WO2022185797A1 - Plasma generation device and substrate processing device - Google Patents

Plasma generation device and substrate processing device Download PDF

Info

Publication number
WO2022185797A1
WO2022185797A1 PCT/JP2022/002847 JP2022002847W WO2022185797A1 WO 2022185797 A1 WO2022185797 A1 WO 2022185797A1 JP 2022002847 W JP2022002847 W JP 2022002847W WO 2022185797 A1 WO2022185797 A1 WO 2022185797A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plasma
substrate
members
plasma generator
Prior art date
Application number
PCT/JP2022/002847
Other languages
French (fr)
Japanese (ja)
Inventor
美佳 上野
章 堀越
弥生 竹市
隆明 柳田
健二 中西
浩二 渋田
茂 高辻
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021151064A external-priority patent/JP2022135887A/en
Priority claimed from JP2021152331A external-priority patent/JP2022151511A/en
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2022185797A1 publication Critical patent/WO2022185797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • This application relates to a plasma generator and a substrate processing apparatus.
  • Patent Document 1 a plasma processing apparatus for plasma processing the surface of a substrate has been proposed (Patent Document 1).
  • a pair of comb-shaped electrodes are provided, and the tooth-shaped electrodes of each comb-shaped electrode are arranged alternately at predetermined intervals in the same plane.
  • Plasma is generated around the tooth-shaped electrodes by supplying AC power to the pair of comb-shaped electrodes.
  • a substrate is held so as to face a pair of comb-shaped electrodes, and plasma processing is performed on the surface of the substrate.
  • Patent Document 1 the tooth-shaped electrodes of the comb-shaped electrodes are covered with a dielectric member. As a result, the plasma can be prevented from acting on the electrodes, and the generation of impurities from the electrodes can be prevented.
  • Patent Document 2 a mixed solution of sulfuric acid and hydrogen peroxide is supplied to the upper surface of a substrate, and Karo's acid generated in the mixed solution is used to remove a resist formed on the upper surface of the substrate. A technique for doing so is disclosed.
  • the tooth-shaped electrode by lengthening the tooth-shaped electrode, it is possible to widen the plasma generation area in plan view.
  • lengthening the tooth-shaped electrodes has the problem of increasing material costs and increasing the size of the device configuration.
  • the first object of the present application is to provide a plasma generator capable of expanding the plasma generation area.
  • the present application provides a technique for shortening the time required to generate plasma.
  • a first aspect is a plasma generator, wherein first electrodes have a rod-like shape extending along a longitudinal direction and include a plurality of first electrode members arranged in an arrangement direction orthogonal to the longitudinal direction. and a second electrode portion having a rod-like shape extending along the longitudinal direction and including a plurality of second electrode members respectively provided between the plurality of first electrode members in plan view. and a first inner covering the first side surface of each of the plurality of first electrode members and extending toward the distal end along the longitudinal direction from the first distal end surface of each of the plurality of first electrode members. and a dielectric portion having a peripheral surface and forming a first tip space containing gas in a portion of the first inner peripheral surface closer to the tip side than the first tip surface.
  • a second aspect is the plasma generator according to the first aspect, wherein the dielectric portion includes a dielectric member, and the dielectric member includes the first inner peripheral surface and the plurality of second electrode members. a second inner peripheral surface covering each second side surface and extending toward the distal end side along the longitudinal direction from the second distal end surface of each of the plurality of second electrode members; A portion of the inner peripheral surface closer to the tip side than the second tip surface forms a second tip space containing gas.
  • a third aspect is the plasma generator according to the first aspect, wherein the dielectric portion includes a plurality of first dielectric members each having the first inner peripheral surface, and each of the plurality of first dielectric members having the first inner peripheral surface. a second inner peripheral surface covering the second side surface of each of the two electrode members and extending toward the distal end side along the longitudinal direction from the second distal end surface of each of the plurality of second electrode members; A portion of the second inner peripheral surface closer to the tip side than the second tip face includes a plurality of second dielectric members forming a second tip space containing gas.
  • a fourth aspect is the plasma generator according to any one of the first to third aspects, wherein the first electrode portion and the second electrode are generated when the gas in the first tip space is plasmatized.
  • the first electrode portion and the second electrode portion are separated from each other by a distance at which arc discharge does not occur between them.
  • a fifth aspect is the plasma generator according to the fourth aspect, wherein the first electrode section includes a first collective electrode that connects base ends of the plurality of first electrode members, and the second The electrode section includes a second collective electrode that connects base ends of the plurality of second electrode members, and the first tip surface of each of the plurality of first electrode members includes the second collective electrode and the It is located closer to the first collective electrode than the prohibition area between the inner surface of the second collective electrode and the imaginary line separated by a predetermined distance.
  • a sixth aspect is the plasma generator according to any one of the first to fifth aspects, wherein the dielectric portion includes the first tip surface and the first tip surface of each of the plurality of first electrode members. It has a first bottom surface facing across a tip space and connected to the first inner peripheral surface, and the distance between the first bottom surface and the second electrode part is such that the first tip surface is The distance is set such that arc discharge does not occur between the first tip surface and the second electrode portion in a hypothetical structure assumed to be in contact with the first bottom surface.
  • a seventh aspect is a substrate processing apparatus, which is any one of the first to third, wherein a substrate holding part holds a substrate, and plasma is generated toward a main surface of the substrate held by the substrate holding part. or the plasma generator according to the aspect, wherein the first electrode section includes a first collective electrode that connects base ends of the plurality of first electrode members; and the second electrode section includes the plurality of wherein the first distal end surfaces of the plurality of first electrode members and the second distal end surfaces of the plurality of second electrode members are, in plan view, , positioned inside the peripheral edge of the substrate held by the substrate holding portion, and the first collective electrode and the second collective electrode are located on the substrate held by the substrate holding portion in a plan view. Located outside the perimeter.
  • An eighth aspect is the substrate processing apparatus according to the seventh aspect, further comprising a nozzle for ejecting a treatment liquid toward a main surface of the substrate held by the substrate holding part,
  • the plurality of second electrode members are not provided between at least any two adjacent electrode members.
  • a ninth aspect is a plasma generator, comprising: a first electrode member group configured by arranging a plurality of first electrode members; and a first electrode member group electrically connected to the first electrode member group. a collective electrode, a second electrode member group configured by arranging a plurality of second electrode members, a second collective electrode to which the second electrode member group is electrically connected, and the first collective an AC power source electrically connected to the electrodes and the second collective electrode and supplying power to the first electrode member group and the second electrode member group; and a plurality of the first electrode members. and at least one electrode member among the plurality of second electrode members has a smaller electrical resistance per unit length than other electrode members constituting the same electrode member group as the at least one electrode member. It is composed of resistance electrode members, and the plurality of first electrode members and the plurality of second electrode members are alternately arranged in plan view.
  • a tenth aspect is the plasma generator according to the ninth aspect, further comprising a plate-shaped dielectric member, wherein the dielectric member includes a plurality of housings extending from the side surface of the dielectric member into the interior of the dielectric member. A hole is formed, and each of the plurality of first electrode members and each of the plurality of second electrode members are accommodated in the corresponding accommodation holes.
  • An eleventh aspect is the plasma generator according to the ninth or tenth aspect, wherein at least one of the plurality of first electrode members is composed of the low-resistance electrode member, and the plurality of At least one of the two electrode members is composed of the low-resistance electrode member, and the first electrode member composed of the low-resistance electrode member and the second electrode member composed of the low-resistance electrode member and electrode members are arranged adjacent to each other in plan view.
  • a twelfth aspect is the plasma generator according to any one of the ninth to eleventh aspects, wherein the first electrode member composed of the low-resistance electrode member is the other first electrode member.
  • the second electrode member made of the low-resistance electrode member is made of a material different from that of the other second electrode members.
  • a thirteenth aspect is the plasma generator according to any one of the ninth to twelfth aspects, wherein each of the plurality of first electrode members and the plurality of second electrode members is rod-shaped.
  • the first electrode member made of the low-resistance electrode member is thicker than the other first electrode members
  • the second electrode member made of the low-resistance electrode member is thicker than the other first electrode members. is thicker than the second electrode member.
  • a fourteenth aspect is the plasma generator according to any one of the eleventh to thirteenth aspects, wherein the first electrode member is composed of the low resistance electrode member, and the low resistance electrode member is composed of the low resistance electrode member.
  • the first electrode member or The second electrode member is arranged.
  • a fifteenth aspect is a substrate processing apparatus comprising: a substrate holding portion for holding a substrate; nozzles for supplying a processing liquid to the main surface of the substrate held by the substrate holding portion; and a plasma generator according to any one aspect.
  • the gas in the first tip space is turned into plasma, so that the plasma generation region can be expanded in plan view.
  • the plasma generation region can be further expanded by plasmatizing the gas in the second tip space.
  • arc discharge does not occur between the first electrode portion and the second electrode portion even if the gas in the first tip space turns into plasma.
  • plasma can be generated over a wider range on the substrate with a smaller-sized plasma generator.
  • the gas does not turn into plasma between the two first electrode members, power consumption can be reduced.
  • the active species generated by the plasma generator act on the processing liquid, the active species diffuse in the processing liquid, so that the active species can also be supplied to the corresponding region between the two first electrode members. can. In other words, the active species can act on the treatment liquid over a wider range with less power consumption.
  • At least one electrode member constitutes the same electrode member group as the at least one electrode member. Since the electrode member is composed of the low-resistance electrode member having a smaller electrical resistance per unit length than the other electrode members, the current easily flows through the electrode member having a smaller electrical resistance per unit length than the other electrode members, and the low-resistance electrode. Since the members are easily heated, the generation of plasma is facilitated.
  • FIG. 1 is a plan view schematically showing an example of the configuration of a substrate processing system
  • FIG. 3 is a functional block diagram schematically showing an example of the internal configuration of a control unit
  • FIG. It is a figure showing roughly an example of composition of a substrate processing device concerning a 1st embodiment. It is a top view which shows an example of a structure of a plasma generator roughly. It is a sectional side view showing roughly an example of composition of a plasma generator.
  • FIG. 4 is a cross-sectional view schematically showing an example of how the plasma generator is generating plasma. It is a sectional view showing roughly an example of a plasma generator concerning a comparative example.
  • FIG. 4 is a cross-sectional view schematically showing an example of how the plasma generator is generating plasma. It is a sectional view showing roughly an example of a plasma generator concerning a comparative example.
  • FIG. 4 is a cross-sectional view schematically showing an example of how the plasma generator is generating plasma. It is a sectional view
  • FIG. 4 is a diagram showing an example of a first placement prohibited area and a second placement prohibited area; 1 is a plan view schematically showing an example of a plasma generator and a substrate; FIG. 1 is a side sectional view schematically showing an example of a plasma generator and a substrate; FIG. FIG. 4 is a plan view schematically showing another example of the configuration of the plasma generator; FIG. 4 is a side cross-sectional view schematically showing another example of the configuration of the plasma generator; FIG. 4 is a plan view schematically showing another example of the configuration of the plasma generator; FIG. 4 is a side cross-sectional view schematically showing another example of the configuration of the plasma generator; FIG. 4 is a side cross-sectional view schematically showing another example of the configuration of the plasma generator; FIG. 4 is a side cross-sectional view schematically showing another example of the configuration of the plasma generator; FIG. 4 is a side cross-sectional view schematically showing another example of the configuration of the plasma generator; FIG. 4 is a side cross-sectional view schematically
  • FIG. 10 is a diagram showing another example of the first placement prohibited area and the second placement prohibited area;
  • FIG. 11 is a diagram showing an example of a third placement prohibited area and a fourth placement prohibited area; It is a side view which shows roughly the example of a structure of the substrate processing apparatus in 2nd Embodiment.
  • 9 is a flow chart showing an example of the operation of the substrate processing apparatus according to the second embodiment; It is a figure for demonstrating operation
  • FIG. 4 is a plan view showing an example of the configuration of a plurality of electrode rods in the plasma generating section;
  • FIG. 4 is a plan view showing an example of the configuration of a plurality of electrode rods in the plasma generating section;
  • FIG. 10 is a plan view showing an example of the process of generating plasma using the plasma generation unit;
  • FIG. 10 is a plan view showing an example of the process of generating plasma using the plasma generation unit;
  • FIG. 4 is a plan view showing an example of the configuration of a plurality of electrode rods in the plasma generating section; It is a side view which shows roughly the example of a structure of the substrate processing apparatus in 3rd Embodiment.
  • FIG. 4 is a plan view schematically showing an example of a configuration of part of the plasma generating section;
  • FIG. 4 is a cross-sectional view schematically showing an example of a configuration of part of the plasma generating section;
  • FIG. 4 is a plan view showing an example of the configuration of a plurality of electrode rods in the plasma generating section;
  • Shapes having unevenness or chamfering are also represented.
  • the terms “comprise”, “comprise”, “comprise”, “include” or “have” an element are not exclusive expressions that exclude the presence of other elements.
  • the phrase “at least one of A, B and C” includes only A, only B, only C, any two of A, B and C, and all of A, B and C.
  • the target component A state in which other constituent elements are formed on the upper or lower surface of the is also included. That is, for example, when it is described as "B provided on the upper surface of A", it does not prevent another component "C” between A and B.
  • FIG. 1 is a plan view schematically showing an example of the configuration of a substrate processing system 900 to which a plasma generator is applied.
  • the substrate processing system 900 is a single wafer processing apparatus that processes substrates W to be processed one by one.
  • the substrate W is, for example, a semiconductor substrate and has a disk shape.
  • the substrate W may be a photomask glass substrate, a liquid crystal display glass substrate, a plasma display glass substrate, a FED (Field Emission Display) substrate, or an organic EL (Electro-Luminescence) display substrate.
  • Various substrates such as display device substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, ceramic substrates, and solar cell substrates can be applied.
  • the shape of the substrate is not limited to a disk shape, and various shapes such as a rectangular plate shape can be adopted.
  • a substrate processing system 900 includes a load port 901 , an indexer robot 902 , a main transfer robot 903 , a plurality of substrate processing apparatuses 100 and a controller 90 .
  • a plurality of load ports 901 are arranged side by side along one horizontal direction. Each load port 901 is an interface section for loading/unloading the substrate W into/from the substrate processing system 900 .
  • a carrier C accommodating substrates W is loaded into each load port 901 from the outside.
  • Each load port 901 is a container holding mechanism that holds the loaded carrier C.
  • a FOUP Front Opening Unified Pod
  • SMIF Standard Mechanical Inter Face
  • OC Open Cassette
  • the indexer robot 902 is a transport robot that transports the substrate W between the carrier C held by each load port 901 and the main transport robot 903 .
  • the indexer robot 902 can move along the direction in which the load ports 901 are arranged, and can stop at a position facing each carrier C.
  • FIG. The indexer robot 902 can perform an operation of picking up substrates W from each carrier C and an operation of transferring substrates W to each carrier C. As shown in FIG.
  • the main transport robot 903 is a transport robot that transports substrates W between the indexer robot 902 and each substrate processing apparatus 100 .
  • the main transport robot 903 may also be called a center robot.
  • the main transport robot 903 can perform an operation of receiving the substrate W from the indexer robot 902 and an operation of transferring the substrate W to the indexer robot 902 . Further, the main transfer robot 903 can perform an operation of loading the substrate W into each substrate processing apparatus 100 and an operation of unloading the substrate W from each substrate processing apparatus 100 .
  • the substrate processing system 900 includes a substrate platform 904 .
  • the indexer robot 902 transports the substrate W between the load port 901 and the substrate platform 904
  • the main transport robot 903 transports the substrate W between the substrate platform 904 and each substrate processing apparatus 100. .
  • the indexer robot 902 , substrate platform 904 and main transfer robot 903 transfer substrates W between the respective substrate processing apparatuses 100 and load ports 901 .
  • FIG. 1 schematically shows one of the substrate processing apparatuses 100 stacked in three stages. Note that the number of substrate processing apparatuses 100 in the substrate processing system 900 is not limited to twelve, and may be changed as appropriate.
  • the main transport robot 903 is provided so as to be surrounded by four towers.
  • the main transport robot 903 carries the unprocessed substrate W received from the indexer robot 902 into each substrate processing apparatus 100 .
  • Each substrate processing apparatus 100 processes a substrate W.
  • FIG. Also, the main transport robot 903 carries out the processed substrate W from each substrate processing apparatus 100 and passes it to the indexer robot 902 .
  • An unprocessed substrate W is taken out from the carrier C by the indexer robot 902 . Then, the unprocessed substrate W is transferred to the main transport robot 903 via the substrate platform 904, for example.
  • the main transport robot 903 carries the unprocessed substrate W into the substrate processing apparatus 100 . Then, the substrate processing apparatus 100 processes the substrate W.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • a substrate W that has been processed in the substrate processing apparatus 100 is taken out from the substrate processing apparatus 100 by the main transfer robot 903 . Then, the processed substrate W is transferred to the indexer robot 902 via, for example, the substrate platform 904 after passing through another substrate processing apparatus 100 as necessary. The indexer robot 902 loads the processed substrate W into the carrier C. As shown in FIG. The processing for the substrate W is performed as described above.
  • FIG. 2 is a functional block diagram schematically showing an example of the internal configuration of the control section 90.
  • the control unit 90 is an electronic circuit and has, for example, a data processing unit 91 and a storage unit 92 .
  • the data processing section 91 and the storage section 92 are interconnected via a bus 93 .
  • the data processing unit 91 may be an arithmetic processing device such as a CPU (Central Processor Unit).
  • the storage unit 92 may have a non-temporary storage unit (eg, ROM (Read Only Memory) or hard disk) 921 and a temporary storage unit (eg, RAM (Random Access Memory)) 922 .
  • the non-temporary storage unit 921 may store, for example, a program that defines processing to be executed by the control unit 90 .
  • the control unit 90 can execute the processing specified in the program.
  • part or all of the processing executed by the control unit 90 does not necessarily have to be realized by software, and may be executed by hardware such as a dedicated logic circuit.
  • a storage device 94, an input section 96, a display section 97 and a communication section 98 are connected to the bus 93.
  • the storage unit 921 stores basic programs.
  • the storage unit 922 is used as a working area when the data processing unit 91 performs predetermined processing.
  • the storage device 94 is configured by a non-volatile storage device such as flash memory or hard disk device.
  • the input unit 96 is composed of various switches, a touch panel, or the like, and receives an input setting instruction such as a processing recipe from an operator.
  • the display section 97 is composed of, for example, a liquid crystal display device and a lamp, and displays various information under the control of the data processing section 91 .
  • the communication unit 98 has a data communication function via a LAN (Local Area Network) or the like.
  • a plurality of modes for controlling each configuration in the substrate processing system 900 of FIG. 1 are set in advance in the storage device 94 .
  • the processing program 94P By executing the processing program 94P by the data processing unit 91, one mode is selected from the above plurality of modes, and each configuration is controlled in the selected mode.
  • the processing program 94P may be stored in a recording medium. By using this recording medium, the processing program 94P can be installed in the control section 90.
  • FIG. 3 is a diagram schematically showing an example of the configuration of the substrate processing apparatus 100 according to the first embodiment. It should be noted that not all substrate processing apparatuses 100 belonging to the substrate processing system 900 need to have the configuration shown in FIG. 3, and at least one substrate processing apparatus 100 may have the configuration.
  • a substrate processing apparatus 100 illustrated in FIG. 3 is an apparatus that performs processing on a substrate W using plasma.
  • Processing using plasma is not particularly limited, but specific examples include, for example, processing for removing organic substances adhering to the substrate W, or processing such as metal etching on the substrate W.
  • the organic matter adhering to the substrate W is, for example, a used resist film.
  • the resist film is used, for example, as an implantation mask for an ion implantation process.
  • the process of removing the resist film can also be called a resist removal process.
  • the substrate W is, for example, a semiconductor substrate and has a disk shape. Although the size of the substrate W is not particularly limited, its diameter is, for example, about 300 mm.
  • the configuration shown in FIG. 3 may be surrounded by the chamber 80 in FIG.
  • the pressure in chamber 80 may be approximately atmospheric pressure (eg, 0.5 atmospheres or more and 2 atmospheres or less).
  • the plasma treatment described below may be an atmospheric pressure plasma treatment performed at atmospheric pressure.
  • the substrate processing apparatus 100 includes a plasma generator 1, a substrate holder 11, a nozzle 12 and a guard 13.
  • the substrate holding part 11 holds the substrate W in a horizontal posture.
  • the horizontal posture referred to here is a posture in which the thickness direction of the substrate W is along the vertical direction.
  • the substrate holder 11 includes a stage 111 and multiple chuck pins 112 .
  • the stage 111 has a disk shape and is provided below the substrate W in the vertical direction.
  • the stage 111 is provided in such a posture that its thickness direction is along the vertical direction.
  • Stage 111 may also be referred to as a spin base.
  • a plurality of chuck pins 112 are erected on the outer peripheral portion of the upper surface of the stage 111 and grip (hold) the peripheral edge of the substrate W. As shown in FIG.
  • the substrate holding part 11 does not necessarily have to have the chuck pins 112 .
  • the substrate holding part 11 may adsorb the substrate W by sucking the lower surface of the substrate W, or may adsorb the lower surface of the substrate W using an electrostatic method.
  • the substrate holder 11 further includes a rotation mechanism 113, which rotates the substrate W around the rotation axis Q1.
  • the rotation axis Q1 is an axis that passes through the center of the substrate W and extends in the vertical direction.
  • Rotation mechanism 113 includes, for example, shaft 114 and motor 115 .
  • the upper end of the shaft 114 is connected to the lower surface of the stage 111 and extends from the lower surface of the stage 111 along the rotation axis Q1.
  • the motor 115 rotates the shaft 114 around the rotation axis Q1 to rotate the stage 111 .
  • the substrate W held by the plurality of chuck pins 112 rotates around the rotation axis Q1.
  • Such a substrate holding part 11 can also be called a spin chuck.
  • the nozzle 12 is used for supplying the processing liquid to the substrate W.
  • the nozzle 12 is connected to a processing liquid supply source 124 via a supply pipe 121 . That is, the downstream end of the supply pipe 121 is connected to the nozzle 12 and the upstream end of the supply pipe 121 is connected to the processing liquid supply source 124 .
  • the processing liquid supply source 124 includes, for example, a tank (not shown) that stores the processing liquid, and supplies the processing liquid to the supply pipe 121 .
  • the treatment liquid is, for example, an etchant such as hydrochloric acid, hydrofluoric acid, phosphoric acid, nitric acid, sulfuric acid, sulfate, peroxosulfuric acid, peroxosulfate, hydrogen peroxide, tetramethylammonium hydroxide, or a mixture of ammonia and hydrogen peroxide. (SC1) and other liquids.
  • the treatment liquid includes, for example, a liquid such as a mixed liquid (SC2) of hydrochloric acid and hydrogen peroxide as a cleaning liquid.
  • the processing liquid also includes liquid such as deionized water (DIW) as, for example, a cleaning liquid or a rinse liquid.
  • DIW deionized water
  • the processing liquid is assumed to be a liquid containing at least one of sulfuric acid, sulfate, peroxosulfuric acid and peroxosulfate, or a liquid containing hydrogen peroxide.
  • the processing liquid from the processing liquid supply source 124 is supplied to the nozzle 12 through the supply pipe 121 and ejected from the ejection port 12 a of the nozzle 12 . That is, the valve 122 switches between supplying and stopping the supply of the processing liquid from the processing liquid supply source 124 to the nozzle 12 .
  • the flow rate adjusting section 123 adjusts the flow rate of the processing liquid flowing through the supply pipe 121 .
  • the flow rate adjusting unit 123 is, for example, a mass flow controller.
  • the nozzle 12 is movably provided by a nozzle moving mechanism 15.
  • the nozzle moving mechanism 15 moves the nozzle 12 between the first processing position and the first standby position.
  • the first processing position is a position where the nozzle 12 discharges the processing liquid toward the main surface (for example, the upper surface) of the substrate W. As shown in FIG.
  • the first processing position is, for example, a position vertically above the substrate W and facing the central portion of the substrate W in the vertical direction.
  • the first standby position is a position where the nozzle 12 does not discharge the processing liquid toward the main surface of the substrate W, and is a position further away from the substrate W than the first processing position.
  • the first standby position is also a position where the nozzle 12 does not interfere with the transport path of the substrate W by the main transport robot 120 .
  • the first standby position is a position radially outside the peripheral edge of the substrate W. As shown in FIG. FIG. 3 shows the nozzle 12 stopped at the first standby position.
  • the nozzle moving mechanism 15 has an actuator such as a ball screw mechanism or an arm turning mechanism.
  • the arm turning mechanism includes an arm, a support column, and a motor (none of which are shown).
  • the arm has a horizontally extending rod-like shape, the tip of the arm is connected to the nozzle 12, and the base end of the arm is connected to the support column.
  • the support column extends vertically and is rotatable around its central axis. When the motor rotates the support column, the arm turns and the nozzle 12 moves in the circumferential direction around the central axis.
  • the support column is provided so that the first processing position and the first standby position are positioned on the moving path of the nozzle 12 .
  • the processing liquid is discharged from the nozzle 12 toward the upper surface of the substrate W during rotation. .
  • the processing liquid lands on the upper surface of the substrate W, spreads over the upper surface of the substrate W as the substrate W rotates, and scatters outward from the peripheral edge of the substrate W.
  • FIG. As a result, a liquid film of the processing liquid is formed on the upper surface of the substrate W. As shown in FIG.
  • a plurality of processing liquid nozzles 12 may be provided corresponding to the respective processing liquids.
  • the processing liquid nozzle 12 supplies the processing liquid to the substrate W so that a liquid film of the processing liquid is formed on the upper surface of the substrate W. As shown in FIG.
  • the guard 13 has a cylindrical shape surrounding the substrate W held by the substrate holding portion 11 .
  • the processing liquid scattered from the peripheral edge of the substrate W hits the inner peripheral surface of the guard 13 and flows vertically downward along the inner peripheral surface.
  • the processing liquid flows, for example, through a collection pipe (not shown) and is collected in the tank of the processing liquid supply source 124 . According to this, the treatment liquid can be reused.
  • the plasma generator 1 is a device that generates plasma, and is provided at a position facing the main surface (for example, the upper surface) of the substrate W held by the substrate holding part 11 in the vertical direction. In the example of FIG. 3, the plasma generator 1 is provided vertically above the upper surface of the substrate W so as to cover the entire substrate W. As shown in FIG.
  • the plasma generator 1 is connected to a power supply 8, receives power from the power supply 8, and converts surrounding gas into plasma.
  • the plasma generator 1 is an atmospheric pressure plasma source that generates plasma under atmospheric pressure.
  • the atmospheric pressure here is, for example, 50% or more of the standard pressure and 200% or less of the standard pressure. An example of a specific configuration of the plasma generator 1 will be detailed later.
  • the plasma generator 1 may be provided movably by a plasma moving mechanism 14 .
  • the plasma moving mechanism 14 reciprocates the plasma generator 1 between the second processing position and the second standby position.
  • the second processing position is a position where the substrate W is processed using plasma from the plasma generator 1 .
  • the distance between the plasma generator 1 and the upper surface of the substrate W is, for example, several millimeters.
  • the second standby position is a position when the substrate W is not processed using plasma, and is a position further away from the substrate W than the second processing position.
  • the second standby position is also a position where the plasma generator 1 does not interfere with the transport path of the substrate W by the main transport robot 120 .
  • the second standby position is a position vertically above the second processing position, and the plasma moving mechanism 14 raises and lowers the plasma generator 1 along the vertical direction.
  • FIG. 3 shows the plasma generator 1 stopped at the second standby position.
  • the plasma moving mechanism 14 has, for example, a moving mechanism such as a ball screw mechanism or an air cylinder.
  • the plasma generator 1 can move from the second standby position to the second processing position while the nozzle 12 is retracted to the first standby position.
  • the valve 122 is closed and the nozzle moving mechanism 15 moves the nozzle 12 to the first position. It is moved from the first processing position to the first standby position.
  • the plasma moving mechanism 14 moves the plasma generator 1 from the second standby position to the second processing position. According to this, since the nozzle 12 does not exist directly above the substrate W, the plasma generator 1 can be brought closer to the upper surface of the substrate W. FIG. In other words, the second processing position can be set closer to the substrate W.
  • the power supply 8 outputs voltage to the plasma generator 1 while the plasma generator 1 is positioned at the second processing position.
  • the plasma generator 1 generates plasma in the vicinity of the upper surface of the substrate W.
  • the plasma generator 1 generates plasma toward the upper surface of the substrate W.
  • Various active species are generated with the generation of this plasma.
  • plasmatization of air can generate various active species such as oxygen radicals, hydroxyl radicals, and ozone gas. These active species act on the upper surface of the substrate W.
  • the active species act on the liquid film of the processing liquid (here, sulfuric acid) on the upper surface of the substrate W.
  • the processing liquid here, sulfuric acid
  • Caro's acid is also called peroxomonosulfate.
  • the Caro's acid acts on the resist on the substrate W, so that the resist can be removed by oxidation.
  • the active species act on the processing liquid on the main surface of the substrate W
  • the processing performance of the processing liquid can be improved. Therefore, the substrate W can be processed quickly.
  • FIG. 4 is a plan view schematically showing an example of the configuration of the plasma generator 1
  • FIG. 5 is a side sectional view schematically showing an example of the configuration of the plasma generator 1.
  • the plasma generator 1 is a device that generates plasma, and can also be called a plasma source or a plasma reactor.
  • the plasma generator 1 includes a first electrode portion 2, a second electrode portion 3 and a dielectric portion 40.
  • Dielectric portion 40 includes first dielectric member 4 and second dielectric member 5 .
  • the first electrode section 2 includes a plurality of first electrode members (first linear electrodes) 21 and a first collective electrode 22, and the second electrode section 3 includes a plurality of second electrode members. (Second linear electrodes) 31 and second collective electrodes 32 are included.
  • the first electrode member 21 is made of a conductive material such as a metal material, and has a rod-like shape (for example, a cylindrical shape) extending along the longitudinal direction D1.
  • the plurality of first electrode members 21 are arranged side by side in an arrangement direction D2 perpendicular to the longitudinal direction D1, and ideally parallel to each other.
  • the diameter of the first electrode member 21 is, for example, about several mm (specifically, about 1 mm).
  • the first collective electrode 22 is made of a conductive material such as a metal material, and connects ends (base ends) on one side of the plurality of first electrode members 21 in the longitudinal direction D1.
  • the first collective electrode 22 has an arcuate flat plate shape that bulges to one side in the longitudinal direction D1.
  • a plurality of first electrode members 21 extend from the first collective electrode 22 toward the other side in the longitudinal direction D1.
  • the second electrode member 31 is made of a conductive material such as a metal material, and has a rod-like shape (for example, a cylindrical shape) extending along the longitudinal direction D1.
  • the plurality of second electrode members 31 are arranged side by side in the arrangement direction D2 and ideally parallel to each other.
  • Each of the second electrode members 31 is located between two adjacent ones of the plurality of first electrode members 21 in a plan view (that is, when viewed along a direction D3 perpendicular to the longitudinal direction D1 and the arrangement direction D2). is provided in In the example of FIG. 4, the first electrode members 21 and the second electrode members 31 are alternately arranged in the arrangement direction D2 in plan view.
  • the diameter of the second electrode member 31 is, for example, about several mm (specifically, about 1 mm).
  • the second collective electrode 32 is made of a conductive material such as a metal material, and connects the ends (basal ends) of the plurality of second electrode members 31 on the other side in the longitudinal direction D1.
  • the second collective electrode 32 bulges in the opposite direction to the first collective electrode 22 and has an arcuate plate shape with approximately the same diameter as the first collective electrode 22 .
  • a plurality of second electrode members 31 extend from the second collective electrode 32 toward one side in the longitudinal direction D1.
  • Each first electrode member 21 is covered with the first dielectric member 4 .
  • the plurality of first dielectric members 4 are made of dielectric material such as quartz and ceramics.
  • each first dielectric member 4 has a tubular shape extending along the longitudinal direction D1, and the first electrode member 21 is inserted into the first dielectric member 4 along the longitudinal direction D1. That is, the first dielectric member 4 has a first inner peripheral surface 4a covering the first side surface 21a of the first electrode member 21 (see also FIG. 5).
  • the illustrated first dielectric member 4 may also be referred to as a first dielectric tube.
  • the first inner peripheral surface 4 a of the first dielectric member 4 surrounds the entire circumference of the first side surface 21 a of the first electrode member 21 .
  • first inner peripheral surface 4a also extends to the distal end side (here, the other side in the longitudinal direction D1) of the first distal end surface 21b of the first electrode member 21 . Therefore, a portion of the first inner peripheral surface 4a closer to the distal end than the first distal end surface 21b forms a first distal end space 41. As shown in FIG.
  • the first distal end space 41 is a space adjacent to the first distal end surface 21b of the first electrode member 21 in the longitudinal direction D1.
  • This first tip space 41 contains a gas.
  • the gas in question is, for example, air.
  • the first dielectric member 4 may have a cylindrical shape with a bottom. That is, the first dielectric member 4 may have the first bottom surface 4b in its internal space.
  • the first bottom surface 4b is connected to the peripheral edge portion on the other side in the longitudinal direction D1 of the first inner peripheral surface 4a.
  • the first tip space 41 corresponds to the space between the first bottom surface 4 b of the first dielectric member 4 and the first tip surface 21 b of the first electrode member 21 .
  • the first inner peripheral surface 4a of the first dielectric member 4 may be partially or wholly separated from the first side surface 21a of the first electrode member 21.
  • the inner diameter of the first dielectric member 4 is slightly larger than the diameter of the first electrode member 21, specifically about 1.1 mm. As a result, even when the diameter of the first electrode member 21 increases due to thermal expansion, damage to the first dielectric member 4 can be suppressed.
  • the outer diameter of the first dielectric member 4 is, for example, about 1.6 mm.
  • a dielectric sealing member (not shown) that seals between the first dielectric member 4 and the first electrode member 21 may be provided in the vicinity of the base end portion 211 of the first electrode member 21 .
  • the sealing member can be made of silicone resin, for example.
  • Each second electrode member 31 is covered with the second dielectric member 5 .
  • the plurality of second dielectric members 5 are made of a dielectric material such as quartz or ceramics.
  • each second dielectric member 5 has a tubular shape extending along the longitudinal direction D1, and the second electrode member 31 is inserted into the second dielectric member 5 along the longitudinal direction D1.
  • the second dielectric member 5 has a second inner peripheral surface 5a that covers the second side surface 31a of the second electrode member 31 .
  • the illustrated second dielectric member 5 may also be referred to as a dielectric tube.
  • the second inner peripheral surface 5 a of the second dielectric member 5 surrounds the second side surface 31 a of the second electrode member 31 .
  • the second inner peripheral surface 5a also extends to the distal end side (here, one side in the longitudinal direction D1) of the second distal end surface 31b of the second electrode member 31 . Therefore, a portion of the second inner peripheral surface 5a closer to the distal end than the second distal end surface 31b forms a second distal end space 51. As shown in FIG.
  • the second distal end space 51 is a space adjacent to the second distal end surface 31b of the second electrode member 31 in the longitudinal direction D1.
  • This second tip space 51 also contains gas.
  • the gas in question is, for example, air.
  • the second dielectric member 5 may have a cylindrical shape with a bottom. That is, the second dielectric member 5 may have the second bottom surface 5b in its internal space.
  • the second bottom surface 5b is connected to a peripheral edge portion on one side in the longitudinal direction D1 of the second inner peripheral surface 5a.
  • the second tip space 51 corresponds to the space between the second bottom surface 5 b of the second dielectric member 5 and the second tip surface 31 b of the second electrode member 31 .
  • the second inner peripheral surface 5a of the second dielectric member 5 may be partially or entirely separated from the second side surface 31a of the second electrode member 31.
  • the inner diameter of the second dielectric member 5 is slightly larger than the diameter of the second electrode member 31, specifically about 1.1 mm. As a result, even when the diameter of the second electrode member 31 increases due to thermal expansion, damage to the second dielectric member 5 can be suppressed.
  • the outer diameter of the second dielectric member 5 is, for example, about 1.6 mm.
  • a dielectric sealing member (not shown) that seals between the second dielectric member 5 and the second electrode member 31 may be provided in the vicinity of the base end portion 311 of the second electrode member 31 .
  • the sealing member can be made of silicone resin, for example.
  • the plasma generator 1 is provided with a partition member 6 .
  • the partition member 6 is made of a dielectric material such as quartz or ceramics.
  • the partition member 6 has a plate-like shape.
  • the main surface on one side of the partition member 6 is called a main surface 6a
  • the main surface on the other side is called a main surface 6b.
  • the main surface 6a and the main surface 6b are surfaces that face each other in the thickness direction of the partition member 6 .
  • the partition member 6 is provided in a posture in which its thickness direction is along the direction D3.
  • the main surface 6a and the main surface 6b of the partition member 6 have a circular shape in plan view.
  • the thickness of the partition member 6 (the distance between the main surfaces 6a and 6b) is set to, for example, several hundred ⁇ m (eg, 300 ⁇ m).
  • the first electrode portion 2 and the first dielectric member 4 are provided on the main surface 6a side of the partition member 6, and the second electrode portion 3 and the second dielectric member 5 are provided on the main surface 6b side of the partition member 6. there is Specifically, the first dielectric member 4 is provided under the main surface 6 a of the partition member 6 , and the second dielectric member 5 is provided on the main surface 6 b of the partition member 6 .
  • the plasma generator 1 may be provided with a holding member 7 .
  • the holding member 7 is made of an insulating material such as fluorine-based resin, and holds the first electrode portion 2, the second electrode portion 3, the first dielectric member 4, the second dielectric member 5 and the partition member 6 integrally.
  • the holding member 7 has a ring shape having substantially the same diameter as the first collective electrode 22 and the second collective electrode 32 in plan view, and sandwiches the first collective electrode 22 and the second collective electrode 32 in the direction D3. .
  • the tip of the first dielectric member 4 is held by the holding member 7. Specifically, the tip of the first dielectric member 4 is embedded in the holding member 7 . Therefore, both ends of the portion composed of the first electrode member 21 and the first dielectric member 4 are held by the holding member 7 . As a result, both ends of the portion can be held.
  • the tip of the second dielectric member 5 is also held by the holding member 7 . Therefore, the holding member 7 can also hold both ends of the portion composed of the second electrode member 31 and the second dielectric member 5 .
  • Such a plasma generator 1 is installed in the substrate processing apparatus 100 such that the longitudinal direction D1 and the arrangement direction D2 are horizontal, and the first electrode section 2 faces the substrate W, for example.
  • the first electrode portion 2 and the second electrode portion 3 are electrically connected to a power source 8 for plasma. More specifically, the first collective electrode 22 of the first electrode section 2 is electrically connected to the first output end 8a of the power source 8 via the wiring 81, and the second collective electrode 32 of the second electrode section 3 is electrically connected to the first output terminal 8a of the power source 8. It is electrically connected to the second output end 8b of the power supply 8 via the wiring 82.
  • the power supply 8 has, for example, a switching power supply circuit (not shown), and outputs voltage for plasma between the first electrode portion 2 and the second electrode portion 3 .
  • the power supply 8 is a pulse power supply that outputs a high-frequency voltage as a voltage for plasma to the first output end 8a and the second output end 8b.
  • a plasma electric field is generated between the first electrode member 21 and the second electrode member 31 by the power supply 8 outputting a voltage between the first electrode portion 2 and the second electrode portion 3 .
  • the gas around the first electrode member 21 and the second electrode member 31 turns into plasma according to the electric field. Specifically, the gas between the outer peripheral surface of the first dielectric member 4 and the outer peripheral surface of the second dielectric member 5 becomes plasma, and the gas in the internal space of the first dielectric member 4 and the second dielectric member 5 The gas in the internal space also turns into plasma. Therefore, the gas in the first tip space 41 and the gas in the second tip space 51 are also turned into plasma.
  • the power source 8 applies a voltage to the extent that the gas in these spaces becomes plasma between the first electrode portion 2 and the second electrode portion 3 .
  • the voltage is, for example, a high frequency voltage of about several tens of kV and several tens of kHz.
  • FIG. 6 is a cross-sectional view schematically showing an example of how the plasma generator 1 generates plasma.
  • the plasma P ⁇ b>1 and the plasma P ⁇ b>2 are generated on the main surface 6 a side and the main surface 6 b side of the partition member 6 , respectively, and the plasma P ⁇ b>3 is generated in the first tip space 41 .
  • plasma is also generated in the second tip space 51 in the same manner as the plasma P3.
  • the contours of the regions where the plasmas P1 to P3 are generated are schematically indicated by chain double-dashed lines. Note that the plasma generation region can also be said to be a light emitting region where the plasma emits light.
  • the plasma P3 is generated in the first tip space 41, which extends from the first tip surface 21b of the first electrode member 21 along the longitudinal direction D1.
  • the length of the plasma P3 generating region depends on the magnitude and frequency of the output voltage of the power source 8.
  • the tip position of the region where the plasma P3 is generated is between the first tip face 21b of the first electrode member 21 and the first bottom face 4b of the first dielectric member 4 .
  • the plasma P3 may be generated in the entire first tip space 41 .
  • the plasma P3 can be regarded as part of the first electrode member 21 in terms of ease of movement of electrons. Therefore, as illustrated in FIG. 6, plasma P1 and plasma P2 are generated in the regions directly below and above plasma P3, respectively.
  • the generation regions of the plasma P1 and the plasma P2 can be expanded in the longitudinal direction D1.
  • the gas in the second tip space 51 is also plasmatized in the same way as in the first tip space 41, so the regions where the plasma P1 and the plasma P2 are generated can be further expanded in the longitudinal direction D1. Moreover, the temperature of the area around the second tip space 51 rises due to the heat generated as the gas in the second tip space 51 turns into plasma. Therefore, plasma P ⁇ b>1 and plasma P ⁇ b>2 can be generated more quickly in the regions immediately below and above the second tip space 51 .
  • the plasma P3 Since the plasma P3 is generated at a position closer to the proximal end portion 311 than the first distal end surface 21b of the first electrode member 21, the plasma P3 causes the first distal end surface 21b of the first electrode member 21 and the second electrode member Arc discharge is more likely to occur with the base end portion 311 of 31 . In addition, since the plasma P3 is generated at a position closer to the second collective electrode 32 than the first end surface 21b of the first electrode member 21, arc discharge also occurs between the first end surface 21b and the second collective electrode 32. easier.
  • FIG. 7 is a diagram schematically showing an example of a part of the configuration of the plasma generator 1000 according to the comparative example.
  • the position of the first tip surface 21b of the first electrode member 21 is set without considering the plasma in the first tip space 41.
  • the first tip surface 21b is provided at a position closer to the second collective electrode 32 in the longitudinal direction D1.
  • the generation areas of the plasma P1 and the plasma P2 can be widened.
  • the electrons in the first tip space 41 tend to move. arcing can occur between the base end 311 of the .
  • the path of arc discharge is schematically indicated by a thick line with double-headed arrows. Arc discharge may also occur between the first end surface 21 b of the first electrode member 21 and the second collective electrode 32 .
  • arc discharge is likely to occur between the second tip surface 31 b of the second electrode member 31 and the first electrode portion 2 .
  • arc discharge is likely to occur between the second tip surface 31b of the second electrode member 31 and the base end portion 211 of the first electrode member 21 and between the second tip surface 31b of the second electrode member 31 and the first collective electrode 22 arc discharge is likely to occur.
  • the distance is such that arc discharge does not occur between the first electrode part 2 and the second electrode part 3.
  • the shape and positional relationship of the first electrode portion 2 and the second electrode portion 3 may be set such that the first electrode portion 2 and the second electrode portion 3 are separated from each other.
  • FIG. 8 is a diagram showing an example of the first placement prohibited region R1 and the second placement prohibited region R2.
  • the first placement prohibited region R1 and the second placement prohibited region R2 are schematically indicated by diagonal hatching.
  • the first prohibited area R1 is defined by the inner side surface 32a of the second collective electrode 32.
  • the inner surface 32a is an arcuate surface of the second collective electrode 32 on the first collective electrode 22 side.
  • the first placement prohibited region R1 is a region sandwiched between the inner side surface 32a of the second collective electrode 32 and a virtual line L1 separated from the inner side surface 32a by a first predetermined distance.
  • the first predetermined distance is set to a value that does not cause arc discharge between the first tip surface 21b of the first electrode member 21 and the second electrode portion 3 when the gas in the first tip space 41 is plasmatized. preset. Specifically, the first predetermined distance is set to a value that does not cause arc discharge when the power supply 8 is at its maximum output (or at its rated output). As a more specific example, when the output voltage of the power supply 8 is 15 kV and the output frequency of the power supply 8 is 12 kHz or more and 30 kHz or less, the first predetermined distance can be set to about 20 mm, for example.
  • each first electrode member 21 is set so that the first distal end face 21b of each first electrode member 21 is located closer to the first collective electrode 22 than the first prohibited area R1 in plan view. As a result, even if the gas in the first tip space 41 turns into plasma, arc discharge does not occur between the first tip surface 21 b of each first electrode member 21 and the second electrode portion 3 .
  • the first tip surface 21b of each first electrode member 21 be located near the first placement prohibited region R1.
  • the first tip surface 21b of each first electrode member 21 is set at a position substantially the same distance away from the first placement prohibited area R1.
  • the second placement prohibited region R2 is defined by the inner side surface 22a of the first collective electrode 22.
  • the inner surface 22a is an arcuate surface of the first collective electrode 22 on the second collective electrode 32 side.
  • the second placement prohibited region R2 is a region sandwiched between the inner side surface 22a of the first collective electrode 22 and a virtual line L2 separated from the inner side surface 22a by a second predetermined distance.
  • the second predetermined distance is set to a value such that arc discharge does not occur between the second tip surface 31b of the second electrode member 31 and the first electrode portion 2 when the gas in the second tip space 51 is plasmatized. preset. Specifically, the second predetermined distance is set to a value that does not cause arc discharge when the power supply 8 is at its maximum output (or at its rated output). The second predetermined distance may be the same as the first predetermined distance.
  • each second electrode member 31 is set so that the second tip surface 31b of each second electrode member 31 is positioned closer to the second collective electrode 32 than the second prohibited area R2 in plan view. Thereby, even if the gas in the second tip space 51 turns into plasma, arc discharge does not occur between the second tip surface 31b of each second electrode member 31 and the first electrode portion 2 .
  • the second tip surface 31b of the second electrode member 31 be positioned near the second prohibited region R2.
  • the second tip surface 31b of each second electrode member 31 is set at a position separated from the second prohibited area R2 by substantially the same distance.
  • the first electrode member 21 is preferably made of a conductive material having a higher melting point than that of the first collective electrode 22 . This is because plasma is generated around the first electrode member 21 and the temperature of the first electrode member 21 becomes high. The temperature around the first electrode member 21 reaches, for example, several hundred degrees (for example, 200 degrees Celsius). On the other hand, plasma is hardly generated around the first collecting electrode 22, so the temperature is relatively low. Also, the first electrode member 21 is preferably made of a conductive material that is less likely to be sputtered than the first collective electrode 22 . This is because the first electrode member 21 can be sputtered when the gas in the inner space (for example, the first tip space 41) of the first dielectric member 4 becomes plasma.
  • tungsten may be used as the material of the first electrode member 21 and aluminum may be used as the material of the first collective electrode 22 .
  • Tungsten has a melting point of about 3000° C., can withstand high temperatures caused by plasma, and is difficult to sputter.
  • aluminum which is inexpensive and highly workable, as the first collective electrode 22, the plasma generator 1 can be manufactured at low cost.
  • the materials of the second electrode member 31 and the second collective electrode 32 are also the same as the materials of the first electrode member 21 and the first collective electrode 22, respectively.
  • FIG. 9 and 10 are diagrams schematically showing an example of the plasma generator 1 and the substrate W.
  • FIG. 9 and 10 show the positional relationship between the substrate W and the plasma generator 1 when the substrate W is held by the substrate holding portion 11.
  • FIG. 9 the substrate W is indicated by a two-dot chain line.
  • FIG. 10 also shows the liquid film F of the processing liquid (for example, sulfuric acid) on the upper surface of the substrate W.
  • the processing liquid for example, sulfuric acid
  • the first end faces 21b of all the first electrode members 21 are located radially inside the peripheral edge of the substrate W held by the substrate holding part 11,
  • the second tip surfaces 31b of all the second electrode members 31 may be positioned radially inward from the peripheral edge of the substrate W held by the substrate holding portion 11 .
  • the radial direction here is the radial direction with respect to the substrate W, in other words, the radial direction with respect to the rotation axis Q1.
  • the entire upper surface of the substrate W can be acted upon by active species from the plasma P1. That is, the active species can act on the liquid film F on the upper surface of the substrate W over the entire surface.
  • the plasma radially outside the substrate W in the plasma P1 is not used for processing the substrate W and is wasted.
  • all the first tip faces 21b and all the second tip faces 31b are located radially inward of the peripheral edge of the substrate W, so the plasma P1 Spreading to the outside can be suppressed, and useless generation of plasma can be suppressed. Therefore, power consumption of the plasma generator 1 can be reduced. Also, the size of the plasma generator 1 in the longitudinal direction D1 can be reduced.
  • the inner side surface 22a of the first collective electrode 22 is located radially outside the peripheral edge of the substrate W held by the substrate holding portion 11, and the inner side surface of the second collective electrode 32 32 a is preferably located radially outside the peripheral edge of the substrate W held by the substrate holding part 11 . According to this, since the first electrode member 21 and the second electrode member 31 can be set relatively long, the plasma P1 can be generated in a wider range on the upper surface of the substrate W, and the plasma P1 can act on the upper surface of the substrate W in a wider range.
  • the peripheral edge of the plasma P1 generation area (light emitting area) in the longitudinal direction D1 is located radially inward of the substrate W peripheral edge.
  • the first tip surface 21b of the first electrode member 21 and the second tip surface 31b of the second electrode member 31 are arranged so that the peripheral edge of the region where the plasma P1 is generated is located radially inside the peripheral edge of the substrate W. Position is set.
  • FIG. 10 straight arrows schematically show how the active species move. Since the active species move in the liquid film F in this manner, the active species can act on the processing liquid even on the peripheral portion of the substrate W.
  • the processing performance of the processing liquid can be improved over the entire upper surface of the substrate W. Specifically, Caro's acid having a high oxidizing power can be generated over the entire surface of the substrate W, and the resist can be removed over the entire surface of the substrate W appropriately.
  • the peripheral edge of the plasma P1 generation region is positioned radially inward from the peripheral edge of the substrate W, the size of the plasma generator 1 in the longitudinal direction D1 can be further reduced.
  • FIG. 11 is a plan view schematically showing an example of the configuration of the plasma generator 1A
  • FIG. 12 is a side sectional view schematically showing an example of the configuration of the plasma generator 1A.
  • FIG. 12 shows a BB section of FIG.
  • the configuration of the plasma generator 1A is the same as that of the plasma generator 1, the specific configurations of the first electrode portion 2 and the second electrode portion 3 are different.
  • 11 and 12 four first electrode members 21A to 21D are provided as the plurality of first electrode members 21, and seven second electrode members 31A to 31G are provided as the plurality of second electrode members 31. ing.
  • the first electrode members 21A to 21D are arranged in this order from one side in the arrangement direction D2, and the second electrode members 31A to 31G are arranged in this order from one side in the arrangement direction D2.
  • the first electrode member 21A is provided between the second electrode members 31A and 31B, the first electrode member 21B is provided between the second electrode members 31C and 31D, and the first electrode member 21B is provided between the second electrode members 31C and 31D.
  • the electrode member 21C is provided between the second electrode members 31D and 31E, and the first electrode member 21D is provided between the second electrode members 31F and 31G.
  • the first electrode member 21 is not provided between the second electrode members 31B and 31C, nor is the first electrode member 21 provided between the second electrode members 31E and 31F. That is, the plasma generator 1A has at least a pair of second electrode members 31 directly facing each other without interposing the first electrode member 21 therebetween.
  • this plasma generator 1A is applied to the substrate processing apparatus 100.
  • plasma is hardly generated between the second electrode members 31B and 31C and between the second electrode members 31E and 31F.
  • active species are not supplied much (see regions Fa and Fb in FIG. 12).
  • plasma is generated in the region between the second electrode members 31A and 31B, the region between the second electrode members 31C and 31E, and the region between the second electrode members 31F and 31G.
  • the active species are directly supplied to the liquid film F of the processing liquid.
  • the active species spread and flow in the liquid film F, the active species are distributed in the liquid film F in the area Fa facing the area between the second electrode members 31B and 31C and between the second electrode members 31E and 31F. also diffuses into the region Fb facing the region of . Therefore, even in these regions Fa and Fb, the processing performance of the processing liquid can be improved.
  • the movement of active species is schematically indicated by straight arrows.
  • the power consumption can be reduced while allowing the active species to act on the processing liquid on the substrate W over a wide range.
  • the first electrode members 21 are not provided between the second electrode members 31B and 31C and between the second electrode members 31E and 31F. However, it is not necessarily limited to this. In short, it is sufficient that the first electrode member 21 is not provided between at least any two adjacent second electrode members 31 in plan view. Alternatively, the second electrode member 31 may not be provided between at least any two adjacent first electrode members 21 in plan view. As a result, the power consumption can be reduced while allowing the active species to act on the processing liquid on the substrate W over a wide range.
  • FIG. 13 is a plan view schematically showing an example of the configuration of the plasma generator 1B
  • FIGS. 14 and 15 are side sectional views schematically showing an example of the configuration of the plasma generator 1B.
  • 14 shows a CC section of FIG. 13
  • FIG. 15 shows a DD section of FIG.
  • the plasma generator 1B is different from the plasma generator 1 in terms of the positional relationship between the first electrode section 2 and the second electrode section 3 and the specific configuration of the dielectric section 40 .
  • the first electrode portion 2 and the second electrode portion 3 are arranged on the same plane, and the dielectric portion 40 replaces the first dielectric member 4 and the second dielectric member 5. includes a single dielectric member 60 .
  • the dielectric member 60 is made of dielectric material such as quartz and ceramics, and covers both the first electrode member 21 and the second electrode member 31 .
  • the dielectric member 60 has a plate-like shape and is arranged with its thickness direction along the direction D3.
  • Dielectric member 60 has a first major surface 60a, a second major surface 60b and side surfaces 60c.
  • the first main surface 60a and the second main surface 60b are surfaces facing each other in the direction D3, and are, for example, flat surfaces orthogonal to the direction D3.
  • the side surface 60c is a surface that connects the peripheral edge of the first main surface 60a and the peripheral edge of the second main surface 60b.
  • the dielectric member 60 has a disk shape, so the first main surface 60a and the second main surface 60b are circular planes, and the side surface 60c is a cylindrical surface.
  • the thickness of the dielectric member 60 is, for example, about 5 mm.
  • the dielectric member 60 is formed with first holes 62 into which the first electrode members 21 are inserted and second holes 64 into which the second electrode members 31 are inserted.
  • Each first hole 62 extends along the longitudinal direction D1, and one end thereof opens on the side surface 60 c of the dielectric member 60 .
  • the first electrode member 21 is inserted into the first hole 62 from the first tip surface 21b.
  • a first side surface 21 a of the first electrode member 21 is covered with a first inner peripheral surface 62 a forming a first hole 62 in the dielectric member 60 . That is, the first inner peripheral surface 62 a of each first hole 62 surrounds the entire circumference of the first side surface 21 a of the first electrode member 21 .
  • the first inner peripheral surface 62a also extends to the distal end side (here, the other side in the longitudinal direction D1) of the first distal end surface 21b of the first electrode member 21 .
  • the first distal end space 61 is a space adjacent to the first distal end surface 21b of the first electrode member 21 in the longitudinal direction D1.
  • This first tip space 61 also contains gas.
  • the gas in question is, for example, air.
  • each first hole 62 may be a bottomed hole. That is, the dielectric member 60 may have a first bottom surface 62b that closes the end of each first hole 62 on the other side in the longitudinal direction D1.
  • the first bottom surface 62b is connected to the peripheral edge portion on the other side in the longitudinal direction D1 of the first inner peripheral surface 62a and faces the first distal end surface 21b across the first distal end space 61 .
  • the first tip space 61 corresponds to the space between the first bottom surface 62 b of the dielectric member 60 and the first tip surface 21 b of the first electrode member 21 .
  • the first inner peripheral surface 62a of each first hole 62 is partially or wholly separated from the first side surface 21a of the first electrode member 21. As a result, even when the diameter of the first electrode member 21 increases due to thermal expansion, damage to the dielectric member 60 can be suppressed.
  • a dielectric sealing member (not shown) that seals between the dielectric member 60 and the first electrode member 21 may be provided in the vicinity of the base end portion 211 of the first electrode member 21 .
  • the sealing member can be made of silicone resin, for example.
  • Each second hole 64 extends along the longitudinal direction D1, and the other end opens on the side surface 60 c of the dielectric member 60 .
