WO2022181926A1 - Fine dust information-providing air cleaning system and method - Google Patents

Fine dust information-providing air cleaning system and method Download PDF

Info

Publication number
WO2022181926A1
WO2022181926A1 PCT/KR2021/015608 KR2021015608W WO2022181926A1 WO 2022181926 A1 WO2022181926 A1 WO 2022181926A1 KR 2021015608 W KR2021015608 W KR 2021015608W WO 2022181926 A1 WO2022181926 A1 WO 2022181926A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine dust
filter
compressed air
concentration
dust
Prior art date
Application number
PCT/KR2021/015608
Other languages
French (fr)
Korean (ko)
Inventor
장예지
백순창
Original Assignee
주식회사 모이기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모이기술 filed Critical 주식회사 모이기술
Publication of WO2022181926A1 publication Critical patent/WO2022181926A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/108Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/74Regeneration of the filtering material or filter elements inside the filter by forces created by movement of the filter element
    • B01D46/76Regeneration of the filtering material or filter elements inside the filter by forces created by movement of the filter element involving vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/90Cleaning of purification apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/565Conversion or adaptation of application format or content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • the present invention relates to an air cleaning system and method for providing fine dust information, and more particularly, to an air cleaning system and method for providing fine dust information capable of providing fine dust information measured by an air purifier to a fine dust information service .
  • Masks that filter out fine particles are being released in various ways to prevent inhalation of yellow dust or fine dust, but people who feel uncomfortable breathing in an enclosed space such as subways tend not to wear masks.
  • the filter for filtering fine particles used in the published patents and registered patents has a problem in that, when used for a long period of time, the fine particles are adsorbed on the outer surface of the filter, thereby reducing the filter function and frequently replacing the filter whose lifespan has expired.
  • an object of the present invention is to measure the concentration and pressure of fine dust in the air passing through the filter and control to automatically clean the filter, and to remotely monitor and control the fine dust
  • An object of the present invention is to provide an air cleaning system and method for providing fine dust information that can provide information on the concentration of fine dust measured by a reduction device to the general public.
  • An air cleaning system for providing fine dust information measures the concentration of fine dust in an inflow gas sucked from the outside, and removes fine dust contained in the inflow gas.
  • reduction device a gateway capable of converting between TLV (Time Length Value) format data and JSON (JavaScript Object Notation) format data; and a server; including, wherein the fine dust reduction device includes: a first fine dust measurement unit for measuring the fine dust concentration of the inflow gas; a dust collector for removing fine dust contained in the inlet gas; and a communication unit that transmits, to the gateway, the fine dust information data including the fine dust concentration structured data in TLV format and the location where the fine dust reduction device is installed, wherein the server is converted into JSON format by the gateway
  • the fine dust information data is provided to an external terminal device through a monitoring platform.
  • the fine dust reduction device further includes a second fine dust measuring unit for measuring the fine dust concentration of the discharged gas from which fine dust has been removed through the dust collecting unit, wherein the dust collecting unit includes the inlet gas filter that collects fine dust; a barometric pressure meter for measuring the air pressure passing through the filter, which is the pressure of the gas passing through the filter; and a compressed air injector configured to inject compressed air to the filter when the fine dust concentration of the discharge gas is greater than a predetermined fine dust reference value or when the air pressure passing through the filter is greater than a predetermined air pressure reference value.
  • the fine dust reference value is the compressed air injector compared to the fine dust concentration of the discharged gas measured immediately after the compressed air injector sprays the compressed air to the filter N-1 times compared to the filter may be increased based on the increase rate of the fine dust concentration of the discharged gas measured immediately after the compressed air is injected N times.
  • the pneumatic pressure reference value is compared to the air pressure passing through the filter measured immediately after the compressed air injector injects compressed air to the filter in N-1 times, the compressed air injector applies compressed air to the filter It may increase based on the increase rate of the air pressure passing through the filter measured immediately after injection in the N times.
  • the dust collecting unit includes a vibration generator that vibrates the filter when the fine dust concentration of the discharge gas is greater than the fine dust reference value or the air pressure passing through the filter is greater than the air pressure reference value; may include
  • the fine dust reduction device includes a dust storage box for accommodating the fine dust separated from the filter; and a loading amount sensor for measuring the loading amount of the fine dust loaded in the dust storage box.
  • the communication unit transmits facility operation information data structured data in TLV format to the gateway
  • the server transmits the facility operation information data converted into JSON format in the gateway to the monitoring platform.
  • the facility operation information data includes at least one or more of the fine dust concentration of the discharged gas, the fine dust reference value, the air pressure passing through the filter, the air pressure reference value, the installation time of the filter, and the remaining life of the filter can do.
  • the remaining life of the filter may be calculated based on the fine dust reference value and a predetermined fine dust limit value.
  • the monitoring platform may include oneM2M standard protocol.
  • the fine dust concentration of an inlet gas sucked from the outside is measured, and the removing fine dust;
  • the provided fine dust information data includes data converted from TLV format to JSON format through the converting step.
  • the air cleaning system and method for providing fine dust information it is possible to increase the lifespan of the filter through the automatic cleaning function for the filter.
  • FIG. 1 is a block diagram illustrating an air cleaning system for providing fine dust information according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating the fine dust reduction device of FIG. 1 .
  • FIG. 3 is a conceptual diagram for explaining the dust collecting unit of FIG. 2 .
  • FIG. 4 is a conceptual view for explaining the dust accommodating part of FIG. 2 .
  • FIG. 5 is a block diagram illustrating the gateway of FIG. 2 .
  • FIG. 6 is a block diagram illustrating the server of FIG. 2 .
  • FIG. 1 is a block diagram illustrating an air cleaning system for providing fine dust information according to an embodiment of the present invention.
  • an air cleaning system for providing fine dust information may include a fine dust reduction device 10 , a gateway 20 , and a server 30 .
  • the fine dust reduction device 10 may measure the fine dust concentration of the inflow gas sucked from the outside and remove the fine dust contained in the inflow gas.
  • the fine dust reduction device 10 may be an air purifier including a function of providing a real-time fine dust concentration by measuring the fine dust concentration.
  • the fine dust reduction device 10 measures the fine dust concentration, and transmits fine dust information data including the measured fine dust concentration and facility operation information data including operation information of the fine dust reduction device 10 to the gateway 20 . can be transmitted to the server 30 via The fine dust information data and facility operation information data transmitted to the server 30 may be provided to an external terminal device (eg, a computing device such as a PC or a smart phone) connected to the server 30 by wire or wirelessly.
  • an external terminal device eg, a computing device such as a PC or a smart phone
  • the gateway 20 may include a network relay device that connects the fine dust reduction device 10 and the server 30 by wire or wirelessly.
  • the gateway 20 may convert TLV (Time Length Value) format data and JSON (JavaScript Object Notation) format data to each other.
  • the TLV format refers to a type-length-value data format of a data packet.
  • the fine dust reduction device 10 may structure and store fine dust information data and facility operation information data in a TLV format.
  • the fine dust reduction device 10 may transmit fine dust information data structured as data in the TLV format and facility operation information data structured as data in the TLV format to the gateway 20 .
  • JSON is an expression used to create objects in JavaScript, and refers to a lightweight data exchange format used to store or transmit data.
  • the JSON format can include any open standard format that uses human-readable text to convey data objects, typically consisting of attribute-value pairs.
  • the gateway 20 may convert the TLV format data received from the fine dust reduction device 10 into a JSON format and transmit it to the server 30 . Also, the gateway 20 may convert the JSON format data received from the server 30 into a TLV format and transmit it to the fine dust reduction device 10 .
  • FIG. 2 is a block diagram illustrating the fine dust reduction device of FIG. 1 .
  • FIG. 3 is a conceptual diagram for explaining the dust collecting unit of FIG. 2 .
  • FIG. 4 is a conceptual view for explaining the dust accommodating part of FIG. 2 .
  • the fine dust reduction device 10 includes an inlet 110 , a first fine dust measuring unit 120 , a dust collecting unit 130 , a dust receiving unit 140 , and a second fine dust measuring unit. It may include a unit 150 , a discharge unit 160 , a control unit 170 , and a communication unit 180 .
  • the inlet 110 may include a pipe through which gas is sucked from the outside and connected to the dust collecting unit 130 .
  • the inflow gas sucked from the outside may vary depending on the location where the fine dust reduction device 10 is installed.
  • the inflow gas may include internal air of the public place.
  • the inflow gas may include the exhaust gas.
  • the first fine dust measuring unit 120 may measure the fine dust concentration of the inlet gas sucked through the inlet 110 .
  • the first fine dust measurement unit 120 may measure the amount of fine dust using a light scattering method.
  • the light scattering method is a method of measuring the amount of scattered light and obtaining the concentration of particulate matter from the value.
  • the light when light is irradiated to the particulate matter suspended in the atmosphere, the light is scattered by the particulate matter.
  • the amount of scattered light is proportional to the mass concentration when light is irradiated to a particulate material having the same physical properties.
  • the first fine dust measurement unit 120 may include a particle separator (not shown) and a light scattering sensor (not shown).
  • the particle separator can separate particles of heavy mass by applying a sharp rotation to the incoming fine particles. Specifically, when the particle separator applies a sharp rotation to the incoming fine dust, the particles with large mass are captured outside the air rotating flow by centrifugal force, and the light particles move along the air flow.
  • the particle separator may separate fine dust (PM 10) or ultrafine dust (PM 2.5) based on a preset particle density.
  • the particle separator may include a moisture eliminator capable of removing moisture therein to improve particle separation capability.
  • the light scattering sensor may measure the concentration of the particles by using a light scattering method in which light is irradiated to the particles, diffraction, refraction, and reflection.
  • the light scattering sensor can measure the concentration of particles by using the principle that scattered light varies depending on the size of the particles.
  • the light scattering sensor may calculate the concentration of fine dust by sensing the light scattered by the incoming particles and counting the number of particles by size.
  • the first fine dust measurement unit 120 may include two particle separators and two light scattering sensors to measure the concentration of two particles having relatively different sizes.
  • the first fine dust measurement unit 120 may measure the concentrations of fine particles (hereinafter PM 10 fine dust) and ultrafine particles (hereinafter PM 2.5 fine dust), but is not limited thereto. Accordingly, it can be configured to measure fine particles of various sizes.
  • the first fine dust measurement unit 120 is a first particle separator capable of separating PM 10 fine dust in order to measure the concentrations of PM 10 fine dust and PM 2.5 fine dust (ie, ultra-fine dust). and a first light scattering sensor, a second particle separator capable of separating PM 2.5 fine dust, and a second light scattering sensor.
  • the second particle separator may have a cylindrical size smaller than that of the first particle separator in order to measure PM 2.5 fine particles smaller than PM 10 fine particles. That is, the second particle separator may have a radius of swirl (ie, a radius of rotation) smaller than that of the first particle separator.
  • the second light scattering sensor may include the same configuration as the first light scattering sensor, but is not limited thereto, and may include a different configuration as necessary.
  • the dust collecting unit 130 may include a filter 131 , a compressed air injector 132 , a vibration generator 133 , and a pressure gauge 134 .
  • the filter 131 may collect fine dust of the inflow gas.
  • the filter 131 may include a bag-shaped bag filter. Bag filters can trap airborne particles (eg, 0.1-100 ⁇ m fine particles) using a bag-shaped filter fabric.
  • the filter 131 may include a bag filter in which the HEPA filter is formed in a bag shape.
  • the filter 131 may include a bag filter in which the HEPA filter is formed in a cylindrical bag shape with an open top and a closed bottom.
  • HEPA filters differ depending on the grade, but in general, they can filter out about 99.97% or more of particles with a size of 0.3 ⁇ m.
  • the inlet gas may be introduced into the filter housing 135 in which the filter 131 is installed, and may flow through the filter 131 .
  • the inflow gas passes from the outer surface to the inner surface of the filter 131 in the form of a cylindrical bag (that is, in the form of a bag filter) that is open in one direction, the fine dust contained in the inlet gas is attached to the outer surface of the filter 131 to create fine particles. Dust can be reduced.
  • the inlet gas may flow from the outer surface of the filter 131 in the form of a cylindrical bag to the inner surface and flow in an open upper direction.
  • fine dust may be adsorbed to the outer surface of the filter 131 over time to form a dust cake.
  • the barometric pressure meter 134 may measure the pressure of the gas passing through the filter 131 .
  • the barometric pressure meter 134 may measure the air pressure passing through the filter, which is the pressure of the gas passing through the filter 131 .
  • the barometric pressure meter 134 may be installed between the inlet 110 and the dust collector 130 to measure the pressure of the gas passing through the filter 131 .
  • the barometric pressure meter 134 may be installed on a path through which the inlet gas collects into the filter housing 135 .
  • the second fine dust measuring unit 150 may measure the fine dust concentration of the discharged gas from which fine dust has been removed by passing through the dust collecting unit 130 .
  • the second fine dust measuring unit 150 may include substantially the same configuration as the first fine dust measuring unit 120 , and thus overlapping descriptions may be omitted.
  • FIG. 3 (a) is a conceptual diagram for explaining the operation of the compressed air injector (132).
  • the compressed air injector 132 may inject compressed air from the open top of the filter 131 toward the inner surface of the filter 131 .
  • the compressed air injector 132 may receive compressed air through a venturi-type pipe in which a diameter of a passage through which air flows is narrower than a diameter of an inlet through which air is introduced.
  • the compressed air injector 132 may include a nozzle capable of injecting high-pressure compressed air into the filter 131 .
  • the compressed air injector 132 may inject high-pressure compressed air from the inner surface of the filter 131 in the form of a cylindrical bag toward the outer surface. Compressed air injected from the compressed air injector 132 flows in the opposite direction to the inflow gas containing fine dust, and the fine dust attached to the outer surface of the filter 131 and the fine dust accumulated inside the filter 131 are removed from the filter 131. can be separated.
  • the compressed air injector 132 injects compressed air to the filter 131 when the fine dust concentration of the discharged gas is greater than a predetermined fine dust reference value, or when the air pressure passing through the filter is greater than a predetermined air pressure reference value.
  • the fine dust reference value and the air pressure reference value which are the criteria for the compressed air injector 132 to inject compressed air, may be predetermined in consideration of the performance, lifespan, or the environment in which the fine dust information providing air cleaning system of the filter 131 is installed. .
  • the fine dust concentration of the discharged gas increases, and the fine dust reference value and the air pressure reference value also need to be changed in response to an increase in the air pressure passing through the filter, and are corrected to increase according to a certain standard It is preferable to do
  • the fine dust reference value may be changed based on a change in the fine dust concentration of the discharged gas measured immediately after the compressed air injector 132 injects compressed air to the filter 131 .
  • the fine dust reference value is N compared to the fine dust concentration of the discharged gas measured immediately after the compressed air is sprayed N-1 times. It may be increased based on the increase rate of the fine dust concentration of the discharged gas measured immediately after the compressed air is injected into the cycle.
  • the fine dust reference value is the compressed air injector 132 compared to the fine dust concentration of the discharged gas measured immediately after the compressed air injector 132 injects the compressed air to the filter 131 in N-1 times. 131) can be increased based on the increase rate of the fine dust concentration of the discharged gas measured immediately after the compressed air is injected N times, and it can be expressed by the following formula.
  • Ref_V (1 + K1 * a) * Ref_V
  • a is the rate of increase in the concentration of fine dust in the discharge gas.
  • Ref_V is the fine dust reference value.
  • V1 is the concentration of fine dust in the discharged gas measured immediately after the compressed air is sprayed N times.
  • V0 is the concentration of fine dust in the discharged gas measured immediately after the compressed air is injected in the N-1 round.
  • K1 is a proportional constant determined in advance through a test operation, etc. in consideration of the area covered by the fine dust reduction device 10, the installation place (public places, industrial facilities, etc.), the type of fine dust, and the like. K1 may be set to various values as needed.
  • the remaining life of the filter 131 may be calculated based on the increase in the fine dust reference value.
  • the remaining life of the filter 131 may be calculated based on a fine dust reference value and a predetermined fine dust limit value.
  • the remaining life of the filter 131 may be calculated by comparing the difference between the current value of the fine dust reference value and the fine dust threshold value with the difference between the initial set value of the fine dust reference value and the fine dust threshold value.
  • the fine dust reduction device 10 may determine that the life of the filter 131 has expired.
  • the facility operation information data may include information indicating that the life of the filter has expired.
  • the fine dust limit value may be predetermined in consideration of the place where the fine dust reduction device 10 is installed.
  • the fine dust threshold value may be determined in consideration of domestic and foreign fine dust environmental levels, but is not limited thereto.
  • the fine dust limit value may be determined in consideration of air pollutant emission standards and the like.
  • the air pressure reference value may be changed based on a change in the air pressure passing through the filter measured immediately after the compressed air injector 132 injects compressed air to the filter 131 .
  • the air pressure reference value is the compressed air in N times compared to the air pressure passing through the filter measured immediately after spraying the compressed air in N-1 times. It can be increased based on the rate of increase of the air pressure passing through the filter measured immediately after spraying.
  • the air pressure reference value is the compressed air injector 132 compared to the air pressure measured immediately after the compressed air injector 132 injects compressed air to the filter 131 in N-1 times compared to the compressed air injector 132 is compressed in the filter 131 It can be increased based on the increase rate of the air pressure passing through the filter measured immediately after the air is sprayed N times, and can be expressed by the following formula.
  • Ref_P (1 + K2 * b) * Ref_P
  • K2 is a proportional constant determined in advance through a test operation, etc. in consideration of the area covered by the fine dust reduction device 10, the installation place (public places, industrial facilities, etc.), the type of fine dust, and the like. K2 may be set to various values as needed.
  • the fine dust reduction device 10 may determine that the life of the filter 131 has expired.
  • the facility operation information data may include information that the life of the filter has expired.
  • the air pressure limit value may be predetermined through a test operation, etc. in consideration of the performance of the filter 131 .
  • FIG. 3B is a conceptual diagram for explaining the operation of the vibration generator 133 .
  • the vibration generator 133 may be connected to the filter 131 to transmit vibration to the filter 131 .
  • the vibration generator 133 may be disposed between the filter 131 and the filter housing 135, but is not limited thereto.
  • the vibration generator 133 uses the filter 131 to separate fine dust attached to the outer surface of the filter 131 by vibration when the concentration of fine dust in the discharge gas is greater than the fine dust reference value or the air pressure passing through the filter is greater than the air pressure reference value.
  • the filter 131 can be vibrated by transmitting the vibration.
  • the vibration generator 133 may operate simultaneously with the compressed air injector 132 . That is, the vibration generator 133 may transmit vibration to the filter 131 at the same time when the compressed air injector 132 injects compressed air into the filter 131 .
  • the vibration generator 133 may transmit vibration to the filter 131 after the compressed air injector 132 injects compressed air into the filter 131 .
  • the vibration generator 133 may transmit vibration to the filter 131 before the compressed air injector 132 injects compressed air to the filter 131 .
  • At least one of the compressed air injector 132 and the vibration generator 133 may be operated at predetermined intervals in order to prevent the fine dust from adhering and sticking to the filter 131 .
  • the vibration generator 133 may transmit vibration to the filter 131 .
  • the dust accommodating unit 140 may include a dust accommodating box 141 and a loading amount sensor 142 .
  • the dust box 141 may accommodate fine dust separated from the filter 131 .
  • the dust container 141 may be located under the filter housing 135 .
  • the filter housing 135 may include a shape that becomes narrower toward the bottom so that the fine dust separated from the filter 131 can easily slide into the dust container 141 .
  • the filter housing 135 may close a passage connected to the dust container 141 in order to maintain internal pressure.
  • the filter housing 135 may open a passage connected to the dust container 141 while the compressed air injector 132 is operating so that the fine dust separated from the filter 131 can move to the dust container 141 . In this case, fine dust may be moved to the dust container 141 by the pressure of the compressed air sprayed by the compressed air injector 132 .
  • the loading amount sensor 142 may measure the loading amount of fine dust loaded in the dust storage box 141 .
  • the loading amount sensor 142 may measure the height of the fine dust loaded in the dust container 141 using a sensor capable of measuring a distance, such as an ultrasonic sensor or a laser sensor.
  • the loading amount of fine dust may include the height of the fine dust measured using the loading amount sensor 142 .
  • the load sensor 142 may include, but is not limited to, an ultrasonic transmitter and a receiver.
  • the discharge unit 160 may include a pipe through which the gas from which fine dust is removed is discharged through the dust collecting unit 130 .
  • the controller 170 may control the operation of the fine dust reduction device 10 .
  • the control unit 170 controls the measurement values of the first fine dust measurement unit 120 , the second fine dust measurement unit 150 , the barometric pressure meter 134 , and the load amount sensor 142 , and data generated based thereon. can be stored as a data structure in the TLV format.
  • the controller 170 may generate and store fine dust information data and facility operation information data structured as data in a TLV format.
  • the controller 170 may control the operation timing of the compressed air injector 132 and the vibration generator 133 .
  • the fine dust information data may include at least any one or more of the fine dust concentration of the inflow gas structured data in the TLV format, the location information where the fine dust reduction device 10 is installed, and the fine dust measurement time of the inflow gas.
  • the facility operation information data includes the fine dust concentration of the inflow gas structured data in TLV format, the location information where the fine dust reduction device 10 is installed, the fine dust measurement time of the inflow gas, the fine dust concentration of the exhaust gas, and the fine dust in the exhaust gas At least any one or more of measurement time, filter passing air pressure, fine dust standard value, air pressure standard value, installation time of filter 131, remaining life of filter 131, fine dust limit value, air pressure limit value, fine dust load can
  • the communication unit 180 may transmit fine dust information data and facility operation information data to the gateway 20 .
  • the communication unit 180 may include the gateway 20 and a short-range communication module capable of transmitting and receiving short-range wireless data.
  • Short-distance communication modules are LoRA (Long Range Sub Ghz Module), M2M, WiFi, BLE (Bluetooth Low Energy), RFID (Radio Frequency Identification), NFC (Near Field Communication), infrared communication (IrDA, infrared Data Association), UWB (UWB) Ultra Wide Band), it may be a communication module using a communication technology such as ZigBee.
  • FIG. 5 is a block diagram illustrating the gateway of FIG. 2 .
  • FIG. 6 is a block diagram illustrating the server of FIG. 2 .
  • the gateway 20 may include a converter 210 .
  • the server 30 may include a monitoring platform 310 .
  • the converter 210 may convert TLV format data and JSON format data to each other.
  • the converter 210 may convert the TLV format data received from the fine dust reduction device 10 into a JSON format.
  • the converter 210 may convert the JSON format data received from the server 30 into a TLV format.
  • the server 30 may include the gateway 20 and a wired or wireless communication module capable of transmitting and receiving data.
  • the wireless communication module included in the server 30 preferably uses 4G (LTE, LTE/M) wireless communication technology, but is not limited thereto, and the recently developed 5G (IMT-2020) wireless communication technology, an international electric and electronic engineer IEEE802.11n, IEEE802.11ac, IEEE802.11ad, IEEE802.11af, IEEE802.11ah, IEEE802.11ai, which are wireless communication standard technologies of the Association (IEEE), can be used, and WiGig (Wireless Gigabit Alliance) based on IEEE802.11ad can be used. ), Wibro (Wireless Broadband), WLAN (Wireless LAN) (Wi-Fi), Wimax (World Interoperability for Microwave Access), HSDPA (High Speed Downlink Packet Access), etc. may be used.
  • the monitoring platform 310 is an external terminal device connected to the server 30 by wire or wirelessly, and the monitoring platform 310 may provide at least one of fine dust information data and facility operation information data.
  • the monitoring platform 310 may include a oneM2M (one Machine to Machine) standard protocol, which is an international standard for an Internet of Things (IoT) service platform.
  • the monitoring platform 310 may convert the data received from the gateway 20 into JSON format to conform to the oneM2M standard protocol and provide it through the IoT service application.
  • the monitoring platform 310 may implement a service providing function through a REST (Representational State Transfer) API.
  • the monitoring platform 310 may include a maintenance monitoring platform and a monitoring platform for providing fine dust information.
  • the fine dust information provision monitoring platform can provide fine dust concentration information using fine dust information data.
  • the fine dust information provision monitoring platform may include an API for providing information included in the fine dust information data.
  • the fine dust information provision monitoring platform may include a REST API that provides information included in the fine dust information data.
  • a user who wants to receive fine dust information may receive fine dust concentration information (eg, measured concentration, measurement location, measurement time, etc.) through an application corresponding to the fine dust information provision monitoring platform.
  • fine dust concentration information eg, measured concentration, measurement location, measurement time, etc.
  • a user who wants to receive fine dust information may or may not have a limited range as needed.
  • the maintenance monitoring platform may remotely monitor and control the fine dust reduction device 10 using facility operation information data.
  • the maintenance monitoring platform may provide information included in the facility operation information data.
  • the maintenance monitoring platform may include an API for providing information included in operation information or facility operation information data of the fine dust reduction device 10 .
  • the maintenance monitoring platform may include a REST API that provides information contained in facility operation information data.
  • the fine dust reduction device 10 may be remotely monitored and controlled through an application corresponding to the maintenance monitoring platform.
  • the maintenance monitoring platform can be accessed only by an authorized user, and the authorized user may include, for example, a manager or a maintenance person of the fine dust reduction device 10 .
  • server 110 inlet
  • filter 132 compressed air injector
  • load amount sensor 150 second fine dust measurement unit

