である成分である。前記式(1)で示される化合物の単核体の含有量をα、前記式(4)で示される化合物の単核体の含有量をβとした場合、α/βは0.1~2.0であることが好ましく、より好ましくは0.2~1.5、さらに好ましくは0.3~1.0である。この範囲内であれば、本発明の混合物は耐熱性を著しく損なわずに密着性を向上させることができる。 In the mixture of the present invention, the content ratio of the compound represented by the formula (1) and the compound represented by the formula (4) can be defined using GPC (detector: RI), and the formula It is calculated from the mononuclear peak ratios of the compounds represented by (1) and (4). The mononuclear compound of the compound represented by the formula (1) is a component in which p and n in the formula (1) are 1, and the mononuclear compound of the compound represented by the formula (4) is It is a component in which p and s in the formula (4) are 1. When α is the content of the mononuclear body of the compound represented by the formula (1) and β is the content of the mononuclear body of the compound represented by the formula (4), α/β is 0.1 to 2. 0.0, more preferably 0.2 to 1.5, even more preferably 0.3 to 1.0. Within this range, the mixture of the present invention can improve adhesion without significantly impairing heat resistance.
 本発明の化合物または混合物を含む組成物は、重合禁止剤を含有する。使用できる重合禁止剤としては、フェノール系、イオウ系、リン系、ヒンダートアミン系、ニトロソ系、ニトロキシルラジカル系等の重合禁止剤が挙げられる。重合禁止剤は、前記式(1)で表される化合物を合成するときに添加しても、合成後に添加してもよい。また、重合禁止剤は単独で又は2種以上を組み合わせて使用できる。重合禁止剤の使用量は、樹脂成分100重量部に対して、通常0.008~1重量部、好ましくは0.01~0.5重量部である。これら重合禁止剤はそれぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。本発明では、フェノール系、ヒンダートアミン系、ニトロソ系、ニトロキシルラジカル系が好ましい。なかでもニトロキシルラジカル系は保存安定性に優れるため特に好ましい。 A composition containing the compound or mixture of the present invention contains a polymerization inhibitor. Polymerization inhibitors that can be used include phenol-based, sulfur-based, phosphorus-based, hindered amine-based, nitroso-based, and nitroxyl radical-based polymerization inhibitors. The polymerization inhibitor may be added when synthesizing the compound represented by formula (1), or after synthesis. Moreover, a polymerization inhibitor can be used individually or in combination of 2 or more types. The amount of polymerization inhibitor used is usually 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, per 100 parts by weight of the resin component. Each of these polymerization inhibitors can be used alone, but two or more of them may be used in combination. In the present invention, phenol-based, hindered amine-based, nitroso-based, and nitroxyl radical-based solvents are preferred. Among them, the nitroxyl radical type is particularly preferable because of its excellent storage stability.
 フェノール系重合禁止剤の具体例としては、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、等のモノフェノール類;2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が例示される。 Specific examples of phenolic polymerization inhibitors include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl-β-( 3,5-di-t-butyl-4-hydroxyphenyl)propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,4-bis-(n-octylthio) -monophenols such as 6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, 2,4-bis[(octylthio)methyl]-o-cresol;2 , 2′-methylenebis(4-methyl-6-t-butylphenol), 2,2′-methylenebis(4-ethyl-6-t-butylphenol), 4,4′-thiobis(3-methyl-6-t- butylphenol), 4,4′-butylidenebis(3-methyl-6-t-butylphenol), triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1, 6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], N,N'-hexamethylenebis(3,5-di-t-butyl-4-hydroxy -hydrocinnamamide), 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 3,5-di-t-butyl-4-hydroxy benzylphosphonate-diethyl ester, 3,9-bis[1,1-dimethyl-2-{β-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]2,4, Bisphenols such as 8,10-tetraoxaspiro[5,5]undecane, bis(3,5-di-t-butyl-4-hydroxybenzylsulfonic acid ethyl) calcium; 1,1,3-tris(2- methyl-4-hydroxy-5-t-butylphenyl)butane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, tetrakis- [methylene-3-(3′,5′-di-t-butyl-4′-hydroxyphenyl)propionate]methane, bis[3,3′-bis-(4′-hydroxy-3′-t-butylphenyl ) butyric acid] glycol ester, tris-(3,5-di-t-butyl-4-hydroxybenzyl)- isocyanurate, 1,3,5-tris(3′,5′-di-t-butyl-4′-hydroxybenzyl)-S-triazine-2,4,6-(1H,3H,5H)trione, Polymeric phenols such as tocopherol are exemplified.
 イオウ系重合禁止剤の具体例としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が例示される。 Specific examples of sulfur-based polymerization inhibitors include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and the like. be done.
 リン系重合禁止剤の具体例としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類などが例示される。 Specific examples of phosphorus-based polymerization inhibitors include triphenylphosphite, diphenylisodecylphosphite, phenyldiisodecylphosphite, tris(nonylphenyl)phosphite, diisodecylpentaerythritolphosphite, tris(2,4-di-t -butylphenyl)phosphite, cyclic neopentanetetraylbis(octadecyl)phosphite, cyclic neopentanetetraylbi(2,4-di-t-butylphenyl)phosphite, cyclic neopentanetetraylbi(2, Phosphites such as 4-di-t-butyl-4-methylphenyl)phosphite and bis[2-t-butyl-6-methyl-4-{2-(octadecyloxycarbonyl)ethyl}phenyl]hydrogenphosphite 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(3,5-di-t-butyl-4-hydroxybenzyl)-9,10-dihydro-9-oxa Oxaphosphaphenanthrene oxides such as -10-phosphaphenanthrene-10-oxide and 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide are exemplified.
 ヒンダートアミン系重合禁止剤の具体例としては、アデカスタブLA-40MP、アデカスタブLA-40Si、アデカスタブLA-402AF、アデカスタブLA-87、デカスタブLA-82、デカスタブLA-81、アデカスタブLA-77Y、アデカスタブLA-77G、アデカスタブLA-72、アデカスタブLA-68、アデカスタブLA-63P、アデカスタブLA-57、アデカスタブLA-52、Chimassorb2020FDL、Chimassorb944FDL、Chimassorb944LD、Tinuvin622SF、TinuvinPA144、Tinuvin765、Tinuvin770DF、TinuvinXT55FB、Tinuvin111FDL、Tinuvin783FDL、Tinuvin791FB等が例示されるが、これに限定されない。 Specific examples of hindered amine-based polymerization inhibitors include Adekastave LA-40MP, Adekastab LA-40Si, Adekastab LA-402AF, Adekastab LA-87, Adekastab LA-82, Adekastab LA-81, Adekastab LA-77Y, and Adekastab LA. -77G、アデカスタブLA-72、アデカスタブLA-68、アデカスタブLA-63P、アデカスタブLA-57、アデカスタブLA-52、Chimassorb2020FDL、Chimassorb944FDL、Chimassorb944LD、Tinuvin622SF、TinuvinPA144、Tinuvin765、Tinuvin770DF、TinuvinXT55FB、Tinuvin111FDL、Tinuvin783FDL、Tinuvin791FB等are exemplified, but not limited to.
 ニトロソ系重合禁止剤の具体例としては、p-ニトロソフェノール、N-ニトロソジフェニルアミン、N-ニトロソフェニルヒドロキシアミンのアンモニウム塩、(クペロン)等があげられ、好ましくは、N-ニトロソフェニルヒドロキシアミンのアンモニウム塩(クペロン)である。 Specific examples of the nitroso-based polymerization inhibitor include p-nitrosophenol, N-nitrosodiphenylamine, ammonium salts of N-nitrosophenylhydroxyamine, (cupferron), and the like, preferably ammonium of N-nitrosophenylhydroxyamine. It is salt (cupferon).
 ニトロキシルラジカル系重合禁止剤の具体例としては、ジ-tert-ブチルニトロキサイド、2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-オキソ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-アミノ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-メトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-アセトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等が挙げられるが、これらに限定されない。 Specific examples of nitroxyl radical polymerization inhibitors include di-tert-butyl nitroxide, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6- Tetramethylpiperidine-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 4- Methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-acetoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-benzoyloxy-2,2,6,6 -tetramethylpiperidine-1-oxyl and the like, but are not limited to these.
 本発明の硬化性樹脂組成物は本発明の化合物、または混合物以外の硬化性樹脂として、公知のいかなる材料を用いることができる。具体的には、フェノール樹脂、エポキシ樹脂、アミン樹脂、活性アルケン含有樹脂、イソシアネート樹脂、ポリアミド樹脂、ポリイミド樹脂、シアネートエステル樹脂、プロペニル樹脂、メタリル樹脂、活性エステル樹脂などが挙げられ、1種類で用いても、複数併用してもよい。また、耐熱性、密着性、誘電特性のバランスから、エポキシ樹脂、活性アルケン含有樹脂、シアネートエステル樹脂を含有することが好ましい。これらの硬化性樹脂を含有することによって、硬化物の脆さの改善および金属への密着性を向上でき、はんだリフロー時や冷熱サイクルなどの信頼性試験におけるパッケージのクラックを抑制できる。
 上記硬化性樹脂の使用量は、前記式(1)で表される化合物に対して、好ましくは10質量倍以下、さらに好ましくは5質量倍以下、特に好ましくは3質量倍以下の質量範囲である。また、好ましい下限値は0.5質量倍以上、更に好ましくは1質量倍以上である。10質量倍以下であれば、前記式(1)で表される化合物の耐熱性や誘電特性の効果を活かすことができる。
The curable resin composition of the present invention can use any known material as a curable resin other than the compound or mixture of the present invention. Specific examples include phenol resins, epoxy resins, amine resins, active alkene-containing resins, isocyanate resins, polyamide resins, polyimide resins, cyanate ester resins, propenyl resins, methallyl resins, active ester resins, and the like. may be used in combination. Moreover, it is preferable to contain an epoxy resin, an active alkene-containing resin, and a cyanate ester resin from the balance of heat resistance, adhesion, and dielectric properties. By containing these curable resins, the brittleness of the cured product can be improved, the adhesion to metal can be improved, and cracks in the package can be suppressed during reliability tests such as solder reflow and thermal cycling.
The amount of the curable resin used is preferably 10 times by mass or less, more preferably 5 times by mass or less, and particularly preferably 3 times by mass or less the compound represented by the formula (1). . Also, the lower limit is preferably 0.5 times by mass or more, more preferably 1 time by mass or more. If the amount is 10 times by mass or less, the effect of the heat resistance and dielectric properties of the compound represented by the formula (1) can be utilized.
 フェノール樹脂、エポキシ樹脂、アミン樹脂、活性アルケン含有樹脂、イソシアネート樹脂、ポリアミド樹脂、ポリイミド樹脂、シアネートエステル樹脂、活性エステル樹脂としては、以下に例示するものを使用することができる。 As phenol resins, epoxy resins, amine resins, active alkene-containing resins, isocyanate resins, polyamide resins, polyimide resins, cyanate ester resins, and active ester resins, the following examples can be used.
 フェノール樹脂:フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ハイドロキノン、レゾルシン、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド、フルフラール等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、フェノール類と置換ビフェニル類(4,4’-ビス(クロルメチル)-1,1’-ビフェニル及び4,4’-ビス(メトキシメチル)-1,1’-ビフェニル等)、若しくは置換フェニル類(1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン及び1,4-ビス(ヒドロキシメチル)ベンゼン等)等との重縮合により得られるフェノール樹脂、ビスフェノール類と各種アルデヒドの重縮合物、ポリフェニレンエーテル。 Phenolic resin: phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, hydroquinone, resorcinol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, furfural, etc.), phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.); Polycondensates, phenols and substituted biphenyls (4,4'-bis(chloromethyl)-1,1'-biphenyl and 4,4'-bis(methoxymethyl)-1,1'-biphenyl, etc.), or substituted Phenolic resins and bisphenols obtained by polycondensation with phenyls (1,4-bis(chloromethyl)benzene, 1,4-bis(methoxymethyl)benzene, 1,4-bis(hydroxymethyl)benzene, etc.) and various aldehyde polycondensates, polyphenylene ether.
 エポキシ樹脂:前記のフェノール樹脂、アルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4-ビニル-1-シクロヘキセンジエポキシドや3,4-エポキシシクロヘキシルメチル-3,4’-エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル-p-アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂。 Epoxy resins: glycidyl ether-based epoxy resins obtained by glycidylating the above phenolic resins, alcohols, etc., 4-vinyl-1-cyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexane carboxylate, etc. Alicyclic epoxy resins, glycidylamine epoxy resins such as tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol, and glycidyl ester epoxy resins.
 アミン樹脂:ジアミノジフェニルメタン、ジアミノジフェニルスルホン、イソホロンジアミン、ナフタレンジアミン、アニリンノボラック、オルソエチルアニリンノボラック、アニリンとキシリレンクロライドとの反応により得られるアニリン樹脂、日本国特許第6429862号公報に記載のアニリンと置換ビフェニル類(4,4’-ビス(クロルメチル)-1,1’-ビフェニル及び4,4’-ビス(メトキシメチル)-1,1’-ビフェニル等)、若しくは置換フェニル類(1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン及び1,4-ビス(ヒドロキシメチル)ベンゼン等)。 Amine resins: diaminodiphenylmethane, diaminodiphenylsulfone, isophoronediamine, naphthalenediamine, aniline novolak, orthoethylaniline novolak, aniline resin obtained by reaction of aniline with xylylene chloride, aniline described in Japanese Patent No. 6429862 and substituted biphenyls (4,4'-bis(chloromethyl)-1,1'-biphenyl and 4,4'-bis(methoxymethyl)-1,1'-biphenyl, etc.) or substituted phenyls (1,4- bis(chloromethyl)benzene, 1,4-bis(methoxymethyl)benzene and 1,4-bis(hydroxymethyl)benzene, etc.).
 活性アルケン含有樹脂:前記のフェノール樹脂と活性アルケン含有のハロゲン系化合物(クロロメチルスチレン、アリルクロライド、メタリルクロライド、アクリル酸クロリド、アリルクロライド等)の重縮合物、活性アルケン含有フェノール類(2-アリルフェノール、2-プロペニルフェノール、4-アリルフェノール、4-プロペニルフェノール、オイゲノール、イソオイゲノール等)とハロゲン系化合物(4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、4,4’-ジフルオロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ジブロモベンゾフェノン、塩化シアヌル等)の重縮合物、エポキシ樹脂若しくはアルコール類と置換若しくは非置換のアクリレート類(アクリレート、メタクリレート等)の重縮合物、マレイミド樹脂(4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン)。 Active alkene-containing resins: Polycondensates of the above phenol resins and active alkene-containing halogen compounds (chloromethylstyrene, allyl chloride, methallyl chloride, acrylic acid chloride, allyl chloride, etc.), active alkene-containing phenols (2- allylphenol, 2-propenylphenol, 4-allylphenol, 4-propenylphenol, eugenol, isoeugenol, etc.) and halogen compounds (4,4'-bis(methoxymethyl)-1,1'-biphenyl, 1,4 -Bis(chloromethyl)benzene, 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, cyanuric chloride, etc.) polycondensates, epoxy resins or alcohols and substituted or non-substituted Polycondensates of substituted acrylates (acrylates, methacrylates, etc.), maleimide resins (4,4′-diphenylmethanebismaleimide, polyphenylmethanemaleimide, m-phenylenebismaleimide, 2,2′-bis[4-(4- Maleimidophenoxy)phenyl]propane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 4,4′-diphenyletherbismaleimide , 4,4′-diphenylsulfonebismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene).