  • Each second electrode member 31 is inserted into the second hole 64 from the second tip surface 31b.
  • a second side surface 31 a of the second electrode member 31 is covered with a second inner peripheral surface 64 a forming a second hole 64 in the dielectric member 60 .
  • the second inner peripheral surface 64 a of each second hole 64 surrounds the entire second side surface 31 a of the second electrode member 31 .
  • the second inner peripheral surface 64a also extends to the distal end side (here, one side in the longitudinal direction D1) of the second distal end surface 31b of the second electrode member 31 .
  • the second distal end space 63 is a space adjacent to the second distal end surface 31b of the second electrode member 31 in the longitudinal direction D1.
  • This second tip space 63 also contains gas.
  • the gas in question is, for example, air.
  • each second hole 64 may be a bottomed hole. That is, the dielectric member 60 may have a second bottom surface 64b that closes one end of the second hole 64 in the longitudinal direction D1.
  • the second bottom surface 64b is connected to a peripheral edge portion on one side in the longitudinal direction D1 of the second inner peripheral surface 64a and faces the second tip surface 31b across the second tip space 63 .
  • the second tip space 63 corresponds to the space between the second bottom surface 64 b of the dielectric member 60 and the second tip surface 31 b of the second electrode member 31 .
  • each second hole 64 is partially or wholly separated from the second side surface 31a of the second electrode member 31.
  • a dielectric sealing member (not shown) that seals between the dielectric member 60 and the second electrode member 31 may be provided in the vicinity of the base end portion 311 of the second electrode member 31 .
  • the sealing member can be made of silicone resin, for example.
  • the plurality of first electrode members 21 and the plurality of second electrode members 31 are provided on the same plane. Therefore, the plurality of first holes 62 and the plurality of second holes 64 are also formed on the same plane.
  • the distance between the first electrode member 21 and the second main surface 60b of the dielectric member 60 is narrower than the distance between the first electrode member 21 and the first main surface 60a of the dielectric member 60.
  • the distance between the second electrode member 31 and the second principal surface 60b of the dielectric member 60 is narrower than the distance between the second electrode member 31 and the first principal surface 60a of the dielectric member 60 . That is, the first electrode member 21 and the second electrode member 31 are provided closer to the second main surface 60b than to the first main surface 60a. Therefore, the first hole 62 and the second hole 64 are also formed closer to the second main surface 60b than to the first main surface 60a.
  • the plasma generator 1B is arranged with the second main surface 60b facing the object to be processed (here, the substrate W).
  • the gas in the vicinity of the second main surface 60b is turned into plasma by the plasma generator 1B as described later, and active species generated by the plasma act on the object to be processed.
  • the first collective electrode 22 and the second collective electrode 32 are provided outside the dielectric member 60 . Therefore, the base end portion 211 of the first electrode member 21 protrudes outward from the side surface 60c of the dielectric member 60 and is connected to the first collective electrode 22, and the base end portion 311 of the second electrode member 31 protrudes outward from the side surface 60c of the dielectric member 60. is protruded outward from and connected to the second collective electrode 32 .
  • the first collective electrode 22 and the second collective electrode 32 are connected to a power source 8 for plasma (see FIG. 13), and the voltage output of the power source 8 causes the first electrode member 21 and the second electrode member 31 to An electric field for the plasma is generated in between.
  • the electric field is generated near the second main surface 60b of the dielectric member 60. and can easily convert the gas into plasma.
  • the electric field is generated in the vicinity of the first main surface 60a. Does not work well with gas. Therefore, generation of unnecessary plasma that does not contribute to the processing of the substrate W can also be suppressed.
  • the thickness between the first main surface 60a and the second main surface 60b of the dielectric member 60 can be increased, the strength and rigidity of the dielectric member 60 can be improved.
  • the volume of the dielectric member 60 is the same as that of the plasma generators 1 and 1A. larger than the total volume of the first dielectric member 4, the second dielectric member 5 and the partition member 6; Therefore, in order to generate plasma in plasma generator 1 ⁇ /b>B, power supply 8 needs to supply larger power between first electrode portion 2 and second electrode portion 3 .
  • the output voltage of the power supply 8 is set to about 15 kV, and the output frequency of the power supply 8 is set to about 60 kHz or less.
  • the gas in the first tip space 61 and the second tip space 63 inside the dielectric member 60 becomes more likely to become plasma. Therefore, according to the plasma generator 1B, the plasma generation region formed along the second main surface 60b of the dielectric member 60 can be further expanded.
  • the shape of the plasma generator 1B is simpler than those of the plasma generators 1 and 1A.
  • the shape of the plasma generator 1, 1A in which the first dielectric member 4 and the partition member 6 form a stepped shape is simpler. Therefore, even if the processing liquid on the substrate W to be processed volatilizes and adheres to the plasma generator 1B (for example, the second main surface 60b), the plasma generator 1B can be cleaned to remove the processing liquid. Easy.
  • the shape and the positional relationship of the first electrode portion 2 and the second electrode portion 3 are preferably set so that the first electrode portion 2 and the second electrode portion 3 are separated from each other by a distance that does not cause a .
  • FIG. 16 is a diagram showing an example of the first layout prohibited region R1 and the second layout prohibited region R2 in the plasma generator 1B.
  • the first placement prohibited region R1 and the second placement prohibited region R2 are schematically indicated by diagonal hatching.
  • the first placement prohibited region R1 is a region sandwiched between the inner side surface 32a of the second collective electrode 32 and the virtual line L1, and the second placement prohibited region R2 corresponds to the first group. It is a region sandwiched between the inner side surface 22a of the electrode 22 and the imaginary line L2.
  • a first predetermined distance between the inner surface 32a and the phantom line L1 and a second predetermined distance between the inner surface 22a and the phantom line L2 are determined to prevent arc discharge at the maximum output (or rated output) of the power source 8.
  • the first predetermined distance and the second predetermined distance can be set to about 20 mm, for example.
  • the first hole 62 formed in the dielectric member 60 of the plasma generator 1B has a first bottom surface 62b (see FIG. 13). Therefore, the position of the tip of the plasma in the first tip space 61 is regulated by the first bottom surface 62b. In other words, even if plasma is generated in the widest space in the first tip space 61, the tip of the plasma cannot approach the second electrode portion 3 more than the first bottom surface 62b. That is, when the tip of the plasma is closest to the second electrode portion 3, the tip position of the plasma matches the position of the first bottom surface 62b. Therefore, if the 1st bottom face 62b is fully separated from the 2nd electrode part 3, it can also be considered that an arc discharge can be suppressed.
  • the distance between the first bottom surface 62b of the first hole 62 and the second electrode portion 3 may be set as follows.
  • a hypothetical structure is assumed in which the first electrode member 21 is virtually extended along the longitudinal direction D1 and the first tip surface 21b of the first electrode member 21 contacts the first bottom surface 62b.
  • the distance between the first bottom surface 62b and the second electrode portion 3 is adjusted so that arc discharge does not occur between the first tip surface 21b of the first electrode member 21 and the second electrode portion 3. set.
  • the set value is adopted as the distance between the first bottom surface 62b and the second electrode portion 3 in the plasma generator 1B.
  • the distance can be set to approximately several millimeters (specifically, approximately 5 mm) or more, for example. According to this, in the plasma generator 1B, even if plasma is generated in the entire range within the first tip space 61, an arc is generated between the first tip surface 21b of the first electrode member 21 and the second electrode portion 3. No discharge occurs.
  • the second hole 64 formed in the dielectric member 60 has a second bottom surface 64b (see FIG. 13).
  • the distance between the second bottom surface 64b and the first electrode portion 2 may be set as follows. That is, in a hypothetical structure assuming that the second tip surface 31b of the second electrode member 31 abuts on the second bottom surface 64b, an arc is generated between the second tip surface 31b of the second electrode member 31 and the first electrode portion 2. The distance is set so that no discharge occurs. Then, the set value is adopted as the distance between the second bottom surface 64b and the first electrode portion 2 in the plasma generator 1B.
  • the distance can be set to approximately several millimeters (specifically, approximately 5 mm) or more, for example.
  • a third placement prohibited area R3 is set for the position of the first bottom surface 62b of the first hole 62
  • a fourth placement prohibited area R4 is set for the position of the second bottom surface 64b of the second hole 64.
  • FIG. 17 is a diagram showing an example of the third placement prohibited region R3 and the fourth placement prohibited region R4 in the plasma generator 1B.
  • the third placement prohibited region R3 and the fourth placement prohibited region R4 are schematically indicated by diagonal hatching.
  • the third placement prohibited region R3 is defined by the inner side surface 32a of the second collective electrode 32, similar to the first placement prohibited region R1.
  • the third placement prohibited region R3 is a region sandwiched between the inner side surface 32a of the second collective electrode 32 and a virtual line L3 separated from the inner side surface 32a by a third predetermined distance.
  • the third predetermined distance is set in advance to a value such that arc discharge does not occur between the first tip surface 21b of the first electrode member 21 and the second electrode portion 3 in the hypothetical structure.
  • the third predetermined distance is set to a value (for example, about 5 mm or more) that does not cause arc discharge when the power source 8 is at its maximum output (or at rated output).
  • each first hole 62 is set so that the first bottom surface 62b of each first hole 62 is positioned closer to the first collective electrode 22 than the third prohibited area R3 in plan view. As a result, even if the gas in the first tip space 61 turns into plasma, arc discharge does not occur between the first tip surface 21 b of each first electrode member 21 and the second electrode portion 3 .
  • the fourth placement prohibited region R4 is defined by the inner side surface 22a of the first collective electrode 22, similar to the second placement prohibited region R2.
  • the fourth placement prohibited region R4 is a region sandwiched between the inner side surface 22a of the first collective electrode 22 and an imaginary line L4 separated from the inner side surface 22a by a fourth predetermined distance.
  • the fourth predetermined distance is set in advance to a value that does not cause arc discharge between the second tip surface 31b of the second electrode member 31 and the first electrode portion 2 in the hypothetical structure.
  • the fourth predetermined distance is set to a value (for example, 5 mm) that does not cause arc discharge when the power source 8 is at its maximum output (or rated output).
  • each second hole 64 is set so that the second bottom surface 64b of each second hole 64 is located closer to the second collective electrode 32 than the fourth prohibition region R4 in plan view. As a result, even if the gas in the second tip space 63 turns into plasma, arc discharge does not occur between the second tip surface 31b of each second electrode member 31 and the first electrode portion 2 .
  • the plasma generator 1B As described above, according to the plasma generator 1B, arc discharge can be suppressed more appropriately.
  • the first bottom surface 62b and the second bottom surface 64b of the plasma generator 1B have been described. The same applies to the position of the second bottom surface 5b of 5.
  • the partition member 6 may not be provided, and the first electrode portion 2 and the second electrode portion 3 may be provided on the same plane.
  • the first electrode portion 2 and the second electrode portion 3 may be provided at different positions in the direction D3.
  • the first electrode member 21 and the second electrode member 31 may be provided at different positions in the direction D3.
  • FIG. 18 is a side view schematically showing an example of the configuration of the substrate processing apparatus 100 according to the second embodiment.
  • the configuration shown in FIG. 18 may be surrounded by the chamber 80 in FIG.
  • the pressure in chamber 80 may be approximately atmospheric pressure (eg, 0.5 atmospheres or more and 2 atmospheres or less).
  • the plasma treatment described below may be an atmospheric pressure plasma treatment performed at atmospheric pressure.
  • the substrate processing apparatus 100 includes a spin chuck 10 that holds one substrate W in a substantially horizontal posture and rotates the substrate W around a vertical rotation axis Z1 that passes through the central portion of the substrate W, and a processing liquid that is applied to the substrate W.
  • a treatment liquid nozzle 20 that ejects, a treatment liquid supply source 29 that supplies the treatment liquid to the treatment liquid nozzle 20, a valve 25 that switches supply and stop of the treatment liquid from the treatment liquid supply source 29 to the treatment liquid nozzle 20, a plasma generation unit 30 as an atmospheric pressure plasma source that is disposed above the substrate W so as to cover the entire substrate W and generates plasma under atmospheric pressure; a power source 8 that applies a voltage to the plasma generation unit 30;
  • a plasma generating device 50 including a supporting portion 70 for supporting the plasma generating portion 30, and a cylindrical guard 13 surrounding the spin chuck 10 around the rotation axis Z1 of the substrate W are provided.
  • various liquids can be used as the processing liquid depending on the purpose of substrate processing in the substrate processing apparatus 100 .
  • etching solutions include hydrochloric acid, hydrofluoric acid, phosphoric acid, nitric acid, sulfuric acid, sulfate, peroxosulfuric acid, peroxosulfate, hydrogen peroxide or tetramethylammonium hydroxide, and a mixture of ammonia and hydrogen peroxide ( A liquid containing SC1) or the like can be used.
  • a mixed liquid (SC1) of ammonia and hydrogen peroxide, or a liquid containing a mixed aqueous solution (SC2) of hydrochloric acid and hydrogen peroxide, or the like can be used as the cleaning liquid.
  • DIW Deionized water
  • the processing liquid is assumed to be a liquid containing at least one of sulfuric acid, sulfate, peroxosulfuric acid and peroxosulfate, or a liquid containing hydrogen peroxide.
  • a plurality of processing liquid nozzles 20 may be provided corresponding to the respective processing liquids.
  • the processing liquid nozzle 20 supplies the processing liquid to the substrate W so that a liquid film of the processing liquid is formed on the upper surface of the substrate W. As shown in FIG.
  • the treatment liquid nozzle 20 can be moved by an arm mechanism (not shown). Specifically, the processing liquid nozzle 20 is attached to an arm member whose angle can be adjusted by an actuator or the like, so that the processing liquid nozzle 20 can swing in the radial direction of the substrate W, for example.
  • the spin chuck 10 has a disk-shaped spin base 10A that vacuum-sucks the lower surface of the substrate W in a substantially horizontal posture, a rotating shaft 10C that extends downward from the central portion of the spin base 10A, and by rotating the rotating shaft 10C, and a spin motor 10D for rotating the substrate W attracted to the spin base 10A.
  • a clamping type chuck may be used which has a plurality of chuck pins protruding upward from the outer peripheral portion of the upper surface of the spin base and clamps the peripheral portion of the substrate W with the chuck pins.
  • the plasma generating section 30 includes a plate-shaped dielectric member 30A made of quartz or the like, a first electrode rod 306 extending along the longitudinal direction ( ⁇ X direction in FIGS. 18 and 22) on the upper surface of the dielectric member 30A, A plurality of first electrode rod groups 30B arranged side by side in the arrangement direction (Y direction in FIGS. 18 and 22) orthogonal to the extending direction, and a longitudinal direction (FIG. 18, FIG. 22) on the lower surface of the dielectric member 30A.
  • a plurality of second electrodes 302 and 304 extending along the X direction in 22) are arranged side by side in the arrangement direction (Y direction in FIGS. 18 and 22) orthogonal to the extending direction.
  • resin for example, polytetrafluoroethylene (PTFE)
  • each dielectric member 30E made of quartz or the like, and each dielectric member 30F covering each of the second electrode bars 302 and 304 constituting the second electrode bar group 30C, and the first electrode A collective electrode 30G made of aluminum or the like and electrically connected in common to the rod group 30B, and a collective electrode 30H made of aluminum or the like and electrically connected in common to the second electrode rod group 30C.
  • Each of the dielectric members 30E, 30F has a cylindrical shape and can also be called a dielectric tube.
  • the collective electrode 30G and the collective electrode 30H are arranged, for example, together to form a circular shape in plan view, and the first electrode rod group 30B and the second electrode rod group 30C are accommodated in the circle. .
  • the shape of the electrode member is not limited to a rod shape.
  • the plurality of first electrode bars 306 and 308 forming the first electrode bar group 30B and the plurality of second electrode bars 302 and 304 forming the second electrode bar group 30C overlap each other in plan view. are staggered so that That is, in plan view, the plurality of first electrode bars 306 and 308 forming the first electrode bar group 30B and the plurality of second electrode bars 302 and 304 forming the second electrode bar group 30C are arranged alternately.
  • Each dielectric member 30E covering each of the plurality of first electrode rods 306, 308 constituting the first electrode rod group 30B has an end portion of each first electrode rod 306, 308 that is not held by the holding member 30D. is held by the holding member 30D.
  • Each dielectric member 30F covering each of the plurality of second electrode rods 304, 302 constituting the second electrode rod group 30C is provided on the side of each second electrode rod 304, 302 not held by the holding member 30D. It is held by the holding member 30D at the end.
  • the plurality of first electrode rods 306 and 308 constituting the first electrode rod group 30B are directly held by the holding member 30D at one end and held by the holding member 30D at the other end via each dielectric member 30E. be done.
  • the plurality of second electrode rods 302, 304 constituting the second electrode rod group 30C are directly held by the holding member 30D at one end and held by the holding member 30D at the other end via each dielectric member 30F. be done.
  • the power supply 8 which is an AC power source
  • the plurality of electrodes constituting the first electrode rod group 30B electrically connected to the collective electrode 30G are respectively connected.
  • a dielectric barrier discharge is generated between the first electrode bars 306, 308 and the plurality of second electrode bars 302, 304 constituting the second electrode group 30C electrically connected to the collective electrode 30H.
  • the gas is plasmatized around the discharge path of the discharge, and the plasma spreads two-dimensionally along the surface of the dielectric member 30A separating the first electrode group 30B and the second electrode group 30C. A space is formed.
  • the plasma space when the plasma space is formed, for example, O 2 (oxygen), Ne, CO 2 , air, inert Gases that are active gases or combinations thereof may be supplied.
  • Inert gases are, for example, N2 or noble gases.
  • a rare gas is, for example, He or Ar.
  • the support part 70 can move in the Z-axis direction in FIG. 18 by a drive mechanism (not shown) while supporting the plasma generation part 30 .
  • the support portion 70 is made of resin (eg, PTFE), ceramics, or the like.
  • the processing liquid nozzle 20 and the plasma generating section 30 are provided separately, but the processing liquid nozzle 20 is provided integrally with the plasma generating section 30 and both are supported by the supporting section 70. may be
  • the substrate processing method by the substrate processing apparatus comprises a step of chemically processing the substrate W conveyed to the substrate processing apparatus 100, a cleaning process of the chemically processed substrate W, It includes a step of performing a drying process on the substrate W that has been subjected to the cleaning process, and a process of unloading the substrate W that has been subjected to the drying process from the substrate processing apparatus 100 .
  • FIG. 19 is a flow chart showing an example of the operation of the substrate processing apparatus 100 according to this embodiment.
  • 20 and 21 are diagrams for explaining the operation of the substrate processing apparatus 100 according to this embodiment.
  • the spin chuck 10 holds the substrate W (step ST01 in FIG. 19). Then, the substrate W is rotated by driving the spin chuck 10 .
  • the processing liquid 101 is supplied from the processing liquid supply source 29 to the processing liquid nozzle 20 , and while the substrate W is rotating, the upper surface of the substrate W is removed from the processing liquid nozzle 20 .
  • the treatment liquid 101 is discharged onto the surface (step ST02 in FIG. 19).
  • the position of the processing liquid nozzle 20 on the upper surface of the substrate W is adjusted by a nozzle arm (not shown) or the like.
  • the case where the processing liquid 101 is discharged while the substrate W is rotating is shown. may be
  • a liquid film 101A of the treatment liquid 101 is formed on the upper surface of the substrate W as shown in FIG. 20 (step ST03 in FIG. 19).
  • the film thickness of the liquid film 101A is, for example, 0.1 mm or more and 2.0 mm or less, preferably about 0.2 mm.
  • plasma is generated on the surface of the dielectric member 30A in the plasma generating section 30 (step ST04 in FIG. 19).
  • a plasma space is formed that extends two-dimensionally along the surface of the dielectric member 30A.
  • Active species include charged ions, electrically neutral radicals, and the like.
  • oxygen radicals which are a type of active species, are generated by the action of plasma in the plasma generating section 30 .
  • the plasma generating unit 30 is placed at a predetermined standby position (for example, a position sufficiently separated from the substrate W in the positive direction of the Z-axis, as shown in FIG. 20) in the stage of generating plasma as described above. ), and after a moderately uniform plasma is generated on the surface of the dielectric member 30A, the processing position near the substrate W (for example, the Z-axis positive direction of the substrate W as shown in FIG. 21). position sufficiently close to the substrate W on the side).
  • uniform processing can be performed by causing the plasma to act on the liquid film 101A on the surface of the substrate W in a state in which uniform plasma is generated.
  • the position sufficiently close to the substrate W is, for example, a position separated by several mm from the substrate W, and a position where the thin liquid film 101A formed on the upper surface of the substrate W can be sufficiently acted on by the plasma. .
  • active species generated in the plasma generating section 30 are supplied to the liquid film 101A (step ST05 in FIG. 19).
  • the active species By supplying the active species to the liquid film 101A, the active species activate the treatment liquid 101 in the liquid film 101A.
  • the active species contain oxygen radicals
  • the oxidizing power of the oxygen radicals promotes the removal of the resist film on the substrate W.
  • the operation of the plasma generating section 30 is performed after the operation of the processing liquid nozzle 20, but the operation order is not limited to this. and the operation of the unit 30 may be performed substantially simultaneously.
  • the plasma generation unit 30 is arranged so as to cover the entire upper surface of the substrate W, but when the plasma generation unit 30 is arranged so as to cover only a part of the substrate W, the plasma
  • the position of the generator 30 on the upper surface of the substrate W may be moved along the upper surface of the substrate W in the rotational direction and radial direction of the substrate W by a drive mechanism (not shown) as the substrate W rotates.
  • the formation of the liquid film 101A is started by starting the supply of the processing liquid 101 onto the upper surface of the substrate W, and is stopped by stopping the supply of the processing liquid 101 onto the upper surface of the substrate W. If the substrate W does not rotate at a high speed even after the supply of the processing liquid 101 from the liquid nozzle 20 is stopped (for example, the substrate W rotates at a low speed during paddling, or the substrate W does not rotate), the liquid Membrane 101A can be maintained.
  • the supply of the active species to the liquid film 101A is performed after the supply of the treatment liquid 101 is started and before the supply of the treatment liquid 101 is stopped.
  • the active species may be supplied to the liquid film 101A after the supply of the liquid 101 is stopped.
  • the substrate W is usually rinsed (washed) and dried.
  • the rinsing process is performed by discharging pure water (DIW) onto the substrate W
  • the drying process is performed by isopropyl alcohol (IPA) drying.
  • FIG. 22 is a plan view showing an example configuration of a plurality of electrode rods in the plasma generating section 30.
  • the plasma generating section 30 includes a first electrode rod group 30B composed of a plurality of first electrode rods 306 and 308 and a plurality of second electrode rods 302 and 304. It comprises a second electrode rod group 30C, a collective electrode 30G, and a collective electrode 30H.
  • illustration of the dielectric member 30A, the holding member 30D, the dielectric members 30E, and the dielectric members 30F is omitted.
  • a plurality of first electrode rods constituting the first electrode rod group 30B includes a plurality of electrode rods 308 and a plurality of electrode rods 306 made of a material different from that of the electrode rods 308.
  • the plurality of second electrode rods forming the second electrode rod group 30C includes a plurality of electrode rods 304 and a plurality of electrode rods 302 made of a material different from that of the electrode rods 304 .
  • the electrical resistance per unit length of the electrode rod 306 is smaller than the electrical resistance per unit length of the electrode rod 308 .
  • the electrical resistance per unit length of electrode rod 302 is less than the electrical resistance per unit length of electrode rod 304 .
  • the electrode rods 306 included in the plurality of first electrode rods and the electrode rods 302 included in the plurality of second electrode rods correspond to low resistance electrode members in the present disclosure.
  • the material of the electrode rods 308 and 304 is assumed to be tungsten, for example.
  • the material of electrode rod 306 and electrode rod 302 for example, copper, silver, gold, aluminum, or the like is assumed. Note that the electrode rods 308 and the electrode rods 304 may be made of different materials. Similarly, electrode rod 306 and electrode rod 302 may be made of different materials.
  • each of the electrode bars 306 that make up the first electrode bar group 30B, each of the electrode bars 302 that make up the second electrode group 30C They are arranged so as to be adjacent to each other in plan view.
  • each electrode rod 306 that is part of the plurality of first electrode rods is arranged so as to be adjacent to each electrode rod 304 that is part of the plurality of second electrode rods in plan view. It is That is, each electrode rod 306 having a smaller electrical resistance per unit length than the electrode rod 308 and each electrode rod 302 having a smaller electrical resistance per unit length than the electrode rod 304 are arranged adjacent to each other in plan view. are placed.
  • the time required to generate plasma (until the plasma space is formed) in the vicinity of each electrode rod provided in the plasma generation unit 30 depends on the individual difference of the electrode rods, the arrangement error of the electrode rods, or the individual There are variations due to differences, etc. In particular, when the area forming the plasma space in the plasma generating section 30 is large, the variation also increases, and the time required to generate uniform plasma over the entire area in the plasma generating section 30 increases.
  • the first electrode rod group 30B in the plasma generating section 30 is composed of a plurality of electrode rods 308 and a plurality of electrode rods 306 made of different materials.
  • the second electrode rod group 30C is composed of a plurality of second electrode rods composed of a plurality of electrode rods 304 and a plurality of electrode rods 302 made of different materials. It consists of Here, each electrode rod 306 and each electrode rod 302 has a smaller electrical resistance per unit length than the plurality of electrode rods 308 and the plurality of electrode rods 304 constituting the same electrode rod group.
  • each electrode rod 306 having a smaller electrical resistance per unit length than each of the electrode rods 308. It becomes easy to flow, and each electrode rod 306 becomes easy to be heated.
  • the current easily flows through each electrode rod 302 having a smaller electrical resistance per unit length than each electrode rod 304. The rod 302 is easily heated. Then, the air around each electrode rod 306 and each electrode rod 302 is heated by the heat radiation from each electrode rod 306 and each electrode rod 302, and the air around each electrode rod 306 and each electrode rod 302 is heated. Plasma is generated.
  • the temperature of the air around each electrode rod 306 and the air around each electrode rod 302 further rises due to the generation of plasma.
  • the heat generated around each of the electrode rods 306 and 302 heats the plurality of electrode rods 308 that form part of the first electrode rod group 30B and the plurality of electrode rods that form part of the second electrode rod group 30C.
  • the generation of plasma is promoted in the entire plasma generating section 30 by propagating to the electrode rod 304 and the surrounding air.
  • the material of the electrode rod which takes a relatively long time to generate plasma, is made of a material having a lower electrical resistance per unit length than the material of the other electrode rods, A current easily flows through the electrode rod.
  • the electrode rod and the gas in the vicinity thereof, through which the current flows more easily, are more easily heated than the other electrode rods and the gas in the vicinity thereof, so that the time required to generate plasma is shortened.
  • variations in the time required to generate plasma in the vicinity of each electrode rod are reduced, and the time required to generate plasma in the entire plasma generating section 30 can be shortened.
  • each of the plurality of electrode rods 306 that are part of the plurality of first electrode rods that constitute the first electrode rod group 30B is a second electrode rod. It is arranged so as to be adjacent to each of the plurality of electrode rods 302 forming part of the plurality of second electrode rods forming the group 30C in a plan view. That is, an electrode rod 306 having a smaller electrical resistance per unit length than the electrode rod 308 and an electrode rod 302 having a smaller electrical resistance per unit length than the electrode rod 304 are arranged adjacent to each other as a pair.
  • each electrode rod 306 and each electrode rod 302 It is As a result, electric current flows easily in each electrode rod 306 and each electrode rod 302 , and heating of each electrode rod 306 and each electrode rod 302 progresses compared to other electrode rods 308 and 304 . Then, the air around each electrode rod 306 and each electrode rod 302 is heated first by the heat radiation from each electrode rod 306 and each electrode rod 302 , so that the surroundings of each electrode rod 306 and each electrode rod 302 are heated. Plasma is quickly generated in the surrounding area. Furthermore, the temperature of the air around each electrode rod 306 and the air around each electrode rod 302 further rises due to the generation of plasma.
  • each electrode rod 306 and each electrode rod 302 propagates to each electrode rod 308 and each electrode rod 304, and to the surrounding air to each electrode rod 308 and each electrode rod 304. Heating of the air around each progresses. As a result, plasma is sequentially generated around each electrode rod 308 and around each electrode rod 304 , thereby promoting plasma generation in the entire plasma generating section 30 .
  • 23 and 24 are plan views showing an example of the process of generating plasma using the plasma generating section 30 described above. 23 and 24, illustration of the dielectric member 30A, the holding member 30D, the dielectric member 30E, and the dielectric member 30F is omitted.
  • each electrode bar 302 and each electrode bar 306 where current tends to flow heating progresses.
  • the air around each electrode rod 306 and each electrode rod 302 is heated first by heat radiation from each electrode rod 306 and each electrode rod 302 .
  • plasma 102 is quickly generated around each electrode rod 306 and around each electrode rod 302 .
  • plasma 102 is generated in sequence near each electrode bar 304 and near each electrode bar 308 as well. This is due to the following mechanism, as described above. That is, the temperature of the air around each electrode rod 306 and the air around each electrode rod 302 further rise due to the generation of plasma, and the heat generated around each electrode rod 306 and each electrode rod 302 is dissipated into a plurality of It propagates through the electrode rod 308 and the plurality of electrode rods 304 and the surrounding air. Then, the heating of the electrode rods 308 and 304 and the surrounding air progresses, plasma is gradually generated around the electrode rods 308 and 304, and the plasma generating section 30 is heated. Plasma generation progresses over the entire area.
  • the unit By mixing electrode rods with low electrical resistance per length, the time required to generate plasma in the entire plasma generating section 30 can be shortened.
  • each electrode rod 302 or each electrode rod 306 is arranged is not limited to the cases shown in FIGS. 22, 23 and 24. Further, the position at which each electrode bar 302 or each electrode bar 306 is arranged is determined by the position required until plasma is generated in a state in which the first electrode bar group 30B and the second electrode bar group 30C are made of the same material. The time can be measured in advance and correspond to the position of the electrode rod where the time is relatively long.
  • each of the electrode bars 306 forming part of the first electrode bar group 30B and each electrode forming part of the second electrode bar group 30C By arranging each of the rods 302 adjacent to each other as a pair, the air around each electrode rod 306 and each electrode rod 302 can be heated first, and the surroundings of each electrode rod 306 and each electrode rod can be heated first. Plasma 102 can be generated more quickly around 302 . As a result, heat can be efficiently propagated in a much shorter time to generate plasma.
  • FIGS. 22, 23, and 24 a plurality of sets are formed in which the electrode rods 306 with low electrical resistance and the electrode rods 302 with low electrical resistance are arranged adjacent to each other.
  • Plasma generating section 30 is configured such that electrode rods 308 and 304 made of a material having higher electrical resistance than electrode rods 306 and 302 are arranged between them.
  • a plurality of locations that is, a plurality of locations where the electrode rod 306 and the electrode rod 302 are paired and arranged adjacent to each other, become a plurality of starting points at which plasma is quickly generated. Since the heat is transmitted to the entire plasma generating section 30 based on , the heat can be efficiently transmitted in a short time to generate plasma.
  • the plasma generation unit 30 waits during the process before plasma processing, for example, the process of forming the liquid film 101A on the upper surface of the substrate W. It is desirable that the application of the voltage to the plasma generating section 30 is started in the state of being located at the position.
  • the locations where the electrode rods 306 (or the electrode rods 302) are provided are not limited to the example shown in FIG. It may be identified based on the results of temperature measurement at multiple locations within the area.
  • FIG. 25 is a plan view showing an example configuration of a plurality of electrode rods in the plasma generating section 130.
  • the plasma generating section 130 includes a first electrode rod group 130B composed of a plurality of first electrode rods 307 and 308 and a plurality of second electrode rods 303 and 304. It comprises a second electrode rod group 130C, a collective electrode 30G, and a collective electrode 30H.
  • illustration of the dielectric member 30A, the holding member 30D, the dielectric member 30E, and the dielectric member 30F is omitted.
  • the plurality of first electrode rods constituting the first electrode rod group 130B includes a plurality of electrode rods 308 and a plurality of electrode rods 307 thicker than each electrode rod 308.
  • the plurality of second electrode rods that constitute the second electrode rod group 130 ⁇ /b>C include a plurality of electrode rods 304 and a plurality of electrode rods 303 that are thicker than the electrode rods 304 .
  • the electrical resistance per unit length of each electrode rod 307 is smaller than the electrical resistance per unit length of each electrode rod 308 .
  • the electrical resistance per unit length of each electrode rod 303 is less than the electrical resistance per unit length of each electrode rod 304 .
  • each of the electrode rods 307 constituting the first electrode rod group 130B, each of the electrode rods 303 constituting the second electrode rod group 130C, and They are arranged so as to be adjacent to each other in plan view.
  • each electrode rod 307 that is part of the plurality of first electrode rods is adjacent to each electrode rod 303 that is part of the plurality of second electrode rods in plan view. are placed. That is, each electrode rod 307 having a smaller electrical resistance per unit length than the electrode rod 308 and each electrode rod 303 having a smaller electrical resistance per unit length than the electrode rod 304 are arranged adjacent to each other. .
  • the current flows through each electrode rod 307 having a smaller electrical resistance per unit length than each electrode rod 308. It becomes easy to flow, and each electrode rod 307 becomes easy to be heated.
  • the current easily flows through each electrode rod 303 having a smaller electrical resistance per unit length than each electrode rod 304. The rod 303 is easily heated. Then, the air around each electrode rod 307 and each electrode rod 303 is heated by the heat radiation from each electrode rod 307 and each electrode rod 303, and the air around each electrode rod 307 and each electrode rod 303 is heated. Plasma is generated.
  • the temperature of the air around each electrode rod 307 and the air around each electrode rod 303 further rises due to the generation of plasma.
  • the heat generated around each of the electrode rods 307 and 303 heats the plurality of electrode rods 308 that form part of the first electrode rod group 130B and the plurality of electrode rods that form part of the second electrode rod group 130C.
  • the generation of plasma is promoted in the entire plasma generating section 130 by propagating to the electrode rods 304 and the surrounding air.
  • the electric current can easily flow through the electrode rod.
  • the electrode rod and the gas in the vicinity thereof, through which the current flows more easily, are more easily heated than the other electrode rods and the gas in the vicinity thereof, so that the time required to generate plasma is shortened.
  • variations in the time required to generate plasma in the vicinity of each electrode rod are reduced, and the time required to generate plasma in the entire plasma generating section 130 can be shortened.
  • each of the plurality of electrode rods 307 that are part of the plurality of first electrode rods that constitute the first electrode rod group 130B is connected to the second electrode rod group 130C. are arranged so as to be adjacent to each of the plurality of electrode rods 303 that are part of the plurality of second electrode rods that constitute the . That is, an electrode rod 307 having a smaller electrical resistance per unit length than the electrode rod 308 and an electrode rod 303 having a smaller electrical resistance per unit length than the electrode rod 304 are arranged side by side as a pair.
  • each electrode rod 307 and each electrode rod 303 It is As a result, electric current flows easily in each electrode rod 307 and each electrode rod 303 , and heating of each electrode rod 307 and each electrode rod 303 progresses compared to other electrode rods 308 and 304 . Then, the air around each electrode rod 307 and each electrode rod 303 is heated first by the heat radiation from each electrode rod 307 and each electrode rod 303 , so that the surroundings of each electrode rod 307 and each electrode rod 303 are heated. Plasma is quickly generated in the surrounding area. Furthermore, the temperature of the air around each electrode rod 307 and the air around each electrode rod 303 further rises due to the generation of plasma.
  • each electrode rod 307 and each electrode rod 303 propagates to each electrode rod 308 and each electrode rod 304, and to the surrounding air to each electrode rod 308 and each electrode rod 304. Heating of the air around each progresses. As a result, plasma is sequentially generated around each electrode rod 308 and around each electrode rod 304 , thereby promoting plasma generation in the entire plasma generating section 130 .
  • each electrode rod 303 or each electrode rod 307 is arranged is not limited to the case shown in FIG. Further, the position at which each electrode bar 303 or each electrode bar 307 is arranged should be adjusted until plasma is generated in a state where the first electrode bar group 130B and the second electrode bar group 130C are formed with the same thickness. It is possible to measure the required time in advance and correspond to the position of the electrode rod where the time is relatively long.
  • each of the electrode bars 307 forming part of the first electrode bar group 130B and each of the electrodes forming part of the second electrode bar group 130C By arranging each of the rods 303 adjacent to each other as a pair, the air around each electrode rod 307 and each electrode rod 303 can be heated first, and the circumference of each electrode rod 307 and each electrode rod can be heated first. Plasma can be generated more quickly around 303 . As a result, heat can be efficiently propagated in a much shorter time to generate plasma. Further, in FIG. 25, a plurality of sets are formed in which the electrode rods 307 with low electric resistance and the electrode rods 303 with low electric resistance are arranged so as to be adjacent to each other.
  • Plasma generator 130 is configured such that electrode rods 308 and 304 made of a material having higher electrical resistance than rods 306 and 302 are arranged.
  • a plurality of locations that is, a plurality of locations where the electrode rod 307 and the electrode rod 303 are paired and arranged adjacent to each other, serve as a plurality of starting points at which plasma is rapidly generated. Since the heat is transmitted to the entire plasma generating section 130 based on the heat, the heat can be efficiently transmitted in a short time to generate plasma.
  • each electrode rod 307 (or each electrode rod 303) having a different thickness from the other electrode rods may be made of a material different from that of the other electrode rods.
  • each electrode rod 307 (or each electrode rod 303) is made of brass, molybdenum steel, or the like, which has approximately the same electrical resistance per unit length as tungsten. may have been
  • the electrode bars 306, 308 (FIG. 22), 307, 308 (FIG. 25) correspond to the "plurality of first electrode members" of the present disclosure
  • the electrode bars 306, 308 ( 22) corresponds to the "first electrode member group” of the present disclosure
  • the plurality of first electrode bars of the electrode bars 307 and 308 correspond to the present disclosure. It corresponds to the "first electrode member group”
  • the collective electrode 30G corresponds to the "first collective electrode” of the present invention.
  • the electrode bars 302, 304 (Fig. 22), 303, 304 (Fig.
  • the second electrode rod corresponds to the "second electrode member group” of the present disclosure
  • the plurality of second electrode rods consisting of the electrode rods 303 and 304 is the "second electrode member group” of the present disclosure
  • the collective electrode 30H corresponds to the “second collective electrode” of the present disclosure
  • the power supply 8 corresponds to the "AC power supply” of the present disclosure.
  • the electrode bars 306, 302, 307, and 303 correspond to the "low resistance electrode member” of the present disclosure, and the electrode bars 308 (Fig. 22), 304 (Fig.
  • the spin chuck 10 corresponds to the "substrate holder" of the present disclosure
  • the processing liquid nozzle 20 corresponds to the "nozzle" of the present disclosure.
  • the plurality of electrode rods 306 and 307 among the plurality of first electrode rods constituting the first electrode rod groups 30B and 130B are configured to have a small electrical resistance per unit length.
  • the plurality of second electrode rods constituting the second electrode rod groups 30C and 130C are configured to have a small electrical resistance per unit length.
  • the present disclosure is not necessarily limited to such a configuration.
  • at least one electrode rod It may be configured with a low-resistance electrode member having a smaller electrical resistance per unit length than other electrode rods constituting the same electrode rod group.
  • the heating of the electrode rods with low electrical resistance per unit length progresses, and the surrounding air is heated by the heat radiation from the electrode rods with low electrical resistance, thereby promoting the generation of plasma.
  • FIG. 26 is a side view schematically showing an example of the configuration of the substrate processing apparatus 100A in this embodiment.
  • FIG. 27 is a plan view schematically showing a configuration example of part of the plasma generating section 230. As shown in FIG. 26 and 27, for the sake of convenience, a part of the configuration is illustrated in a see-through state.
  • the configurations shown in FIGS. 26 and 27 may be surrounded by the chamber 80 in FIG.
  • the pressure in the chamber 80 is approximately atmospheric pressure (for example, 0.5 atmospheres or more and 2 atmospheres or less).
  • the plasma processing described below is atmospheric pressure plasma processing performed at atmospheric pressure.
  • the substrate processing apparatus 100A includes a spin chuck 10, a guard 13, a processing liquid nozzle 20, a processing liquid supply source 29, a valve 25, and is arranged above the substrate W so as to cover the entire substrate W.
  • a plasma generator 50A including a plasma generation unit 230 as an atmospheric pressure plasma source that generates plasma under atmospheric pressure, a power supply 8 that applies voltage to the plasma generation unit 230, and a support unit 70 that supports the plasma generation unit 230; Prepare.
  • the plasma generating section 230 includes a plate-shaped dielectric member 32A made of a dielectric such as quartz, and a plate-shaped dielectric member 32A that is accommodated in the dielectric member 32A and extends in a direction orthogonal to the longitudinal direction. and a plurality of electrode rods 502 and 504 accommodated in the dielectric member 32A and arranged in a plurality of rows in a direction orthogonal to the longitudinal direction. and electrode rods 506 and 508 made of resin (e.g., polytetrafluoroethylene (PTFE)) or ceramics and constituting the electrode rod group 30J, and a plurality of electrode rod groups 30K.
  • resin e.g., polytetrafluoroethylene (PTFE)
  • a holding member 30L holding electrode rods 502 and 504 at one end, a collective electrode 30M made of aluminum or the like and commonly connected to electrode rods 506 and 508 constituting an electrode rod group 30J, and an electrode rod group 30K and a collective electrode 30N made of aluminum or the like, which is commonly connected to the electrode rods 502 and 504 constituting the .
  • the collective electrode 30M and the collective electrode 30N are arranged, for example, so as to form a circular shape in plan view, and the electrode rod group 30J and the plurality of electrode rod groups 30K are accommodated in the circle.
  • the electrode rods 506, 508 constituting the electrode rod group 30J and the electrode rods 502, 504 constituting the electrode rod group 30K are rod-shaped, for example, made of tungsten.
  • the shapes of the electrode bars 506 and 508 forming the electrode bar group 30J and the electrode bars 502 and 504 forming the electrode bar group 30K are not limited to bar shapes.
  • the electrode bars 506 and 508 forming the electrode bar group 30J and the electrode bars 502 and 504 forming the electrode bar group 30K are alternately arranged so as not to overlap in plan view (see FIG. 27). That is, in a plan view, the electrode bars 506 and 508 forming the electrode bar group 30J and the electrode bars 502 and 504 forming the electrode bar group 30K are arranged alternately.
  • the electrode rod group 30J and the electrode rod group 30K are arranged to overlap each other.
  • the electrode rod group 30J and the electrode rod group 30K do not have to overlap each other, and may, for example, be displaced in the Z-axis direction of FIG.
  • the dielectric member 32A has a flat top surface and a bottom surface without unevenness. Therefore, even if deposits adhere to the lower surface of the dielectric member 32A during plasma processing or the like, it is easy to clean the deposits on the lower surface of the dielectric member 32A.
  • the plasma generating section 230 includes an electrode rod group 30J composed of electrode rods 506 and 508, an electrode rod group 30K composed of electrode rods 502 and 504, and a collective electrode 30M. , and a collective electrode 30N.
  • a plurality of electrode rods constituting the electrode rod group 30J includes a plurality of electrode rods 508 and a plurality of electrode rods 506 made of a material different from that of the electrode rods 508.
  • the plurality of electrode rods forming the electrode rod group 30K includes a plurality of electrode rods 504 and a plurality of electrode rods 502 made of a material different from that of the electrode rods 504 .
  • the electrical resistance per unit length of the electrode rod 506 is smaller than the electrical resistance per unit length of the electrode rod 508 .
  • the electrical resistance per unit length of electrode rod 502 is less than the electrical resistance per unit length of electrode rod 504 .
  • the electrode rods 506 and 502 correspond to low-resistance electrode members.
  • the material of the electrode rods 508 and 504 is assumed to be tungsten, for example.
  • the material of electrode rod 506 and electrode rod 502 for example, copper, silver, gold, aluminum, or the like is assumed. Note that the electrode rod 508 and the electrode rod 504 may be made of different materials. Similarly, electrode rod 506 and electrode rod 502 may be made of different materials.
  • each of the electrode bars 506 forming the electrode bar group 30J is arranged so as to be adjacent to each of the electrode bars 502 forming the electrode bar group 30K in plan view. It is That is, an electrode rod 506 having an electrical resistance per unit length lower than that of the electrode rod 508 and an electrode rod 502 having an electrical resistance per unit length lower than that of the electrode rod 504 are arranged adjacent to each other in plan view. ing.
  • the time required until plasma is generated (until plasma space is formed) near each electrode rod provided in the plasma generation unit 230 depends on the individual difference of the electrode rods, the placement error of the electrode rods, or the magnitude of the heat capacity. and so on. In particular, when the area forming the plasma space in the plasma generating section 230 is large, the variation also increases, and the time required to generate uniform plasma over the entire area in the plasma generating section 230 increases.
  • the electrode bar group 30J in the plasma generation unit 230 is composed of a plurality of electrode bars 508 and a plurality of electrode bars 506 made of different materials
  • the electrode bar group 30K is composed of a plurality of electrode rods 504 and a plurality of electrode rods 502 made of different materials.
  • electrode rod 506 and electrode rod 502 have lower electrical resistance per unit length than electrode rod 508 and electrode rod 504, which constitute the same electrode rod group.
  • the current easily flows through the electrode rod 506, which has a smaller electrical resistance per unit length than the electrode rod 508. Easier to heat.
  • the current flows more easily through the electrode rod 502, which has a smaller electrical resistance per unit length than the electrode rod 504, and the electrode rod 502 is easily heated. Then, the air around the electrode rods 506 and 502 is heated by heat radiation from the electrode rods 506 and 502 , and plasma is generated around the electrode rods 506 and 502 . Furthermore, the temperature of the air around electrode rod 506 and the air around electrode rod 502 further rise due to the generation of plasma.
  • the heat generated around the electrode rods 506 and 502 heats the plurality of electrode rods 508 that form part of the electrode rod group 30J and the plurality of electrode rods 504 that form part of the electrode rod group 30K, respectively. , propagates to the surrounding air, thereby promoting generation of plasma in the entire plasma generating section 230 .
  • the material of the electrode rod which takes a relatively long time to generate plasma, is made of a material having a lower electrical resistance per unit length than the material of the other electrode rods, A current easily flows through the electrode rod.
  • the electrode rod and the gas in the vicinity thereof, through which the current flows more easily, are more easily heated than the other electrode rods and the gas in the vicinity thereof, so that the time required to generate plasma is shortened.
  • variations in the time required to generate plasma in the vicinity of each electrode rod are reduced, and the time required to generate plasma in the entire plasma generating section 230 can be shortened.
  • each of the plurality of electrode rods 506 constituting electrode rod group 30J is arranged so as to be adjacent to each of the plurality of electrode rods 502 constituting electrode rod group 30K in plan view. ing. That is, an electrode rod 506 having an electrical resistance per unit length lower than that of the electrode rod 508 and an electrode rod 502 having an electrical resistance per unit length lower than that of the electrode rod 504 are arranged as a pair adjacent to each other. It is As a result, current flows more easily in the electrode rods 506 and 502 , and the heating of the electrode rods 506 and 502 progresses compared to the other electrode rods 508 and 504 .
  • the air around the electrode rods 506 and 502 is heated first by the heat radiation from the electrode rods 506 and 502, so that the plasma is quickly generated around the electrode rods 506 and 502. Occur. Furthermore, the temperature of the air around the electrode rod 506 and the air around the electrode rod 502 further rise due to the generation of the plasma. Then, the heat generated around the electrode rods 506 and 502 is propagated to the electrode rods 508 and 504 and the surrounding air, respectively, to the electrode rods 508 and 504 and the surrounding air. Heating proceeds. As a result, plasma is generated sequentially around the electrode rod 508 and around the electrode rod 504 , thereby promoting plasma generation in the entire plasma generating section 230 .
  • FIG. 28 is a cross-sectional view schematically showing an example of the configuration of part of the plasma generating section.
  • FIG. 28 corresponds to the DD section in FIG.
  • the number of electrode bars 506, 502, 508, 504 is not limited to the number shown in FIG.
  • the dielectric member 32A is formed with a plurality of housing holes 32B extending inwardly (in the X-axis direction) from the end of the dielectric member 32A. , are housed in corresponding housing holes 32B. Since the housing holes 32B are formed so as to alternately extend inward from the ends (side surfaces) of the dielectric member 32A in the X-axis positive direction and the X-axis negative direction, the electrode rods of the electrode rod group 30J (see FIG. 27) is inserted from the end on the X-axis positive direction side, and the electrode rods of the electrode rod group 30K (see FIG. 27) are inserted from the end on the X-axis negative direction side. Further, as shown in FIG. 28, the accommodation hole 32B is formed at a position close to the lower surface of the dielectric member 32A.
  • the electrode rod group 30J connected to the collective electrode 30M and the collective electrode 30N are connected.
  • An alternating voltage is applied between the electrode rod group 30K.
  • a dielectric barrier discharge occurs between the electrode bar group 30J and the electrode bar group 30K.
  • the gas is plasmatized around the discharge path of the discharge, and the dielectric member 32A separating the electrode rods 506 and 508 of the electrode rod group 30J and the electrode rods 502 and 504 of the electrode rod group 30K is formed.
  • a two-dimensional plasma space is formed along the surface (including the inside of the accommodation hole 32B) (see FIGS. 27 and 28).
  • the accommodation hole 32B is formed at a position close to the lower surface of the dielectric member 32A, the plasma 102 is mainly formed on the lower surface of the dielectric member 32A.
  • the space below the plasma generation unit 230 contains, for example, O2 (oxygen), Ne, CO2 , air, Gases that are active gases or combinations thereof may be supplied.
  • O2 oxygen
  • Ne oxygen
  • CO2 carbon dioxide
  • Gases that are active gases or combinations thereof may be supplied.
  • Inert gases are, for example, N2 or noble gases.
  • a rare gas is, for example, He or Ar.
  • Active species include charged ions, electrically neutral radicals, and the like.
  • oxygen radicals which are a type of active species, are generated by the action of plasma in the plasma generating section 230 .
  • the plasma generating section 230 stands by at a predetermined standby position during the stage of generating the plasma 102 as described above, and after generating the appropriately uniform plasma 102 on the lower surface of the dielectric member 32A, the substrate It is desirable to move to a processing position near W. In such a mode, uniform processing can be performed by applying the plasma 102 to the liquid film on the surface of the substrate W in a state where the uniform plasma 102 is generated.
  • the plasma generation unit 230 is arranged so as to cover the entire upper surface of the substrate W, but when the plasma generation unit 230 is arranged so as to cover only a part of the substrate W, plasma
  • the position of the generator 230 on the upper surface of the substrate W may be moved along the upper surface of the substrate W in the rotational direction and radial direction of the substrate W by a driving mechanism (not shown) as the substrate W rotates.
  • FIG. 29 is a plan view showing an example configuration of a plurality of electrode rods in the plasma generation section 330.
  • FIG. 29 a part of the configuration is illustrated in a see-through state for the sake of convenience.
  • the plasma generator 330 includes an electrode group 130J made up of a plurality of electrode bars 507 and 508, an electrode group 130K made up of a plurality of electrode bars 503 and 504, It has a collective electrode 30M and a collective electrode 30N.
  • a plurality of electrode rods constituting the electrode rod group 130J includes a plurality of electrode rods 508 and a plurality of electrode rods 507 thicker than the electrode rods 508.
  • the plurality of electrode rods forming the electrode rod group 130K includes a plurality of electrode rods 504 and a plurality of electrode rods 503 thicker than the electrode rods 504 .
  • the electrical resistance per unit length of the electrode rod 507 is smaller than the electrical resistance per unit length of the electrode rod 508 .
  • the electrical resistance per unit length of electrode rod 503 is less than the electrical resistance per unit length of electrode rod 504 .
  • each of the electrode bars 507 forming the electrode bar group 130J is arranged so as to be adjacent to each of the electrode bars 503 forming the electrode bar group 130K in plan view. It is That is, an electrode rod 507 having an electrical resistance per unit length lower than that of the electrode rod 508 and an electrode rod 503 having an electrical resistance per unit length lower than that of the electrode rod 504 are arranged adjacent to each other.
  • the current easily flows through the electrode rod 507, which has a smaller electrical resistance per unit length than the electrode rod 508. Easier to heat.
  • the electrode rod 503, which has a smaller electrical resistance per unit length than the electrode rod 504 is more likely to receive current, and the electrode rod 503 is more likely to be heated. Then, the air around the electrode rods 507 and 503 is heated by heat radiation from the electrode rods 507 and 503 , and plasma is generated around the electrode rods 507 and 503 .
  • the temperature of the air around the electrode rod 507 and the air around the electrode rod 503 further rise due to the generation of the plasma.
  • the heat generated around the electrode rods 507 and 503 heats the plurality of electrode rods 508 constituting part of the electrode rod group 130J and the plurality of electrode rods 504 constituting part of the electrode rod group 130K. Propagating to the surrounding air promotes generation of plasma in the entire plasma generating section 330 .
  • the electric current can easily flow through the electrode rod.
  • the electrode rod and the gas in the vicinity thereof, through which the current flows more easily, are more easily heated than the other electrode rods and the gas in the vicinity thereof, so that the time required to generate plasma is shortened.
  • variations in the time required to generate plasma in the vicinity of each electrode rod are reduced, and the time required to generate plasma in the entire plasma generating section 330 can be shortened.
  • each of the plurality of electrode bars 507 forming part of the plurality of electrode bars forming electrode bar group 130J is a plurality of electrode bars forming part of the plurality of electrode bars forming electrode bar group 130K. It is arranged so as to be adjacent to each of the electrode rods 503 in plan view. That is, an electrode rod 507 having a smaller electrical resistance per unit length than the electrode rod 508 and an electrode rod 503 having a smaller electrical resistance per unit length than the electrode rod 504 are arranged adjacent to each other as a pair. It is As a result, the current flows easily in the electrode rods 507 and 503 , and the heating of the electrode rods 507 and 503 progresses compared to the other electrode rods 508 and 504 .
  • the air around the electrode rods 507 and 503 is heated first by heat radiation from the electrode rods 507 and 503, so that plasma is quickly generated around the electrode rods 507 and 503. Occur. Furthermore, the temperature of the air around the electrode rod 507 and the air around the electrode rod 503 further rise due to the generation of the plasma. Then, the heat generated around the electrode rods 507 and 503 is propagated to the electrode rods 508 and 504 and the surrounding air, respectively, to the electrode rods 508 and 504 and the surrounding air. Heating proceeds. As a result, plasma is sequentially generated around the electrode rod 508 and around the electrode rod 504 , thereby promoting plasma generation in the entire plasma generating section 330 .
  • the positions where the electrode rods 503 or 507 are arranged are not limited to those shown in FIG.
  • the position at which the electrode rod 503 or the electrode rod 507 is arranged is determined by measuring in advance the time required for plasma generation in a state where the electrode rod group 130J and the electrode rod group 130K are formed with the same thickness. It is possible to correspond to the position of the electrode rod where the time is relatively long.
  • each of the electrode rods 507 constituting part of the electrode rod group 130J and each of the electrode rods 503 constituting part of the electrode rod group 130K are By arranging them so as to be adjacent to each other as a pair, the air around the electrode rods 507 and 503 can be heated first, and the plasma can be generated more quickly around the electrode rods 507 and 503. can. As a result, heat can be efficiently propagated in a much shorter time to generate plasma.
  • Plasma generator 330 is configured such that electrode rods 508 and 504 made of a material having higher electrical resistance than rods 506 and 502 are arranged.
  • a plurality of locations that is, a plurality of locations where the electrode rod 507 and the electrode rod 503 are paired and arranged adjacent to each other, serve as a plurality of starting points at which plasma is rapidly generated. Since the heat is transmitted to the entire plasma generating section 330 based on , the heat can be efficiently transmitted in a short time to generate plasma.
  • the electrode rod 507 (or the electrode rod 503) having a different thickness from the other electrode rods may be made of a material different from that of the other electrode rods.
  • the electrode rod 507 (or the electrode rod 503) is made of brass or molybdenum steel, which has approximately the same electrical resistance per unit length as tungsten. may
  • the electrode bars 506, 508 and 507 correspond to the "plurality of first electrode members", and the plurality of electrode bars consisting of the electrode bars 506 and 508 correspond to the "first electrode member group”.
  • the plurality of electrode rods including the electrode rods 507 and 508 correspond to the "first electrode member group”
  • the collective electrode 30M corresponds to the "first collective electrode”.
  • the electrode bars 502, 504, and 503 correspond to "a plurality of second electrode members”
  • the plurality of electrode bars made up of the electrode bars 502 and 504 correspond to a "second electrode member group”.
  • a plurality of electrode rods 503 and 504 correspond to the "second electrode member group”
  • the collective electrode 30N corresponds to the "second collective electrode”.
  • the power supply 8 corresponds to an "AC power supply”.
  • the electrode bars 506, 502, 507 and 503 correspond to “low resistance electrode members”
  • the electrode bars 508 and 504 correspond to "non-low resistance electrode members”.
  • the spin chuck 10 corresponds to the "substrate holder”
  • the processing liquid nozzle 20 corresponds to the "nozzle”.
  • the plurality of electrode rods 506 and 507 among the plurality of electrode rods constituting the electrode rod groups 30J and 130J are configured to have small electrical resistance per unit length
  • the electrode rod group 30K , 130K, the plurality of electrode rods 502 and 503 are configured to have a small electrical resistance per unit length.
  • at least one electrode rod may It may be configured with a low-resistance electrode member having a smaller electrical resistance per unit length than the other electrode rods forming the group.
  • the heating of the electrode rods with low electrical resistance per unit length progresses, and the surrounding air is heated by the heat radiation from the electrode rods with low electrical resistance, thereby promoting the generation of plasma.
  • the material when a material name is described without being specified, unless there is a contradiction, the material contains other additives, such as an alloy. shall be included.
  • the plasma generators 1, 1A, 1B, 50, 50A and the substrate processing apparatuses 100, 100A have been described in detail.
  • the apparatus and substrate processing apparatus are not limited thereto. It is understood that numerous variations not illustrated can be envisioned without departing from the scope of this disclosure. Each configuration described in each of the above embodiments and modifications can be appropriately combined or omitted as long as they do not contradict each other.
  • the processing for the substrate W is not necessarily limited to resist removal processing.
  • the present invention can be applied to all processes that can improve the processing ability of the processing liquid by active species, in addition to the removal of metal films.
  • processing liquid it is not always necessary to supply the processing liquid to the substrate W.
  • plasma or active species may be applied directly to the upper surface of the substrate W as the treatment using plasma.
  • surface modification treatment of the substrate W can be mentioned.
  • the plasma generators 1, 1A, 1B, 50, and 50A do not necessarily have to be used for processing the substrate W, and may be used for other processing targets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

This plasma generation device (1) comprises a first electrode section (2), a second electrode section (3), and a dielectric section (40). The first electrode section (2) includes a plurality of first electrode members (21) that have a rod-like shape extending along a lengthwise direction (D1) and are arranged in an arrangement direction (D2) orthogonal to the lengthwise direction (D1). The second electrode section (3) includes a plurality of second electrode members (31) that have a rod-like shape extending along the lengthwise direction (D1) and are each provided in the areas between the plurality of first electrode members (21) in a planar view. The dielectric section (40) has a first inner circumferential surface (4a) that covers a first side surface (21a) of each of the plurality of first electrode members (21) and extends further toward a tip side along the lengthwise direction (D1) than a first tip surface (21b) of each of the plurality of first electrode members (21). A part of the first inner circumferential surface (4a) closer to the tip side than the first tip surfaces (21b) forms a first tip space (41) containing a gas.

Description

プラズマ発生装置および基板処理装置Plasma generator and substrate processing equipment
 本願は、プラズマ発生装置および基板処理装置に関する。 This application relates to a plasma generator and a substrate processing apparatus.
 従来から、基板の表面をプラズマ処理するプラズマ処理装置が提案されている(特許文献1)。特許文献1のプラズマ処理装置では、一対の櫛形電極が設けられており、各櫛歯電極の歯形状の電極が同一平面内に所定の間隔で交互に並ぶように配置される。この一対の櫛形電極に交流電力が供給されることによって、歯形状の電極の周辺にプラズマが生成される。プラズマ処理装置では、一対の櫛形電極に対向するように基板が保持され、基板の表面に対してプラズマ処理が行われる。 Conventionally, a plasma processing apparatus for plasma processing the surface of a substrate has been proposed (Patent Document 1). In the plasma processing apparatus of Patent Document 1, a pair of comb-shaped electrodes are provided, and the tooth-shaped electrodes of each comb-shaped electrode are arranged alternately at predetermined intervals in the same plane. Plasma is generated around the tooth-shaped electrodes by supplying AC power to the pair of comb-shaped electrodes. In a plasma processing apparatus, a substrate is held so as to face a pair of comb-shaped electrodes, and plasma processing is performed on the surface of the substrate.
 また、特許文献1では、櫛形電極の歯形状の電極は誘電部材によって覆われる。これにより、プラズマが電極に作用することを防止することができ、電極からの不純物の発生を防止することができる。 Further, in Patent Document 1, the tooth-shaped electrodes of the comb-shaped electrodes are covered with a dielectric member. As a result, the plasma can be prevented from acting on the electrodes, and the generation of impurities from the electrodes can be prevented.
 また、従来から、基板の上面に形成されたレジストを除去する技術が提案されている。たとえば、特許文献2には、基板の上面に硫酸および過酸化水素水の混合液を供給して、当該混合液中で生成されるカロ酸を用いて、基板の上面に形成されたレジストを除去する技術が開示されている。 Also, conventionally, techniques for removing the resist formed on the upper surface of the substrate have been proposed. For example, in Patent Document 2, a mixed solution of sulfuric acid and hydrogen peroxide is supplied to the upper surface of a substrate, and Karo's acid generated in the mixed solution is used to remove a resist formed on the upper surface of the substrate. A technique for doing so is disclosed.
特開2011-49570号公報Japanese Unexamined Patent Application Publication No. 2011-49570 特開2020-88208号公報Japanese Patent Application Laid-Open No. 2020-88208
 櫛形電極において、歯形状の電極を長くすることにより、平面視におけるプラズマの発生領域を広げることができる。しかしながら、歯形状の電極を長くすると、材料費の増加および装置構成のサイズ増加を招くという問題がある。 In the comb-shaped electrode, by lengthening the tooth-shaped electrode, it is possible to widen the plasma generation area in plan view. However, lengthening the tooth-shaped electrodes has the problem of increasing material costs and increasing the size of the device configuration.
 そこで、第1の目的として、本願は、プラズマ発生領域を広げることができるプラズマ発生装置を提供することを目的とする。 Therefore, the first object of the present application is to provide a plasma generator capable of expanding the plasma generation area.
 また、特許文献2の技術よりも環境負荷が小さい代替技術として、大気圧プラズマで酸素ラジカルなどの活性種を発生させ、さらに、当該活性種を硫酸に作用させることによってカロ酸を生成する技術がある。当該技術によれば、過酸化水素水を用いずにレジストを除去することができる。 In addition, as an alternative technology with a smaller environmental load than the technology of Patent Document 2, there is a technology that generates active species such as oxygen radicals in atmospheric pressure plasma and further reacts the active species with sulfuric acid to generate caro's acid. be. According to this technique, the resist can be removed without using hydrogen peroxide solution.
 ここで、たとえばプラズマを生じさせる面積が大きい場合などでは、それぞれの領域でプラズマが生じるまでに要する時間のばらつきが大きくなってしまう場合がある。そのような場合には、均一なプラズマが当該面積全体に生じるまでに長い時間を要するという問題がある。 Here, for example, when the area where plasma is generated is large, the variation in the time required for plasma to be generated in each area may increase. In such a case, there is a problem that it takes a long time to generate a uniform plasma over the entire area.
 そこで、第2の目的として、本願は、プラズマを生じさせるまでに要する時間を短縮するための技術を提供する。 Therefore, as a second object, the present application provides a technique for shortening the time required to generate plasma.
 第1の態様は、プラズマ発生装置であって、長手方向に沿って延在する棒状形状を有し、かつ、前記長手方向に直交する配列方向において並ぶ複数の第1電極部材を含む第1電極部と、前記長手方向に沿って延在する棒状形状を有し、かつ、平面視において、前記複数の第1電極部材の相互間にそれぞれ設けられる複数の第2電極部材を含む第2電極部と、前記複数の第1電極部材の各々の第1側面を覆いつつ、前記複数の第1電極部材の各々の第1先端面よりも前記長手方向に沿って先端側に延在する第1内周面を有し、前記第1内周面のうち前記第1先端面よりも先端側の部分が、ガスを含む第1先端空間を形成する誘電部とを備える。 A first aspect is a plasma generator, wherein first electrodes have a rod-like shape extending along a longitudinal direction and include a plurality of first electrode members arranged in an arrangement direction orthogonal to the longitudinal direction. and a second electrode portion having a rod-like shape extending along the longitudinal direction and including a plurality of second electrode members respectively provided between the plurality of first electrode members in plan view. and a first inner covering the first side surface of each of the plurality of first electrode members and extending toward the distal end along the longitudinal direction from the first distal end surface of each of the plurality of first electrode members. and a dielectric portion having a peripheral surface and forming a first tip space containing gas in a portion of the first inner peripheral surface closer to the tip side than the first tip surface.
 第2の態様は、第1の態様にかかるプラズマ発生装置であって、前記誘電部は、誘電部材を含み、前記誘電部材は、前記第1内周面と、前記複数の第2電極部材の各々の第2側面を覆いつつ、前記複数の第2電極部材の各々の第2先端面よりも前記長手方向に沿って先端側に延在する第2内周面とを有し、前記第2内周面のうち前記第2先端面よりも先端側の部分が、ガスを含む第2先端空間を形成する。 A second aspect is the plasma generator according to the first aspect, wherein the dielectric portion includes a dielectric member, and the dielectric member includes the first inner peripheral surface and the plurality of second electrode members. a second inner peripheral surface covering each second side surface and extending toward the distal end side along the longitudinal direction from the second distal end surface of each of the plurality of second electrode members; A portion of the inner peripheral surface closer to the tip side than the second tip surface forms a second tip space containing gas.
 第3の態様は、第1の態様にかかるプラズマ発生装置であって、前記誘電部は、各々が、前記第1内周面を有する複数の第1誘電部材と、各々が、前記複数の第2電極部材の各々の第2側面を覆いつつ、前記複数の第2電極部材の各々の第2先端面よりも前記長手方向に沿って先端側に延在する第2内周面を有し、前記第2内周面のうち前記第2先端面よりも先端側の部分が、ガスを含む第2先端空間を形成する複数の第2誘電部材とを含む。 A third aspect is the plasma generator according to the first aspect, wherein the dielectric portion includes a plurality of first dielectric members each having the first inner peripheral surface, and each of the plurality of first dielectric members having the first inner peripheral surface. a second inner peripheral surface covering the second side surface of each of the two electrode members and extending toward the distal end side along the longitudinal direction from the second distal end surface of each of the plurality of second electrode members; A portion of the second inner peripheral surface closer to the tip side than the second tip face includes a plurality of second dielectric members forming a second tip space containing gas.
 第4の態様は、第1から第3のいずれか一つの態様にかかるプラズマ発生装置であって、前記第1先端空間内のガスがプラズマ化した状態において前記第1電極部と前記第2電極部との間でアーク放電が生じない距離で、前記第1電極部と前記第2電極部とが互いに離れている。 A fourth aspect is the plasma generator according to any one of the first to third aspects, wherein the first electrode portion and the second electrode are generated when the gas in the first tip space is plasmatized. The first electrode portion and the second electrode portion are separated from each other by a distance at which arc discharge does not occur between them.
 第5の態様は、第4の態様にかかるプラズマ発生装置であって、前記第1電極部は、前記複数の第1電極部材の基端どうしを連結する第1集合電極を含み、前記第2電極部は、前記複数の第2電極部材の基端どうしを連結する第2集合電極を含み、前記複数の第1電極部材の各々の前記第1先端面は、前記第2集合電極と、前記第2集合電極の内側面から所定距離だけ離れた仮想線との間の配置禁止領域よりも、前記第1集合電極側に位置している。 A fifth aspect is the plasma generator according to the fourth aspect, wherein the first electrode section includes a first collective electrode that connects base ends of the plurality of first electrode members, and the second The electrode section includes a second collective electrode that connects base ends of the plurality of second electrode members, and the first tip surface of each of the plurality of first electrode members includes the second collective electrode and the It is located closer to the first collective electrode than the prohibition area between the inner surface of the second collective electrode and the imaginary line separated by a predetermined distance.
 第6の態様は、第1から第5のいずれか一つの態様にかかるプラズマ発生装置であって、前記誘電部は、前記複数の第1電極部材の各々の前記第1先端面と前記第1先端空間を隔てて対向し、かつ、前記第1内周面に連結された第1底面を有し、前記第1底面と前記第2電極部との間の距離は、前記第1先端面が前記第1底面に当接したと仮定した仮定構造において前記第1先端面と前記第2電極部との間でアーク放電が生じない距離に設定されている。 A sixth aspect is the plasma generator according to any one of the first to fifth aspects, wherein the dielectric portion includes the first tip surface and the first tip surface of each of the plurality of first electrode members. It has a first bottom surface facing across a tip space and connected to the first inner peripheral surface, and the distance between the first bottom surface and the second electrode part is such that the first tip surface is The distance is set such that arc discharge does not occur between the first tip surface and the second electrode portion in a hypothetical structure assumed to be in contact with the first bottom surface.
 第7の態様は、基板処理装置であって、基板を保持する基板保持部と、前記基板保持部によって保持された前記基板の主面に向かってプラズマを発生させる、第1から第3のいずれか一つの態様にかかるプラズマ発生装置とを備え、前記第1電極部は、前記複数の第1電極部材の基端どうしを連結する第1集合電極を含み、前記第2電極部は、前記複数の第2電極部材の基端どうしを連結する第2集合電極を含み、前記複数の第1電極部材の前記第1先端面および前記複数の第2電極部材の第2先端面は、平面視において、前記基板保持部によって保持された前記基板の周縁よりも内側に位置しており、前記第1集合電極および前記第2集合電極は、平面視において、前記基板保持部によって保持された前記基板の周縁よりも外側に位置している。 A seventh aspect is a substrate processing apparatus, which is any one of the first to third, wherein a substrate holding part holds a substrate, and plasma is generated toward a main surface of the substrate held by the substrate holding part. or the plasma generator according to the aspect, wherein the first electrode section includes a first collective electrode that connects base ends of the plurality of first electrode members; and the second electrode section includes the plurality of wherein the first distal end surfaces of the plurality of first electrode members and the second distal end surfaces of the plurality of second electrode members are, in plan view, , positioned inside the peripheral edge of the substrate held by the substrate holding portion, and the first collective electrode and the second collective electrode are located on the substrate held by the substrate holding portion in a plan view. Located outside the perimeter.
 第8の態様は、第7の態様にかかる基板処理装置であって、前記基板保持部によって保持された前記基板の主面に向かって処理液を吐出するノズルをさらに備え、前記複数の第1電極部材のうち互いに隣り合う少なくともいずれか2つの間には、前記複数の第2電極部材が設けられていない。 An eighth aspect is the substrate processing apparatus according to the seventh aspect, further comprising a nozzle for ejecting a treatment liquid toward a main surface of the substrate held by the substrate holding part, The plurality of second electrode members are not provided between at least any two adjacent electrode members.
 第9の態様は、プラズマ発生装置であって、複数の第1の電極部材を並べて構成される第1の電極部材群と、前記第1の電極部材群が電気的に接続される第1の集合電極と、複数の第2の電極部材を並べて構成される第2の電極部材群と、前記第2の電極部材群が電気的に接続される第2の集合電極と、前記第1の集合電極と前記第2の集合電極とに電気的に接続され、前記第1の電極部材群と前記第2の電極部材群に電力を供給する交流電源とを備え、複数の前記第1の電極部材および複数の前記第2の電極部材のうちの少なくとも一つの電極部材は、当該少なくとも一つの電極部材と同一の電極部材群を構成する他の電極部材よりも単位長さ当たりの電気抵抗が小さい小抵抗電極部材で構成され、複数の前記第1の電極部材と複数の前記第2の電極部材とが、平面視で交互に配置される。 A ninth aspect is a plasma generator, comprising: a first electrode member group configured by arranging a plurality of first electrode members; and a first electrode member group electrically connected to the first electrode member group. a collective electrode, a second electrode member group configured by arranging a plurality of second electrode members, a second collective electrode to which the second electrode member group is electrically connected, and the first collective an AC power source electrically connected to the electrodes and the second collective electrode and supplying power to the first electrode member group and the second electrode member group; and a plurality of the first electrode members. and at least one electrode member among the plurality of second electrode members has a smaller electrical resistance per unit length than other electrode members constituting the same electrode member group as the at least one electrode member. It is composed of resistance electrode members, and the plurality of first electrode members and the plurality of second electrode members are alternately arranged in plan view.
 第10の態様は、第9の態様にかかるプラズマ発生装置であって、板状の誘電部材をさらに備え、前記誘電部材には、前記誘電部材の側面から前記誘電部材の内部に延びる複数の収容穴が形成され、複数の前記第1の電極部材のそれぞれ、および、複数の前記第2の電極部材のそれぞれは、対応するそれぞれの前記収容穴に収容される。 A tenth aspect is the plasma generator according to the ninth aspect, further comprising a plate-shaped dielectric member, wherein the dielectric member includes a plurality of housings extending from the side surface of the dielectric member into the interior of the dielectric member. A hole is formed, and each of the plurality of first electrode members and each of the plurality of second electrode members are accommodated in the corresponding accommodation holes.
 第11の態様は、第9または第10の態様にかかるプラズマ発生装置であって、複数の前記第1の電極部材のうちの少なくとも一つは前記小抵抗電極部材で構成され、複数の前記第2の電極部材のうちの少なくとも一つは前記小抵抗電極部材で構成され、前記小抵抗電極部材で構成された前記第1の電極部材と、前記小抵抗電極部材で構成された前記第2の電極部材とが、平面視で隣り合うように配置される。 An eleventh aspect is the plasma generator according to the ninth or tenth aspect, wherein at least one of the plurality of first electrode members is composed of the low-resistance electrode member, and the plurality of At least one of the two electrode members is composed of the low-resistance electrode member, and the first electrode member composed of the low-resistance electrode member and the second electrode member composed of the low-resistance electrode member and electrode members are arranged adjacent to each other in plan view.
 第12の態様は、第9から第11のいずれか一つの態様にかかるプラズマ発生装置であって、前記小抵抗電極部材で構成された前記第1の電極部材は、他の第1の電極部材とは異なる材料で構成され、前記小抵抗電極部材で構成された前記第2の電極部材は、他の第2の電極部材とは異なる材料で構成される。 A twelfth aspect is the plasma generator according to any one of the ninth to eleventh aspects, wherein the first electrode member composed of the low-resistance electrode member is the other first electrode member. The second electrode member made of the low-resistance electrode member is made of a material different from that of the other second electrode members.
 第13の態様は、第9から第12のいずれか一つの態様にかかるプラズマ発生装置であって、複数の前記第1の電極部材と複数の前記第2の電極部材のそれぞれは、棒形状であり、前記小抵抗電極部材で構成された前記第1の電極部材は、他の第1の電極部材よりも太く構成され、前記小抵抗電極部材で構成された前記第2の電極部材は、他の第2の電極部材よりも太く構成される。 A thirteenth aspect is the plasma generator according to any one of the ninth to twelfth aspects, wherein each of the plurality of first electrode members and the plurality of second electrode members is rod-shaped. The first electrode member made of the low-resistance electrode member is thicker than the other first electrode members, and the second electrode member made of the low-resistance electrode member is thicker than the other first electrode members. is thicker than the second electrode member.
 第14の態様は、第11から第13のいずれか一つの態様にかかるプラズマ発生装置であって、前記小抵抗電極部材で構成された前記第1の電極部材と、前記小抵抗電極部材で構成された前記第2の電極部材とが平面視で隣り合う配置が複数形成され、それぞれの前記隣り合う配置の間の位置に、少なくとも一つの非小抵抗電極部材からなる前記第1の電極部材または前記第2の電極部材が配置される。 A fourteenth aspect is the plasma generator according to any one of the eleventh to thirteenth aspects, wherein the first electrode member is composed of the low resistance electrode member, and the low resistance electrode member is composed of the low resistance electrode member. The first electrode member or The second electrode member is arranged.
 第15の態様は、基板処理装置であって、基板を保持する基板保持部と、前記基板保持部によって保持された前記基板の主面に処理液を供給するノズルと、第9から第14のいずれか一つの態様にかかるプラズマ発生装置とを備える。 A fifteenth aspect is a substrate processing apparatus comprising: a substrate holding portion for holding a substrate; nozzles for supplying a processing liquid to the main surface of the substrate held by the substrate holding portion; and a plasma generator according to any one aspect.
 第1の態様によれば、第1先端空間内のガスがプラズマ化されることにより、平面視において、プラズマ発生領域を広げることができる。 According to the first aspect, the gas in the first tip space is turned into plasma, so that the plasma generation region can be expanded in plan view.
 第2および第3の態様によれば、第2先端空間内のガスがプラズマ化されることにより、プラズマ発生領域をさらに広げることができる。 According to the second and third aspects, the plasma generation region can be further expanded by plasmatizing the gas in the second tip space.
 第4から第6の態様によれば、第1先端空間内のガスがプラズマ化しても、第1電極部と第2電極部との間でアーク放電が生じない。 According to the fourth to sixth aspects, arc discharge does not occur between the first electrode portion and the second electrode portion even if the gas in the first tip space turns into plasma.
 第7の態様によれば、より小さいサイズのプラズマ発生装置によって、基板に対してより広い範囲でプラズマを発生させることができる。 According to the seventh aspect, plasma can be generated over a wider range on the substrate with a smaller-sized plasma generator.
 第8の態様によれば、2つの第1電極部材の間ではガスがプラズマ化しないので、消費電力を低減させることができる。一方、プラズマ発生装置によって生じた活性種が処理液に作用すると、活性種は処理液中を拡散するので、当該2つの第1電極部材の間に対応する領域にも活性種を供給することができる。つまり、より小さい消費電力で、処理液に対してより広い範囲で活性種を作用させることができる。 According to the eighth aspect, since the gas does not turn into plasma between the two first electrode members, power consumption can be reduced. On the other hand, when the active species generated by the plasma generator act on the processing liquid, the active species diffuse in the processing liquid, so that the active species can also be supplied to the corresponding region between the two first electrode members. can. In other words, the active species can act on the treatment liquid over a wider range with less power consumption.
 第9の態様によれば、複数の第1の電極部材又は複数の第2の電極部材のうち、少なくとも一つの電極部材を、当該少なくとも一つの電極部材と同一の電極部材群を構成する他の電極部材よりも単位長さ当たりの電気抵抗が小さい小抵抗電極部材で構成するので、他の電極部材よりも単位長さ当たりの電気抵抗が小さい電極部材に電流が流れやすくなり、当該小抵抗電極部材が加熱されやすくなるため、プラズマの発生が促進される。 According to the ninth aspect, of the plurality of first electrode members or the plurality of second electrode members, at least one electrode member constitutes the same electrode member group as the at least one electrode member. Since the electrode member is composed of the low-resistance electrode member having a smaller electrical resistance per unit length than the other electrode members, the current easily flows through the electrode member having a smaller electrical resistance per unit length than the other electrode members, and the low-resistance electrode. Since the members are easily heated, the generation of plasma is facilitated.
 また、本願明細書に開示される技術に関連する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、さらに明白となる。 In addition, the objects, features, aspects, and advantages associated with the technology disclosed in the present specification will become more apparent with the detailed description and accompanying drawings presented below.
基板処理システムの構成の一例を概略的に示す平面図である。1 is a plan view schematically showing an example of the configuration of a substrate processing system; FIG. 制御部の内部構成の一例を概略的に示す機能ブロック図である。3 is a functional block diagram schematically showing an example of the internal configuration of a control unit; FIG. 第1の実施の形態にかかる基板処理装置の構成の一例を概略的に示す図である。It is a figure showing roughly an example of composition of a substrate processing device concerning a 1st embodiment. プラズマ発生装置の構成の一例を概略的に示す平面図である。It is a top view which shows an example of a structure of a plasma generator roughly. プラズマ発生装置の構成の一例を概略的に示す側断面図である。It is a sectional side view showing roughly an example of composition of a plasma generator. プラズマ発生装置がプラズマを発生させている様子の一例を概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of how the plasma generator is generating plasma. 比較例にかかるプラズマ発生装置の一例を概略的に示す断面図である。It is a sectional view showing roughly an example of a plasma generator concerning a comparative example. 第1配置禁止領域および第2配置禁止領域の一例を示す図である。FIG. 4 is a diagram showing an example of a first placement prohibited area and a second placement prohibited area; プラズマ発生装置および基板の一例を概略的に示す平面図である。1 is a plan view schematically showing an example of a plasma generator and a substrate; FIG. プラズマ発生装置および基板の一例を概略的に示す側断面図である。1 is a side sectional view schematically showing an example of a plasma generator and a substrate; FIG. プラズマ発生装置の構成の他の一例を概略的に示す平面図である。FIG. 4 is a plan view schematically showing another example of the configuration of the plasma generator; プラズマ発生装置の構成の他の一例を概略的に示す側断面図である。FIG. 4 is a side cross-sectional view schematically showing another example of the configuration of the plasma generator; プラズマ発生装置の構成の他の一例を概略的に示す平面図である。FIG. 4 is a plan view schematically showing another example of the configuration of the plasma generator; プラズマ発生装置の構成の他の一例を概略的に示す側断面図である。FIG. 4 is a side cross-sectional view schematically showing another example of the configuration of the plasma generator; プラズマ発生装置の構成の他の一例を概略的に示す側断面図である。FIG. 4 is a side cross-sectional view schematically showing another example of the configuration of the plasma generator; 第1配置禁止領域および第2配置禁止領域の他の一例を示す図である。FIG. 10 is a diagram showing another example of the first placement prohibited area and the second placement prohibited area; 第3配置禁止領域および第4配置禁止領域の一例を示す図である。FIG. 11 is a diagram showing an example of a third placement prohibited area and a fourth placement prohibited area; 第2の実施の形態における基板処理装置の構成の例を概略的に示す側面図である。It is a side view which shows roughly the example of a structure of the substrate processing apparatus in 2nd Embodiment. 第2の実施の形態に関する、基板処理装置の動作の例を示すフローチャートである。9 is a flow chart showing an example of the operation of the substrate processing apparatus according to the second embodiment; 第2の実施の形態に関する、基板処理装置の動作を説明するための図である。It is a figure for demonstrating operation|movement of the substrate processing apparatus regarding 2nd Embodiment. 第2の実施の形態に関する、基板処理装置の動作を説明するための図である。It is a figure for demonstrating operation|movement of the substrate processing apparatus regarding 2nd Embodiment. プラズマ発生部における複数の電極棒の構成の例を示す平面図である。FIG. 4 is a plan view showing an example of the configuration of a plurality of electrode rods in the plasma generating section; プラズマ発生部を用いてプラズマを生じさせる場合の経過の例を示す平面図である。FIG. 10 is a plan view showing an example of the process of generating plasma using the plasma generation unit; プラズマ発生部を用いてプラズマを生じさせる場合の経過の例を示す平面図である。FIG. 10 is a plan view showing an example of the process of generating plasma using the plasma generation unit; プラズマ発生部における複数の電極棒の構成の例を示す平面図である。FIG. 4 is a plan view showing an example of the configuration of a plurality of electrode rods in the plasma generating section; 第3の実施の形態における基板処理装置の構成の例を概略的に示す側面図である。It is a side view which shows roughly the example of a structure of the substrate processing apparatus in 3rd Embodiment. プラズマ発生部における一部の構成の例を概略的に示す平面図である。FIG. 4 is a plan view schematically showing an example of a configuration of part of the plasma generating section; プラズマ発生部における一部の構成の例を概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of a configuration of part of the plasma generating section; プラズマ発生部における複数の電極棒の構成の例を示す平面図である。FIG. 4 is a plan view showing an example of the configuration of a plurality of electrode rods in the plasma generating section;
 以下、添付の図面を参照しながら、実施の形態について説明する。なお、この実施の形態に記載されている構成要素はあくまでも例示であり、本開示の範囲をそれらのみに限定する趣旨のものではない。図面においては、理解容易のため、必要に応じて各部の寸法または数が誇張または簡略化して図示されている場合がある。また、断面図ではない平面図などの図面においても、実施の形態の内容を理解することを容易にするために、ハッチングが付される場合がある。 Embodiments will be described below with reference to the attached drawings. Note that the components described in this embodiment are merely examples, and the scope of the present disclosure is not intended to be limited to them. In the drawings, for ease of understanding, the dimensions or number of each part may be exaggerated or simplified as necessary. Also, in drawings such as plan views that are not cross-sectional views, hatching may be added to facilitate understanding of the contents of the embodiments.
 また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。 Also, in the description given below, the same constituent elements are illustrated with the same reference numerals, and their names and functions are also the same. Therefore, a detailed description thereof may be omitted to avoid duplication.
 また、本願明細書に記載される説明において、「第1の」または「第2の」などの序数が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、これらの序数によって生じ得る順序などに限定されるものではない。 In addition, even if ordinal numbers such as “first” or “second” are used in the description given in this specification, these terms are used to understand the content of the embodiments. They are used for the sake of convenience and are not limited to the order or the like that can occur with these ordinal numbers.
 相対的または絶対的な位置関係を示す表現(例えば「一方向に」「一方向に沿って」「平行」「直交」「中心」「同心」「同軸」など)は、特に断らない限り、その位置関係を厳密に表すのみならず、公差もしくは同程度の機能が得られる範囲で相対的に角度または距離に関して変位された状態も表すものとする。等しい状態であることを示す表現(例えば「同一」「等しい」「均質」など)は、特に断らない限り、定量的に厳密に等しい状態を表すのみならず、公差もしくは同程度の機能が得られる差が存在する状態も表すものとする。形状を示す表現(例えば、「四角形状」または「円筒形状」など)は、特に断らない限り、幾何学的に厳密にその形状を表すのみならず、同程度の効果が得られる範囲で、例えば凹凸または面取りなどを有する形状も表すものとする。一の構成要素を「備える」「具える」「具備する」「含む」または「有する」という表現は、他の構成要素の存在を除外する排他的表現ではない。「A,BおよびCの少なくともいずれか一つ」という表現は、Aのみ、Bのみ、Cのみ、A,BおよびCのうち任意の2つ、ならびに、A,BおよびCの全てを含む。 Expressions indicating relative or absolute positional relationships (e.g., "in one direction", "along one direction", "parallel", "perpendicular", "center", "concentric", "coaxial", etc.) are used unless otherwise specified. Not only the positional relationship is strictly expressed, but also the relatively displaced state in terms of angle or distance within the range of tolerance or equivalent function. Expressions indicating equality (e.g., "same", "equal", "homogeneous", etc.), unless otherwise specified, not only express quantitatively strictly equality, but also tolerances or equivalent functions can be obtained It shall also represent the state in which there is a difference. Expressions indicating shapes (e.g., "square shape" or "cylindrical shape"), unless otherwise specified, not only represent the shape strictly geometrically, but also to the extent that the same effect can be obtained, such as Shapes having unevenness or chamfering are also represented. The terms "comprise", "comprise", "comprise", "include" or "have" an element are not exclusive expressions that exclude the presence of other elements. The phrase "at least one of A, B and C" includes only A, only B, only C, any two of A, B and C, and all of A, B and C.
 また、本願明細書に記載される説明において、「上」、「下」、「左」、「右」、「側」、「底」、「表」または「裏」などの特定の位置または方向を意味する用語が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、実際に実施される際の位置または方向とは関係しないものである。 Also, in the descriptions provided herein, specific positions or orientations such as "top", "bottom", "left", "right", "side", "bottom", "front" or "back" are used for convenience in order to facilitate understanding of the content of the embodiment, and the position or direction when actually implemented It has nothing to do with.
 また、本願明細書に記載される説明において、「…の上面」または「…の下面」などと記載される場合、対象となる構成要素の上面自体または下面自体に加えて、対象となる構成要素の上面または下面に他の構成要素が形成された状態も含むものとする。すなわち、たとえば、「甲の上面に設けられる乙」と記載される場合、甲と乙との間に別の構成要素「丙」が介在することを妨げるものではない。 In addition, in the description given in this specification, when “the upper surface of” or “the lower surface of ...” is described, in addition to the upper surface itself or the lower surface itself of the target component, the target component A state in which other constituent elements are formed on the upper or lower surface of the is also included. That is, for example, when it is described as "B provided on the upper surface of A", it does not prevent another component "C" between A and B.
 <基板処理システムの全体構成>
 図1は、プラズマ発生装置が適用される基板処理システム900の構成の一例を概略的に示す平面図である。基板処理システム900は、処理対象である基板Wを1枚ずつ処理する枚葉式の処理装置である。
<Overall Configuration of Substrate Processing System>
FIG. 1 is a plan view schematically showing an example of the configuration of a substrate processing system 900 to which a plasma generator is applied. The substrate processing system 900 is a single wafer processing apparatus that processes substrates W to be processed one by one.
 基板Wは例えば半導体基板であり、円板形状を有する。なお、基板Wには、半導体基板の他、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、有機EL(Electro-Luminescence)表示装置用基板などの表示装置用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、セラミック基板および太陽電池基板などの各種基板を適用可能である。また基板の形状も円板形状に限らず、例えば矩形の板状形状など種々の形状を採用できる。 The substrate W is, for example, a semiconductor substrate and has a disk shape. The substrate W may be a photomask glass substrate, a liquid crystal display glass substrate, a plasma display glass substrate, a FED (Field Emission Display) substrate, or an organic EL (Electro-Luminescence) display substrate. Various substrates such as display device substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, ceramic substrates, and solar cell substrates can be applied. Also, the shape of the substrate is not limited to a disk shape, and various shapes such as a rectangular plate shape can be adopted.
 基板処理システム900はロードポート901とインデクサロボット902と主搬送ロボット903と複数の基板処理装置100と制御部90とを含む。 A substrate processing system 900 includes a load port 901 , an indexer robot 902 , a main transfer robot 903 , a plurality of substrate processing apparatuses 100 and a controller 90 .
 複数のロードポート901は水平な一方向に沿って並んで配置される。各ロードポート901は、基板Wを基板処理システム900に搬出入するためのインターフェース部である。各ロードポート901には、基板Wを収容するキャリアCが外部から搬入される。各ロードポート901は、搬入されたキャリアCを保持する収容器保持機構である。キャリアCとしては、基板Wを密閉空間に収納するFOUP(Front Opening Unified Pod)、SMIF(Standard Mechanical Inter Face)ポッド、または、基板Wを外気にさらすOC(Open Cassette)が採用されてもよい。 A plurality of load ports 901 are arranged side by side along one horizontal direction. Each load port 901 is an interface section for loading/unloading the substrate W into/from the substrate processing system 900 . A carrier C accommodating substrates W is loaded into each load port 901 from the outside. Each load port 901 is a container holding mechanism that holds the loaded carrier C. As shown in FIG. As the carrier C, a FOUP (Front Opening Unified Pod) that houses the substrate W in a sealed space, a SMIF (Standard Mechanical Inter Face) pod, or an OC (Open Cassette) that exposes the substrate W to the outside air may be adopted.
 インデクサロボット902は、各ロードポート901に保持されたキャリアCと、主搬送ロボット903との間で基板Wを搬送する搬送ロボットである。インデクサロボット902はロードポート901が並ぶ方向に沿って移動可能であり、各キャリアCと対面する位置で停止可能である。インデクサロボット902は、各キャリアCから基板Wを取り出す動作と、各キャリアCに基板Wを受け渡す動作とを行うことができる。 The indexer robot 902 is a transport robot that transports the substrate W between the carrier C held by each load port 901 and the main transport robot 903 . The indexer robot 902 can move along the direction in which the load ports 901 are arranged, and can stop at a position facing each carrier C. FIG. The indexer robot 902 can perform an operation of picking up substrates W from each carrier C and an operation of transferring substrates W to each carrier C. As shown in FIG.
 主搬送ロボット903は、インデクサロボット902と各基板処理装置100との間で基板Wを搬送する搬送ロボットである。主搬送ロボット903はセンターロボットとも呼ばれ得る。主搬送ロボット903はインデクサロボット902から基板Wを受け取る動作と、インデクサロボット902に基板Wを受け渡す動作とを行うことができる。また、主搬送ロボット903は各基板処理装置100に基板Wを搬入する動作と、各基板処理装置100から基板Wを搬出する動作とを行うことができる。なお、図1の例では、基板処理システム900は基板載置部904を含む。この場合、インデクサロボット902は、ロードポート901と基板載置部904との間で基板Wを搬送し、主搬送ロボット903は基板載置部904および各基板処理装置100間で基板Wを搬送する。 The main transport robot 903 is a transport robot that transports substrates W between the indexer robot 902 and each substrate processing apparatus 100 . The main transport robot 903 may also be called a center robot. The main transport robot 903 can perform an operation of receiving the substrate W from the indexer robot 902 and an operation of transferring the substrate W to the indexer robot 902 . Further, the main transfer robot 903 can perform an operation of loading the substrate W into each substrate processing apparatus 100 and an operation of unloading the substrate W from each substrate processing apparatus 100 . Note that in the example of FIG. 1, the substrate processing system 900 includes a substrate platform 904 . In this case, the indexer robot 902 transports the substrate W between the load port 901 and the substrate platform 904, and the main transport robot 903 transports the substrate W between the substrate platform 904 and each substrate processing apparatus 100. .
 インデクサロボット902、基板載置部904および主搬送ロボット903は、それぞれの基板処理装置100とロードポート901との間で基板Wを搬送する。 The indexer robot 902 , substrate platform 904 and main transfer robot 903 transfer substrates W between the respective substrate processing apparatuses 100 and load ports 901 .
 基板処理システム900には、例えば12個の基板処理装置100が配置される。具体的には、鉛直方向に積層された3個の基板処理装置100を含むタワーの4つが、主搬送ロボット903の周囲を取り囲むようにして設けられる。図1では、3段に重ねられた基板処理装置100の1つが概略的に示されている。なお、基板処理システム900における基板処理装置100の数は、12個に限定されるものではなく、適宜変更されてもよい。 For example, 12 substrate processing apparatuses 100 are arranged in the substrate processing system 900 . Specifically, four towers including three vertically stacked substrate processing apparatuses 100 are provided so as to surround the main transfer robot 903 . FIG. 1 schematically shows one of the substrate processing apparatuses 100 stacked in three stages. Note that the number of substrate processing apparatuses 100 in the substrate processing system 900 is not limited to twelve, and may be changed as appropriate.
 主搬送ロボット903は、4つのタワーによって囲まれるように設けられている。主搬送ロボット903は、インデクサロボット902から受け取る未処理の基板Wを各基板処理装置100内に搬入する。各基板処理装置100は基板Wを処理する。また、主搬送ロボット903は、各基板処理装置100から処理済みの基板Wを搬出してインデクサロボット902に渡す。 The main transport robot 903 is provided so as to be surrounded by four towers. The main transport robot 903 carries the unprocessed substrate W received from the indexer robot 902 into each substrate processing apparatus 100 . Each substrate processing apparatus 100 processes a substrate W. FIG. Also, the main transport robot 903 carries out the processed substrate W from each substrate processing apparatus 100 and passes it to the indexer robot 902 .
 未処理の基板WはキャリアCからインデクサロボット902によって取り出される。そして、未処理の基板Wは、例えば基板載置部904を介して、主搬送ロボット903に受け渡される。 An unprocessed substrate W is taken out from the carrier C by the indexer robot 902 . Then, the unprocessed substrate W is transferred to the main transport robot 903 via the substrate platform 904, for example.
 主搬送ロボット903は、当該未処理の基板Wを基板処理装置100に搬入する。そして、基板処理装置100は基板Wに対して処理を行う。 The main transport robot 903 carries the unprocessed substrate W into the substrate processing apparatus 100 . Then, the substrate processing apparatus 100 processes the substrate W. FIG.
 基板処理装置100において処理済みの基板Wは、主搬送ロボット903によって基板処理装置100から取り出される。そして、処理済みの基板Wは、必要に応じて他の基板処理装置100を経由した後、例えば基板載置部904を介してインデクサロボット902に受け渡される。インデクサロボット902は、処理済みの基板WをキャリアCに搬入する。以上によって、基板Wに対する処理が行われる。 A substrate W that has been processed in the substrate processing apparatus 100 is taken out from the substrate processing apparatus 100 by the main transfer robot 903 . Then, the processed substrate W is transferred to the indexer robot 902 via, for example, the substrate platform 904 after passing through another substrate processing apparatus 100 as necessary. The indexer robot 902 loads the processed substrate W into the carrier C. As shown in FIG. The processing for the substrate W is performed as described above.
 制御部90は、基板処理システム900の各構成要素の動作を制御する。図2は、制御部90の内部構成の一例を概略的に示す機能ブロック図である。制御部90は電子回路であって、例えばデータ処理部91および記憶部92を有している。図2の具体例では、データ処理部91と記憶部92とはバス93を介して相互に接続されている。データ処理部91は例えばCPU(Central Processor Unit)などの演算処理装置であってもよい。記憶部92は非一時的な記憶部(例えばROM(Read Only Memory)またはハードディスク)921および一時的な記憶部(例えばRAM(Random Access Memory))922を有していてもよい。非一時的な記憶部921には、例えば制御部90が実行する処理を規定するプログラムが記憶されていてもよい。データ処理部91がこのプログラムを実行することにより、制御部90が、プログラムに規定された処理を実行することができる。もちろん、制御部90が実行する処理の一部または全部は、必ずしもソフトウェアによって実現される必要はなく、専用の論理回路などのハードウェアによって実行されてもよい。図2の例では、バス93には、記憶装置94、入力部96、表示部97および通信部98が接続されている。 The control unit 90 controls the operation of each component of the substrate processing system 900 . FIG. 2 is a functional block diagram schematically showing an example of the internal configuration of the control section 90. As shown in FIG. The control unit 90 is an electronic circuit and has, for example, a data processing unit 91 and a storage unit 92 . In the specific example of FIG. 2, the data processing section 91 and the storage section 92 are interconnected via a bus 93 . The data processing unit 91 may be an arithmetic processing device such as a CPU (Central Processor Unit). The storage unit 92 may have a non-temporary storage unit (eg, ROM (Read Only Memory) or hard disk) 921 and a temporary storage unit (eg, RAM (Random Access Memory)) 922 . The non-temporary storage unit 921 may store, for example, a program that defines processing to be executed by the control unit 90 . By the data processing unit 91 executing this program, the control unit 90 can execute the processing specified in the program. Of course, part or all of the processing executed by the control unit 90 does not necessarily have to be realized by software, and may be executed by hardware such as a dedicated logic circuit. In the example of FIG. 2, a storage device 94, an input section 96, a display section 97 and a communication section 98 are connected to the bus 93. FIG.
 記憶部921は基本プログラムを格納している。記憶部922は、データ処理部91が所定の処理を行う際の作業領域として用いられる。記憶装置94は、フラッシュメモリまたはハードディスク装置などの不揮発性記憶装置によって構成されている。入力部96は、各種スイッチまたはタッチパネルなどによって構成されており、オペレータから処理レシピなどの入力設定指示を受ける。表示部97は、たとえば、液晶表示装置およびランプなどによって構成されており、データ処理部91の制御の下、各種の情報を表示する。通信部98は、LAN(Local Area Network)などを介してのデータ通信機能を有する。 The storage unit 921 stores basic programs. The storage unit 922 is used as a working area when the data processing unit 91 performs predetermined processing. The storage device 94 is configured by a non-volatile storage device such as flash memory or hard disk device. The input unit 96 is composed of various switches, a touch panel, or the like, and receives an input setting instruction such as a processing recipe from an operator. The display section 97 is composed of, for example, a liquid crystal display device and a lamp, and displays various information under the control of the data processing section 91 . The communication unit 98 has a data communication function via a LAN (Local Area Network) or the like.
 記憶装置94には、図1の基板処理システム900におけるそれぞれの構成の制御についての複数のモードがあらかじめ設定されている。データ処理部91が処理プログラム94Pを実行することによって、上記の複数のモードのうちの1つのモードが選択され、当該モードでそれぞれの構成が制御される。なお、処理プログラム94Pは、記録媒体に記憶されていてもよい。この記録媒体を用いれば、制御部90に処理プログラム94Pをインストールすることができる。 A plurality of modes for controlling each configuration in the substrate processing system 900 of FIG. 1 are set in advance in the storage device 94 . By executing the processing program 94P by the data processing unit 91, one mode is selected from the above plurality of modes, and each configuration is controlled in the selected mode. Note that the processing program 94P may be stored in a recording medium. By using this recording medium, the processing program 94P can be installed in the control section 90. FIG.
 <第1の実施の形態>
 <基板処理装置>
 図3は、第1の実施の形態にかかる基板処理装置100の構成の一例を概略的に示す図である。なお、基板処理システム900に属する基板処理装置100の全てが図3に示された構成を有している必要はなく、少なくとも一つの基板処理装置100が当該構成を有していればよい。
<First embodiment>
<Substrate processing equipment>
FIG. 3 is a diagram schematically showing an example of the configuration of the substrate processing apparatus 100 according to the first embodiment. It should be noted that not all substrate processing apparatuses 100 belonging to the substrate processing system 900 need to have the configuration shown in FIG. 3, and at least one substrate processing apparatus 100 may have the configuration.
 図3に例示される基板処理装置100は、プラズマを用いた処理を基板Wに対して行う装置である。プラズマを用いた処理は特に制限される必要がないものの、具体的な一例として、例えば、基板Wに付着している有機物を除去する処理、または、基板Wにおける金属エッチングなどの処理を含む。基板Wに付着している有機物は、例えば、使用済のレジスト膜である。当該レジスト膜は、たとえば、イオン注入工程用の注入マスクとして用いられたものである。レジスト膜を除去する処理はレジスト除去処理とも呼ばれ得る。基板Wは、例えば、半導体基板であり、円板形状を有する。基板Wのサイズは特に制限されないものの、その直径は例えば約300mmである。 A substrate processing apparatus 100 illustrated in FIG. 3 is an apparatus that performs processing on a substrate W using plasma. Processing using plasma is not particularly limited, but specific examples include, for example, processing for removing organic substances adhering to the substrate W, or processing such as metal etching on the substrate W. The organic matter adhering to the substrate W is, for example, a used resist film. The resist film is used, for example, as an implantation mask for an ion implantation process. The process of removing the resist film can also be called a resist removal process. The substrate W is, for example, a semiconductor substrate and has a disk shape. Although the size of the substrate W is not particularly limited, its diameter is, for example, about 300 mm.
 なお、図3に示される構成は、図1におけるチャンバ80に囲まれていてよい。また、チャンバ80内の圧力は、およそ大気圧(たとえば、0.5気圧以上、かつ、2気圧以下)であってよい。言い換えれば、後述するプラズマ処理は、大気圧で行われる大気圧プラズマ処理であってよい。 Note that the configuration shown in FIG. 3 may be surrounded by the chamber 80 in FIG. Also, the pressure in chamber 80 may be approximately atmospheric pressure (eg, 0.5 atmospheres or more and 2 atmospheres or less). In other words, the plasma treatment described below may be an atmospheric pressure plasma treatment performed at atmospheric pressure.
 図3の例では、基板処理装置100はプラズマ発生装置1と基板保持部11とノズル12とガード13とを含んでいる。 In the example of FIG. 3, the substrate processing apparatus 100 includes a plasma generator 1, a substrate holder 11, a nozzle 12 and a guard 13.
 基板保持部11は基板Wを水平姿勢で保持する。ここでいう水平姿勢とは、基板Wの厚み方向が鉛直方向に沿う姿勢である。図3の例では、基板保持部11はステージ111と複数のチャックピン112とを含んでいる。ステージ111は円板形状を有し、基板Wよりも鉛直下方に設けられている。ステージ111は、その厚み方向が鉛直方向に沿う姿勢で設けられる。ステージ111はスピンベースとも呼ばれ得る。複数のチャックピン112はステージ111の上面のうち外周部に立設されており、基板Wの周縁を把持(挟持)する。なお、基板保持部11は必ずしもチャックピン112を有する必要はない。例えば、基板保持部11は基板Wの下面を吸引して基板Wを吸着してもよく、あるいは、静電方式により基板Wの下面を吸着してもよい。 The substrate holding part 11 holds the substrate W in a horizontal posture. The horizontal posture referred to here is a posture in which the thickness direction of the substrate W is along the vertical direction. In the example of FIG. 3, the substrate holder 11 includes a stage 111 and multiple chuck pins 112 . The stage 111 has a disk shape and is provided below the substrate W in the vertical direction. The stage 111 is provided in such a posture that its thickness direction is along the vertical direction. Stage 111 may also be referred to as a spin base. A plurality of chuck pins 112 are erected on the outer peripheral portion of the upper surface of the stage 111 and grip (hold) the peripheral edge of the substrate W. As shown in FIG. It should be noted that the substrate holding part 11 does not necessarily have to have the chuck pins 112 . For example, the substrate holding part 11 may adsorb the substrate W by sucking the lower surface of the substrate W, or may adsorb the lower surface of the substrate W using an electrostatic method.
 図3の例では、基板保持部11は回転機構113をさらに含んでおり、回転軸線Q1のまわりで基板Wを回転させる。回転軸線Q1は基板Wの中心部を通り、かつ、鉛直方向に沿う軸である。回転機構113は例えばシャフト114およびモータ115を含む。シャフト114の上端はステージ111の下面に連結され、ステージ111の下面から回転軸線Q1に沿って延在する。モータ115はシャフト114を回転軸線Q1のまわりで回転させて、ステージ111を回転させる。これにより、複数のチャックピン112によって保持された基板Wが回転軸線Q1のまわりで回転する。このような基板保持部11はスピンチャックとも呼ばれ得る。 In the example of FIG. 3, the substrate holder 11 further includes a rotation mechanism 113, which rotates the substrate W around the rotation axis Q1. The rotation axis Q1 is an axis that passes through the center of the substrate W and extends in the vertical direction. Rotation mechanism 113 includes, for example, shaft 114 and motor 115 . The upper end of the shaft 114 is connected to the lower surface of the stage 111 and extends from the lower surface of the stage 111 along the rotation axis Q1. The motor 115 rotates the shaft 114 around the rotation axis Q1 to rotate the stage 111 . Thereby, the substrate W held by the plurality of chuck pins 112 rotates around the rotation axis Q1. Such a substrate holding part 11 can also be called a spin chuck.
 ノズル12は、基板Wへの処理液の供給に用いられる。ノズル12は供給管121を介して処理液供給源124に接続される。つまり、供給管121の下流端がノズル12に接続され、供給管121の上流端が処理液供給源124に接続される。処理液供給源124は、例えば、処理液を貯留するタンク(不図示)を含み、供給管121に処理液を供給する。処理液は例えばエッチング液として、塩酸、フッ酸、リン酸、硝酸、硫酸、硫酸塩、ペルオキソ硫酸、ペルオキソ硫酸塩、過酸化水素、水酸化テトラメチルアンモニウム、アンモニアと過酸化水素水との混合液(SC1)などの液を含む。また、処理液は、例えば洗浄液として、塩酸と過酸化水素水との混合液(SC2)などの液を含む。また、処理液は、例えば、洗浄液またはリンス液として脱イオン水(DIW)などの液を含む。 The nozzle 12 is used for supplying the processing liquid to the substrate W. The nozzle 12 is connected to a processing liquid supply source 124 via a supply pipe 121 . That is, the downstream end of the supply pipe 121 is connected to the nozzle 12 and the upstream end of the supply pipe 121 is connected to the processing liquid supply source 124 . The processing liquid supply source 124 includes, for example, a tank (not shown) that stores the processing liquid, and supplies the processing liquid to the supply pipe 121 . The treatment liquid is, for example, an etchant such as hydrochloric acid, hydrofluoric acid, phosphoric acid, nitric acid, sulfuric acid, sulfate, peroxosulfuric acid, peroxosulfate, hydrogen peroxide, tetramethylammonium hydroxide, or a mixture of ammonia and hydrogen peroxide. (SC1) and other liquids. In addition, the treatment liquid includes, for example, a liquid such as a mixed liquid (SC2) of hydrochloric acid and hydrogen peroxide as a cleaning liquid. The processing liquid also includes liquid such as deionized water (DIW) as, for example, a cleaning liquid or a rinse liquid.
 本実施の形態においては、主に、基板Wの上面に形成されたレジスト膜を除去するための処理が説明される。この場合には、処理液としては、硫酸、硫酸塩、ペルオキソ硫酸およびペルオキソ硫酸塩のうちの少なくとも1つを含む液、または、過酸化水素を含む液などが想定される。 In the present embodiment, processing for removing the resist film formed on the upper surface of the substrate W will mainly be described. In this case, the processing liquid is assumed to be a liquid containing at least one of sulfuric acid, sulfate, peroxosulfuric acid and peroxosulfate, or a liquid containing hydrogen peroxide.
 図3の例では、供給管121には、バルブ122および流量調整部123が介装されている。バルブ122が開くことにより、処理液供給源124からの処理液が供給管121を通じてノズル12に供給され、ノズル12の吐出口12aから吐出される。つまり、バルブ122は、処理液供給源124からノズル12への処理液の供給および供給停止を切り替える。流量調整部123は、供給管121を流れる処理液の流量を調整する。流量調整部123は例えばマスフローコントローラである。  In the example of FIG. By opening the valve 122 , the processing liquid from the processing liquid supply source 124 is supplied to the nozzle 12 through the supply pipe 121 and ejected from the ejection port 12 a of the nozzle 12 . That is, the valve 122 switches between supplying and stopping the supply of the processing liquid from the processing liquid supply source 124 to the nozzle 12 . The flow rate adjusting section 123 adjusts the flow rate of the processing liquid flowing through the supply pipe 121 . The flow rate adjusting unit 123 is, for example, a mass flow controller.
 図3の例では、ノズル12はノズル移動機構15によって移動可能に設けられる。ノズル移動機構15は、ノズル12を第1処理位置と第1待機位置との間で移動させる。第1処理位置とは、ノズル12が基板Wの主面(例えば上面)に向けて処理液を吐出する位置である。第1処理位置は、例えば、基板Wよりも鉛直上方であって、基板Wの中心部と鉛直方向において対向する位置である。第1待機位置とは、ノズル12が基板Wの主面に向けて処理液を吐出しない位置であり、第1処理位置よりも基板Wから離れた位置である。第1待機位置は、ノズル12が主搬送ロボット120による基板Wの搬送経路と干渉しない位置でもある。具体的な一例として、第1待機位置は、基板Wの周縁よりも径方向外側の位置である。図3では、第1待機位置で停止するノズル12が示されている。 In the example of FIG. 3, the nozzle 12 is movably provided by a nozzle moving mechanism 15. The nozzle moving mechanism 15 moves the nozzle 12 between the first processing position and the first standby position. The first processing position is a position where the nozzle 12 discharges the processing liquid toward the main surface (for example, the upper surface) of the substrate W. As shown in FIG. The first processing position is, for example, a position vertically above the substrate W and facing the central portion of the substrate W in the vertical direction. The first standby position is a position where the nozzle 12 does not discharge the processing liquid toward the main surface of the substrate W, and is a position further away from the substrate W than the first processing position. The first standby position is also a position where the nozzle 12 does not interfere with the transport path of the substrate W by the main transport robot 120 . As a specific example, the first standby position is a position radially outside the peripheral edge of the substrate W. As shown in FIG. FIG. 3 shows the nozzle 12 stopped at the first standby position.
 ノズル移動機構15は、例えば、ボールねじ機構またはアーム旋回機構等のアクチュエータを有する。アーム旋回機構は、いずれも不図示のアームと支持柱とモータとを含む。アームは水平に延在する棒状形状を有し、アームの先端にはノズル12が連結され、アームの基端が支持柱に連結される。支持柱は鉛直方向に沿って延びており、その中心軸のまわりで回転可能に設けられる。モータが支持柱を回転させることにより、アームが旋回し、ノズル12が中心軸のまわりで周方向に沿って移動する。支持柱は、ノズル12の移動経路上に第1処理位置と第1待機位置とが位置するように設けられる。 The nozzle moving mechanism 15 has an actuator such as a ball screw mechanism or an arm turning mechanism. The arm turning mechanism includes an arm, a support column, and a motor (none of which are shown). The arm has a horizontally extending rod-like shape, the tip of the arm is connected to the nozzle 12, and the base end of the arm is connected to the support column. The support column extends vertically and is rotatable around its central axis. When the motor rotates the support column, the arm turns and the nozzle 12 moves in the circumferential direction around the central axis. The support column is provided so that the first processing position and the first standby position are positioned on the moving path of the nozzle 12 .
 ノズル12が第1処理位置に位置する状態で、基板保持部11が基板Wを回転させながら、バルブ122が開くと、ノズル12から回転中の基板Wの上面に向かって処理液が吐出される。処理液は基板Wの上面に着液し、基板Wの回転に伴って基板Wの上面を広がって、基板Wの周縁から外側に飛散する。これにより、基板Wの上面には処理液の液膜が形成される。 When the valve 122 is opened while the substrate holder 11 rotates the substrate W with the nozzle 12 positioned at the first processing position, the processing liquid is discharged from the nozzle 12 toward the upper surface of the substrate W during rotation. . The processing liquid lands on the upper surface of the substrate W, spreads over the upper surface of the substrate W as the substrate W rotates, and scatters outward from the peripheral edge of the substrate W. FIG. As a result, a liquid film of the processing liquid is formed on the upper surface of the substrate W. As shown in FIG.
 処理液ノズル12は、複数種の処理液が想定される場合には、それぞれの処理液に対応して複数設けられていてもよい。処理液ノズル12は、基板Wの上面に処理液の液膜が形成されるように、基板Wに処理液を供給する。 When multiple types of processing liquids are assumed, a plurality of processing liquid nozzles 12 may be provided corresponding to the respective processing liquids. The processing liquid nozzle 12 supplies the processing liquid to the substrate W so that a liquid film of the processing liquid is formed on the upper surface of the substrate W. As shown in FIG.
 ガード13は、基板保持部11によって保持された基板Wを取り囲む筒状の形状を有している。基板Wの周縁から飛散した処理液はガード13の内周面にあたり、内周面に沿って鉛直下方に流れる。処理液は、例えば、不図示の回収配管を流れて処理液供給源124のタンクに回収される。これによれば、処理液を再利用することができる。 The guard 13 has a cylindrical shape surrounding the substrate W held by the substrate holding portion 11 . The processing liquid scattered from the peripheral edge of the substrate W hits the inner peripheral surface of the guard 13 and flows vertically downward along the inner peripheral surface. The processing liquid flows, for example, through a collection pipe (not shown) and is collected in the tank of the processing liquid supply source 124 . According to this, the treatment liquid can be reused.
 プラズマ発生装置1はプラズマを発生させる装置であり、基板保持部11によって保持された基板Wの主面(例えば上面)と鉛直方向において対向する位置に設けられる。図3の例では、プラズマ発生装置1は基板Wの上面よりも鉛直上方において、基板W全体を覆うように設けられる。プラズマ発生装置1は電源8に接続されており、電源8からの電力を受けて周囲のガスをプラズマ化させる。なおここでは一例として、プラズマ発生装置1は、大気圧下でプラズマを発生させる大気圧プラズマ源である。ここでいう大気圧とは、例えば、標準気圧の50%以上、かつ、標準気圧の200%以下である。プラズマ発生装置1の具体的な構成の一例は後に詳述する。 The plasma generator 1 is a device that generates plasma, and is provided at a position facing the main surface (for example, the upper surface) of the substrate W held by the substrate holding part 11 in the vertical direction. In the example of FIG. 3, the plasma generator 1 is provided vertically above the upper surface of the substrate W so as to cover the entire substrate W. As shown in FIG. The plasma generator 1 is connected to a power supply 8, receives power from the power supply 8, and converts surrounding gas into plasma. Here, as an example, the plasma generator 1 is an atmospheric pressure plasma source that generates plasma under atmospheric pressure. The atmospheric pressure here is, for example, 50% or more of the standard pressure and 200% or less of the standard pressure. An example of a specific configuration of the plasma generator 1 will be detailed later.
 図3に例示するように、プラズマ発生装置1はプラズマ移動機構14によって移動可能に設けられてもよい。プラズマ移動機構14は、プラズマ発生装置1を第2処理位置と第2待機位置との間で往復移動させる。第2処理位置とは、プラズマ発生装置1によるプラズマを用いて基板Wを処理するときの位置である。第2処理位置において、プラズマ発生装置1と基板Wの上面との間の距離は例えば数mm程度である。第2待機位置とは、プラズマを用いた処理を基板Wに対して行わないときの位置であり、第2処理位置よりも基板Wから離れた位置である。第2待機位置は、プラズマ発生装置1が主搬送ロボット120による基板Wの搬送経路と干渉しない位置でもある。 As illustrated in FIG. 3 , the plasma generator 1 may be provided movably by a plasma moving mechanism 14 . The plasma moving mechanism 14 reciprocates the plasma generator 1 between the second processing position and the second standby position. The second processing position is a position where the substrate W is processed using plasma from the plasma generator 1 . At the second processing position, the distance between the plasma generator 1 and the upper surface of the substrate W is, for example, several millimeters. The second standby position is a position when the substrate W is not processed using plasma, and is a position further away from the substrate W than the second processing position. The second standby position is also a position where the plasma generator 1 does not interfere with the transport path of the substrate W by the main transport robot 120 .
 具体的な一例として、第2待機位置は第2処理位置よりも鉛直上方の位置であり、プラズマ移動機構14はプラズマ発生装置1を鉛直方向に沿って昇降させる。図3では、第2待機位置で停止するプラズマ発生装置1が示されている。プラズマ移動機構14は、例えば、ボールねじ機構またはエアシリンダなどの移動機構を有する。 As a specific example, the second standby position is a position vertically above the second processing position, and the plasma moving mechanism 14 raises and lowers the plasma generator 1 along the vertical direction. FIG. 3 shows the plasma generator 1 stopped at the second standby position. The plasma moving mechanism 14 has, for example, a moving mechanism such as a ball screw mechanism or an air cylinder.
 プラズマ発生装置1は、例えば、ノズル12が第1待機位置に退避した状態で、第2待機位置から第2処理位置へと移動することができる。例えば、第1処理位置でのノズル12からの処理液の吐出によって基板Wの上面に処理液の液膜が形成されると、バルブ122が閉じたうえで、ノズル移動機構15がノズル12を第1処理位置から第1待機位置に移動させる。その後、プラズマ移動機構14がプラズマ発生装置1を第2待機位置から第2処理位置へと移動させる。これによれば、基板Wの直上にはノズル12が存在しないので、プラズマ発生装置1を基板Wの上面により近づけることができる。言い換えれば、第2処理位置をより基板Wの近くに設定することができる。 For example, the plasma generator 1 can move from the second standby position to the second processing position while the nozzle 12 is retracted to the first standby position. For example, when a liquid film of the processing liquid is formed on the upper surface of the substrate W by discharging the processing liquid from the nozzle 12 at the first processing position, the valve 122 is closed and the nozzle moving mechanism 15 moves the nozzle 12 to the first position. It is moved from the first processing position to the first standby position. After that, the plasma moving mechanism 14 moves the plasma generator 1 from the second standby position to the second processing position. According to this, since the nozzle 12 does not exist directly above the substrate W, the plasma generator 1 can be brought closer to the upper surface of the substrate W. FIG. In other words, the second processing position can be set closer to the substrate W.
 そして、プラズマ発生装置1が第2処理位置に位置する状態で、電源8がプラズマ発生装置1に電圧を出力する。これにより、基板Wの上面の近傍でプラズマ発生装置1がプラズマを発生させる。つまり、プラズマ発生装置1は基板Wの上面に向かってプラズマを発生させる。このプラズマの発生に伴って種々の活性種が生じる。例えば、空気がプラズマ化することにより、酸素ラジカル、ヒドロキシルラジカルおよびオゾンガス等の種々の活性種が生じ得る。これらの活性種は基板Wの上面に作用する。具体的な一例として、活性種は基板Wの上面の処理液(ここでは硫酸)の液膜に作用する。これにより、処理液の処理性能が高まる。具体的には、活性種と硫酸との反応により、処理性能(ここでは酸化力)の高いカロ酸が生成される。カロ酸はペルオキソ一硫酸とも呼ばれる。当該カロ酸が基板Wのレジストに作用することで、レジストを酸化除去することができる。 Then, the power supply 8 outputs voltage to the plasma generator 1 while the plasma generator 1 is positioned at the second processing position. Thereby, the plasma generator 1 generates plasma in the vicinity of the upper surface of the substrate W. As shown in FIG. That is, the plasma generator 1 generates plasma toward the upper surface of the substrate W. As shown in FIG. Various active species are generated with the generation of this plasma. For example, plasmatization of air can generate various active species such as oxygen radicals, hydroxyl radicals, and ozone gas. These active species act on the upper surface of the substrate W. As shown in FIG. As a specific example, the active species act on the liquid film of the processing liquid (here, sulfuric acid) on the upper surface of the substrate W. As shown in FIG. This enhances the processing performance of the processing liquid. Specifically, the reaction between active species and sulfuric acid produces caro's acid with high processing performance (here, oxidizing power). Caro's acid is also called peroxomonosulfate. The Caro's acid acts on the resist on the substrate W, so that the resist can be removed by oxidation.
 以上のように、活性種が基板Wの主面上の処理液に作用することにより、処理液の処理性能を向上させることができる。よって、基板Wに対する処理を速やかに行うことができる。 As described above, since the active species act on the processing liquid on the main surface of the substrate W, the processing performance of the processing liquid can be improved. Therefore, the substrate W can be processed quickly.
 <プラズマ発生装置>
 次に、プラズマ発生装置1の具体的な構成の一例について述べる。図4は、プラズマ発生装置1の構成の一例を概略的に示す平面図であり、図5は、プラズマ発生装置1の構成の一例を概略的に示す側断面図である。図5は、図4のA-A断面を示している。プラズマ発生装置1は、プラズマを発生させる装置であり、プラズマ源またはプラズマリアクタとも呼ばれ得る。
<Plasma generator>
Next, an example of a specific configuration of the plasma generator 1 will be described. FIG. 4 is a plan view schematically showing an example of the configuration of the plasma generator 1, and FIG. 5 is a side sectional view schematically showing an example of the configuration of the plasma generator 1. As shown in FIG. FIG. 5 shows the AA section of FIG. The plasma generator 1 is a device that generates plasma, and can also be called a plasma source or a plasma reactor.
 プラズマ発生装置1は第1電極部2と第2電極部3と誘電部40を含んでいる。誘電部40は第1誘電部材4と第2誘電部材5とを含む。 The plasma generator 1 includes a first electrode portion 2, a second electrode portion 3 and a dielectric portion 40. Dielectric portion 40 includes first dielectric member 4 and second dielectric member 5 .
 図4に例示するように、第1電極部2は複数の第1電極部材(第1線状電極)21と第1集合電極22とを含み、第2電極部3は複数の第2電極部材(第2線状電極)31と第2集合電極32とを含む。 As illustrated in FIG. 4, the first electrode section 2 includes a plurality of first electrode members (first linear electrodes) 21 and a first collective electrode 22, and the second electrode section 3 includes a plurality of second electrode members. (Second linear electrodes) 31 and second collective electrodes 32 are included.
 第1電極部材21は金属材料等の導電性材料によって形成され、長手方向D1に沿って延在する棒状形状(例えば円柱形状)を有する。複数の第1電極部材21は、長手方向D1に直交する配列方向D2において並んで設けられており、理想的には互いに平行に設けられる。第1電極部材21の直径は例えば数mm程度(具体的には1mm程度)である。 The first electrode member 21 is made of a conductive material such as a metal material, and has a rod-like shape (for example, a cylindrical shape) extending along the longitudinal direction D1. The plurality of first electrode members 21 are arranged side by side in an arrangement direction D2 perpendicular to the longitudinal direction D1, and ideally parallel to each other. The diameter of the first electrode member 21 is, for example, about several mm (specifically, about 1 mm).
 第1集合電極22は金属材料等の導電性材料によって形成され、複数の第1電極部材21の長手方向D1の一方側の端部(基端)どうしを連結する。図4の例では、第1集合電極22は、長手方向D1の一方側に膨らむ円弧状の平板形状を有している。複数の第1電極部材21は第1集合電極22から長手方向D1の他方側に向かって延在する。 The first collective electrode 22 is made of a conductive material such as a metal material, and connects ends (base ends) on one side of the plurality of first electrode members 21 in the longitudinal direction D1. In the example of FIG. 4, the first collective electrode 22 has an arcuate flat plate shape that bulges to one side in the longitudinal direction D1. A plurality of first electrode members 21 extend from the first collective electrode 22 toward the other side in the longitudinal direction D1.
 第2電極部材31は金属材料等の導電性材料によって形成され、長手方向D1に沿って延在する棒状形状(例えば円柱形状)を有する。複数の第2電極部材31は配列方向D2において並んで設けられており、理想的には互いに平行に設けられる。第2電極部材31の各々は、平面視において(つまり、長手方向D1および配列方向D2に直交する方向D3に沿って見て)、複数の第1電極部材21のうち互いに隣り合う二者の間に設けられている。図4の例では、平面視において、第1電極部材21および第2電極部材31は配列方向D2において交互に配列される。第2電極部材31の直径は例えば数mm程度(具体的には1mm程度)である。 The second electrode member 31 is made of a conductive material such as a metal material, and has a rod-like shape (for example, a cylindrical shape) extending along the longitudinal direction D1. The plurality of second electrode members 31 are arranged side by side in the arrangement direction D2 and ideally parallel to each other. Each of the second electrode members 31 is located between two adjacent ones of the plurality of first electrode members 21 in a plan view (that is, when viewed along a direction D3 perpendicular to the longitudinal direction D1 and the arrangement direction D2). is provided in In the example of FIG. 4, the first electrode members 21 and the second electrode members 31 are alternately arranged in the arrangement direction D2 in plan view. The diameter of the second electrode member 31 is, for example, about several mm (specifically, about 1 mm).
 第2集合電極32は金属材料等の導電性材料によって形成され、複数の第2電極部材31の長手方向D1の他方側の端部(基端)どうしを連結する。図4の例では、第2集合電極32は、第1集合電極22とは反対側に膨らみ、かつ、第1集合電極22と略同径の円弧状の平板形状を有している。複数の第2電極部材31は第2集合電極32から長手方向D1の一方側に向かって延在する。 The second collective electrode 32 is made of a conductive material such as a metal material, and connects the ends (basal ends) of the plurality of second electrode members 31 on the other side in the longitudinal direction D1. In the example of FIG. 4 , the second collective electrode 32 bulges in the opposite direction to the first collective electrode 22 and has an arcuate plate shape with approximately the same diameter as the first collective electrode 22 . A plurality of second electrode members 31 extend from the second collective electrode 32 toward one side in the longitudinal direction D1.
 各第1電極部材21は第1誘電部材4によって覆われる。複数の第1誘電部材4は石英およびセラミックス等の誘電体材料によって形成される。例えば、各第1誘電部材4は長手方向D1に沿って延在する筒状形状を有しており、第1電極部材21が長手方向D1に沿って第1誘電部材4に挿入される。つまり、第1誘電部材4は、第1電極部材21の第1側面21aを覆う第1内周面4aを有している(図5も参照)。図示の第1誘電部材4は第1誘電管とも呼ばれ得る。第1誘電部材4の第1内周面4aは第1電極部材21の第1側面21aの全周を囲む。また、第1内周面4aは第1電極部材21の第1先端面21bよりも先端側(ここでは長手方向D1の他方側)にも延在する。よって、第1内周面4aのうち第1先端面21bよりも先端側の部分は、第1先端空間41を形成する。第1先端空間41は、第1電極部材21の第1先端面21bと長手方向D1において隣接する空間である。この第1先端空間41にはガスが含まれている。当該ガスは例えば空気である。 Each first electrode member 21 is covered with the first dielectric member 4 . The plurality of first dielectric members 4 are made of dielectric material such as quartz and ceramics. For example, each first dielectric member 4 has a tubular shape extending along the longitudinal direction D1, and the first electrode member 21 is inserted into the first dielectric member 4 along the longitudinal direction D1. That is, the first dielectric member 4 has a first inner peripheral surface 4a covering the first side surface 21a of the first electrode member 21 (see also FIG. 5). The illustrated first dielectric member 4 may also be referred to as a first dielectric tube. The first inner peripheral surface 4 a of the first dielectric member 4 surrounds the entire circumference of the first side surface 21 a of the first electrode member 21 . In addition, the first inner peripheral surface 4a also extends to the distal end side (here, the other side in the longitudinal direction D1) of the first distal end surface 21b of the first electrode member 21 . Therefore, a portion of the first inner peripheral surface 4a closer to the distal end than the first distal end surface 21b forms a first distal end space 41. As shown in FIG. The first distal end space 41 is a space adjacent to the first distal end surface 21b of the first electrode member 21 in the longitudinal direction D1. This first tip space 41 contains a gas. The gas in question is, for example, air.
 図5に例示されるように、第1誘電部材4は有底の筒状形状を有してもよい。つまり、第1誘電部材4は、その内部空間において第1底面4bを有してもよい。第1底面4bは第1内周面4aの長手方向D1の他方側の周縁端部に繋がっている。この場合、第1先端空間41は、第1誘電部材4の第1底面4bと第1電極部材21の第1先端面21bとの間の空間に相当する。 As illustrated in FIG. 5, the first dielectric member 4 may have a cylindrical shape with a bottom. That is, the first dielectric member 4 may have the first bottom surface 4b in its internal space. The first bottom surface 4b is connected to the peripheral edge portion on the other side in the longitudinal direction D1 of the first inner peripheral surface 4a. In this case, the first tip space 41 corresponds to the space between the first bottom surface 4 b of the first dielectric member 4 and the first tip surface 21 b of the first electrode member 21 .
 第1誘電部材4の第1内周面4aは第1電極部材21の第1側面21aから部分的または全体的に離れてもよい。例えば第1誘電部材4の内径は第1電極部材21の直径よりも若干大きく、具体的には1.1mm程度である。これにより、第1電極部材21の直径が熱膨張により大きくなった場合でも、第1誘電部材4の破損を抑制することができる。なお、第1誘電部材4の外径は例えば1.6mm程度である。また、第1電極部材21の基端部211近傍において、第1誘電部材4と第1電極部材21との間を封止する誘電性の封止部材(不図示)が設けられてもよい。当該封止部材は例えばシリコーン樹脂によって形成され得る。 The first inner peripheral surface 4a of the first dielectric member 4 may be partially or wholly separated from the first side surface 21a of the first electrode member 21. For example, the inner diameter of the first dielectric member 4 is slightly larger than the diameter of the first electrode member 21, specifically about 1.1 mm. As a result, even when the diameter of the first electrode member 21 increases due to thermal expansion, damage to the first dielectric member 4 can be suppressed. In addition, the outer diameter of the first dielectric member 4 is, for example, about 1.6 mm. Also, a dielectric sealing member (not shown) that seals between the first dielectric member 4 and the first electrode member 21 may be provided in the vicinity of the base end portion 211 of the first electrode member 21 . The sealing member can be made of silicone resin, for example.
 各第2電極部材31は第2誘電部材5によって覆われる。複数の第2誘電部材5は石英またはセラミックス等の誘電体材料によって形成される。例えば、各第2誘電部材5は長手方向D1に沿って延在する筒状形状を有しており、第2電極部材31が長手方向D1に沿って第2誘電部材5に挿入される。つまり、第2誘電部材5は、第2電極部材31の第2側面31aを覆う第2内周面5aを有している。図示の第2誘電部材5は誘電管とも呼ばれ得る。第2誘電部材5の第2内周面5aは第2電極部材31の第2側面31aの全周を囲む。また、第2内周面5aは第2電極部材31の第2先端面31bよりも先端側(ここでは長手方向D1の一方側)にも延在する。よって、第2内周面5aのうち第2先端面31bよりも先端側の部分は、第2先端空間51を形成する。第2先端空間51は、第2電極部材31の第2先端面31bと長手方向D1において隣接する空間である。この第2先端空間51にもガスが含まれている。当該ガスは例えば空気である。 Each second electrode member 31 is covered with the second dielectric member 5 . The plurality of second dielectric members 5 are made of a dielectric material such as quartz or ceramics. For example, each second dielectric member 5 has a tubular shape extending along the longitudinal direction D1, and the second electrode member 31 is inserted into the second dielectric member 5 along the longitudinal direction D1. In other words, the second dielectric member 5 has a second inner peripheral surface 5a that covers the second side surface 31a of the second electrode member 31 . The illustrated second dielectric member 5 may also be referred to as a dielectric tube. The second inner peripheral surface 5 a of the second dielectric member 5 surrounds the second side surface 31 a of the second electrode member 31 . In addition, the second inner peripheral surface 5a also extends to the distal end side (here, one side in the longitudinal direction D1) of the second distal end surface 31b of the second electrode member 31 . Therefore, a portion of the second inner peripheral surface 5a closer to the distal end than the second distal end surface 31b forms a second distal end space 51. As shown in FIG. The second distal end space 51 is a space adjacent to the second distal end surface 31b of the second electrode member 31 in the longitudinal direction D1. This second tip space 51 also contains gas. The gas in question is, for example, air.
 図5に例示されるように、第2誘電部材5は有底の筒状形状を有してもよい。つまり、第2誘電部材5は、その内部空間において第2底面5bを有してもよい。第2底面5bは第2内周面5aの長手方向D1の一方側の周縁端部に繋がっている。この場合、第2先端空間51は、第2誘電部材5の第2底面5bと第2電極部材31の第2先端面31bとの間の空間に相当する。 As illustrated in FIG. 5, the second dielectric member 5 may have a cylindrical shape with a bottom. That is, the second dielectric member 5 may have the second bottom surface 5b in its internal space. The second bottom surface 5b is connected to a peripheral edge portion on one side in the longitudinal direction D1 of the second inner peripheral surface 5a. In this case, the second tip space 51 corresponds to the space between the second bottom surface 5 b of the second dielectric member 5 and the second tip surface 31 b of the second electrode member 31 .
 第2誘電部材5の第2内周面5aは第2電極部材31の第2側面31aから部分的または全体的に離れていてもよい。例えば第2誘電部材5の内径は第2電極部材31の直径よりも若干大きく、具体的には1.1mm程度である。これにより、第2電極部材31の直径が熱膨張により大きくなった場合でも、第2誘電部材5の破損を抑制することができる。なお、第2誘電部材5の外径は例えば1.6mm程度である。第2電極部材31の基端部311近傍において、第2誘電部材5と第2電極部材31との間を封止する誘電性の封止部材(不図示)が設けられてもよい。当該封止部材は例えばシリコーン樹脂によって形成され得る。 The second inner peripheral surface 5a of the second dielectric member 5 may be partially or entirely separated from the second side surface 31a of the second electrode member 31. For example, the inner diameter of the second dielectric member 5 is slightly larger than the diameter of the second electrode member 31, specifically about 1.1 mm. As a result, even when the diameter of the second electrode member 31 increases due to thermal expansion, damage to the second dielectric member 5 can be suppressed. In addition, the outer diameter of the second dielectric member 5 is, for example, about 1.6 mm. A dielectric sealing member (not shown) that seals between the second dielectric member 5 and the second electrode member 31 may be provided in the vicinity of the base end portion 311 of the second electrode member 31 . The sealing member can be made of silicone resin, for example.
 図4および図5の例では、プラズマ発生装置1には仕切部材6が設けられている。仕切部材6は石英またはセラミックス等の誘電体材料によって形成される。図の例では、仕切部材6は板状形状を有している。以下では、仕切部材6の一方側の主面を主面6aと呼び、他方側の主面を主面6bと呼ぶ。主面6aおよび主面6bは仕切部材6の厚み方向において互いに対向する面である。仕切部材6はその厚み方向が方向D3に沿う姿勢で設けられる。図4の例では、仕切部材6の主面6aおよび主面6bは平面視において円形状を有している。仕切部材6の厚み(主面6a,6bの間の距離)は例えば数百μm(例えば300μm)程度に設定される。  In the examples of FIGS. 4 and 5, the plasma generator 1 is provided with a partition member 6 . The partition member 6 is made of a dielectric material such as quartz or ceramics. In the illustrated example, the partition member 6 has a plate-like shape. Hereinafter, the main surface on one side of the partition member 6 is called a main surface 6a, and the main surface on the other side is called a main surface 6b. The main surface 6a and the main surface 6b are surfaces that face each other in the thickness direction of the partition member 6 . The partition member 6 is provided in a posture in which its thickness direction is along the direction D3. In the example of FIG. 4, the main surface 6a and the main surface 6b of the partition member 6 have a circular shape in plan view. The thickness of the partition member 6 (the distance between the main surfaces 6a and 6b) is set to, for example, several hundred μm (eg, 300 μm).
 第1電極部2および第1誘電部材4は仕切部材6の主面6a側に設けられており、第2電極部3および第2誘電部材5は仕切部材6の主面6b側に設けられている。具体的には、第1誘電部材4は仕切部材6の主面6a下に設けられており、第2誘電部材5は仕切部材6の主面6b上に設けられている。 The first electrode portion 2 and the first dielectric member 4 are provided on the main surface 6a side of the partition member 6, and the second electrode portion 3 and the second dielectric member 5 are provided on the main surface 6b side of the partition member 6. there is Specifically, the first dielectric member 4 is provided under the main surface 6 a of the partition member 6 , and the second dielectric member 5 is provided on the main surface 6 b of the partition member 6 .
 図5に例示されるように、プラズマ発生装置1には保持部材7が設けられてもよい。なお図4では、図面の煩雑を避けるために、保持部材7を省略している。保持部材7はフッ素系樹脂等の絶縁材料によって形成され、第1電極部2、第2電極部3、第1誘電部材4、第2誘電部材5および仕切部材6を一体に保持する。例えば、保持部材7は平面視において第1集合電極22および第2集合電極32と略同径のリング形状を有しており、第1集合電極22および第2集合電極32を方向D3で挟持する。 As illustrated in FIG. 5, the plasma generator 1 may be provided with a holding member 7 . Note that the holding member 7 is omitted in FIG. 4 to avoid complication of the drawing. The holding member 7 is made of an insulating material such as fluorine-based resin, and holds the first electrode portion 2, the second electrode portion 3, the first dielectric member 4, the second dielectric member 5 and the partition member 6 integrally. For example, the holding member 7 has a ring shape having substantially the same diameter as the first collective electrode 22 and the second collective electrode 32 in plan view, and sandwiches the first collective electrode 22 and the second collective electrode 32 in the direction D3. .
 図5の例では、第1誘電部材4の先端部が保持部材7によって保持される。具体的には、第1誘電部材4の先端部が保持部材7に埋設される。よって、第1電極部材21および第1誘電部材4からなる部分の両端が保持部材7によって保持される。これにより、当該部分を両端保持することができる。図5の例では、第2誘電部材5の先端部も保持部材7によって保持される。よって、保持部材7は第2電極部材31および第2誘電部材5からなる部分も両端保持することができる。 In the example of FIG. 5, the tip of the first dielectric member 4 is held by the holding member 7. Specifically, the tip of the first dielectric member 4 is embedded in the holding member 7 . Therefore, both ends of the portion composed of the first electrode member 21 and the first dielectric member 4 are held by the holding member 7 . As a result, both ends of the portion can be held. In the example of FIG. 5, the tip of the second dielectric member 5 is also held by the holding member 7 . Therefore, the holding member 7 can also hold both ends of the portion composed of the second electrode member 31 and the second dielectric member 5 .
 このようなプラズマ発生装置1は、基板処理装置100内において、例えば、長手方向D1および配列方向D2が水平方向に沿い、かつ、第1電極部2が基板Wを向く姿勢で設けられる。 Such a plasma generator 1 is installed in the substrate processing apparatus 100 such that the longitudinal direction D1 and the arrangement direction D2 are horizontal, and the first electrode section 2 faces the substrate W, for example.
 第1電極部2および第2電極部3はプラズマ用の電源8に電気的に接続される。より具体的には、第1電極部2の第1集合電極22が配線81を介して電源8の第1出力端8aに電気的に接続され、第2電極部3の第2集合電極32が配線82を介して電源8の第2出力端8bに電気的に接続される。電源8は例えば不図示のスイッチング電源回路を有しており、第1電極部2と第2電極部3との間にプラズマ用の電圧を出力する。より具体的な一例として、電源8はパルス電源であって、プラズマ用の電圧として高周波電圧を第1出力端8aおよび第2出力端8bに出力する。 The first electrode portion 2 and the second electrode portion 3 are electrically connected to a power source 8 for plasma. More specifically, the first collective electrode 22 of the first electrode section 2 is electrically connected to the first output end 8a of the power source 8 via the wiring 81, and the second collective electrode 32 of the second electrode section 3 is electrically connected to the first output terminal 8a of the power source 8. It is electrically connected to the second output end 8b of the power supply 8 via the wiring 82. FIG. The power supply 8 has, for example, a switching power supply circuit (not shown), and outputs voltage for plasma between the first electrode portion 2 and the second electrode portion 3 . As a more specific example, the power supply 8 is a pulse power supply that outputs a high-frequency voltage as a voltage for plasma to the first output end 8a and the second output end 8b.
 電源8が第1電極部2と第2電極部3との間に電圧を出力することにより、第1電極部材21と第2電極部材31との間にプラズマ用の電界が生じる。当該電界に応じて、第1電極部材21および第2電極部材31の周囲のガスがプラズマ化する。具体的には、第1誘電部材4の外周面と第2誘電部材5の外周面との間のガスがプラズマ化するとともに、第1誘電部材4の内部空間のガスおよび第2誘電部材5の内部空間のガスもプラズマ化する。よって、第1先端空間41内のガスおよび第2先端空間51内のガスもプラズマ化する。逆に言えば、これらの空間のガスがプラズマ化する程度の電圧が電源8によって第1電極部2と第2電極部3との間に印加される。当該電圧は、例えば、数十kVかつ数十kHz程度の高周波電圧である。 A plasma electric field is generated between the first electrode member 21 and the second electrode member 31 by the power supply 8 outputting a voltage between the first electrode portion 2 and the second electrode portion 3 . The gas around the first electrode member 21 and the second electrode member 31 turns into plasma according to the electric field. Specifically, the gas between the outer peripheral surface of the first dielectric member 4 and the outer peripheral surface of the second dielectric member 5 becomes plasma, and the gas in the internal space of the first dielectric member 4 and the second dielectric member 5 The gas in the internal space also turns into plasma. Therefore, the gas in the first tip space 41 and the gas in the second tip space 51 are also turned into plasma. Conversely, the power source 8 applies a voltage to the extent that the gas in these spaces becomes plasma between the first electrode portion 2 and the second electrode portion 3 . The voltage is, for example, a high frequency voltage of about several tens of kV and several tens of kHz.
 図6は、プラズマ発生装置1がプラズマを発生させている様子の一例を概略的に示す断面図である。このプラズマ発生装置1によれば、仕切部材6の主面6a側および主面6b側において、それぞれプラズマP1およびプラズマP2が発生するとともに、第1先端空間41内においてプラズマP3が発生する。なお、図6では示されていないものの、第2先端空間51内においてもプラズマP3と同様にプラズマが生じる。図6の例では、プラズマP1~P3の発生領域の輪郭がそれぞれ二点鎖線で模式的に示されている。なお、プラズマの発生領域は、プラズマが発光する発光領域であるともいえる。 FIG. 6 is a cross-sectional view schematically showing an example of how the plasma generator 1 generates plasma. According to this plasma generator 1 , the plasma P<b>1 and the plasma P<b>2 are generated on the main surface 6 a side and the main surface 6 b side of the partition member 6 , respectively, and the plasma P<b>3 is generated in the first tip space 41 . Although not shown in FIG. 6, plasma is also generated in the second tip space 51 in the same manner as the plasma P3. In the example of FIG. 6, the contours of the regions where the plasmas P1 to P3 are generated are schematically indicated by chain double-dashed lines. Note that the plasma generation region can also be said to be a light emitting region where the plasma emits light.
 プラズマP3は、第1先端空間41のうち、第1電極部材21の第1先端面21bから長手方向D1に沿って延在する空間内で生じる。このプラズマP3の発生領域の長さ(長手方向D1に沿う長さ)は電源8の出力電圧の大きさおよび周波数に依存する。図6の例では、プラズマP3は第1先端空間41の全体ではなく一部で発生している。言い換えれば、プラズマP3の発生領域の先端位置は、第1電極部材21の第1先端面21bと第1誘電部材4の第1底面4bとの間である。もちろん、第1先端空間41内の全てでプラズマP3が生じてもよい。 The plasma P3 is generated in the first tip space 41, which extends from the first tip surface 21b of the first electrode member 21 along the longitudinal direction D1. The length of the plasma P3 generating region (the length along the longitudinal direction D1) depends on the magnitude and frequency of the output voltage of the power source 8. FIG. In the example of FIG. 6, the plasma P3 is generated not in the entire first tip space 41 but in part. In other words, the tip position of the region where the plasma P3 is generated is between the first tip face 21b of the first electrode member 21 and the first bottom face 4b of the first dielectric member 4 . Of course, the plasma P3 may be generated in the entire first tip space 41 .
 このプラズマP3では電子が移動しやすく、電子的には、プラズマP3は実質的に導体(線状の電極部材)としてふるまうことができる。つまり、電子の移動しやすさという点では、プラズマP3を第1電極部材21の一部とみなすことができる。よって、図6に例示するように、プラズマP3の直下および直上の領域でもプラズマP1およびプラズマP2がそれぞれ生じる。言い換えれば、第1先端空間41内のガスをプラズマ化させることにより、プラズマP1およびプラズマP2の発生領域を長手方向D1において広げることができる。 Electrons move easily in this plasma P3, and electronically, the plasma P3 can substantially behave as a conductor (linear electrode member). In other words, the plasma P3 can be regarded as part of the first electrode member 21 in terms of ease of movement of electrons. Therefore, as illustrated in FIG. 6, plasma P1 and plasma P2 are generated in the regions directly below and above plasma P3, respectively. In other words, by plasmatizing the gas in the first tip space 41, the generation regions of the plasma P1 and the plasma P2 can be expanded in the longitudinal direction D1.
 また、第1先端空間41内のプラズマP3によって熱が生じる。当該熱は周囲に広がるので、プラズマP3の直下および直上の領域の温度が上昇し、当該領域のガスがプラズマ化しやすくなる。よって、当該各領域のガスをより速やかにプラズマ化させることもできる。つまり、当該各領域において、より速やかにプラズマP1およびプラズマP2を発生させることができる。したがって、電源8が電圧を出力してからプラズマP1およびプラズマP2が発生するまでの期間を短縮することができる。 Also, heat is generated by the plasma P3 in the first tip space 41 . Since the heat spreads to the surroundings, the temperature of the regions immediately below and above the plasma P3 rises, and the gas in these regions becomes easier to become plasma. Therefore, the gas in each region can be turned into plasma more quickly. That is, plasma P1 and plasma P2 can be generated more quickly in each region. Therefore, it is possible to shorten the period from when the power supply 8 outputs the voltage to when the plasma P1 and the plasma P2 are generated.
 上述の例では、第2先端空間51内のガスも第1先端空間41と同様にプラズマ化するので、長手方向D1においてプラズマP1およびプラズマP2の発生領域をさらに広げることができる。しかも、第2先端空間51内のガスのプラズマ化に伴って生じる熱によって、第2先端空間51の周囲の領域の温度が上昇する。よって、第2先端空間51の直下および直上の領域において、より速やかにプラズマP1およびプラズマP2を発生させることができる。 In the above example, the gas in the second tip space 51 is also plasmatized in the same way as in the first tip space 41, so the regions where the plasma P1 and the plasma P2 are generated can be further expanded in the longitudinal direction D1. Moreover, the temperature of the area around the second tip space 51 rises due to the heat generated as the gas in the second tip space 51 turns into plasma. Therefore, plasma P<b>1 and plasma P<b>2 can be generated more quickly in the regions immediately below and above the second tip space 51 .
 <アーク放電>
 その一方で、第1先端空間41内のガスがプラズマ化することにより、第1先端空間41を介して第1電極部材21の第1先端面21bと第2電極部3との間でアーク放電が生じやすくなる。なぜなら、第1先端空間41内の電子が移動しやすくなるからである。より具体的な一例として、図6では、第2電極部材31の基端部311(長手方向D1の他方側の端部)は第2誘電部材5および保持部材7によって覆われておらずに露出している。そして、プラズマP3は第1電極部材21の第1先端面21bよりも基端部311に近い位置で発生するので、プラズマP3により、第1電極部材21の第1先端面21bと第2電極部材31の基端部311との間でアーク放電が生じやすくなる。また、プラズマP3は第1電極部材21の第1先端面21bよりも第2集合電極32に近い位置で発生するので、第1先端面21bと第2集合電極32との間でもアーク放電が生じやすくなる。
<Arc discharge>
On the other hand, when the gas in the first tip space 41 turns into plasma, arc discharge occurs between the first tip surface 21 b of the first electrode member 21 and the second electrode portion 3 via the first tip space 41 . becomes more likely to occur. This is because the electrons in the first tip space 41 are easier to move. As a more specific example, in FIG. 6, the base end portion 311 (the other end portion in the longitudinal direction D1) of the second electrode member 31 is not covered with the second dielectric member 5 and the holding member 7 and is exposed. is doing. Since the plasma P3 is generated at a position closer to the proximal end portion 311 than the first distal end surface 21b of the first electrode member 21, the plasma P3 causes the first distal end surface 21b of the first electrode member 21 and the second electrode member Arc discharge is more likely to occur with the base end portion 311 of 31 . In addition, since the plasma P3 is generated at a position closer to the second collective electrode 32 than the first end surface 21b of the first electrode member 21, arc discharge also occurs between the first end surface 21b and the second collective electrode 32. easier.
 図7は、比較例にかかるプラズマ発生装置1000の構成の一部の一例を概略的に示す図である。このプラズマ発生装置1000では、第1先端空間41内のプラズマを考慮せずに、第1電極部材21の第1先端面21bの位置が設定されている。この場合、第1先端面21bは長手方向D1において第2集合電極32により近い位置に設けられる。これにより、プラズマP1およびプラズマP2の発生領域を広げることができる。しかしながら、第1先端空間41内のガスがプラズマ化することにより、第1先端空間41内の電子が移動しやすくなり、例えば、第1電極部材21の第1先端面21bと第2電極部材31の基端部311との間でアーク放電が生じ得る。図7の例では、アーク放電の経路を両端矢印付きの太線で模式的に示している。なお、第1電極部材21の第1先端面21bと第2集合電極32との間でも、アーク放電が生じ得る。 FIG. 7 is a diagram schematically showing an example of a part of the configuration of the plasma generator 1000 according to the comparative example. In this plasma generator 1000, the position of the first tip surface 21b of the first electrode member 21 is set without considering the plasma in the first tip space 41. As shown in FIG. In this case, the first tip surface 21b is provided at a position closer to the second collective electrode 32 in the longitudinal direction D1. Thereby, the generation areas of the plasma P1 and the plasma P2 can be widened. However, when the gas in the first tip space 41 becomes plasma, the electrons in the first tip space 41 tend to move. arcing can occur between the base end 311 of the . In the example of FIG. 7, the path of arc discharge is schematically indicated by a thick line with double-headed arrows. Arc discharge may also occur between the first end surface 21 b of the first electrode member 21 and the second collective electrode 32 .
 同様に、第2先端空間51内のガスがプラズマ化することにより、第2電極部材31の第2先端面31bと第1電極部2との間でアーク放電が生じやすくなる。例えば、第2電極部材31の第2先端面31bと第1電極部材21の基端部211との間、および、第2電極部材31の第2先端面31bと第1集合電極22との間でアーク放電が生じやすい。 Similarly, when the gas in the second tip space 51 becomes plasma, arc discharge is likely to occur between the second tip surface 31 b of the second electrode member 31 and the first electrode portion 2 . For example, between the second tip surface 31b of the second electrode member 31 and the base end portion 211 of the first electrode member 21 and between the second tip surface 31b of the second electrode member 31 and the first collective electrode 22 arc discharge is likely to occur.
 そこで、第1先端空間41内のガスおよび第2先端空間51内のガスがプラズマ化した状態であっても第1電極部2と第2電極部3との間でアーク放電が生じない距離で、第1電極部2および第2電極部3が互いに離れるように、第1電極部2および第2電極部3の形状および位置関係が設定されるとよい。 Therefore, even if the gas in the first tip space 41 and the gas in the second tip space 51 are plasmatized, the distance is such that arc discharge does not occur between the first electrode part 2 and the second electrode part 3. , the shape and positional relationship of the first electrode portion 2 and the second electrode portion 3 may be set such that the first electrode portion 2 and the second electrode portion 3 are separated from each other.
 より具体的な一例として、第1電極部材21の第1先端面21bの位置について、第1配置禁止領域R1が設定され、第2電極部材31の第2先端面31bの位置について、第2配置禁止領域R2が設定される。図8は、第1配置禁止領域R1および第2配置禁止領域R2の一例を示す図である。図8の例では、第1配置禁止領域R1および第2配置禁止領域R2を模式的に斜線のハッチングで示している。 As a more specific example, the position of the first tip surface 21b of the first electrode member 21 is set as the first placement prohibited region R1, and the position of the second tip surface 31b of the second electrode member 31 is set as the second layout. A prohibited area R2 is set. FIG. 8 is a diagram showing an example of the first placement prohibited region R1 and the second placement prohibited region R2. In the example of FIG. 8, the first placement prohibited region R1 and the second placement prohibited region R2 are schematically indicated by diagonal hatching.
 第1配置禁止領域R1は、第2集合電極32の内側面32aによって規定される。内側面32aとは、第2集合電極32の第1集合電極22側の円弧面である。第1配置禁止領域R1は、第2集合電極32の内側面32aと、内側面32aから第1所定距離だけ離れた仮想線L1とで挟まれる領域である。 The first prohibited area R1 is defined by the inner side surface 32a of the second collective electrode 32. The inner surface 32a is an arcuate surface of the second collective electrode 32 on the first collective electrode 22 side. The first placement prohibited region R1 is a region sandwiched between the inner side surface 32a of the second collective electrode 32 and a virtual line L1 separated from the inner side surface 32a by a first predetermined distance.
 第1所定距離は、第1先端空間41内のガスがプラズマ化した状態で第1電極部材21の第1先端面21bと第2電極部3との間でアーク放電が生じない程度の値に予め設定される。具体的には、第1所定距離は、電源8の最大出力時(または定格出力時)においてアーク放電が生じない程度の値に設定される。より具体的な一例として、電源8の出力電圧が15kVであり、電源8の出力周波数が12kHz以上かつ30kHz以下である場合、第1所定距離は例えば20mm程度に設定され得る。 The first predetermined distance is set to a value that does not cause arc discharge between the first tip surface 21b of the first electrode member 21 and the second electrode portion 3 when the gas in the first tip space 41 is plasmatized. preset. Specifically, the first predetermined distance is set to a value that does not cause arc discharge when the power supply 8 is at its maximum output (or at its rated output). As a more specific example, when the output voltage of the power supply 8 is 15 kV and the output frequency of the power supply 8 is 12 kHz or more and 30 kHz or less, the first predetermined distance can be set to about 20 mm, for example.
 平面視において各第1電極部材21の第1先端面21bが第1配置禁止領域R1よりも第1集合電極22側に位置するように、各第1電極部材21の長さが設定される。これにより、第1先端空間41内のガスがプラズマ化しても、各第1電極部材21の第1先端面21bと第2電極部3との間でアーク放電が生じない。 The length of each first electrode member 21 is set so that the first distal end face 21b of each first electrode member 21 is located closer to the first collective electrode 22 than the first prohibited area R1 in plan view. As a result, even if the gas in the first tip space 41 turns into plasma, arc discharge does not occur between the first tip surface 21 b of each first electrode member 21 and the second electrode portion 3 .
 なお、プラズマP1およびプラズマP2の発生領域を広げるという観点からは、各第1電極部材21の第1先端面21bは第1配置禁止領域R1の近くに位置することが望ましい。図8の例では、各第1電極部材21の第1先端面21bは第1配置禁止領域R1からほぼ同距離だけ離れた位置に設定されている。 From the viewpoint of widening the plasma P1 and plasma P2 generation regions, it is desirable that the first tip surface 21b of each first electrode member 21 be located near the first placement prohibited region R1. In the example of FIG. 8, the first tip surface 21b of each first electrode member 21 is set at a position substantially the same distance away from the first placement prohibited area R1.
 第2配置禁止領域R2は、第1集合電極22の内側面22aによって規定される。内側面22aとは、第1集合電極22の第2集合電極32側の円弧面である。第2配置禁止領域R2は、第1集合電極22の内側面22aと、内側面22aから第2所定距離だけ離れた仮想線L2とで挟まれる領域である。 The second placement prohibited region R2 is defined by the inner side surface 22a of the first collective electrode 22. The inner surface 22a is an arcuate surface of the first collective electrode 22 on the second collective electrode 32 side. The second placement prohibited region R2 is a region sandwiched between the inner side surface 22a of the first collective electrode 22 and a virtual line L2 separated from the inner side surface 22a by a second predetermined distance.
 第2所定距離は、第2先端空間51内のガスがプラズマ化した状態で第2電極部材31の第2先端面31bと第1電極部2との間でアーク放電が生じない程度の値に予め設定される。具体的には、第2所定距離は、電源8の最大出力時(または定格出力時)においてアーク放電が生じない程度の値に設定される。第2所定距離は第1所定距離と同じであってもよい。 The second predetermined distance is set to a value such that arc discharge does not occur between the second tip surface 31b of the second electrode member 31 and the first electrode portion 2 when the gas in the second tip space 51 is plasmatized. preset. Specifically, the second predetermined distance is set to a value that does not cause arc discharge when the power supply 8 is at its maximum output (or at its rated output). The second predetermined distance may be the same as the first predetermined distance.
 平面視において各第2電極部材31の第2先端面31bが第2配置禁止領域R2よりも第2集合電極32側に位置するように、各第2電極部材31の長さが設定される。これにより、第2先端空間51内のガスがプラズマ化しても、各第2電極部材31の第2先端面31bと第1電極部2との間でアーク放電が生じない。 The length of each second electrode member 31 is set so that the second tip surface 31b of each second electrode member 31 is positioned closer to the second collective electrode 32 than the second prohibited area R2 in plan view. Thereby, even if the gas in the second tip space 51 turns into plasma, arc discharge does not occur between the second tip surface 31b of each second electrode member 31 and the first electrode portion 2 .
 なお、プラズマP1およびプラズマP2の発生領域を広げるという観点からは、第2電極部材31の第2先端面31bは第2配置禁止領域R2の近くに位置することが望ましい。図8の例では、各第2電極部材31の第2先端面31bは第2配置禁止領域R2からほぼ同距離だけ離れた位置に設定されている。 From the viewpoint of widening the plasma P1 and plasma P2 generation regions, it is desirable that the second tip surface 31b of the second electrode member 31 be positioned near the second prohibited region R2. In the example of FIG. 8, the second tip surface 31b of each second electrode member 31 is set at a position separated from the second prohibited area R2 by substantially the same distance.
 <電極材料>
 第1電極部材21は第1集合電極22よりも融点が高い導電性材料によって形成されるとよい。なぜなら、第1電極部材21の周囲ではプラズマが生じるので、第1電極部材21が高温となるからである。第1電極部材21の周囲の温度は例えば数百度(例えば200℃)程度に達する。これに対して、第1集合電極22の周囲ではほとんどプラズマが生じないので、温度は比較的に低い。また、第1電極部材21は第1集合電極22よりもスパッタされにくい導電性材料によって形成されるとよい。なぜなら、第1誘電部材4の内部空間(例えば第1先端空間41)内のガスがプラズマ化すると、第1電極部材21がスパッタされ得るからである。より具体的な一例として、第1電極部材21の材料としてタングステンを採用し、第1集合電極22の材料としてアルミニウムを採用するとよい。タングステンの融点は3000℃程度であり、プラズマによる高温にも耐えることができ、また、タングステンはスパッタされにくい。一方で、第1集合電極22としては、安価で加工性の高いアルミニウムを採用することにより、プラズマ発生装置1を低コストで作製することができる。
<Electrode material>
The first electrode member 21 is preferably made of a conductive material having a higher melting point than that of the first collective electrode 22 . This is because plasma is generated around the first electrode member 21 and the temperature of the first electrode member 21 becomes high. The temperature around the first electrode member 21 reaches, for example, several hundred degrees (for example, 200 degrees Celsius). On the other hand, plasma is hardly generated around the first collecting electrode 22, so the temperature is relatively low. Also, the first electrode member 21 is preferably made of a conductive material that is less likely to be sputtered than the first collective electrode 22 . This is because the first electrode member 21 can be sputtered when the gas in the inner space (for example, the first tip space 41) of the first dielectric member 4 becomes plasma. As a more specific example, tungsten may be used as the material of the first electrode member 21 and aluminum may be used as the material of the first collective electrode 22 . Tungsten has a melting point of about 3000° C., can withstand high temperatures caused by plasma, and is difficult to sputter. On the other hand, by using aluminum, which is inexpensive and highly workable, as the first collective electrode 22, the plasma generator 1 can be manufactured at low cost.
 第2電極部材31および第2集合電極32の材料も第1電極部材21および第1集合電極22の材料とそれぞれ同様である。 The materials of the second electrode member 31 and the second collective electrode 32 are also the same as the materials of the first electrode member 21 and the first collective electrode 22, respectively.
 <プラズマ発生装置のサイズ>
 次に、基板Wに対するプラズマ発生装置1のサイズの一例について説明する。図9および図10は、プラズマ発生装置1および基板Wの一例を概略的に示す図である。図9および図10では、基板Wが基板保持部11によって保持された状態での、基板Wとプラズマ発生装置1との位置関係が示されている。図9では、基板Wが二点鎖線で示されている。図10では、基板Wの上面の処理液(例えば硫酸)の液膜Fも示されている。
<Size of plasma generator>
Next, an example of the size of the plasma generator 1 with respect to the substrate W will be described. 9 and 10 are diagrams schematically showing an example of the plasma generator 1 and the substrate W. FIG. 9 and 10 show the positional relationship between the substrate W and the plasma generator 1 when the substrate W is held by the substrate holding portion 11. FIG. In FIG. 9, the substrate W is indicated by a two-dot chain line. FIG. 10 also shows the liquid film F of the processing liquid (for example, sulfuric acid) on the upper surface of the substrate W. FIG.
 プラズマ発生装置1では、既述のように、第1先端空間41および第2先端空間51内のガスをプラズマ化させることにより、プラズマP1およびプラズマP2の発生領域を広げることができる。よって、図9に例示するように、平面視において、全ての第1電極部材21の第1先端面21bは、基板保持部11によって保持された基板Wの周縁よりも径方向内側に位置し、全ての第2電極部材31の第2先端面31bは、基板保持部11によって保持された基板Wの周縁よりも径方向内側に位置してもよい。ここでいう径方向とは、基板Wについての径方向であり、言い換えれば、回転軸線Q1についての径方向である。 In the plasma generator 1, as described above, by plasmatizing the gas in the first tip space 41 and the second tip space 51, the generation regions of the plasma P1 and the plasma P2 can be expanded. Therefore, as illustrated in FIG. 9, in a plan view, the first end faces 21b of all the first electrode members 21 are located radially inside the peripheral edge of the substrate W held by the substrate holding part 11, The second tip surfaces 31b of all the second electrode members 31 may be positioned radially inward from the peripheral edge of the substrate W held by the substrate holding portion 11 . The radial direction here is the radial direction with respect to the substrate W, in other words, the radial direction with respect to the rotation axis Q1.
 比較例として、第1先端面21bが基板Wの周縁よりも径方向外側に位置し、第2先端面31bが基板Wの周縁よりも径方向外側に位置する構造を考慮する。この場合、基板Wの上面の全面に、プラズマP1による活性種を作用させることが可能である。つまり、基板Wの上面の液膜Fに対して全面的に活性種を作用させることができる。しかしながら、プラズマP1のうち基板Wよりも径方向外側のプラズマは基板Wの処理に利用されず、無駄となる。 As a comparative example, a structure in which the first tip surface 21b is located radially outside the periphery of the substrate W and the second tip surface 31b is located radially outside the periphery of the substrate W is considered. In this case, the entire upper surface of the substrate W can be acted upon by active species from the plasma P1. That is, the active species can act on the liquid film F on the upper surface of the substrate W over the entire surface. However, the plasma radially outside the substrate W in the plasma P1 is not used for processing the substrate W and is wasted.
 これに対して、図9の例では、全ての第1先端面21bおよび全ての第2先端面31bが基板Wの周縁よりも径方向内側に位置するので、プラズマP1が基板Wよりも径方向外側に広がることを抑制することができ、無駄なプラズマの発生を抑制することができる。よって、プラズマ発生装置1の消費電力を低減させることができる。また、プラズマ発生装置1の長手方向D1のサイズを小さくすることもできる。 On the other hand, in the example of FIG. 9, all the first tip faces 21b and all the second tip faces 31b are located radially inward of the peripheral edge of the substrate W, so the plasma P1 Spreading to the outside can be suppressed, and useless generation of plasma can be suppressed. Therefore, power consumption of the plasma generator 1 can be reduced. Also, the size of the plasma generator 1 in the longitudinal direction D1 can be reduced.
 また、図9に例示するように、第1集合電極22の内側面22aは、基板保持部11によって保持された基板Wの周縁よりも径方向外側に位置し、第2集合電極32の内側面32aは、基板保持部11によって保持された基板Wの周縁よりも径方向外側に位置するとよい。これによれば、第1電極部材21および第2電極部材31を比較的に長く設定することができるので、基板Wの上面に対してより広い範囲でプラズマP1を発生させることができ、プラズマP1による活性種をより広い範囲で基板Wの上面に作用させることができる。 Further, as illustrated in FIG. 9, the inner side surface 22a of the first collective electrode 22 is located radially outside the peripheral edge of the substrate W held by the substrate holding portion 11, and the inner side surface of the second collective electrode 32 32 a is preferably located radially outside the peripheral edge of the substrate W held by the substrate holding part 11 . According to this, since the first electrode member 21 and the second electrode member 31 can be set relatively long, the plasma P1 can be generated in a wider range on the upper surface of the substrate W, and the plasma P1 can act on the upper surface of the substrate W in a wider range.
 図10の例では、長手方向D1におけるプラズマP1の発生領域(発光領域)の周縁は基板Wの周縁よりも径方向内側に位置している。言い換えれば、プラズマP1の発生領域の周縁が基板Wの周縁よりも径方向内側に位置するように、第1電極部材21の第1先端面21bおよび第2電極部材31の第2先端面31bの位置が設定される。 In the example of FIG. 10, the peripheral edge of the plasma P1 generation area (light emitting area) in the longitudinal direction D1 is located radially inward of the substrate W peripheral edge. In other words, the first tip surface 21b of the first electrode member 21 and the second tip surface 31b of the second electrode member 31 are arranged so that the peripheral edge of the region where the plasma P1 is generated is located radially inside the peripheral edge of the substrate W. Position is set.
 プラズマP1により生成された各種の活性種は基板Wの上面の液膜Fに供給される。この活性種は処理液と反応しながら液膜F中を流れて拡散することができるので、活性種の一部は液膜F中を基板Wの周縁部側にも広がる。図10では、活性種が移動する様子を模式的に直線矢印で示している。このように活性種が液膜F中を移動することにより、基板Wの周縁部上においても活性種が処理液に作用することができる。 Various active species generated by the plasma P1 are supplied to the liquid film F on the upper surface of the substrate W. Since the active species can flow and diffuse in the liquid film F while reacting with the processing liquid, some of the active species also spread in the liquid film F to the peripheral edge side of the substrate W. FIG. In FIG. 10, straight arrows schematically show how the active species move. Since the active species move in the liquid film F in this manner, the active species can act on the processing liquid even on the peripheral portion of the substrate W. FIG.
 したがって、プラズマP1の発生領域の周縁が基板Wの周縁よりも径方向内側に位置していても、基板Wの上面の全面で処理液の処理性能を向上させることができる。具体的には、酸化力の高いカロ酸を基板Wの全面で生成することができ、基板Wの全面でレジストを適切に除去することができる。そして、プラズマP1の発生領域の周縁が基板Wの周縁よりも径方向内側に位置する場合には、プラズマ発生装置1の長手方向D1のサイズをさらに小さくすることができる。 Therefore, even if the peripheral edge of the plasma P1 generation region is positioned radially inward from the peripheral edge of the substrate W, the processing performance of the processing liquid can be improved over the entire upper surface of the substrate W. Specifically, Caro's acid having a high oxidizing power can be generated over the entire surface of the substrate W, and the resist can be removed over the entire surface of the substrate W appropriately. When the peripheral edge of the plasma P1 generation region is positioned radially inward from the peripheral edge of the substrate W, the size of the plasma generator 1 in the longitudinal direction D1 can be further reduced.
 <プラズマ発生装置1A>
 図11は、プラズマ発生装置1Aの構成の一例を概略的に示す平面図であり、図12は、プラズマ発生装置1Aの構成の一例を概略的に示す側断面図である。図12は、図11のB-B断面を示している。プラズマ発生装置1Aの構成はプラズマ発生装置1と同様であるものの、第1電極部2および第2電極部3の具体的な構成が相違している。図11および図12の例では、複数の第1電極部材21として4つの第1電極部材21A~21Dが設けられ、複数の第2電極部材31として7つの第2電極部材31A~31Gが設けられている。第1電極部材21A~21Dは配列方向D2の一方側からこの順で配列されており、第2電極部材31A~31Gは配列方向D2の一方側からこの順で配列されている。
<Plasma generator 1A>
FIG. 11 is a plan view schematically showing an example of the configuration of the plasma generator 1A, and FIG. 12 is a side sectional view schematically showing an example of the configuration of the plasma generator 1A. FIG. 12 shows a BB section of FIG. Although the configuration of the plasma generator 1A is the same as that of the plasma generator 1, the specific configurations of the first electrode portion 2 and the second electrode portion 3 are different. 11 and 12, four first electrode members 21A to 21D are provided as the plurality of first electrode members 21, and seven second electrode members 31A to 31G are provided as the plurality of second electrode members 31. ing. The first electrode members 21A to 21D are arranged in this order from one side in the arrangement direction D2, and the second electrode members 31A to 31G are arranged in this order from one side in the arrangement direction D2.
 図11の例では、第1電極部材21Aは第2電極部材31A,31Bの間に設けられており、第1電極部材21Bは第2電極部材31C,31Dの間に設けられており、第1電極部材21Cは第2電極部材31D,31Eの間に設けられており、第1電極部材21Dは第2電極部材31F,31Gの間に設けられている。言い換えれば、第2電極部材31B,31Cの間には第1電極部材21が設けられておらず、第2電極部材31E,31Fの間にも第1電極部材21が設けられていない。つまり、プラズマ発生装置1Aには、第1電極部材21を挟まずに直接に対向する少なくとも一対の第2電極部材31が存在する。 In the example of FIG. 11, the first electrode member 21A is provided between the second electrode members 31A and 31B, the first electrode member 21B is provided between the second electrode members 31C and 31D, and the first electrode member 21B is provided between the second electrode members 31C and 31D. The electrode member 21C is provided between the second electrode members 31D and 31E, and the first electrode member 21D is provided between the second electrode members 31F and 31G. In other words, the first electrode member 21 is not provided between the second electrode members 31B and 31C, nor is the first electrode member 21 provided between the second electrode members 31E and 31F. That is, the plasma generator 1A has at least a pair of second electrode members 31 directly facing each other without interposing the first electrode member 21 therebetween.
 このプラズマ発生装置1Aに対して電源8が電圧を出力すると、異極性の第1電極部材21と第2電極部材31との間でプラズマ用の電界が印加される。逆に言えば、同極性の第2電極部材31B,31Cの間ではプラズマ用の電界がほとんど印加されず、同極性の第2電極部材31E,31Fの間でも当該電界がほとんど印加されない。よって、これらの間では、ほとんどプラズマが発生しない。したがって、プラズマ発生装置1Aの消費電力をプラズマ発生装置1に比して低減させることができる。 When the power supply 8 outputs a voltage to the plasma generator 1A, an electric field for plasma is applied between the first electrode member 21 and the second electrode member 31 having different polarities. Conversely, almost no electric field for plasma is applied between the second electrode members 31B and 31C with the same polarity, and almost no electric field is applied between the second electrode members 31E and 31F with the same polarity. Therefore, little plasma is generated between them. Therefore, the power consumption of the plasma generator 1A can be reduced as compared with the plasma generator 1. FIG.
 このプラズマ発生装置1Aを基板処理装置100に適用した場合について考慮する。この場合、第2電極部材31B,31Cの間および第2電極部材31E,31Fの間では、プラズマがほとんど生じないので、これらの領域では、基板W上の処理液の液膜Fには直接には活性種があまり供給されない(図12の領域Fa,Fb参照)。しかるに、平面視において、第2電極部材31A,31Bの間の領域、第2電極部材31C,31Eの間の領域および第2電極部材31F,31Gの間の領域では、プラズマが発生するので、これらの領域では処理液の液膜Fに対して直接に活性種が供給される。これらの活性種は液膜F中を広がって流れるので、活性種は液膜F中において、第2電極部材31B,31Cの間の領域と対向する領域Faおよび第2電極部材31E,31Fの間の領域と対向する領域Fbにも拡散する。したがって、これらの領域Fa,Fbでも処理液の処理性能を向上させることができる。図12の例では、活性種の移動を模式的に直線矢印で示している。 A case in which this plasma generator 1A is applied to the substrate processing apparatus 100 will be considered. In this case, plasma is hardly generated between the second electrode members 31B and 31C and between the second electrode members 31E and 31F. active species are not supplied much (see regions Fa and Fb in FIG. 12). However, in plan view, plasma is generated in the region between the second electrode members 31A and 31B, the region between the second electrode members 31C and 31E, and the region between the second electrode members 31F and 31G. In the area of , the active species are directly supplied to the liquid film F of the processing liquid. Since these active species spread and flow in the liquid film F, the active species are distributed in the liquid film F in the area Fa facing the area between the second electrode members 31B and 31C and between the second electrode members 31E and 31F. also diffuses into the region Fb facing the region of . Therefore, even in these regions Fa and Fb, the processing performance of the processing liquid can be improved. In the example of FIG. 12, the movement of active species is schematically indicated by straight arrows.
 以上のように、プラズマ発生装置1Aによれば、基板Wの処理液に対して広い範囲で活性種を作用させつつも、消費電力を低減させることができる。 As described above, according to the plasma generator 1A, the power consumption can be reduced while allowing the active species to act on the processing liquid on the substrate W over a wide range.
 なお、上述の例では、第2電極部材31B,31Cの間、および、第2電極部材31E,31Fの間に、第1電極部材21が設けられていない。しかしながら、必ずしもこれに限らない。要するに、平面視において、隣り合う少なくともいずれか2つの第2電極部材31の間に、第1電極部材21が設けられていなければよい。あるいは、平面視において、隣り合う少なくともいずれか2つの第1電極部材21の間に、第2電極部材31が設けられていなくてもよい。これによっても、基板Wの処理液に対して広い範囲で活性種を作用させつつも、消費電力を低減させることができる。 In the above example, the first electrode members 21 are not provided between the second electrode members 31B and 31C and between the second electrode members 31E and 31F. However, it is not necessarily limited to this. In short, it is sufficient that the first electrode member 21 is not provided between at least any two adjacent second electrode members 31 in plan view. Alternatively, the second electrode member 31 may not be provided between at least any two adjacent first electrode members 21 in plan view. As a result, the power consumption can be reduced while allowing the active species to act on the processing liquid on the substrate W over a wide range.
 <プラズマ発生装置1B>
 図13は、プラズマ発生装置1Bの構成の一例を概略的に示す平面図であり、図14および図15は、プラズマ発生装置1Bの構成の一例を概略的に示す側断面図である。図14は、図13のC-C断面を示し、図15は、図13のD-D断面を示す。
<Plasma generator 1B>
FIG. 13 is a plan view schematically showing an example of the configuration of the plasma generator 1B, and FIGS. 14 and 15 are side sectional views schematically showing an example of the configuration of the plasma generator 1B. 14 shows a CC section of FIG. 13, and FIG. 15 shows a DD section of FIG.
 プラズマ発生装置1Bは、第1電極部2および第2電極部3の位置関係、ならびに、誘電部40の具体的な構成という点で、プラズマ発生装置1と相違している。図に例示されたプラズマ発生装置1Bにおいては、第1電極部2および第2電極部3は同一平面上に配置され、また、誘電部40は第1誘電部材4および第2誘電部材5の替わりに、単一の誘電部材60を含んでいる。 The plasma generator 1B is different from the plasma generator 1 in terms of the positional relationship between the first electrode section 2 and the second electrode section 3 and the specific configuration of the dielectric section 40 . In the plasma generator 1B illustrated in the figure, the first electrode portion 2 and the second electrode portion 3 are arranged on the same plane, and the dielectric portion 40 replaces the first dielectric member 4 and the second dielectric member 5. includes a single dielectric member 60 .
 誘電部材60は例えば石英およびセラミックス等の誘電体材料によって形成され、第1電極部材21および第2電極部材31の両方を覆う。図示の例では、誘電部材60は板状形状を有しており、その厚み方向が方向D3に沿う姿勢で配置される。誘電部材60は第1主面60a、第2主面60bおよび側面60cを有する。第1主面60aおよび第2主面60bは方向D3において互いに向かい合う面であり、例えば、方向D3に直交する平坦面である。側面60cは第1主面60aの周縁および第2主面60bの周縁を繋ぐ面である。図13の例では、誘電部材60は円板形状を有しているので、第1主面60aおよび第2主面60bは円状の平面であり、側面60cは円筒面である。誘電部材60の厚みは例えば5mm程度である。 The dielectric member 60 is made of dielectric material such as quartz and ceramics, and covers both the first electrode member 21 and the second electrode member 31 . In the illustrated example, the dielectric member 60 has a plate-like shape and is arranged with its thickness direction along the direction D3. Dielectric member 60 has a first major surface 60a, a second major surface 60b and side surfaces 60c. The first main surface 60a and the second main surface 60b are surfaces facing each other in the direction D3, and are, for example, flat surfaces orthogonal to the direction D3. The side surface 60c is a surface that connects the peripheral edge of the first main surface 60a and the peripheral edge of the second main surface 60b. In the example of FIG. 13, the dielectric member 60 has a disk shape, so the first main surface 60a and the second main surface 60b are circular planes, and the side surface 60c is a cylindrical surface. The thickness of the dielectric member 60 is, for example, about 5 mm.
 誘電部材60には、各第1電極部材21が挿入される第1穴62と、各第2電極部材31が挿入される第2穴64が形成されている。 The dielectric member 60 is formed with first holes 62 into which the first electrode members 21 are inserted and second holes 64 into which the second electrode members 31 are inserted.
 各第1穴62は長手方向D1に沿って延在しており、その一方側の端が誘電部材60の側面60cにおいて開口する。第1電極部材21は、その第1先端面21bから第1穴62に挿入される。第1電極部材21の第1側面21aは、誘電部材60において第1穴62を形成する第1内周面62aによって覆われている。つまり、各第1穴62の第1内周面62aは第1電極部材21の第1側面21aの全周を囲む。また、第1内周面62aは第1電極部材21の第1先端面21bよりも先端側(ここでは長手方向D1の他方側)にも延在する。よって、第1内周面62aのうち第1先端面21bよりも先端側の部分は、第1先端空間61を形成する。第1先端空間61は、第1電極部材21の第1先端面21bと長手方向D1において隣接する空間である。この第1先端空間61にもガスが含まれている。当該ガスは例えば空気である。 Each first hole 62 extends along the longitudinal direction D1, and one end thereof opens on the side surface 60 c of the dielectric member 60 . The first electrode member 21 is inserted into the first hole 62 from the first tip surface 21b. A first side surface 21 a of the first electrode member 21 is covered with a first inner peripheral surface 62 a forming a first hole 62 in the dielectric member 60 . That is, the first inner peripheral surface 62 a of each first hole 62 surrounds the entire circumference of the first side surface 21 a of the first electrode member 21 . The first inner peripheral surface 62a also extends to the distal end side (here, the other side in the longitudinal direction D1) of the first distal end surface 21b of the first electrode member 21 . Therefore, a portion of the first inner peripheral surface 62 a closer to the distal end than the first distal end surface 21 b forms the first distal end space 61 . The first distal end space 61 is a space adjacent to the first distal end surface 21b of the first electrode member 21 in the longitudinal direction D1. This first tip space 61 also contains gas. The gas in question is, for example, air.
 図13に例示されるように、各第1穴62は有底の穴であってもよい。つまり、誘電部材60は、各第1穴62の長手方向D1の他方側の端部を塞ぐ第1底面62bを有していてもよい。第1底面62bは第1内周面62aの長手方向D1の他方側の周縁端部に繋がっており、第1先端空間61を隔てて第1先端面21bと対向する。逆に言えば、第1先端空間61は、誘電部材60の第1底面62bと第1電極部材21の第1先端面21bとの間の空間に相当する。 As illustrated in FIG. 13, each first hole 62 may be a bottomed hole. That is, the dielectric member 60 may have a first bottom surface 62b that closes the end of each first hole 62 on the other side in the longitudinal direction D1. The first bottom surface 62b is connected to the peripheral edge portion on the other side in the longitudinal direction D1 of the first inner peripheral surface 62a and faces the first distal end surface 21b across the first distal end space 61 . Conversely, the first tip space 61 corresponds to the space between the first bottom surface 62 b of the dielectric member 60 and the first tip surface 21 b of the first electrode member 21 .
 各第1穴62の第1内周面62aは第1電極部材21の第1側面21aから部分的または全体的に離れている。これにより、第1電極部材21の直径が熱膨張により大きくなった場合でも、誘電部材60の破損を抑制することができる。 The first inner peripheral surface 62a of each first hole 62 is partially or wholly separated from the first side surface 21a of the first electrode member 21. As a result, even when the diameter of the first electrode member 21 increases due to thermal expansion, damage to the dielectric member 60 can be suppressed.
 第1電極部材21の基端部211近傍において、誘電部材60と第1電極部材21との間を封止する誘電性の封止部材(不図示)が設けられてもよい。当該封止部材は例えばシリコーン樹脂によって形成され得る。 A dielectric sealing member (not shown) that seals between the dielectric member 60 and the first electrode member 21 may be provided in the vicinity of the base end portion 211 of the first electrode member 21 . The sealing member can be made of silicone resin, for example.
 各第2穴64は長手方向D1に沿って延在しており、その他方側の端が誘電部材60の側面60cにおいて開口する。各第2電極部材31は、その第2先端面31bから第2穴64に挿入される。第2電極部材31の第2側面31aは、誘電部材60において第2穴64を形成する第2内周面64aによって覆われている。つまり、各第2穴64の第2内周面64aは第2電極部材31の第2側面31aの全周を囲む。また、第2内周面64aは第2電極部材31の第2先端面31bよりも先端側(ここでは長手方向D1の一方側)にも延在する。よって、第2内周面64aのうち第2先端面31bよりも先端側の部分は、第2先端空間63を形成する。第2先端空間63は、第2電極部材31の第2先端面31bと長手方向D1において隣接する空間である。この第2先端空間63にもガスが含まれている。当該ガスは例えば空気である。 Each second hole 64 extends along the longitudinal direction D1, and the other end opens on the side surface 60 c of the dielectric member 60 . Each second electrode member 31 is inserted into the second hole 64 from the second tip surface 31b. A second side surface 31 a of the second electrode member 31 is covered with a second inner peripheral surface 64 a forming a second hole 64 in the dielectric member 60 . In other words, the second inner peripheral surface 64 a of each second hole 64 surrounds the entire second side surface 31 a of the second electrode member 31 . The second inner peripheral surface 64a also extends to the distal end side (here, one side in the longitudinal direction D1) of the second distal end surface 31b of the second electrode member 31 . Therefore, a portion of the second inner peripheral surface 64a closer to the distal end than the second distal end surface 31b forms a second distal end space 63. As shown in FIG. The second distal end space 63 is a space adjacent to the second distal end surface 31b of the second electrode member 31 in the longitudinal direction D1. This second tip space 63 also contains gas. The gas in question is, for example, air.
 図13に例示されるように、各第2穴64は有底の穴であってもよい。つまり、誘電部材60は、第2穴64の長手方向D1の一方側の端部を塞ぐ第2底面64bを有していてもよい。第2底面64bは第2内周面64aの長手方向D1の一方側の周縁端部に繋がっており、第2先端空間63を隔てて第2先端面31bと対向する。逆に言えば、第2先端空間63は、誘電部材60の第2底面64bと第2電極部材31の第2先端面31bとの間の空間に相当する。 As illustrated in FIG. 13, each second hole 64 may be a bottomed hole. That is, the dielectric member 60 may have a second bottom surface 64b that closes one end of the second hole 64 in the longitudinal direction D1. The second bottom surface 64b is connected to a peripheral edge portion on one side in the longitudinal direction D1 of the second inner peripheral surface 64a and faces the second tip surface 31b across the second tip space 63 . Conversely, the second tip space 63 corresponds to the space between the second bottom surface 64 b of the dielectric member 60 and the second tip surface 31 b of the second electrode member 31 .
 各第2穴64の第2内周面64aは第2電極部材31の第2側面31aから部分的または全体的に離れている。これにより、第2電極部材31の直径が熱膨張により大きくなった場合でも、誘電部材60の破損を抑制することができる。 The second inner peripheral surface 64a of each second hole 64 is partially or wholly separated from the second side surface 31a of the second electrode member 31. As a result, even when the diameter of the second electrode member 31 increases due to thermal expansion, damage to the dielectric member 60 can be suppressed.
 第2電極部材31の基端部311近傍において、誘電部材60と第2電極部材31との間を封止する誘電性の封止部材(不図示)が設けられてもよい。当該封止部材は例えばシリコーン樹脂によって形成され得る。 A dielectric sealing member (not shown) that seals between the dielectric member 60 and the second electrode member 31 may be provided in the vicinity of the base end portion 311 of the second electrode member 31 . The sealing member can be made of silicone resin, for example.
 図15の例では、複数の第1電極部材21および複数の第2電極部材31は同一平面上に設けられている。よって、複数の第1穴62および複数の第2穴64も同一平面上に形成されている。 In the example of FIG. 15, the plurality of first electrode members 21 and the plurality of second electrode members 31 are provided on the same plane. Therefore, the plurality of first holes 62 and the plurality of second holes 64 are also formed on the same plane.
 図15の例では、第1電極部材21と誘電部材60の第2主面60bとの間隔は、第1電極部材21と誘電部材60の第1主面60aとの間隔よりも狭い。同様に、第2電極部材31と誘電部材60の第2主面60bとの間隔は、第2電極部材31と誘電部材60の第1主面60aとの間隔よりも狭い。つまり、第1電極部材21および第2電極部材31は第1主面60aよりも第2主面60bに近い位置に設けられている。よって、第1穴62および第2穴64も第1主面60aより第2主面60bに近い位置に形成される。 In the example of FIG. 15, the distance between the first electrode member 21 and the second main surface 60b of the dielectric member 60 is narrower than the distance between the first electrode member 21 and the first main surface 60a of the dielectric member 60. Similarly, the distance between the second electrode member 31 and the second principal surface 60b of the dielectric member 60 is narrower than the distance between the second electrode member 31 and the first principal surface 60a of the dielectric member 60 . That is, the first electrode member 21 and the second electrode member 31 are provided closer to the second main surface 60b than to the first main surface 60a. Therefore, the first hole 62 and the second hole 64 are also formed closer to the second main surface 60b than to the first main surface 60a.
 プラズマ発生装置1Bは、第2主面60bが処理対象(ここでは基板W)を向く姿勢で配置される。第2主面60b近傍のガスは後述のようにプラズマ発生装置1Bによってプラズマ化し、該プラズマによる活性種が処理対象に作用する。 The plasma generator 1B is arranged with the second main surface 60b facing the object to be processed (here, the substrate W). The gas in the vicinity of the second main surface 60b is turned into plasma by the plasma generator 1B as described later, and active species generated by the plasma act on the object to be processed.
 図13の例では、第1集合電極22および第2集合電極32は誘電部材60よりも外側に設けられている。よって、第1電極部材21の基端部211は誘電部材60の側面60cから外側に突出して第1集合電極22に接続され、第2電極部材31の基端部311は誘電部材60の側面60cから外側に突出して第2集合電極32に接続される。第1集合電極22および第2集合電極32はプラズマ用の電源8に接続されており(図13を参照)、この電源8の電圧出力により、第1電極部材21と第2電極部材31との間にプラズマ用の電界が生じる。上述の例では、第1電極部材21と第2主面60bとの間隔および第2電極部材31と第2主面60bとの間隔は狭いので、電界が誘電部材60の第2主面60b近傍のガスに作用しやすく、該ガスを容易にプラズマ化させることができる。 In the example of FIG. 13 , the first collective electrode 22 and the second collective electrode 32 are provided outside the dielectric member 60 . Therefore, the base end portion 211 of the first electrode member 21 protrudes outward from the side surface 60c of the dielectric member 60 and is connected to the first collective electrode 22, and the base end portion 311 of the second electrode member 31 protrudes outward from the side surface 60c of the dielectric member 60. is protruded outward from and connected to the second collective electrode 32 . The first collective electrode 22 and the second collective electrode 32 are connected to a power source 8 for plasma (see FIG. 13), and the voltage output of the power source 8 causes the first electrode member 21 and the second electrode member 31 to An electric field for the plasma is generated in between. In the above example, since the distance between the first electrode member 21 and the second main surface 60b and the distance between the second electrode member 31 and the second main surface 60b are narrow, the electric field is generated near the second main surface 60b of the dielectric member 60. and can easily convert the gas into plasma.
 一方で、上述の例では、第1電極部材21と第1主面60aとの間隔および第2電極部材31と第1主面60aとの間隔は広いので、電界は第1主面60a近傍のガスには作用しにくい。よって、基板Wの処理に寄与しない不要なプラズマの発生も抑制することができる。しかも、誘電部材60の第1主面60aと第2主面60bとの間の厚みを大きくすることもできるので、誘電部材60の強度および剛性を向上させることができる。 On the other hand, in the above example, since the distance between the first electrode member 21 and the first main surface 60a and the distance between the second electrode member 31 and the first main surface 60a are large, the electric field is generated in the vicinity of the first main surface 60a. Does not work well with gas. Therefore, generation of unnecessary plasma that does not contribute to the processing of the substrate W can also be suppressed. Moreover, since the thickness between the first main surface 60a and the second main surface 60b of the dielectric member 60 can be increased, the strength and rigidity of the dielectric member 60 can be improved.
 ところで、プラズマ発生装置1Bにおける誘電部材60は第1電極部材21および第2電極部材31の両方を覆う板状形状を有しているので、誘電部材60の体積は、プラズマ発生装置1,1Aの第1誘電部材4、第2誘電部材5および仕切部材6の総体積よりも大きい。よって、プラズマ発生装置1Bにおいてプラズマを発生させるためには、電源8はより大きな電力を第1電極部2と第2電極部3との間に供給する必要がある。より具体的な一例として、電源8の出力電圧は15kV程度に設定され、電源8の出力周波数は60kHz程度以下に設定される。 By the way, since the dielectric member 60 in the plasma generator 1B has a plate-like shape covering both the first electrode member 21 and the second electrode member 31, the volume of the dielectric member 60 is the same as that of the plasma generators 1 and 1A. larger than the total volume of the first dielectric member 4, the second dielectric member 5 and the partition member 6; Therefore, in order to generate plasma in plasma generator 1</b>B, power supply 8 needs to supply larger power between first electrode portion 2 and second electrode portion 3 . As a more specific example, the output voltage of the power supply 8 is set to about 15 kV, and the output frequency of the power supply 8 is set to about 60 kHz or less.
 これに伴って、誘電部材60の内部の第1先端空間61および第2先端空間63のガスは、よりプラズマ化しやすくなる。したがって、プラズマ発生装置1Bによれば、誘電部材60の第2主面60bに沿って形成されるプラズマの発生領域がさらに広がり得る。 Accompanying this, the gas in the first tip space 61 and the second tip space 63 inside the dielectric member 60 becomes more likely to become plasma. Therefore, according to the plasma generator 1B, the plasma generation region formed along the second main surface 60b of the dielectric member 60 can be further expanded.
 しかも、単一の誘電部材60が第1電極部材21および第2電極部材31を覆うので、プラズマ発生装置1Bの形状は、プラズマ発生装置1,1Aに比べて簡易である。特に上述の例では、誘電部材60の第2主面60bは平坦であるので、第1誘電部材4と仕切部材6とで段差形状を形成するプラズマ発生装置1,1Aに比して、その形状がより簡易である。よって、処理対象である基板W上の処理液が揮発してプラズマ発生装置1B(例えば第2主面60b)に付着しても、プラズマ発生装置1Bを洗浄して該処理液を除去することが容易である。 Moreover, since the single dielectric member 60 covers the first electrode member 21 and the second electrode member 31, the shape of the plasma generator 1B is simpler than those of the plasma generators 1 and 1A. Especially in the above example, since the second main surface 60b of the dielectric member 60 is flat, the shape of the plasma generator 1, 1A in which the first dielectric member 4 and the partition member 6 form a stepped shape is is simpler. Therefore, even if the processing liquid on the substrate W to be processed volatilizes and adheres to the plasma generator 1B (for example, the second main surface 60b), the plasma generator 1B can be cleaned to remove the processing liquid. Easy.
 <アーク放電>
 第1先端空間61内のガスがプラズマ化すると、プラズマ発生装置1Bにおいても、第1先端空間61を介して第1電極部材21の第1先端面21bと第2電極部3との間でアーク放電が生じやすくなる。なぜなら、第1先端空間61内の電子が移動しやすくなるからである。より具体的な一例として、第1先端空間61内でプラズマが発生することにより、第1電極部材21の第1先端面21bと第2電極部材31の基端部311との間でアーク放電が生じやすくなる(図13の二点鎖線の両端矢印を参照)。また、第1先端空間61内のプラズマは、第1電極部材21の第1先端面21bよりも第2集合電極32に近い位置で発生するので、第1先端面21bと第2集合電極32との間でもアーク放電が生じやすくなる。
<Arc discharge>
When the gas in the first tip space 61 turns into plasma, an arc is generated between the first tip surface 21b of the first electrode member 21 and the second electrode portion 3 via the first tip space 61 in the plasma generator 1B as well. Discharge is more likely to occur. This is because the electrons in the first tip space 61 are easier to move. As a more specific example, plasma is generated in the first tip space 61 to cause arc discharge between the first tip surface 21 b of the first electrode member 21 and the base end portion 311 of the second electrode member 31 . (See double-dotted chain double-headed arrows in FIG. 13). Also, since the plasma in the first tip space 61 is generated at a position closer to the second collective electrode 32 than the first tip face 21b of the first electrode member 21, the first tip face 21b and the second collective electrode 32 Arc discharge is likely to occur even during
 第2先端空間63内のガスがプラズマ化すると、同様に、第2電極部材31の第2先端面31bと第1電極部2との間でアーク放電が生じやすくなる。 When the gas in the second tip space 63 turns into plasma, arc discharge is likely to occur between the second tip face 31b of the second electrode member 31 and the first electrode portion 2 as well.
 そこで、プラズマ発生装置1Bにおいても、第1先端空間61内のガスおよび第2先端空間63内のガスがプラズマ化した状態でも、第1電極部2と第2電極部3との間でアーク放電が生じない距離で、第1電極部2および第2電極部3が互いに離れるように、第1電極部2および第2電極部3の形状および位置関係が設定されるとよい。 Therefore, in the plasma generator 1B as well, even when the gas in the first tip space 61 and the gas in the second tip space 63 are plasmatized, arc discharge occurs between the first electrode portion 2 and the second electrode portion 3. The shape and the positional relationship of the first electrode portion 2 and the second electrode portion 3 are preferably set so that the first electrode portion 2 and the second electrode portion 3 are separated from each other by a distance that does not cause a .
 より具体的な一例として、第1電極部材21の第1先端面21bの位置について、第1配置禁止領域R1が設定され、第2電極部材31の第2先端面31bの位置について、第2配置禁止領域R2が設定される。図16は、プラズマ発生装置1Bにおける第1配置禁止領域R1および第2配置禁止領域R2の一例を示す図である。図16の例では、第1配置禁止領域R1および第2配置禁止領域R2を模式的に斜線のハッチングで示している。 As a more specific example, the position of the first tip surface 21b of the first electrode member 21 is set as the first placement prohibited region R1, and the position of the second tip surface 31b of the second electrode member 31 is set as the second layout. A prohibited area R2 is set. FIG. 16 is a diagram showing an example of the first layout prohibited region R1 and the second layout prohibited region R2 in the plasma generator 1B. In the example of FIG. 16, the first placement prohibited region R1 and the second placement prohibited region R2 are schematically indicated by diagonal hatching.
 プラズマ発生装置1,1Aと同様に、第1配置禁止領域R1は、第2集合電極32の内側面32aと仮想線L1とで挟まれる領域であり、第2配置禁止領域R2は、第1集合電極22の内側面22aと仮想線L2とで挟まれる領域である。内側面32aと仮想線L1との間の第1所定距離、および、内側面22aと仮想線L2との間の第2所定距離は、電源8の最大出力時(または定格出力時)においてアーク放電が生じない程度の値に設定される。より具体的な一例として、電源8の出力電圧が15kVであり、電源8の出力周波数が60kHz程度である場合、第1所定距離および第2所定距離は例えば20mm程度に設定され得る。 As in the plasma generators 1 and 1A, the first placement prohibited region R1 is a region sandwiched between the inner side surface 32a of the second collective electrode 32 and the virtual line L1, and the second placement prohibited region R2 corresponds to the first group. It is a region sandwiched between the inner side surface 22a of the electrode 22 and the imaginary line L2. A first predetermined distance between the inner surface 32a and the phantom line L1 and a second predetermined distance between the inner surface 22a and the phantom line L2 are determined to prevent arc discharge at the maximum output (or rated output) of the power source 8. is set to a value that does not cause As a more specific example, when the output voltage of the power supply 8 is 15 kV and the output frequency of the power supply 8 is about 60 kHz, the first predetermined distance and the second predetermined distance can be set to about 20 mm, for example.
 <第1底面および第2底面の位置>
 上述の例では、プラズマ発生装置1Bの誘電部材60に形成された第1穴62は第1底面62bを有する(図13参照)。よって、第1先端空間61内のプラズマの先端の位置は第1底面62bによって規制される。つまり、第1先端空間61内で最も広くプラズマが発生しても、該プラズマの先端は第1底面62bよりも第2電極部3には近づけない。つまり、該プラズマの先端が最も第2電極部3に近づいた状態で、該プラズマの先端位置は第1底面62bの位置に一致する。したがって、第1底面62bが第2電極部3よりも十分に離れていれば、アーク放電を抑制できると考えることもできる。
<Position of first bottom surface and second bottom surface>
In the example described above, the first hole 62 formed in the dielectric member 60 of the plasma generator 1B has a first bottom surface 62b (see FIG. 13). Therefore, the position of the tip of the plasma in the first tip space 61 is regulated by the first bottom surface 62b. In other words, even if plasma is generated in the widest space in the first tip space 61, the tip of the plasma cannot approach the second electrode portion 3 more than the first bottom surface 62b. That is, when the tip of the plasma is closest to the second electrode portion 3, the tip position of the plasma matches the position of the first bottom surface 62b. Therefore, if the 1st bottom face 62b is fully separated from the 2nd electrode part 3, it can also be considered that an arc discharge can be suppressed.
 そこで、第1穴62の第1底面62bと第2電極部3との間の距離を次のように設定してもよい。ここで、第1電極部材21を長手方向D1に沿って仮想的に伸ばして、第1電極部材21の第1先端面21bが第1底面62bと当接した仮定構造を想定する。該仮定構造において、第1電極部材21の第1先端面21bと第2電極部3との間でアーク放電が生じないように、第1底面62bと第2電極部3との間の距離を設定する。そして、その設定値をプラズマ発生装置1Bにおける第1底面62bと第2電極部3との間の距離に採用する。当該距離は、電源8の出力電圧が15kVであり、電源8の出力周波数が60kHzである場合、例えば、数mm程度(具体的には5mm程度)以上に設定され得る。これによれば、プラズマ発生装置1Bにおいて、たとえ第1先端空間61内の全範囲でプラズマが生じても、第1電極部材21の第1先端面21bと第2電極部3との間でアーク放電が生じない。 Therefore, the distance between the first bottom surface 62b of the first hole 62 and the second electrode portion 3 may be set as follows. Here, a hypothetical structure is assumed in which the first electrode member 21 is virtually extended along the longitudinal direction D1 and the first tip surface 21b of the first electrode member 21 contacts the first bottom surface 62b. In the assumed structure, the distance between the first bottom surface 62b and the second electrode portion 3 is adjusted so that arc discharge does not occur between the first tip surface 21b of the first electrode member 21 and the second electrode portion 3. set. Then, the set value is adopted as the distance between the first bottom surface 62b and the second electrode portion 3 in the plasma generator 1B. When the output voltage of the power supply 8 is 15 kV and the output frequency of the power supply 8 is 60 kHz, the distance can be set to approximately several millimeters (specifically, approximately 5 mm) or more, for example. According to this, in the plasma generator 1B, even if plasma is generated in the entire range within the first tip space 61, an arc is generated between the first tip surface 21b of the first electrode member 21 and the second electrode portion 3. No discharge occurs.
 また、上述の例では、誘電部材60に形成された第2穴64は第2底面64bを有している(図13参照)。この第2底面64bの位置についても同様である。すなわち、第2底面64bと第1電極部2との間の距離を次のように設定してもよい。すなわち、第2電極部材31の第2先端面31bが第2底面64bと当接すると仮定した仮定構造において、第2電極部材31の第2先端面31bと第1電極部2との間でアーク放電が生じないように、該距離を設定する。そして、その設定値をプラズマ発生装置1Bにおける第2底面64bと第1電極部2との間の距離に採用する。当該距離は、電源8の出力電圧が15kVであり、電源8の出力周波数が60kHzである場合、例えば、数mm程度(具体的には5mm程度)以上に設定され得る。 Also, in the above example, the second hole 64 formed in the dielectric member 60 has a second bottom surface 64b (see FIG. 13). The same applies to the position of the second bottom surface 64b. That is, the distance between the second bottom surface 64b and the first electrode portion 2 may be set as follows. That is, in a hypothetical structure assuming that the second tip surface 31b of the second electrode member 31 abuts on the second bottom surface 64b, an arc is generated between the second tip surface 31b of the second electrode member 31 and the first electrode portion 2. The distance is set so that no discharge occurs. Then, the set value is adopted as the distance between the second bottom surface 64b and the first electrode portion 2 in the plasma generator 1B. When the output voltage of the power supply 8 is 15 kV and the output frequency of the power supply 8 is 60 kHz, the distance can be set to approximately several millimeters (specifically, approximately 5 mm) or more, for example.
 より具体的な一例として、第1穴62の第1底面62bの位置について、第3配置禁止領域R3が設定され、第2穴64の第2底面64bの位置について、第4配置禁止領域R4が設定され得る。図17は、プラズマ発生装置1Bにおける第3配置禁止領域R3および第4配置禁止領域R4の一例を示す図である。図17の例では、第3配置禁止領域R3および第4配置禁止領域R4を模式的に斜線のハッチングで示している。 As a more specific example, a third placement prohibited area R3 is set for the position of the first bottom surface 62b of the first hole 62, and a fourth placement prohibited area R4 is set for the position of the second bottom surface 64b of the second hole 64. can be set. FIG. 17 is a diagram showing an example of the third placement prohibited region R3 and the fourth placement prohibited region R4 in the plasma generator 1B. In the example of FIG. 17, the third placement prohibited region R3 and the fourth placement prohibited region R4 are schematically indicated by diagonal hatching.
 第3配置禁止領域R3は、第1配置禁止領域R1と同様に、第2集合電極32の内側面32aによって規定される。第3配置禁止領域R3は、第2集合電極32の内側面32aと、内側面32aから第3所定距離だけ離れた仮想線L3とで挟まれる領域である。第3所定距離は、仮定構造において第1電極部材21の第1先端面21bと第2電極部3との間でアーク放電が生じない程度の値に予め設定される。具体的には、第3所定距離は、電源8の最大出力時(または定格出力時)においてアーク放電が生じない程度の値(例えば5mm程度以上)に設定される。 The third placement prohibited region R3 is defined by the inner side surface 32a of the second collective electrode 32, similar to the first placement prohibited region R1. The third placement prohibited region R3 is a region sandwiched between the inner side surface 32a of the second collective electrode 32 and a virtual line L3 separated from the inner side surface 32a by a third predetermined distance. The third predetermined distance is set in advance to a value such that arc discharge does not occur between the first tip surface 21b of the first electrode member 21 and the second electrode portion 3 in the hypothetical structure. Specifically, the third predetermined distance is set to a value (for example, about 5 mm or more) that does not cause arc discharge when the power source 8 is at its maximum output (or at rated output).
 平面視において各第1穴62の第1底面62bは第3配置禁止領域R3よりも第1集合電極22側に位置するように、各第1穴62の長さが設定される。これにより、第1先端空間61内のガスがプラズマ化しても、各第1電極部材21の第1先端面21bと第2電極部3との間でアーク放電が生じない。 The length of each first hole 62 is set so that the first bottom surface 62b of each first hole 62 is positioned closer to the first collective electrode 22 than the third prohibited area R3 in plan view. As a result, even if the gas in the first tip space 61 turns into plasma, arc discharge does not occur between the first tip surface 21 b of each first electrode member 21 and the second electrode portion 3 .
 第4配置禁止領域R4は、第2配置禁止領域R2と同様に、第1集合電極22の内側面22aによって規定される。第4配置禁止領域R4は、第1集合電極22の内側面22aと、内側面22aから第4所定距離だけ離れた仮想線L4とで挟まれる領域である。第4所定距離は、仮定構造において第2電極部材31の第2先端面31bと第1電極部2との間でアーク放電が生じない程度の値に予め設定される。具体的には、第4所定距離は、電源8の最大出力時(または定格出力時)においてアーク放電が生じない程度の値(例えば5mm)に設定される。 The fourth placement prohibited region R4 is defined by the inner side surface 22a of the first collective electrode 22, similar to the second placement prohibited region R2. The fourth placement prohibited region R4 is a region sandwiched between the inner side surface 22a of the first collective electrode 22 and an imaginary line L4 separated from the inner side surface 22a by a fourth predetermined distance. The fourth predetermined distance is set in advance to a value that does not cause arc discharge between the second tip surface 31b of the second electrode member 31 and the first electrode portion 2 in the hypothetical structure. Specifically, the fourth predetermined distance is set to a value (for example, 5 mm) that does not cause arc discharge when the power source 8 is at its maximum output (or rated output).
 平面視において各第2穴64の第2底面64bは第4配置禁止領域R4よりも第2集合電極32側に位置するように、各第2穴64の長さが設定される。これにより、第2先端空間63内のガスがプラズマ化しても、各第2電極部材31の第2先端面31bと第1電極部2との間でアーク放電が生じない。 The length of each second hole 64 is set so that the second bottom surface 64b of each second hole 64 is located closer to the second collective electrode 32 than the fourth prohibition region R4 in plan view. As a result, even if the gas in the second tip space 63 turns into plasma, arc discharge does not occur between the second tip surface 31b of each second electrode member 31 and the first electrode portion 2 .
 以上のように、プラズマ発生装置1Bによれば、アーク放電をより適切に抑制することができる。なお、上述の例では、プラズマ発生装置1Bの第1底面62bおよび第2底面64bについて説明したが、プラズマ発生装置1,1Aの第1誘電部材4の第1底面4bの位置および第2誘電部材5の第2底面5bの位置についても同様である。 As described above, according to the plasma generator 1B, arc discharge can be suppressed more appropriately. In the above example, the first bottom surface 62b and the second bottom surface 64b of the plasma generator 1B have been described. The same applies to the position of the second bottom surface 5b of 5.
 なお、プラズマ発生装置1,1Aにおいて、仕切部材6は設けられていなくてもよく、また第1電極部2および第2電極部3は同一平面に設けられてもよい。 In addition, in the plasma generators 1 and 1A, the partition member 6 may not be provided, and the first electrode portion 2 and the second electrode portion 3 may be provided on the same plane.
 また、例えば、プラズマ発生装置1Bにおいて、第1電極部2および第2電極部3は方向D3において互いに異なる位置に設けられてもよい。具体的には、第1電極部材21および第2電極部材31は方向D3において互いに異なる位置に設けられてもよい。 Further, for example, in the plasma generator 1B, the first electrode portion 2 and the second electrode portion 3 may be provided at different positions in the direction D3. Specifically, the first electrode member 21 and the second electrode member 31 may be provided at different positions in the direction D3.
 <第2の実施の形態>
 以下、第2の実施の形態における基板処理装置100の構成の一例について説明する。なお、以下では、第1の実施の形態と同様の構成についても改めて説明することがある。
<Second Embodiment>
An example of the configuration of the substrate processing apparatus 100 according to the second embodiment will be described below. In addition, below, the structure similar to 1st Embodiment may be demonstrated again.
 図18は、第2の実施の形態における基板処理装置100の構成の例を概略的に示す側面図である。 FIG. 18 is a side view schematically showing an example of the configuration of the substrate processing apparatus 100 according to the second embodiment.
 なお、図18に示される構成は、図1におけるチャンバ80に囲まれていてよい。また、チャンバ80内の圧力は、およそ大気圧(たとえば、0.5気圧以上、かつ、2気圧以下)であってよい。言い換えれば、後述するプラズマ処理は、大気圧で行われる大気圧プラズマ処理であってよい。 Note that the configuration shown in FIG. 18 may be surrounded by the chamber 80 in FIG. Also, the pressure in chamber 80 may be approximately atmospheric pressure (eg, 0.5 atmospheres or more and 2 atmospheres or less). In other words, the plasma treatment described below may be an atmospheric pressure plasma treatment performed at atmospheric pressure.
 基板処理装置100は、1枚の基板Wを略水平姿勢で保持しつつ、基板Wの中央部を通る鉛直な回転軸線Z1まわりに基板Wを回転させるスピンチャック10と、基板Wに処理液を吐出する処理液ノズル20と、処理液ノズル20に処理液を供給する処理液供給源29と、処理液供給源29から処理液ノズル20への処理液の供給および供給停止を切り替えるバルブ25と、基板Wの上方に基板W全体を覆うように配置され、かつ、大気圧下でプラズマを生じさせる大気圧プラズマ源としてのプラズマ発生部30と、プラズマ発生部30に電圧を印加する電源8と、プラズマ発生部30を支持する支持部70とを含むプラズマ発生装置50と、基板Wの回転軸線Z1まわりにスピンチャック10を取り囲む筒状のガード13とを備える。 The substrate processing apparatus 100 includes a spin chuck 10 that holds one substrate W in a substantially horizontal posture and rotates the substrate W around a vertical rotation axis Z1 that passes through the central portion of the substrate W, and a processing liquid that is applied to the substrate W. a treatment liquid nozzle 20 that ejects, a treatment liquid supply source 29 that supplies the treatment liquid to the treatment liquid nozzle 20, a valve 25 that switches supply and stop of the treatment liquid from the treatment liquid supply source 29 to the treatment liquid nozzle 20, a plasma generation unit 30 as an atmospheric pressure plasma source that is disposed above the substrate W so as to cover the entire substrate W and generates plasma under atmospheric pressure; a power source 8 that applies a voltage to the plasma generation unit 30; A plasma generating device 50 including a supporting portion 70 for supporting the plasma generating portion 30, and a cylindrical guard 13 surrounding the spin chuck 10 around the rotation axis Z1 of the substrate W are provided.
 ここで、処理液には、基板処理装置100における基板処理の用途に応じてさまざまな液を用いることができる。たとえば、エッチング液として、塩酸、フッ酸、リン酸、硝酸、硫酸、硫酸塩、ペルオキソ硫酸、ペルオキソ硫酸塩、過酸化水素水または水酸化テトラメチルアンモニウム、アンモニアと過酸化水素水との混合液(SC1)などを含む液を用いることができる。また、洗浄液として、アンモニアと過酸化水素水との混合液(SC1)、または、塩酸と過酸化水素水との混合水溶液(SC2)などを含む液を用いることができる。また、洗浄液およびリンス液として脱イオン水(DIW)を用いることができる。 Here, various liquids can be used as the processing liquid depending on the purpose of substrate processing in the substrate processing apparatus 100 . Examples of etching solutions include hydrochloric acid, hydrofluoric acid, phosphoric acid, nitric acid, sulfuric acid, sulfate, peroxosulfuric acid, peroxosulfate, hydrogen peroxide or tetramethylammonium hydroxide, and a mixture of ammonia and hydrogen peroxide ( A liquid containing SC1) or the like can be used. Further, as the cleaning liquid, a mixed liquid (SC1) of ammonia and hydrogen peroxide, or a liquid containing a mixed aqueous solution (SC2) of hydrochloric acid and hydrogen peroxide, or the like can be used. Deionized water (DIW) can also be used as the cleaning and rinsing liquid.
 本実施の形態においては、主に、基板Wの上面に形成されたレジスト膜を除去するための処理が説明される。この場合には、処理液としては、硫酸、硫酸塩、ペルオキソ硫酸およびペルオキソ硫酸塩のうちの少なくとも1つを含む液、または、過酸化水素を含む液などが想定される。 In the present embodiment, processing for removing the resist film formed on the upper surface of the substrate W will mainly be described. In this case, the processing liquid is assumed to be a liquid containing at least one of sulfuric acid, sulfate, peroxosulfuric acid and peroxosulfate, or a liquid containing hydrogen peroxide.
 処理液ノズル20は、複数種の処理液が想定される場合には、それぞれの処理液に対応して複数設けられていてもよい。処理液ノズル20は、基板Wの上面に処理液の液膜が形成されるように、基板Wに処理液を供給する。 When multiple types of processing liquids are assumed, a plurality of processing liquid nozzles 20 may be provided corresponding to the respective processing liquids. The processing liquid nozzle 20 supplies the processing liquid to the substrate W so that a liquid film of the processing liquid is formed on the upper surface of the substrate W. As shown in FIG.
 処理液ノズル20は、図示しないアーム機構によって移動可能である。具体的には、アクチュエータなどによって角度調整可能なアーム部材に処理液ノズル20が取り付けられることによって、処理液ノズル20がたとえば基板Wの半径方向に揺動可能となる。 The treatment liquid nozzle 20 can be moved by an arm mechanism (not shown). Specifically, the processing liquid nozzle 20 is attached to an arm member whose angle can be adjusted by an actuator or the like, so that the processing liquid nozzle 20 can swing in the radial direction of the substrate W, for example.
 スピンチャック10は、略水平姿勢の基板Wの下面を真空吸着する円板状のスピンベース10Aと、スピンベース10Aの中央部から下方に延びる回転軸10Cと、回転軸10Cを回転させることによって、スピンベース10Aに吸着されている基板Wを回転させるスピンモータ10Dとを備える。なお、スピンチャック10の代わりに、スピンベースの上面外周部から上方に突出する複数のチャックピンを備え、当該チャックピンによって基板Wの周縁部を挟持する挟持式のチャックが用いられてもよい。 The spin chuck 10 has a disk-shaped spin base 10A that vacuum-sucks the lower surface of the substrate W in a substantially horizontal posture, a rotating shaft 10C that extends downward from the central portion of the spin base 10A, and by rotating the rotating shaft 10C, and a spin motor 10D for rotating the substrate W attracted to the spin base 10A. Instead of the spin chuck 10, a clamping type chuck may be used which has a plurality of chuck pins protruding upward from the outer peripheral portion of the upper surface of the spin base and clamps the peripheral portion of the substrate W with the chuck pins.
 プラズマ発生部30は、石英などからなる板状の誘電部材30Aと、誘電部材30Aの上面において長手方向(図18、図22における-X方向)に沿って延在する第1の電極棒306、308を当該延在する方向と直交する配列方向(図18、図22におけるY方向)に複数並べて配置される第1の電極棒群30Bと、誘電部材30Aの下面において長手方向(図18、図22におけるX方向)に沿って延在する第2の電極棒302、304を当該延在する方向と直交する配列方向(図18、図22におけるY方向)に複数並べて配置される第2の電極棒群30Cと、樹脂(たとえば、ポリテトラフルオロエチレン(PTFE))などからなり、かつ、第1の電極棒群30Bを構成する各第1の電極棒306、308と、第2の電極棒群30Cを構成する各第2の電極棒302、304とを一端において保持する保持部材30Dと、石英などからなり、かつ、第1の電極棒群30Bを構成する各第1の電極棒306、308のそれぞれを覆う各誘電部材30Eと、石英などからなり、かつ、第2の電極棒群30Cを構成する各第2の電極棒302、304のそれぞれを覆う各誘電部材30Fと、第1の電極棒群30Bに共通して電気的に接続される、アルミニウムなどからなる集合電極30Gと、第2の電極棒群30Cに共通して電気的に接続される、アルミニウムなどからなる集合電極30Hとを備える。誘電部材30E、30Fのそれぞれは、円筒形状を有しており、誘電管とも呼ばれ得る。集合電極30Gと集合電極30Hとは、たとえば、合わせて平面視で円形状となるように配置され、当該円内に、第1の電極棒群30Bおよび第2の電極棒群30Cが収容される。 The plasma generating section 30 includes a plate-shaped dielectric member 30A made of quartz or the like, a first electrode rod 306 extending along the longitudinal direction (−X direction in FIGS. 18 and 22) on the upper surface of the dielectric member 30A, A plurality of first electrode rod groups 30B arranged side by side in the arrangement direction (Y direction in FIGS. 18 and 22) orthogonal to the extending direction, and a longitudinal direction (FIG. 18, FIG. 22) on the lower surface of the dielectric member 30A. A plurality of second electrodes 302 and 304 extending along the X direction in 22) are arranged side by side in the arrangement direction (Y direction in FIGS. 18 and 22) orthogonal to the extending direction. A rod group 30C, first electrode rods 306 and 308 made of resin (for example, polytetrafluoroethylene (PTFE)) or the like and constituting the first electrode rod group 30B, and a second electrode rod group A holding member 30D that holds, at one end, each of the second electrode rods 302 and 304 that constitute the electrode rod 30C, and first electrode rods 306 and 308 that are made of quartz or the like and constitute the first electrode rod group 30B. and each dielectric member 30E made of quartz or the like, and each dielectric member 30F covering each of the second electrode bars 302 and 304 constituting the second electrode bar group 30C, and the first electrode A collective electrode 30G made of aluminum or the like and electrically connected in common to the rod group 30B, and a collective electrode 30H made of aluminum or the like and electrically connected in common to the second electrode rod group 30C. Prepare. Each of the dielectric members 30E, 30F has a cylindrical shape and can also be called a dielectric tube. The collective electrode 30G and the collective electrode 30H are arranged, for example, together to form a circular shape in plan view, and the first electrode rod group 30B and the second electrode rod group 30C are accommodated in the circle. .
 なお、本実施の形態では棒形状の電極部材が用いられているが、電極部材の形状は棒形状に限られるものではない。また、第1の電極棒群30Bを構成する複数の第1の電極棒306、308と第2の電極棒群30Cを構成する複数の第2の電極棒302、304とは、平面視で重ならないように互い違いに配置される。すなわち、平面視で見れば、第1の電極棒群30Bを構成する複数の第1の電極棒306、308と第2の電極棒群30Cを構成する複数の第2の電極棒302、304とは、交互に配列される。 Although a rod-shaped electrode member is used in the present embodiment, the shape of the electrode member is not limited to a rod shape. In addition, the plurality of first electrode bars 306 and 308 forming the first electrode bar group 30B and the plurality of second electrode bars 302 and 304 forming the second electrode bar group 30C overlap each other in plan view. are staggered so that That is, in plan view, the plurality of first electrode bars 306 and 308 forming the first electrode bar group 30B and the plurality of second electrode bars 302 and 304 forming the second electrode bar group 30C are arranged alternately.
 第1の電極棒群30Bを構成する複数の第1の電極棒306、308の各々を覆う各誘電部材30Eは、各第1の電極棒306、308の保持部材30Dに保持されない側の端部において保持部材30Dに保持される。また、第2の電極棒群30Cを構成する複数の第2の電極棒304、302の各々を覆う各誘電部材30Fは、各第2の電極棒304、302の保持部材30Dに保持されない側の端部において保持部材30Dに保持される。 Each dielectric member 30E covering each of the plurality of first electrode rods 306, 308 constituting the first electrode rod group 30B has an end portion of each first electrode rod 306, 308 that is not held by the holding member 30D. is held by the holding member 30D. Each dielectric member 30F covering each of the plurality of second electrode rods 304, 302 constituting the second electrode rod group 30C is provided on the side of each second electrode rod 304, 302 not held by the holding member 30D. It is held by the holding member 30D at the end.
 これによって、第1の電極棒群30Bを構成する複数の第1の電極棒306、308は、一端が保持部材30Dによって直接保持され、他端が各誘電部材30Eを介して保持部材30Dによって保持される。同様に、第2の電極棒群30Cを構成する複数の第2の電極棒302、304は、一端が保持部材30Dによって直接保持され、他端が各誘電部材30Fを介して保持部材30Dによって保持される。 As a result, the plurality of first electrode rods 306 and 308 constituting the first electrode rod group 30B are directly held by the holding member 30D at one end and held by the holding member 30D at the other end via each dielectric member 30E. be done. Similarly, the plurality of second electrode rods 302, 304 constituting the second electrode rod group 30C are directly held by the holding member 30D at one end and held by the holding member 30D at the other end via each dielectric member 30F. be done.
 交流電源である電源8によって、集合電極30Gおよび集合電極30Hとの間に交流電圧が印加されると、集合電極30Gにそれぞれ電気的に接続される第1の電極棒群30Bを構成する複数の第1の電極棒306、308と集合電極30Hにそれぞれ電気的に接続される第2の電極棒群30Cを構成する複数の第2の電極棒302、304との間で誘電体バリア放電が生じる。そして、当該放電の放電経路の周囲で気体のプラズマ化が生じて、第1の電極棒群30Bと第2の電極棒群30Cとを隔てる誘電部材30Aの表面に沿って2次元的に広がるプラズマ空間が形成される。 When an AC voltage is applied between the collective electrode 30G and the collective electrode 30H by the power supply 8, which is an AC power source, the plurality of electrodes constituting the first electrode rod group 30B electrically connected to the collective electrode 30G are respectively connected. A dielectric barrier discharge is generated between the first electrode bars 306, 308 and the plurality of second electrode bars 302, 304 constituting the second electrode group 30C electrically connected to the collective electrode 30H. . Then, the gas is plasmatized around the discharge path of the discharge, and the plasma spreads two-dimensionally along the surface of the dielectric member 30A separating the first electrode group 30B and the second electrode group 30C. A space is formed.
 ここで、上記のプラズマ空間が形成される際に、プラズマ発生部30の下方の空間(すなわち、基板Wの上方の空間)に、たとえば、O(酸素)、Ne、CO、空気、不活性ガスまたはそれらの組み合わせである気体が供給されてもよい。不活性ガスは、たとえば、Nまたは希ガスである。希ガスは、たとえば、HeまたはArなどである。 Here, when the plasma space is formed, for example, O 2 (oxygen), Ne, CO 2 , air, inert Gases that are active gases or combinations thereof may be supplied. Inert gases are, for example, N2 or noble gases. A rare gas is, for example, He or Ar.
 支持部70は、プラズマ発生部30を支持しつつ、たとえば、図示しない駆動機構によって図18のZ軸方向に移動可能である。支持部70は、樹脂(たとえば、PTFE)またはセラミックスなどからなる。 The support part 70 can move in the Z-axis direction in FIG. 18 by a drive mechanism (not shown) while supporting the plasma generation part 30 . The support portion 70 is made of resin (eg, PTFE), ceramics, or the like.
 なお、図18においては、処理液ノズル20とプラズマ発生部30とが別々に設けられているが、処理液ノズル20がプラズマ発生部30と一体的に設けられ、ともに、支持部70によって支持されていてもよい。 In FIG. 18, the processing liquid nozzle 20 and the plasma generating section 30 are provided separately, but the processing liquid nozzle 20 is provided integrally with the plasma generating section 30 and both are supported by the supporting section 70. may be
 <基板処理装置の動作について>
 次に、基板処理装置の動作について説明する。本実施の形態に関する基板処理装置による基板処理方法は、基板処理装置100へ搬送された基板Wに対し薬液処理を行う工程と、薬液処理が行われた基板Wに対し洗浄処理を行う工程と、洗浄処理が行われた基板Wに対し乾燥処理を行う工程と、乾燥処理が行われた基板Wを基板処理装置100から搬出する工程とを備える。
<About the operation of the substrate processing apparatus>
Next, operation of the substrate processing apparatus will be described. The substrate processing method by the substrate processing apparatus according to the present embodiment comprises a step of chemically processing the substrate W conveyed to the substrate processing apparatus 100, a cleaning process of the chemically processed substrate W, It includes a step of performing a drying process on the substrate W that has been subjected to the cleaning process, and a process of unloading the substrate W that has been subjected to the drying process from the substrate processing apparatus 100 .
 以下では、基板処理装置100の動作に含まれる、薬液処理中または薬液処理後に基板Wに付着している有機物(たとえば、使用済みのレジスト膜)を除去する工程(すなわち、上記の工程のうちの、薬液処理を行う工程、または、洗浄処理を行う工程に属する工程)について、図19、図20および図21を参照しつつ説明する。ここで、図19は、本実施の形態に関する基板処理装置100の動作の例を示すフローチャートである。また、図20および図21は、本実施の形態に関する基板処理装置100の動作を説明するための図である。 In the following, the process of removing organic substances (e.g., used resist film) adhering to the substrate W during or after chemical treatment, which is included in the operation of the substrate processing apparatus 100 (that is, one of the above processes), will be described. , a step belonging to the step of performing chemical treatment or the step of performing cleaning treatment) will be described with reference to FIGS. 19, 20 and 21. FIG. Here, FIG. 19 is a flow chart showing an example of the operation of the substrate processing apparatus 100 according to this embodiment. 20 and 21 are diagrams for explaining the operation of the substrate processing apparatus 100 according to this embodiment.
 まず、スピンチャック10が基板Wを保持する(図19におけるステップST01)。そして、スピンチャック10の駆動によって、基板Wが回転する。 First, the spin chuck 10 holds the substrate W (step ST01 in FIG. 19). Then, the substrate W is rotated by driving the spin chuck 10 .
 次に、図20に例が示されるように、処理液供給源29から処理液ノズル20へ処理液101が供給され、基板Wが回転している状態で、処理液ノズル20から基板Wの上面へ処理液101が吐出される(図19におけるステップST02)。この際、図示しないノズルアームなどによって処理液ノズル20の基板Wの上面における位置が調整される。なお、本実施の形態においては、基板Wが回転している状態で処理液101が吐出される場合が示されるが、基板Wは回転していなくともよいし、基板Wが低速回転するパドリング状態であってもよい。 Next, as shown in an example in FIG. 20 , the processing liquid 101 is supplied from the processing liquid supply source 29 to the processing liquid nozzle 20 , and while the substrate W is rotating, the upper surface of the substrate W is removed from the processing liquid nozzle 20 . The treatment liquid 101 is discharged onto the surface (step ST02 in FIG. 19). At this time, the position of the processing liquid nozzle 20 on the upper surface of the substrate W is adjusted by a nozzle arm (not shown) or the like. In this embodiment, the case where the processing liquid 101 is discharged while the substrate W is rotating is shown. may be
 処理液ノズル20から処理液101が吐出されることによって、図20に例が示されるように、基板Wの上面に処理液101の液膜101Aが形成される(図19におけるステップST03)。ここで、液膜101Aの膜厚は、たとえば、0.1mm以上、かつ、2.0mm以下であり、好ましくは0.2mm程度である。 By discharging the treatment liquid 101 from the treatment liquid nozzle 20, a liquid film 101A of the treatment liquid 101 is formed on the upper surface of the substrate W as shown in FIG. 20 (step ST03 in FIG. 19). Here, the film thickness of the liquid film 101A is, for example, 0.1 mm or more and 2.0 mm or less, preferably about 0.2 mm.
 一方で、集合電極30Gおよび集合電極30Hとの間に電源8からの所定の交流電圧が印加されることによって、プラズマ発生部30における誘電部材30Aの表面にプラズマが生じる(図19におけるステップST04)。具体的には、誘電部材30Aの表面に沿って2次元的に広がるプラズマ空間が形成される。当該プラズマ空間におけるプラズマの作用によって、当該空間近傍の気体に活性種が生じる。活性種には、電荷を有するイオン、または、電気的に中性であるラジカルなどが含まれる。たとえば、気体がOを含むものである場合は、プラズマ発生部30におけるプラズマの作用によって、活性種の一種である酸素ラジカルが生じる。 On the other hand, by applying a predetermined AC voltage from the power supply 8 between the collective electrodes 30G and 30H, plasma is generated on the surface of the dielectric member 30A in the plasma generating section 30 (step ST04 in FIG. 19). . Specifically, a plasma space is formed that extends two-dimensionally along the surface of the dielectric member 30A. Active species are generated in the gas near the space by the action of the plasma in the plasma space. Active species include charged ions, electrically neutral radicals, and the like. For example, when the gas contains O 2 , oxygen radicals, which are a type of active species, are generated by the action of plasma in the plasma generating section 30 .
 ここで、プラズマ発生部30は、上記のようにプラズマを生じさせる段階においては所定の待機位置(たとえば、図20に例が示されるような、基板WからZ軸正方向に十分に離間する位置)に待機しておき、誘電部材30Aの表面に適度に均一なプラズマが生じた後で、基板W近傍の処理位置(たとえば、図21に例が示されるような、基板WのZ軸正方向側で基板Wに十分に近接する位置)に移動することが望ましい。このような態様であれば、均一なプラズマが生じた状態で基板Wの表面における液膜101Aにプラズマを作用させることで、均一な処理を行うことができる。なお、基板Wに十分に近接する位置とは、たとえば、基板Wから数mm離れる位置であり、基板Wの上面に形成される薄い液膜101Aに十分にプラズマを作用させることができる位置である。 Here, the plasma generating unit 30 is placed at a predetermined standby position (for example, a position sufficiently separated from the substrate W in the positive direction of the Z-axis, as shown in FIG. 20) in the stage of generating plasma as described above. ), and after a moderately uniform plasma is generated on the surface of the dielectric member 30A, the processing position near the substrate W (for example, the Z-axis positive direction of the substrate W as shown in FIG. 21). position sufficiently close to the substrate W on the side). In such a mode, uniform processing can be performed by causing the plasma to act on the liquid film 101A on the surface of the substrate W in a state in which uniform plasma is generated. The position sufficiently close to the substrate W is, for example, a position separated by several mm from the substrate W, and a position where the thin liquid film 101A formed on the upper surface of the substrate W can be sufficiently acted on by the plasma. .
 そして、図21に例が示されるように、プラズマ発生部30において発生した活性種が、液膜101Aへと供給される(図19におけるステップST05)。 Then, as an example is shown in FIG. 21, active species generated in the plasma generating section 30 are supplied to the liquid film 101A (step ST05 in FIG. 19).
 活性種が液膜101Aへと供給されることによって、液膜101A中で活性種が処理液101を活性化する。たとえば、活性種が酸素ラジカルを含む場合、酸素ラジカルの酸化力によって基板W上のレジスト膜の除去が促進される。 By supplying the active species to the liquid film 101A, the active species activate the treatment liquid 101 in the liquid film 101A. For example, if the active species contain oxygen radicals, the oxidizing power of the oxygen radicals promotes the removal of the resist film on the substrate W. FIG.
 なお、上記の説明では、処理液ノズル20の動作の後にプラズマ発生部30の動作が行われているが、動作順序はこれに限られるものではなく、たとえば、処理液ノズル20の動作とプラズマ発生部30の動作とがほぼ同時に行われてもよい。 In the above description, the operation of the plasma generating section 30 is performed after the operation of the processing liquid nozzle 20, but the operation order is not limited to this. and the operation of the unit 30 may be performed substantially simultaneously.
 また、本実施の形態ではプラズマ発生部30は基板Wの上面全体を覆うように配置されているが、プラズマ発生部30が基板Wの一部のみを覆うように配置される場合には、プラズマ発生部30の基板Wの上面における位置を、基板Wの回転に伴って基板Wの上面に沿って基板Wの回転方向および径方向に図示しない駆動機構によって移動させてもよい。 Further, in the present embodiment, the plasma generation unit 30 is arranged so as to cover the entire upper surface of the substrate W, but when the plasma generation unit 30 is arranged so as to cover only a part of the substrate W, the plasma The position of the generator 30 on the upper surface of the substrate W may be moved along the upper surface of the substrate W in the rotational direction and radial direction of the substrate W by a drive mechanism (not shown) as the substrate W rotates.
 また、液膜101Aの形成は、基板Wの上面への処理液101の供給を開始することによって開始され、基板Wの上面への処理液101の供給を停止することによって停止されるが、処理液ノズル20からの処理液101の供給を停止した後も、基板Wが高速回転していなければ(たとえば、基板Wが低速回転するパドリング、または、基板Wが回転していない状態など)、液膜101Aは維持され得る。活性種の液膜101Aへの供給は、処理液101の供給を開始した後、かつ、処理液101の供給を停止する前に行われるが、液膜101Aが維持されている場合には、処理液101の供給が停止された後に活性種の液膜101Aへの供給が行われてもよい。 Further, the formation of the liquid film 101A is started by starting the supply of the processing liquid 101 onto the upper surface of the substrate W, and is stopped by stopping the supply of the processing liquid 101 onto the upper surface of the substrate W. If the substrate W does not rotate at a high speed even after the supply of the processing liquid 101 from the liquid nozzle 20 is stopped (for example, the substrate W rotates at a low speed during paddling, or the substrate W does not rotate), the liquid Membrane 101A can be maintained. The supply of the active species to the liquid film 101A is performed after the supply of the treatment liquid 101 is started and before the supply of the treatment liquid 101 is stopped. The active species may be supplied to the liquid film 101A after the supply of the liquid 101 is stopped.
 なお、上記の除去処理の後、通常は、基板Wのリンス工程(洗浄工程)および乾燥工程が行われる。たとえば、リンス工程は、基板Wへ純水(DIW)を吐出することによって行われ、乾燥工程は、イソプロピルアルコール(IPA)乾燥によって行われる。 After the removal process described above, the substrate W is usually rinsed (washed) and dried. For example, the rinsing process is performed by discharging pure water (DIW) onto the substrate W, and the drying process is performed by isopropyl alcohol (IPA) drying.
 <プラズマ発生部について>
 図22は、プラズマ発生部30における複数の電極棒の構成の例を示す平面図である。図22に例が示されるように、プラズマ発生部30は、複数の第1の電極棒306、308から構成される第1の電極棒群30Bと、複数の第2の電極棒302、304から構成される第2の電極棒群30Cと、集合電極30Gと、集合電極30Hとを備える。なお、図22においては、誘電部材30A、保持部材30D、各誘電部材30Eおよび各誘電部材30Fは図示が省略されている。
<Regarding the plasma generator>
FIG. 22 is a plan view showing an example configuration of a plurality of electrode rods in the plasma generating section 30. FIG. As an example is shown in FIG. 22, the plasma generating section 30 includes a first electrode rod group 30B composed of a plurality of first electrode rods 306 and 308 and a plurality of second electrode rods 302 and 304. It comprises a second electrode rod group 30C, a collective electrode 30G, and a collective electrode 30H. In FIG. 22, illustration of the dielectric member 30A, the holding member 30D, the dielectric members 30E, and the dielectric members 30F is omitted.
 第1の電極棒群30Bを構成する複数の第1の電極棒は、複数の電極棒308と、電極棒308とは異なる材料で形成された、複数の電極棒306とを備える。また、第2の電極棒群30Cを構成する複数の第2の電極棒は、複数の電極棒304と、電極棒304とは異なる材料で形成された、複数の電極棒302とを備える。 A plurality of first electrode rods constituting the first electrode rod group 30B includes a plurality of electrode rods 308 and a plurality of electrode rods 306 made of a material different from that of the electrode rods 308. Moreover, the plurality of second electrode rods forming the second electrode rod group 30C includes a plurality of electrode rods 304 and a plurality of electrode rods 302 made of a material different from that of the electrode rods 304 .
 構成する材料が異なることに起因して、電極棒306の単位長さ当たりの電気抵抗は、電極棒308の単位長さ当たりの電気抵抗よりも小さい。同様に、電極棒302の単位長さ当たりの電気抵抗は、電極棒304の単位長さ当たりの電気抵抗よりも小さい。かかる複数の第1の電極棒に含まれる電極棒306と、複数の第2の電極棒に含まれる電極棒302は、本開示における小抵抗電極部材に相当する。 Due to the different constituent materials, the electrical resistance per unit length of the electrode rod 306 is smaller than the electrical resistance per unit length of the electrode rod 308 . Similarly, the electrical resistance per unit length of electrode rod 302 is less than the electrical resistance per unit length of electrode rod 304 . The electrode rods 306 included in the plurality of first electrode rods and the electrode rods 302 included in the plurality of second electrode rods correspond to low resistance electrode members in the present disclosure.
 電極棒308および電極棒304の材料としては、たとえば、タングステンが想定される。一方で、電極棒306および電極棒302の材料としては、たとえば、銅、銀、金またはアルミニウムなどが想定される。なお、電極棒308と電極棒304とは、異なる材料で形成されていてもよい。同様に、電極棒306と電極棒302とは、異なる材料で形成されていてもよい。 The material of the electrode rods 308 and 304 is assumed to be tungsten, for example. On the other hand, as the material of electrode rod 306 and electrode rod 302, for example, copper, silver, gold, aluminum, or the like is assumed. Note that the electrode rods 308 and the electrode rods 304 may be made of different materials. Similarly, electrode rod 306 and electrode rod 302 may be made of different materials.
 本実施の形態においては、図22に示すように、第1の電極棒群30Bを構成する各電極棒306のそれぞれは、第2の電極棒群30Cを構成する各電極棒302のそれぞれと、平面視で隣り合うように配置されている。言い換えれば、複数の第1の電極棒の一部である各電極棒306のそれぞれは、複数の第2の電極棒の一部である各電極棒304それぞれと、平面視で隣り合うように配置されている。すなわち、単位長さ当たりの電気抵抗が電極棒308よりも小さい各電極棒306と、単位長さ当たりの電気抵抗が電極棒304よりも小さい各電極棒302とが、平面視で隣り合うように配置されている。 In the present embodiment, as shown in FIG. 22, each of the electrode bars 306 that make up the first electrode bar group 30B, each of the electrode bars 302 that make up the second electrode group 30C, They are arranged so as to be adjacent to each other in plan view. In other words, each electrode rod 306 that is part of the plurality of first electrode rods is arranged so as to be adjacent to each electrode rod 304 that is part of the plurality of second electrode rods in plan view. It is That is, each electrode rod 306 having a smaller electrical resistance per unit length than the electrode rod 308 and each electrode rod 302 having a smaller electrical resistance per unit length than the electrode rod 304 are arranged adjacent to each other in plan view. are placed.
 ここで、プラズマ発生部30に設けられるそれぞれの電極棒近傍でプラズマが生じるまで(プラズマ空間が形成されるまで)に要する時間は、電極棒の個体差、電極棒の配置誤差または集合電極の個体差などによってばらつきがある。特に、プラズマ発生部30におけるプラズマ空間を形成する面積が大きい場合には当該ばらつきも大きくなり、プラズマ発生部30内の領域全体で均一なプラズマを生じさせるまでに要する時間が長くなる。 Here, the time required to generate plasma (until the plasma space is formed) in the vicinity of each electrode rod provided in the plasma generation unit 30 depends on the individual difference of the electrode rods, the arrangement error of the electrode rods, or the individual There are variations due to differences, etc. In particular, when the area forming the plasma space in the plasma generating section 30 is large, the variation also increases, and the time required to generate uniform plasma over the entire area in the plasma generating section 30 increases.
 本実施の形態では、前述したように、プラズマ発生部30における第1の電極棒群30Bを、異なる材料で形成された複数の電極棒308と複数の電極棒306とで構成される複数の第1の電極棒にて構成し、また、第2の電極棒群30Cを、異なる材料で形成された複数の電極棒304と複数の電極棒302とで構成される複数の第2の電極棒にて構成している。ここで、各電極棒306と各電極棒302とは、それぞれ同じ電極棒群を構成する複数の電極棒308と複数の電極棒304より電極棒の単位長さ当たりの電気抵抗が小さい。 In the present embodiment, as described above, the first electrode rod group 30B in the plasma generating section 30 is composed of a plurality of electrode rods 308 and a plurality of electrode rods 306 made of different materials. The second electrode rod group 30C is composed of a plurality of second electrode rods composed of a plurality of electrode rods 304 and a plurality of electrode rods 302 made of different materials. It consists of Here, each electrode rod 306 and each electrode rod 302 has a smaller electrical resistance per unit length than the plurality of electrode rods 308 and the plurality of electrode rods 304 constituting the same electrode rod group.
 このような構成によれば、第1の電極棒群30Bを構成する複数の第1の電極棒のうち、各電極棒308よりも単位長さ当たりの電気抵抗が小さい各電極棒306に電流が流れやすくなり、各電極棒306が加熱されやすくなる。また、第2の電極棒群30Cを構成する複数の第2の電極棒のうち、各電極棒304よりも単位長さ当たりの電気抵抗が小さい各電極棒302に電流が流れやすくなり、各電極棒302が加熱されやすくなる。そうすると、各電極棒306、各電極棒302からの放熱によって各電極棒306の周囲、各電極棒302の周囲の空気が加熱されることで各電極棒306の周囲および各電極棒302の周囲にプラズマが発生する。さらに、プラズマが発生したことで各電極棒306の周囲の空気と各電極棒302の周囲の空気はさらに温度が上昇する。そして、各電極棒306、302の周囲に発生した熱が、それぞれ第1の電極棒群30Bの一部を構成する複数の電極棒308および第2の電極棒群30Cの一部を構成する複数の電極棒304と、その周囲の空気に伝搬することで、プラズマ発生部30の全体でプラズマの発生が促進される。 According to such a configuration, among the plurality of first electrode rods forming the first electrode rod group 30B, current flows through each of the electrode rods 306 having a smaller electrical resistance per unit length than each of the electrode rods 308. It becomes easy to flow, and each electrode rod 306 becomes easy to be heated. In addition, among the plurality of second electrode rods constituting the second electrode rod group 30C, the current easily flows through each electrode rod 302 having a smaller electrical resistance per unit length than each electrode rod 304. The rod 302 is easily heated. Then, the air around each electrode rod 306 and each electrode rod 302 is heated by the heat radiation from each electrode rod 306 and each electrode rod 302, and the air around each electrode rod 306 and each electrode rod 302 is heated. Plasma is generated. Furthermore, the temperature of the air around each electrode rod 306 and the air around each electrode rod 302 further rises due to the generation of plasma. Then, the heat generated around each of the electrode rods 306 and 302 heats the plurality of electrode rods 308 that form part of the first electrode rod group 30B and the plurality of electrode rods that form part of the second electrode rod group 30C. The generation of plasma is promoted in the entire plasma generating section 30 by propagating to the electrode rod 304 and the surrounding air.
 また、このような構成によれば、プラズマが生じるまでに比較的長い時間を要する電極棒の材料を、他の電極棒の材料よりも単位長さ当たりの電気抵抗が小さいものとすることで、当該電極棒に電流が流れやすくなる。そうすると、電流が流れやすくなった当該電極棒およびその近傍の気体が、他の電極棒およびその近傍の気体よりも加熱されやすくなるため、プラズマが生じるまでに要する時間が短くなる。その結果として、それぞれの電極棒近傍でプラズマが生じるまでに要する時間のばらつきが小さくなり、プラズマ発生部30の全体でプラズマを生じさせるまでに要する時間を短縮することができる。 In addition, according to such a configuration, the material of the electrode rod, which takes a relatively long time to generate plasma, is made of a material having a lower electrical resistance per unit length than the material of the other electrode rods, A current easily flows through the electrode rod. As a result, the electrode rod and the gas in the vicinity thereof, through which the current flows more easily, are more easily heated than the other electrode rods and the gas in the vicinity thereof, so that the time required to generate plasma is shortened. As a result, variations in the time required to generate plasma in the vicinity of each electrode rod are reduced, and the time required to generate plasma in the entire plasma generating section 30 can be shortened.
 さらに、本実施の形態においては、前述したように、第1の電極棒群30Bを構成する複数の第1の電極棒の一部となる複数の電極棒306の各々は、第2の電極棒群30Cを構成する複数の第2の電極棒の一部となる複数の電極棒302の各々と、平面視で隣り合うように配置されている。すなわち、電極棒308の単位長さ当たりの電気抵抗よりも小さい電極棒306と、電極棒304の単位長さ当たりの電気抵抗よりも小さい電極棒302とが、一対となって隣り合うように配置されている。これによって、各電極棒306、各電極棒302において電流が流れやすくなり、他の電極棒308、304と比較して各電極棒306、各電極棒302の加熱が進む。そうすると、各電極棒306、各電極棒302からの放熱によって各電極棒306の周囲、各電極棒302の周囲の空気が先んじて加熱されることで各電極棒306の周囲および各電極棒302の周囲に速やかにプラズマが発生する。さらに、プラズマが発生したことで各電極棒306の周囲の空気と各電極棒302の周囲の空気はさらに温度が上昇する。そして、各電極棒306および各電極棒302の周囲に発生した熱が、それぞれ、各電極棒308および各電極棒304と、その周囲の空気に伝搬して各電極棒308、各電極棒304とそれぞれの周囲の空気に対する加熱が進んでいく。これによって、各電極棒308の周囲および各電極棒304の周囲に順次プラズマが発生し、プラズマ発生部30の全体でプラズマの発生が促進される。 Furthermore, in the present embodiment, as described above, each of the plurality of electrode rods 306 that are part of the plurality of first electrode rods that constitute the first electrode rod group 30B is a second electrode rod. It is arranged so as to be adjacent to each of the plurality of electrode rods 302 forming part of the plurality of second electrode rods forming the group 30C in a plan view. That is, an electrode rod 306 having a smaller electrical resistance per unit length than the electrode rod 308 and an electrode rod 302 having a smaller electrical resistance per unit length than the electrode rod 304 are arranged adjacent to each other as a pair. It is As a result, electric current flows easily in each electrode rod 306 and each electrode rod 302 , and heating of each electrode rod 306 and each electrode rod 302 progresses compared to other electrode rods 308 and 304 . Then, the air around each electrode rod 306 and each electrode rod 302 is heated first by the heat radiation from each electrode rod 306 and each electrode rod 302 , so that the surroundings of each electrode rod 306 and each electrode rod 302 are heated. Plasma is quickly generated in the surrounding area. Furthermore, the temperature of the air around each electrode rod 306 and the air around each electrode rod 302 further rises due to the generation of plasma. Then, the heat generated around each electrode rod 306 and each electrode rod 302 propagates to each electrode rod 308 and each electrode rod 304, and to the surrounding air to each electrode rod 308 and each electrode rod 304. Heating of the air around each progresses. As a result, plasma is sequentially generated around each electrode rod 308 and around each electrode rod 304 , thereby promoting plasma generation in the entire plasma generating section 30 .
 図23および図24は、上述したプラズマ発生部30を用いてプラズマを生じさせる場合の経過の例を示す平面図である。なお、図23および図24においては、誘電部材30A、保持部材30D、誘電部材30Eおよび誘電部材30Fは図示が省略されている。 23 and 24 are plan views showing an example of the process of generating plasma using the plasma generating section 30 described above. 23 and 24, illustration of the dielectric member 30A, the holding member 30D, the dielectric member 30E, and the dielectric member 30F is omitted.
 図23に例が示されるように、第1の電極棒群30Bおよび第2の電極棒群30Cに同様に電圧が印加されると、まず、電流が流れやすい各電極棒302および各電極棒306の加熱が進む。各電極棒306、各電極棒302の加熱が進むと、各電極棒306、各電極棒302からの放熱によって各電極棒306の周囲、各電極棒302の周囲の空気が先んじて加熱される。各電極棒306の周囲、各電極棒302の周囲の空気が加熱されることで、各電極棒306の周囲および各電極棒302の周囲に速やかにプラズマ102が生じる。 As an example is shown in FIG. 23, when a voltage is similarly applied to the first electrode bar group 30B and the second electrode bar group 30C, first, each electrode bar 302 and each electrode bar 306 where current tends to flow heating progresses. As the heating of each electrode rod 306 and each electrode rod 302 progresses, the air around each electrode rod 306 and each electrode rod 302 is heated first by heat radiation from each electrode rod 306 and each electrode rod 302 . By heating the air around each electrode rod 306 and each electrode rod 302 , plasma 102 is quickly generated around each electrode rod 306 and around each electrode rod 302 .
 その後、図24に例が示されるように、各電極棒304の近傍および各電極棒308の近傍においても、順次プラズマ102が生じる。これは、前述したように、以下のメカニズムによるものである。すなわち、プラズマが発生したことで各電極棒306の周囲の空気と各電極棒302の周囲の空気はさらに温度上昇し、各電極棒306および各電極棒302の周囲に発生した熱が、複数の電極棒308および複数の電極棒304と、その周囲の空気に伝搬する。すると、各電極棒308、各電極棒304とそれぞれの周囲の空気に対する加熱が進み、各電極棒308の周囲および各電極棒304の周囲に次第にプラズマが発生することになり、プラズマ発生部30の全体に渡ってプラズマの発生が進むことになる。 After that, as shown in FIG. 24, plasma 102 is generated in sequence near each electrode bar 304 and near each electrode bar 308 as well. This is due to the following mechanism, as described above. That is, the temperature of the air around each electrode rod 306 and the air around each electrode rod 302 further rise due to the generation of plasma, and the heat generated around each electrode rod 306 and each electrode rod 302 is dissipated into a plurality of It propagates through the electrode rod 308 and the plurality of electrode rods 304 and the surrounding air. Then, the heating of the electrode rods 308 and 304 and the surrounding air progresses, plasma is gradually generated around the electrode rods 308 and 304, and the plasma generating section 30 is heated. Plasma generation progresses over the entire area.
 このように、第1の電極棒群30Bを構成する複数の第1の電極棒および第2の電極棒群30Cを構成する複数の第2の電極棒の中に、他の電極棒よりも単位長さ当たりの電気抵抗が小さい電極棒を混在させることによって、プラズマ発生部30の全体でプラズマを生じさせるまでに要する時間を短縮することができる。 In this way, among the plurality of first electrode rods constituting the first electrode rod group 30B and the plurality of second electrode rods constituting the second electrode rod group 30C, the unit By mixing electrode rods with low electrical resistance per length, the time required to generate plasma in the entire plasma generating section 30 can be shortened.
 なお、各電極棒302または各電極棒306が配置される位置は、図22、図23および図24に示される場合に限られるものではない。また、各電極棒302または各電極棒306が配置される位置は、第1の電極棒群30Bおよび第2の電極棒群30Cが同一の材料で形成されている状態でプラズマが生じるまでに要する時間をあらかじめ測定して、当該時間が比較的長い電極棒の位置に対応させることができる。 The position where each electrode rod 302 or each electrode rod 306 is arranged is not limited to the cases shown in FIGS. 22, 23 and 24. Further, the position at which each electrode bar 302 or each electrode bar 306 is arranged is determined by the position required until plasma is generated in a state in which the first electrode bar group 30B and the second electrode bar group 30C are made of the same material. The time can be measured in advance and correspond to the position of the electrode rod where the time is relatively long.
 さらに、図22に示す本実施の形態のように、第1の電極棒群30Bの一部を構成する各電極棒306のそれぞれと、第2の電極棒群30Cの一部を構成する各電極棒302のそれぞれとを、各一対として隣り合うように配置することで、各電極棒306の周囲、各電極棒302の周囲の空気を先んじて加熱でき、各電極棒306の周囲および各電極棒302の周囲により速やかにプラズマ102を生じさせることができる。これによって、より一層短時間で効率的に熱を伝搬させてプラズマを生じさせることができる。また、図22、図23、図24において、電気抵抗の小さい電極棒306と電気抵抗の小さい電極棒302とを隣り合うように配置する構成を複数組形成し、平面視で、当該各組の間の位置に、電極棒306および電極棒302より電気抵抗の高い材料で構成される電極棒308、電極棒304を配置するようにプラズマ発生部30が構成されている。このような構成を採ることで、複数の箇所、即ち、電極棒306と電極棒302を一対として隣り合うようにて配置された複数箇所が、迅速にプラズマが発生する複数の起点となり、かかる起点を基にしてプラズマ発生部30の全体に熱が伝わることとなるため、短時間で効率的に熱を伝搬させてプラズマを生じさせることができる。 Furthermore, as in the present embodiment shown in FIG. 22, each of the electrode bars 306 forming part of the first electrode bar group 30B and each electrode forming part of the second electrode bar group 30C By arranging each of the rods 302 adjacent to each other as a pair, the air around each electrode rod 306 and each electrode rod 302 can be heated first, and the surroundings of each electrode rod 306 and each electrode rod can be heated first. Plasma 102 can be generated more quickly around 302 . As a result, heat can be efficiently propagated in a much shorter time to generate plasma. In FIGS. 22, 23, and 24, a plurality of sets are formed in which the electrode rods 306 with low electrical resistance and the electrode rods 302 with low electrical resistance are arranged adjacent to each other. Plasma generating section 30 is configured such that electrode rods 308 and 304 made of a material having higher electrical resistance than electrode rods 306 and 302 are arranged between them. By adopting such a configuration, a plurality of locations, that is, a plurality of locations where the electrode rod 306 and the electrode rod 302 are paired and arranged adjacent to each other, become a plurality of starting points at which plasma is quickly generated. Since the heat is transmitted to the entire plasma generating section 30 based on , the heat can be efficiently transmitted in a short time to generate plasma.
 また、プラズマ発生部30においてプラズマが生じるまでには時間を要するため、プラズマ処理を行う前の工程、たとえば、基板Wの上面に液膜101Aを形成する工程の間に、プラズマ発生部30が待機位置に位置している状態でプラズマ発生部30に対する電圧の印加が開始されていることが望ましい。 In addition, since it takes time to generate plasma in the plasma generation unit 30, the plasma generation unit 30 waits during the process before plasma processing, for example, the process of forming the liquid film 101A on the upper surface of the substrate W. It is desirable that the application of the voltage to the plasma generating section 30 is started in the state of being located at the position.
 また、電極棒306(または電極棒302)が設けられる箇所は図22に例が示された場合に限られるものではないが、当該箇所が、放射温度計などを用いて行われるプラズマ発生部30内の複数箇所の温度測定の結果に基づいて特定されてもよい。 Further, the locations where the electrode rods 306 (or the electrode rods 302) are provided are not limited to the example shown in FIG. It may be identified based on the results of temperature measurement at multiple locations within the area.
 図25は、プラズマ発生部130における複数の電極棒の構成の例を示す平面図である。図25に例が示されるように、プラズマ発生部130は、複数の第1の電極棒307、308から構成される第1の電極棒群130Bと、複数の第2の電極棒303、304から構成される第2の電極棒群130Cと、集合電極30Gと、集合電極30Hとを備える。なお、図25においては、誘電部材30A、保持部材30D、誘電部材30Eおよび誘電部材30Fは図示が省略されている。 FIG. 25 is a plan view showing an example configuration of a plurality of electrode rods in the plasma generating section 130. FIG. As an example is shown in FIG. 25, the plasma generating section 130 includes a first electrode rod group 130B composed of a plurality of first electrode rods 307 and 308 and a plurality of second electrode rods 303 and 304. It comprises a second electrode rod group 130C, a collective electrode 30G, and a collective electrode 30H. In FIG. 25, illustration of the dielectric member 30A, the holding member 30D, the dielectric member 30E, and the dielectric member 30F is omitted.
 第1の電極棒群130Bを構成する複数の第1の電極棒は、複数の電極棒308と、各電極棒308よりも太い、複数の電極棒307とを備える。また、第2の電極棒群130Cを構成する複数の第2の電極棒は、複数の電極棒304と、各電極棒304よりも太い、複数の電極棒303とを備える。 The plurality of first electrode rods constituting the first electrode rod group 130B includes a plurality of electrode rods 308 and a plurality of electrode rods 307 thicker than each electrode rod 308. Moreover, the plurality of second electrode rods that constitute the second electrode rod group 130</b>C include a plurality of electrode rods 304 and a plurality of electrode rods 303 that are thicker than the electrode rods 304 .
 太さが異なることに起因して、各電極棒307の単位長さ当たりの電気抵抗は、各電極棒308の単位長さ当たりの電気抵抗よりも小さい。同様に、各電極棒303の単位長さ当たりの電気抵抗は、各電極棒304の単位長さ当たりの電気抵抗よりも小さい。 Due to the difference in thickness, the electrical resistance per unit length of each electrode rod 307 is smaller than the electrical resistance per unit length of each electrode rod 308 . Similarly, the electrical resistance per unit length of each electrode rod 303 is less than the electrical resistance per unit length of each electrode rod 304 .
 本実施の形態においては、図25に示すように、第1の電極棒群130Bを構成する各電極棒307のそれぞれは、第2の電極棒群130Cを構成する各電極棒303のそれぞれと、平面視で隣り合うように配置されている。言い換えれば、複数の第1の電極棒の一部である各電極棒307のそれぞれは、複数の第2の電極棒の一部である各電極棒303のそれぞれと、平面視で隣り合うように配置されている。すなわち、単位長さ当たりの電気抵抗が電極棒308よりも小さい各電極棒307と、単位長さ当たりの電気抵抗が電極棒304よりも小さい各電極棒303とが、隣接して配置されている。 In the present embodiment, as shown in FIG. 25, each of the electrode rods 307 constituting the first electrode rod group 130B, each of the electrode rods 303 constituting the second electrode rod group 130C, and They are arranged so as to be adjacent to each other in plan view. In other words, each electrode rod 307 that is part of the plurality of first electrode rods is adjacent to each electrode rod 303 that is part of the plurality of second electrode rods in plan view. are placed. That is, each electrode rod 307 having a smaller electrical resistance per unit length than the electrode rod 308 and each electrode rod 303 having a smaller electrical resistance per unit length than the electrode rod 304 are arranged adjacent to each other. .
 このような構成によれば、第1の電極棒群130Bを構成する複数の第1の電極棒のうち、各電極棒308よりも単位長さ当たりの電気抵抗が小さい各電極棒307に電流が流れやすくなり、各電極棒307が加熱されやすくなる。また、第2の電極棒群130Cを構成する複数の第2の電極棒のうち、各電極棒304よりも単位長さ当たりの電気抵抗が小さい各電極棒303に電流が流れやすくなり、各電極棒303が加熱されやすくなる。そうすると、各電極棒307、各電極棒303からの放熱によって各電極棒307の周囲、各電極棒303の周囲の空気が加熱されることで各電極棒307の周囲および各電極棒303の周囲にプラズマが発生する。さらに、プラズマが発生したことで各電極棒307の周囲の空気と各電極棒303の周囲の空気はさらに温度が上昇する。そして、各電極棒307、303の周囲に発生した熱が、それぞれ第1の電極棒群130Bの一部を構成する複数の電極棒308および第2の電極棒群130Cの一部を構成する複数の電極棒304と、その周囲の空気に伝搬することで、プラズマ発生部130の全体でプラズマの発生が促進される。 According to such a configuration, among the plurality of first electrode rods forming the first electrode rod group 130B, the current flows through each electrode rod 307 having a smaller electrical resistance per unit length than each electrode rod 308. It becomes easy to flow, and each electrode rod 307 becomes easy to be heated. In addition, among the plurality of second electrode rods constituting the second electrode rod group 130C, the current easily flows through each electrode rod 303 having a smaller electrical resistance per unit length than each electrode rod 304. The rod 303 is easily heated. Then, the air around each electrode rod 307 and each electrode rod 303 is heated by the heat radiation from each electrode rod 307 and each electrode rod 303, and the air around each electrode rod 307 and each electrode rod 303 is heated. Plasma is generated. Furthermore, the temperature of the air around each electrode rod 307 and the air around each electrode rod 303 further rises due to the generation of plasma. Then, the heat generated around each of the electrode rods 307 and 303 heats the plurality of electrode rods 308 that form part of the first electrode rod group 130B and the plurality of electrode rods that form part of the second electrode rod group 130C. The generation of plasma is promoted in the entire plasma generating section 130 by propagating to the electrode rods 304 and the surrounding air.
 また、このような構成によれば、プラズマが生じるまでに比較的長い時間を要する電極棒を、他の電極棒よりも太い電極棒に変更することで、当該電極棒に電流が流れやすくなる。そうすると、電流が流れやすくなった当該電極棒およびその近傍の気体が、他の電極棒およびその近傍の気体よりも加熱されやすくなるため、プラズマが生じるまでに要する時間が短くなる。その結果として、それぞれの電極棒近傍でプラズマが生じるまでに要する時間のばらつきが小さくなり、プラズマ発生部130の全体でプラズマを生じさせるまでに要する時間を短縮することができる。 In addition, according to such a configuration, by changing the electrode rod that takes a relatively long time to generate plasma to an electrode rod that is thicker than the other electrode rods, the electric current can easily flow through the electrode rod. As a result, the electrode rod and the gas in the vicinity thereof, through which the current flows more easily, are more easily heated than the other electrode rods and the gas in the vicinity thereof, so that the time required to generate plasma is shortened. As a result, variations in the time required to generate plasma in the vicinity of each electrode rod are reduced, and the time required to generate plasma in the entire plasma generating section 130 can be shortened.
 本実施の形態においては、前述したように、第1の電極棒群130Bを構成する複数の第1の電極棒の一部となる複数の電極棒307の各々は、第2の電極棒群130Cを構成する複数の第2の電極棒の一部となる複数の電極棒303の各々と、平面視で隣り合うように配置されている。すなわち、単位長さ当たりの電気抵抗が電極棒308よりも小さい電極棒307と、単位長さ当たりの電気抵抗が電極棒304よりも小さい電極棒303とが、一対となって隣り合うように配置されている。これによって、各電極棒307、各電極棒303において電流が流れやすくなり、他の電極棒308、304と比較して各電極棒307、各電極棒303の加熱が進む。そうすると、各電極棒307、各電極棒303からの放熱によって各電極棒307の周囲、各電極棒303の周囲の空気が先んじて加熱されることで各電極棒307の周囲および各電極棒303の周囲に速やかにプラズマが発生する。さらに、プラズマが発生したことで各電極棒307の周囲の空気と各電極棒303の周囲の空気はさらに温度が上昇する。そして、各電極棒307および各電極棒303の周囲に発生した熱が、それぞれ、各電極棒308および各電極棒304と、その周囲の空気に伝搬して各電極棒308、各電極棒304とそれぞれの周囲の空気に対する加熱が進んでいく。これによって、各電極棒308の周囲および各電極棒304の周囲に順次プラズマが発生し、プラズマ発生部130の全体でプラズマの発生が促進される。 In the present embodiment, as described above, each of the plurality of electrode rods 307 that are part of the plurality of first electrode rods that constitute the first electrode rod group 130B is connected to the second electrode rod group 130C. are arranged so as to be adjacent to each of the plurality of electrode rods 303 that are part of the plurality of second electrode rods that constitute the . That is, an electrode rod 307 having a smaller electrical resistance per unit length than the electrode rod 308 and an electrode rod 303 having a smaller electrical resistance per unit length than the electrode rod 304 are arranged side by side as a pair. It is As a result, electric current flows easily in each electrode rod 307 and each electrode rod 303 , and heating of each electrode rod 307 and each electrode rod 303 progresses compared to other electrode rods 308 and 304 . Then, the air around each electrode rod 307 and each electrode rod 303 is heated first by the heat radiation from each electrode rod 307 and each electrode rod 303 , so that the surroundings of each electrode rod 307 and each electrode rod 303 are heated. Plasma is quickly generated in the surrounding area. Furthermore, the temperature of the air around each electrode rod 307 and the air around each electrode rod 303 further rises due to the generation of plasma. Then, the heat generated around each electrode rod 307 and each electrode rod 303 propagates to each electrode rod 308 and each electrode rod 304, and to the surrounding air to each electrode rod 308 and each electrode rod 304. Heating of the air around each progresses. As a result, plasma is sequentially generated around each electrode rod 308 and around each electrode rod 304 , thereby promoting plasma generation in the entire plasma generating section 130 .
 なお、各電極棒303または各電極棒307が配置される位置は、図25に示される場合に限られるものではない。また、各電極棒303または各電極棒307が配置される位置は、第1の電極棒群130Bおよび第2の電極棒群130Cが同一の太さで形成されている状態でプラズマが生じるまでに要する時間をあらかじめ測定して、当該時間が比較的長い電極棒の位置に対応させることができる。 The position where each electrode rod 303 or each electrode rod 307 is arranged is not limited to the case shown in FIG. Further, the position at which each electrode bar 303 or each electrode bar 307 is arranged should be adjusted until plasma is generated in a state where the first electrode bar group 130B and the second electrode bar group 130C are formed with the same thickness. It is possible to measure the required time in advance and correspond to the position of the electrode rod where the time is relatively long.
 さらに、図25に示す本実施の形態のように、第1の電極棒群130Bの一部を構成する各電極棒307のそれぞれと、第2の電極棒群130Cの一部を構成する各電極棒303のそれぞれとを、各一対として隣り合うように配置することで、各電極棒307の周囲、各電極棒303の周囲の空気を先んじて加熱でき、各電極棒307の周囲および各電極棒303の周囲により速やかにプラズマを生じさせることができる。これによって、より一層短時間で効率的に熱を伝搬させてプラズマを生じさせることができる。また、図25において、電気抵抗の小さい電極棒307と電気抵抗の小さい電極棒303とを隣り合うように配置する構成を複数組形成し、平面視で、当該各組の間の位置に、電極棒306および電極棒302より電気抵抗の高い材料で構成される電極棒308、電極棒304を配置するようにプラズマ発生部130が構成されている。このような構成を採ることで、複数の箇所、即ち、電極棒307と電極棒303を一対として隣り合うように配置された複数箇所が、迅速にプラズマが発生する複数の起点となり、かかる起点を基にしてプラズマ発生部130の全体に熱が伝わることとなるため、短時間で効率的に熱を伝搬させてプラズマを生じさせることができる。 Furthermore, as in the present embodiment shown in FIG. 25, each of the electrode bars 307 forming part of the first electrode bar group 130B and each of the electrodes forming part of the second electrode bar group 130C By arranging each of the rods 303 adjacent to each other as a pair, the air around each electrode rod 307 and each electrode rod 303 can be heated first, and the circumference of each electrode rod 307 and each electrode rod can be heated first. Plasma can be generated more quickly around 303 . As a result, heat can be efficiently propagated in a much shorter time to generate plasma. Further, in FIG. 25, a plurality of sets are formed in which the electrode rods 307 with low electric resistance and the electrode rods 303 with low electric resistance are arranged so as to be adjacent to each other. Plasma generator 130 is configured such that electrode rods 308 and 304 made of a material having higher electrical resistance than rods 306 and 302 are arranged. By adopting such a configuration, a plurality of locations, that is, a plurality of locations where the electrode rod 307 and the electrode rod 303 are paired and arranged adjacent to each other, serve as a plurality of starting points at which plasma is rapidly generated. Since the heat is transmitted to the entire plasma generating section 130 based on the heat, the heat can be efficiently transmitted in a short time to generate plasma.
 また、他の電極棒と太さが異なる各電極棒307(または各電極棒303)は、他の電極棒とは異なる材料で形成されていてもよい。たとえば、他の電極棒がタングステンで形成されている場合に、各電極棒307(または各電極棒303)が、タングステンと単位長さ当たりの電気抵抗が同程度である真鍮またはモリブデン鋼などで形成されていてもよい。 Also, each electrode rod 307 (or each electrode rod 303) having a different thickness from the other electrode rods may be made of a material different from that of the other electrode rods. For example, when the other electrode rods are made of tungsten, each electrode rod 307 (or each electrode rod 303) is made of brass, molybdenum steel, or the like, which has approximately the same electrical resistance per unit length as tungsten. may have been
 以上に説明した実施の形態では、電極棒306、308(図22)、307、308(図25)が、本開示の「複数の第1の電極部材」に相当し、電極棒306、308(図22)からなる複数の第1の電極棒が本開示の「第1の電極部材群」に相当し、電極棒307、308(図25)からなる複数の第1の電極棒が本開示の「第1の電極部材群」に相当し、集合電極30Gが本発明の「第1の集合電極」に相当する。また、電極棒302、304(図22)、303、304(図25)が、本開示の「複数の第2の電極部材」に相当し、電極棒302、304(図22)からなる複数の第2の電極棒が本開示の「第2の電極部材群」に相当し、電極棒303、304(図25)からなる複数の第2の電極棒が本開示の「第2の電極部材群」に相当し、集合電極30Hが本開示の「第2の集合電極」に相当する。また、電源8が、本開示の「交流電源」に相当する。さらに、電極棒306、302、307、303が、本開示の「小抵抗電極部材」に相当し、電極棒308(図22)、304(図22)、308(図25)、304(図25)が、本開示の「非小抵抗電極部材」に相当する。また、スピンチャック10が、本開示の「基板保持部」に相当し、処理液ノズル20が、本開示の「ノズル」に相当する。 In the embodiment described above, the electrode bars 306, 308 (FIG. 22), 307, 308 (FIG. 25) correspond to the "plurality of first electrode members" of the present disclosure, and the electrode bars 306, 308 ( 22) corresponds to the "first electrode member group" of the present disclosure, and the plurality of first electrode bars of the electrode bars 307 and 308 (FIG. 25) correspond to the present disclosure. It corresponds to the "first electrode member group", and the collective electrode 30G corresponds to the "first collective electrode" of the present invention. Further, the electrode bars 302, 304 (Fig. 22), 303, 304 (Fig. 25) correspond to the "plurality of second electrode members" of the present disclosure, and a plurality of electrodes consisting of the electrode bars 302, 304 (Fig. 22) The second electrode rod corresponds to the "second electrode member group" of the present disclosure, and the plurality of second electrode rods consisting of the electrode rods 303 and 304 (Fig. 25) is the "second electrode member group" of the present disclosure. , and the collective electrode 30H corresponds to the “second collective electrode” of the present disclosure. Also, the power supply 8 corresponds to the "AC power supply" of the present disclosure. Furthermore, the electrode bars 306, 302, 307, and 303 correspond to the "low resistance electrode member" of the present disclosure, and the electrode bars 308 (Fig. 22), 304 (Fig. 22), 308 (Fig. 25), 304 (Fig. 25) ) corresponds to the “non-low resistance electrode member” of the present disclosure. Further, the spin chuck 10 corresponds to the "substrate holder" of the present disclosure, and the processing liquid nozzle 20 corresponds to the "nozzle" of the present disclosure.
 上記実施の形態においては、第1の電極棒群30B、130Bを構成する複数の第1の電極棒のうち、複数の電極棒306、307を単位長さ当たりの電気抵抗が小さいものとして構成し、第2の電極棒群30C、130Cを構成する複数の第2の電極棒のうち、複数の電極棒302、303を単位長さ当たりの電気抵抗が小さいものとして構成するようにしていた。しかし、本開示は、必ずしもかかる構成に限られるものではなく、例えば、複数の第1の電極棒又は前記複数の第2の電極棒のうち、少なくとも一つの電極棒を、当該少なくとも一つの電極棒と同一の電極棒群を構成する他の電極棒よりも単位長さ当たりの電気抵抗が小さい小抵抗電極部材で構成するようにしてもよい。かかる構成においても、単位長さ当たりの電気抵抗が小さい電極棒の加熱が進み、当該電気抵抗の小さい電極棒からの放熱によって周囲の空気が加熱され、プラズマの発生を促進させることができる。 In the above embodiment, the plurality of electrode rods 306 and 307 among the plurality of first electrode rods constituting the first electrode rod groups 30B and 130B are configured to have a small electrical resistance per unit length. , among the plurality of second electrode rods constituting the second electrode rod groups 30C and 130C, the plurality of electrode rods 302 and 303 are configured to have a small electrical resistance per unit length. However, the present disclosure is not necessarily limited to such a configuration. For example, among the plurality of first electrode rods or the plurality of second electrode rods, at least one electrode rod It may be configured with a low-resistance electrode member having a smaller electrical resistance per unit length than other electrode rods constituting the same electrode rod group. Also in this configuration, the heating of the electrode rods with low electrical resistance per unit length progresses, and the surrounding air is heated by the heat radiation from the electrode rods with low electrical resistance, thereby promoting the generation of plasma.
 <第3の実施の形態>
 図26は、本実施の形態における基板処理装置100Aの構成の例を概略的に示す側面図である。図27は、プラズマ発生部230における一部の構成の例を概略的に示す平面図である。図26および図27においては、便宜上一部の構成が透過した状態で図示されている。
<Third Embodiment>
FIG. 26 is a side view schematically showing an example of the configuration of the substrate processing apparatus 100A in this embodiment. FIG. 27 is a plan view schematically showing a configuration example of part of the plasma generating section 230. As shown in FIG. 26 and 27, for the sake of convenience, a part of the configuration is illustrated in a see-through state.
 なお、図26および図27に示される構成は、図1におけるチャンバ80に囲まれていてよい。また、チャンバ80内の圧力は、およそ大気圧(たとえば、0.5気圧以上、かつ、2気圧以下)である。言い換えれば、後述するプラズマ処理は、大気圧で行われる大気圧プラズマ処理である。 Note that the configurations shown in FIGS. 26 and 27 may be surrounded by the chamber 80 in FIG. Also, the pressure in the chamber 80 is approximately atmospheric pressure (for example, 0.5 atmospheres or more and 2 atmospheres or less). In other words, the plasma processing described below is atmospheric pressure plasma processing performed at atmospheric pressure.
 基板処理装置100Aは、スピンチャック10と、ガード13と、処理液ノズル20と、処理液供給源29と、バルブ25と、基板Wの上方に基板W全体を覆うように配置され、かつ、大気圧下でプラズマを生じさせる大気圧プラズマ源としてのプラズマ発生部230と、プラズマ発生部230に電圧を印加する電源8と、プラズマ発生部230を支持する支持部70とを含むプラズマ発生装置50Aとを備える。 The substrate processing apparatus 100A includes a spin chuck 10, a guard 13, a processing liquid nozzle 20, a processing liquid supply source 29, a valve 25, and is arranged above the substrate W so as to cover the entire substrate W. A plasma generator 50A including a plasma generation unit 230 as an atmospheric pressure plasma source that generates plasma under atmospheric pressure, a power supply 8 that applies voltage to the plasma generation unit 230, and a support unit 70 that supports the plasma generation unit 230; Prepare.
 図26および図27に例が示されるように、プラズマ発生部230は、石英などの誘電体からなる板状の誘電部材32Aと、誘電部材32A内に収容され、かつ、長手方向と直交する方向に複数並べて配置される複数の電極棒506、508からなる電極棒群30Jと、誘電部材32A内に収容され、かつ、長手方向と直交する方向に複数並べて配置される複数の電極棒502、504からなる電極棒群30Kと、樹脂(たとえば、ポリテトラフルオロエチレン(PTFE))またはセラミックスなどからなり、かつ、電極棒群30Jを構成する電極棒506、508と、複数の電極棒群30Kを構成する電極棒502、504とを一端において保持する保持部材30Lと、電極棒群30Jを構成する電極棒506、508に共通して接続される、アルミニウムなどからなる集合電極30Mと、電極棒群30Kを構成する電極棒502、504に共通して接続される、アルミニウムなどからなる集合電極30Nとを備える。集合電極30Mと集合電極30Nとは、たとえば、合わせて平面視で円形状となるように配置され、当該円内に、電極棒群30Jおよび複数の電極棒群30Kが収容される。 As shown in FIGS. 26 and 27, the plasma generating section 230 includes a plate-shaped dielectric member 32A made of a dielectric such as quartz, and a plate-shaped dielectric member 32A that is accommodated in the dielectric member 32A and extends in a direction orthogonal to the longitudinal direction. and a plurality of electrode rods 502 and 504 accommodated in the dielectric member 32A and arranged in a plurality of rows in a direction orthogonal to the longitudinal direction. and electrode rods 506 and 508 made of resin (e.g., polytetrafluoroethylene (PTFE)) or ceramics and constituting the electrode rod group 30J, and a plurality of electrode rod groups 30K. a holding member 30L holding electrode rods 502 and 504 at one end, a collective electrode 30M made of aluminum or the like and commonly connected to electrode rods 506 and 508 constituting an electrode rod group 30J, and an electrode rod group 30K and a collective electrode 30N made of aluminum or the like, which is commonly connected to the electrode rods 502 and 504 constituting the . The collective electrode 30M and the collective electrode 30N are arranged, for example, so as to form a circular shape in plan view, and the electrode rod group 30J and the plurality of electrode rod groups 30K are accommodated in the circle.
 電極棒群30Jを構成する電極棒506、508、および、電極棒群30Kを構成する電極棒502、504は、たとえば、タングステンなどから形成される棒形状である。なお、電極棒群30Jを構成する電極棒506、508、および、電極棒群30Kを構成する電極棒502、504の形状は、棒形状に限られるものではない。また、電極棒群30Jを構成する電極棒506、508と、電極棒群30Kを構成する電極棒502、504とは、平面視で重ならないように互い違いに配置される(図27を参照)。すなわち、平面視で見れば、電極棒群30Jを構成する電極棒506、508と、電極棒群30Kを構成する電極棒502、504とは、交互に配列される。 The electrode rods 506, 508 constituting the electrode rod group 30J and the electrode rods 502, 504 constituting the electrode rod group 30K are rod-shaped, for example, made of tungsten. The shapes of the electrode bars 506 and 508 forming the electrode bar group 30J and the electrode bars 502 and 504 forming the electrode bar group 30K are not limited to bar shapes. Further, the electrode bars 506 and 508 forming the electrode bar group 30J and the electrode bars 502 and 504 forming the electrode bar group 30K are alternately arranged so as not to overlap in plan view (see FIG. 27). That is, in a plan view, the electrode bars 506 and 508 forming the electrode bar group 30J and the electrode bars 502 and 504 forming the electrode bar group 30K are arranged alternately.
 一方で、図26に示される側面視においては、電極棒群30Jと電極棒群30Kとは、互いに重なって配置される。なお、図26に示される側面視において、電極棒群30Jと電極棒群30Kとは、互いに重なっていなくてもよく、たとえば、図26のZ軸方向にずれて配置されていてもよい。 On the other hand, in the side view shown in FIG. 26, the electrode rod group 30J and the electrode rod group 30K are arranged to overlap each other. In addition, in the side view shown in FIG. 26, the electrode rod group 30J and the electrode rod group 30K do not have to overlap each other, and may, for example, be displaced in the Z-axis direction of FIG.
 誘電部材32Aは、上面および下面が凹凸のない平面形状である。そのため、プラズマ処理の際などに誘電部材32Aの下面へ付着物が付着した場合であっても、誘電部材32Aの下面の付着物の洗浄が容易となる。 The dielectric member 32A has a flat top surface and a bottom surface without unevenness. Therefore, even if deposits adhere to the lower surface of the dielectric member 32A during plasma processing or the like, it is easy to clean the deposits on the lower surface of the dielectric member 32A.
 図27に例が示されるように、プラズマ発生部230は、電極棒506、508から構成される電極棒群30Jと、電極棒502、504から構成される電極棒群30Kと、集合電極30Mと、集合電極30Nとを備える。 As shown in FIG. 27, the plasma generating section 230 includes an electrode rod group 30J composed of electrode rods 506 and 508, an electrode rod group 30K composed of electrode rods 502 and 504, and a collective electrode 30M. , and a collective electrode 30N.
 電極棒群30Jを構成する複数の電極棒は、複数の電極棒508と、電極棒508とは異なる材料で形成された、複数の電極棒506とを備える。また、電極棒群30Kを構成する複数の電極棒は、複数の電極棒504と、電極棒504とは異なる材料で形成された、複数の電極棒502とを備える。 A plurality of electrode rods constituting the electrode rod group 30J includes a plurality of electrode rods 508 and a plurality of electrode rods 506 made of a material different from that of the electrode rods 508. Moreover, the plurality of electrode rods forming the electrode rod group 30K includes a plurality of electrode rods 504 and a plurality of electrode rods 502 made of a material different from that of the electrode rods 504 .
 構成する材料が異なることに起因して、電極棒506の単位長さ当たりの電気抵抗は、電極棒508の単位長さ当たりの電気抵抗よりも小さい。同様に、電極棒502の単位長さ当たりの電気抵抗は、電極棒504の単位長さ当たりの電気抵抗よりも小さい。ここで、電極棒506と、電極棒502とは、小抵抗電極部材に相当する。 Due to the different constituent materials, the electrical resistance per unit length of the electrode rod 506 is smaller than the electrical resistance per unit length of the electrode rod 508 . Similarly, the electrical resistance per unit length of electrode rod 502 is less than the electrical resistance per unit length of electrode rod 504 . Here, the electrode rods 506 and 502 correspond to low-resistance electrode members.
 電極棒508および電極棒504の材料としては、たとえば、タングステンが想定される。一方で、電極棒506および電極棒502の材料としては、たとえば、銅、銀、金またはアルミニウムなどが想定される。なお、電極棒508と電極棒504とは、異なる材料で形成されていてもよい。同様に、電極棒506と電極棒502とは、異なる材料で形成されていてもよい。 The material of the electrode rods 508 and 504 is assumed to be tungsten, for example. On the other hand, as the material of electrode rod 506 and electrode rod 502, for example, copper, silver, gold, aluminum, or the like is assumed. Note that the electrode rod 508 and the electrode rod 504 may be made of different materials. Similarly, electrode rod 506 and electrode rod 502 may be made of different materials.
 本実施の形態においては、図27に示すように、電極棒群30Jを構成する電極棒506のそれぞれは、電極棒群30Kを構成する電極棒502のそれぞれと、平面視で隣り合うように配置されている。すなわち、単位長さ当たりの電気抵抗が電極棒508よりも小さい電極棒506と、単位長さ当たりの電気抵抗が電極棒504よりも小さい電極棒502とが、平面視で隣り合うように配置されている。 In the present embodiment, as shown in FIG. 27, each of the electrode bars 506 forming the electrode bar group 30J is arranged so as to be adjacent to each of the electrode bars 502 forming the electrode bar group 30K in plan view. It is That is, an electrode rod 506 having an electrical resistance per unit length lower than that of the electrode rod 508 and an electrode rod 502 having an electrical resistance per unit length lower than that of the electrode rod 504 are arranged adjacent to each other in plan view. ing.
 ここで、プラズマ発生部230に設けられるそれぞれの電極棒近傍でプラズマが生じるまで(プラズマ空間が形成されるまで)に要する時間は、電極棒の個体差、電極棒の配置誤差または熱容量の大きさなどによってばらつきがある。特に、プラズマ発生部230におけるプラズマ空間を形成する面積が大きい場合には当該ばらつきも大きくなり、プラズマ発生部230内の領域全体で均一なプラズマを生じさせるまでに要する時間が長くなる。 Here, the time required until plasma is generated (until plasma space is formed) near each electrode rod provided in the plasma generation unit 230 depends on the individual difference of the electrode rods, the placement error of the electrode rods, or the magnitude of the heat capacity. and so on. In particular, when the area forming the plasma space in the plasma generating section 230 is large, the variation also increases, and the time required to generate uniform plasma over the entire area in the plasma generating section 230 increases.
 本実施の形態では、前述したように、プラズマ発生部230における電極棒群30Jを、異なる材料で形成された複数の電極棒508と複数の電極棒506とで構成し、また、電極棒群30Kを、異なる材料で形成された複数の電極棒504と複数の電極棒502とで構成している。ここで、電極棒506と電極棒502とは、それぞれ同じ電極棒群を構成する電極棒508と電極棒504よりも電極棒の単位長さ当たりの電気抵抗が小さい。 In the present embodiment, as described above, the electrode bar group 30J in the plasma generation unit 230 is composed of a plurality of electrode bars 508 and a plurality of electrode bars 506 made of different materials, and the electrode bar group 30K is composed of a plurality of electrode rods 504 and a plurality of electrode rods 502 made of different materials. Here, electrode rod 506 and electrode rod 502 have lower electrical resistance per unit length than electrode rod 508 and electrode rod 504, which constitute the same electrode rod group.
 このような構成によれば、電極棒群30Jを構成する複数の電極棒のうち、電極棒508よりも単位長さ当たりの電気抵抗が小さい電極棒506に電流が流れやすくなり、電極棒506が加熱されやすくなる。また、電極棒群30Kを構成する複数の電極棒のうち、電極棒504よりも単位長さ当たりの電気抵抗が小さい電極棒502に電流が流れやすくなり、電極棒502が加熱されやすくなる。そうすると、電極棒506、電極棒502からの放熱によって電極棒506の周囲、電極棒502の周囲の空気が加熱されることで電極棒506の周囲および電極棒502の周囲にプラズマが発生する。さらに、プラズマが発生したことで電極棒506の周囲の空気と電極棒502の周囲の空気とはさらに温度が上昇する。そして、電極棒506および電極棒502の周囲に発生した熱が、それぞれ電極棒群30Jの一部を構成する複数の電極棒508および電極棒群30Kの一部を構成する複数の電極棒504と、その周囲の空気に伝搬することで、プラズマ発生部230の全体でプラズマの発生が促進される。 According to such a configuration, among the plurality of electrode rods constituting the electrode rod group 30J, the current easily flows through the electrode rod 506, which has a smaller electrical resistance per unit length than the electrode rod 508. Easier to heat. In addition, among the plurality of electrode rods forming the electrode rod group 30K, the current flows more easily through the electrode rod 502, which has a smaller electrical resistance per unit length than the electrode rod 504, and the electrode rod 502 is easily heated. Then, the air around the electrode rods 506 and 502 is heated by heat radiation from the electrode rods 506 and 502 , and plasma is generated around the electrode rods 506 and 502 . Furthermore, the temperature of the air around electrode rod 506 and the air around electrode rod 502 further rise due to the generation of plasma. Then, the heat generated around the electrode rods 506 and 502 heats the plurality of electrode rods 508 that form part of the electrode rod group 30J and the plurality of electrode rods 504 that form part of the electrode rod group 30K, respectively. , propagates to the surrounding air, thereby promoting generation of plasma in the entire plasma generating section 230 .
 また、このような構成によれば、プラズマが生じるまでに比較的長い時間を要する電極棒の材料を、他の電極棒の材料よりも単位長さ当たりの電気抵抗が小さいものとすることで、当該電極棒に電流が流れやすくなる。そうすると、電流が流れやすくなった当該電極棒およびその近傍の気体が、他の電極棒およびその近傍の気体よりも加熱されやすくなるため、プラズマが生じるまでに要する時間が短くなる。その結果として、それぞれの電極棒近傍でプラズマが生じるまでに要する時間のばらつきが小さくなり、プラズマ発生部230の全体でプラズマを生じさせるまでに要する時間を短縮することができる。 In addition, according to such a configuration, the material of the electrode rod, which takes a relatively long time to generate plasma, is made of a material having a lower electrical resistance per unit length than the material of the other electrode rods, A current easily flows through the electrode rod. As a result, the electrode rod and the gas in the vicinity thereof, through which the current flows more easily, are more easily heated than the other electrode rods and the gas in the vicinity thereof, so that the time required to generate plasma is shortened. As a result, variations in the time required to generate plasma in the vicinity of each electrode rod are reduced, and the time required to generate plasma in the entire plasma generating section 230 can be shortened.
 さらに、本実施の形態においては、電極棒群30Jを構成する複数の電極棒506の各々は、電極棒群30Kを構成する複数の電極棒502の各々と、平面視で隣り合うように配置されている。すなわち、単位長さ当たりの電気抵抗が電極棒508よりも小さい電極棒506と、単位長さ当たりの電気抵抗が電極棒504よりも小さい電極棒502とが、一対となって隣り合うように配置されている。これによって、電極棒506、電極棒502において電流が流れやすくなり、他の電極棒508、504と比較して電極棒506、電極棒502の加熱が進む。そうすると、電極棒506、電極棒502からの放熱によって電極棒506の周囲、電極棒502の周囲の空気が先んじて加熱されることで電極棒506の周囲および電極棒502の周囲に速やかにプラズマが発生する。さらに、プラズマが発生したことで電極棒506の周囲の空気と電極棒502の周囲の空気はさらに温度が上昇する。そして、電極棒506および電極棒502の周囲に発生した熱が、それぞれ、電極棒508および電極棒504と、その周囲の空気に伝搬して電極棒508、電極棒504とそれぞれの周囲の空気に対する加熱が進んでいく。これによって、電極棒508の周囲および電極棒504の周囲に順次プラズマが発生し、プラズマ発生部230の全体でプラズマの発生が促進される。 Furthermore, in the present embodiment, each of the plurality of electrode rods 506 constituting electrode rod group 30J is arranged so as to be adjacent to each of the plurality of electrode rods 502 constituting electrode rod group 30K in plan view. ing. That is, an electrode rod 506 having an electrical resistance per unit length lower than that of the electrode rod 508 and an electrode rod 502 having an electrical resistance per unit length lower than that of the electrode rod 504 are arranged as a pair adjacent to each other. It is As a result, current flows more easily in the electrode rods 506 and 502 , and the heating of the electrode rods 506 and 502 progresses compared to the other electrode rods 508 and 504 . Then, the air around the electrode rods 506 and 502 is heated first by the heat radiation from the electrode rods 506 and 502, so that the plasma is quickly generated around the electrode rods 506 and 502. Occur. Furthermore, the temperature of the air around the electrode rod 506 and the air around the electrode rod 502 further rise due to the generation of the plasma. Then, the heat generated around the electrode rods 506 and 502 is propagated to the electrode rods 508 and 504 and the surrounding air, respectively, to the electrode rods 508 and 504 and the surrounding air. Heating proceeds. As a result, plasma is generated sequentially around the electrode rod 508 and around the electrode rod 504 , thereby promoting plasma generation in the entire plasma generating section 230 .
 図28は、プラズマ発生部における一部の構成の例を概略的に示す断面図である。図28は、図26におけるD-D断面に対応する。なお、電極棒506、502、508、504の数は、図28に示される数に限られるものではない。 FIG. 28 is a cross-sectional view schematically showing an example of the configuration of part of the plasma generating section. FIG. 28 corresponds to the DD section in FIG. The number of electrode bars 506, 502, 508, 504 is not limited to the number shown in FIG.
 図28に例が示されるように、誘電部材32Aには誘電部材32Aの端部から内側(X軸方向)に延びる収容穴32Bが複数形成されており、電極棒506、502、508、504は、それぞれ対応する収容穴32Bに収容される。収容穴32Bは、X軸正方向およびX軸負方向の誘電部材32Aの端部(側面)から内部へ交互に延びて形成されているため、電極棒群30J(図27を参照)の電極棒はX軸正方向側の端部から、電極棒群30K(図27を参照)の電極棒はX軸負方向側の端部からそれぞれ挿入される。また、図28に示されるように、収容穴32Bは、誘電部材32Aの下面に近い位置に形成されている。 As shown in FIG. 28, the dielectric member 32A is formed with a plurality of housing holes 32B extending inwardly (in the X-axis direction) from the end of the dielectric member 32A. , are housed in corresponding housing holes 32B. Since the housing holes 32B are formed so as to alternately extend inward from the ends (side surfaces) of the dielectric member 32A in the X-axis positive direction and the X-axis negative direction, the electrode rods of the electrode rod group 30J (see FIG. 27) is inserted from the end on the X-axis positive direction side, and the electrode rods of the electrode rod group 30K (see FIG. 27) are inserted from the end on the X-axis negative direction side. Further, as shown in FIG. 28, the accommodation hole 32B is formed at a position close to the lower surface of the dielectric member 32A.
 図26に示されたように、電源8によって、集合電極30Mおよび集合電極30Nとの間に交流電圧が印加されると、集合電極30Mに接続される電極棒群30Jと集合電極30Nに接続される電極棒群30Kとの間に交流電圧が印加される。その結果、電極棒群30Jと電極棒群30Kとの間で誘電体バリア放電が生じる。そして、当該放電の放電経路の周囲で気体のプラズマ化が生じて、電極棒群30Jのそれぞれの電極棒506、508と電極棒群30Kのそれぞれの電極棒502、504とを隔てる誘電部材32Aの表面(収容穴32Bの内部を含む)に沿って2次元的に広がるプラズマ空間が形成される(図27、図28を参照)。ここで、収容穴32Bが誘電部材32Aの下面に近い位置に形成されているため、プラズマ102は主に誘電部材32Aの下面に形成される。 As shown in FIG. 26, when an AC voltage is applied between the collective electrode 30M and the collective electrode 30N by the power supply 8, the electrode rod group 30J connected to the collective electrode 30M and the collective electrode 30N are connected. An alternating voltage is applied between the electrode rod group 30K. As a result, a dielectric barrier discharge occurs between the electrode bar group 30J and the electrode bar group 30K. Then, the gas is plasmatized around the discharge path of the discharge, and the dielectric member 32A separating the electrode rods 506 and 508 of the electrode rod group 30J and the electrode rods 502 and 504 of the electrode rod group 30K is formed. A two-dimensional plasma space is formed along the surface (including the inside of the accommodation hole 32B) (see FIGS. 27 and 28). Here, since the accommodation hole 32B is formed at a position close to the lower surface of the dielectric member 32A, the plasma 102 is mainly formed on the lower surface of the dielectric member 32A.
 ここで、上記のプラズマ空間が形成される際に、プラズマ発生部230の下方の空間(すなわち、基板Wの上方の空間)に、たとえば、O(酸素)、Ne、CO、空気、不活性ガスまたはそれらの組み合わせである気体が供給されてもよい。不活性ガスは、たとえば、Nまたは希ガスである。希ガスは、たとえば、HeまたはArなどである。 Here, when the plasma space is formed, the space below the plasma generation unit 230 (that is, the space above the substrate W) contains, for example, O2 (oxygen), Ne, CO2 , air, Gases that are active gases or combinations thereof may be supplied. Inert gases are, for example, N2 or noble gases. A rare gas is, for example, He or Ar.
 プラズマ102の作用によって、当該空間近傍の気体に活性種が生じる。活性種には、電荷を有するイオン、または、電気的に中性であるラジカルなどが含まれる。たとえば、気体がOを含むものである場合は、プラズマ発生部230におけるプラズマの作用によって、活性種の一種である酸素ラジカルが生じる。 Due to the action of the plasma 102, active species are generated in the gas near the space. Active species include charged ions, electrically neutral radicals, and the like. For example, when the gas contains O 2 , oxygen radicals, which are a type of active species, are generated by the action of plasma in the plasma generating section 230 .
 ここで、プラズマ発生部230は、上記のようにプラズマ102を生じさせる段階においては所定の待機位置に待機しておき、誘電部材32Aの下面に適度に均一なプラズマ102が生じた後で、基板W近傍の処理位置に移動することが望ましい。このような態様であれば、均一なプラズマ102が生じた状態で基板Wの表面における液膜にプラズマ102を作用させることで、均一な処理を行うことができる。 Here, the plasma generating section 230 stands by at a predetermined standby position during the stage of generating the plasma 102 as described above, and after generating the appropriately uniform plasma 102 on the lower surface of the dielectric member 32A, the substrate It is desirable to move to a processing position near W. In such a mode, uniform processing can be performed by applying the plasma 102 to the liquid film on the surface of the substrate W in a state where the uniform plasma 102 is generated.
 なお、本実施の形態ではプラズマ発生部230は基板Wの上面全体を覆うように配置されているが、プラズマ発生部230が基板Wの一部のみを覆うように配置される場合には、プラズマ発生部230の基板Wの上面における位置を、基板Wの回転に伴って基板Wの上面に沿って基板Wの回転方向および径方向に図示しない駆動機構によって移動させてもよい。 In this embodiment, the plasma generation unit 230 is arranged so as to cover the entire upper surface of the substrate W, but when the plasma generation unit 230 is arranged so as to cover only a part of the substrate W, plasma The position of the generator 230 on the upper surface of the substrate W may be moved along the upper surface of the substrate W in the rotational direction and radial direction of the substrate W by a driving mechanism (not shown) as the substrate W rotates.
 図29は、プラズマ発生部330における複数の電極棒の構成の例を示す平面図である。図29においては、便宜上一部の構成が透過した状態で図示されている。図29に例が示されるように、プラズマ発生部330は、複数の電極棒507、508から構成される電極棒群130Jと、複数の電極棒503、504から構成される電極棒群130Kと、集合電極30Mと、集合電極30Nとを備える。 FIG. 29 is a plan view showing an example configuration of a plurality of electrode rods in the plasma generation section 330. FIG. In FIG. 29, a part of the configuration is illustrated in a see-through state for the sake of convenience. As shown in FIG. 29, the plasma generator 330 includes an electrode group 130J made up of a plurality of electrode bars 507 and 508, an electrode group 130K made up of a plurality of electrode bars 503 and 504, It has a collective electrode 30M and a collective electrode 30N.
 電極棒群130Jを構成する複数の電極棒は、複数の電極棒508と、電極棒508よりも太い、複数の電極棒507とを備える。また、電極棒群130Kを構成する複数の電極棒は、複数の電極棒504と、電極棒504よりも太い、複数の電極棒503とを備える。 A plurality of electrode rods constituting the electrode rod group 130J includes a plurality of electrode rods 508 and a plurality of electrode rods 507 thicker than the electrode rods 508. Moreover, the plurality of electrode rods forming the electrode rod group 130K includes a plurality of electrode rods 504 and a plurality of electrode rods 503 thicker than the electrode rods 504 .
 太さが異なることに起因して、電極棒507の単位長さ当たりの電気抵抗は、電極棒508の単位長さ当たりの電気抵抗よりも小さい。同様に、電極棒503の単位長さ当たりの電気抵抗は、電極棒504の単位長さ当たりの電気抵抗よりも小さい。 Due to the difference in thickness, the electrical resistance per unit length of the electrode rod 507 is smaller than the electrical resistance per unit length of the electrode rod 508 . Similarly, the electrical resistance per unit length of electrode rod 503 is less than the electrical resistance per unit length of electrode rod 504 .
 本実施の形態においては、図29に示すように、電極棒群130Jを構成する電極棒507のそれぞれは、電極棒群130Kを構成する電極棒503のそれぞれと、平面視で隣り合うように配置されている。すなわち、単位長さ当たりの電気抵抗が電極棒508よりも小さい電極棒507と、単位長さ当たりの電気抵抗が電極棒504よりも小さい電極棒503とが、隣接して配置されている。 In the present embodiment, as shown in FIG. 29, each of the electrode bars 507 forming the electrode bar group 130J is arranged so as to be adjacent to each of the electrode bars 503 forming the electrode bar group 130K in plan view. It is That is, an electrode rod 507 having an electrical resistance per unit length lower than that of the electrode rod 508 and an electrode rod 503 having an electrical resistance per unit length lower than that of the electrode rod 504 are arranged adjacent to each other.
 このような構成によれば、電極棒群130Jを構成する複数の電極棒のうち、電極棒508よりも単位長さ当たりの電気抵抗が小さい電極棒507に電流が流れやすくなり、電極棒507が加熱されやすくなる。また、電極棒群130Kを構成する複数の電極棒のうち、電極棒504よりも単位長さ当たりの電気抵抗が小さい電極棒503に電流が流れやすくなり、電極棒503が加熱されやすくなる。そうすると、電極棒507、電極棒503からの放熱によって電極棒507の周囲、電極棒503の周囲の空気が加熱されることで電極棒507の周囲および電極棒503の周囲にプラズマが発生する。さらに、プラズマが発生したことで電極棒507の周囲の空気と電極棒503の周囲の空気はさらに温度が上昇する。そして、電極棒507、503の周囲に発生した熱が、それぞれ電極棒群130Jの一部を構成する複数の電極棒508および電極棒群130Kの一部を構成する複数の電極棒504と、その周囲の空気に伝搬することで、プラズマ発生部330の全体でプラズマの発生が促進される。 According to such a configuration, among the plurality of electrode rods constituting the electrode rod group 130J, the current easily flows through the electrode rod 507, which has a smaller electrical resistance per unit length than the electrode rod 508. Easier to heat. In addition, among the plurality of electrode rods forming the electrode rod group 130K, the electrode rod 503, which has a smaller electrical resistance per unit length than the electrode rod 504, is more likely to receive current, and the electrode rod 503 is more likely to be heated. Then, the air around the electrode rods 507 and 503 is heated by heat radiation from the electrode rods 507 and 503 , and plasma is generated around the electrode rods 507 and 503 . Furthermore, the temperature of the air around the electrode rod 507 and the air around the electrode rod 503 further rise due to the generation of the plasma. Then, the heat generated around the electrode rods 507 and 503 heats the plurality of electrode rods 508 constituting part of the electrode rod group 130J and the plurality of electrode rods 504 constituting part of the electrode rod group 130K. Propagating to the surrounding air promotes generation of plasma in the entire plasma generating section 330 .
 また、このような構成によれば、プラズマが生じるまでに比較的長い時間を要する電極棒を、他の電極棒よりも太い電極棒に変更することで、当該電極棒に電流が流れやすくなる。そうすると、電流が流れやすくなった当該電極棒およびその近傍の気体が、他の電極棒およびその近傍の気体よりも加熱されやすくなるため、プラズマが生じるまでに要する時間が短くなる。その結果として、それぞれの電極棒近傍でプラズマが生じるまでに要する時間のばらつきが小さくなり、プラズマ発生部330の全体でプラズマを生じさせるまでに要する時間を短縮することができる。 In addition, according to such a configuration, by changing the electrode rod that takes a relatively long time to generate plasma to an electrode rod that is thicker than the other electrode rods, the electric current can easily flow through the electrode rod. As a result, the electrode rod and the gas in the vicinity thereof, through which the current flows more easily, are more easily heated than the other electrode rods and the gas in the vicinity thereof, so that the time required to generate plasma is shortened. As a result, variations in the time required to generate plasma in the vicinity of each electrode rod are reduced, and the time required to generate plasma in the entire plasma generating section 330 can be shortened.
 本実施の形態においては、電極棒群130Jを構成する複数の電極棒の一部となる複数の電極棒507の各々は、電極棒群130Kを構成する複数の電極棒の一部となる複数の電極棒503の各々と、平面視で隣り合うように配置されている。すなわち、単位長さ当たりの電気抵抗が電極棒508よりも小さい電極棒507と、単位長さ当たりの電気抵抗が電極棒504よりも小さい電極棒503とが、一対となって隣り合うように配置されている。これによって、電極棒507、電極棒503において電流が流れやすくなり、他の電極棒508、504と比較して電極棒507、電極棒503の加熱が進む。そうすると、電極棒507、電極棒503からの放熱によって電極棒507の周囲、電極棒503の周囲の空気が先んじて加熱されることで電極棒507の周囲および電極棒503の周囲に速やかにプラズマが発生する。さらに、プラズマが発生したことで電極棒507の周囲の空気と電極棒503の周囲の空気はさらに温度が上昇する。そして、電極棒507および電極棒503の周囲に発生した熱が、それぞれ、電極棒508および電極棒504と、その周囲の空気に伝搬して電極棒508、電極棒504とそれぞれの周囲の空気に対する加熱が進んでいく。これによって、電極棒508の周囲および電極棒504の周囲に順次プラズマが発生し、プラズマ発生部330の全体でプラズマの発生が促進される。 In the present embodiment, each of the plurality of electrode bars 507 forming part of the plurality of electrode bars forming electrode bar group 130J is a plurality of electrode bars forming part of the plurality of electrode bars forming electrode bar group 130K. It is arranged so as to be adjacent to each of the electrode rods 503 in plan view. That is, an electrode rod 507 having a smaller electrical resistance per unit length than the electrode rod 508 and an electrode rod 503 having a smaller electrical resistance per unit length than the electrode rod 504 are arranged adjacent to each other as a pair. It is As a result, the current flows easily in the electrode rods 507 and 503 , and the heating of the electrode rods 507 and 503 progresses compared to the other electrode rods 508 and 504 . As a result, the air around the electrode rods 507 and 503 is heated first by heat radiation from the electrode rods 507 and 503, so that plasma is quickly generated around the electrode rods 507 and 503. Occur. Furthermore, the temperature of the air around the electrode rod 507 and the air around the electrode rod 503 further rise due to the generation of the plasma. Then, the heat generated around the electrode rods 507 and 503 is propagated to the electrode rods 508 and 504 and the surrounding air, respectively, to the electrode rods 508 and 504 and the surrounding air. Heating proceeds. As a result, plasma is sequentially generated around the electrode rod 508 and around the electrode rod 504 , thereby promoting plasma generation in the entire plasma generating section 330 .
 なお、電極棒503または電極棒507が配置される位置は、図29に示される場合に限られるものではない。また、電極棒503または電極棒507が配置される位置は、電極棒群130Jおよび電極棒群130Kが同一の太さで形成されている状態でプラズマが生じるまでに要する時間をあらかじめ測定して、当該時間が比較的長い電極棒の位置に対応させることができる。 The positions where the electrode rods 503 or 507 are arranged are not limited to those shown in FIG. In addition, the position at which the electrode rod 503 or the electrode rod 507 is arranged is determined by measuring in advance the time required for plasma generation in a state where the electrode rod group 130J and the electrode rod group 130K are formed with the same thickness. It is possible to correspond to the position of the electrode rod where the time is relatively long.
 さらに、図29に示す本実施の形態のように、電極棒群130Jの一部を構成する電極棒507のそれぞれと、電極棒群130Kの一部を構成する電極棒503のそれぞれとを、各一対として隣り合うように配置することで、電極棒507の周囲、電極棒503の周囲の空気を先んじて加熱でき、電極棒507の周囲および電極棒503の周囲により速やかにプラズマを生じさせることができる。これによって、より一層短時間で効率的に熱を伝搬させてプラズマを生じさせることができる。 Furthermore, as in the present embodiment shown in FIG. 29, each of the electrode rods 507 constituting part of the electrode rod group 130J and each of the electrode rods 503 constituting part of the electrode rod group 130K are By arranging them so as to be adjacent to each other as a pair, the air around the electrode rods 507 and 503 can be heated first, and the plasma can be generated more quickly around the electrode rods 507 and 503. can. As a result, heat can be efficiently propagated in a much shorter time to generate plasma.
 また、図29において、電気抵抗の小さい電極棒507と電気抵抗の小さい電極棒503とを隣り合うように配置する構成を複数組形成し、平面視で、当該各組の間の位置に、電極棒506および電極棒502より電気抵抗の高い材料で構成される電極棒508、電極棒504を配置するようにプラズマ発生部330が構成されている。このような構成を採ることで、複数の箇所、即ち、電極棒507と電極棒503を一対として隣り合うようにて配置された複数箇所が、迅速にプラズマが発生する複数の起点となり、かかる起点を基にしてプラズマ発生部330の全体に熱が伝わることとなるため、短時間で効率的に熱を伝搬させてプラズマを生じさせることができる。 In FIG. 29, a plurality of sets of electrode rods 507 with low electrical resistance and electrode rods 503 with low electrical resistance are formed so as to be arranged adjacent to each other. Plasma generator 330 is configured such that electrode rods 508 and 504 made of a material having higher electrical resistance than rods 506 and 502 are arranged. By adopting such a configuration, a plurality of locations, that is, a plurality of locations where the electrode rod 507 and the electrode rod 503 are paired and arranged adjacent to each other, serve as a plurality of starting points at which plasma is rapidly generated. Since the heat is transmitted to the entire plasma generating section 330 based on , the heat can be efficiently transmitted in a short time to generate plasma.
 また、他の電極棒と太さが異なる電極棒507(または電極棒503)は、他の電極棒とは異なる材料で形成されていてもよい。たとえば、他の電極棒がタングステンで形成されている場合に、電極棒507(または電極棒503)が、タングステンと単位長さ当たりの電気抵抗が同程度である真鍮またはモリブデン鋼などで形成されていてもよい。 Also, the electrode rod 507 (or the electrode rod 503) having a different thickness from the other electrode rods may be made of a material different from that of the other electrode rods. For example, if the other electrode rods are made of tungsten, the electrode rod 507 (or the electrode rod 503) is made of brass or molybdenum steel, which has approximately the same electrical resistance per unit length as tungsten. may
 以上に説明した実施の形態では、電極棒506、508、507が「複数の第1の電極部材」に相当し、電極棒506、508からなる複数の電極棒が「第1の電極部材群」に相当し、電極棒507、508からなる複数の電極棒が「第1の電極部材群」に相当し、集合電極30Mが「第1の集合電極」に相当する。また、電極棒502、504、503が、「複数の第2の電極部材」に相当し、電極棒502、504からなる複数の電極棒が「第2の電極部材群」に相当し、電極棒503、504からなる複数の電極棒が「第2の電極部材群」に相当し、集合電極30Nが「第2の集合電極」に相当する。また、電源8が、「交流電源」に相当する。さらに、電極棒506、502、507、503が、「小抵抗電極部材」に相当し、電極棒508、504が、「非小抵抗電極部材」に相当する。また、スピンチャック10が「基板保持部」に相当し、処理液ノズル20が「ノズル」に相当する。 In the embodiment described above, the electrode bars 506, 508 and 507 correspond to the "plurality of first electrode members", and the plurality of electrode bars consisting of the electrode bars 506 and 508 correspond to the "first electrode member group". , the plurality of electrode rods including the electrode rods 507 and 508 correspond to the "first electrode member group", and the collective electrode 30M corresponds to the "first collective electrode". Further, the electrode bars 502, 504, and 503 correspond to "a plurality of second electrode members", and the plurality of electrode bars made up of the electrode bars 502 and 504 correspond to a "second electrode member group". A plurality of electrode rods 503 and 504 correspond to the "second electrode member group", and the collective electrode 30N corresponds to the "second collective electrode". Also, the power supply 8 corresponds to an "AC power supply". Further, the electrode bars 506, 502, 507 and 503 correspond to "low resistance electrode members", and the electrode bars 508 and 504 correspond to "non-low resistance electrode members". Further, the spin chuck 10 corresponds to the "substrate holder", and the processing liquid nozzle 20 corresponds to the "nozzle".
 上記の実施の形態においては、電極棒群30J、130Jを構成する複数の電極棒のうち、複数の電極棒506、507を単位長さ当たりの電気抵抗が小さいものとして構成し、電極棒群30K、130Kを構成する複数の電極棒のうち、複数の電極棒502、503を単位長さ当たりの電気抵抗が小さいものとして構成するようにしていた。しかし、必ずしもかかる構成に限られるものではなく、たとえば、複数の第1の電極棒または複数の第2の電極棒のうち、少なくとも1つの電極棒を、当該少なくとも1つの電極棒と同一の電極棒群を構成する他の電極棒よりも単位長さ当たりの電気抵抗が小さい小抵抗電極部材で構成するようにしてもよい。かかる構成においても、単位長さ当たりの電気抵抗が小さい電極棒の加熱が進み、当該電気抵抗の小さい電極棒からの放熱によって周囲の空気が加熱され、プラズマの発生を促進させることができる。 In the above embodiment, the plurality of electrode rods 506 and 507 among the plurality of electrode rods constituting the electrode rod groups 30J and 130J are configured to have small electrical resistance per unit length, and the electrode rod group 30K , 130K, the plurality of electrode rods 502 and 503 are configured to have a small electrical resistance per unit length. However, it is not necessarily limited to such a configuration. For example, among the plurality of first electrode rods or the plurality of second electrode rods, at least one electrode rod may It may be configured with a low-resistance electrode member having a smaller electrical resistance per unit length than the other electrode rods forming the group. Also in this configuration, the heating of the electrode rods with low electrical resistance per unit length progresses, and the surrounding air is heated by the heat radiation from the electrode rods with low electrical resistance, thereby promoting the generation of plasma.
 <以上に記載された実施の形態の変形例について>
 以上に記載された実施の形態では、それぞれの構成要素の材質、材料、寸法、形状、相対的配置関係または実施の条件などについても記載する場合があるが、これらはすべての局面においてひとつの例であって、限定的なものではないものとする。
<Regarding Modifications of the Embodiments Described Above>
In the embodiments described above, the material, material, size, shape, relative arrangement relationship, implementation conditions, etc. of each component may be described, but these are only examples in all aspects. and shall not be limiting.
 したがって、例が示されていない無数の変形例、および、均等物が、本願明細書に開示される技術の範囲内において想定される。たとえば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。 Therefore, countless modifications and equivalents, examples of which are not shown, are envisioned within the scope of the technology disclosed herein. For example, modifications, additions, or omissions of at least one component shall be included.
 また、以上に記載された実施の形態において、特に指定されずに材料名などが記載された場合は、矛盾が生じない限り、当該材料に他の添加物が含まれた、たとえば、合金などが含まれるものとする。 Further, in the embodiments described above, when a material name is described without being specified, unless there is a contradiction, the material contains other additives, such as an alloy. shall be included.
 以上のように、プラズマ発生装置1,1A,1B,50,50Aおよび基板処理装置100,100Aは詳細に説明されたが、上記の説明は、すべての局面において、例示であって、このプラズマ発生装置および基板処理装置がそれに限定されるものではない。例示されていない無数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 As described above, the plasma generators 1, 1A, 1B, 50, 50A and the substrate processing apparatuses 100, 100A have been described in detail. The apparatus and substrate processing apparatus are not limited thereto. It is understood that numerous variations not illustrated can be envisioned without departing from the scope of this disclosure. Each configuration described in each of the above embodiments and modifications can be appropriately combined or omitted as long as they do not contradict each other.
 例えば、基板Wに対する処理は必ずしもレジスト除去処理に限らない。例えば、金属膜の除去の他、活性種により処理液の処理能力を向上させることができる全ての処理に適用可能である。 For example, the processing for the substrate W is not necessarily limited to resist removal processing. For example, the present invention can be applied to all processes that can improve the processing ability of the processing liquid by active species, in addition to the removal of metal films.
 また、必ずしも基板Wに処理液を供給する必要もない。例えば、プラズマを用いた処理として、基板Wの上面に対して直接にプラズマもしくは活性種を作用させてもよい。このような処理の一例として、基板Wの表面改質処理を挙げることができる。 Also, it is not always necessary to supply the processing liquid to the substrate W. For example, plasma or active species may be applied directly to the upper surface of the substrate W as the treatment using plasma. As an example of such treatment, surface modification treatment of the substrate W can be mentioned.
 また、プラズマ発生装置1,1A,1B,50,50Aは必ずしも基板Wの処理に用いられる必要はなく、他の処理対象に用いられてもよい。 Also, the plasma generators 1, 1A, 1B, 50, and 50A do not necessarily have to be used for processing the substrate W, and may be used for other processing targets.
 1,1A,1B,50,50A プラズマ発生装置
 10,11 基板保持部
 12,20 ノズル
 100,100A 基板処理装置
 2 第1電極部
 21 第1電極部材
 21a 第1側面
 21b 第1先端面
 22 第1集合電極
 22a 内側面
 3 第2電極部
 30B,30C,30J,30K,130B,130C,130J,130K 電極棒群
 30A,32A,60 誘電部材
 31 第2電極部材
 31a 第2側面
 31b 第2先端面
 32 第2集合電極
 32a 内側面
 32B 収容穴
 302,303,304,306,307,308,502,503,504,506,507,508 電極部材(電極棒)
 4 第1誘電部材
 40 誘電部
 41,61 第1先端空間
 4a,62a 第1内周面
 4b,62b 第1底面
 5 第2誘電部材
 51,63 第2先端空間
 5a,64a 第2内周面
 5b,64b 第2底面
 D1 長手方向
 D2 配列方向
 L1 仮想線(第1仮想線)
 R1 配置禁止領域(第1配置禁止領域)
 W 基板
Reference Signs List 1, 1A, 1B, 50, 50A Plasma generator 10, 11 Substrate holder 12, 20 Nozzle 100, 100A Substrate processing device 2 First electrode part 21 First electrode member 21a First side surface 21b First tip surface 22 First first Collective electrode 22a Inner surface 3 Second electrode part 30B, 30C, 30J, 30K, 130B, 130C, 130J, 130K Electrode rod group 30A, 32A, 60 Dielectric member 31 Second electrode member 31a Second side surface 31b Second tip surface 32 Second collective electrode 32a Inner surface 32B Accommodating hole 302, 303, 304, 306, 307, 308, 502, 503, 504, 506, 507, 508 Electrode member (electrode rod)
4 first dielectric member 40 dielectric portion 41, 61 first tip space 4a, 62a first inner peripheral surface 4b, 62b first bottom surface 5 second dielectric member 51, 63 second tip space 5a, 64a second inner peripheral surface 5b , 64b Second bottom surface D1 Longitudinal direction D2 Arrangement direction L1 Virtual line (first virtual line)
R1 placement prohibited area (first placement prohibited area)
W substrate

Claims (15)

  1.  プラズマ発生装置であって、
     長手方向に沿って延在する棒状形状を有し、かつ、前記長手方向に直交する配列方向において並ぶ複数の第1電極部材を含む第1電極部と、
     前記長手方向に沿って延在する棒状形状を有し、かつ、平面視において、前記複数の第1電極部材の相互間にそれぞれ設けられる複数の第2電極部材を含む第2電極部と、
     前記複数の第1電極部材の各々の第1側面を覆いつつ、前記複数の第1電極部材の各々の第1先端面よりも前記長手方向に沿って先端側に延在する第1内周面を有し、前記第1内周面のうち前記第1先端面よりも先端側の部分が、ガスを含む第1先端空間を形成する誘電部と
    を備える、プラズマ発生装置。
    A plasma generator,
    a first electrode unit having a rod-like shape extending along the longitudinal direction and including a plurality of first electrode members arranged in an arrangement direction orthogonal to the longitudinal direction;
    a second electrode portion having a rod-like shape extending along the longitudinal direction and including a plurality of second electrode members provided between the plurality of first electrode members in plan view;
    A first inner peripheral surface covering a first side surface of each of the plurality of first electrode members and extending toward a distal end side along the longitudinal direction from a first distal end surface of each of the plurality of first electrode members. and a dielectric portion forming a first tip space containing gas in a portion of the first inner peripheral surface closer to the tip side than the first tip face.
  2.  請求項1に記載のプラズマ発生装置であって、
     前記誘電部は、誘電部材を含み、
     前記誘電部材は、
     前記第1内周面と、
     前記複数の第2電極部材の各々の第2側面を覆いつつ、前記複数の第2電極部材の各々の第2先端面よりも前記長手方向に沿って先端側に延在する第2内周面と
    を有し、
     前記第2内周面のうち前記第2先端面よりも先端側の部分が、ガスを含む第2先端空間を形成する、プラズマ発生装置。
    The plasma generator according to claim 1,
    the dielectric portion includes a dielectric member;
    The dielectric member
    the first inner peripheral surface;
    A second inner peripheral surface covering a second side surface of each of the plurality of second electrode members and extending toward the distal end side along the longitudinal direction from the second distal end surface of each of the plurality of second electrode members. and
    The plasma generator, wherein a portion of the second inner peripheral surface closer to the tip side than the second tip surface forms a second tip space containing gas.
  3.  請求項1に記載のプラズマ発生装置であって、
     前記誘電部は、
     各々が、前記第1内周面を有する複数の第1誘電部材と、
     各々が、前記複数の第2電極部材の各々の第2側面を覆いつつ、前記複数の第2電極部材の各々の第2先端面よりも前記長手方向に沿って先端側に延在する第2内周面を有し、前記第2内周面のうち前記第2先端面よりも先端側の部分が、ガスを含む第2先端空間を形成する複数の第2誘電部材と
    を含む、プラズマ発生装置。
    The plasma generator according to claim 1,
    The dielectric section
    a plurality of first dielectric members each having the first inner peripheral surface;
    Each of the second electrode members covers the second side surface of each of the plurality of second electrode members and extends toward the distal end side along the longitudinal direction from the second distal end surface of each of the plurality of second electrode members. and a plurality of second dielectric members forming a second tip space containing a gas in a portion of the second inner peripheral surface closer to the tip than the second tip face. Device.
  4.  請求項1から請求項3のいずれか一つに記載のプラズマ発生装置であって、
     前記第1先端空間内のガスがプラズマ化した状態において前記第1電極部と前記第2電極部との間でアーク放電が生じない距離で、前記第1電極部と前記第2電極部とが互いに離れている、プラズマ発生装置。
    The plasma generator according to any one of claims 1 to 3,
    The first electrode portion and the second electrode portion are separated from each other by a distance at which arc discharge does not occur between the first electrode portion and the second electrode portion when the gas in the first tip space is plasmatized. Plasma generators separate from each other.
  5.  請求項4に記載のプラズマ発生装置であって、
     前記第1電極部は、前記複数の第1電極部材の基端どうしを連結する第1集合電極を含み、
     前記第2電極部は、前記複数の第2電極部材の基端どうしを連結する第2集合電極を含み、
     前記複数の第1電極部材の各々の前記第1先端面は、前記第2集合電極と、前記第2集合電極の内側面から所定距離だけ離れた仮想線との間の配置禁止領域よりも、前記第1集合電極側に位置している、プラズマ発生装置。
    The plasma generator according to claim 4,
    the first electrode section includes a first collective electrode that connects proximal ends of the plurality of first electrode members;
    the second electrode section includes a second collective electrode that connects proximal ends of the plurality of second electrode members;
    The first tip surface of each of the plurality of first electrode members is located more than the prohibition area between the second collective electrode and an imaginary line separated by a predetermined distance from the inner surface of the second collective electrode. A plasma generator located on the side of the first collective electrode.
  6.  請求項1から請求項5のいずれか一つに記載のプラズマ発生装置であって、
     前記誘電部は、
     前記複数の第1電極部材の各々の前記第1先端面と前記第1先端空間を隔てて対向し、かつ、前記第1内周面に連結された第1底面を有し、
     前記第1底面と前記第2電極部との間の距離は、前記第1先端面が前記第1底面に当接したと仮定した仮定構造において前記第1先端面と前記第2電極部との間でアーク放電が生じない距離に設定されている、プラズマ発生装置。
    The plasma generator according to any one of claims 1 to 5,
    The dielectric section
    a first bottom surface facing the first tip surface of each of the plurality of first electrode members across the first tip space and connected to the first inner peripheral surface;
    The distance between the first bottom surface and the second electrode part is the distance between the first tip surface and the second electrode part in a hypothetical structure assuming that the first tip surface is in contact with the first bottom surface. A plasma generator that is set at a distance that does not cause arcing between them.
  7.  基板を保持する基板保持部と、
     前記基板保持部によって保持された前記基板の主面に向かってプラズマを発生させる、請求項1から請求項3のいずれか一つに記載のプラズマ発生装置と
    を備え、
     前記第1電極部は、前記複数の第1電極部材の基端どうしを連結する第1集合電極を含み、
     前記第2電極部は、前記複数の第2電極部材の基端どうしを連結する第2集合電極を含み、
     前記複数の第1電極部材の前記第1先端面および前記複数の第2電極部材の第2先端面は、平面視において、前記基板保持部によって保持された前記基板の周縁よりも内側に位置しており、
     前記第1集合電極および前記第2集合電極は、平面視において、前記基板保持部によって保持された前記基板の周縁よりも外側に位置している、基板処理装置。
    a substrate holder that holds the substrate;
    The plasma generator according to any one of claims 1 to 3, which generates plasma toward the main surface of the substrate held by the substrate holding part,
    the first electrode section includes a first collective electrode that connects proximal ends of the plurality of first electrode members;
    the second electrode section includes a second collective electrode that connects proximal ends of the plurality of second electrode members;
    The first end faces of the plurality of first electrode members and the second end faces of the plurality of second electrode members are positioned inside the periphery of the substrate held by the substrate holding portion in plan view. and
    The substrate processing apparatus, wherein the first collective electrode and the second collective electrode are positioned outside a peripheral edge of the substrate held by the substrate holding portion in a plan view.
  8.  請求項7に記載の基板処理装置であって、
     前記基板保持部によって保持された前記基板の主面に向かって処理液を吐出するノズルをさらに備え、
     前記複数の第1電極部材のうち互いに隣り合う少なくともいずれか2つの間には、前記複数の第2電極部材が設けられていない、基板処理装置。
    The substrate processing apparatus according to claim 7,
    further comprising a nozzle for ejecting a treatment liquid toward the main surface of the substrate held by the substrate holding part;
    The substrate processing apparatus, wherein the plurality of second electrode members are not provided between at least any two of the plurality of first electrode members that are adjacent to each other.
  9.  複数の第1の電極部材を並べて構成される第1の電極部材群と、
     前記第1の電極部材群が電気的に接続される第1の集合電極と、
     複数の第2の電極部材を並べて構成される第2の電極部材群と、
     前記第2の電極部材群が電気的に接続される第2の集合電極と、
     前記第1の集合電極と前記第2の集合電極とに電気的に接続され、前記第1の電極部材群と前記第2の電極部材群に電力を供給する交流電源とを備え、
     複数の前記第1の電極部材および複数の前記第2の電極部材のうちの少なくとも一つの電極部材は、当該少なくとも一つの電極部材と同一の電極部材群を構成する他の電極部材よりも単位長さ当たりの電気抵抗が小さい小抵抗電極部材で構成され、
     複数の前記第1の電極部材と複数の前記第2の電極部材とが、平面視で交互に配置される、
     プラズマ発生装置。
    a first electrode member group configured by arranging a plurality of first electrode members;
    a first collective electrode to which the first electrode member group is electrically connected;
    a second electrode member group configured by arranging a plurality of second electrode members;
    a second collective electrode to which the second electrode member group is electrically connected;
    An AC power supply electrically connected to the first collective electrode and the second collective electrode and supplying power to the first electrode member group and the second electrode member group,
    At least one of the plurality of first electrode members and the plurality of second electrode members has a unit length longer than that of other electrode members forming the same electrode member group as the at least one electrode member. Consists of a low-resistance electrode member with low electrical resistance per surface,
    the plurality of first electrode members and the plurality of second electrode members are alternately arranged in plan view;
    Plasma generator.
  10.  請求項9に記載のプラズマ発生装置であって、
     板状の誘電部材をさらに備え、
     前記誘電部材には、前記誘電部材の側面から前記誘電部材の内部に延びる複数の収容穴が形成され、
     複数の前記第1の電極部材のそれぞれ、および、複数の前記第2の電極部材のそれぞれは、対応するそれぞれの前記収容穴に収容される、
     プラズマ発生装置。
    A plasma generator according to claim 9,
    further comprising a plate-shaped dielectric member,
    the dielectric member is formed with a plurality of receiving holes extending from the side surface of the dielectric member into the interior of the dielectric member;
    Each of the plurality of first electrode members and each of the plurality of second electrode members are housed in the corresponding housing holes,
    Plasma generator.
  11.  請求項9または請求項10に記載のプラズマ発生装置であって、
     複数の前記第1の電極部材のうちの少なくとも一つは前記小抵抗電極部材で構成され、
     複数の前記第2の電極部材のうちの少なくとも一つは前記小抵抗電極部材で構成され、
     前記小抵抗電極部材で構成された前記第1の電極部材と、前記小抵抗電極部材で構成された前記第2の電極部材とが、平面視で隣り合うように配置される、
     プラズマ発生装置。
    The plasma generator according to claim 9 or 10,
    At least one of the plurality of first electrode members is composed of the low resistance electrode member,
    At least one of the plurality of second electrode members is composed of the low resistance electrode member,
    The first electrode member composed of the low-resistance electrode member and the second electrode member composed of the low-resistance electrode member are arranged so as to be adjacent to each other in a plan view,
    Plasma generator.
  12.  請求項9から請求項11のいずれか一つに記載のプラズマ発生装置であって、
     前記小抵抗電極部材で構成された前記第1の電極部材は、他の第1の電極部材とは異なる材料で構成され、
     前記小抵抗電極部材で構成された前記第2の電極部材は、他の第2の電極部材とは異なる材料で構成される、
     プラズマ発生装置。
    The plasma generator according to any one of claims 9 to 11,
    the first electrode member made of the low-resistance electrode member is made of a material different from that of the other first electrode members,
    The second electrode member made of the low-resistance electrode member is made of a material different from that of the other second electrode members,
    Plasma generator.
  13.  請求項9から請求項12のいずれか一つに記載のプラズマ発生装置であって、
     複数の前記第1の電極部材と複数の前記第2の電極部材のそれぞれは、棒形状であり、
     前記小抵抗電極部材で構成された前記第1の電極部材は、他の第1の電極部材よりも太く構成され、
     前記小抵抗電極部材で構成された前記第2の電極部材は、他の第2の電極部材よりも太く構成される、
     プラズマ発生装置。
    The plasma generator according to any one of claims 9 to 12,
    each of the plurality of first electrode members and the plurality of second electrode members is rod-shaped,
    The first electrode member made of the low-resistance electrode member is made thicker than the other first electrode members,
    The second electrode member made of the low-resistance electrode member is made thicker than the other second electrode members,
    Plasma generator.
  14.  請求項11から請求項13のいずれか一つに記載のプラズマ発生装置であって、
     前記小抵抗電極部材で構成された前記第1の電極部材と、前記小抵抗電極部材で構成された前記第2の電極部材とが平面視で隣り合う配置が複数形成され、
     それぞれの前記隣り合う配置の間の位置に、少なくとも一つの非小抵抗電極部材からなる前記第1の電極部材または前記第2の電極部材が配置される、
     プラズマ発生装置。
    The plasma generator according to any one of claims 11 to 13,
    A plurality of arrangements are formed in which the first electrode member composed of the low-resistance electrode member and the second electrode member composed of the low-resistance electrode member are arranged adjacent to each other in a plan view,
    the first electrode member or the second electrode member comprising at least one non-low resistance electrode member is positioned between each of the adjacent arrangements;
    Plasma generator.
  15.  基板を保持する基板保持部と、
     前記基板保持部によって保持された前記基板の主面に処理液を供給するノズルと、
     請求項9から請求項14のいずれか一つに記載のプラズマ発生装置とを備える、
     基板処理装置。
    a substrate holder that holds the substrate;
    a nozzle for supplying a treatment liquid to the main surface of the substrate held by the substrate holding part;
    A plasma generator according to any one of claims 9 to 14,
    Substrate processing equipment.
PCT/JP2022/002847 2021-03-03 2022-01-26 Plasma generation device and substrate processing device WO2022185797A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021-033213 2021-03-03
JP2021033213 2021-03-03
JP2021049997 2021-03-24
JP2021-049997 2021-03-24
JP2021151064A JP2022135887A (en) 2021-03-03 2021-09-16 Plasma generation device and substrate processing device
JP2021-151064 2021-09-16
JP2021-152331 2021-09-17
JP2021152331A JP2022151511A (en) 2021-03-24 2021-09-17 Plasma generation device, and substrate processing device using the same

Publications (1)

Publication Number Publication Date
WO2022185797A1 true WO2022185797A1 (en) 2022-09-09

Family

ID=83154975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002847 WO2022185797A1 (en) 2021-03-03 2022-01-26 Plasma generation device and substrate processing device

Country Status (2)

Country Link
TW (1) TWI826900B (en)
WO (1) WO2022185797A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273752A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Plasma treatment apparatus, and plasma generating apparatus
JP2008117533A (en) * 2006-10-31 2008-05-22 Kyocera Corp Plasma generator unit, reactor, and light source apparatus
WO2015008559A1 (en) * 2013-07-19 2015-01-22 株式会社村田製作所 Airflow generator
JP2016132576A (en) * 2015-01-15 2016-07-25 日本碍子株式会社 Electrode and electrode structure
JP2019061759A (en) * 2017-09-25 2019-04-18 株式会社Screenホールディングス Plasma generating device and electrode body for plasma generation
JP2021002474A (en) * 2019-06-21 2021-01-07 日新電機株式会社 Antenna and plasma processing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464902B1 (en) * 2001-02-12 2005-01-05 (주)에스이 플라즈마 Apparatus for generating low temperature plasama at atmospheric pressure
JP4798635B2 (en) * 2005-09-16 2011-10-19 国立大学法人東北大学 Plasma generating apparatus and plasma generating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273752A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Plasma treatment apparatus, and plasma generating apparatus
JP2008117533A (en) * 2006-10-31 2008-05-22 Kyocera Corp Plasma generator unit, reactor, and light source apparatus
WO2015008559A1 (en) * 2013-07-19 2015-01-22 株式会社村田製作所 Airflow generator
JP2016132576A (en) * 2015-01-15 2016-07-25 日本碍子株式会社 Electrode and electrode structure
JP2019061759A (en) * 2017-09-25 2019-04-18 株式会社Screenホールディングス Plasma generating device and electrode body for plasma generation
JP2021002474A (en) * 2019-06-21 2021-01-07 日新電機株式会社 Antenna and plasma processing apparatus

Also Published As

Publication number Publication date
TW202249057A (en) 2022-12-16
TWI826900B (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP6418694B2 (en) Substrate processing apparatus and substrate processing method
TWI777323B (en) Plasma generating apparatus and substrate processing apparatus
JP2013077625A (en) Substrate processing apparatus and substrate processing method
TW202101565A (en) Substrate processing method, semiconductor manufacturing method, and substrate processing apparatus
WO2018142715A1 (en) Substrate processing device, substrate processing system, and substrate processing method
WO2022185797A1 (en) Plasma generation device and substrate processing device
JP2022135887A (en) Plasma generation device and substrate processing device
WO2022201633A1 (en) Plasma generation device, substrate processing device using same, and plasma generation method
JP2022151511A (en) Plasma generation device, and substrate processing device using the same
WO2023139851A1 (en) Substrate processing method and substrate processing device
WO2022202420A1 (en) Substrate processing method, plasma generation device and method for designing plasma generation device
JP2023095119A (en) Substrate processing apparatus and plasma generation device
JP2022151512A (en) Plasma generation device, substrate processing device using the same, and plasma generation method
JP2022151603A (en) Substrate processing method
JP2022151604A (en) Plasma generation device and design method thereof
JP7488729B2 (en) Atmospheric pressure plasma source and substrate processing apparatus
WO2022181598A1 (en) Substrate processing device and substrate processing method
JP2023144424A (en) Substrate processing apparatus
TWI826946B (en) Substrate processing method and substrate processing apparatus
JP2022147302A (en) Plasma generation device
TWI821722B (en) Substrate processing apparatus
TWI789888B (en) Substrate processing apparatus
CN114256060A (en) Substrate processing method
JP7193357B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP2023141833A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762856

Country of ref document: EP

Kind code of ref document: A1