Abstract

A fine dust information-providing air cleaning system according to the present invention comprises: a fine dust reduction device which measures a fine dust concentration of an inflow gas sucked from the outside and removes fine dust contained in the inflow gas; a gateway capable of converting between TLV format data and JSON format data; and a server, wherein the fine dust reduction device comprises: a first fine dust measurement unit which measures the fine dust concentration of the inflow gas; a dust collecting unit which removes the fine dust contained in the inflow gas; and a communication unit which transmits, to the gateway, fine dust information data that is data-structured in a TLV format and includes the fine dust concentration and a location where the fine dust reduction device is installed, wherein the server provides the fine dust information data converted into a JSON format by the gateway, to an external terminal device through a monitoring platform.

Description

미세먼지 정보 제공 공기청정 시스템 및 방법Air cleaning system and method for providing fine dust information
본 발명은 미세먼지 정보 제공 공기청정 시스템 및 방법에 관한 것으로, 더욱 상세하게는 공기청정기에서 측정한 미세먼지 정보를 미세먼지 정보 서비스에 제공할 수 있는 미세먼지 정보 제공 공기청정 시스템 및 방법에 관한 것이다.The present invention relates to an air cleaning system and method for providing fine dust information, and more particularly, to an air cleaning system and method for providing fine dust information capable of providing fine dust information measured by an air purifier to a fine dust information service .
황사 또는 미세먼지 등과 같은 이물질이 대기 중에 계속해서 증가하고 있으며 호흡을 통해 인체에 흡입됨으로써 건강상에 문제를 일으키는 사례가 증가하고 있다.Foreign substances such as yellow dust or fine dust are continuously increasing in the air, and the number of cases causing health problems by being inhaled into the human body through breathing is increasing.
황사 또는 미세먼지 등의 인체 흡입을 방지하기 위해 미세 입자를 걸러내는 마스크가 다양하게 출시되고 있으나 지하철 등과 같이 밀폐된 공간에서 호흡에 불편함을 느끼는 사람들이 마스크를 착용하지 않는 경향이 있다.Masks that filter out fine particles are being released in various ways to prevent inhalation of yellow dust or fine dust, but people who feel uncomfortable breathing in an enclosed space such as subways tend not to wear masks.
밀폐된 공간에서의 마스크 착용을 강제할 수 없기 때문에 공기 중에 떠다니는 미세 입자를 필터링하여 저감 시키는 집진장치들을 지하철이나 도로변 등에 설치하여 깨끗한 공기를 사람들에게 제공하고 있다.Since it is impossible to force the wearing of a mask in an enclosed space, dust collectors that filter and reduce fine particles floating in the air are installed in subways and roadsides, etc. to provide clean air to people.
대형 공장과 같은 산업단지에서는 다량의 먼지와 미세입자들이 발생되므로 규모에 맞는 대형 집진장치를 사용하고 있으며, 일반 가정에서는 쉽게 이동하거나 휴대할 수 있는 공기청정기 등을 장소에 맞게 사용하고 있다.In industrial complexes such as large factories, a large amount of dust and fine particles are generated, so large-sized dust collectors are used.
관련된 종래 기술로는 대한민국 공개특허 제10-2019-0048654호(2019.05.09) "산업용 미세먼지 정화용 필터 집진장치"가 있으며, 3단계 다중 필터 구조로 된 필터부를 포함하고 있어 공기 중의 이물질을 용이하게 제거할 수 있다. 또한, 설치 장소에 제약이 없다는 이점이 있다.As a related prior art, there is Republic of Korea Patent Publication No. 10-2019-0048654 (2019.05.09) "Filter dust collector for industrial fine dust purification", and includes a filter unit with a three-stage multi-filter structure to easily remove foreign substances in the air can be removed In addition, there is an advantage that there is no restriction on the installation location.
또한, 대한민국 등록특허 제10-2065773호(2020.01.14) "야외용 미세먼지 저감장치"는 야외에 설치되기는 하나, 작업현장의 휴식장소, 대중교통 및 신호를 기다리는 장소에 설치하여 청정 공기를 제공할 수 있는 이점이 있다.In addition, the Republic of Korea Patent Registration No. 10-2065773 (Jan. 14, 2020) "Outdoor Fine Dust Reduction Device" is installed outdoors, but it is installed in a resting place at the work site, public transportation, and a place waiting for a signal to provide clean air. There are advantages that can be
그러나, 공개특허 및 등록특허에 사용되는 미세입자를 걸러내는 필터는 장기간 사용하게 되면 필터 외면에 미세입자들이 흡착되어 필터 기능을 저하시키고 수명이 다된 필터를 자주 교체해야 하는 문제점이 있다.However, the filter for filtering fine particles used in the published patents and registered patents has a problem in that, when used for a long period of time, the fine particles are adsorbed on the outer surface of the filter, thereby reducing the filter function and frequently replacing the filter whose lifespan has expired.
또한, 공공 장소에 설치된 다수의 공기청정기를 유지보수하기 위해 담당 인력이 설치 장소를 찾아 다니며 필터 상태를 확인하고 장비 운영 상태를 점검하여야 하기 때문에 시간과 비용이 많이 소비되는 문제점이 있다.In addition, in order to maintain a number of air purifiers installed in public places, there is a problem in that a large amount of time and money is consumed because a person in charge has to visit the installation site to check the filter status and to check the equipment operation status.
또한, 공공 장소에 접근하는 일반 대중이 미세먼지 상태를 사전에 인지하고 효율적으로 대응할 수 있도록 공공 장소에 설치된 다수의 공기청정기에서 측정된 미세먼지 정보를 일반 대중에게 제공할 필요성이 있다.In addition, there is a need to provide the general public with information on fine dust measured by a number of air purifiers installed in public places so that the general public accessing public places can recognize the state of fine dust in advance and respond efficiently.
본 발명의 기술적 과제는 이러한 점에서 착안된 것으로 본 발명의 목적은 필터를 통과하는 공기의 미세먼지 농도 및 압력을 측정하여 자동으로 필터를 청소하도록 제어할 수 있으며, 이를 원격으로 모니터링하고, 미세먼지 저감장치에서 측정된 미세먼지 농도 정보를 일반 대중에게 제공할 수 있는 미세먼지 정보 제공 공기청정 시스템 및 방법을 제공하는 것이다.The technical problem of the present invention has been conceived in this regard, and an object of the present invention is to measure the concentration and pressure of fine dust in the air passing through the filter and control to automatically clean the filter, and to remotely monitor and control the fine dust An object of the present invention is to provide an air cleaning system and method for providing fine dust information that can provide information on the concentration of fine dust measured by a reduction device to the general public.
상술한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 미세먼지 정보 제공 공기청정 시스템은 외부로부터 흡입된 유입 기체의 미세먼지 농도를 측정하고, 상기 유입 기체에 포함된 미세먼지를 제거하는 미세먼지 저감장치; TLV(Time Length Value) 포맷 데이터 및 JSON(JavaScript Object Notation) 포맷 데이터를 상호 변환할 수 있는 게이트웨이; 및 서버;를 포함하되, 상기 미세먼지 저감장치는 상기 유입 기체의 미세먼지 농도를 측정하는 제1 미세먼지 측정부; 상기 유입 기체에 포함된 미세먼지를 제거하는 집진부; 및 TLV 포맷으로 데이터 구조화된 상기 미세먼지 농도 및 상기 미세먼지 저감장치가 설치된 위치를 포함하는 미세먼지 정보 데이터를 상기 게이트웨이로 전송하는 통신부;를 포함하고, 상기 서버는 상기 게이트웨이에서 JSON 포맷으로 변환된 상기 미세먼지 정보 데이터를 모니터링 플랫폼을 통해 외부 단말 장치로 제공한다.An air cleaning system for providing fine dust information according to an embodiment of the present invention for realizing the above-described object of the present invention measures the concentration of fine dust in an inflow gas sucked from the outside, and removes fine dust contained in the inflow gas. reduction device; a gateway capable of converting between TLV (Time Length Value) format data and JSON (JavaScript Object Notation) format data; and a server; including, wherein the fine dust reduction device includes: a first fine dust measurement unit for measuring the fine dust concentration of the inflow gas; a dust collector for removing fine dust contained in the inlet gas; and a communication unit that transmits, to the gateway, the fine dust information data including the fine dust concentration structured data in TLV format and the location where the fine dust reduction device is installed, wherein the server is converted into JSON format by the gateway The fine dust information data is provided to an external terminal device through a monitoring platform.
본 발명의 일 실시예에 있어서, 상기 미세먼지 저감장치는 상기 집진부를 통과하여 미세먼지가 제거된 토출 기체의 미세먼지 농도를 측정하는 제2 미세먼지 측정부를 더 포함하고, 상기 집진부는 상기 유입 기체의 미세먼지를 포집하는 필터; 상기 필터를 통과하는 기체의 압력인 필터 통과 공기압을 측정하는 기압 측정기; 및 상기 토출 기체의 미세먼지 농도가 미리 정해진 미세먼지 기준값보다 크거나, 상기 필터 통과 공기압이 미리 정해진 공기압 기준값보다 큰 경우, 상기 필터에 압축공기를 분사하는 압축공기 분사기;를 포함할 수 있다.In one embodiment of the present invention, the fine dust reduction device further includes a second fine dust measuring unit for measuring the fine dust concentration of the discharged gas from which fine dust has been removed through the dust collecting unit, wherein the dust collecting unit includes the inlet gas filter that collects fine dust; a barometric pressure meter for measuring the air pressure passing through the filter, which is the pressure of the gas passing through the filter; and a compressed air injector configured to inject compressed air to the filter when the fine dust concentration of the discharge gas is greater than a predetermined fine dust reference value or when the air pressure passing through the filter is greater than a predetermined air pressure reference value.
본 발명의 일 실시예에 있어서, 상기 미세먼지 기준값은 상기 압축공기 분사기가 상기 필터에 압축공기를 N-1 회차에 분사한 직후 측정된 상기 토출 기체의 미세먼지 농도 대비 상기 압축공기 분사기가 상기 필터에 압축공기를 N 회차에 분사한 직후 측정된 상기 토출 기체의 미세먼지 농도의 증가율을 기초로 증가할 수 있다.In an embodiment of the present invention, the fine dust reference value is the compressed air injector compared to the fine dust concentration of the discharged gas measured immediately after the compressed air injector sprays the compressed air to the filter N-1 times compared to the filter may be increased based on the increase rate of the fine dust concentration of the discharged gas measured immediately after the compressed air is injected N times.
본 발명의 일 실시예에 있어서, 상기 공기압 기준값은 상기 압축공기 분사기가 상기 필터에 압축공기를 N-1 회차에 분사한 직후 측정된 상기 필터 통과 공기압 대비 상기 압축공기 분사기가 상기 필터에 압축공기를 N 회차에 분사한 직후 측정된 상기 필터 통과 공기압의 증가율을 기초로 증가할 수 있다.In one embodiment of the present invention, the pneumatic pressure reference value is compared to the air pressure passing through the filter measured immediately after the compressed air injector injects compressed air to the filter in N-1 times, the compressed air injector applies compressed air to the filter It may increase based on the increase rate of the air pressure passing through the filter measured immediately after injection in the N times.
본 발명의 일 실시예에 있어서, 상기 집진부는 상기 토출 기체의 미세먼지 농도가 상기 미세먼지 기준값보다 크거나, 상기 필터 통과 공기압이 상기 공기압 기준값보다 큰 경우, 상기 필터를 진동 시키는 진동 발생기;를 더 포함할 수 있다.In an embodiment of the present invention, the dust collecting unit includes a vibration generator that vibrates the filter when the fine dust concentration of the discharge gas is greater than the fine dust reference value or the air pressure passing through the filter is greater than the air pressure reference value; may include
본 발명의 일 실시예에 있어서, 상기 미세먼지 저감장치는 상기 필터로부터 분리된 미세먼지를 수납하는 먼지 수납함; 및 상기 먼지 수납함에 적재된 미세먼지의 적재량을 측정하는 적재량 센서;를 포함하는 먼지 수납부를 더 포함할 수 있다.In one embodiment of the present invention, the fine dust reduction device includes a dust storage box for accommodating the fine dust separated from the filter; and a loading amount sensor for measuring the loading amount of the fine dust loaded in the dust storage box.
본 발명의 일 실시예에 있어서, 상기 통신부는 TLV 포맷으로 데이터 구조화된 설비 운영 정보 데이터를 상기 게이트웨이로 전송하며, 상기 서버는 상기 게이트웨이에서 JSON 포맷으로 변환된 상기 설비 운영 정보 데이터를 상기 모니터링 플랫폼을 통해 더 제공하고, 상기 설비 운영 정보 데이터는 상기 토출 기체의 미세먼지 농도, 상기 미세먼지 기준값, 상기 필터 통과 공기압, 상기 공기압 기준값, 상기 필터의 설치 시기, 상기 필터의 남은 수명 중 적어도 하나 이상을 포함할 수 있다.In one embodiment of the present invention, the communication unit transmits facility operation information data structured data in TLV format to the gateway, and the server transmits the facility operation information data converted into JSON format in the gateway to the monitoring platform. and the facility operation information data includes at least one or more of the fine dust concentration of the discharged gas, the fine dust reference value, the air pressure passing through the filter, the air pressure reference value, the installation time of the filter, and the remaining life of the filter can do.