 イソシアネート樹脂:p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシレンジイソシアネート、m-キシレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート類;イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、水添キシレンジイソシアネート、ノルボルネンジイソシアネート、リジンジイソシアネート等の脂肪族又は脂環構造のジイソシアネート類;イソシアネートモノマーの一種類以上のビュレット体又は、上記ジイソシアネート化合物を3量化したイソシアネート体等のポリイソシアネート;上記イソシアネート化合物とポリオール化合物とのウレタン化反応によって得られるポリイソシアネート。 Isocyanate resins: p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylene diisocyanate, m-xylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, naphthalene diisocyanate, etc. Aromatic diisocyanates; isophorone diisocyanate, hexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylene diisocyanate, norbornene diisocyanate, lysine diisocyanate and other aliphatic or alicyclic diisocyanates; one or more types of isocyanate monomers or an isocyanate trimerized from the above diisocyanate compound; a polyisocyanate obtained by a urethanization reaction between the above isocyanate compound and a polyol compound.
 ポリアミド樹脂:アミノ酸(6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸等)、ラクタム(ε-カプロラクタム、ω-ウンデカンラクタム、ω-ラウロラクタム)およびジアミン(エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカンジアミン、ウンデカンジアミン、ドデカンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタンなどの脂肪族ジアミン;シクロヘキサンジアミン、ビス-(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタンなどの脂環式ジアミン;キシリレンジアミンなどの芳香族ジアミン等とジカルボン酸(シュウ酸、マロン酸、スクシン酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸などの脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの芳香族ジカルボン酸;シクロヘキサンジカルボン酸などの脂環族ジカルボン酸;これらジカルボン酸のジアルキルエステル、およびジクロリド)との混合物から選ばれた1種以上を主たる原料とした重合物。 Polyamide resins: amino acids (6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, para-aminomethylbenzoic acid, etc.), lactams (ε-caprolactam, ω-undecanelactam, ω-laurolactam) and diamines (ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decanediamine, undecanediamine, dodecanediamine, tridecanediamine, tetradecanediamine, pentadecanediamine, hexadecanediamine, Aliphatic diamines such as heptadecanediamine, octadecanediamine, nonadecanediamine, eicosanediamine, 2-methyl-1,5-diaminopentane, 2-methyl-1,8-diaminooctane; cyclohexanediamine, bis-(4- alicyclic diamines such as aminocyclohexyl)methane and bis(3-methyl-4-aminocyclohexyl)methane; acids, aliphatic dicarboxylic acids such as suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid; terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5 - aromatic dicarboxylic acids such as sodium sulfoisophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid; cycloaliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid; dialkyl esters of these dicarboxylic acids, and dichlorides). A polymer made from one or more types as the main raw material.
 ポリイミド樹脂:前記のジアミンとテトラカルボン酸二無水物(4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2’-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物)、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、rel-[1S,5R,6R]-3-オキサビシクロ[3,2,1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、エチレングリコール-ビス-(3,4-ジカルボン酸無水物フェニル)エーテル、4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物)との重縮合物。 Polyimide resin: the above diamine and tetracarboxylic dianhydride (4,4'-(hexafluoroisopropylidene) diphthalic anhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methyl- Cyclohexene-1,2 dicarboxylic anhydride, pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride , 2,2′,3,3′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetra Carboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, methylene-4,4'-diphthalic dianhydride, 1,1-ethylidene-4,4'-diphthalic acid dianhydride, 2,2'-propylidene-4,4'-diphthalic dianhydride, 1,2-ethylene-4,4'-diphthalic dianhydride, 1,3-trimethylene-4,4'- Diphthalic dianhydride, 1,4-tetramethylene-4,4'-diphthalic dianhydride, 1,5-pentamethylene-4,4'-diphthalic dianhydride, 4,4'-oxydiphthalic dianhydride anhydride, thio-4,4'-diphthalic dianhydride, sulfonyl-4,4'-diphthalic dianhydride, 1,3-bis(3,4-dicarboxyphenyl)benzene dianhydride, 1, 3-bis(3,4-dicarboxyphenoxy)benzene dianhydride, 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride, 1,3-bis[2-(3,4-di Carboxyphenyl)-2-propyl]benzene dianhydride, 1,4-bis[2-(3,4-dicarboxyphenyl)-2-propyl]benzene dianhydride, bis[3-(3,4-di Carboxyphenoxy)phenyl]methane dianhydride, bis[4-(3,4-dicarboxyphenoxy)phenyl]methane dianhydride, 2,2-bis[3-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, bis(3,4-dicarboxyphenoxy)dimethylsilane dianhydride, 1,3-bis( 3,4-dicarboxyphenyl)-1,1,3,3-tetramethyldisiloxane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalene Tetracarboxylic dianhydride, 1,2,5,6- naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetra carboxylic dianhydride, ethylenetetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride), cyclopentanetetra Carboxylic dianhydride, cyclohexane-1,2,3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, 3,3',4,4'- Bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, methylene-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dicarboxylic acid Anhydride, 1,2-ethylene-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,1-ethylidene-4,4'-bis(cyclohexane-1,2-dicarboxylic acid ) dianhydride, 2,2-propylidene-4,4′-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, oxy-4,4′-bis(cyclohexane-1,2-dicarboxylic acid) di anhydride, thio-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, sulfonyl-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, bicyclo[2 ,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, rel-[1S,5R,6R]-3-oxabicyclo[3,2,1]octane-2 ,4-dione-6-spiro-3′-(tetrahydrofuran-2′,5′-dione), 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene -1,2-dicarboxylic anhydride, ethylene glycol-bis-(3,4-dicarboxylic anhydride phenyl) ether, 4,4′-biphenylbis(trimellitic acid monoester anhydride), 9,9′ - polycondensates with bis(3,4-dicarboxyphenyl)fluorene dianhydride).
 シアネートエステル樹脂:フェノール樹脂をハロゲン化シアンと反応させることにより得られるシアネートエステル化合物であり、具体例としては、ジシアナートベンゼン、トリシアナートベンゼン、ジシアナートナフタレン、ジシアンートビフェニル、2、2’-ビス(4-シアナートフェニル)プロパン、ビス(4-シアナートフェニル)メタン、ビス(3,5-ジメチル-4-シアナートフェニル)メタン、2,2’-ビス(3,5-ジメチル-4-シアナートフェニル)プロパン、2,2’-ビス(4-シアナートフェニル)エタン、2,2’-ビス(4-シアナートフェニル)ヘキサフロロプロパン、ビス(4-シアナートフェニル)スルホン、ビス(4-シアナートフェニル)チオエーテル、フェノールノボラックシアナート、フェノール・ジシクロペンタジエン共縮合物の水酸基をシアネート基に変換したもの等が挙げられるがこれらに限定されるものではない。
 また、特開2005-264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
 シアネートエステル樹脂は、必要に応じてシアネート基を三量化させてsym-トリアジン環を形成するために、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸鉛、オクチル酸亜鉛、オクチル酸錫、鉛アセチルアセトナート、ジブチル錫マレエート等の触媒を含有させることもできる。触媒は、硬化性樹脂組成物の合計質量100質量部に対して通常0.0001~0.10質量部、好ましくは0.00015~0.0015質量部使用する。
Cyanate ester resin: A cyanate ester compound obtained by reacting a phenolic resin with cyanogen halide. Specific examples include dicyanatobenzene, tricyanatobenzene, dicyanatonaphthalene, dicyanatobiphenyl, 2, 2 '-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)methane, bis(3,5-dimethyl-4-cyanatophenyl)methane, 2,2'-bis(3,5-dimethyl -4-cyanatophenyl)propane, 2,2'-bis(4-cyanatophenyl)ethane, 2,2'-bis(4-cyanatophenyl)hexafluoropropane, bis(4-cyanatophenyl)sulfone , bis(4-cyanatophenyl) thioether, phenol novolak cyanate, and phenol/dicyclopentadiene cocondensate in which the hydroxyl group is converted to a cyanate group, but are not limited thereto.
In addition, cyanate ester compounds whose synthesis method is described in JP-A-2005-264154 are particularly preferable as cyanate ester compounds because they are excellent in low hygroscopicity, flame retardancy and dielectric properties.
In order to trimerize the cyanate group to form a sym-triazine ring, the cyanate ester resin may be zinc naphthenate, cobalt naphthenate, copper naphthenate, lead naphthenate, zinc octylate, tin octylate, Catalysts such as lead acetylacetonate, dibutyltin maleate, and the like can also be included. The catalyst is usually used in an amount of 0.0001 to 0.10 parts by weight, preferably 0.00015 to 0.0015 parts by weight, per 100 parts by weight of the total weight of the curable resin composition.
 活性エステル樹脂:エポキシ樹脂等、本発明の前記式(1)で表される化合物以外の硬化性樹脂の硬化剤として1分子中に1個以上の活性エステル基を有する化合物を必要に応じて用いることができる。活性エステル系硬化剤としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましい。当該活性エステル系硬化剤は、カルボン酸化合物及びチオカルボン酸化合物の少なくともいずれかの化合物と、ヒドロキシ化合物及びチオール化合物の少なくともいずれかの化合物との縮合反応によって得られるものが好ましい。特に、耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及びナフトール化合物の少なくともいずれかの化合物とから得られる活性エステル系硬化剤が好ましい。
 カルボン酸化合物としては、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。
 フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
 活性エステル系硬化剤の好ましい具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が挙げられる。中でも、ナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。
 活性エステル系硬化剤の市販品としては、例えば、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L-65TM」、「EXB-8150-65T」(DIC社製);ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」(DIC社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱化学社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」、「YLH1030」、「YLH1048」(三菱化学社製);フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱化学社製);リン原子含有活性エステル系硬化剤としてDIC社製の「EXB-9050L-62M」;等が挙げられる。
Active ester resin: A compound having one or more active ester groups in one molecule, such as an epoxy resin, is optionally used as a curing agent for a curable resin other than the compound represented by the formula (1) of the present invention. be able to. Active ester curing agents include compounds having two or more highly reactive ester groups per molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. preferable. The active ester curing agent is preferably obtained by a condensation reaction of at least one of a carboxylic acid compound and a thiocarboxylic acid compound and at least one of a hydroxy compound and a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from a carboxylic acid compound and at least one of a phenol compound and a naphthol compound. agents are preferred.
Examples of carboxylic acid compounds include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
Examples of phenol compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucine, Benzenetriol, dicyclopentadiene-type diphenol compound, phenol novolak, and the like. Here, the term "dicyclopentadiene-type diphenol compound" refers to a diphenol compound obtained by condensing one molecule of dicyclopentadiene with two molecules of phenol.
Preferred specific examples of the active ester curing agent include an active ester compound containing a dicyclopentadiene type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated phenol novolac, and a benzoylated phenol novolac. active ester compounds containing Among them, an active ester compound containing a naphthalene structure and an active ester compound containing a dicyclopentadiene-type diphenol structure are more preferable. "Dicyclopentadiene-type diphenol structure" represents a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
Commercially available active ester curing agents include, for example, active ester compounds containing a dicyclopentadiene type diphenol structure such as "EXB9451", "EXB9460", "EXB9460S", "HPC-8000-65T", "HPC- 8000H-65TM", "EXB-8000L-65TM", "EXB-8150-65T" (manufactured by DIC); "EXB9416-70BK" (manufactured by DIC) as an active ester compound containing a naphthalene structure; acetylated phenol novolac "DC808" (manufactured by Mitsubishi Chemical Corporation) as an active ester compound containing "DC808" (manufactured by Mitsubishi Chemical Corporation) as an active ester curing agent; "EXB-9050L-62M" manufactured by DIC Corporation as a phosphorus atom-containing active ester curing agent;