본 발명의 일 실시예에 있어서, 상기 필터의 남은 수명은 상기 미세먼지 기준값 및 미리 정해진 미세먼지 한계값을 기초로 산출할 수 있다.In an embodiment of the present invention, the remaining life of the filter may be calculated based on the fine dust reference value and a predetermined fine dust limit value.
본 발명의 일 실시예에 있어서, 상기 모니터링 플랫폼은 oneM2M 표준 프로토콜을 포함할 수 있다.In one embodiment of the present invention, the monitoring platform may include oneM2M standard protocol.
상술한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 미세먼지 정보 제공 공기청정 방법은, 미세먼지 저감장치에서, 외부로부터 흡입된 유입 기체의 미세먼지 농도를 측정하고, 상기 유입 기체에 포함된 미세먼지를 제거하는 단계; 게이트웨이에서, TLV(Time Length Value) 포맷 데이터 및 JSON(JavaScript Object Notation) 포맷 데이터를 상호 변환하는 단계; 및 서버에서, 미세먼지 정보 데이터를 모니터링 플랫폼을 통해 외부 단말 장치로 제공하는 단계를 포함하되, 상기 미세먼지를 제거하는 단계는 제1 미세먼지 측정부를 이용하여, 상기 유입 기체의 미세먼지 농도를 측정하는 단계; 집진부를 이용하여, 상기 유입 기체에 포함된 미세먼지를 제거하는 단계; 및 TLV 포맷으로 데이터 구조화된, 상기 미세먼지 농도 및 상기 미세먼지 저감 장치가 설치된 위치를 포함하는 상기 미세먼지 정보 데이터를 통신부를 이용하여 상기 게이트웨이로 전송하는 단계;를 포함하고, 상기 모니터링 플랫폼을 통해 제공되는 상기 미세먼지 정보 데이터는 상기 변환하는 단계를 통해 TLV 포맷에서 JSON 포맷으로 변환된 데이터를 포함한다.In an air cleaning method for providing fine dust information according to an embodiment of the present invention for realizing the above-described object of the present invention, in a fine dust reduction device, the fine dust concentration of an inlet gas sucked from the outside is measured, and the removing fine dust; Interconverting, in the gateway, TLV (Time Length Value) format data and JSON (JavaScript Object Notation) format data; and providing, in the server, fine dust information data to an external terminal device through a monitoring platform, wherein the removing of the fine dust uses a first fine dust measurement unit to measure the fine dust concentration of the inflow gas to do; removing fine dust contained in the inflow gas by using a dust collector; and transmitting the fine dust information data structured in a TLV format, including the fine dust concentration and the location where the fine dust reduction device is installed, to the gateway using a communication unit; including, through the monitoring platform The provided fine dust information data includes data converted from TLV format to JSON format through the converting step.
이와 같은 미세먼지 정보 제공 공기청정 시스템 및 방법에 따르면, 필터에 대한 자동 청소 기능을 통해 필터의 수명을 증가시킬 수 있다.According to the air cleaning system and method for providing fine dust information, it is possible to increase the lifespan of the filter through the automatic cleaning function for the filter.
또한, 미세먼지 저감장치의 작동 상태를 원격으로 모니터링하여 유지보수에 소요되는 시간과 비용을 절감할 수 있다.In addition, it is possible to reduce the time and cost required for maintenance by remotely monitoring the operating state of the fine dust reduction device.
또한, 미세먼지 저감장치가 설치된 장소의 미세먼지 농도를 공개하여 해당 저감장치가 설치된 장소에 방문하는 일반 대중이 미세먼지 방지 대책을 사전에 수립하는데 도움이 될 수 있다.In addition, by disclosing the fine dust concentration of the place where the fine dust reduction device is installed, it can be helpful for the general public visiting the place where the corresponding reduction device is installed to establish measures to prevent fine dust in advance.
도 1은 본 발명의 일 실시예에 따른 미세먼지 정보 제공 공기청정 시스템을 나타내는 블록도이다.1 is a block diagram illustrating an air cleaning system for providing fine dust information according to an embodiment of the present invention.
도 2는 도 1의 미세먼지 저감장치를 나타내는 블록도이다.FIG. 2 is a block diagram illustrating the fine dust reduction device of FIG. 1 .
도 3은 도 2의 집진부를 설명하기 위한 개념도이다.FIG. 3 is a conceptual diagram for explaining the dust collecting unit of FIG. 2 .
도 4는 도 2의 먼지 수납부를 설명하기 위한 개념도이다.FIG. 4 is a conceptual view for explaining the dust accommodating part of FIG. 2 .
도 5는 도 2의 게이트웨이를 나타내는 블록도이다.FIG. 5 is a block diagram illustrating the gateway of FIG. 2 .
도 6은 도 2의 서버를 나타내는 블록도이다.FIG. 6 is a block diagram illustrating the server of FIG. 2 .
이하에서, 첨부한 도면들을 참조하여, 본 발명을 보다 상세하게 설명하고자 한다. 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략될 수 있다.Hereinafter, with reference to the accompanying drawings, the present invention will be described in more detail. The same reference numerals are used for the same components in the drawings, and repeated descriptions of the same components may be omitted.
도 1은 본 발명의 일 실시예에 따른 미세먼지 정보 제공 공기청정 시스템을 나타내는 블록도이다. 1 is a block diagram illustrating an air cleaning system for providing fine dust information according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 미세먼지 정보 제공 공기청정 시스템은 미세먼지 저감장치(10), 게이트웨이(20) 및 서버(30)를 포함할 수 있다.Referring to FIG. 1 , an air cleaning system for providing fine dust information according to an embodiment of the present invention may include a fine dust reduction device 10 , a gateway 20 , and a server 30 .
미세먼지 저감장치(10)는 외부로부터 흡입된 유입 기체의 미세먼지 농도를 측정하고, 유입 기체에 포함된 미세먼지를 제거할 수 있다. 일 실시예에서, 미세먼지 저감장치(10)는 미세먼지 농도를 측정하여 실시간 미세먼지 농도를 제공하는 기능을 포함하는 공기청정기일 수 있다.The fine dust reduction device 10 may measure the fine dust concentration of the inflow gas sucked from the outside and remove the fine dust contained in the inflow gas. In one embodiment, the fine dust reduction device 10 may be an air purifier including a function of providing a real-time fine dust concentration by measuring the fine dust concentration.
미세먼지 저감장치(10)는 미세먼지 농도를 측정하고, 측정된 미세먼지 농도를 포함하는 미세먼지 정보 데이터 및 미세먼지 저감장치(10)의 운영 정보를 포함하는 설비 운영 정보 데이터를 게이트웨이(20)를 거쳐 서버(30)로 전달할 수 있다. 서버(30)로 전달된 미세먼지 정보 데이터 및 설비 운영 정보 데이터는 서버(30)에 유선 또는 무선으로 연결된 외부 단말 장치(예를 들어, PC, 스마트폰 등의 컴퓨팅 디바이스)로 제공될 수 있다.The fine dust reduction device 10 measures the fine dust concentration, and transmits fine dust information data including the measured fine dust concentration and facility operation information data including operation information of the fine dust reduction device 10 to the gateway 20 . can be transmitted to the server 30 via The fine dust information data and facility operation information data transmitted to the server 30 may be provided to an external terminal device (eg, a computing device such as a PC or a smart phone) connected to the server 30 by wire or wirelessly.
게이트웨이(20)는 미세먼지 저감장치(10) 및 서버(30)를 유선 또는 무선으로 연결해주는 네트워크 중계 장치를 포함할 수 있다. 게이트웨이(20)는 TLV(Time Length Value) 포맷 데이터 및 JSON(JavaScript Object Notation) 포맷 데이터를 상호 변환할 수 있다. The gateway 20 may include a network relay device that connects the fine dust reduction device 10 and the server 30 by wire or wirelessly. The gateway 20 may convert TLV (Time Length Value) format data and JSON (JavaScript Object Notation) format data to each other.
TLV 포맷은 데이터 패킷의 타입-길이-값 데이터 포맷을 의미한다. The TLV format refers to a type-length-value data format of a data packet.
미세먼지 저감장치(10)는 미세먼지 정보 데이터 및 설비 운영 정보 데이터를 TLV 포맷으로 데이터 구조화하여 저장할 수 있다. 미세먼지 저감장치(10)는 TLV 포맷으로 데이터 구조화된 미세먼지 정보 데이터 및 TLV 포맷으로 데이터 구조화된 설비 운영 정보 데이터를 게이트웨이(20)로 전달할 수 있다.The fine dust reduction device 10 may structure and store fine dust information data and facility operation information data in a TLV format. The fine dust reduction device 10 may transmit fine dust information data structured as data in the TLV format and facility operation information data structured as data in the TLV format to the gateway 20 .
JSON이란, JavaScript에서 객체를 만들 때 사용하는 표현식으로, 데이터를 저장하거나 전송할 때 사용되는 경량의 데이터 교환 포맷을 의미한다. JSON 포맷은 일반적으로 속성-값 쌍으로 이루어진 데이터 오브젝트를 전달하기 위해 인간이 읽을 수 있는 텍스트를 사용하는 개방형 표준 포맷을 포함할 수 있다.JSON is an expression used to create objects in JavaScript, and refers to a lightweight data exchange format used to store or transmit data. The JSON format can include any open standard format that uses human-readable text to convey data objects, typically consisting of attribute-value pairs.
일 실시예에서, 게이트웨이(20)는 미세먼지 저감장치(10)로부터 전달받은 TLV 포맷 데이터를 JSON 포맷으로 변환하여 서버(30)로 전달할 수 있다. 또한, 게이트웨이(20)는 서버(30)로부터 전달받은 JSON 포맷 데이터를 TLV 포맷으로 변환하여 미세먼지 저감장치(10)로 전달할 수 있다.In an embodiment, the gateway 20 may convert the TLV format data received from the fine dust reduction device 10 into a JSON format and transmit it to the server 30 . Also, the gateway 20 may convert the JSON format data received from the server 30 into a TLV format and transmit it to the fine dust reduction device 10 .
도 2는 도 1의 미세먼지 저감장치를 나타내는 블록도이다. 도 3은 도 2의 집진부를 설명하기 위한 개념도이다. 도 4는 도 2의 먼지 수납부를 설명하기 위한 개념도이다.FIG. 2 is a block diagram illustrating the fine dust reduction device of FIG. 1 . FIG. 3 is a conceptual diagram for explaining the dust collecting unit of FIG. 2 . FIG. 4 is a conceptual view for explaining the dust accommodating part of FIG. 2 .
도 2 내지 도 4를 참조하면, 미세먼지 저감장치(10)는 유입부(110), 제1 미세먼지 측정부(120), 집진부(130), 먼지 수납부(140), 제2 미세먼지 측정부(150), 토출부(160), 제어부(170) 및 통신부(180)를 포함할 수 있다.2 to 4 , the fine dust reduction device 10 includes an inlet 110 , a first fine dust measuring unit 120 , a dust collecting unit 130 , a dust receiving unit 140 , and a second fine dust measuring unit. It may include a unit 150 , a discharge unit 160 , a control unit 170 , and a communication unit 180 .
유입부(110)는 외부로부터 기체가 흡입되어 집진부(130)로 연결되는 배관을 포함할 수 있다. 외부로부터 흡입되는 유입 기체는 미세먼지 저감장치(10)가 설치되는 위치에 따라 달라질 수 있다. 예를 들어, 미세먼지 저감장치(10)가 공공장소에 설치되는 경우 유입 기체는 공공장소의 내부 공기를 포함할 수 있다. 또는, 미세먼지 저감장치(10)가 공장 등의 설비로부터 배출되는 배출가스의 미세먼지를 저감시키기 위해 특정 설비의 가스 분출구에 설치되는 경우 유입 기체는 배출가스를 포함할 수 있다.The inlet 110 may include a pipe through which gas is sucked from the outside and connected to the dust collecting unit 130 . The inflow gas sucked from the outside may vary depending on the location where the fine dust reduction device 10 is installed. For example, when the fine dust reduction device 10 is installed in a public place, the inflow gas may include internal air of the public place. Alternatively, when the fine dust reduction device 10 is installed at a gas outlet of a specific facility to reduce fine dust of exhaust gas discharged from facilities such as a factory, the inflow gas may include the exhaust gas.
제1 미세먼지 측정부(120)는 유입부(110)를 통해 흡입되는 유입 기체의 미세먼지 농도를 측정할 수 있다.The first fine dust measuring unit 120 may measure the fine dust concentration of the inlet gas sucked through the inlet 110 .
제1 미세먼지 측정부(120)는 광산란 방식을 이용하여 미세먼지의 양을 측정할 수 있다. 광산란 방식이란, 산란광의 양을 측정하고 그 값으로부터 입자상 물질의 농도를 구하는 방법이다. The first fine dust measurement unit 120 may measure the amount of fine dust using a light scattering method. The light scattering method is a method of measuring the amount of scattered light and obtaining the concentration of particulate matter from the value.
구체적으로, 대기중에 부유하고 있는 입자상 물질에 빛을 조사하면 입자상 물질에 의하여 빛이 산란한다. 이 경우, 물리적 성질이 동일한 입자상 물질에 빛을 조사하면 산란광의 양은 질량 농도에 비례한다는 원리를 이용한 측정 방법이다.Specifically, when light is irradiated to the particulate matter suspended in the atmosphere, the light is scattered by the particulate matter. In this case, it is a measurement method using the principle that the amount of scattered light is proportional to the mass concentration when light is irradiated to a particulate material having the same physical properties.
제1 미세먼지 측정부(120)는 입자 분리기(미도시) 및 광산란 센서(미도시)를 포함할 수 있다. The first fine dust measurement unit 120 may include a particle separator (not shown) and a light scattering sensor (not shown).