 本発明の硬化性樹脂組成物は、硬化促進剤(硬化触媒)を併用して硬化性を向上させることもできる。用い得る硬化促進剤の具体例として、オレフィン樹脂やマレイミド樹脂等のラジカル重合可能な硬化性樹脂の自己重合やその他の成分とのラジカル重合を促進する目的でラジカル重合開始剤を使用することが好ましい。用い得るラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド類、過酸化ベンゾイル等のジアシルパーオキサイド類、ジクミルパーオキサイド、1,3-ビス-(t-ブチルパーオキシイソプロピル)-ベンゼン等のジアルキルパーオキサイド類、t-ブチルパーオキシベンゾエート、1,1-ジ-t-ブチルパーオキシシクロヘキサン等のパーオキシケタール類、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-アミルパーオキシベンゾエート等のアルキルパーエステル類、ジ-2-エチルヘキシルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、t-ブチルパーオキシイソプロピルカーボネート、1,6-ビス(t-ブチルパーオキシカルボニルオキシ)ヘキサン等のパーオキシカーボネート類、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、ラウロイルパーオキサイド等の有機過酸化物やアゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物の公知の硬化促進剤が挙げられるが、これらに特に限定されるものではない。ケトンパーオキサイド類、ジアシルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーカーボネート類等が好ましく、ジアルキルパーオキサイド類がより好ましい。ラジカル重合開始剤の添加量としては、硬化性樹脂組成物の100質量部に対して0.01~5質量部が好ましく、0.01~3質量部が特に好ましい。用いるラジカル重合開始剤の量が多いと重合反応時に分子量が十分に伸長しない。 The curable resin composition of the present invention can also be used in combination with a curing accelerator (curing catalyst) to improve curability. As a specific example of the curing accelerator that can be used, it is preferable to use a radical polymerization initiator for the purpose of promoting self-polymerization of radically polymerizable curable resins such as olefin resins and maleimide resins and radical polymerization with other components. . Radical polymerization initiators that can be used include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, dicumyl peroxide, 1,3-bis-(t-butylperoxy Isopropyl)-benzene and other dialkyl peroxides, t-butyl peroxybenzoate, 1,1-di-t-butylperoxycyclohexane and other peroxyketals, α-cumyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, t- Butyl peroxy-2-ethylhexanoate, t-amylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-amylperoxy Alkyl peresters such as benzoate, di-2-ethylhexylperoxydicarbonate, bis(4-t-butylcyclohexyl)peroxydicarbonate, t-butylperoxyisopropylcarbonate, 1,6-bis(t-butylperoxydicarbonate) oxycarbonyloxy)hexane and other peroxycarbonates, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyoctoate, lauroyl peroxide and other organic peroxides and azobisisobutyronitrile, 4 , 4'-azobis (4-cyanovaleric acid), 2,2'-azobis (2,4-dimethylvaleronitrile) known curing accelerators of azo compounds such as, but particularly limited to these not a thing Ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, percarbonates, etc. are preferred, and dialkyl peroxides are more preferred. The amount of the radical polymerization initiator to be added is preferably 0.01 to 5 parts by mass, particularly preferably 0.01 to 3 parts by mass, per 100 parts by mass of the curable resin composition. If the amount of the radical polymerization initiator used is too large, the molecular weight will not be sufficiently elongated during the polymerization reaction.
 また、必要に応じてラジカル重合開始剤以外の硬化促進剤を添加、または併用しても差し支えない。用い得る硬化促進剤の具体例としては2-メチルイミダゾール、2-エチルイミダゾール及び2-エチル-4-メチルイミダゾール等のイミダゾール類、2-(ジメチルアミノメチル)フェノールや1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウムヒドロキシドなどの4級アンモニウム塩、トリフェニルベンジルフォスフォニウム塩、トリフェニルエチルフォスフォニウム塩、テトラブチルフォスフォニウム塩などの4級フォスフォニウム塩(4級塩のカウンターイオンはハロゲン、有機酸イオン、水酸化物イオンなど、特に指定は無いが、特に有機酸イオン、水酸化物イオンが好ましい。)、オクチル酸スズ、カルボン酸亜鉛(2-エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミスチリン酸亜鉛)やリン酸エステル亜鉛(オクチルリン酸亜鉛、ステアリルリン酸亜鉛等)等の亜鉛化合物等の遷移金属化合物(遷移金属塩)等が挙げられる。硬化促進剤の配合量は、エポキシ樹脂100に対して0.01~5.0重量部が必要に応じて用いられる。 In addition, if necessary, a curing accelerator other than the radical polymerization initiator may be added or used together. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole, 2-(dimethylaminomethyl)phenol and 1,8-diaza-bicyclo ( 5,4,0) Tertiary amines such as undecene-7, phosphines such as triphenylphosphine, tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium salt, hexadecyltrimethyl Quaternary ammonium salts such as ammonium hydroxide, triphenylbenzylphosphonium salts, triphenylethylphosphonium salts, quaternary phosphonium salts such as tetrabutylphosphonium salts (counter ions of the quaternary salts are halogen, Organic acid ions, hydroxide ions, etc. are not particularly specified, but organic acid ions and hydroxide ions are particularly preferred.), tin octylate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, behene transition metal compounds (transition metal salts) such as zinc compounds such as zinc acid, zinc mystate) and zinc phosphate esters (zinc octyl phosphate, zinc stearyl phosphate, etc.); A blending amount of the curing accelerator is 0.01 to 5.0 parts by weight based on 100 parts of the epoxy resin.
 本発明の硬化性樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量は(リン含有化合物)/(全エポキシ樹脂)が0.1~0.6(重量比)の範囲であることが好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。 The curable resin composition of the present invention can also contain a phosphorus-containing compound as a component for imparting flame retardancy. The phosphorus-containing compound may be of a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4'-biphenyl (dixylylenyl phosphate) and other phosphoric acid esters; 9,10-dihydro-9-oxa -phosphanes such as 10-phosphaphenanthrene-10-oxide and 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide; activity of epoxy resins and the phosphanes Phosphorus-containing epoxy compounds obtained by reacting with hydrogen, red phosphorus and the like can be mentioned, but phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferred, and 1,3-phenylene bis(dixylylenyl phosphate), Particular preference is given to 1,4-phenylenebis(dixylylenyl phosphate), 4,4'-biphenyl(dixylylenyl phosphate) or phosphorus-containing epoxy compounds. As for the content of the phosphorus-containing compound, (phosphorus-containing compound)/(total epoxy resin) is preferably in the range of 0.1 to 0.6 (weight ratio). If it is less than 0.1, the flame retardance is insufficient, and if it is more than 0.6, there is a concern that the hygroscopicity and dielectric properties of the cured product may be adversely affected.
 さらに本発明の硬化性樹脂組成物には、必要に応じて光安定剤を添加しても構わない。光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン・1,3,5-トリアジン・N,N’―ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、等が挙げられる。HALSは1種のみが用いられても良いし、2種類以上が併用されても良い。 Furthermore, a light stabilizer may be added to the curable resin composition of the present invention, if necessary. Hindered amine-based light stabilizers, particularly HALS, are suitable as the light stabilizer. HALS are not particularly limited, but representative ones include dibutylamine/1,3,5-triazine/N,N'-bis(2,2,6,6-tetramethyl-4- Polycondensation product of piperidyl-1,6-hexamethylenediamine and N-(2,2,6,6-tetramethyl-4-piperidyl)butylamine, dimethyl-1-(2-hydroxyethyl)-4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly[{6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl)imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl)imino}], bis(1,2,2, 6,6-pentamethyl-4-piperidyl)[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]butylmalonate, bis(2,2,6,6-tetramethyl) -4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) 2-(3,5-di-t-butyl-4-hydroxybenzyl)-2-n-butylmalonate, and the like. Only one type of HALS may be used, or two or more types may be used in combination.
 さらに本発明の硬化性樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100質量部に対して0.05~50質量部であることが好ましく、さらに好ましくは0.05~20質量部が必要に応じて用いられる。 Further, the curable resin composition of the present invention can be blended with a binder resin as needed. Examples of binder resins include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. , but not limited to these. The blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, preferably 0.05 to 50 parts by mass, more preferably 0.05 to 50 parts by mass based on 100 parts by mass of the resin component. 0.05 to 20 parts by weight are used as needed.
 さらに、本発明の硬化性樹脂組成物には、必要に応じて溶融シリカ、結晶シリカ、多孔質シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、石英粉、炭化珪素、窒化珪素、窒化ホウ素、ジルコニア、窒化アルミニウム、グラファイト、フォルステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、酸化鉄アスベスト、ガラス粉末等の粉体、またはこれらを球形状あるいは破砕状にした無機充填材を添加することができる。また、特に半導体封止用の硬化性樹脂組成物を得る場合、上記の無機充填材の使用量は硬化性樹脂組成物中、通常80~92質量%、好ましくは83~90質量%の範囲である。 Furthermore, the curable resin composition of the present invention may optionally contain fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, quartz powder, silicon carbide, silicon nitride, boron nitride, zirconia. , powders such as aluminum nitride, graphite, forsterite, steatite, spinel, mullite, titania, talc, clay, iron oxide asbestos, glass powder, etc., or inorganic fillers made of spherical or pulverized powders. can be done. In particular, when obtaining a curable resin composition for semiconductor encapsulation, the amount of the inorganic filler used is usually 80 to 92% by mass, preferably 83 to 90% by mass in the curable resin composition. be.
 本発明の硬化性樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、シリコーンゲル、シリコーンオイル、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、硬化性樹脂組成物100質量部に対して好ましくは1,000質量部以下、より好ましくは700質量部以下の範囲である。これら添加剤として特に好ましい成分としては、ポリブタジエンおよびこの変性物、ブタジエン系熱可塑性エラストマーが挙げられる。これらの成分に関して詳細を以下に記載する。 The curable resin composition of the present invention can contain known additives as necessary. Specific examples of additives that can be used include polybutadiene and its modified products, modified acrylonitrile copolymers, polyphenylene ethers, polystyrene, polyethylene, polyimide, fluororesins, silicone gels, silicone oils, fillers such as silane coupling agents. Coloring agents such as surface treatment agents for materials, release agents, carbon black, phthalocyanine blue, and phthalocyanine green. The amount of these additives to be added is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less per 100 parts by mass of the curable resin composition. Particularly preferred components for these additives include polybutadiene, modified products thereof, and butadiene-based thermoplastic elastomers. Details regarding these components are provided below.
 ポリブタジエンおよびこの変性物:ポリブタジエン、水酸基末端ポリブタジエン、末端(メタ)アクリレート化ポリブタジエン、カルボン酸末端ポリブタジエン、アミン末端ポリブタジエン、スチレンブタジエンゴム等が挙げられるが、誘電特性の観点からポリブタジエンもしくは、スチレンブタジエンゴムが好ましい。スチレンブタジエンゴム(SBR)としては例えば、RICON-100、RICON-181、RICON-184(いずれもクレイバレー社製)などが挙げられ、ポリブタジエンとしては、B-1000、B-2000、B-3000(いずれも日本曹達社製)等が挙げられる。これらは単独で用いても、二種類以上を併用してもよい。ポリブタジエンおよびスチレンブタジエンゴムの分子量としては重量平均分子量500~10000が好ましく、より好ましくは750~7500、さらに好ましくは1000~5000である。上記範囲の下限以下では揮発量が多く、プリプレグ作成時の固形分調整が困難となり、上記範囲の上限以上では、他の硬化性樹脂との相溶性が悪化する。 Polybutadiene and modified products thereof: polybutadiene, hydroxyl-terminated polybutadiene, (meth)acrylate-terminated polybutadiene, carboxylic acid-terminated polybutadiene, amine-terminated polybutadiene, styrene-butadiene rubber, and the like. preferable. Styrene-butadiene rubber (SBR) includes, for example, RICON-100, RICON-181, RICON-184 (all manufactured by Clay Valley), and polybutadiene includes B-1000, B-2000, B-3000 ( All of them are manufactured by Nippon Soda Co., Ltd.) and the like. These may be used alone or in combination of two or more. The weight average molecular weight of polybutadiene and styrene-butadiene rubber is preferably from 500 to 10,000, more preferably from 750 to 7,500, still more preferably from 1,000 to 5,000. Below the lower limit of the above range, the amount of volatilization is large, making it difficult to adjust the solid content during preparation of the prepreg. Above the upper limit of the above range, compatibility with other curable resins deteriorates.
 ブタジエン系熱可塑性エラストマー:SEP(スチレン-エチレン・プロピレン共重合体:セプトン1020 株式会社クラレ社製)、SEPS(スチレン-エチレン・プロピレン-スチレン共重合体:セプトン2002、セプトン2004F、セプトン2005、セプトン2006、セプトン2063、セプトン2104 いずれも株式会社クラレ社製)、SEEPS(スチレン-エチレン/エチレン・プロピレン-スチレンブロック共重合体:セプトン4003、セプトン4044、セプトン4055、セプトン4077、セプトン4099 いずれも株式会社クラレ社製)、SEBS(スチレン-エチレン・ブチレン-スチレンブロック共重合体:セプトン8004、セプトン8006、セプトン8007L いずれも株式会社クラレ社製)、SEEPS-ОH(スチレン-エチレン/エチレン・プロピレン-スチレンブロック共重合体の末端に水酸基を有する化合物:セプトンHG252 株式会社クラレ社製)、SIS(スチレン-イソプレン-スチレン ブロック共重合体:セプトン5125、セプトン5127 いずれも株式会社クラレ社製)、水添SIS(水添スチレン-イソプレン-スチレン ブロック共重合体:ハイブラー7125F、ハイブラー7311F いずれも株式会社クラレ社製)等が挙げられる。これらは単独で用いても、二種類以上を併用してもよい。より高い耐熱性を有し、かつ酸化劣化しにくいため、ブタジエン系熱可塑性エラストマーのうち不飽和結合を有さないものが好ましい。また、ブタジエン系熱可塑性エラストマーの重量平均分子量は10000以上であれば特に制限はないが、大きすぎるとポリフェニレンエーテル化合物のほか、重量平均分子量50~1000程度の低分子量成分および、重量平均分子量1000~5000程度のオリゴマー成分との相溶性が悪化し、混合および溶剤安定性の担保が困難になることから、10000~300000程度であることが好ましい。 Butadiene-based thermoplastic elastomer: SEP (styrene-ethylene-propylene copolymer: Septon 1020 manufactured by Kuraray Co., Ltd.), SEPS (styrene-ethylene-propylene-styrene copolymer: Septon 2002, Septon 2004F, Septon 2005, Septon 2006 , Septon 2063, Septon 2104, both manufactured by Kuraray Co., Ltd.), SEEPS (Styrene-ethylene/ethylene/propylene-styrene block copolymer: Septon 4003, Septon 4044, Septon 4055, Septon 4077, Septon 4099, both of Kuraray Co., Ltd. company), SEBS (styrene-ethylene/butylene-styrene block copolymer: Septon 8004, Septon 8006, Septon 8007L; all manufactured by Kuraray Co., Ltd.), SEEPS-OH (styrene-ethylene/ethylene/propylene-styrene block copolymer Compounds having a hydroxyl group at the end of the polymer: Septon HG252 manufactured by Kuraray Co., Ltd.), SIS (styrene-isoprene-styrene block copolymers: Septon 5125, Septon 5127 manufactured by Kuraray Co., Ltd.), hydrogenated SIS (water Added styrene-isoprene-styrene block copolymer: Hybler 7125F, Hybler 7311F (both manufactured by Kuraray Co., Ltd.) and the like. These may be used alone or in combination of two or more. Of the butadiene-based thermoplastic elastomers, those having no unsaturated bonds are preferred because they have higher heat resistance and are less susceptible to oxidation deterioration. The weight average molecular weight of the butadiene-based thermoplastic elastomer is not particularly limited as long as it is 10,000 or more. The compatibility with oligomer components of about 5,000 deteriorates, making it difficult to ensure mixing and solvent stability.