입자 분리기는 유입되는 미세 입자에 급격한 회전을 인가하여 무거운 질량의 입자를 분리할 수 있다. 구체적으로 입자 분리기가 유입되는 미세먼지에 급격한 회전을 인가하면, 질량이 큰 입자는 원심력에 의해 공기가 회전하는 흐름을 벗어나 포집되고, 가벼운 입자는 공기의 흐름을 따라 이동하게 된다.The particle separator can separate particles of heavy mass by applying a sharp rotation to the incoming fine particles. Specifically, when the particle separator applies a sharp rotation to the incoming fine dust, the particles with large mass are captured outside the air rotating flow by centrifugal force, and the light particles move along the air flow.
예를 들어, 입자 분리기는 미리 설정된 입자의 밀도를 기준으로 미세먼지(PM 10) 또는 초미세먼지(PM 2.5)를 분리해낼 수 있다.For example, the particle separator may separate fine dust (PM 10) or ultrafine dust (PM 2.5) based on a preset particle density.
입자 분리기는 입자의 분리 능력을 향상시키기 위하여 내부의 습기를 제거할 수 있는 습기 제거기를 포함할 수 있다.The particle separator may include a moisture eliminator capable of removing moisture therein to improve particle separation capability.
광산란 센서는 입자에 광을 비추면 회절, 굴절 및 반사되는 광산란 방식을 이용하여 입자의 농도를 측정할 수 있다. 광산란 센서는 입자의 크기에 따라 산란되는 광이 달라지는 원리를 이용하여 입자의 농도를 측정할 수 있다.The light scattering sensor may measure the concentration of the particles by using a light scattering method in which light is irradiated to the particles, diffraction, refraction, and reflection. The light scattering sensor can measure the concentration of particles by using the principle that scattered light varies depending on the size of the particles.
구체적으로, 광산란 센서는 유입되는 입자에 의해 산란되는 광을 센싱하여 크기별 입자의 수를 카운트하여 미세먼지의 농도를 산출할 수 있다.Specifically, the light scattering sensor may calculate the concentration of fine dust by sensing the light scattered by the incoming particles and counting the number of particles by size.
일 실시예에서, 제1 미세먼지 측정부(120)는 상대적으로 크기가 다른 두 개의 입자 크기별 농도를 측정하기 위하여, 두 개의 입자 분리기 및 두 개의 광산란 센서를 포함할 수 있다. In an embodiment, the first fine dust measurement unit 120 may include two particle separators and two light scattering sensors to measure the concentration of two particles having relatively different sizes.
일 실시예에서, 제1 미세먼지 측정부(120)는 미세 입자 (이하 PM 10 미세먼지) 및 초미세 입자(이하 PM 2.5 미세먼지)의 농도를 측정할 수 있으나, 이에 한정되는 것은 아니며 필요에 따라 다양한 크기의 미세 입자를 측정할 수 있도록 구성될 수 있다.In an embodiment, the first fine dust measurement unit 120 may measure the concentrations of fine particles (hereinafter PM 10 fine dust) and ultrafine particles (hereinafter PM 2.5 fine dust), but is not limited thereto. Accordingly, it can be configured to measure fine particles of various sizes.
예를 들어, 제1 미세먼지 측정부(120)는 PM 10 미세먼지 및 PM 2.5 미세먼지(즉, 초미세먼지)의 농도를 측정하기 위하여, PM 10 미세먼지를 분리할 수 있는 제1 입자 분리기와 제1 광산란 센서, PM 2.5 미세먼지를 분리할 수 있는 제2 입자 분리기와 제2 광산란 센서를 포함할 수 있다.For example, the first fine dust measurement unit 120 is a first particle separator capable of separating PM 10 fine dust in order to measure the concentrations of PM 10 fine dust and PM 2.5 fine dust (ie, ultra-fine dust). and a first light scattering sensor, a second particle separator capable of separating PM 2.5 fine dust, and a second light scattering sensor.
제2 입자 분리기는 PM 10 미세먼지보다 작은 PM 2.5 미세먼지를 측정하기 위하여 제1 입자 분리기 보다 원통 크기가 작을 수 있다. 즉, 제2 입자 분리기는 선회류 반경(즉, 회전하는 반경)이 제1 입자 분리기 보다 작게 형성될 수 있다.The second particle separator may have a cylindrical size smaller than that of the first particle separator in order to measure PM 2.5 fine particles smaller than PM 10 fine particles. That is, the second particle separator may have a radius of swirl (ie, a radius of rotation) smaller than that of the first particle separator.
이때, 제2 광산란 센서는 제1 광산란 센서와 동일한 구성을 포함할 수 있으나, 이에 한정되는 것은 아니며, 필요에 따라 다른 구성을 포함할 수 있다.In this case, the second light scattering sensor may include the same configuration as the first light scattering sensor, but is not limited thereto, and may include a different configuration as necessary.
집진부(130)는 필터(131), 압축공기 분사기(132), 진동 발생기(133) 및 기압 측정기(134)를 포함할 수 있다.The dust collecting unit 130 may include a filter 131 , a compressed air injector 132 , a vibration generator 133 , and a pressure gauge 134 .
필터(131)는 유입 기체의 미세먼지를 포집할 수 있다. 일 실시예에서, 필터(131)는 주머니 모양의 백 필터를 포함할 수 있다. 백 필터는 주머니 모양의 필터 직물을 이용하여 공기 중의 입자(예를 들어, 0.1~100 μm 미세 입자)를 포집할 수 있다.The filter 131 may collect fine dust of the inflow gas. In one embodiment, the filter 131 may include a bag-shaped bag filter. Bag filters can trap airborne particles (eg, 0.1-100 μm fine particles) using a bag-shaped filter fabric.
다른 실시예에서, 필터(131)는 헤파 필터가 주머니 모양으로 형성된 백 필터를 포함할 수 있다. 구체적으로, 필터(131)는 헤파 필터가 상부가 개방되고, 하부가 막힌 원통형 주머니 모양으로 형성된 백 필터를 포함할 수 있다. 헤파 필터는 등급에 따라 차이가 있으나, 일반적으로 0.3 μm 크기의 입자를 약 99.97% 이상 걸러낼 수 있다.In another embodiment, the filter 131 may include a bag filter in which the HEPA filter is formed in a bag shape. Specifically, the filter 131 may include a bag filter in which the HEPA filter is formed in a cylindrical bag shape with an open top and a closed bottom. HEPA filters differ depending on the grade, but in general, they can filter out about 99.97% or more of particles with a size of 0.3 μm.
일 실시예에서, 유입 기체는 필터(131)가 설치되어 있는 필터 하우징(135) 내부로 유입되어 필터(131)를 통과하여 흐를 수 있다. 유입 기체는 일 방향이 개방된 원통형 주머니 형태(즉, 백필터 형태)의 필터(131) 외면으로부터 내면 방향으로 통과하면서, 유입 기체에 포함되어 있는 미세먼지가 필터(131)의 외면에 부착되어 미세먼지가 저감될 수 있다. 다시 말해, 유입 기체는 원통형 주머니 형태의 필터(131) 외면으로부터 내면 방향으로 통과하여 개방된 상부 방향으로 흐를 수 있다. In one embodiment, the inlet gas may be introduced into the filter housing 135 in which the filter 131 is installed, and may flow through the filter 131 . As the inflow gas passes from the outer surface to the inner surface of the filter 131 in the form of a cylindrical bag (that is, in the form of a bag filter) that is open in one direction, the fine dust contained in the inlet gas is attached to the outer surface of the filter 131 to create fine particles. Dust can be reduced. In other words, the inlet gas may flow from the outer surface of the filter 131 in the form of a cylindrical bag to the inner surface and flow in an open upper direction.
따라서, 필터(131)는 시간이 경과함에 따라 외면에 미세먼지가 흡착되어 먼지 케이크를 형성할 수 있다.Accordingly, fine dust may be adsorbed to the outer surface of the filter 131 over time to form a dust cake.
기압 측정기(134)는 필터(131)를 통과하는 기체의 압력을 측정할 수 있다. 기압 측정기(134)는 필터(131)를 통과하는 기체의 압력인 필터 통과 공기압을 측정할 수 있다. 기압 측정기(134)는 필터(131)를 통과하는 기체의 압력을 측정하기 위해 유입부(110)와 집진부(130) 사이에 설치될 수 있다. 예를 들어, 기압 측정기(134)는 유입 기체가 필터 하우징(135)으로 집입하는 길목에 설치될 수 있다.The barometric pressure meter 134 may measure the pressure of the gas passing through the filter 131 . The barometric pressure meter 134 may measure the air pressure passing through the filter, which is the pressure of the gas passing through the filter 131 . The barometric pressure meter 134 may be installed between the inlet 110 and the dust collector 130 to measure the pressure of the gas passing through the filter 131 . For example, the barometric pressure meter 134 may be installed on a path through which the inlet gas collects into the filter housing 135 .
제2 미세먼지 측정부(150)는 집진부(130)를 통과하여 미세먼지가 제거된 토출 기체의 미세먼지 농도를 측정할 수 있다. 제2 미세먼지 측정부(150)는 제1 미세먼지 측정부(120)와 실질적으로 동일한 구성을 포함할 수 있는 바, 중복되는 설명은 생략할 수 있다.The second fine dust measuring unit 150 may measure the fine dust concentration of the discharged gas from which fine dust has been removed by passing through the dust collecting unit 130 . The second fine dust measuring unit 150 may include substantially the same configuration as the first fine dust measuring unit 120 , and thus overlapping descriptions may be omitted.
도 3의 (a)는 압축공기 분사기(132)의 작동을 설명하기 위한 개념도이다. 도 3의 (a)를 참조하면, 압축공기 분사기(132)는 필터(131)의 개방된 상부로부터 필터(131) 내면 방향으로 압축공기를 분사할 수 있다.3 (a) is a conceptual diagram for explaining the operation of the compressed air injector (132). Referring to FIG. 3A , the compressed air injector 132 may inject compressed air from the open top of the filter 131 toward the inner surface of the filter 131 .
압축공기 분사기(132)는 공기가 흐르는 통로의 직경이 공기가 유입되는 입구의 직경 보다 좁은 벤투리 형태의 배관을 통해 압축 공기를 공급받을 수 있다. 압축공기 분사기(132)는 고압의 압축공기를 필터(131) 내부로 분사할 수 있는 노즐을 포함할 수 있다. The compressed air injector 132 may receive compressed air through a venturi-type pipe in which a diameter of a passage through which air flows is narrower than a diameter of an inlet through which air is introduced. The compressed air injector 132 may include a nozzle capable of injecting high-pressure compressed air into the filter 131 .
압축공기 분사기(132)는 원통형 주머니 형태의 필터(131) 내면으로부터 외면 방향으로 고압의 압축공기를 분사할 수 있다. 압축공기 분사기(132)로부터 분사된 압축공기는 미세먼지를 포함하는 유입 기체와 역방향으로 흘러 필터(131) 외면에 부착된 미세먼지 및 필터(131) 내부에 누적된 미세먼지를 필터(131)로부터 분리시킬 수 있다.The compressed air injector 132 may inject high-pressure compressed air from the inner surface of the filter 131 in the form of a cylindrical bag toward the outer surface. Compressed air injected from the compressed air injector 132 flows in the opposite direction to the inflow gas containing fine dust, and the fine dust attached to the outer surface of the filter 131 and the fine dust accumulated inside the filter 131 are removed from the filter 131. can be separated.
일 실시예에서, 압축공기 분사기(132)는 토출 기체의 미세먼지 농도가 미리 정해진 미세먼지 기준값 보다 크거나, 필터 통과 공기압이 미리 정해진 공기압 기준값 보다 큰 경우, 필터(131)에 압축공기를 분사할 수 있다.In one embodiment, the compressed air injector 132 injects compressed air to the filter 131 when the fine dust concentration of the discharged gas is greater than a predetermined fine dust reference value, or when the air pressure passing through the filter is greater than a predetermined air pressure reference value. can
압축공기 분사기(132)가 압축 공기를 분사하는 기준이 되는 미세먼지 기준값 및 공기압 기준값은 필터(131)의 성능, 수명 또는 미세먼지 정보 제공 공기청정 시스템이 설치된 환경 등을 고려하여 미리 정해질 수 있다.The fine dust reference value and the air pressure reference value, which are the criteria for the compressed air injector 132 to inject compressed air, may be predetermined in consideration of the performance, lifespan, or the environment in which the fine dust information providing air cleaning system of the filter 131 is installed. .
필터(131)의 수명이 감소함에 따라, 토출 기체의 미세먼지 농도가 증가하고, 필터 통과 공기압이 상승하는 것에 대응하여 미세먼지 기준값 및 공기압 기준값 역시 변경될 필요성이 있으며, 일정 기준에 따라 증가하도록 보정하는 것이 바람직하다.As the lifespan of the filter 131 decreases, the fine dust concentration of the discharged gas increases, and the fine dust reference value and the air pressure reference value also need to be changed in response to an increase in the air pressure passing through the filter, and are corrected to increase according to a certain standard It is preferable to do
일 실시예에서, 미세먼지 기준값은 압축공기 분사기(132)가 필터(131)에 압축공기를 분사한 직후 측정된 토출 기체의 미세먼지 농도의 변화에 기초하여 변경될 수 있다.In an embodiment, the fine dust reference value may be changed based on a change in the fine dust concentration of the discharged gas measured immediately after the compressed air injector 132 injects compressed air to the filter 131 .
예를 들어, 압축공기 분사기(132)가 필터(131)에 압축공기를 N회차 분사한 경우, 미세먼지 기준값은 N-1 회차에 압축공기를 분사한 직후 측정된 토출 기체의 미세먼지 농도 대비 N 회차에 압축공기를 분사한 직후 측정된 토출 기체의 미세먼지 농도의 증가율을 기초로 증가될 수 있다. For example, when the compressed air injector 132 injects compressed air to the filter 131 N times, the fine dust reference value is N compared to the fine dust concentration of the discharged gas measured immediately after the compressed air is sprayed N-1 times. It may be increased based on the increase rate of the fine dust concentration of the discharged gas measured immediately after the compressed air is injected into the cycle.
일 실시예에서, 미세먼지 기준값은 압축공기 분사기(132)가 필터(131)에 압축공기를 N-1 회차에 분사한 직후 측정된 토출 기체의 미세먼지 농도 대비 압축공기 분사기(132)가 필터(131)에 압축공기를 N 회차에 분사한 직후 측정된 토출 기체의 미세먼지 농도의 증가율을 기초로 증가될 수 있으며, 아래 식으로 표현될 수 있다.In one embodiment, the fine dust reference value is the compressed air injector 132 compared to the fine dust concentration of the discharged gas measured immediately after the compressed air injector 132 injects the compressed air to the filter 131 in N-1 times. 131) can be increased based on the increase rate of the fine dust concentration of the discharged gas measured immediately after the compressed air is injected N times, and it can be expressed by the following formula.
a = ( V1 - V0) / V0a = ( V1 - V0) / V0
Ref_V = (1 + K1 * a) * Ref_VRef_V = (1 + K1 * a) * Ref_V
여기서, a는 토출 기체의 미세먼지 농도 증가율이다. Ref_V는 미세먼지 기준값이다. V1은 압축공기를 N 회차에 분사한 직후 측정된 토출 기체의 미세먼지 농도이다. V0는 압축공기를 N-1 회차에 분사한 직후 측정된 토출 기체의 미세먼지 농도이다. K1은 미세먼지 저감장치(10)가 커버하는 면적, 설치 장소(공공장소, 공업시설 등), 미세먼지 종류 등을 고려하여 시험 운영 등을 통해 미리 정해진 비례상수이다. K1은 필요에 따라 다양한 값으로 설정될 수 있다.Here, a is the rate of increase in the concentration of fine dust in the discharge gas. Ref_V is the fine dust reference value. V1 is the concentration of fine dust in the discharged gas measured immediately after the compressed air is sprayed N times. V0 is the concentration of fine dust in the discharged gas measured immediately after the compressed air is injected in the N-1 round. K1 is a proportional constant determined in advance through a test operation, etc. in consideration of the area covered by the fine dust reduction device 10, the installation place (public places, industrial facilities, etc.), the type of fine dust, and the like. K1 may be set to various values as needed.
미세먼지 기준값의 증가를 기초로 필터(131)의 남을 수명을 산출할 수 있다. 예를 들어, 필터(131)의 남은 수명은 미세먼지 기준값 및 미리 정해진 미세먼지 한계값을 기초로 산출될 수 있다. The remaining life of the filter 131 may be calculated based on the increase in the fine dust reference value. For example, the remaining life of the filter 131 may be calculated based on a fine dust reference value and a predetermined fine dust limit value.
구체적으로, 필터(131)의 남은 수명은, 미세먼지 기준값의 현재 값과 미세먼지 한계값의 차이를 미세먼지 기준값의 최초 설정값과 미세먼지 한계값의 차이와 비교하여 산출할 수 있다. Specifically, the remaining life of the filter 131 may be calculated by comparing the difference between the current value of the fine dust reference value and the fine dust threshold value with the difference between the initial set value of the fine dust reference value and the fine dust threshold value.
미세먼지 기준값이 증가하여 미리 정해진 미세먼지 한계값에 도달하면, 미세먼지 저감장치(10)는 필터(131)의 수명이 다한 것으로 판단할 수 있다. 미세먼지 기준값이 미세먼지 한계값에 도달한 경우 설비 운영 정보 데이터는 필터의 수명이 만료되었다는 정보를 포함할 수 있다. When the fine dust reference value increases and reaches a predetermined fine dust threshold value, the fine dust reduction device 10 may determine that the life of the filter 131 has expired. When the fine dust reference value reaches the fine dust threshold value, the facility operation information data may include information indicating that the life of the filter has expired.
여기서, 미세먼지 한계값은 미세먼지 저감장치(10)가 설치된 장소를 고려하여 미리 정해질 수 있다. 예를 들어, 미세먼지 저감장치(10)가 공공장소에 설치된 경우, 미세먼지 한계값은 국내외 미세먼지 환경수준을 고려하여 정해질 수 있으나, 이에 한정되는 것은 아니다. 이와는 달리, 미세먼지 저감장치(10)가 공업시설의 배출가스 배출구에 설치되는 경우, 미세먼지 한계값은 대기오염물질 배출기준 등을 고려하여 정해질 수 있다.Here, the fine dust limit value may be predetermined in consideration of the place where the fine dust reduction device 10 is installed. For example, when the fine dust reduction device 10 is installed in a public place, the fine dust threshold value may be determined in consideration of domestic and foreign fine dust environmental levels, but is not limited thereto. On the other hand, when the fine dust reduction device 10 is installed at the exhaust gas outlet of an industrial facility, the fine dust limit value may be determined in consideration of air pollutant emission standards and the like.
일 실시예에서, 공기압 기준값은 압축공기 분사기(132)가 필터(131)에 압축공기를 분사한 직후 측정된 필터 통과 공기압의 변화에 기초하여 변경될 수 있다.In one embodiment, the air pressure reference value may be changed based on a change in the air pressure passing through the filter measured immediately after the compressed air injector 132 injects compressed air to the filter 131 .
예를 들어, 압축공기 분사기(132)가 필터(131)에 압축공기를 N회차 분사한 경우, 공기압 기준값은 N-1 회차에 압축공기를 분사한 직후 측정된 필터 통과 공기압 대비 N 회차에 압축공기를 분사한 직후 측정된 필터 통과 공기압의 증가율을 기초로 증가될 수 있다. For example, when the compressed air injector 132 injects compressed air to the filter 131 N times, the air pressure reference value is the compressed air in N times compared to the air pressure passing through the filter measured immediately after spraying the compressed air in N-1 times. It can be increased based on the rate of increase of the air pressure passing through the filter measured immediately after spraying.
일 실시예에서, 공기압 기준값은 압축공기 분사기(132)가 필터(131)에 압축공기를 N-1 회차에 분사한 직후 측정된 필터 통과 공기압 대비 압축공기 분사기(132)가 필터(131)에 압축공기를 N 회차에 분사한 직후 측정된 필터 통과 공기압의 증가율을 기초로 증가될 수 있으며, 아래 식으로 표현될 수 있다.In one embodiment, the air pressure reference value is the compressed air injector 132 compared to the air pressure measured immediately after the compressed air injector 132 injects compressed air to the filter 131 in N-1 times compared to the compressed air injector 132 is compressed in the filter 131 It can be increased based on the increase rate of the air pressure passing through the filter measured immediately after the air is sprayed N times, and can be expressed by the following formula.
b = (P1 - P0) / P0b = (P1 - P0) / P0
Ref_P = (1 + K2 * b) * Ref_PRef_P = (1 + K2 * b) * Ref_P
여기서, b는 필터 통과 공기압 증가율이다. Ref_P는 공기압 기준값이다. P1은 압축공기를 N 회차에 분사한 직후 측정된 필터 통과 공기압이다. P0는 압축공기를 N-1 회차에 분사한 직후 측정된 필터 통과 공기압이다. K2는 미세먼지 저감장치(10)가 커버하는 면적, 설치 장소(공공장소, 공업시설 등), 미세먼지 종류 등을 고려하여 시험 운영 등을 통해 미리 정해진 비례상수이다. K2는 필요에 따라 다양한 값으로 설정될 수 있다.where b is the rate of increase in air pressure passing through the filter. Ref_P is the air pressure reference value. P1 is the air pressure passing through the filter measured immediately after the compressed air is sprayed N times. P0 is the air pressure passing through the filter measured immediately after the compressed air is injected in the N-1 cycle. K2 is a proportional constant determined in advance through a test operation, etc. in consideration of the area covered by the fine dust reduction device 10, the installation place (public places, industrial facilities, etc.), the type of fine dust, and the like. K2 may be set to various values as needed.
공기압 기준값이 증가하여 미리 정해진 공기압 한계값에 도달하면, 미세먼지 저감장치(10)는 필터(131)의 수명이 다한 것으로 판단할 수 있다. 공기압 기준값이 공기압 한계값에 도달한 경우 설비 운영 정보 데이터는 필터의 수명이 만료되었다는 정보를 포함할 수 있다. When the air pressure reference value increases and reaches a predetermined air pressure limit value, the fine dust reduction device 10 may determine that the life of the filter 131 has expired. When the air pressure reference value reaches the air pressure limit value, the facility operation information data may include information that the life of the filter has expired.
여기서, 공기압 한계값은 필터(131)의 성능을 고려하여 시험 운영 등을 통해 미리 정해질 수 있다. Here, the air pressure limit value may be predetermined through a test operation, etc. in consideration of the performance of the filter 131 .
도 3의 (b)는 진동 발생기(133)의 작동을 설명하기 위한 개념도이다. 도 3의 (b)를 참조하면, 진동 발생기(133)는 필터(131)에 연결되어 필터(131)로 진동을 전달할 수 있다.3B is a conceptual diagram for explaining the operation of the vibration generator 133 . Referring to FIG. 3B , the vibration generator 133 may be connected to the filter 131 to transmit vibration to the filter 131 .
일 실시예에서, 진동 발생기(133)는 필터(131)와 필터 하우징(135) 사이에 배치될 수 있으나, 이에 한정되는 것은 아니다. In one embodiment, the vibration generator 133 may be disposed between the filter 131 and the filter housing 135, but is not limited thereto.
진동 발생기(133)는 토출 기체의 미세먼지 농도가 미세먼지 기준값 보다 크거나, 필터 통과 공기압이 공기압 기준값 보다 큰 경우, 필터(131) 외면에 부착된 미세먼지들이 진동에 의해 분리되도록 필터(131)로 진동을 전달하여 필터(131)를 진동 시킬 수 있다.The vibration generator 133 uses the filter 131 to separate fine dust attached to the outer surface of the filter 131 by vibration when the concentration of fine dust in the discharge gas is greater than the fine dust reference value or the air pressure passing through the filter is greater than the air pressure reference value. The filter 131 can be vibrated by transmitting the vibration.
일 실시예에서, 진동 발생기(133)는 압축공기 분사기(132)와 동시에 동작할 수 있다. 즉, 진동 발생기(133)는 압축공기 분사기(132)가 필터(131)에 압축 공기를 분사할 때 동시에 필터(131)에 진동을 전달할 수 있다.In one embodiment, the vibration generator 133 may operate simultaneously with the compressed air injector 132 . That is, the vibration generator 133 may transmit vibration to the filter 131 at the same time when the compressed air injector 132 injects compressed air into the filter 131 .
다른 실시예에서, 진동 발생기(133)는 압축공기 분사기(132)가 필터(131)에 압축 공기를 분사한 후 필터(131)에 진동을 전달할 수 있다.In another embodiment, the vibration generator 133 may transmit vibration to the filter 131 after the compressed air injector 132 injects compressed air into the filter 131 .
다른 실시예에서, 진동 발생기(133)는 압축공기 분사기(132)가 필터(131)에 압축 공기를 분사하기에 앞서 필터(131)에 진동을 전달할 수 있다.In another embodiment, the vibration generator 133 may transmit vibration to the filter 131 before the compressed air injector 132 injects compressed air to the filter 131 .
다른 실시예에서, 필터(131)에 미세먼지가 부착되어 고착화되는 것을 방지하기 위하여 미리 정해진 주기마다 압축공기 분사기(132) 및 진동 발생기(133) 중 적어도 하나 이상이 작동할 수 있다.In another embodiment, at least one of the compressed air injector 132 and the vibration generator 133 may be operated at predetermined intervals in order to prevent the fine dust from adhering and sticking to the filter 131 .
다른 실시예에서, 압축공기 분사기(132)가 필터(131)에 압축 공기를 분사한 후 측정된 토출 기체의 미세먼지 농도 또는 필터 통과 공기압의 감소량이 미리 정해진 각각의 문턱값보다 작은 경우, 진동 발생기(133)는 필터(131)에 진동을 전달할 수 있다.In another embodiment, when the compressed air injector 132 injects compressed air to the filter 131 and the decrease in the fine dust concentration of the discharged gas or the air pressure passing through the filter is smaller than each predetermined threshold value, the vibration generator 133 may transmit vibration to the filter 131 .
먼지 수납부(140)는 먼지 수납함(141) 및 적재량 센서(142)를 포함할 수 있다.The dust accommodating unit 140 may include a dust accommodating box 141 and a loading amount sensor 142 .
먼지 수납함(141)은 필터(131)로부터 분리된 미세먼지를 수납할 수 있다. 먼지 수납함(141)은 필터 하우징(135) 하부에 위치할 수 있다. The dust box 141 may accommodate fine dust separated from the filter 131 . The dust container 141 may be located under the filter housing 135 .
일 실시예에서, 필터 하우징(135)은 필터(131)로부터 분리된 미세먼지가 먼지 수납함(141)으로 용이하게 미끄러질 수 있도록 하부로 갈수록 폭이 좁아지는 형태를 포함할 수 있다. 필터 하우징(135)은 내부의 압력을 유지하기 위하여 평소에는 먼지 수납함(141)과 연결되는 통로를 닫을 수 있다. 필터 하우징(135)은 필터(131)로부터 분리된 미세먼지가 먼지 수납함(141)으로 이동할 수 있도록 압축공기 분사기(132)가 동작하는 동안 먼지 수납함(141)과 연결되는 통로를 개방할 수 있다. 이 경우, 압축공기 분사기(132)가 분사하는 압축 공기의 압력에 의해 미세먼지가 먼지 수납함(141)으로 이동될 수 있다.In one embodiment, the filter housing 135 may include a shape that becomes narrower toward the bottom so that the fine dust separated from the filter 131 can easily slide into the dust container 141 . The filter housing 135 may close a passage connected to the dust container 141 in order to maintain internal pressure. The filter housing 135 may open a passage connected to the dust container 141 while the compressed air injector 132 is operating so that the fine dust separated from the filter 131 can move to the dust container 141 . In this case, fine dust may be moved to the dust container 141 by the pressure of the compressed air sprayed by the compressed air injector 132 .