 本発明の硬化性樹脂組成物は、上記各成分を所定の割合で均一に混合することにより得られ、通常130~180℃で30~500秒の範囲で予備硬化し、更に、150~200℃で2~15時間、後硬化することにより充分な硬化反応が進行し、本発明の硬化物が得られる。又、硬化性樹脂組成物の成分を溶剤等に均一に分散または溶解させ、溶媒を除去した後硬化させることもできる。 The curable resin composition of the present invention is obtained by uniformly mixing the above-mentioned respective components in a predetermined ratio, usually precured at 130 to 180 ° C. for 30 to 500 seconds, and further cured at 150 to 200 ° C. After curing for 2 to 15 hours at , the curing reaction proceeds sufficiently to obtain the cured product of the present invention. It is also possible to uniformly disperse or dissolve the components of the curable resin composition in a solvent or the like, remove the solvent, and then cure the composition.
 こうして得られる本発明の硬化性樹脂組成物は、耐湿性、耐熱性、高接着性を有する。従って、本発明の硬化性樹脂組成物は、耐湿性、耐熱性、高接着性の要求される広範な分野で用いることが出来る。具体的には、絶縁材料、積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、封止材料、レジスト等あらゆる電気・電子部品用材料として有用である。又、成形材料、複合材料の他、塗料材料、接着剤、3Dプリンティング等の分野にも用いることが出来る。特に半導体封止においては、耐はんだリフロー性が有益なものとなる。 The curable resin composition of the present invention thus obtained has moisture resistance, heat resistance, and high adhesiveness. Therefore, the curable resin composition of the present invention can be used in a wide range of fields requiring moisture resistance, heat resistance and high adhesion. Specifically, it is useful as an insulating material, laminate (printed wiring board, BGA substrate, build-up substrate, etc.), sealing material, resist, and all other materials for electrical and electronic parts. In addition to molding materials and composite materials, it can also be used in fields such as paint materials, adhesives, and 3D printing. Particularly in semiconductor encapsulation, solder reflow resistance is beneficial.
 半導体装置は本発明の硬化性樹脂組成物で封止されたものを有する。半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。 A semiconductor device has one sealed with the curable resin composition of the present invention. Examples of semiconductor devices include DIP (dual in-line package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), SOP (small outline package), TSOP (thin small outline package), and TQFP. (think quad flat package) and the like.
 本発明の硬化性樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えば本発明の硬化性樹脂を触媒の存在下または非存在下、溶剤の存在下または非存在下において加熱することによりプレポリマー化する。同様に、本発明の硬化性樹脂の他、エポキシ樹脂、アミン化合物、マレイミド系化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物などの硬化剤及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の非存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。 The method of preparing the curable resin composition of the present invention is not particularly limited, but each component may be mixed uniformly or may be prepolymerized. For example, the curable resin of the present invention is prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent. Similarly, in addition to the curable resin of the present invention, a curing agent such as an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound, and other additives may be added to form a prepolymer. good. Mixing or prepolymerization of each component is carried out by using, for example, an extruder, kneader, rolls, etc. in the absence of a solvent, and by using a reactor equipped with a stirrer in the presence of a solvent.
 均一に混合する手法としては50~100℃の範囲内の温度でニーダ、ロール、プラネタリーミキサー等の装置を用いて練りこむように混合し、均一な樹脂組成物とする。得られた樹脂組成物は粉砕後、タブレットマシーン等の成型機で円柱のタブレット状に成型、もしくは顆粒状の紛体、もしくは粉状の成型体とする、もしくはこれら組成物を表面支持体の上で溶融し0.05mm~10mmの厚みのシート状に成型し、硬化性樹脂組成物成型体とすることもできる。得られた成型体は0~20℃でべたつきのない成型体となり、-25~0℃で1週間以上保管しても流動性、硬化性をほとんど低下させない。
 得られた成型体についてトランスファー成型機、コンプレッション成型機にて硬化物に成型することができる。
As a method for uniform mixing, the components are kneaded at a temperature within the range of 50 to 100° C. using a device such as a kneader, a roll, or a planetary mixer to obtain a uniform resin composition. The obtained resin composition is pulverized and then molded into a cylindrical tablet by a molding machine such as a tablet machine, or formed into granular powder or a powdery molding, or these compositions are placed on a surface support. It can also be melted and molded into a sheet having a thickness of 0.05 mm to 10 mm to form a curable resin composition molding. The obtained molded article becomes a non-sticky molded article at 0 to 20.degree.
The resulting molded product can be molded into a cured product using a transfer molding machine or a compression molding machine.
 本発明の硬化性樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという。)とすることもできる。本発明の硬化性樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させてワニスとし、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有する硬化性樹脂硬化物を得ることもできる。 An organic solvent can be added to the curable resin composition of the present invention to form a varnish-like composition (hereinafter simply referred to as varnish). If necessary, the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to form a varnish. , Polyester fiber, polyamide fiber, alumina fiber, paper, etc., is impregnated into a base material and heat-dried to obtain a prepreg, which is hot-press molded to obtain a cured product of the curable resin composition of the present invention. . In this case, the solvent is usually used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent. Moreover, if it is a liquid composition, it is possible to obtain a curable resin-cured product containing carbon fibers by, for example, the RTM method.
 また、本発明の硬化性組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB-ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明の硬化性樹脂組成物を前記硬化性樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。 The curable composition of the present invention can also be used as a modifier for film-type compositions. Specifically, it can be used to improve flexibility and the like in the B-stage. Such a film-type resin composition is obtained by applying the curable resin composition of the present invention as the curable resin composition varnish on a release film, removing the solvent under heating, and then performing B-stage. It is obtained as a sheet-like adhesive by This sheet-like adhesive can be used as an interlayer insulating layer in multilayer substrates and the like.
 本発明の硬化性樹脂組成物は、加熱溶融し、低粘度化してガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。その具体例としては、例えば、Eガラスクロス、Dガラスクロス、Sガラスクロス、Qガラスクロス、球状ガラスクロス、NEガラスクロス、及びTガラスクロス等のガラス繊維、更にガラス以外の無機物の繊維やポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、全芳香族ポリアミド、ポリエステル;並びに、ポリパラフェニレンベンズオキサゾール、ポリイミド及び炭素繊維などの有機繊維が挙げられるが、これらに特に限定されない。基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマットなどが挙げられる。また、織布の織り方としては、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、織布を開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さは、特に限定されないが、好ましくは0.01~0.4mm程度である。また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。 A prepreg can be obtained by heating and melting the curable resin composition of the present invention, reducing the viscosity, and impregnating reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers with the melted resin composition. Specific examples thereof include glass fibers such as E glass cloth, D glass cloth, S glass cloth, Q glass cloth, spherical glass cloth, NE glass cloth, and T glass cloth, inorganic fibers other than glass, and poly paraphenylene terephthalamide (Kevlar®, manufactured by DuPont), wholly aromatic polyamides, polyesters; and organic fibers such as polyparaphenylene benzoxazole, polyimides and carbon fibers, but are particularly limited to these. not. The shape of the substrate is not particularly limited, but examples thereof include woven fabric, nonwoven fabric, roving, chopped strand mat, and the like. Plain weave, Nanako weave, twill weave, and the like are known as weaving methods of woven fabric, and it is possible to appropriately select and use from these known methods depending on the intended use and performance. In addition, a woven fabric subjected to opening treatment or a glass woven fabric surface-treated with a silane coupling agent or the like is preferably used. Although the thickness of the base material is not particularly limited, it is preferably about 0.01 to 0.4 mm. A prepreg can also be obtained by impregnating reinforcing fibers with the varnish and heating and drying the varnish.
 本実施形態の積層板は、上記プリプレグを1枚以上備える。積層板はプリプレグを1枚以上備えるものであれば特に限定されず、他のいかなる層を有していてもよい。積層板の製造方法としては、一般に公知の方法を適宜適用でき、特に限定されない。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができ、上記プリプレグ同士を積層し、加熱加圧成形することで積層板を得ることができる。このとき、加熱する温度は、特に限定されないが、65~300℃が好ましく、120~270℃がより好ましい。また、加圧する圧力は、特に限定されないが、加圧が大きすぎると積層板の樹脂の固形分調整が難しく品質が安定せず、また、圧力が小さすぎると、気泡や積層間の密着性が悪くなってしまうため2.0~5.0MPaが好ましく、2.5~4.0MPaがより好ましい。本実施形態の積層板は、金属箔からなる層を備えることにより、後述する金属箔張積層板として好適に用いることができる。
 上記プリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら硬化性樹脂組成物を加熱硬化させることにより電気電子用積層板(プリント配線板)や、炭素繊維強化材を得ることができる。
The laminate of the present embodiment includes one or more prepregs. The laminate is not particularly limited as long as it comprises one or more prepregs, and may have any other layers. As a method for producing a laminate, generally known methods can be appropriately applied, and there is no particular limitation. For example, when molding a metal foil-clad laminate, a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. can be used, and the above prepregs are laminated and heat-pressed to form a laminate. Obtainable. At this time, the heating temperature is not particularly limited, but is preferably 65 to 300°C, more preferably 120 to 270°C. In addition, the pressure to be applied is not particularly limited, but if the pressure is too high, it will be difficult to adjust the solid content of the resin in the laminate and the quality will not be stable. 2.0 to 5.0 MPa is preferable, and 2.5 to 4.0 MPa is more preferable, because it deteriorates. The laminate of the present embodiment can be suitably used as a metal-foil-clad laminate described later by including a layer made of metal foil.
After cutting the prepreg into a desired shape and laminating it with copper foil or the like if necessary, the curable resin composition is heat-cured while applying pressure to the laminate by a press molding method, an autoclave molding method, a sheet winding molding method, or the like. Electrical and electronic laminates (printed wiring boards) and carbon fiber reinforcing materials can be obtained.
 本発明の硬化物は成型材料、接着剤、複合材料、塗料など各種用途に使用できる。本発明記載の硬化性樹脂組成物の硬化物は優れた耐熱性と誘電特性を示すため、半導体素子用封止材、液晶表示素子用封止材、有機EL素子用封止材、プリント配線基板、ビルドアップ積層板等の電気・電子部品や炭素繊維強化プラスチック、ガラス繊維強化プラスチック等の軽量高強度構造材用複合材料に好適に使用される。 The cured product of the present invention can be used for various purposes such as molding materials, adhesives, composite materials, and paints. Since the cured product of the curable resin composition according to the present invention exhibits excellent heat resistance and dielectric properties, it can be used as a sealing material for semiconductor elements, a sealing material for liquid crystal display elements, a sealing material for organic EL elements, and a printed wiring board. , electrical and electronic parts such as build-up laminates, and composite materials for lightweight and high-strength structural materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics.
 次に本発明を実施例により更に具体的に説明する。以下、特に断わりのない限り、部は重量部である。尚、本発明はこれら実施例に限定されるものではない。
 以下に実施例で用いた各種分析方法について記載する。
<重量平均分子量(Mw)>
 ポリスチレン標準液を用いてポリスチレン換算により算出した。
 GPC:DGU-20A3R,LC-20AD,SIL-20AHT,RID-20A,SPD-20A,CTO-20A,CBM-20A(いずれも島津製作所製)
 カラム:Shodex KF-603、KF-602x2、KF-601x2)
 連結溶離液:テトラヒドロフラン
 流速:0.5ml/min.
 カラム温度:40℃
 検出:RI(示差屈折検出器)
EXAMPLES Next, the present invention will be described in more detail with reference to examples. Hereinafter, parts are parts by weight unless otherwise specified. However, the present invention is not limited to these examples.
Various analysis methods used in the examples are described below.
<Weight average molecular weight (Mw)>
It was calculated by polystyrene conversion using a polystyrene standard solution.
GPC: DGU-20A3R, LC-20AD, SIL-20AHT, RID-20A, SPD-20A, CTO-20A, CBM-20A (all manufactured by Shimadzu Corporation)
Column: Shodex KF-603, KF-602x2, KF-601x2)
Linking eluent: Tetrahydrofuran Flow rate: 0.5 ml/min.
Column temperature: 40°C
Detection: RI (differential refraction detector)
[実施例1]
 温度計、冷却管、撹拌機を取り付けたフラスコに2-ブロモエチルベンゼン(東京化成社製)37.0部、4,4’-ジクロロ-p-キシレン(東京化成社製)17.5部、ジフェニルメタン8.4部、メタンスルホン酸(東京化成社製)3.2部を仕込み、130℃で5時間反応させた。放冷後、トルエン200部で抽出し、有機層を水100部で5回洗浄した。加熱減圧下において溶剤および過剰の2-ブロモエチルベンゼンを留去することにより2-ブロモエチルベンゼン構造を有するオレフィン樹脂前駆体(BEB-1)31.9部を液状樹脂として得た(Mn:884、Mw:1327)。得られた化合物のGPCチャートを図1に示す。また、得られた化合物のH-NMRチャート(重クロロホルム)を図2に示す。H-NMRチャートの3.05-3.60ppmにブロモエチル基由来のシグナルが観測された。
[Example 1]