적재량 센서(142)는 먼지 수납함(141)에 적재된 미세먼지의 적재량을 측정할 수 있다. 적재량 센서(142)는 초음파 센서 또는 레이저 센서와 같이 거리를 측정할 수 있는 센서를 이용하여 먼지 수납함(141)에 적재되어 있는 미세먼지의 높이를 측정할 수 있다. 미세먼지의 적재량은 적재량 센서(142)를 이용하여 측정된 미세먼지의 높이를 포함할 수 있다. 일 실시예에서, 적재량 센서(142)는 초음파 송신기와 수신기를 포함할 수 있으나, 이에 한정되는 것은 아니다. The loading amount sensor 142 may measure the loading amount of fine dust loaded in the dust storage box 141 . The loading amount sensor 142 may measure the height of the fine dust loaded in the dust container 141 using a sensor capable of measuring a distance, such as an ultrasonic sensor or a laser sensor. The loading amount of fine dust may include the height of the fine dust measured using the loading amount sensor 142 . In one embodiment, the load sensor 142 may include, but is not limited to, an ultrasonic transmitter and a receiver.
토출부(160)는 집진부(130)를 거쳐 미세먼지가 제거된 기체가 배출되는 배관을 포함할 수 있다. The discharge unit 160 may include a pipe through which the gas from which fine dust is removed is discharged through the dust collecting unit 130 .
제어부(170)는 미세먼지 저감장치(10)의 동작을 제어할 수 있다. 구체적으로, 제어부(170)는 제1 미세먼지 측정부(120), 제2 미세먼지 측정부(150), 기압 측정기(134), 적재량 센서(142)의 측정값들 및 이를 기초로 생성된 데이터를 TLV 포맷으로 데이터 구조화하여 저장할 수 있다. 예를 들어, 제어부(170)는 TLV 포맷으로 데이터 구조화된 미세먼지 정보 데이터 및 설비 운영 정보 데이터를 생성하여 저장할 수 있다. 또한, 제어부(170)는 압축공기 분사기(132), 진동 발생기(133)의 작동 타이밍을 제어할 수 있다.The controller 170 may control the operation of the fine dust reduction device 10 . Specifically, the control unit 170 controls the measurement values of the first fine dust measurement unit 120 , the second fine dust measurement unit 150 , the barometric pressure meter 134 , and the load amount sensor 142 , and data generated based thereon. can be stored as a data structure in the TLV format. For example, the controller 170 may generate and store fine dust information data and facility operation information data structured as data in a TLV format. In addition, the controller 170 may control the operation timing of the compressed air injector 132 and the vibration generator 133 .
미세먼지 정보 데이터는 TLV 포맷으로 데이터 구조화된 유입 기체의 미세먼지 농도, 미세먼지 저감장치(10)가 설치된 위치 정보, 유입 기체의 미세먼지 측정 시간 중 적어도 어느 하나 이상을 포함할 수 있다.The fine dust information data may include at least any one or more of the fine dust concentration of the inflow gas structured data in the TLV format, the location information where the fine dust reduction device 10 is installed, and the fine dust measurement time of the inflow gas.
설비 운영 정보 데이터는 TLV 포맷으로 데이터 구조화된 유입 기체의 미세먼지 농도, 미세먼지 저감장치(10)가 설치된 위치 정보, 유입 기체의 미세먼지 측정 시간, 토출 기체의 미세먼지 농도, 토출 기체의 미세먼지 측정 시간, 필터 통과 공기압, 미세먼지 기준값, 공기압 기준값, 필터(131)의 설치 시기, 필터(131)의 남은 수명, 미세먼지 한계값, 공기압 한계값, 미세먼지 적재량 중 적어도 어느 하나 이상을 포함할 수 있다.The facility operation information data includes the fine dust concentration of the inflow gas structured data in TLV format, the location information where the fine dust reduction device 10 is installed, the fine dust measurement time of the inflow gas, the fine dust concentration of the exhaust gas, and the fine dust in the exhaust gas At least any one or more of measurement time, filter passing air pressure, fine dust standard value, air pressure standard value, installation time of filter 131, remaining life of filter 131, fine dust limit value, air pressure limit value, fine dust load can
통신부(180)는 미세먼지 정보 데이터 및 설비 운영 정보 데이터를 게이트웨이(20)로 전송할 수 있다. The communication unit 180 may transmit fine dust information data and facility operation information data to the gateway 20 .
통신부(180)는 게이트웨이(20)와 근거리 무선 데이터를 송신 및 수신할 수 있는 근거리 통신 모듈을 포함할 수 있다. 근거리 통신 모듈은 LoRA(Long Range Sub Ghz Module), M2M, WiFi, BLE(Bluetooth Low Energy), RFID(Radio Frequency Identification), NFC(Near Field Communication), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wide Band), ZigBee 등의 통신 기술을 이용하는 통신 모듈일 수 있다.The communication unit 180 may include the gateway 20 and a short-range communication module capable of transmitting and receiving short-range wireless data. Short-distance communication modules are LoRA (Long Range Sub Ghz Module), M2M, WiFi, BLE (Bluetooth Low Energy), RFID (Radio Frequency Identification), NFC (Near Field Communication), infrared communication (IrDA, infrared Data Association), UWB (UWB) Ultra Wide Band), it may be a communication module using a communication technology such as ZigBee.
도 5는 도 2의 게이트웨이를 나타내는 블록도이다. 도 6은 도 2의 서버를 나타내는 블록도이다.FIG. 5 is a block diagram illustrating the gateway of FIG. 2 . FIG. 6 is a block diagram illustrating the server of FIG. 2 .
도 5 및 도 6을 참조하면, 게이트웨이(20)는 컨버터(210)를 포함할 수 있다. 서버(30)는 모니터링 플랫폼(310)을 포함할 수 있다. 5 and 6 , the gateway 20 may include a converter 210 . The server 30 may include a monitoring platform 310 .
컨버터(210)는 TLV 포맷 데이터 및 JSON 포맷 데이터를 상호 변환할 수 있다. 컨버터(210)는 미세먼지 저감장치(10)로부터 전달받은 TLV 포맷 데이터를 JSON 포맷으로 변환할 수 있다. 또한, 컨버터(210)는 서버(30)로부터 전달받은 JSON 포맷 데이터를 TLV 포맷으로 변환할 수 있다.The converter 210 may convert TLV format data and JSON format data to each other. The converter 210 may convert the TLV format data received from the fine dust reduction device 10 into a JSON format. In addition, the converter 210 may convert the JSON format data received from the server 30 into a TLV format.
서버(30)는 게이트웨이(20)와 데이터를 송신 및 수신할 수 있는 유선 또는 무선 통신 모듈을 포함할 수 있다. 서버(30)에 포함된 무선 통신 모듈은 4G(LTE, LTE/M) 무선통신 기술이 이용됨이 바람직하지만, 이에 국한하지 않으며, 최근 개발된 5G(IMT-2020) 무선통신 기술, 국제전기전자기술자협회(IEEE)의 무선통신 표준기술인 IEEE802.11n, IEEE802.11ac, IEEE802.11ad, IEEE802.11af, IEEE802.11ah, IEEE802.11ai 등을 이용할 수 있으며, IEEE802.11ad을 기반으로 하는 WiGig(Wireless Gigabit Alliance), Wibro(Wireless Broadband), WLAN(Wireless LAN)(Wi-Fi), Wimax(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access) 등이 이용될 수도 있다.The server 30 may include the gateway 20 and a wired or wireless communication module capable of transmitting and receiving data. The wireless communication module included in the server 30 preferably uses 4G (LTE, LTE/M) wireless communication technology, but is not limited thereto, and the recently developed 5G (IMT-2020) wireless communication technology, an international electric and electronic engineer IEEE802.11n, IEEE802.11ac, IEEE802.11ad, IEEE802.11af, IEEE802.11ah, IEEE802.11ai, which are wireless communication standard technologies of the Association (IEEE), can be used, and WiGig (Wireless Gigabit Alliance) based on IEEE802.11ad can be used. ), Wibro (Wireless Broadband), WLAN (Wireless LAN) (Wi-Fi), Wimax (World Interoperability for Microwave Access), HSDPA (High Speed Downlink Packet Access), etc. may be used.
모니터링 플랫폼(310)은 모니터링 플랫폼(310)은 서버(30)에 유선 또는 무선으로 연결된 외부 단말 장치로 미세먼지 정보 데이터 및 설비 운영 정보 데이터 중 적어도 하나 이상을 제공할 수 있다. 모니터링 플랫폼(310)은 IoT(Internet of Things, 사물인터넷) 서비스 플랫폼에 대한 국제표준인 oneM2M(one Machine to Machine) 표준 프로토콜을 포함할 수 있다. 모니터링 플랫폼(310)은 JSON 포맷으로 변환되어 게이트웨이(20)로부터 수신된 데이터를 oneM2M 표준 프로토콜에 맞게 변환하여 IoT 서비스 어플리케이션을 통해 제공할 수 있다. 모니터링 플랫폼(310)은 REST(Representational State Transfer) API를 통해 서비스 제공 기능이 구현될 수 있다. The monitoring platform 310 is an external terminal device connected to the server 30 by wire or wirelessly, and the monitoring platform 310 may provide at least one of fine dust information data and facility operation information data. The monitoring platform 310 may include a oneM2M (one Machine to Machine) standard protocol, which is an international standard for an Internet of Things (IoT) service platform. The monitoring platform 310 may convert the data received from the gateway 20 into JSON format to conform to the oneM2M standard protocol and provide it through the IoT service application. The monitoring platform 310 may implement a service providing function through a REST (Representational State Transfer) API.
모니터링 플랫폼(310)은 유지보수 모니터링 플랫폼 및 미세먼지 정보제공 모니터링 플랫폼을 포함할 수 있다. The monitoring platform 310 may include a maintenance monitoring platform and a monitoring platform for providing fine dust information.
미세먼지 정보제공 모니터링 플랫폼은 미세먼지 정보 데이터를 이용하여 미세먼지 농도 정보를 제공할 수 있다. 미세먼지 정보제공 모니터링 플랫폼은 미세먼지 정보 데이터에 포함된 정보를 제공하는 API를 포함할 수 있다. 예를 들어, 미세먼지 정보제공 모니터링 플랫폼은 미세먼지 정보 데이터에 포함된 정보를 제공하는 REST API를 포함할 수 있다. The fine dust information provision monitoring platform can provide fine dust concentration information using fine dust information data. The fine dust information provision monitoring platform may include an API for providing information included in the fine dust information data. For example, the fine dust information provision monitoring platform may include a REST API that provides information included in the fine dust information data.
미세먼지 정보를 제공받고자 하는 사용자는 미세먼지 정보제공 모니터링 플랫폼에 대응되는 어플리케이션을 통해 미세먼지 농도 정보(예를 들어, 측정 농도, 측정 위치, 측정 시간 등)를 수신할 수 있다. 여기서, 미세먼지 정보를 제공받고자 하는 사용자는 필요에 따라 범위가 제한되거나 제한되지 않을 수 있다.A user who wants to receive fine dust information may receive fine dust concentration information (eg, measured concentration, measurement location, measurement time, etc.) through an application corresponding to the fine dust information provision monitoring platform. Here, a user who wants to receive fine dust information may or may not have a limited range as needed.
유지보수 모니터링 플랫폼은 설비 운영 정보 데이터를 이용하여 미세먼지 저감장치(10)를 원격으로 모니터링 및 제어할 수 있다. 유지보수 모니터링 플랫폼은 설비 운영 정보 데이터에 포함된 정보를 제공할 수 있다. The maintenance monitoring platform may remotely monitor and control the fine dust reduction device 10 using facility operation information data. The maintenance monitoring platform may provide information included in the facility operation information data.
유지보수 모니터링 플랫폼은 미세먼지 저감장치(10)의 운영 정보 또는 설비 운영 정보 데이터에 포함된 정보를 제공하는 API를 포함할 수 있다. 예를 들어, 유지보수 모니터링 플랫폼은 설비 운영 정보 데이터에 포함된 정보를 제공하는 REST API를 포함할 수 있다.The maintenance monitoring platform may include an API for providing information included in operation information or facility operation information data of the fine dust reduction device 10 . For example, the maintenance monitoring platform may include a REST API that provides information contained in facility operation information data.
미세먼지 저감장치(10)는 유지보수 모니터링 플랫폼에 대응되는 어플리케이션을 통해 원격으로 모니터링 및 제어될 수 있다. 유지보수 모니터링 플랫폼은 허가된 사용자에 한하여 접근할 수 있으며, 허가된 사용자는 예를 들어, 미세먼지 저감장치(10)의 관리자 내지는 유지보수 담당자를 포함할 수 있다.The fine dust reduction device 10 may be remotely monitored and controlled through an application corresponding to the maintenance monitoring platform. The maintenance monitoring platform can be accessed only by an authorized user, and the authorized user may include, for example, a manager or a maintenance person of the fine dust reduction device 10 .
10: 미세먼지 저감장치 20: 게이트웨이10: fine dust reduction device 20: gateway
30: 서버 110: 유입부30: server 110: inlet
120: 제1 미세먼지 측정부 130: 집진부120: first fine dust measuring unit 130: dust collecting unit
131: 필터 132: 압축공기 분사기131: filter 132: compressed air injector
133: 진동 발생기 134: 기압 측정기133: vibration generator 134: barometer
140: 먼지 수납부 141: 먼지 수납함140: dust compartment 141: dust compartment
142: 적재량 센서 150: 제2 미세먼지 측정부142: load amount sensor 150: second fine dust measurement unit
160: 토출부 170: 제어부160: discharge unit 170: control unit
180: 통신부 210: 컨버터180: communication unit 210: converter
310: 모니터링 플랫폼310: monitoring platform