Thermometer, condenser, flask equipped with a stirrer 2-bromoethylbenzene (manufactured by Tokyo Kasei Co., Ltd.) 37.0 parts, 4,4'-dichloro-p-xylene (manufactured by Tokyo Kasei Co., Ltd.) 17.5 parts, diphenylmethane 8.4 parts and 3.2 parts of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) were charged and reacted at 130° C. for 5 hours. After standing to cool, it was extracted with 200 parts of toluene, and the organic layer was washed 5 times with 100 parts of water. By distilling off the solvent and excess 2-bromoethylbenzene under heating and reduced pressure, 31.9 parts of an olefin resin precursor (BEB-1) having a 2-bromoethylbenzene structure was obtained as a liquid resin (Mn: 884, Mw : 1327). A GPC chart of the obtained compound is shown in FIG. In addition, FIG. 2 shows a 1 H-NMR chart (deuterochloroform) of the obtained compound. A signal derived from a bromoethyl group was observed at 3.05-3.60 ppm in the 1 H-NMR chart.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[実施例2]
 温度計、冷却管、撹拌機を取り付けたフラスコに実施例1で得られたBEB-1(25.0部)、トルエン20部、ジメチルスルホキシド60部、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成社製)0.0125部、50wt%水酸化ナトリウム水溶液12.0部を加え40℃で6時間反応を行った。その後、水100部を加えて有機層を水洗し、生成塩を除去した。さらに、有機層を再び反応容器に戻し、40℃で1時間反応を行った。放冷後、トルエン100部を加え、有機層を水100部で5回洗浄し、加熱減圧下溶剤を留去することにより、スチレン構造を官能基として有する高粘調液状オレフィン樹脂(О-1)15.4部を得た(Mn:809、Mw:1363)。反応終了時のGPCチャートを図3に示す。また、得られた化合物のH-NMRデータ(重クロロホルム)を図4に示す。H-NMRチャートの5.10-5.30ppm、5.50-5.75ppm、および、6.60-6.80ppmにビニル基由来のシグナルが観測された。О-1の単核体の含有量は13.6%、О-1中に含まれる前記式(4-a)で表される化合物の含有量はGPC(RI)面積%で23.7%、α/β=0.57であった。
[Example 2]
BEB-1 obtained in Example 1 (25.0 parts), 20 parts of toluene, 60 parts of dimethyl sulfoxide, 4-hydroxy-2,2,6,6 in a flask equipped with a thermometer, a condenser, and a stirrer 0.0125 parts of tetramethylpiperidine-1-oxyl (manufactured by Tokyo Chemical Industry Co., Ltd.) and 12.0 parts of a 50 wt % sodium hydroxide aqueous solution were added and reacted at 40° C. for 6 hours. Thereafter, 100 parts of water was added and the organic layer was washed with water to remove the produced salt. Furthermore, the organic layer was returned to the reaction vessel again and reacted at 40° C. for 1 hour. After standing to cool, 100 parts of toluene is added, the organic layer is washed with 100 parts of water five times, and the solvent is distilled off under heating and reduced pressure to obtain a highly viscous liquid olefin resin having a styrene structure as a functional group (O-1 ) to give 15.4 parts (Mn: 809, Mw: 1363). A GPC chart at the end of the reaction is shown in FIG. 1 H-NMR data (deuterochloroform) of the obtained compound is shown in FIG. Signals derived from vinyl groups were observed at 5.10-5.30 ppm, 5.50-5.75 ppm, and 6.60-6.80 ppm in the 1 H-NMR chart. The content of the mononuclear body of O-1 is 13.6%, and the content of the compound represented by the formula (4-a) contained in O-1 is 23.7% in GPC (RI) area%. , α/β=0.57.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[実施例3]
 温度計、冷却管、撹拌機を取り付けたフラスコに2-ブロモエチルベンゼン(東京化成社製)37.0部、4,4’-ジクロロ-p-キシレン(東京化成社製)17.5部、ジフェニルエーテル8.5部、メタンスルホン酸(東京化成社製)3.2部を仕込み、130℃で5時間反応させた。放冷後、トルエン200部で抽出し、有機層を水100部で5回洗浄した。加熱減圧下において溶剤および過剰の2-ブロモエチルベンゼンを留去することにより2-ブロモエチルベンゼン構造を有するオレフィン樹脂前駆体(BEB-2)26.5部を半固形樹脂として得た(Mn:947、Mw:1480)。得られた化合物のGPCチャートを図5に示す。また、得られた化合物のH-NMRチャート(重クロロホルム)を図6に示す。H-NMRチャートの3.00-3.60ppmにブロモエチル基由来のシグナルが観測された。
[Example 3]
A thermometer, a cooling tube, a flask equipped with a stirrer, 37.0 parts of 2-bromoethylbenzene (manufactured by Tokyo Kasei Co., Ltd.), 4,4'-dichloro-p-xylene (manufactured by Tokyo Kasei Co., Ltd.) 17.5 parts, diphenyl ether 8.5 parts and 3.2 parts of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) were charged and reacted at 130° C. for 5 hours. After standing to cool, it was extracted with 200 parts of toluene, and the organic layer was washed 5 times with 100 parts of water. By distilling off the solvent and excess 2-bromoethylbenzene under heating and reduced pressure, 26.5 parts of an olefin resin precursor (BEB-2) having a 2-bromoethylbenzene structure was obtained as a semi-solid resin (Mn: 947, Mw: 1480). A GPC chart of the obtained compound is shown in FIG. In addition, FIG. 6 shows a 1 H-NMR chart (deuterochloroform) of the obtained compound. A signal derived from a bromoethyl group was observed at 3.00-3.60 ppm in the 1 H-NMR chart.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[実施例4]
 温度計、冷却管、撹拌機を取り付けたフラスコに実施例3で得られたBEB-2(25.0部)、トルエン20部、ジメチルスルホキシド60部、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成社製)0.0125部、50wt%水酸化ナトリウム水溶液12.0部を加え40℃で6時間反応を行った。その後、水100部を加えて有機層を水洗し、生成塩を除去した。さらに、有機層を再び反応容器に戻し、40℃で1時間反応を行った。放冷後、トルエン100部を加え、有機層を水100部で5回洗浄し、加熱減圧下溶剤を留去することにより、スチレン構造を官能基として有する高粘調液状オレフィン樹脂(О-2)14.8部を得た(Mn:880、Mw:1541)。反応終了時のGPCチャートを図7に示す。また、得られた化合物のH-NMRデータ(重クロロホルム)を図8に示す。H-NMRチャートの5.10-5.30ppm、5.50-5.75ppm、および、6.60-6.80ppmにビニル基由来のシグナルが観測された。О-2の単核体の含有量は14.2%、О-2中に含まれる前記式(4-a)で表される化合物の含有量はGPC(RI)面積%で21.7%、α/β=0.65であった。
[Example 4]
BEB-2 obtained in Example 3 (25.0 parts), 20 parts of toluene, 60 parts of dimethyl sulfoxide, 4-hydroxy-2,2,6,6 in a flask equipped with a thermometer, a condenser, and a stirrer 0.0125 parts of tetramethylpiperidine-1-oxyl (manufactured by Tokyo Chemical Industry Co., Ltd.) and 12.0 parts of a 50 wt % sodium hydroxide aqueous solution were added and reacted at 40° C. for 6 hours. Thereafter, 100 parts of water was added and the organic layer was washed with water to remove the produced salt. Furthermore, the organic layer was returned to the reaction vessel again and reacted at 40° C. for 1 hour. After standing to cool, 100 parts of toluene is added, the organic layer is washed with 100 parts of water five times, and the solvent is distilled off under heating and reduced pressure to obtain a highly viscous liquid olefin resin (O-2 ) to give 14.8 parts (Mn: 880, Mw: 1541). A GPC chart at the end of the reaction is shown in FIG. 1 H-NMR data (deuterochloroform) of the obtained compound is shown in FIG. Signals derived from vinyl groups were observed at 5.10-5.30 ppm, 5.50-5.75 ppm, and 6.60-6.80 ppm in the 1 H-NMR chart. The content of the mononuclear body of O-2 is 14.2%, and the content of the compound represented by the formula (4-a) contained in O-2 is 21.7% in GPC (RI) area%. , α/β=0.65.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[実施例5、6、7]
 実施例2、4で得られた化合物(О-1、O-2)、SA-9000(メタクリレート末端ポリフェニレンエーテル、SABIC社製)、Ricon-100(スチレンブタジエンゴム、クレイバレー社製)、DCP(ジクミルパーオキサイド、化薬ヌーリオン社製)を表1の割合(質量部)で配合し、金属容器中で加熱溶融混合してそのまま金型に流し込み、220℃で1時間硬化させ、各種試験を行った。測定結果を表1に示す。
[Examples 5, 6, 7]
Compounds (O-1, O-2) obtained in Examples 2 and 4, SA-9000 (methacrylate-terminated polyphenylene ether, manufactured by SABIC), Ricon-100 (styrene-butadiene rubber, manufactured by Clay Valley), DCP ( dicumyl peroxide, manufactured by Kayaku Nourion Co., Ltd.) at the ratio (parts by mass) shown in Table 1, heated and melted and mixed in a metal container, poured into a mold as it is, cured at 220 ° C. for 1 hour, and subjected to various tests. gone. Table 1 shows the measurement results.
[比較例1]
 ビフェニルアラルキル型エポキシ樹脂(NC-3000 日本化薬株式会社製)、フェノールノボラック型フェノール樹脂(PN(H-1) 軟化点80℃ 明和化成工業株式会社製))、硬化促進剤としてTPP(トリフェニルホスフィン 東京化成社製)を表1の割合(質量部)で配合し、金属容器中で加熱溶融混合してそのまま金型に流し込み、175℃でトランスファー成型後、160℃で2時間、180℃で6時間硬化させ、各種試験を行った。測定結果を表1に示す。
[Comparative Example 1]
Biphenyl aralkyl type epoxy resin (NC-3000 manufactured by Nippon Kayaku Co., Ltd.), phenol novolac type phenol resin (PN (H-1) softening point 80 ° C. manufactured by Meiwa Kasei Co., Ltd.)), TPP (triphenyl Phosphine (manufactured by Tokyo Kasei Co., Ltd.) is blended at the ratio (parts by mass) shown in Table 1, heated and melted and mixed in a metal container, poured into a mold as it is, transferred at 175 ° C., transferred at 160 ° C. for 2 hours, and at 180 ° C. After curing for 6 hours, various tests were performed. Table 1 shows the measurement results.
<耐熱性試験>
・ガラス転移温度:動的粘弾性試験機により測定し、tanδが最大値のときの温度。
 動的粘弾性測定器:TA-instruments製DMA-2980
 昇温速度:2℃/分
 測定周波数:10Hz
<誘電率試験・誘電正接試験>
・(株)AET開発製の10GHz空洞共振器を用いて、空洞共振器摂動法にてテストを行った。
<Heat resistance test>
- Glass transition temperature: measured by a dynamic viscoelasticity tester, the temperature at which tan δ reaches its maximum value.
Dynamic viscoelasticity measuring instrument: DMA-2980 manufactured by TA-instruments
Heating rate: 2°C/min Measurement frequency: 10Hz
<Permittivity test/dielectric loss tangent test>
- Using a 10 GHz cavity resonator manufactured by AET Kaihatsu Co., Ltd., a test was performed by the cavity resonator perturbation method.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1より、実施例5、6は単独で硬化することが確認された。また、実施例5、6、7は従来使用されてきたエポキシ系樹脂組成物と比較して、優れた耐熱性と誘電特性を有することが確認された。 From Table 1, it was confirmed that Examples 5 and 6 cured alone. Moreover, it was confirmed that Examples 5, 6, and 7 had excellent heat resistance and dielectric properties as compared with conventionally used epoxy resin compositions.
[参考例1]
 温度計、冷却管、撹拌機を取り付けたフラスコに2-ブロモエチルベンゼン(東京化成社製)296部、α,α’-ジクロロ-p-キシレン(東京化成社製)70部、メタンスルホン酸(東京化成社製)18.4部を仕込み、130℃で8時間反応させた。放冷後、水酸化ナトリウム水溶液で中和し、トルエン1200部で抽出し、有機層を水100部で5回洗浄した。加熱減圧下において溶剤および過剰の2-ブロモエチルベンゼンを留去することにより2-ブロモエチルベンゼン構造を有する化合物前駆体(BEB-3)160部を液状樹脂として得た(Mn:538、Mw:649)。反応式を次段落に示す。得られた化合物のGPCチャートを図9に示す。GPCチャートの面積%より計算した繰り返し単位nは1.7であった。また、得られた化合物のH-NMRチャート(DMSО-d6)を図10に示す。H-NMRチャートの2.95-3.15ppmおよび、3.60-3.75ppmにブロモエチル基由来のシグナルが観測された。
[Reference example 1]
A thermometer, a condenser, a flask equipped with a stirrer, 296 parts of 2-bromoethylbenzene (manufactured by Tokyo Kasei Co., Ltd.), α,α'-dichloro-p-xylene (manufactured by Tokyo Kasei Co., Ltd.) 70 parts, methanesulfonic acid (Tokyo (manufactured by Kasei Co., Ltd.) was charged and reacted at 130° C. for 8 hours. After allowing to cool, the mixture was neutralized with an aqueous sodium hydroxide solution, extracted with 1200 parts of toluene, and the organic layer was washed 5 times with 100 parts of water. By distilling off the solvent and excess 2-bromoethylbenzene under heating and reduced pressure, 160 parts of a compound precursor (BEB-3) having a 2-bromoethylbenzene structure was obtained as a liquid resin (Mn: 538, Mw: 649). . The reaction formula is shown in the next paragraph. A GPC chart of the obtained compound is shown in FIG. The repeating unit n calculated from the area % of the GPC chart was 1.7. Also, FIG. 10 shows a 1 H-NMR chart (DMSO-d6) of the obtained compound. Bromoethyl group-derived signals were observed at 2.95-3.15 ppm and 3.60-3.75 ppm in the 1 H-NMR chart.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[参考例2]
 温度計、冷却管、撹拌機を取り付けたフラスコに参考例1で得られたBEB-3 22部、トルエン50部、ジメチルスルホキシド150部、水15部、水酸化ナトリウム5.4部を加え40℃で5時間反応を行った。放冷後、トルエン100部を加え、有機層を水100部で5回洗浄し、加熱減圧下溶剤を留去することにより、スチレン構造を官能基として有する液状化合物(О-3)13部を得た(Mn:432、Mw:575)。反応式を次段落に示す。得られた化合物のGPCチャートを図11に示す。GPCチャートの面積%より計算した繰り返し単位nは1.7であった。また、得られた化合物のH-NMRデータ(DMSО-d6)を図12に示す。H-NMRチャートの5.10-5.30ppm、5.50-5.85ppm、および、6.60-6.80ppmにビニル基由来のシグナルが観測された。
[Reference example 2]
22 parts of BEB-3 obtained in Reference Example 1, 50 parts of toluene, 150 parts of dimethyl sulfoxide, 15 parts of water and 5.4 parts of sodium hydroxide were added to a flask equipped with a thermometer, a cooling tube and a stirrer, and the temperature was adjusted to 40°C. for 5 hours. After allowing to cool, 100 parts of toluene is added, the organic layer is washed with 100 parts of water five times, and the solvent is distilled off under heating and reduced pressure to remove 13 parts of liquid compound (O-3) having a styrene structure as a functional group. (Mn: 432, Mw: 575). The reaction formula is shown in the next paragraph. A GPC chart of the obtained compound is shown in FIG. The repeating unit n calculated from the area % of the GPC chart was 1.7. 1 H-NMR data (DMSO-d6) of the obtained compound is shown in FIG. Signals derived from vinyl groups were observed at 5.10-5.30 ppm, 5.50-5.85 ppm, and 6.60-6.80 ppm in the 1 H-NMR chart.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[実施例8、9、比較例2]
 実施例2、4で得られたオレフィン樹脂(O-1、O-2)および、参考例2で得られたオレフィン樹脂(O-3)をそれぞれ2部量りとった。それぞれのオレフィン樹脂を福田金属銅箔製の低粗度銅箔(T-4X、厚み18μm)のマット面に塗布後、クッション紙の中央部を15cm四方くりぬいたもの(硬化後膜厚300μmとなる厚み)をスペーサーとして用い、その上から福田金属銅箔製の低粗度銅箔(T-4X、厚み18μm)のマット面が樹脂に接するように重ね合わせた。真空プレス機を用いて真空化1MPaの圧力をかけたまま220℃で1時間硬化させた。このサンプルを用いて銅箔密着性をテストした結果を表2に示す。
[Examples 8 and 9, Comparative Example 2]
Two parts each of the olefin resins (O-1 and O-2) obtained in Examples 2 and 4 and the olefin resin (O-3) obtained in Reference Example 2 were weighed out. After applying each olefin resin to the matte surface of a low-roughness copper foil (T-4X, thickness 18 μm) manufactured by Fukuda Metal Copper Foil, the central part of the cushion paper was cut out 15 cm square (after curing, the film thickness will be 300 μm. Thickness) was used as a spacer, and a low-roughness copper foil (T-4X, thickness 18 μm) manufactured by Fukuda Metal Copper Foil was overlaid thereon so that the matte surface was in contact with the resin. It was cured at 220° C. for 1 hour while applying a vacuum pressure of 1 MPa using a vacuum press. Table 2 shows the results of a copper foil adhesion test using this sample.
Figure JPOXMLDOC01-appb-T000022

[密着性評価の判定基準]
〇:エッチングなしでは銅箔から剥離不可能
×:エッチングなしでも銅箔から剥離可能
Figure JPOXMLDOC01-appb-T000022

[Criteria for Adhesion Evaluation]
〇: Unable to peel from copper foil without etching ×: Peelable from copper foil without etching
 表2より、実施例8、9は比較例2と比較して密着性に優れていることが示された。 Table 2 shows that Examples 8 and 9 are superior to Comparative Example 2 in adhesion.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2021年3月4日付で出願された日本国特許出願(特願2021-034159および特願2021-034160)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese patent applications (Japanese Patent Application No. 2021-034159 and Japanese Patent Application No. 2021-034160) filed on March 4, 2021, the entirety of which is incorporated by reference. Also, all references cited herein are incorporated in their entirety.
 本発明の化合物は、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、接着剤(導電性接着剤など)やCFRPを始めとする各種複合材料用、塗料、3Dプリンティング等の用途に有用である。 The compound of the present invention can be used as an insulating material for electric and electronic parts (such as a highly reliable semiconductor sealing material), a laminate (such as a printed wiring board, a BGA substrate, and a build-up substrate), an adhesive (such as a conductive adhesive), or It is useful for various composite materials such as CFRP, paints, and 3D printing.

Claims (11)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、Xは任意の有機基を表す。Xが複数ある場合、複数のXは互いに同一であってもよいし、異なっていてもよい。Aはメチレン基または酸素原子、Qは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。複数のRは互いに同一であってもよいし、異なっていてもよい。Rは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。Rが複数ある場合、複数のRは互いに同一であってもよいし、異なっていてもよい。l、mはそれぞれ0~3の整数を表し、nは繰り返し単位であり、1≦n≦20であり、pは繰り返し単位であり、1≦p≦20である。)
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (1), X represents an arbitrary organic group. When there are multiple Xs, the multiple Xs may be the same or different. A is a methylene group or an oxygen atom, Q represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.A plurality of R may be the same or different, R is a hydrocarbon group having 1 to 10 carbon atoms, or represents a halogenated alkyl group.When there are multiple Rs, the multiple Rs may be the same or different.l and m each represent an integer of 0 to 3, and n is a repeating unit. , 1 ≤ n ≤ 20, p is a repeating unit, and 1 ≤ p ≤ 20.)
  2.  前記式(1)中、nが、1.1≦n≦20である請求項1に記載の化合物。 The compound according to claim 1, wherein n in the formula (1) satisfies 1.1≤n≤20.
  3.  前記式(1)中、Xが下記式(2)に記載の(a)~(h)のいずれか1種以上である請求項1または2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002

    (*は結合位置を示す。)
    The compound according to claim 1 or 2, wherein X in formula (1) is any one or more of (a) to (h) in formula (2) below.
    Figure JPOXMLDOC01-appb-C000002

    (* indicates the binding position.)
  4.  前記式(1)中、Xが前記式(2)に記載の(a)である請求項3に記載の化合物。 The compound according to claim 3, wherein X in the formula (1) is (a) in the formula (2).
  5.  請求項1から4のいずれか一項に記載の化合物と下記式(4-a)で表される化合物を含有する混合物。
    Figure JPOXMLDOC01-appb-C000003

    (式(4-a)中、sは繰り返し単位であり、1≦s≦20である。)
    A mixture containing the compound according to any one of claims 1 to 4 and a compound represented by the following formula (4-a).
    Figure JPOXMLDOC01-appb-C000003

    (In formula (4-a), s is a repeating unit, and 1 ≤ s ≤ 20.)
  6.  請求項1から4のいずれか一項に記載の化合物、または請求項5に記載の混合物を含有する硬化性樹脂組成物。 A curable resin composition containing the compound according to any one of claims 1 to 4 or the mixture according to claim 5.
  7.  さらに、ポリフェニレンエーテル、ポリブタジエンおよびこの変性物からなる群から選択される1種以上を含有する請求項6に記載の硬化性樹脂組成物。 The curable resin composition according to claim 6, further comprising one or more selected from the group consisting of polyphenylene ether, polybutadiene and modified products thereof.
  8.  前記ポリブタジエンおよびこの変性物が、スチレンブタジエン共重合体、およびブタジエン系熱可塑性エラストマーからなる群から選択される1種以上を含有する請求項7に記載の硬化性樹脂組成物。 The curable resin composition according to claim 7, wherein the polybutadiene and its modified product contain one or more selected from the group consisting of styrene-butadiene copolymers and butadiene-based thermoplastic elastomers.
  9.  請求項1から4のいずれか一項に記載の化合物、請求項5に記載の混合物、または請求項6から8のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。 Cured product obtained by curing the compound according to any one of claims 1 to 4, the mixture according to claim 5, or the curable resin composition according to any one of claims 6 to 8 .
  10.  下記式(3)で表される化合物。
    Figure JPOXMLDOC01-appb-C000004

    (式(3)中、Xは任意の有機基を表す。Xが複数ある場合、複数のXは互いに同一であってもよいし、異なっていてもよい。Zはハロゲン元素を表す。複数のZは互いに同一であってもよいし、異なっていてもよい。Aはメチレン基または酸素原子、Qは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。複数のRは互いに同一であってもよいし、異なっていてもよい。Rは炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。Rが複数ある場合、複数のRは互いに同一であってもよいし、異なっていてもよい。l、mはそれぞれ0~3の整数を表し、nは繰り返し単位であり、1≦n≦20であり、pは繰り返し単位であり、1≦p≦20である。)
    A compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000004

    (In formula (3), X represents an arbitrary organic group. When there are multiple Xs, the multiple Xs may be the same or different. Z represents a halogen element. Multiple Z may be the same or different, A is a methylene group or an oxygen atom, Q is a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group, and multiple Rs are may be the same or different.R represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.When there are multiple Rs, the multiple Rs may be the same l and m each represent an integer of 0 to 3, n is a repeating unit and satisfies 1≦n≦20, p is a repeating unit and satisfies 1≦p≦20. be.)
  11.  請求項10に記載の前記式(3)で表される化合物を塩基性触媒存在下で脱ハロゲン化水素反応させる工程を含む、請求項1から4のいずれか一項に記載の化合物の製造方法。 A method for producing the compound according to any one of claims 1 to 4, comprising a step of subjecting the compound represented by formula (3) according to claim 10 to a dehydrohalogenation reaction in the presence of a basic catalyst. .
PCT/JP2022/007527 2021-03-04 2022-02-24 Compound, mixture, curable resin composition, and cured product thereof WO2022186030A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022541781A JP7241246B2 (en) 2021-03-04 2022-02-24 Compound, mixture, curable resin composition and cured product thereof
CN202280018318.5A CN116917258A (en) 2021-03-04 2022-02-24 Compound, mixture, curable resin composition, and cured product thereof
KR1020237029210A KR20230154819A (en) 2021-03-04 2022-02-24 Compounds, mixtures, curable resin compositions and cured products thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-034160 2021-03-04
JP2021034160 2021-03-04
JP2021-034159 2021-03-04
JP2021034159 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022186030A1 true WO2022186030A1 (en) 2022-09-09

Family

ID=83155075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007527 WO2022186030A1 (en) 2021-03-04 2022-02-24 Compound, mixture, curable resin composition, and cured product thereof

Country Status (4)

Country Link
JP (1) JP7241246B2 (en)
KR (1) KR20230154819A (en)
TW (1) TW202244107A (en)
WO (1) WO2022186030A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822584B (en) * 2022-12-21 2023-11-11 台光電子材料股份有限公司 Resin compositions and products thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517354A (en) * 1981-07-06 1985-05-14 Plastics Engineering Company Polysulfone compositions and derivatives thereof
JPH02108662A (en) * 1988-10-18 1990-04-20 Tosoh Corp Styrenesulfamide compound and composition containing the compound
JPH0393818A (en) * 1989-09-07 1991-04-18 Showa Highpolymer Co Ltd Curable resin composition
JPH05140049A (en) * 1991-11-15 1993-06-08 Showa Highpolymer Co Ltd Improved production of polyvinylbenzylamine-based composition
JP2007015945A (en) * 2005-07-05 2007-01-25 Toto Kasei Co Ltd Vinylbenzyl ether compound and resin composition containing the compound as essential component
JP2010112872A (en) * 2008-11-07 2010-05-20 Kobe Univ Sensing chip and manufacturing method and using thereof
JP2016531959A (en) * 2014-05-06 2016-10-13 廣東生益科技股▲ふん▼有限公司Shengyi Technology Co.,Ltd. Resin composition and its application to high-frequency circuit boards
CN110845853A (en) * 2019-12-09 2020-02-28 苏州生益科技有限公司 Resin composition, and prepreg, laminated board, insulating board, circuit board and coverlay film comprising same
JP2020506976A (en) * 2016-12-16 2020-03-05 ノボセット、エルエルシー Resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570923B2 (en) 1991-06-07 1997-01-16 信越化学工業株式会社 Thermosetting resin composition
JP4363832B2 (en) * 2002-09-27 2009-11-11 株式会社Adeka Polymerizable liquid crystal composition and polymer dispersed liquid crystal obtained by polymerizing the polymerizable liquid crystal composition
JP6659539B2 (en) 2014-07-01 2020-03-04 明和化成株式会社 Allyl ether-modified biphenylaralkyl novolak resin, allyl-modified biphenylaralkyl novolak resin, method for producing the same, and composition using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517354A (en) * 1981-07-06 1985-05-14 Plastics Engineering Company Polysulfone compositions and derivatives thereof
JPH02108662A (en) * 1988-10-18 1990-04-20 Tosoh Corp Styrenesulfamide compound and composition containing the compound
JPH0393818A (en) * 1989-09-07 1991-04-18 Showa Highpolymer Co Ltd Curable resin composition
JPH05140049A (en) * 1991-11-15 1993-06-08 Showa Highpolymer Co Ltd Improved production of polyvinylbenzylamine-based composition
JP2007015945A (en) * 2005-07-05 2007-01-25 Toto Kasei Co Ltd Vinylbenzyl ether compound and resin composition containing the compound as essential component
JP2010112872A (en) * 2008-11-07 2010-05-20 Kobe Univ Sensing chip and manufacturing method and using thereof
JP2016531959A (en) * 2014-05-06 2016-10-13 廣東生益科技股▲ふん▼有限公司Shengyi Technology Co.,Ltd. Resin composition and its application to high-frequency circuit boards
JP2020506976A (en) * 2016-12-16 2020-03-05 ノボセット、エルエルシー Resin composition
CN110845853A (en) * 2019-12-09 2020-02-28 苏州生益科技有限公司 Resin composition, and prepreg, laminated board, insulating board, circuit board and coverlay film comprising same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SANG HERN, KIM: "Synthesis and Properties of Vinyl-Terminated and Silicon- Containing Polysulfones and Polyketones", JOURNAL OF POLYMER SCIENCE, JOHN WILEY & SONS, INC., US, vol. 39, no. 17, 12 July 2001 (2001-07-12), US , pages 2937 - 2942, XP055964209, ISSN: 2642-4169 *
WULFF, GUENTER: "Enzyme-analog-structured polymers. X. Synthesis of monomers for the introduction of amino groups into polymers in a defined interval,", CHEMISCHE BERICHTE, VCH, DE, vol. 112, no. 8, 1 January 1979 (1979-01-01), DE , pages 2854 - 2865, XP009539370, ISSN: 0009-2940 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822584B (en) * 2022-12-21 2023-11-11 台光電子材料股份有限公司 Resin compositions and products thereof

Also Published As

Publication number Publication date
KR20230154819A (en) 2023-11-09
JP7241246B2 (en) 2023-03-16
JPWO2022186030A1 (en) 2022-09-09
TW202244107A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP6951829B1 (en) Compounds, mixtures, curable resin compositions and cured products thereof, and methods for producing compounds.
JP2021143333A (en) Olefin resin, curable resin composition and cured product thereof
JP7208705B1 (en) Maleimide resin, curable resin composition and cured product thereof
WO2020213640A1 (en) Aromatic-amine resin, maleimide resin, curable resin composition, and cured object obtained therefrom
JP2021116423A (en) Curable resin composition and cured product thereof
WO2020213639A1 (en) Maleimide resin, curable resin composition, and cured object obtained therefrom
JP7241246B2 (en) Compound, mixture, curable resin composition and cured product thereof
JP7182343B1 (en) Maleimide resin, amine resin, curable resin composition and cured product thereof
JP7236794B1 (en) Amine compound, maleimide compound, curable resin composition and cured product thereof
JP7360345B2 (en) Olefin resin, curable resin composition and cured product thereof
JP7305290B2 (en) Copolymer, curable resin composition and cured product thereof
JP7252301B1 (en) Curable resin composition, prepreg and cured product thereof
JP7360981B2 (en) Olefin compounds, curable resin compositions and cured products thereof
JP2022176111A (en) Maleimide resin, curable resin composition, and cured product of the same
JP2022189547A (en) Curable resin composition containing maleimide resin and cured product thereof
JP2023015005A (en) Curable resin composition, prepreg, and cured product thereof
JP2023015004A (en) Curable resin composition, prepreg, and cured product thereof
CN116917258A (en) Compound, mixture, curable resin composition, and cured product thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022541781

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763086

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280018318.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763086

Country of ref document: EP

Kind code of ref document: A1