Claims (10)

  1. 외부로부터 흡입된 유입 기체의 미세먼지 농도를 측정하고, 상기 유입 기체에 포함된 미세먼지를 제거하는 미세먼지 저감장치; a fine dust reduction device for measuring the fine dust concentration of the inlet gas sucked from the outside and removing the fine dust contained in the inlet gas;
    TLV 포맷 데이터 및 JSON 포맷 데이터를 상호 변환할 수 있는 게이트웨이; 및a gateway capable of converting between TLV format data and JSON format data; and
    서버;를 포함하되,server; including;
    상기 미세먼지 저감장치는The fine dust reduction device is
    상기 유입 기체의 미세먼지 농도를 측정하는 제1 미세먼지 측정부;a first fine dust measurement unit for measuring the fine dust concentration of the inflow gas;
    상기 유입 기체에 포함된 미세먼지를 제거하는 집진부; 및a dust collector for removing fine dust contained in the inlet gas; and
    TLV 포맷으로 데이터 구조화된 상기 미세먼지 농도 및 상기 미세먼지 저감장치가 설치된 위치를 포함하는 미세먼지 정보 데이터를 상기 게이트웨이로 전송하는 통신부;를 포함하고,A communication unit that transmits, to the gateway, the fine dust information data including the fine dust concentration structured in TLV format and the location where the fine dust reduction device is installed;
    상기 서버는 상기 게이트웨이에서 JSON 포맷으로 변환된 상기 미세먼지 정보 데이터를 모니터링 플랫폼을 통해 외부 단말 장치로 제공하는, 미세먼지 정보 제공 공기청정 시스템.The server provides the fine dust information data converted into JSON format by the gateway to an external terminal device through a monitoring platform, fine dust information providing air cleaning system.
  2. 제1항에 있어서, According to claim 1,
    상기 미세먼지 저감장치는 상기 집진부를 통과하여 미세먼지가 제거된 토출 기체의 미세먼지 농도를 측정하는 제2 미세먼지 측정부를 더 포함하고,The fine dust reduction device further includes a second fine dust measuring unit for measuring the fine dust concentration of the discharged gas from which fine dust has been removed by passing through the dust collecting unit,
    상기 집진부는The dust collector
    상기 유입 기체의 미세먼지를 포집하는 필터;a filter for collecting fine dust of the inlet gas;
    상기 필터를 통과하는 기체의 압력인 필터 통과 공기압을 측정하는 기압 측정기; 및a barometric pressure meter for measuring the air pressure passing through the filter, which is the pressure of the gas passing through the filter; and
    상기 토출 기체의 미세먼지 농도가 미리 정해진 미세먼지 기준값보다 크거나, 상기 필터 통과 공기압이 미리 정해진 공기압 기준값보다 큰 경우, 상기 필터에 압축공기를 분사하는 압축공기 분사기;를 포함하는 것을 특징으로 하는, 미세먼지 정보 제공 공기청정 시스템.When the fine dust concentration of the discharge gas is greater than a predetermined fine dust reference value, or when the air pressure passing through the filter is greater than a predetermined air pressure reference value, a compressed air injector for injecting compressed air to the filter; characterized in that it comprises, An air cleaning system that provides information on fine dust.
  3. 제2항에 있어서, 상기 미세먼지 기준값은 The method of claim 2, wherein the fine dust reference value is
    상기 압축공기 분사기가 상기 필터에 압축공기를 N-1 회차에 분사한 직후 측정된 상기 토출 기체의 미세먼지 농도 대비 상기 압축공기 분사기가 상기 필터에 압축공기를 N 회차에 분사한 직후 측정된 상기 토출 기체의 미세먼지 농도의 증가율을 기초로 증가되는 것을 특징으로 하는, 미세먼지 정보 제공 공기청정 시스템.The discharge measured immediately after the compressed air injector injects compressed air to the filter in N times compared to the fine dust concentration of the discharge gas measured immediately after the compressed air injector injects compressed air to the filter in N-1 times An air cleaning system for providing fine dust information, characterized in that it is increased based on the increase rate of the fine dust concentration of the gas.
  4. 제2항에 있어서, 상기 공기압 기준값은The method of claim 2, wherein the air pressure reference value is
    상기 압축공기 분사기가 상기 필터에 압축공기를 N-1 회차에 분사한 직후 측정된 상기 필터 통과 공기압 대비 상기 압축공기 분사기가 상기 필터에 압축공기를 N 회차에 분사한 직후 측정된 상기 필터 통과 공기압의 증가율을 기초로 증가되는 것을 특징으로 하는, 미세먼지 정보 제공 공기청정 시스템.Compared to the air pressure passing through the filter measured immediately after the compressed air injector sprays compressed air to the filter in N-1 times, the compressed air injector injects compressed air to the filter in N times the measured air pressure passing through the filter. Air cleaning system for providing fine dust information, characterized in that it is increased based on the increase rate.
  5. 제2항에 있어서, 상기 집진부는According to claim 2, wherein the dust collecting unit
    상기 토출 기체의 미세먼지 농도가 상기 미세먼지 기준값보다 크거나, 상기 필터 통과 공기압이 상기 공기압 기준값보다 큰 경우, 상기 필터를 진동 시키는 진동 발생기;를 더 포함하는 것을 특징으로 하는, 미세먼지 정보 제공 공기청정 시스템.When the fine dust concentration of the discharge gas is greater than the fine dust reference value or the air pressure passing through the filter is greater than the air pressure reference value, a vibration generator that vibrates the filter; clean system.
  6. 제2항에 있어서, 상기 미세먼지 저감장치는According to claim 2, wherein the fine dust reduction device
    상기 필터로부터 분리된 미세먼지를 수납하는 먼지 수납함; 및a dust storage box for accommodating the fine dust separated from the filter; and
    상기 먼지 수납함에 적재된 미세먼지의 적재량을 측정하는 적재량 센서;를 포함하는 먼지 수납부를 더 포함하는 것을 특징으로 하는, 미세먼지 정보 제공 공기청정 시스템.The air cleaning system for providing fine dust information, characterized in that it further comprises a dust accommodating unit comprising; a loading amount sensor for measuring the loading amount of the fine dust loaded in the dust storage box.
  7. 제2항에 있어서, 3. The method of claim 2,
    상기 통신부는 TLV 포맷으로 데이터 구조화된 설비 운영 정보 데이터를 상기 게이트웨이로 전송하며,The communication unit transmits the data structured facility operation information data in the TLV format to the gateway,
    상기 서버는 상기 게이트웨이에서 JSON 포맷으로 변환된 상기 설비 운영 정보 데이터를 상기 모니터링 플랫폼을 통해 더 제공하고,The server further provides the facility operation information data converted into JSON format by the gateway through the monitoring platform,
    상기 설비 운영 정보 데이터는 상기 토출 기체의 미세먼지 농도, 상기 미세먼지 기준값, 상기 필터 통과 공기압, 상기 공기압 기준값, 상기 필터의 설치 시기, 상기 필터의 남은 수명 중 적어도 하나 이상을 포함하는 것을 특징으로 하는, 미세먼지 정보 제공 공기청정 시스템.The facility operation information data comprises at least one or more of the fine dust concentration of the discharged gas, the fine dust reference value, the air pressure passing through the filter, the air pressure reference value, the installation time of the filter, and the remaining life of the filter , an air cleaning system that provides information on fine dust.
  8. 제7항에 있어서, 상기 필터의 남은 수명은The method of claim 7, wherein the remaining life of the filter is
    상기 미세먼지 기준값 및 미리 정해진 미세먼지 한계값을 기초로 산출되는 것을 특징으로 하는, 미세먼지 정보 제공 공기청정 시스템.An air cleaning system for providing fine dust information, characterized in that it is calculated based on the fine dust reference value and a predetermined fine dust limit value.
  9. 제1항에 있어서, 상기 모니터링 플랫폼은 oneM2M 표준 프로토콜을 포함하는 것을 특징으로 하는, 미세먼지 정보 제공 공기청정 시스템.The air cleaning system for providing fine dust information according to claim 1, wherein the monitoring platform includes oneM2M standard protocol.
  10. 미세먼지 저감장치에서, 외부로부터 흡입된 유입 기체의 미세먼지 농도를 측정하고, 상기 유입 기체에 포함된 미세먼지를 제거하는 단계;In the fine dust reduction device, measuring the fine dust concentration of the inlet gas sucked from the outside, and removing the fine dust contained in the inlet gas;
    게이트웨이에서, TLV 포맷 데이터 및 JSON 포맷 데이터를 상호 변환하는 단계; 및converting, in the gateway, TLV format data and JSON format data; and
    서버에서, 미세먼지 정보 데이터를 모니터링 플랫폼을 통해 외부 단말 장치로 제공하는 단계를 포함하되,In the server, including the step of providing fine dust information data to an external terminal device through a monitoring platform,
    상기 미세먼지를 제거하는 단계는The step of removing the fine dust
    제1 미세먼지 측정부를 이용하여, 상기 유입 기체의 미세먼지 농도를 측정하는 단계;measuring the fine dust concentration of the inflow gas by using a first fine dust measuring unit;
    집진부를 이용하여, 상기 유입 기체에 포함된 미세먼지를 제거하는 단계; 및removing fine dust contained in the inflow gas by using a dust collector; and
    TLV 포맷으로 데이터 구조화된, 상기 미세먼지 농도 및 상기 미세먼지 저감 장치가 설치된 위치를 포함하는 상기 미세먼지 정보 데이터를 통신부를 이용하여 상기 게이트웨이로 전송하는 단계;를 포함하고,Transmitting the fine dust information data structured in TLV format, including the fine dust concentration and the location where the fine dust reduction device is installed, to the gateway using a communication unit;
    상기 모니터링 플랫폼을 통해 제공되는 상기 미세먼지 정보 데이터는 상기 변환하는 단계를 통해 TLV 포맷에서 JSON 포맷으로 변환된 데이터를 포함하는 미세먼지 정보 제공 공기청정 방법.The fine dust information data provided through the monitoring platform includes data converted from a TLV format to a JSON format through the converting.
PCT/KR2021/015608 2021-02-23 2021-11-01 Fine dust information-providing air cleaning system and method WO2022181926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0024283 2021-02-23
KR1020210024283A KR102264364B1 (en) 2021-02-23 2021-02-23 Air purifying system and method capable of providing fine dust information

Publications (1)

Publication Number Publication Date
WO2022181926A1 true WO2022181926A1 (en) 2022-09-01

Family

ID=76411812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015608 WO2022181926A1 (en) 2021-02-23 2021-11-01 Fine dust information-providing air cleaning system and method

Country Status (2)

Country Link
KR (1) KR102264364B1 (en)
WO (1) WO2022181926A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264364B1 (en) * 2021-02-23 2021-06-15 주식회사 모이기술 Air purifying system and method capable of providing fine dust information

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504783A (en) * 2014-11-21 2017-02-09 シャオミ・インコーポレイテッド Air quality acquisition method, air quality acquisition device, program, and recording medium
KR20180061406A (en) * 2013-06-25 2018-06-07 구글 엘엘씨 Efficient communication for devices of a home network
KR20190023369A (en) * 2017-08-29 2019-03-08 서여주 Vehicle find dust monitoring system
KR20200137172A (en) * 2019-05-29 2020-12-09 최우용 Learning type indoor fine dust sequential abatement system
KR20210012714A (en) * 2019-07-26 2021-02-03 전주대학교 산학협력단 Particulate matter monitoring system and capturing device of air using vehicle
KR102264364B1 (en) * 2021-02-23 2021-06-15 주식회사 모이기술 Air purifying system and method capable of providing fine dust information

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180061406A (en) * 2013-06-25 2018-06-07 구글 엘엘씨 Efficient communication for devices of a home network
JP2017504783A (en) * 2014-11-21 2017-02-09 シャオミ・インコーポレイテッド Air quality acquisition method, air quality acquisition device, program, and recording medium
KR20190023369A (en) * 2017-08-29 2019-03-08 서여주 Vehicle find dust monitoring system
KR20200137172A (en) * 2019-05-29 2020-12-09 최우용 Learning type indoor fine dust sequential abatement system
KR20210012714A (en) * 2019-07-26 2021-02-03 전주대학교 산학협력단 Particulate matter monitoring system and capturing device of air using vehicle
KR102264364B1 (en) * 2021-02-23 2021-06-15 주식회사 모이기술 Air purifying system and method capable of providing fine dust information

Also Published As

Publication number Publication date
KR102264364B1 (en) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022181926A1 (en) Fine dust information-providing air cleaning system and method
CN101908997B (en) Airport environment monitoring method based on wireless sensor network
CN208816189U (en) A kind of tunnel monitoring and warning intelligence system
KR20130138422A (en) Integrated system for safety management
CN208424449U (en) Automobile production shop safety based on cloud platform monitors system
CN205899784U (en) Wireless monitoring system of thermal power factory
KR20180079951A (en) Using the Internet of Things in real time pollution cleanup device control using systems and control methods
WO2021020644A1 (en) Atmospheric particulate matter monitoring system and collection device using vehicle
CN110470147A (en) Industrial Internet of Things cloud platform interactive system and method for ceramic kiln
CN107843293A (en) A kind of point detection system
WO2011093537A1 (en) System for collecting polluted air, device for collecting polluted air and method thereof
CN109290106B (en) Dry paint spraying paint mist filtering system
CN114995272A (en) Intelligent centralized control system and method for blasting and air exhaust in tunnel construction
CN112744539B (en) Monitoring system of energy-saving multiphase flow self-circulation dust suppression and removal device
KR20200141283A (en) Slim standing type air purifier for subway platform
CN203492131U (en) Industrial waste gas emission monitoring device
KR20130085174A (en) Harmfulness gas transmitting apparatus
CN207266189U (en) A kind of laser processing area personnel safety monitoring system
CN207763199U (en) Free-standing air purifier
CN206300227U (en) Intelligent lampblack purifying system
CN207324309U (en) A kind of industry central dust-removing system
KR100309874B1 (en) Filter a state measuring and control device air pollution collector
CN220886647U (en) Cage monitoring system of elevator
CN220853686U (en) Nuclear and biochemical integrated environment monitoring alarm
CN214538306U (en) Wireless temperature measurement host computer that centralized reception stability is high

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE