WO2022181599A1 - Power generation system and controller for power generation system - Google Patents

Power generation system and controller for power generation system Download PDF

Info

Publication number
WO2022181599A1
WO2022181599A1 PCT/JP2022/007198 JP2022007198W WO2022181599A1 WO 2022181599 A1 WO2022181599 A1 WO 2022181599A1 JP 2022007198 W JP2022007198 W JP 2022007198W WO 2022181599 A1 WO2022181599 A1 WO 2022181599A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
input
reduction command
generator
magnetic gear
Prior art date
Application number
PCT/JP2022/007198
Other languages
French (fr)
Japanese (ja)
Inventor
強志 若狭
幹人 佐々木
裕一朗 矢崎
崇俊 松下
義樹 加藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN202280010974.0A priority Critical patent/CN116783814A/en
Priority to US18/274,910 priority patent/US20240084893A1/en
Priority to EP22759635.0A priority patent/EP4280453A1/en
Publication of WO2022181599A1 publication Critical patent/WO2022181599A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • H02K16/025Machines with one stator and two or more rotors with rotors and moving stators connected in a cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/006Means for protecting the generator by using control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/404Transmission of power through magnetic drive coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/807Accelerometers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/124Limiting the input power, torque or speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2710/00Control devices for speed-change mechanisms, the speed change control is dependent on function parameters of the gearing
    • F16H2710/24Control dependent on torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to power generation systems and controllers for power generation systems.
  • This application claims priority based on Japanese Patent Application No. 2021-028565 filed with the Japan Patent Office on February 25, 2021, the content of which is incorporated herein.
  • the power generation system disclosed in Patent Literature 1 includes a driving-side rotating shaft, a passive-side rotating shaft, and a generator.
  • a turbine is provided at one end of the drive-side rotating shaft, and a plurality of drive-side magnets are provided at the other end.
  • a plurality of passive side magnets facing the plurality of driving side magnets are provided at one end of the passive side rotating shaft.
  • the other end of the drive-side rotary shaft and one end of the passive-side rotary shaft constitute a magnetic coupling.
  • step-out is suppressed by reducing the rotational output that the turbine gives to the magnetic coupling, but further measures are required to more reliably suppress step-out.
  • An object of the present disclosure is to provide a power system capable of suppressing step-out of a magnetic gear generator, and a controller for the power system.
  • a power generation system includes: a prime mover; a magnetic gear generator configured to be driven by input from the prime mover to generate electricity; a power converter connected to the magnetic gear generator; An operation configured to switch the operation mode of the magnetic gear generator to a step-out avoidance mode in response to a step-out parameter indicating the risk of step-out of the magnetic gear generator exceeding a prescribed allowable range.
  • a mode switching unit In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover is given to the prime mover, and a torque reduction command for reducing the generator torque of the magnetic gear generator is given to the power converter.
  • a reduction command unit configured as follows.
  • a controller for a power generation system comprises: In response to a step-out parameter indicating the risk of step-out of a magnetic gear generator for generating power driven by an input from a prime mover exceeding a specified allowable range, the operating mode of the magnetic gear generator is changed. an operation mode switching unit configured to switch to a step-out avoidance mode; In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover is given to the prime mover, and a torque reduction command for reducing the generator torque of the magnetic gear generator is given to the magnetic gear generator. and a reduction command configured to apply to a connected power converter.
  • a power system capable of suppressing step-out of a magnetic gear generator and a controller for the power system are provided.
  • FIG. 1 is a schematic diagram showing a power generation system according to one embodiment
  • FIG. 4 is a graph showing the relationship between twist angle and torque according to one embodiment.
  • 7 is a graph showing the relationship between the step-out parameter and the allowable range according to one embodiment;
  • 5 is another graph showing the relationship between the step-out parameter and the allowable range according to one embodiment.
  • 9 is yet another graph showing the relationship between the step-out parameter and the allowable range according to one embodiment;
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the electric power generation system which concerns on one Embodiment.
  • 1 is a block diagram showing an electrical configuration of a power generation system according to one embodiment
  • FIG. 4 is a flowchart of power generation control processing according to one embodiment.
  • 4 is a flowchart of out-of-step determination processing according to one embodiment.
  • 9 is another flowchart of the step-out determination process according to the embodiment;
  • FIG. 1 is a schematic diagram showing an example of a power generation system 1A(1) according to one embodiment.
  • the power generation system 1A includes a prime mover 2, a magnetic gear power generator 10 for generating power driven by an input from the prime mover 2, a power converter 50 connected to the magnetic gear power generator 10, and a power generation system controller 100A ( 100).
  • the power converter 50 is configured to convert the power supplied from the magnetic gear generator 10 and supply it to the power destination 4, which may be, for example, the power grid.
  • a power generation system controller 100A (hereinafter sometimes simply referred to as controller 100A) is configured to control power generation in the magnetic gear generator 10 .
  • the power generation control includes control for avoiding stepping out of the magnetic gear generator 10 in operation.
  • the input from the prime mover 2 to the magnetic gear generator 10 and the generator torque of the magnetic gear generator 10 are controlled based on the step-out parameter indicating the risk of step-out of the magnetic gear generator 10. and are reduced (details will be described later).
  • the magnetic gear generator 10 of one embodiment comprises an input rotor, a low speed rotor 30 , an output rotor, a high speed rotor 40 , and a stator 20 having stator windings 24 .
  • Low speed rotor 30 is configured to be driven by input from prime mover 2 .
  • High speed rotor 40 is configured to be driven by magnetic torque generated as low speed rotor 30 rotates.
  • Stator windings 24 of stator 20 are configured to produce power supplied to power converter 50 as high speed rotor 40 rotates.
  • Parameters relating to the rotational positions of the low-speed rotor 30 and high-speed rotor 40 are detected by low-speed rotor sensor 35 and high-speed rotor sensor 45, respectively.
  • low speed rotor sensor 35 detects the speed of low speed rotor 30 and high speed rotor sensor 45 detects the rotational position of high speed rotor 40 .
  • low speed rotor sensor 35 detects the rotational position of low speed rotor 30 and high speed rotor sensor 45 detects the speed of high speed rotor 40 .
  • low speed rotor sensor 35 and high speed rotor sensor 45 may detect the speed of low speed rotor 30 and high speed rotor 40, respectively.
  • low speed rotor sensor 35 and high speed rotor sensor 45 may detect the rotational positions of low speed rotor 30 and high speed rotor 40, respectively.
  • a more detailed configuration of the magnetic gear generator 10 is illustrated.
  • a low speed rotor 30 includes pole pieces 32 and is configured to rotate with the rotating shaft 3 of the prime mover 2 .
  • High-speed rotor 40 includes a plurality of rotor magnets 42 each composed of a permanent magnet. A plurality of rotor magnets 42 are arranged in the circumferential direction of the magnetic gear generator 10 . Furthermore, the high-speed rotor 40 is attached to the rotating shaft 3 (or the low-speed rotor 30 that rotates together with the rotating shaft 3) via a bearing B2 so as to rotate at a higher speed than the low-speed rotor 30.
  • the stator 20 includes a plurality of stator magnets 22 each made up of permanent magnets, and is arranged inside a housing 21 that supports the rotating shaft 3 of the prime mover 2 via a bearing B1.
  • a plurality of stator magnets 22 are arranged in the circumferential direction of the magnetic gear generator 10 .
  • the magnetic gear generator 10 has a configuration in which the stator 20, the low speed rotor 30, and the high speed rotor 40 are arranged in order toward the inner side in the radial direction with respect to the axis of the magnetic gear generator 10. .
  • the magnetic gear generator 10 has a configuration in which the high-speed rotor 40, the low-speed rotor 30, and the stator 20 are arranged in order radially inward. In this case, the high-speed rotor 40 , the low-speed rotor 30 and the stator 20 are arranged radially inside the cylindrical rotating shaft 3 .
  • the magnetic gear generator 10 described above is configured to convert mechanical input from the prime mover 2 into electrical power by utilizing harmonic magnetic gear principles and electromagnetic induction.
  • power generation in the magnetic gear generator 10 may be performed according to the following principle.
  • the rotary shaft 3 is rotated by the input torque from the prime mover 2
  • the low speed rotor 30 is driven.
  • Rotation of the pole piece 32 of the low-speed rotor 30 modulates the magnetic flux of the stator magnet 22
  • the rotor magnet 42 receives magnetic force from the modulated magnetic field to generate magnetic torque, thereby driving the high-speed rotor 40 .
  • Rotation of the high-speed rotor 40 causes current to be generated in the stator windings 24 by electromagnetic induction, and power is supplied to the power converter 50 .
  • the torque input from the prime mover 2 to the low-speed rotor 30 may be simply referred to as input torque
  • the torque output from the high-speed rotor 40 may simply be referred to as generator torque.
  • the torsion angle of the magnetic gear generator 10 which is the phase difference between the low speed rotor 30 and the high speed rotor 40, may be simply referred to as the torsion angle.
  • Equation (1) An equation of motion established in the low-speed rotor 30 is as shown in Equation (1).
  • J L ⁇ (d ⁇ L /dt) T L ⁇ T max sin ⁇ Equation (1)
  • J L Inertia (constant value) of low-speed rotor 30, ⁇ L : Angular velocity of low-speed rotor 30, T L : Input torque, T max sin ⁇ : Magnetic torque, ⁇ : Torsion angle
  • T max is the maximum magnetic torque produced in the magnetic gear generator 10 when the torsion angle ( ⁇ ) is ⁇ /2.
  • Equation (2) the equation of motion established in the high-speed rotor 40 is as shown in Equation (2).
  • J H ⁇ (d ⁇ H /dt) T max sin ⁇ T H Equation (2) (J H : inertia (constant value) of high-speed rotor 40, ⁇ H : angular velocity of high-speed rotor 40, T H : generator torque)
  • JH is a value that reflects the above-described speed increasing ratio on a general inertia that is determined based on the shape, weight, etc. of the high-speed rotor 40 .
  • controller 100A (Configuration of controller 100A) A controller 100A (100) of one embodiment shown in FIG. and a command unit 107 for giving commands (control signals) to the prime mover 2 and the power converter 50 .
  • the step-out parameter acquired by the parameter acquisition unit 103 is a parameter related to the torsion angle or input torque.
  • the input torque is obtained by substituting the angular velocity of the low-speed rotor 30 and the torsion angle of the magnetic gear generator 10, which are obtained based on the detection results of the low-speed rotor sensor 35 and the high-speed rotor sensor 45, into equation (1). be done.
  • the input torque may be obtained based on the detection result of a torque sensor that detects the torque of the low speed rotor 30 .
  • the step-out parameter may be the temporal change rate of the torsion angle or the input torque, or may be the future value (predicted value) of the torsion angle or the input torque.
  • the controller 100A needs to perform control to reduce the risk of step-out.
  • the operation mode of the magnetic gear generator 10 is switched to the step-out avoidance mode.
  • the operation mode switching unit 110 in response to the step-out parameter exceeding the allowable range, changes the operation mode of the magnetic gear generator 10 to the step-out avoidance mode. switch to As a result, control for reducing the risk of step-out is started.
  • the operating mode before switching by the operating mode switching unit 110 is, for example, the normal mode.
  • the reduction command unit 120 constituting the command unit 107 gives the motor 2 an input reduction command for reducing the input from the motor 2 to the magnetic gear generator 10, It is configured to give a torque reduction command for reducing the generator torque of the generator 10 to the power converter 50 .
  • the operation mode control unit 106 includes an operation mode switching unit 110 and an operation mode return unit 125
  • the command unit 107 includes an increase command unit 127 in addition to the decrease command unit 120 .
  • the operation mode recovery unit 125 changes the operation mode from the step-out avoidance mode to the normal operation mode when the step-out parameter comes to be within the allowable range after the reduction command unit 120 gives the input reduction command and the torque reduction command.
  • the increase command unit 127 gives to the prime mover 2 an input increase command to increase the input from the prime mover 2 to the magnetic gear generator 10, and a torque increase command to increase the generator torque to the prime mover 2. is configured to grant to As a result, a decrease in the amount of power generated by the magnetic gear generator 10 can be suppressed.
  • the above-described switching to the step-out avoidance mode by the operation mode switching unit 110 may be performed in response to each of the plurality of step-out parameters exceeding the corresponding allowable range.
  • the operating mode may switch to the out-of-step avoidance mode in response to any of a plurality of out-of-step parameters exceeding the corresponding tolerance range.
  • the graph is also shown in the range where the torsion angle is ⁇ /2 or more. Therefore, the magnetic gear generator 10 of one embodiment needs to operate within the range of 0 ⁇ /2.
  • the twist angle can be a step-out parameter indicating the risk of step-out.
  • a parameter that indirectly indicates the torsion angle may be used as the step-out parameter, for example, the input torque in normal mode is used as the step-out parameter.
  • the torsion angle that produces the magnetic torque that balances this input torque is .delta.0 .
  • the torsion angle that produces a magnetic torque that balances this input torque should be greater than .delta.0 . From this, it is understood that the input torque can be a step-out parameter. Note that in one embodiment, the operating state of the magnetic gear generator 10 in which the torsion angle is ⁇ 0 is the rated operating state.
  • ⁇ th is a threshold value for determining whether there is a risk of stepping out, and is a prescribed value. Therefore, the range in which the torsion angle is ⁇ th or less is the permissible range in which the step-out risk can be tolerated.
  • the magnetic gear generator 10 is operating stably with the torsion angle ⁇ 0 ( ⁇ th ). From this state, it is assumed that the torsion angle exceeds ⁇ th and reaches ⁇ ov as the input torque increases, for example. At this moment, the operation mode switching unit 110 shifts to the step-out avoidance mode and generates an input reduction command and a torque reduction command. As a result, the twist angle ⁇ decreases toward the allowable range of the twist angle ( ⁇ th ).
  • ⁇ Lim in FIG. 2 is a threshold for determining whether the power generation system 1 needs to be stopped (tripped).
  • a stop command (trip command) may be given to the prime mover 2 and the power converter 50 when the twist angle exceeds ⁇ Lim . In this case, by stopping the operation of the power generation system 1, the occurrence of step-out of the magnetic gear generator 10 is suppressed.
  • the input torque and the generator torque should be reduced by the input reduction command and the torque reduction command, respectively.
  • the input torque as the input reduction command is set to the value L2 indicated by the two-dot chain line
  • the generator torque as the torque reduction command is set to the value L3 indicated by the two-dot chain line.
  • the state of the magnetic gear generator 10 in which the torsion angle is ⁇ 1 within the allowable range is defined as the reference state.
  • the amount of change ⁇ in the torsion angle ⁇ from the reference state is represented by the following equation (3) as a transfer function.
  • ⁇ T L is the variation amount of the input torque set value (L2) indicated by the input reduction command with reference to the reference input torque, which is the input torque corresponding to the torsion angle ⁇ 1 in the reference state.
  • ⁇ T H is the amount of variation in the generator torque setting value (L3) indicated by the torque reduction command with reference to the reference generator torque, which is the generator torque corresponding to the torsion angle ⁇ 1 in the reference state.
  • ns is a parameter that defines the speed reduction ratio, which is the reciprocal of the speed increase ratio. According to the formula (3), the torsion angle fluctuation amount ⁇ is the input torque fluctuation amount ⁇ T L and the input torque fluctuation amount ⁇ T H with respect to the reference state in which the step-out parameter is within the allowable range.
  • ⁇ 1 which is the reference torsion angle in the reference state
  • ⁇ 1 may have the same value as ⁇ 0 .
  • the reference state of the magnetic gear generator 10 may be ⁇ 0 .
  • the torque reduction command given from the reduction command unit 120 to the power converter 50 is based on a reference state in which the step-out parameter is included in the allowable range, and reduces ⁇ T H , which is the variation amount of the generator torque, to It is proportional to ⁇ TL , which is the amount of change in input torque.
  • ⁇ T H and ⁇ T L are shown in FIG. 2, previously described.
  • the torque reduction command is a command that satisfies equation (4).
  • ⁇ T H is proportional to ⁇ T L with an opposite sign.
  • ⁇ T H has the opposite sign to ⁇ T L.
  • the torque reduction command given from reduction command unit 120 to power converter 50 is based on a reference state in which the step-out parameter is within the allowable range, and reduces ⁇ T H , which is the amount of variation in the generator torque. , to the variation d ⁇ H /dt of the angular acceleration of the high-speed rotor 40 .
  • ⁇ T H is shown in the graph of FIG. 2 already described.
  • the torque reduction command is a command that satisfies equation (5).
  • ⁇ T H is proportional to the opposite sign of d ⁇ H /dt.
  • the reduction command unit 120 issues a torque reduction command to the power converter so that ⁇ T H is proportional to ⁇ T L and proportional to the angular acceleration fluctuation amount d ⁇ H /dt of the high-speed rotor 40. 50 may be given.
  • the torque reduction command may be a command that satisfies both equations (4) and (5).
  • ⁇ T H generator torque reduction amount
  • the power generation system 1A It is possible to further suppress the decrease in power generation efficiency.
  • the upper graph in FIG. 3A shows an example of changes in the step-out parameter
  • the middle graph shows the timing at which the input reduction command and the torque reduction command are generated
  • the lower graph shows the operation stop command (trip command).
  • the horizontal axis indicates the number of steps of calculation by the controller 100 .
  • 3B and 3C show graphs similar to FIG. 3A.
  • the out-of-step parameters shown in the upper graphs of FIGS. 3A to 3C may be referred to as a first out-of-step parameter, a second out-of-step parameter, and a third out-of-step parameter, respectively.
  • the first out-of-step parameter (P1) on the vertical axis shown in FIG. 3A is the input torque or torsion angle.
  • a first threshold value Th1 that serves as a criterion for determining whether there is a risk of stepping out of the magnetic gear generator 10
  • a first limit value Lm1 that serves as a criterion for determining whether to stop operation of the power generation system 1 are preset.
  • the operation mode is stepped out immediately after that (the N-th step). The mode is switched to the avoidance mode, and an input reduction command and a torque reduction command are generated.
  • the input reduction command and the torque reduction command are generated in response to the first out-of-step parameter exceeding the prescribed range (first allowable range) equal to or less than the first threshold value Th1. Further, when the first step-out parameter exceeds the first limit value Lm1 even though the input reduction command and the torque reduction command are given to the prime mover 2 and the power converter 50 respectively (the number of steps is from N+2 to N+3 timing), and immediately after that (the N+3th step), an operation stop command is generated.
  • the second out-of-step parameter (P2) on the vertical axis shown in FIG. 3B is the temporal change rate of the input torque or torsion angle.
  • FIG. 3B shows the temporal change rate (that is, the slope) of the first step-out parameter shown in FIG. 3A as the second step-out parameter.
  • a second threshold value Th2 that serves as a criterion for determining whether there is a risk of step-out
  • a second limit value Lm2 that serves as a criterion for determining whether to stop operation of the power generation system 1 are set in advance.
  • the operation mode is switched to the step-out avoidance mode in the N-th step immediately after that, and the input reduction command and the torque reduction command are changed. generated.
  • the input reduction command and the torque reduction command are generated in response to the second out-of-step parameter exceeding the prescribed range (second allowable range) equal to or less than the second threshold Th2. If the second step-out parameter exceeds the second limit value Lm2 even though the input reduction command and the torque reduction command are generated, the operation stop command is generated at the N+2th step immediately after that. .
  • the third out-of-step parameter (P3) on the vertical axis shown in FIG. 3C is prediction data indicating the future value of the first out-of-step parameter.
  • This forecast data may be graphed as a forecast line.
  • the third out-of-step parameter is obtained by performing predictive analysis based on the measured value of the first out-of-step parameter obtained by measurement.
  • the third out-of-step parameter is obtained as prediction data.
  • FIG. 3 The third out-of-step parameter (P3) on the vertical axis shown in FIG. 3C is prediction data indicating the future value of the first out-of-step parameter.
  • This forecast data may be graphed as a forecast line.
  • the third out-of-step parameter is obtained by performing predictive analysis based on the measured value of the first out-of-step parameter obtained by measurement.
  • an exponential smoothing method is obtained as prediction data.
  • the first out-of-step parameter based on actual measurements obtained multiple times up to the N-1th step is illustrated by black dots, and the third out-of-step parameter obtained at the time of the N-th step is illustrated as a predicted line by a solid line. do.
  • the third out-of-step parameter of one embodiment is predictive data that is updated each time the first out-of-step parameter is obtained. That is, when a new measured value of the first out-of-step parameter is obtained at the Nth step, the prediction line is updated at the (N+1)th step.
  • a third threshold value Th3 that serves as a criterion for determining whether there is a risk of step-out and a third limit value Lm3 that serves as a criterion for determining whether to stop the operation of the power generation system 1 are set in advance.
  • the input reduction command and the torque reduction command are generated in response to the third out-of-step parameter exceeding the prescribed range (third allowable range) equal to or less than the third threshold Th3.
  • the determination of the risk of loss of synchronism based on the third parameter, which is the prediction data is the timing at which the operation mode switches to the avoidance mode of synchronism rather than the determination of the risk of loss of synchronism shown in FIGS. 3A and 3B. is early.
  • FIG. 3C as well, if the third step-out parameter exceeds the third limit value Lm3 in the predictable range, a shutdown command is generated. Details are omitted to avoid duplication of explanation. 3A to 3C show examples in which the input reduction command and the torque reduction command are given to the prime mover 2 and the power converter 50 respectively in the same number of steps. In other embodiments, the timing at which the input reduction command and the torque reduction command are applied may differ.
  • FIG. 4 illustrates an outline of a power generation system 1B(1) in which a renewable energy extraction device 200 is employed as the prime mover 2.
  • Renewable energy extraction device 200 is configured to extract renewable energy to generate an input to magnetic gear generator 10 .
  • the renewable energy in one embodiment is wind power and the renewable energy extraction device 200 is a windmill. In another embodiment, the renewable energy is tidal or ocean currents and the renewable energy extraction device 200 is a water turbine.
  • the magnetic gear generator 10 generates power by the input torque from the renewable energy extraction device 200 , and the generated power is supplied to the power supply destination 4 via the power converter 50 . In one embodiment, the current flowing through the stator windings 24 of the magnetic gear generator 10 is measured by the meter 55 .
  • the renewable energy extraction device 200 includes an energy extraction unit 210 for extracting renewable energy, a prime mover rotor 220 configured to be driven by the extracted renewable energy, and a rotational speed (rotational speed) of the prime mover rotor 220. ) is provided.
  • the pitch angle of blades 214 forming energy extractor 210 is changed by pitch drive device 215 .
  • a plurality of blades 214 are provided on hub 203 of motor rotor 220 , and a plurality of pitch drive devices 215 are provided corresponding to each of these plurality of blades 214 .
  • a pitch actuator 215A included in each of the plurality of pitch drives 215 changes the pitch angle of the corresponding blade 214.
  • FIG. The amount of renewable energy extracted is adjusted by changing the pitch angle, and as a result, the rotation speed of prime mover rotor 220 is adjusted.
  • the pitch angle is varied between a full fine position and a position feathered from the full fine position.
  • the plurality of blades 214 change between an attitude of actively receiving the wind and an attitude of receiving the wind, and the rotational speed of the prime mover rotor 220 is adjusted.
  • the pitch actuator 215A in one embodiment is of an electric type including an electric motor, but may be of a hydraulic type including a hydraulic cylinder.
  • the rotating shaft 3 of the prime mover rotor 220 is configured to rotate integrally with the low speed rotor 30 of the magnetic gear generator 10 . Therefore, the detection result of the low-speed rotor sensor 35 detects not only the rotation speed of the low-speed rotor 30 but also the rotation speed of the prime mover rotor 220 .
  • the rotating shaft 3 is connected to the low speed rotor 30 via gears or the like. In this case, a sensor separate from low speed rotor sensor 35 is provided to detect the number of revolutions of prime mover rotor 220 .
  • the controller 230 is provided to give a control command to the energy extractor 210 so that the rotation speed of the engine rotor 220 approaches a target rotation speed.
  • the target rotation speed setting unit 233 sets the target rotation speed of the motor rotor 220 and sends the target value to the rotation speed control unit 231 as a command.
  • the rotation speed control unit 231 acquires the current value of the rotation speed of the prime mover rotor 220 based on the detection result of the low speed rotor sensor 35, for example. Furthermore, rotation speed control unit 231 sends a pitch angle for motor rotor 220 to reach the target rotation speed to pitch actuator 215A as a command.
  • the rotation speed of prime mover rotor 220 is adjusted, and the renewable energy extracted by energy extraction unit 210 is adjusted.
  • the control performed by the rotation speed control section 231 is PI control.
  • the pitch angle specified based on the deviation between the target value and the current value of the rotation speed of prime mover rotor 220 is sent as a command from rotation speed control section 231 to pitch actuator 215A.
  • the control executed by the rotation speed control section 231 may be other control such as P control or PID control.
  • a controller 100B (100) according to an embodiment employed in the power generation system 1B will be described.
  • An acquisition unit 105 which is a component of the controller 100B, obtains the rotational position and rotational speed of the high-speed rotor 40 (or rotor magnet 42) and the rotational position and rotational speed of the low-speed rotor 30 based on the detection results of the high-speed rotor sensor 45 and the low-speed rotor sensor 35. Get rotation speed and torsion angle. Acquisition results are sent to the coordinate transformation unit 276 , the target torque setting unit 245 and the parameter acquisition unit 103 .
  • the acquisition unit 105 acquires the current value of the current flowing through the stator winding 24 in the fixed coordinate system, and the current value of the current in the rotating coordinate system. configured to convert to The converted current value (current value) is sent to the PI control section 242, which will be described later.
  • the target torque setting unit 245 sets a target generator torque based on the rotation speed of the high-speed rotor 40 acquired from the acquisition unit 105 .
  • the identification result is sent to the PI control section 242 .
  • the main command unit 250 includes the parameter acquisition unit 103 and the operation mode control unit 106, both of which have already been described. The details of determination unit 260 constituting main command unit 250 will be described later.
  • the control outline of the generator torque is as follows.
  • the PI control unit 242 sets the target rotating coordinates of the stator winding 24 based on the deviation between the current value and the target value of the generator torque and the current value of the stator winding 24 in the rotating coordinate system. Determine the current value in the system.
  • the identification result is sent to the coordinate transformation section 276 .
  • the coordinate transformation unit 276 transforms the current value (target value) in the rotating coordinate system of the stator winding 24 into the current value in the fixed coordinate system based on the rotational position of the rotor magnet 42 acquired from the acquisition unit 105 .
  • the conversion result is sent to PWM control section 248 .
  • the PWM control unit 248 sends a PWM control signal to the power converter 50 based on the acquired current value (target value) of the stator winding 24 in the fixed coordinate system.
  • the PMW control signal of one embodiment is a signal that specifies the damping resistance of power converter 50 .
  • the control mode of the generator torque is changed as the operation mode of the magnetic gear generator 10 is switched.
  • the determination unit 260 which is a component of the main command unit 250, determines whether the step-out parameter acquired by the parameter acquisition unit 103 exceeds the allowable range.
  • the operation mode switching unit 110 switches the operation mode of the magnetic gear generator 10 from the normal mode to the step-out avoidance mode.
  • reduction command section 120 gives a torque reduction command to PI control section 242 .
  • the torque reduction command of one embodiment is a command to reduce the generator torque (target value) sent from the target torque setting section 245 to the PI control section 242 .
  • the PI control unit 242 reduces the generator torque (target value) and then specifies the current value (target value) in the rotating coordinate system.
  • the generator torque is reduced in the step-out avoidance mode.
  • the torque reduction command given from the reduction command section 120 may be the generator torque value. This value is smaller than the generator torque (target value) output from the target torque setting unit 245, and the PI control unit 242 preferentially treats the generator torque indicated by the torque reduction command as the target value.
  • the reduction command unit 120 gives the torque reduction command to the power converter 50 via the PI control unit 242 and the like, and gives the input reduction command to the target rotation speed setting unit 233 of the controller 230. .
  • the input reduction command at this time is a command for decreasing the amount of renewable energy extracted by energy extraction unit 210 .
  • the input reduction command at this time is a command to reduce the rotation speed of prime mover rotor 220 to be targeted.
  • the target rotation speed setting unit 233 sends the rotation speed (target value) of the engine rotor 220 reduced based on the input reduction command to the rotation speed control unit 231 .
  • the rotation speed control unit 231 sends the pitch angle that reduces the extraction amount of renewable energy to the pitch actuator 215A.
  • the input reduction command sent from reduction command unit 120 in the step-out avoidance mode may be a specific target rotation speed of prime mover rotor 220 .
  • the determination unit 260 described above determines whether the future predicted value of renewable energy is greater than the upper limit value. In one embodiment, the above determination is performed based on the measurement results of a lidar (LIDAR: Light Detection And Ranging) 56 . In another embodiment, the determination is performed based on weather forecast information transmitted from another remote terminal device, for example.
  • the reduction command unit 120 sets the operation mode of the magnetic gear generator 10 to the step-out avoidance mode. , the input reduction command is given to the renewable energy extraction device 200 .
  • reduction command section 120 gives the input reduction command to pitch actuator 215A without going through controller 230 .
  • the pitch angle is adjusted without intervening the above-described control by the rotation speed control section 231.
  • FIG. As a result, the input torque from the renewable energy extraction device 200 to the magnetic gear generator 10 can be quickly reduced. Therefore, for example, in an embodiment in which the renewable energy extraction device 200 is a windmill, the input from the renewable energy extraction device 200 to the magnetic gear generator 10 is reduced even when sudden events such as gusts occur. A rapid increase is suppressed.
  • FIG. 5 is a block diagram illustrating the functionality of the controller 100 according to one embodiment.
  • the processor 91 of the controller 100 is, for example, a CPU, GPU, MPU, DSP, various arithmetic devices other than these, or a combination thereof.
  • Processor 91 may be implemented by an integrated circuit such as PLD, ASIC, FPGA, and MCU.
  • Processor 91 is configured to read programs stored in ROM 92, load them into RAM 93, and execute instructions contained in the loaded programs. Thereby, the power generation control of the power generation system 1 is executed.
  • Various values processed along with execution of the program are stored in the RAM 93 or the memory 94 .
  • Memory 94 is, for example, a non-volatile memory.
  • the processor 91 is electrically connected to the low speed rotor sensor 35, the high speed rotor sensor 45, the rider 56, the power converter 50, and the renewable energy extraction device 200 via an interface or the like.
  • the lidar 56 irradiates a laser beam to a wind speed prediction point, which is a remote location, detects scattered light from aerosols in the atmosphere at the wind speed prediction point, and detects the frequency difference (Doppler shift) between the laser light and the scattered light. This is a device that measures the wind speed at the wind speed prediction point.
  • the power generation control process is a process that is continuously executed when the power generation system 1 is in operation.
  • step is abbreviated as "S”.
  • the processor 91 acquires a step-out parameter based on the detection results of the low speed rotor sensor 35 and the high speed rotor sensor 45 (S11).
  • the obtained out-of-step parameters are a first out-of-step parameter, a second out-of-step parameter and a third out-of-step parameter.
  • the processor 91 executes step-out risk determination processing for determining whether the risk of step-out exceeds the allowable range based on the step-out parameter acquired in S11 (S13).
  • step-out risk determination process the step-out risk flag stored in the memory 94 is overwritten with 1 when it is determined that the step-out parameter exceeds the allowable range.
  • the step-out risk flag stored in the memory 94 is maintained at zero. The details of the step-out risk determination process will be described later.
  • the processor 91 determines whether the step-out risk flag is 1, for example, by referring to the memory 94 (S15). Based on this determination, it is determined whether or not there is a risk of stepping out in the magnetic gear generator 10 in operation. If the step-out risk flag is 0 (S15: NO), the processor 91 determines whether the future predicted value of renewable energy provided to the energy extraction unit 210 is greater than the upper limit based on the output result of the rider 56. Determine (S17). In one embodiment, the upper limit value is stored in memory 94 . If the future predicted value is equal to or less than the upper limit (S17: NO), the processor 91 returns the process to S11. If the step-out parameter is within the allowable range (S15: NO) and the future prediction value is equal to or less than the upper limit (S17: NO), the processor 91 repeats S11-S17.
  • the processor 91 causes the magnetic gear generator 10 to exit the normal mode. Switch to the tone avoidance mode (S19).
  • the processor 91 that executes S19 functions as the operation mode switching unit 110 described above.
  • the processor 91 gives an input reduction command to the controller 230 of the renewable energy extraction device 200 and gives a torque reduction command to the magnetic gear generator 10 (S21).
  • the processor 91 that executes S21 functions as the reduction command unit 120 described above.
  • the processor 91 determines whether the step-out parameter that set the step-out risk flag to 1 has returned to within the allowable range (S23). When it is determined that the step-out parameter has not returned to the allowable range (S23: NO), the processor 91 determines whether the step-out parameter has exceeded the limit value (S37).
  • the processor 91 determines that any one of the first step-out parameter, the second step-out parameter, or the third step-out parameter is a corresponding limit value (first limit value, second limit value, or third limit value). Determine whether the If it is determined that the step-out parameter does not exceed the limit value (S37: NO), the processor 91 returns the process to S23.
  • the processor 91 When the step-out parameter returns within the allowable range (S23: YES), the processor 91 overwrites the step-out risk flag to 0 (S25), and changes the operation mode of the magnetic gear generator 10 from the step-out avoidance mode to the normal mode.
  • the processor 91 that executes S27 functions as the operation mode recovery unit 125 described above.
  • processor 91 applies an input increase command to prime mover 2 and a torque increase command to power converter 50 (S29).
  • the processor 91 executing S29 functions as the increase instruction unit 127 described above. After that, the processor 91 returns the process to S11.
  • the processor 91 issues an operation stop command to the prime mover 2 and the power converter 50 (S39).
  • the processor 91 ends the power generation control process, and the power generation system 1 stops operating.
  • the processor 91 sends an input reduction command to the energy extractor 210 (more specifically, the pitch actuator 215A) without going through the controller 230. ) (S31).
  • the processor 91 that executes S31 functions as the reduction command unit 120 described above.
  • the processor 91 determines whether the future prediction value has returned to the upper limit value or less based on the detection result of the rider 56 (S33).
  • the processor 91 waits until the future prediction value returns to the upper limit value or less (S33: NO).
  • the processor 91 gives an input increase command to the renewable energy extraction device 200 (S35), and returns the process to S11.
  • a step-out risk determination process will be described with reference to FIG. 7A.
  • the step-out risk determination process is executed based on the step-out parameter acquired in S11 (the same applies to the step-out risk determination process shown in FIG. 7B, which will be described later).
  • the processor 91 compares the first step-out parameter and the first allowable range (S51), compares the second step-out parameter and the second allowable range (S53), and compares the third step-out parameter and the third allowable range. (S55). Next, the processor 91 determines whether two or more of the first step-out parameter, the second step-out parameter, and the third step-out parameter exceed the corresponding allowable ranges (S57).
  • the processor 91 If it is determined that two or more out-of-step parameters exceed the allowable range (S57: YES), the processor 91 overwrites the step-out risk flag with 1 (S59), and terminates the step-out risk determination process. On the other hand, if there is only one step-out parameter exceeding the allowable range, or if all the step-out parameters are within the allowable range (S57: NO), the processor 91 ends the step-out risk determination process. In this case, the step-out risk flag is 0. As described above, in the step-out risk determination process of this example, on the condition that at least two of the first step-out parameter, the second step-out parameter, and the third step-out parameter exceed their corresponding allowable ranges, the step-out risk determination process determined to be at risk.
  • the processor 91 determines whether the first step-out parameter has exceeded the first allowable range (S71). When it is determined that the first step-out parameter exceeds the first allowable range (S71: YES), the processor 91 overwrites the step-out risk flag with 1 (S77), and terminates the step-out risk determination process. . When it is determined that the first step-out parameter is within the first allowable range (S71: NO), the processor 91 determines whether the second step-out parameter exceeds the second allowable range (S73). If it is determined that the second step-out parameter exceeds the second allowable range (S73: YES), the processor 91 advances the process to S77.
  • the processor 91 determines whether the third step-out parameter exceeds the third allowable range (S75). If it is determined that the third step-out parameter exceeds the third allowable range (S75: YES), the processor 91 advances the process to S77. If it is determined that the third step-out parameter is within the third allowable range (S75: NO), the processor 91 ends the step-out risk determination process. As described above, in the step-out risk determination process of this example, the condition is that any one of the first step-out parameter, the second step-out parameter, and the third step-out parameter exceeds the corresponding allowable range. , it is determined that there is a step-out risk.
  • a power generation system (1) includes: a prime mover (2); a magnetic gear generator (10) configured to be driven by an input from the prime mover (2) to generate electricity; a power converter (50) connected to the magnetic gear generator (10); Switching the operation mode of the magnetic gear generator (10) to a step-out avoidance mode in response to a step-out parameter indicating the risk of step-out of the magnetic gear generator (10) exceeding a prescribed allowable range.
  • An operation mode switching unit (110) configured as In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover (2) is given to the prime mover (2), and torque reduction for reducing the generator torque of the magnetic gear generator (10).
  • a reduction command unit (120) configured to provide a command to the power converter (50).
  • the magnetic gear generator (10) is switched to the step-out avoidance mode. At this time, not only the input from the prime mover (2) to the magnetic gear generator (10) is reduced, but also the generator torque of the magnetic gear generator (10) is reduced.
  • the input from the prime mover (2) is decreased, the magnetic torque becomes excessive with respect to the input torque in the magnetic gear generator (10), and the twist angle tends to decrease. Further, when the generator torque is reduced, the generator torque becomes insufficient with respect to the magnetic torque, and the torsion angle tends to decrease.
  • the risk of stepping out can be reduced more effectively than when only the input from the prime mover (2) is reduced.
  • the torsion angle tends to decrease and the magnetic torque also tends to decrease.
  • the generator torque reduction command is not given to the power converter (50)
  • the magnetic torque becomes insufficient for the generator torque after switching to the step-out avoidance mode, resulting in an increase in the torsion angle. . Therefore, as described above, in the step-out avoidance mode, by reducing not only the input from the prime mover (2) but also the generator torque, the torsion angle can be reduced more reliably, and the step-out risk can be effectively reduced. reduction is possible. Therefore, a power generation system (1) capable of suppressing step-out of the magnetic gear generator (10) is realized.
  • the magnetic gear generator (10) a low speed rotor (30) configured to be driven by input torque from said prime mover (2); a high speed rotor (40) configured to be driven by magnetic torque generated as the low speed rotor (30) rotates; a stator (20) having a stator winding (24) configured to generate power supplied to the power converter (50) as the high-speed rotor (40) rotates
  • the reduction command section (120) controls the amount of variation in the generator torque of the high-speed rotor (40) to reduce the amount of variation in the generator torque of the low-speed rotor (30) based on a reference state in which the step-out parameter is within the allowable range. It is configured to apply the torque reduction command to the power converter (50) so as to be proportional to the amount of input fluctuation.
  • the fluctuation amount of the torsion angle in the magnetic gear generator (10) is the input torque and the sum of the variation of the generator torque of the high-speed rotor (40) multiplied by the inertia ratio of the low-speed rotor (30) and the high-speed rotor (40).
  • the configuration (2) above since the amount of change in the generator torque is proportional to the amount of change in the input torque of the low-speed rotor (30), the amount of change in the torsion angle of the magnetic gear generator (10) is suppressed. be. Therefore, step-out of the magnetic gear generator (10) can be suppressed.
  • the magnetic gear generator (10) comprises: a low speed rotor (30) configured to be driven by input torque from said prime mover (2); a high-speed rotor (40) configured to be driven by magnetic torque generated as the low-speed rotor (30) rotates; a stator (20) having stator windings (24) configured to produce power supplied to the power converter (50) as the high speed rotor (40) rotates;
  • the reduction command section (120) makes the amount of variation in the generator torque proportional to the amount of variation in the angular acceleration of the high-speed rotor (40) with reference to a reference state in which the step-out parameter is within the allowable range. so that the torque reduction command is applied to the power converter (50).
  • the amount of change in the generator torque is based on the amount of change in the angular acceleration of the high-speed rotor (40), thereby reducing the apparent inertia of the high-speed rotor (40).
  • This makes it easier for the high-speed rotor (40) to follow the low-speed rotor (30), thereby suppressing the variation in the torsion angle of the magnetic gear generator (10). Therefore, step-out of the magnetic gear generator (10) is suppressed.
  • said prime mover (2) is a renewable energy extraction device (200) configured to extract renewable energy to generate said input to said magnetic gear generator (10);
  • the reduction command unit (120) outputs the input reduction command regardless of whether the step-out parameter exceeds the allowable range. Applied to the device (200) to reduce the extraction of said renewable energy.
  • step-out parameter does not exceed the allowable range, when the future prediction value is greater than the upper limit value, the input to the renewable energy extraction device (200) as the prime mover (2) A reduction order is given.
  • step-out of the magnetic gear generator (10) is suppressed even when renewable energy increases in the future due to an unexpected event or the like.
  • the renewable energy extraction device (200) comprises: an energy extractor (210) configured to extract said renewable energy; a prime mover rotor (220) configured to be driven by said extracted renewable energy; a controller (230) configured to give a control command to the energy extractor (210) so that the rotation speed of the prime mover rotor (220) approaches a target rotation speed; including The reduction command unit (120) When the predicted future value of the renewable energy is equal to or less than the upper limit value and the step-out parameter exceeds the allowable range, the controller outputs a command to reduce the target rotation speed as the input reduction command. (230) to give to the energy extraction unit (210) so as to decrease the extracted amount of the renewable energy without going through the controller (230) when the future predicted value of the renewable energy is greater than the upper limit It is configured to provide the input reduction command.
  • the energy extraction unit (210) when the future prediction value is greater than the upper limit value, the energy extraction unit (210) is caused to reduce the extracted amount of renewable energy without going through the controller (230). Give input reduction command.
  • the prime mover (2) when the future prediction value is larger than the upper limit value, the prime mover (2) can immediately perform the operation for avoiding the step-out of the magnetic gear generator (10). Therefore, even if the amount of renewable energy increases in the future due to an unexpected event, step-out of the magnetic gear generator (10) is suppressed.
  • the operation mode is switched to the normal mode when the step-out parameter comes to fall within the allowable range. and an operation mode recovery unit (125) that In the restored normal mode, an input increase command for increasing the input is given to the prime mover (2), and a torque increase command for increasing the generator torque is given to the electric power converter (50). and an increase command unit (127).
  • the operation mode switching unit (110) switches the operation mode to the step-out avoidance mode in response to a plurality of the step-out parameters exceeding the plurality of allowable ranges corresponding to the respective step-out parameters. configured to switch to
  • the operation mode is switched to the step-out avoidance mode based on whether each of the plurality of step-out parameters exceeds the allowable range. Therefore, the operation mode can be switched to the step-out avoidance mode after the presence or absence of the risk of step-out is accurately detected.
  • the operation mode switching unit (110) switches the operation mode to the step-out avoidance mode in response to any one of the plurality of step-out parameters exceeding the allowable range corresponding to the step-out parameter. configured to switch.
  • a power generation system controller includes: in response to a step-out parameter indicative of the risk of step-out of a magnetic gear generator (10) for generating power driven by an input from a prime mover (2) exceeding a specified allowable range, said magnetic gear.
  • an operation mode switching unit (110) configured to switch the operation mode of the generator (10) to a step-out avoidance mode; In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover (2) is given to the prime mover (2), and torque reduction for reducing the generator torque of the magnetic gear generator (10).
  • a reduction command unit (120) configured to provide a command to a power converter (50) connected to said magnetic gear generator (10).
  • a marine main engine may be adopted as the prime mover 2.
  • the power generation system 1 may function as a ship's shaft generator.
  • the prime mover 2 may employ, for example, a vehicle engine.
  • the range of the torsion angle ( ⁇ ) has a range of negative values in addition to a range of positive values as illustrated in FIG. may be included.
  • expressions such as “in a certain direction”, “along a certain direction”, “parallel”, “perpendicular”, “center”, “concentric” or “coaxial”, etc. express relative or absolute arrangements. represents not only such arrangement strictly, but also the state of being relatively displaced with a tolerance or an angle or distance to the extent that the same function can be obtained.
  • expressions such as “identical”, “equal”, and “homogeneous”, which express that things are in the same state not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • expressions representing shapes such as a quadrilateral shape and a cylindrical shape not only represent shapes such as a quadrilateral shape and a cylindrical shape in a geometrically strict sense, but also within the range in which the same effect can be obtained. , a shape including an uneven portion, a chamfered portion, and the like.
  • the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • Power generation system 2 Prime mover 10: Magnetic gear generator 20: Stator 24: Stator winding 30: Low speed rotor 40: High speed rotor 50: Power converter 100: Controller 110: Operation mode switching unit 120: Reduction command unit 125 : Operation mode return unit 127 : Increase command unit 200 : Renewable energy extraction device 210 : Energy extraction unit 220 : Motor rotor 230 : Controller

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

This power generation system comprises: a motor; a magnetic gear generator configured to be driven by an input from the motor to generate electricity; a power converter connected to the magnetic gear generator; an operation mode switching unit configured to switch an operation mode of the magnetic gear generator to a step-out avoidance mode, when a step-out parameter indicating a risk of step-out of the magnetic gear generator exceeds a specified tolerance; and a reduction command unit configured to, in the step-out avoidance mode, give, to the motor, an input reduction command for reducing the input from the motor, and give, to the power converter, a torque reduction command for reducing the generator torque of the magnetic gear generator.

Description

発電システム、及び発電システム用のコントローラPower generation systems and controllers for power generation systems
 本開示は、発電システム、及び発電システム用のコントローラに関する。
 本願は、2021年2月25日に日本国特許庁に出願された特願2021-028565号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to power generation systems and controllers for power generation systems.
This application claims priority based on Japanese Patent Application No. 2021-028565 filed with the Japan Patent Office on February 25, 2021, the content of which is incorporated herein.
 従来、磁気ギアの脱調を抑制する発電システムが知られている。例えば、特許文献1に開示の発電システムは、駆動側回転軸、受動側回転軸、及び発電機を備える。駆動側回転軸の一端にはタービンが設けられ、他端には複数の駆動側磁石が設けられる。受動側回転軸の一端には、複数の駆動側磁石とそれぞれ対向する複数の受動側磁石が設けられる。駆動側回転軸の他端と受動側回転軸の一端は、マグネットカップリングを構成する。流体がタービンに作用することにより駆動側回転軸が回転すると、駆動側磁石と受動側磁石との間で伝達トルクが生じ、受動側回転軸の回転出力が発電機に伝わる。このとき、駆動側回転軸と受動側回転軸とのねじれ角に基づき上記伝達トルクが許容範囲を越えたと判定されると、タービンに作用する流体の流量が調整され、マグネットカップリングの脱調が抑制される。 Conventionally, a power generation system that suppresses step-out of magnetic gears is known. For example, the power generation system disclosed in Patent Literature 1 includes a driving-side rotating shaft, a passive-side rotating shaft, and a generator. A turbine is provided at one end of the drive-side rotating shaft, and a plurality of drive-side magnets are provided at the other end. A plurality of passive side magnets facing the plurality of driving side magnets are provided at one end of the passive side rotating shaft. The other end of the drive-side rotary shaft and one end of the passive-side rotary shaft constitute a magnetic coupling. When the drive-side rotating shaft rotates due to the fluid acting on the turbine, transmission torque is generated between the drive-side magnet and the passive-side magnet, and the rotational output of the passive-side rotating shaft is transmitted to the generator. At this time, if it is determined that the transmission torque exceeds the allowable range based on the torsion angle between the drive-side rotary shaft and the driven-side rotary shaft, the flow rate of the fluid acting on the turbine is adjusted to prevent the magnetic coupling from stepping out. Suppressed.
特開2014-125991号公報JP 2014-125991 A
 上記発電システムでは、タービンがマグネットカップリングに付与する回転出力を低減することで脱調を抑制するが、より確実に脱調が抑制されるよう、さらなる対策が求められる。 In the above power generation system, step-out is suppressed by reducing the rotational output that the turbine gives to the magnetic coupling, but further measures are required to more reliably suppress step-out.
 本開示は、磁気ギア発電機の脱調を抑制できる電力システム、及び電力システム用のコントローラを提供することを目的とする。 An object of the present disclosure is to provide a power system capable of suppressing step-out of a magnetic gear generator, and a controller for the power system.
 本開示の少なくとも一実施形態に係る発電システムは、
 原動機と、
 前記原動機からの入力によって駆動されて発電をするように構成された磁気ギア発電機と、
 前記磁気ギア発電機に接続された電力変換器と、
 前記磁気ギア発電機の脱調のリスクを示す脱調パラメータが規定の許容範囲を超えたことに応答して、前記磁気ギア発電機の運転モードを脱調回避モードに切替えるように構成された運転モード切替部と、
 前記脱調回避モードにおいて、前記原動機からの前記入力を低減させる入力低減指令を前記原動機に付与するとともに、前記磁気ギア発電機の発電機トルクを低減させるトルク低減指令を前記電力変換器に付与するように構成された低減指令部と
 を備える。
A power generation system according to at least one embodiment of the present disclosure includes:
a prime mover;
a magnetic gear generator configured to be driven by input from the prime mover to generate electricity;
a power converter connected to the magnetic gear generator;
An operation configured to switch the operation mode of the magnetic gear generator to a step-out avoidance mode in response to a step-out parameter indicating the risk of step-out of the magnetic gear generator exceeding a prescribed allowable range. a mode switching unit;
In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover is given to the prime mover, and a torque reduction command for reducing the generator torque of the magnetic gear generator is given to the power converter. and a reduction command unit configured as follows.
 本開示の少なくとも一実施形態に係る発電システム用のコントローラは、
 原動機からの入力によって駆動されて発電をするための磁気ギア発電機の脱調のリスクを示す脱調パラメータが規定の許容範囲を超えたことに応答して、前記磁気ギア発電機の運転モードを脱調回避モードに切替えるように構成された運転モード切替部と、
 前記脱調回避モードにおいて、前記原動機からの前記入力を低減させる入力低減指令を前記原動機に付与するとともに、前記磁気ギア発電機の発電機トルクを低減させるトルク低減指令を、前記磁気ギア発電機に接続された電力変換器に付与するように構成された低減指令部と
 を備える。
A controller for a power generation system according to at least one embodiment of the present disclosure comprises:
In response to a step-out parameter indicating the risk of step-out of a magnetic gear generator for generating power driven by an input from a prime mover exceeding a specified allowable range, the operating mode of the magnetic gear generator is changed. an operation mode switching unit configured to switch to a step-out avoidance mode;
In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover is given to the prime mover, and a torque reduction command for reducing the generator torque of the magnetic gear generator is given to the magnetic gear generator. and a reduction command configured to apply to a connected power converter.
 本開示によれば、磁気ギア発電機の脱調を抑制できる電力システム、及び電力システム用のコントローラが提供される。 According to the present disclosure, a power system capable of suppressing step-out of a magnetic gear generator and a controller for the power system are provided.
一実施形態に係る発電システムを示す概略図である。1 is a schematic diagram showing a power generation system according to one embodiment; FIG. 一実施形態に係るねじれ角とトルクの関係を示すグラフである。4 is a graph showing the relationship between twist angle and torque according to one embodiment. 一実施形態に係る脱調パラメータと許容範囲の関係を示すグラフである。7 is a graph showing the relationship between the step-out parameter and the allowable range according to one embodiment; 一実施形態に係る脱調パラメータと許容範囲の関係を示す別のグラフである。5 is another graph showing the relationship between the step-out parameter and the allowable range according to one embodiment. 一実施形態に係る脱調パラメータと許容範囲の関係を示すさらに別のグラフである。9 is yet another graph showing the relationship between the step-out parameter and the allowable range according to one embodiment; 一実施形態に係る発電システムを示す概要図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the electric power generation system which concerns on one Embodiment. 一実施形態に係る発電システムの電気的構成を示すブロック図である。1 is a block diagram showing an electrical configuration of a power generation system according to one embodiment; FIG. 一実施形態に係る発電制御処理のフローチャートである。4 is a flowchart of power generation control processing according to one embodiment. 一実施形態に係る脱調判定処理のフローチャートである。4 is a flowchart of out-of-step determination processing according to one embodiment. 一実施形態に係る脱調判定処理の別のフローチャートである。9 is another flowchart of the step-out determination process according to the embodiment;
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Several embodiments of the present disclosure will be described below with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiment or shown in the drawings are not meant to limit the scope of the present disclosure, but are merely illustrative examples. do not have.
(発電システム1の概要)
 図1は、一実施形態に係る発電システム1A(1)の例を示す概略図である。
 発電システム1Aは、原動機2、原動機2からの入力によって駆動されて発電をするための磁気ギア発電機10、磁気ギア発電機10に接続された電力変換器50、及び発電システム用のコントローラ100A(100)を備える。電力変換器50は、磁気ギア発電機10から供給される電力を変換し、例えば電力系統であってもよい電力供給先4に供給するように構成される。
 発電システム用のコントローラ100A(以下、単にコントローラ100Aという場合がある)は、磁気ギア発電機10での発電を制御するように構成される。発電制御には、稼働している磁気ギア発電機10の脱調を回避するための制御が含まれる。脱調を回避するための制御では、磁気ギア発電機10の脱調のリスクを示す脱調パラメータに基づき、原動機2から磁気ギア発電機10への入力と、磁気ギア発電機10の発電機トルクとが低減される(詳細は後述する)。
(Overview of power generation system 1)
FIG. 1 is a schematic diagram showing an example of a power generation system 1A(1) according to one embodiment.
The power generation system 1A includes a prime mover 2, a magnetic gear power generator 10 for generating power driven by an input from the prime mover 2, a power converter 50 connected to the magnetic gear power generator 10, and a power generation system controller 100A ( 100). The power converter 50 is configured to convert the power supplied from the magnetic gear generator 10 and supply it to the power destination 4, which may be, for example, the power grid.
A power generation system controller 100A (hereinafter sometimes simply referred to as controller 100A) is configured to control power generation in the magnetic gear generator 10 . The power generation control includes control for avoiding stepping out of the magnetic gear generator 10 in operation. In the control for avoiding step-out, the input from the prime mover 2 to the magnetic gear generator 10 and the generator torque of the magnetic gear generator 10 are controlled based on the step-out parameter indicating the risk of step-out of the magnetic gear generator 10. and are reduced (details will be described later).
(磁気ギア発電機10の構成の詳細)
 一実施形態の磁気ギア発電機10は、入力側のロータである低速ロータ30、出力側のロータである高速ロータ40、及び固定子巻き線24を有するステータ20を備える。
 低速ロータ30は、原動機2からの入力によって駆動されるように構成される。高速ロータ40は、低速ロータ30の回転に伴い生じる磁気トルクによって駆動されるように構成される。ステータ20の固定子巻き線24は、高速ロータ40の回転に伴い電力変換器50への供給電力を生じさせるように構成される。低速ロータ30と高速ロータ40の回転位置に関するパラメータは、各々、低速ロータセンサ35と高速ロータセンサ45によって検出される。一実施形態では、低速ロータセンサ35は低速ロータ30の回転数を検出し、高速ロータセンサ45は高速ロータ40の回転位置を検出する。別の実施形態では、低速ロータセンサ35が低速ロータ30の回転位置を検出し、高速ロータセンサ45が高速ロータ40の回転数を検出する。さらに別の実施形態では、低速ロータセンサ35と高速ロータセンサ45は各々、低速ロータ30と高速ロータ40の回転数を検出してもよい。あるいは、低速ロータセンサ35と高速ロータセンサ45は各々、低速ロータ30と高速ロータ40の回転位置を検出してもよい。
(Details of Configuration of Magnetic Gear Generator 10)
The magnetic gear generator 10 of one embodiment comprises an input rotor, a low speed rotor 30 , an output rotor, a high speed rotor 40 , and a stator 20 having stator windings 24 .
Low speed rotor 30 is configured to be driven by input from prime mover 2 . High speed rotor 40 is configured to be driven by magnetic torque generated as low speed rotor 30 rotates. Stator windings 24 of stator 20 are configured to produce power supplied to power converter 50 as high speed rotor 40 rotates. Parameters relating to the rotational positions of the low-speed rotor 30 and high-speed rotor 40 are detected by low-speed rotor sensor 35 and high-speed rotor sensor 45, respectively. In one embodiment, low speed rotor sensor 35 detects the speed of low speed rotor 30 and high speed rotor sensor 45 detects the rotational position of high speed rotor 40 . In another embodiment, low speed rotor sensor 35 detects the rotational position of low speed rotor 30 and high speed rotor sensor 45 detects the speed of high speed rotor 40 . In yet another embodiment, low speed rotor sensor 35 and high speed rotor sensor 45 may detect the speed of low speed rotor 30 and high speed rotor 40, respectively. Alternatively, low speed rotor sensor 35 and high speed rotor sensor 45 may detect the rotational positions of low speed rotor 30 and high speed rotor 40, respectively.
 磁気ギア発電機10のさらに詳細な構成を例示する。低速ロータ30はポールピース32を含み、原動機2の回転シャフト3と共に回転するように構成される。高速ロータ40は、各々が永久磁石により構成された複数のロータ磁石42を含む。複数のロータ磁石42は、磁気ギア発電機10の周方向に配列される。さらに、高速ロータ40は、低速ロータ30よりも高速で回転するように軸受B2を介して回転シャフト3(又は回転シャフト3とともに回転する低速ロータ30)に取り付けられる。ステータ20は、各々が永久磁石により構成された複数のステータ磁石22を含み、軸受B1を介して原動機2の回転シャフト3を支持するハウジング21の内部に配置される。複数のステータ磁石22は、磁気ギア発電機10の周方向に配列される。 A more detailed configuration of the magnetic gear generator 10 is illustrated. A low speed rotor 30 includes pole pieces 32 and is configured to rotate with the rotating shaft 3 of the prime mover 2 . High-speed rotor 40 includes a plurality of rotor magnets 42 each composed of a permanent magnet. A plurality of rotor magnets 42 are arranged in the circumferential direction of the magnetic gear generator 10 . Furthermore, the high-speed rotor 40 is attached to the rotating shaft 3 (or the low-speed rotor 30 that rotates together with the rotating shaft 3) via a bearing B2 so as to rotate at a higher speed than the low-speed rotor 30. The stator 20 includes a plurality of stator magnets 22 each made up of permanent magnets, and is arranged inside a housing 21 that supports the rotating shaft 3 of the prime mover 2 via a bearing B1. A plurality of stator magnets 22 are arranged in the circumferential direction of the magnetic gear generator 10 .
 なお、図1では、磁気ギア発電機10の軸線を基準とした径方向の内側へ向かって、ステータ20、低速ロータ30、及び高速ロータ40が順に配置された構成を磁気ギア発電機10は有する。別の実施形態では、径方向の内側へ向かって、高速ロータ40、低速ロータ30、及びステータ20が順に配置された構成を磁気ギア発電機10は有する。この場合、円筒状の回転シャフト3の径方向内側に、高速ロータ40、低速ロータ30、及びステータ20は配置される。 In FIG. 1, the magnetic gear generator 10 has a configuration in which the stator 20, the low speed rotor 30, and the high speed rotor 40 are arranged in order toward the inner side in the radial direction with respect to the axis of the magnetic gear generator 10. . In another embodiment, the magnetic gear generator 10 has a configuration in which the high-speed rotor 40, the low-speed rotor 30, and the stator 20 are arranged in order radially inward. In this case, the high-speed rotor 40 , the low-speed rotor 30 and the stator 20 are arranged radially inside the cylindrical rotating shaft 3 .
 上述の磁気ギア発電機10は、高調波型磁気ギア原理および電磁誘導を利用することで、原動機2からの機械的入力を電力に変換するように構成される。
 例えば、磁気ギア発電機10における発電は以下の原理により行われてもよい。原動機2からの入力トルクによって回転シャフト3が回転すると、低速ロータ30が駆動される。低速ロータ30のポールピース32の回転によって、ステータ磁石22の磁束が変調され、変調された磁場からロータ磁石42が磁力を受けることで磁気トルクが生じ、高速ロータ40が駆動される。このとき、低速ロータ30に対する高速ロータ40の回転数の比(増速比)は、ロータ磁石42の極対数Nに対するポールピース32の極数Nの比(=N/N)で表される。高速ロータ40が回転することで、電磁誘導によって固定子巻き線24に電流が発生し、電力が電力変換器50に供給される。
 以下、原動機2から低速ロータ30に入力されるトルクを単に入力トルクという場合があり、高速ロータ40から出力されるトルクを単に発電機トルクという場合がある。また、低速ロータ30と高速ロータ40との位相差である磁気ギア発電機10のねじれ角を、単にねじれ角という場合がある。
The magnetic gear generator 10 described above is configured to convert mechanical input from the prime mover 2 into electrical power by utilizing harmonic magnetic gear principles and electromagnetic induction.
For example, power generation in the magnetic gear generator 10 may be performed according to the following principle. When the rotary shaft 3 is rotated by the input torque from the prime mover 2, the low speed rotor 30 is driven. Rotation of the pole piece 32 of the low-speed rotor 30 modulates the magnetic flux of the stator magnet 22 , and the rotor magnet 42 receives magnetic force from the modulated magnetic field to generate magnetic torque, thereby driving the high-speed rotor 40 . At this time, the ratio (speed increase ratio) of the number of rotations of the high-speed rotor 40 to the low-speed rotor 30 is the ratio of the pole number N L of the pole piece 32 to the pole pair number N H of the rotor magnet 42 (=N L /N H ). expressed. Rotation of the high-speed rotor 40 causes current to be generated in the stator windings 24 by electromagnetic induction, and power is supplied to the power converter 50 .
Hereinafter, the torque input from the prime mover 2 to the low-speed rotor 30 may be simply referred to as input torque, and the torque output from the high-speed rotor 40 may simply be referred to as generator torque. Further, the torsion angle of the magnetic gear generator 10, which is the phase difference between the low speed rotor 30 and the high speed rotor 40, may be simply referred to as the torsion angle.
 上記の原理によって稼働する磁気ギア発電機10において成立する関係式について説明する。
 低速ロータ30において成立する運動方程式は、式(1)の通りである。
 J×(dω/dt)=T-Tmaxsinδ・・・式(1)
(J:低速ロータ30のイナーシャ(一定値)、ω:低速ロータ30の角速度、T:入力トルク、Tmaxsinδ:磁気トルク、δ:ねじれ角)
 補足するとTmaxは、ねじれ角(δ)がπ/2であるときに磁気ギア発電機10で生じる最大磁気トルクである。後述するように、ねじれ角がπ/2以上となると磁気ギア発電機10では脱調が生じる。
 また、高速ロータ40において成立する運動方程式は、式(2)の通りである。
 J×(dω/dt)=Tmaxsinδ-T・・・式(2)
(J:高速ロータ40のイナーシャ(一定値)、ω:高速ロータ40の角速度、T:発電機トルク)
 なお、Jは、高速ロータ40の形状、重量などに基づき定まる一般的なイナーシャに、上述した増速比を反映した値となっている。
Relational expressions that are established in the magnetic gear generator 10 that operates according to the above principle will be described.
An equation of motion established in the low-speed rotor 30 is as shown in Equation (1).
J L ×(dω L /dt)=T L −T max sin δ Equation (1)
(J L : Inertia (constant value) of low-speed rotor 30, ω L : Angular velocity of low-speed rotor 30, T L : Input torque, T max sin δ: Magnetic torque, δ: Torsion angle)
Supplementally, T max is the maximum magnetic torque produced in the magnetic gear generator 10 when the torsion angle (δ) is π/2. As will be described later, step-out occurs in the magnetic gear generator 10 when the torsion angle is π/2 or more.
Also, the equation of motion established in the high-speed rotor 40 is as shown in Equation (2).
J H ×(dω H /dt)=T max sin δ−T H Equation (2)
(J H : inertia (constant value) of high-speed rotor 40, ω H : angular velocity of high-speed rotor 40, T H : generator torque)
It should be noted that JH is a value that reflects the above-described speed increasing ratio on a general inertia that is determined based on the shape, weight, etc. of the high-speed rotor 40 .
(コントローラ100Aの構成)
 図1で示される一実施形態のコントローラ100A(100)は、脱調パラメータを取得するためのパラメータ取得部103、パラメータ取得部103の取得結果に基づき磁気ギア発電機10の運転モードを制御するための運転モード制御部106、及び、原動機2と電力変換器50とに指令(制御信号)を付与するための指令部107を備える。
(Configuration of controller 100A)
A controller 100A (100) of one embodiment shown in FIG. and a command unit 107 for giving commands (control signals) to the prime mover 2 and the power converter 50 .
 パラメータ取得部103によって取得される脱調パラメータは、ねじれ角又は入力トルクに関するパラメータである。
 一実施形態では、低速ロータセンサ35と高速ロータセンサ45の検出結果に基づき求まる低速ロータ30の角速度と磁気ギア発電機10のねじれ角が式(1)に代入されることで、入力トルクが取得される。なお、入力トルクは、低速ロータ30のトルクを検出するトルクセンサの検出結果に基づき取得されてもよい。
 また、脱調パラメータは、ねじれ角又は入力トルクの時間的な変化率であってもよいし、ねじれ角又は入力トルクの将来的な値(予測値)であってもよい。
 脱調パラメータが大きくなるほど、高速ロータ40が低速ロータ30に追従しづらく、脱調リスクが増大する。従って、脱調パラメータが規定の許容範囲を超えた場合には、コントローラ100Aは脱調リスクを低減する制御を実行する必要がある。一実施形態では、脱調リスクを低減する制御が実行される際、磁気ギア発電機10の運転モードは、脱調回避モードに切替わる。
The step-out parameter acquired by the parameter acquisition unit 103 is a parameter related to the torsion angle or input torque.
In one embodiment, the input torque is obtained by substituting the angular velocity of the low-speed rotor 30 and the torsion angle of the magnetic gear generator 10, which are obtained based on the detection results of the low-speed rotor sensor 35 and the high-speed rotor sensor 45, into equation (1). be done. Note that the input torque may be obtained based on the detection result of a torque sensor that detects the torque of the low speed rotor 30 .
Further, the step-out parameter may be the temporal change rate of the torsion angle or the input torque, or may be the future value (predicted value) of the torsion angle or the input torque.
As the step-out parameter increases, it becomes more difficult for the high-speed rotor 40 to follow the low-speed rotor 30, and the step-out risk increases. Therefore, when the step-out parameter exceeds the prescribed allowable range, the controller 100A needs to perform control to reduce the risk of step-out. In one embodiment, when the control for reducing the risk of step-out is executed, the operation mode of the magnetic gear generator 10 is switched to the step-out avoidance mode.
 一実施形態において、脱調パラメータが許容範囲を超えたことに応答して、運転モード制御部106の構成要素である運転モード切替部110は、磁気ギア発電機10の運転モードを脱調回避モードに切替える。これにより、脱調リスクを低減する制御が開始される。運転モード切替部110による切替え前の運転モードは例えば通常モードである。
 一実施形態に係る脱調回避モードでは、指令部107を構成する低減指令部120が、原動機2から磁気ギア発電機10への入力を低減させる入力低減指令を原動機2に付与するとともに、磁気ギア発電機10の発電機トルクを低減させるトルク低減指令を電力変換器50に付与するように構成される。原動機2からの入力が低減し、且つ発電機トルクが低減することによって、磁気ギア発電機10の脱調リスクは低減する。原動機2からの入力、磁気トルク、発電機トルク、及びねじれ角との関係については後述する。
In one embodiment, in response to the step-out parameter exceeding the allowable range, the operation mode switching unit 110, which is a component of the operation mode control unit 106, changes the operation mode of the magnetic gear generator 10 to the step-out avoidance mode. switch to As a result, control for reducing the risk of step-out is started. The operating mode before switching by the operating mode switching unit 110 is, for example, the normal mode.
In the step-out avoidance mode according to one embodiment, the reduction command unit 120 constituting the command unit 107 gives the motor 2 an input reduction command for reducing the input from the motor 2 to the magnetic gear generator 10, It is configured to give a torque reduction command for reducing the generator torque of the generator 10 to the power converter 50 . By reducing the input from the prime mover 2 and reducing the generator torque, the step-out risk of the magnetic gear generator 10 is reduced. The relationship between the input from the prime mover 2, the magnetic torque, the generator torque, and the twist angle will be described later.
 運転モード制御部106は、運転モード切替部110に加えて運転モード復帰部125を備え、指令部107は、低減指令部120に加えて増加指令部127を備える。運転モード復帰部125は、低減指令部120が入力低減指令とトルク低減指令を付与した後、脱調パラメータが許容範囲に含まれるようになった場合、運転モードを脱調回避モードから通常運転モードに切替えるように構成される。増加指令部127は、復帰した通常運転モードにおいて、原動機2から磁気ギア発電機10への入力を増加させる入力増加指令を原動機2に付与するとともに、発電機トルクを増加させるトルク増大指令を原動機2に付与するように構成される。これにより、磁気ギア発電機10の発電量の低下を抑制できる。 The operation mode control unit 106 includes an operation mode switching unit 110 and an operation mode return unit 125 , and the command unit 107 includes an increase command unit 127 in addition to the decrease command unit 120 . The operation mode recovery unit 125 changes the operation mode from the step-out avoidance mode to the normal operation mode when the step-out parameter comes to be within the allowable range after the reduction command unit 120 gives the input reduction command and the torque reduction command. configured to switch to In the restored normal operation mode, the increase command unit 127 gives to the prime mover 2 an input increase command to increase the input from the prime mover 2 to the magnetic gear generator 10, and a torque increase command to increase the generator torque to the prime mover 2. is configured to grant to As a result, a decrease in the amount of power generated by the magnetic gear generator 10 can be suppressed.
 なお、上述した運転モード切替部110による脱調回避モードへの切替えは、複数の脱調パラメータが各々、対応する許容範囲を超えたことに応答して行われてもよい。別の実施形態では、複数の脱調パラメータのいずれかが、対応する許容範囲を超えたことに応答して、運転モードが脱調回避モードに切替わってもよい。 Note that the above-described switching to the step-out avoidance mode by the operation mode switching unit 110 may be performed in response to each of the plurality of step-out parameters exceeding the corresponding allowable range. In another embodiment, the operating mode may switch to the out-of-step avoidance mode in response to any of a plurality of out-of-step parameters exceeding the corresponding tolerance range.
(脱調回避の制御内容)
 図2を参照し、脱調を回避するための制御の概要を説明する。
 図2で例示されるグラフは、横軸をねじれ角(δ)とし、縦軸をトルク(T)とする。太い実線は、ねじれ角と低速ロータ30で生じる磁気トルクとの関係を示し、この磁気トルクはTmax×sinδで表される。一方、細い実線はねじれ角と高速ロータ40で生じる磁気トルクとの関係を示し、この磁気トルクは(Tmax/G)×sinδで表される。ここで、図2において、低速ロータ30の磁気トルクの方が、高速ロータ40の磁気トルクよりも大きくなるのは、高速ロータ40における増速比Gの影響に起因する。
 また、図示の便宜上、ねじれ角がπ/2以上となる範囲のグラフも示すが、実機においてねじれ角がπ/2以上となると磁気ギア発電機10の脱調が発生する。従って、一実施形態の磁気ギア発電機10は、0<δ<π/2となる範囲で稼働する必要がある。ねじれ角が脱調のリスクを示す脱調パラメータとなり得るのは、図2からも理解される。
 他の実施形態では、ねじれ角を間接的に示すパラメータを脱調パラメータとして用いてもよく、例えば、通常モードにおける入力トルクが脱調パラメータとして用いられる。仮に、通常モードにおける入力トルクがL1であれば、この入力トルクと釣り合う磁気トルクを生じさせるねじれ角はδである。これに対し、通常モードにおける入力トルクがL1よりも大きな値である場合、この入力トルクと釣り合う磁気トルクを生じさせるねじれ角はδよりも大きいはずである。このことから、入力トルクが脱調パラメータとなり得ることが理解される。なお、一実施形態では、ねじれ角がδとなる磁気ギア発電機10稼働状態は、定格の稼働状態である。
(Details of control for avoiding step-out)
An outline of control for avoiding step-out will be described with reference to FIG.
In the graph illustrated in FIG. 2, the horizontal axis is the twist angle (δ) and the vertical axis is the torque (T). A thick solid line indicates the relationship between the twist angle and the magnetic torque generated in the low-speed rotor 30, and this magnetic torque is expressed by T max ×sin δ. On the other hand, the thin solid line indicates the relationship between the twist angle and the magnetic torque generated in the high-speed rotor 40, and this magnetic torque is expressed by (T max /G)×sin δ. Here, in FIG. 2, the reason why the magnetic torque of the low-speed rotor 30 is larger than that of the high-speed rotor 40 is due to the effect of the speed increasing ratio G in the high-speed rotor 40 .
For convenience of illustration, the graph is also shown in the range where the torsion angle is π/2 or more. Therefore, the magnetic gear generator 10 of one embodiment needs to operate within the range of 0<δ<π/2. It is also understood from FIG. 2 that the twist angle can be a step-out parameter indicating the risk of step-out.
In other embodiments, a parameter that indirectly indicates the torsion angle may be used as the step-out parameter, for example, the input torque in normal mode is used as the step-out parameter. If the input torque in the normal mode is L1, the torsion angle that produces the magnetic torque that balances this input torque is .delta.0 . On the other hand, if the input torque in normal mode is a value greater than L1, the torsion angle that produces a magnetic torque that balances this input torque should be greater than .delta.0 . From this, it is understood that the input torque can be a step-out parameter. Note that in one embodiment, the operating state of the magnetic gear generator 10 in which the torsion angle is δ0 is the rated operating state.
 δthは脱調リスクの有無を判定するための閾値であり、規定の値である。従って、ねじれ角がδth以下となる範囲は脱調リスクを許容できる許容範囲である。
 仮に、ねじれ角がδ(<δth)となる状態で磁気ギア発電機10が安定的に稼働していたとする。この状態から、例えば入力トルクが増大することに伴い、ねじれ角がδthを超えてδovに達したとする。この瞬間、運転モード切替部110によって、脱調回避モードに移行し、入力低減指令とトルク低減指令が生成される。これにより、ねじれ角δは、ねじれ角の許容範囲(δ≦δth)に向けて減少する。
δth is a threshold value for determining whether there is a risk of stepping out, and is a prescribed value. Therefore, the range in which the torsion angle is δth or less is the permissible range in which the step-out risk can be tolerated.
Suppose that the magnetic gear generator 10 is operating stably with the torsion angle δ 0 (<δ th ). From this state, it is assumed that the torsion angle exceeds δth and reaches δov as the input torque increases, for example. At this moment, the operation mode switching unit 110 shifts to the step-out avoidance mode and generates an input reduction command and a torque reduction command. As a result, the twist angle δ decreases toward the allowable range of the twist angle (δ≦δ th ).
 なお、図2のδLimは、発電システム1が稼働停止(トリップ)する必要があるかを判定するための閾値である。ねじれ角がδLimを超えた場合には、稼働停止指令(トリップ指令)が原動機2と電力変換器50に付与されてもよい。この場合、発電システム1は稼働停止することによって、磁気ギア発電機10の脱調の発生は抑制される。 Note that δ Lim in FIG. 2 is a threshold for determining whether the power generation system 1 needs to be stopped (tripped). A stop command (trip command) may be given to the prime mover 2 and the power converter 50 when the twist angle exceeds δ Lim . In this case, by stopping the operation of the power generation system 1, the occurrence of step-out of the magnetic gear generator 10 is suppressed.
 次に、入力低減指令およびトルク低減指令によって、入力トルク及び発電機トルクがそれぞれどの程度まで減少すればよいのかについて検討する。
 図2に示すように、入力低減指令としての入力トルクを二点鎖線で示す値L2に設定し、トルク低減指令としての発電機トルクを二点鎖線で示す値L3に設定した場合について考える。また、ねじれ角が許容範囲に含まれるδとなる磁気ギア発電機10の状態を基準状態と定義する。基準状態からのねじれ角δの変動量Δδは、本発明者らの知見によれば、伝達関数として以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、ΔTは、基準状態におけるねじれ角δに対応する入力トルクである基準入力トルクを基準とした、入力低減指令が示す入力トルク設定値(L2)の変動量である。ΔTは、基準状態におけるねじれ角δに対応する発電機トルクである基準発電機トルクを基準とした、トルク低減指令が示す発電機トルク設定値(L3)の変動量である。nは増速比の逆数である減速比を規定するパラメータである。
 式(3)によれば、脱調パラメータが許容範囲に含まれる基準状態を基準として、ねじれ角の変動量Δδは、入力トルクの変動量ΔTと、ΔTに対して低速ロータ30と高速ロータ40のイナーシャの比を乗じた値との和に依存する。
 なお、図2では、基準状態のときの基準ねじれ角であるδがδと異なるように図示されているが、δがδと同じ値であってもよい。つまり、δのときが磁気ギア発電機10の基準状態となってもよい。
Next, it will be examined to what extent the input torque and the generator torque should be reduced by the input reduction command and the torque reduction command, respectively.
As shown in FIG. 2, consider the case where the input torque as the input reduction command is set to the value L2 indicated by the two-dot chain line, and the generator torque as the torque reduction command is set to the value L3 indicated by the two-dot chain line. Also, the state of the magnetic gear generator 10 in which the torsion angle is δ1 within the allowable range is defined as the reference state. According to the findings of the present inventors, the amount of change Δδ in the torsion angle δ from the reference state is represented by the following equation (3) as a transfer function.
Figure JPOXMLDOC01-appb-M000001
Here, ΔT L is the variation amount of the input torque set value (L2) indicated by the input reduction command with reference to the reference input torque, which is the input torque corresponding to the torsion angle δ1 in the reference state. ΔT H is the amount of variation in the generator torque setting value (L3) indicated by the torque reduction command with reference to the reference generator torque, which is the generator torque corresponding to the torsion angle δ1 in the reference state. ns is a parameter that defines the speed reduction ratio, which is the reciprocal of the speed increase ratio.
According to the formula (3), the torsion angle fluctuation amount Δδ is the input torque fluctuation amount ΔT L and the input torque fluctuation amount ΔT H with respect to the reference state in which the step-out parameter is within the allowable range. It depends on the sum of the value multiplied by the ratio of the inertia of the rotor 40 .
In FIG. 2 , δ1, which is the reference torsion angle in the reference state, is shown to be different from δ0 , but δ1 may have the same value as δ0 . In other words, the reference state of the magnetic gear generator 10 may be δ0 .
 一実施形態では、低減指令部120から電力変換器50に付与されるトルク低減指令は、脱調パラメータが許容範囲に含まれる基準状態を基準として、発電機トルクの変動量であるΔTを、入力トルクの変動量であるΔTに比例させる。ΔTとΔTの一例は、既述の図2において示される。
 例えば、該トルク低減指令は、式(4)を成立させるような指令である。式(4)では、ΔTがΔTと逆符号で比例する。一例として示した図2においても、ΔTがΔTと逆符号になっている。
 ΔT=-(J/J)×ΔT・・・式(4)
 式(4)が成立する場合、例えば、入力トルクの増大に伴い脱調リスクが増大した場合であっても、発電機トルクの低下により高速ロータ40は減速しにくい(式(2)参照)。従って、高速ロータ40が低速ロータ30追従できるので、磁気ギア発電機10のねじれ角の変動量は抑制される。よって、磁気ギア発電機10の脱調は抑制される。
 また、入力トルクが増大した場合において、発電機トルクが極端に下がると、脱調は抑制されても、高速ロータ40の回転数が過剰になるおそれがある。この点、発電機トルクが式(4)に従って変化することにより、発電機トルクが極端に下がることが抑制される。併せて、発電機トルクの極端な低下が抑制されることで、発電システム1の発電効率が極端に下がることも抑制される。
In one embodiment, the torque reduction command given from the reduction command unit 120 to the power converter 50 is based on a reference state in which the step-out parameter is included in the allowable range, and reduces ΔT H , which is the variation amount of the generator torque, to It is proportional to ΔTL , which is the amount of change in input torque. An example of ΔT H and ΔT L is shown in FIG. 2, previously described.
For example, the torque reduction command is a command that satisfies equation (4). In equation (4), ΔT H is proportional to ΔT L with an opposite sign. Also in FIG. 2 shown as an example, ΔT H has the opposite sign to ΔT L.
ΔT H =−(J H /J L )×ΔT L Equation (4)
When equation (4) holds, for example, even when the risk of stepping out increases with an increase in input torque, the high-speed rotor 40 is less likely to decelerate due to a decrease in generator torque (see equation (2)). Therefore, since the high-speed rotor 40 can follow the low-speed rotor 30, the fluctuation amount of the torsion angle of the magnetic gear generator 10 is suppressed. Therefore, step-out of the magnetic gear generator 10 is suppressed.
Further, when the input torque is increased, if the generator torque is extremely decreased, the rotational speed of the high-speed rotor 40 may become excessive even if step-out is suppressed. In this regard, the drastic decrease of the generator torque is suppressed by changing the generator torque according to the formula (4). At the same time, by suppressing an extreme drop in the generator torque, an extreme drop in the power generation efficiency of the power generation system 1 is also suppressed.
 別の実施形態では、低減指令部120から電力変換器50に付与されるトルク低減指令は、脱調パラメータが許容範囲に含まれる基準状態を基準として、発電機トルクの変動量であるΔTを、高速ロータ40の角加速度の変動量dΔω/dtに比例させる。ΔTは既述の図2のグラフにおいて示される。
 例えば、該トルク低減指令は、式(5)を成立させるような指令である。式(5)では、ΔTが、dΔω/dtと逆符号に比例する。
 ΔT=-K×(dΔω/dt)・・・式(5)
(K:正の一定値)
 式(5)が成立する場合、脱調パラメータが許容範囲に含まれる基準状態を基準とした式(2)は、以下のように表される。
 (J-K)×(dΔω/dt)=TmaxsinΔδ・・・式(6)
 式(6)から判るように、式(5)が成立すれば、高速ロータ40の見かけ上のイナーシャは低減する。従って、高速ロータ40は低速ロータ30に追従し易くなり、磁気ギア発電機10の脱調は抑制される。
In another embodiment, the torque reduction command given from reduction command unit 120 to power converter 50 is based on a reference state in which the step-out parameter is within the allowable range, and reduces ΔT H , which is the amount of variation in the generator torque. , to the variation dΔω H /dt of the angular acceleration of the high-speed rotor 40 . ΔT H is shown in the graph of FIG. 2 already described.
For example, the torque reduction command is a command that satisfies equation (5). In equation (5), ΔT H is proportional to the opposite sign of dΔω H /dt.
ΔT H =−K×(dΔω H /dt) Equation (5)
(K: positive constant value)
When formula (5) holds, formula (2) based on the reference state in which the step-out parameter is within the allowable range is expressed as follows.
(J H −K)×(dΔω H /dt)=T max sinΔδ Equation (6)
As can be seen from the formula (6), if the formula (5) holds, the apparent inertia of the high-speed rotor 40 is reduced. Therefore, the high-speed rotor 40 easily follows the low-speed rotor 30, and step-out of the magnetic gear generator 10 is suppressed.
 なお、他の実施形態では、ΔTは、ΔTと比例し、かつ、高速ロータ40の角加速度の変動量dΔω/dtに比例するよう、低減指令部120はトルク低減指令を電力変換器50に付与してもよい。
 例えば、トルク低減指令は、式(4)と式(5)との双方を成立させるような指令であってもよい。この場合、式(5)が成立することによって、高速ロータ40の見かけ上のイナーシャが低減するので、式(4)に基づいたΔT(発電機トルクの低減量)も抑制され、発電システム1Aの発電効率が下がることをさらに抑制できる。
Note that in another embodiment, the reduction command unit 120 issues a torque reduction command to the power converter so that ΔT H is proportional to ΔT L and proportional to the angular acceleration fluctuation amount dΔω H /dt of the high-speed rotor 40. 50 may be given.
For example, the torque reduction command may be a command that satisfies both equations (4) and (5). In this case, since the apparent inertia of the high-speed rotor 40 is reduced by formula (5), ΔT H (generator torque reduction amount) based on formula (4) is also suppressed, and the power generation system 1A It is possible to further suppress the decrease in power generation efficiency.
 図3A~図3Cを参照し、脱調パラメータと許容範囲の関係と、脱調を回避するための指令が生成されるタイミングとを説明する。
 図3Aの上段のグラフは脱調パラメータの変化の一例を示し、中段のグラフは、入力低減指令とトルク低減指令が生成されるタイミングを示し、下段のグラフは、稼働停止指令(トリップ指令)が生成されるタイミングを示す。いずれのグラフにおいても、横軸はコントローラ100の演算のステップ数を示す。
 図3Bと図3Cは図3Aと同様のグラフを示す。
 以下、図3A~図3Cの上段のグラフで示される脱調パラメータを各々第1脱調パラメータ、第2脱調パラメータ、及び第3脱調パラメータという場合がある。
With reference to FIGS. 3A to 3C, the relationship between the step-out parameter and the allowable range, and the timing of generation of the command for avoiding step-out will be described.
The upper graph in FIG. 3A shows an example of changes in the step-out parameter, the middle graph shows the timing at which the input reduction command and the torque reduction command are generated, and the lower graph shows the operation stop command (trip command). Indicates the timing to be generated. In any graph, the horizontal axis indicates the number of steps of calculation by the controller 100 .
3B and 3C show graphs similar to FIG. 3A.
Hereinafter, the out-of-step parameters shown in the upper graphs of FIGS. 3A to 3C may be referred to as a first out-of-step parameter, a second out-of-step parameter, and a third out-of-step parameter, respectively.
 図3Aで示される縦軸の第1脱調パラメータ(P1)は、入力トルク又はねじれ角である。一実施形態では、磁気ギア発電機10の脱調のリスクの有無を判定するための基準となる第1閾値Th1と、発電システム1を稼働停止するかの判定基準となる第1限界値Lm1が予め設定されている。磁気ギア発電機10の稼働中、第1脱調パラメータが、第1閾値Th1を超えると(ステップ数がN-1からNに変わるタイミング)、その直後(Nステップ目)に、運転モードは脱調回避モードに切替わり、入力低減指令とトルク低減指令が生成される。この例では、第1閾値Th1以下となる規定の範囲(第1許容範囲)を第1脱調パラメータが超えたことに応答して、入力低減指令とトルク低減指令が生成される。
 また、入力低減指令とトルク低減指令が各々、原動機2と電力変換器50に付与されたにも関わらず、第1脱調パラメータが第1限界値Lm1を超えた場合(ステップ数がN+2からN+3に変わるタイミング)、その直後(N+3ステップ目)に稼働停止指令が生成される。
The first out-of-step parameter (P1) on the vertical axis shown in FIG. 3A is the input torque or torsion angle. In one embodiment, a first threshold value Th1 that serves as a criterion for determining whether there is a risk of stepping out of the magnetic gear generator 10 and a first limit value Lm1 that serves as a criterion for determining whether to stop operation of the power generation system 1 are preset. During operation of the magnetic gear generator 10, when the first step-out parameter exceeds the first threshold value Th1 (the timing at which the number of steps changes from N−1 to N), the operation mode is stepped out immediately after that (the N-th step). The mode is switched to the avoidance mode, and an input reduction command and a torque reduction command are generated. In this example, the input reduction command and the torque reduction command are generated in response to the first out-of-step parameter exceeding the prescribed range (first allowable range) equal to or less than the first threshold value Th1.
Further, when the first step-out parameter exceeds the first limit value Lm1 even though the input reduction command and the torque reduction command are given to the prime mover 2 and the power converter 50 respectively (the number of steps is from N+2 to N+3 timing), and immediately after that (the N+3th step), an operation stop command is generated.
 図3Bで示される縦軸の第2脱調パラメータ(P2)は、入力トルク又はねじれ角の時間的変化率である。図3Bでは一例として、図3Aで示される第1脱調パラメータの時間的変化率(つまり、傾き)を第2脱調パラメータとして示す。
 一実施形態では、脱調のリスクの有無を判定するための基準となる第2閾値Th2と、発電システム1を稼働停止するかの判定基準となる第2限界値Lm2が予め設定されている。
 磁気ギア発電機10の稼働中、第2脱調パラメータが第2閾値Th2を超えると、その直後のNステップ目において、運転モードは脱調回避モードに切替わり、入力低減指令とトルク低減指令が生成される。この例では、第2閾値Th2以下となる規定の範囲(第2許容範囲)を第2脱調パラメータが超えたことに応答して、入力低減指令とトルク低減指令が生成される。
 また、入力低減指令とトルク低減指令が生成されたにも関わらず、第2脱調パラメータが第2限界値Lm2を超えた場合には、その直後のN+2ステップ目において稼働停止指令が生成される。
The second out-of-step parameter (P2) on the vertical axis shown in FIG. 3B is the temporal change rate of the input torque or torsion angle. As an example, FIG. 3B shows the temporal change rate (that is, the slope) of the first step-out parameter shown in FIG. 3A as the second step-out parameter.
In one embodiment, a second threshold value Th2 that serves as a criterion for determining whether there is a risk of step-out and a second limit value Lm2 that serves as a criterion for determining whether to stop operation of the power generation system 1 are set in advance.
When the second step-out parameter exceeds the second threshold value Th2 during operation of the magnetic gear generator 10, the operation mode is switched to the step-out avoidance mode in the N-th step immediately after that, and the input reduction command and the torque reduction command are changed. generated. In this example, the input reduction command and the torque reduction command are generated in response to the second out-of-step parameter exceeding the prescribed range (second allowable range) equal to or less than the second threshold Th2.
If the second step-out parameter exceeds the second limit value Lm2 even though the input reduction command and the torque reduction command are generated, the operation stop command is generated at the N+2th step immediately after that. .
 図3Cで示される縦軸の第3脱調パラメータ(P3)は、第1脱調パラメータの将来的な値を示す予測データである。この予測データは予想線としてグラフに表すことができてもよい。
 一例として、計測によって取得された第1脱調パラメータの実測値に基づいた予測分析が行われることで、第3脱調パラメータは取得される。より具体的な一例として、計測によって求まる第1脱調パラメータのデータに例えば指数平滑化法を適用することで、予測データとしての第3脱調パラメータは求められる。
 図3Cでは、N-1ステップ目までに複数回にわたって取得された実測に基づく第1脱調パラメータを黒点によって図示し、Nステップ目の時点で求まる第3脱調パラメータを予想線として実線で図示する。
 一実施形態の第3脱調パラメータは、第1脱調パラメータが取得されるたびに更新される予測データである。つまり、第1脱調パラメータの新たな実測値がNステップ目において取得されると、N+1ステップ目においては予想線が更新される。
 一実施形態では、脱調のリスクの有無を判定するための基準となる第3閾値Th3と、発電システム1を稼働停止するかの判定基準となる第3限界値Lm3が予め設定されている。
 一実施形態では、第3脱調パラメータが取得された現時点を基準とした予測可能範囲において、第3脱調パラメータが第3閾値Th3を超えるか判定される。図3Cの例では予測可能範囲はRcに該当する。第3脱調パラメータが第3閾値Th3を超えると判定されれば、その直後のステップにおいて運転モードは脱調回避モードに切替わる。この例では、第3閾値Th3以下となる規定の範囲(第3許容範囲)を第3脱調パラメータが超えたことに応答して、入力低減指令とトルク低減指令が生成される。
 一実施形態では、予測データである第3パラメータに基づく脱調リスクの判定の方が、図3A、図3Bで示される脱調リスクの判定よりも、運転モードが脱調回避モードに切替わるタイミングが早い。
 図3Cにおいても、第3脱調パラメータが予測可能範囲において第3限界値Lm3を超えれば、稼働停止指令が生成される。説明の重複を避けるため、詳細については割愛する。
 なお、上記図3A~図3Cでは、入力低減指令とトルク低減指令が同じステップ数において各々、原動機2と電力変換器50に付与される例を示した。他の実施形態では、入力低減指令とトルク低減指令が付与されるタイミングは異なってもよい。
The third out-of-step parameter (P3) on the vertical axis shown in FIG. 3C is prediction data indicating the future value of the first out-of-step parameter. This forecast data may be graphed as a forecast line.
As an example, the third out-of-step parameter is obtained by performing predictive analysis based on the measured value of the first out-of-step parameter obtained by measurement. As a more specific example, by applying, for example, an exponential smoothing method to the data of the first out-of-step parameter obtained by measurement, the third out-of-step parameter is obtained as prediction data.
In FIG. 3C, the first out-of-step parameter based on actual measurements obtained multiple times up to the N-1th step is illustrated by black dots, and the third out-of-step parameter obtained at the time of the N-th step is illustrated as a predicted line by a solid line. do.
The third out-of-step parameter of one embodiment is predictive data that is updated each time the first out-of-step parameter is obtained. That is, when a new measured value of the first out-of-step parameter is obtained at the Nth step, the prediction line is updated at the (N+1)th step.
In one embodiment, a third threshold value Th3 that serves as a criterion for determining whether there is a risk of step-out and a third limit value Lm3 that serves as a criterion for determining whether to stop the operation of the power generation system 1 are set in advance.
In one embodiment, it is determined whether the third out-of-step parameter exceeds the third threshold Th3 in the predictable range based on the current time when the third out-of-step parameter was acquired. In the example of FIG. 3C, the predictable range corresponds to Rc. If it is determined that the third out-of-step parameter exceeds the third threshold value Th3, the operation mode is switched to the out-of-step avoidance mode in the immediately following step. In this example, the input reduction command and the torque reduction command are generated in response to the third out-of-step parameter exceeding the prescribed range (third allowable range) equal to or less than the third threshold Th3.
In one embodiment, the determination of the risk of loss of synchronism based on the third parameter, which is the prediction data, is the timing at which the operation mode switches to the avoidance mode of synchronism rather than the determination of the risk of loss of synchronism shown in FIGS. 3A and 3B. is early.
In FIG. 3C as well, if the third step-out parameter exceeds the third limit value Lm3 in the predictable range, a shutdown command is generated. Details are omitted to avoid duplication of explanation.
3A to 3C show examples in which the input reduction command and the torque reduction command are given to the prime mover 2 and the power converter 50 respectively in the same number of steps. In other embodiments, the timing at which the input reduction command and the torque reduction command are applied may differ.
(再生可能エネルギー抽出装置200を含む発電システム1Bの構成)
 図4は、原動機2として再生可能エネルギー抽出装置200が採用された発電システム1B(1)の概略を例示する。
 再生可能エネルギー抽出装置200は、再生可能エネルギーを抽出して磁気ギア発電機10への入力を生成するように構成される。一実施形態の再生可能エネルギーは風力であり、再生可能エネルギー抽出装置200は風車である。別の実施形態では、再生可能エネルギーは潮流又は海流であり、再生可能エネルギー抽出装置200は水車である。
 再生可能エネルギー抽出装置200からの入力トルクによって磁気ギア発電機10は電力を発電し、発電された電力は電力変換器50を経由して電力供給先4に供給される。一実施形態では、磁気ギア発電機10の固定子巻き線24に流れる電流は、計測器55によって計測される。
(Configuration of Power Generation System 1B Including Renewable Energy Extraction Device 200)
FIG. 4 illustrates an outline of a power generation system 1B(1) in which a renewable energy extraction device 200 is employed as the prime mover 2. As shown in FIG.
Renewable energy extraction device 200 is configured to extract renewable energy to generate an input to magnetic gear generator 10 . The renewable energy in one embodiment is wind power and the renewable energy extraction device 200 is a windmill. In another embodiment, the renewable energy is tidal or ocean currents and the renewable energy extraction device 200 is a water turbine.
The magnetic gear generator 10 generates power by the input torque from the renewable energy extraction device 200 , and the generated power is supplied to the power supply destination 4 via the power converter 50 . In one embodiment, the current flowing through the stator windings 24 of the magnetic gear generator 10 is measured by the meter 55 .
 再生可能エネルギー抽出装置200は、再生可能エネルギーを抽出するためのエネルギー抽出部210、抽出した再生可能エネルギーによって駆動されるように構成された原動機ロータ220、及び、原動機ロータ220の回転速度(回転数)を制御するための制御器230を備える。 The renewable energy extraction device 200 includes an energy extraction unit 210 for extracting renewable energy, a prime mover rotor 220 configured to be driven by the extracted renewable energy, and a rotational speed (rotational speed) of the prime mover rotor 220. ) is provided.
 エネルギー抽出部210を構成する翼214のピッチ角は、ピッチ駆動装置215によって変更される。より具体的な一例として、原動機ロータ220のハブ203に複数の翼214が設けられており、これら複数の翼214の各々に対応して複数のピッチ駆動装置215が設けられる。複数のピッチ駆動装置215の各々に含まれるピッチアクチュエータ215Aは、対応する翼214のピッチ角を変更する。
 ピッチ角の変更によって再生可能エネルギーの抽出量が調整され、結果として原動機ロータ220の回転数が調整される。例えば、再生可能エネルギー抽出装置200が風車である実施形態においては、ピッチ角が、フルファイン位置と、フルファイン位置よりもフェザー側にある位置との間で変更される。これにより、複数の翼214は、風を積極的に受ける姿勢と風を受け流す姿勢との間で変化し、原動機ロータ220の回転速度は調整される。
 なお、一実施形態のピッチアクチュエータ215Aは電動モータを含む電動式であるが、油圧シリンダを含む油圧式であってもよい。
The pitch angle of blades 214 forming energy extractor 210 is changed by pitch drive device 215 . As a more specific example, a plurality of blades 214 are provided on hub 203 of motor rotor 220 , and a plurality of pitch drive devices 215 are provided corresponding to each of these plurality of blades 214 . A pitch actuator 215A included in each of the plurality of pitch drives 215 changes the pitch angle of the corresponding blade 214. FIG.
The amount of renewable energy extracted is adjusted by changing the pitch angle, and as a result, the rotation speed of prime mover rotor 220 is adjusted. For example, in embodiments where the renewable energy extraction device 200 is a wind turbine, the pitch angle is varied between a full fine position and a position feathered from the full fine position. As a result, the plurality of blades 214 change between an attitude of actively receiving the wind and an attitude of receiving the wind, and the rotational speed of the prime mover rotor 220 is adjusted.
Note that the pitch actuator 215A in one embodiment is of an electric type including an electric motor, but may be of a hydraulic type including a hydraulic cylinder.
 一実施形態では、原動機ロータ220の回転シャフト3は磁気ギア発電機10の低速ロータ30と一体的に回転するよう構成される。従って、低速ロータセンサ35の検出結果は、低速ロータ30の回転数のみならず、原動機ロータ220の回転数を検出する。別の実施形態では、回転シャフト3はギア等を介して低速ロータ30に連結される。この場合、低速ロータセンサ35とは別のセンサが、原動機ロータ220の回転数を検出するために設けられる。 In one embodiment, the rotating shaft 3 of the prime mover rotor 220 is configured to rotate integrally with the low speed rotor 30 of the magnetic gear generator 10 . Therefore, the detection result of the low-speed rotor sensor 35 detects not only the rotation speed of the low-speed rotor 30 but also the rotation speed of the prime mover rotor 220 . In another embodiment, the rotating shaft 3 is connected to the low speed rotor 30 via gears or the like. In this case, a sensor separate from low speed rotor sensor 35 is provided to detect the number of revolutions of prime mover rotor 220 .
 制御器230は、前記原動機ロータ220の回転数が目標回転数に近づくようにエネルギー抽出部210に対して制御指令を付与するために設けられる。
 一実施形態の制御器230では、目標回転数設定部233が、原動機ロータ220の目標となる回転数を設定し、該目標値を指令として回転数制御部231に送る。回転数制御部231は、原動機ロータ220の回転数の現在値を例えば低速ロータセンサ35の検出結果に基づき取得する。さらに、回転数制御部231は、目標の回転数に原動機ロータ220が到達するためのピッチ角をピッチアクチュエータ215Aに指令として送る。原動機ロータ220の回転数は調整され、エネルギー抽出部210が抽出する再生可能エネルギーが調整される。
 一実施形態では、回転数制御部231によって実行される制御はPI制御である。この場合、原動機ロータ220の回転数の目標値と現在値との偏差に基づいて特定されたピッチ角が、指令として回転数制御部231からピッチアクチュエータ215Aに送られる。なお、回転数制御部231によって実行される制御は、P制御又はPID制御などの他の制御であってもよい。
The controller 230 is provided to give a control command to the energy extractor 210 so that the rotation speed of the engine rotor 220 approaches a target rotation speed.
In the controller 230 of one embodiment, the target rotation speed setting unit 233 sets the target rotation speed of the motor rotor 220 and sends the target value to the rotation speed control unit 231 as a command. The rotation speed control unit 231 acquires the current value of the rotation speed of the prime mover rotor 220 based on the detection result of the low speed rotor sensor 35, for example. Furthermore, rotation speed control unit 231 sends a pitch angle for motor rotor 220 to reach the target rotation speed to pitch actuator 215A as a command. The rotation speed of prime mover rotor 220 is adjusted, and the renewable energy extracted by energy extraction unit 210 is adjusted.
In one embodiment, the control performed by the rotation speed control section 231 is PI control. In this case, the pitch angle specified based on the deviation between the target value and the current value of the rotation speed of prime mover rotor 220 is sent as a command from rotation speed control section 231 to pitch actuator 215A. Note that the control executed by the rotation speed control section 231 may be other control such as P control or PID control.
 発電システム1Bで採用される一実施形態に係るコントローラ100B(100)を説明する。
 コントローラ100Bの構成要素である取得部105は、高速ロータセンサ45と低速ロータセンサ35の検出結果に基づき、高速ロータ40(あるいはロータ磁石42)の回転位置と回転速度、低速ロータ30の回転位置と回転速度、及びねじれ角を取得する。取得結果は、座標変換部276、目標トルク設定部245、及びパラメータ取得部103に送られる。
 さらに、取得部105は、ロータ磁石42の回転位置と、計測器55の計測結果とに基づき、固定子巻き線24に流れる固定座標系における現在の電流値を、回転座標系における現在の電流値に変換するように構成される。変換された電流値(現在値)は、後述のPI制御部242に送られる。
 目標トルク設定部245は、取得部105から取得した高速ロータ40の回転速度に基づき、目標とすべき発電機トルクを設定する。特定結果はPI制御部242に送られる。
 メイン指令部250は、いずれも既述のパラメータ取得部103、及び運転モード制御部106を含む。メイン指令部250を構成する判定部260の詳細は後述する。
A controller 100B (100) according to an embodiment employed in the power generation system 1B will be described.
An acquisition unit 105, which is a component of the controller 100B, obtains the rotational position and rotational speed of the high-speed rotor 40 (or rotor magnet 42) and the rotational position and rotational speed of the low-speed rotor 30 based on the detection results of the high-speed rotor sensor 45 and the low-speed rotor sensor 35. Get rotation speed and torsion angle. Acquisition results are sent to the coordinate transformation unit 276 , the target torque setting unit 245 and the parameter acquisition unit 103 .
Furthermore, based on the rotational position of the rotor magnet 42 and the measurement result of the measuring device 55, the acquisition unit 105 acquires the current value of the current flowing through the stator winding 24 in the fixed coordinate system, and the current value of the current in the rotating coordinate system. configured to convert to The converted current value (current value) is sent to the PI control section 242, which will be described later.
The target torque setting unit 245 sets a target generator torque based on the rotation speed of the high-speed rotor 40 acquired from the acquisition unit 105 . The identification result is sent to the PI control section 242 .
The main command unit 250 includes the parameter acquisition unit 103 and the operation mode control unit 106, both of which have already been described. The details of determination unit 260 constituting main command unit 250 will be described later.
 発電機トルクの制御概要は以下の通りである。
 PI制御部242は、発電機トルクの現在値と目標値との偏差、及び、回転座標系における固定子巻き線24の現在の電流値に基づき、目標とすべき固定子巻き線24の回転座標系における電流値を特定する。特定結果は座標変換部276に送られる。
 座標変換部276は、取得部105から取得したロータ磁石42の回転位置に基づき、固定子巻き線24の回転座標系における電流値(目標値)を、固定座標系における電流値に変換する。変換結果はPWM制御部248に送られる。
 PWM制御部248は、取得した固定座標系における固定子巻き線24の電流値(目標値)に基づき、PWM制御信号を電力変換器50に送る。一実施形態のPMW制御信号は、電力変換器50の制動抵抗を指定する信号である。
 上記の制御によって、固定子巻き線24を流れる電流値が制御され、磁気トルクが制御される。
The control outline of the generator torque is as follows.
The PI control unit 242 sets the target rotating coordinates of the stator winding 24 based on the deviation between the current value and the target value of the generator torque and the current value of the stator winding 24 in the rotating coordinate system. Determine the current value in the system. The identification result is sent to the coordinate transformation section 276 .
The coordinate transformation unit 276 transforms the current value (target value) in the rotating coordinate system of the stator winding 24 into the current value in the fixed coordinate system based on the rotational position of the rotor magnet 42 acquired from the acquisition unit 105 . The conversion result is sent to PWM control section 248 .
The PWM control unit 248 sends a PWM control signal to the power converter 50 based on the acquired current value (target value) of the stator winding 24 in the fixed coordinate system. The PMW control signal of one embodiment is a signal that specifies the damping resistance of power converter 50 .
By the above control, the current value flowing through the stator winding 24 is controlled, and the magnetic torque is controlled.
 発電機トルクの上記制御態様は、磁気ギア発電機10の運転モードが切替わることに伴い変更される。
 具体的な一例として、メイン指令部250の構成要素である判定部260は、パラメータ取得部103によって取得された脱調パラメータが許容範囲を超えたかを判定する。脱調パラメータが許容範囲を超えたと判定された場合、運転モード切替部110は磁気ギア発電機10の運転モードを通常モードから脱調回避モードに切替える。
 この場合、低減指令部120は、トルク低減指令をPI制御部242に付与する。一実施形態のトルク低減指令は、目標トルク設定部245からPI制御部242に送られた発電機トルク(目標値)を低減させる指令である。これにより、PI制御部242は、発電機トルク(目標値)を低減させたうえで、回転座標系における電流値(目標値)を特定する。結果、脱調回避モードにおいて発電機トルクは低減する。別の実施形態では、低減指令部120から付与されるトルク低減指令は、発電機トルクの値であってもよい。この値は、目標トルク設定部245から出力される発電機トルク(目標値)よりも小さく、PI制御部242はトルク低減指令が示す発電機トルクを優先的に目標値として扱う。
 脱調回避モードにおいて低減指令部120は、上記トルク低減指令をPI制御部242等を介して電力変換器50に付与するとともに、入力低減指令を制御器230の目標回転数設定部233に付与する。このときの入力低減指令は、エネルギー抽出部210による再生可能エネルギーの抽出量を減少させるための指令である。一実施形態では、このときの入力低減指令は、目標とすべき原動機ロータ220の回転数を低減させる指令である。目標回転数設定部233は、入力低減指令に基づき低減させた原動機ロータ220の回転数(目標値)を回転数制御部231に送る。これにより、再生可能エネルギーの抽出量を減らすピッチ角を回転数制御部231はピッチアクチュエータ215Aに送る。結果、原動機ロータ220の回転数は低下し、再生可能エネルギー抽出装置200から磁気ギア発電機10への入力トルクは低減する。なお、脱調回避モードにおいて低減指令部120から送られる入力低減指令は、原動機ロータ220の具体的な目標回転数であってもよい。
The control mode of the generator torque is changed as the operation mode of the magnetic gear generator 10 is switched.
As a specific example, the determination unit 260, which is a component of the main command unit 250, determines whether the step-out parameter acquired by the parameter acquisition unit 103 exceeds the allowable range. When it is determined that the step-out parameter exceeds the allowable range, the operation mode switching unit 110 switches the operation mode of the magnetic gear generator 10 from the normal mode to the step-out avoidance mode.
In this case, reduction command section 120 gives a torque reduction command to PI control section 242 . The torque reduction command of one embodiment is a command to reduce the generator torque (target value) sent from the target torque setting section 245 to the PI control section 242 . As a result, the PI control unit 242 reduces the generator torque (target value) and then specifies the current value (target value) in the rotating coordinate system. As a result, the generator torque is reduced in the step-out avoidance mode. In another embodiment, the torque reduction command given from the reduction command section 120 may be the generator torque value. This value is smaller than the generator torque (target value) output from the target torque setting unit 245, and the PI control unit 242 preferentially treats the generator torque indicated by the torque reduction command as the target value.
In the step-out avoidance mode, the reduction command unit 120 gives the torque reduction command to the power converter 50 via the PI control unit 242 and the like, and gives the input reduction command to the target rotation speed setting unit 233 of the controller 230. . The input reduction command at this time is a command for decreasing the amount of renewable energy extracted by energy extraction unit 210 . In one embodiment, the input reduction command at this time is a command to reduce the rotation speed of prime mover rotor 220 to be targeted. The target rotation speed setting unit 233 sends the rotation speed (target value) of the engine rotor 220 reduced based on the input reduction command to the rotation speed control unit 231 . As a result, the rotation speed control unit 231 sends the pitch angle that reduces the extraction amount of renewable energy to the pitch actuator 215A. As a result, the rotation speed of prime mover rotor 220 decreases, and the input torque from renewable energy extraction device 200 to magnetic gear generator 10 decreases. The input reduction command sent from reduction command unit 120 in the step-out avoidance mode may be a specific target rotation speed of prime mover rotor 220 .
 上述の判定部260は、脱調パラメータが許容範囲を超えたかの判定の他に、再生可能エネルギーの将来予測値が上限値よりも大きいかを判定する。一実施形態では、上記判定はライダー(LIDAR:Light Detection And Ranging)56の計測結果に基づき、実行される。別の実施形態では、上記判定は、例えば遠隔地にある他の端末装置から送信される気象予測情報に基づき実行される。
 再生可能エネルギーの将来予測値(以下、単に将来予測値という場合がある)が上限値よりも大きいと判定された場合、低減指令部120は、磁気ギア発電機10の運転モードが脱調回避モードであるかに関わらず、入力低減指令を再生可能エネルギー抽出装置200に付与する。具体的な一例として、低減指令部120は、制御器230を介さずに、入力低減指令をピッチアクチュエータ215Aに付与する。入力低減指令が直接的にピッチアクチュエータ215Aに入力されることで、回転数制御部231による上述の制御を介在させることなくピッチ角は調整される。これにより、再生可能エネルギー抽出装置200から磁気ギア発電機10への入力トルクを迅速に低減させることができる。従って、例えば再生可能エネルギー抽出装置200が風車である実施形態においては、突風などの突発的な事象が起きる場合であっても、再生可能エネルギー抽出装置200からから磁気ギア発電機10への入力が急激に増加することが抑制される。
In addition to determining whether the step-out parameter exceeds the allowable range, the determination unit 260 described above determines whether the future predicted value of renewable energy is greater than the upper limit value. In one embodiment, the above determination is performed based on the measurement results of a lidar (LIDAR: Light Detection And Ranging) 56 . In another embodiment, the determination is performed based on weather forecast information transmitted from another remote terminal device, for example.
When it is determined that the future predicted value of renewable energy (hereinafter sometimes simply referred to as the future predicted value) is greater than the upper limit value, the reduction command unit 120 sets the operation mode of the magnetic gear generator 10 to the step-out avoidance mode. , the input reduction command is given to the renewable energy extraction device 200 . As a specific example, reduction command section 120 gives the input reduction command to pitch actuator 215A without going through controller 230 . By directly inputting the input reduction command to the pitch actuator 215A, the pitch angle is adjusted without intervening the above-described control by the rotation speed control section 231. FIG. As a result, the input torque from the renewable energy extraction device 200 to the magnetic gear generator 10 can be quickly reduced. Therefore, for example, in an embodiment in which the renewable energy extraction device 200 is a windmill, the input from the renewable energy extraction device 200 to the magnetic gear generator 10 is reduced even when sudden events such as gusts occur. A rapid increase is suppressed.
 図5は、一実施形態に係るコントローラ100の機能を示すブロック図である。コントローラ100のプロセッサ91は、例えば、CPU、GPU、MPU、DSP、これら以外の各種演算装置、又はこれらの組み合わせである。プロセッサ91は、PLD、ASIC、FPGA、及びMCU等の集積回路により実現されてもよい。
 プロセッサ91は、ROM92に記憶されるプログラムを読み出してRAM93にロードし、ロードしたプログラムに含まれる命令を実行するように構成される。これにより、発電システム1の発電制御が実行される。プログラムの実行に伴い処理される各種値は、RAM93又はメモリ94に記憶される。メモリ94は、例えば不揮発性メモリである。
FIG. 5 is a block diagram illustrating the functionality of the controller 100 according to one embodiment. The processor 91 of the controller 100 is, for example, a CPU, GPU, MPU, DSP, various arithmetic devices other than these, or a combination thereof. Processor 91 may be implemented by an integrated circuit such as PLD, ASIC, FPGA, and MCU.
Processor 91 is configured to read programs stored in ROM 92, load them into RAM 93, and execute instructions contained in the loaded programs. Thereby, the power generation control of the power generation system 1 is executed. Various values processed along with execution of the program are stored in the RAM 93 or the memory 94 . Memory 94 is, for example, a non-volatile memory.
 プロセッサ91は、インターフェース等を介して、低速ロータセンサ35、高速ロータセンサ45、ライダー56、電力変換器50、及び再生可能エネルギー抽出装置200と電気的に接続される。ライダー56は、レーザ光を、遠隔地点である風速予測点に照射し、該風速予測点における大気中のエアロゾルからの散乱光を検出し、レーザ光と散乱光の周波数のずれ(ドップラーシフト)から風速予測点における風速を計測する装置である。 The processor 91 is electrically connected to the low speed rotor sensor 35, the high speed rotor sensor 45, the rider 56, the power converter 50, and the renewable energy extraction device 200 via an interface or the like. The lidar 56 irradiates a laser beam to a wind speed prediction point, which is a remote location, detects scattered light from aerosols in the atmosphere at the wind speed prediction point, and detects the frequency difference (Doppler shift) between the laser light and the scattered light. This is a device that measures the wind speed at the wind speed prediction point.
(発電制御処理の説明)
 図6を参照し、発電システム1で実行される発電制御処理の一例を説明する。
 一実施形態に係る発電制御処理は、発電システム1の稼働時に継続的に実行される処理である。
 以下の説明では、「ステップ」を「S」と略記する。
(Description of power generation control processing)
An example of the power generation control process executed in the power generation system 1 will be described with reference to FIG. 6 .
The power generation control process according to one embodiment is a process that is continuously executed when the power generation system 1 is in operation.
In the following description, "step" is abbreviated as "S".
 プロセッサ91は、低速ロータセンサ35及び高速ロータセンサ45の検出結果に基づき、脱調パラメータを取得する(S11)。一実施形態では、取得される脱調パラメータは、第1脱調パラメータ、第2脱調パラメータ、及び第3脱調パラメータである。 The processor 91 acquires a step-out parameter based on the detection results of the low speed rotor sensor 35 and the high speed rotor sensor 45 (S11). In one embodiment, the obtained out-of-step parameters are a first out-of-step parameter, a second out-of-step parameter and a third out-of-step parameter.
 プロセッサ91は、S11で取得した脱調パラメータに基づいて、脱調のリスクが許容範囲を超えたかを判定するための脱調リスク判定処理を実行する(S13)。
 一実施形態の脱調リスク判定処理では、脱調パラメータが許容範囲を超えたと判定された場合には、メモリ94に記憶される脱調リスクフラグが1に上書きされる。一方、脱調パラメータが許容範囲内であると判定された場合には、メモリ94に記憶される脱調リスクフラグは0に維持される。脱調リスク判定処理の詳細は後述する。
The processor 91 executes step-out risk determination processing for determining whether the risk of step-out exceeds the allowable range based on the step-out parameter acquired in S11 (S13).
In the step-out risk determination process of one embodiment, the step-out risk flag stored in the memory 94 is overwritten with 1 when it is determined that the step-out parameter exceeds the allowable range. On the other hand, if the step-out parameter is determined to be within the allowable range, the step-out risk flag stored in the memory 94 is maintained at zero. The details of the step-out risk determination process will be described later.
 プロセッサ91は、例えばメモリ94を参照することによって、脱調リスクフラグが1であるか否かを判定する(S15)。この判定によって、稼働中の磁気ギア発電機10において脱調リスクの有無が判定される。
 脱調リスクフラグが0である場合(S15:NO)、プロセッサ91は、ライダー56の出力結果に基づき、エネルギー抽出部210に付与される再生可能エネルギーの将来予測値が上限値よりも大きいかを判定する(S17)。一実施形態では、上限値はメモリ94に記憶される。将来予測値が上限値以下である場合(S17:NO)、プロセッサ91は処理をS11に戻す。
 脱調パラメータが許容範囲内であり(S15:NO)、将来予測値が上限値以下であれば(S17:NO)、プロセッサ91はS11~S17を繰り返す。
The processor 91 determines whether the step-out risk flag is 1, for example, by referring to the memory 94 (S15). Based on this determination, it is determined whether or not there is a risk of stepping out in the magnetic gear generator 10 in operation.
If the step-out risk flag is 0 (S15: NO), the processor 91 determines whether the future predicted value of renewable energy provided to the energy extraction unit 210 is greater than the upper limit based on the output result of the rider 56. Determine (S17). In one embodiment, the upper limit value is stored in memory 94 . If the future predicted value is equal to or less than the upper limit (S17: NO), the processor 91 returns the process to S11.
If the step-out parameter is within the allowable range (S15: NO) and the future prediction value is equal to or less than the upper limit (S17: NO), the processor 91 repeats S11-S17.
 将来予測値が上限値以下である場合に(S17:NO)、脱調パラメータが許容範囲を超えたとき(S15:YES)、プロセッサ91は、磁気ギア発電機10の運転モードを通常モードから脱調回避モードに切替える(S19)。S19を実行するプロセッサ91が、上述の運転モード切替部110として機能する。 If the future prediction value is equal to or less than the upper limit value (S17: NO), and if the step-out parameter exceeds the allowable range (S15: YES), the processor 91 causes the magnetic gear generator 10 to exit the normal mode. Switch to the tone avoidance mode (S19). The processor 91 that executes S19 functions as the operation mode switching unit 110 described above.
 この場合、プロセッサ91は、入力低減指令を再生可能エネルギー抽出装置200の制御器230に付与するとともに、トルク低減指令を磁気ギア発電機10に付与する(S21)。S21を実行するプロセッサ91は、上述の低減指令部120として機能する。
 プロセッサ91は、脱調リスクフラグを1とさせた脱調パラメータが許容範囲内に戻ったかを判定する(S23)。脱調パラメータが許容範囲に戻っていないと判定された場合(S23:NO)、プロセッサ91は、脱調パラメータが限界値を超えたかを判定する(S37)。例えばプロセッサ91は、第1脱調パラメータ、第2脱調パラメータ、又は第3脱調パラメータのいずれか一つが、対応する限界値(第1限界値、第2限界値、又は第3限界値)を超えたかを判定する。
 脱調パラメータが限界値を超えていないと判定された場合(S37:NO)、プロセッサ91は処理をS23に戻す。
In this case, the processor 91 gives an input reduction command to the controller 230 of the renewable energy extraction device 200 and gives a torque reduction command to the magnetic gear generator 10 (S21). The processor 91 that executes S21 functions as the reduction command unit 120 described above.
The processor 91 determines whether the step-out parameter that set the step-out risk flag to 1 has returned to within the allowable range (S23). When it is determined that the step-out parameter has not returned to the allowable range (S23: NO), the processor 91 determines whether the step-out parameter has exceeded the limit value (S37). For example, the processor 91 determines that any one of the first step-out parameter, the second step-out parameter, or the third step-out parameter is a corresponding limit value (first limit value, second limit value, or third limit value). Determine whether the
If it is determined that the step-out parameter does not exceed the limit value (S37: NO), the processor 91 returns the process to S23.
 脱調パラメータが許容範囲内に戻ると(S23:YES)、プロセッサ91は、脱調リスクフラグを0に上書きし(S25)、磁気ギア発電機10の運転モードを脱調回避モードから通常モードに切替える(S27)。S27を実行するプロセッサ91は既述の運転モード復帰部125として機能する。
 次いでプロセッサ91は、入力増加指令を原動機2に付与するとともに、トルク増大指令を電力変換器50に付与する(S29)。S29を実行するプロセッサ91は既述の増加指令部127として機能する。
 その後、プロセッサ91は、処理をS11に戻す。
When the step-out parameter returns within the allowable range (S23: YES), the processor 91 overwrites the step-out risk flag to 0 (S25), and changes the operation mode of the magnetic gear generator 10 from the step-out avoidance mode to the normal mode. Switch (S27). The processor 91 that executes S27 functions as the operation mode recovery unit 125 described above.
Next, processor 91 applies an input increase command to prime mover 2 and a torque increase command to power converter 50 (S29). The processor 91 executing S29 functions as the increase instruction unit 127 described above.
After that, the processor 91 returns the process to S11.
 一方、脱調パラメータが限界値を超えたと判定された場合(S37:YES)、プロセッサ91は、稼働停止指令を原動機2と電力変換器50に付与する(S39)。プロセッサ91は発電制御処理を終了し、発電システム1は稼働を停止する。 On the other hand, if it is determined that the step-out parameter has exceeded the limit value (S37: YES), the processor 91 issues an operation stop command to the prime mover 2 and the power converter 50 (S39). The processor 91 ends the power generation control process, and the power generation system 1 stops operating.
 上述した将来予測値が上限値よりも大きいと判定された場合(S17:YES)、プロセッサ91は、制御器230を介さずに、入力低減指令をエネルギー抽出部210(より詳細にはピッチアクチュエータ215A)に付与する(S31)。S31を実行するプロセッサ91は、上述の低減指令部120として機能する。
 プロセッサ91は、ライダー56の検出結果に基づき、将来予測値が上限値以下に戻ったかを判定する(S33)。将来予測値が上限値以下に戻るまで(S33:NO)、プロセッサ91は待機する。
 将来予測値が上限値以下に戻ると(S33:YES)、プロセッサ91は、入力増加指令を再生可能エネルギー抽出装置200に付与し(S35)、処理をS11に戻す。
If it is determined that the future prediction value is greater than the upper limit value (S17: YES), the processor 91 sends an input reduction command to the energy extractor 210 (more specifically, the pitch actuator 215A) without going through the controller 230. ) (S31). The processor 91 that executes S31 functions as the reduction command unit 120 described above.
The processor 91 determines whether the future prediction value has returned to the upper limit value or less based on the detection result of the rider 56 (S33). The processor 91 waits until the future prediction value returns to the upper limit value or less (S33: NO).
When the future prediction value returns to the upper limit value or less (S33: YES), the processor 91 gives an input increase command to the renewable energy extraction device 200 (S35), and returns the process to S11.
 図7Aを参照し、一実施形態に係る脱調リスク判定処理を説明する。脱調リスク判定処理は、S11で取得された脱調パラメータに基づいて実行される(後述の図7Bで示される脱調リスク判定処理も同様である)。
 プロセッサ91は、第1脱調パラメータと第1許容範囲を比較し(S51)、第2脱調パラメータと第2許容範囲を比較し(S53)、第3脱調パラメータと第3許容範囲を比較する(S55)。
 次いでプロセッサ91は、第1脱調パラメータ、第2脱調パラメータ、及び第3脱調パラメータのうちで2つ以上の脱調パラメータが、対応する許容範囲を超えたかを判定する(S57)。
 2つ以上の脱調パラメータが許容範囲を超えたと判定された場合(S57:YES)、プロセッサ91は脱調リスクフラグを1に上書きして(S59)、脱調リスク判定処理を終了する。一方、許容範囲を超えた脱調パラメータが1個である場合、または、いずれの脱調パラメータも許容範囲内である場合(S57:NO)、プロセッサ91は脱調リスク判定処理を終了する。この場合、脱調リスクフラグは0である。
 以上のように、本例の脱調リスク判定処理では、第1脱調パラメータ、第2脱調パラメータ、及び第3脱調パラメータの少なくとも2つが対応する許容範囲を超えたことを条件に、脱調リスクがあると判定される。
A step-out risk determination process according to one embodiment will be described with reference to FIG. 7A. The step-out risk determination process is executed based on the step-out parameter acquired in S11 (the same applies to the step-out risk determination process shown in FIG. 7B, which will be described later).
The processor 91 compares the first step-out parameter and the first allowable range (S51), compares the second step-out parameter and the second allowable range (S53), and compares the third step-out parameter and the third allowable range. (S55).
Next, the processor 91 determines whether two or more of the first step-out parameter, the second step-out parameter, and the third step-out parameter exceed the corresponding allowable ranges (S57).
If it is determined that two or more out-of-step parameters exceed the allowable range (S57: YES), the processor 91 overwrites the step-out risk flag with 1 (S59), and terminates the step-out risk determination process. On the other hand, if there is only one step-out parameter exceeding the allowable range, or if all the step-out parameters are within the allowable range (S57: NO), the processor 91 ends the step-out risk determination process. In this case, the step-out risk flag is 0.
As described above, in the step-out risk determination process of this example, on the condition that at least two of the first step-out parameter, the second step-out parameter, and the third step-out parameter exceed their corresponding allowable ranges, the step-out risk determination process determined to be at risk.
 図7Bを参照し、一実施形態に係る脱調リスク判定処理の別の例を説明する。
 プロセッサ91は、第1脱調パラメータが第1許容範囲を超えたかを判定する(S71)。第1脱調パラメータが第1許容範囲を超えていると判定された場合(S71:YES)、プロセッサ91は脱調リスクフラグを1に上書きして(S77)、脱調リスク判定処理を終了する。
 第1脱調パラメータが第1許容範囲内であると判定された場合(S71:NO)、プロセッサ91は、第2脱調パラメータが第2許容範囲を超えたかを判定する(S73)。第2脱調パラメータが第2許容範囲を超えていると判定された場合(S73:YES)、プロセッサ91は処理をS77に進める。
 第2脱調パラメータが第2許容範囲内であると判定された場合(S73:NO)、プロセッサ91は、第3脱調パラメータが第3許容範囲を超えたかを判定する(S75)。第3脱調パラメータが第3許容範囲を超えていると判定された場合(S75:YES)、プロセッサ91は処理をS77に進める。第3脱調パラメータが第3許容範囲内であると判定された場合(S75:NO)、プロセッサ91は脱調リスク判定処理を終了する。
 以上のように、本例の脱調リスク判定処理では、第1脱調パラメータ、第2脱調パラメータ、及び第3脱調パラメータのいずれか一つでも対応する許容範囲を超えたことを条件に、脱調リスクがあると判定される。
Another example of the step-out risk determination process according to one embodiment will be described with reference to FIG. 7B.
The processor 91 determines whether the first step-out parameter has exceeded the first allowable range (S71). When it is determined that the first step-out parameter exceeds the first allowable range (S71: YES), the processor 91 overwrites the step-out risk flag with 1 (S77), and terminates the step-out risk determination process. .
When it is determined that the first step-out parameter is within the first allowable range (S71: NO), the processor 91 determines whether the second step-out parameter exceeds the second allowable range (S73). If it is determined that the second step-out parameter exceeds the second allowable range (S73: YES), the processor 91 advances the process to S77.
When it is determined that the second step-out parameter is within the second allowable range (S73: NO), the processor 91 determines whether the third step-out parameter exceeds the third allowable range (S75). If it is determined that the third step-out parameter exceeds the third allowable range (S75: YES), the processor 91 advances the process to S77. If it is determined that the third step-out parameter is within the third allowable range (S75: NO), the processor 91 ends the step-out risk determination process.
As described above, in the step-out risk determination process of this example, the condition is that any one of the first step-out parameter, the second step-out parameter, and the third step-out parameter exceeds the corresponding allowable range. , it is determined that there is a step-out risk.
(まとめ)
 以下、幾つかの実施形態に係る発電システム(1)及び発電システム用のコントローラ(100)について概要を説明する。
(summary)
A power generation system (1) and a controller (100) for the power generation system according to some embodiments will now be outlined.
(1)本開示の幾つかの実施形態に係る発電システム(1)は、
 原動機(2)と、
 前記原動機(2)からの入力によって駆動されて発電をするように構成された磁気ギア発電機(10)と、
 前記磁気ギア発電機(10)に接続された電力変換器(50)と、
 前記磁気ギア発電機(10)の脱調のリスクを示す脱調パラメータが規定の許容範囲を超えたことに応答して、前記磁気ギア発電機(10)の運転モードを脱調回避モードに切替えるように構成された運転モード切替部(110)と、
 前記脱調回避モードにおいて、前記原動機(2)からの前記入力を低減させる入力低減指令を前記原動機(2)に付与するとともに、前記磁気ギア発電機(10)の発電機トルクを低減させるトルク低減指令を前記電力変換器(50)に付与するように構成された低減指令部(120)と
 を備える。
(1) A power generation system (1) according to some embodiments of the present disclosure includes:
a prime mover (2);
a magnetic gear generator (10) configured to be driven by an input from the prime mover (2) to generate electricity;
a power converter (50) connected to the magnetic gear generator (10);
Switching the operation mode of the magnetic gear generator (10) to a step-out avoidance mode in response to a step-out parameter indicating the risk of step-out of the magnetic gear generator (10) exceeding a prescribed allowable range. An operation mode switching unit (110) configured as
In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover (2) is given to the prime mover (2), and torque reduction for reducing the generator torque of the magnetic gear generator (10). a reduction command unit (120) configured to provide a command to the power converter (50).
 上記(1)の構成によれば、例えば原動機(2)に対しての入力が過度に増大することなどに起因して、脱調パラメータが許容範囲を超えた場合、磁気ギア発電機(10)の運転モードは脱調回避モードに切替わる。このとき、原動機(2)から磁気ギア発電機(10)への入力が低減するだけでなく、磁気ギア発電機(10)の発電機トルクも低減する。原動機(2)からの入力を減少させると、磁気ギア発電機(10)では、入力トルクに対して磁気トルクが過剰となり、ねじれ角は減少傾向となる。また、発電機トルクを減少させると、磁気トルクに対して発電機トルクが不足し、ねじれ角は減少傾向となる。こうして、原動機(2)からの入力のみを低減する場合に比べて、脱調リスクをより効果的に低減できる。
 また、脱調回避モードにおいて、原動機(2)からの入力を減少させると、ねじれ角は減少傾向となり、磁気トルクも減少しようとする。このとき、発電機トルクの低減指令を電力変換器(50)に与えない場合、脱調回避モードへの切替後に発電機トルクに対して磁気トルクが不足し、ねじれ角の増加傾向をもたらしてしまう。そこで、上述のとおり、脱調回避モードにおいて、原動機(2)からの入力だけでなく、発電機トルクも減少させることで、ねじれ角をより確実に減少させることができ、脱調リスクの効果的な低減が可能となる。よって、磁気ギア発電機(10)の脱調を抑制できる発電システム(1)が実現する。
According to the configuration (1) above, when the step-out parameter exceeds the allowable range due to, for example, an excessive increase in the input to the prime mover (2), the magnetic gear generator (10) is switched to the step-out avoidance mode. At this time, not only the input from the prime mover (2) to the magnetic gear generator (10) is reduced, but also the generator torque of the magnetic gear generator (10) is reduced. When the input from the prime mover (2) is decreased, the magnetic torque becomes excessive with respect to the input torque in the magnetic gear generator (10), and the twist angle tends to decrease. Further, when the generator torque is reduced, the generator torque becomes insufficient with respect to the magnetic torque, and the torsion angle tends to decrease. In this way, the risk of stepping out can be reduced more effectively than when only the input from the prime mover (2) is reduced.
Further, in the step-out avoidance mode, when the input from the prime mover (2) is reduced, the torsion angle tends to decrease and the magnetic torque also tends to decrease. At this time, if the generator torque reduction command is not given to the power converter (50), the magnetic torque becomes insufficient for the generator torque after switching to the step-out avoidance mode, resulting in an increase in the torsion angle. . Therefore, as described above, in the step-out avoidance mode, by reducing not only the input from the prime mover (2) but also the generator torque, the torsion angle can be reduced more reliably, and the step-out risk can be effectively reduced. reduction is possible. Therefore, a power generation system (1) capable of suppressing step-out of the magnetic gear generator (10) is realized.
(2)幾つかの実施形態では、上記(1)の構成において
 前記磁気ギア発電機(10)は、
 前記原動機(2)からの入力トルクによって駆動されるように構成された低速ロータ(30)と、
前記低速ロータ(30)の回転に伴い生じる磁気トルクによって駆動されるように構成された高速ロータ(40)と、
 前記高速ロータ(40)の回転に伴い前記電力変換器(50)への供給電力が生じるように構成された固定子巻き線(24)を有するステータ(20)と
を備え、
 前記低減指令部(120)は、前記脱調パラメータが前記許容範囲に含まれる基準状態を基準として、前記高速ロータ(40)の前記発電機トルクの変動量が、前記低速ロータ(30)の前記入力の変動量と比例するよう、前記トルク低減指令を、前記電力変換器(50)に付与するように構成される。
(2) In some embodiments, in the configuration of (1) above, the magnetic gear generator (10)
a low speed rotor (30) configured to be driven by input torque from said prime mover (2);
a high speed rotor (40) configured to be driven by magnetic torque generated as the low speed rotor (30) rotates;
a stator (20) having a stator winding (24) configured to generate power supplied to the power converter (50) as the high-speed rotor (40) rotates,
The reduction command section (120) controls the amount of variation in the generator torque of the high-speed rotor (40) to reduce the amount of variation in the generator torque of the low-speed rotor (30) based on a reference state in which the step-out parameter is within the allowable range. It is configured to apply the torque reduction command to the power converter (50) so as to be proportional to the amount of input fluctuation.
 本発明者らの知見によれば、脱調パラメータが前記許容範囲に含まれる基準状態を基準として、磁気ギア発電機(10)でのねじれ角の変動量は、低速ロータ(30)の入力トルクの変動量と、高速ロータ(40)の発電機トルクの変動量に対して低速ロータ30と高速ロータ40のイナーシャの比を乗じた値との和に依存する。上記(2)の構成によれば、発電機トルクの変動量が、低速ロータ(30)の入力トルクの変動量に比例するので、磁気ギア発電機(10)のねじれ角の変動量は抑制される。よって、磁気ギア発電機(10)の脱調を抑制できる。 According to the findings of the present inventors, the fluctuation amount of the torsion angle in the magnetic gear generator (10) is the input torque and the sum of the variation of the generator torque of the high-speed rotor (40) multiplied by the inertia ratio of the low-speed rotor (30) and the high-speed rotor (40). According to the configuration (2) above, since the amount of change in the generator torque is proportional to the amount of change in the input torque of the low-speed rotor (30), the amount of change in the torsion angle of the magnetic gear generator (10) is suppressed. be. Therefore, step-out of the magnetic gear generator (10) can be suppressed.
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記磁気ギア発電機(10)は、
 前記原動機(2)からの入力トルクによって駆動されるように構成された低速ロータ(30)と、
 前記低速ロータ(30)の回転に伴い生じる磁気トルクで駆動されるように構成された高速ロータ(40)と、
 前記高速ロータ(40)の回転に伴い前記電力変換器(50)への供給電力を生じさせるように構成された固定子巻き線(24)を有するステータ(20)と
を備え、
 前記低減指令部(120)は、前記脱調パラメータが前記許容範囲に含まれる基準状態を基準として、前記発電機トルクの変動量が、前記高速ロータ(40)の角加速度の変動量と比例するよう、前記トルク低減指令を前記電力変換器(50)に付与するように構成される。
(3) In some embodiments, in the configuration of (1) or (2) above,
The magnetic gear generator (10) comprises:
a low speed rotor (30) configured to be driven by input torque from said prime mover (2);
a high-speed rotor (40) configured to be driven by magnetic torque generated as the low-speed rotor (30) rotates;
a stator (20) having stator windings (24) configured to produce power supplied to the power converter (50) as the high speed rotor (40) rotates;
The reduction command section (120) makes the amount of variation in the generator torque proportional to the amount of variation in the angular acceleration of the high-speed rotor (40) with reference to a reference state in which the step-out parameter is within the allowable range. so that the torque reduction command is applied to the power converter (50).
 上記(3)の構成によれば、発電機トルクの変動量が高速ロータ(40)の角加速度の変動量に基づくことで、高速ロータ(40)の見かけ上のイナーシャは低減する。これにより、高速ロータ(40)は、低速ロータ(30)に追従し易くなるので、磁気ギア発電機(10)のねじれ角の変動量は抑制される。よって、磁気ギア発電機(10)の脱調は抑制される。 According to the configuration (3) above, the amount of change in the generator torque is based on the amount of change in the angular acceleration of the high-speed rotor (40), thereby reducing the apparent inertia of the high-speed rotor (40). This makes it easier for the high-speed rotor (40) to follow the low-speed rotor (30), thereby suppressing the variation in the torsion angle of the magnetic gear generator (10). Therefore, step-out of the magnetic gear generator (10) is suppressed.
(4)幾つかの実施形態では、上記(1)から(3)のいずれかの構成において、
 前記原動機(2)は、再生可能エネルギーを抽出して前記磁気ギア発電機(10)への前記入力を生成するように構成された再生可能エネルギー抽出装置(200)であり、
 前記低減指令部(120)は、前記再生可能エネルギーの将来予測値が上限値よりも大きい場合、前記脱調パラメータが前記許容範囲を超えたかに関わらず、前記入力低減指令を前記再生可能エネルギー抽出装置(200)に付与し、前記再生可能エネルギーの抽出量を減少させる。
(4) In some embodiments, in the configuration of any one of (1) to (3) above,
said prime mover (2) is a renewable energy extraction device (200) configured to extract renewable energy to generate said input to said magnetic gear generator (10);
When the future predicted value of the renewable energy is greater than the upper limit, the reduction command unit (120) outputs the input reduction command regardless of whether the step-out parameter exceeds the allowable range. Applied to the device (200) to reduce the extraction of said renewable energy.
 上記(4)の構成によれば、脱調パラメータが許容範囲を超えない場合でも、将来予測値が上限値をよりも大きいとき、原動機(2)である再生可能エネルギー抽出装置(200)に入力低減指令が付与される。これにより、突発的な事象などに起因して再生可能エネルギーが将来的に増大する場合などであっても、磁気ギア発電機(10)の脱調は抑制される。 According to the above configuration (4), even if the step-out parameter does not exceed the allowable range, when the future prediction value is greater than the upper limit value, the input to the renewable energy extraction device (200) as the prime mover (2) A reduction order is given. As a result, step-out of the magnetic gear generator (10) is suppressed even when renewable energy increases in the future due to an unexpected event or the like.
(5)幾つかの実施形態では、上記(4)の構成において、
 前記再生可能エネルギー抽出装置(200)は、
  前記再生可能エネルギーを抽出するように構成されたエネルギー抽出部(210)と、
  抽出した前記再生可能エネルギーによって駆動されるように構成された原動機ロータ(220)と、
  前記原動機ロータ(220)の回転数が目標回転数に近づくように前記エネルギー抽出部(210)に対して制御指令を付与するように構成された制御器(230)と、
を含み、
 前記低減指令部(120)は、
  前記再生可能エネルギーの前記将来予測値が前記上限値以下である場合に、前記脱調パラメータが前記許容範囲を超えたとき、前記入力低減指令として、前記目標回転数を低減する指令を前記制御器(230)に付与し、
  前記再生可能エネルギーの前記将来予測値が前記上限値より大きい場合に、前記制御器(230)を介さずに、前記再生可能エネルギーの前記抽出量を減少させるように前記エネルギー抽出部(210)に前記入力低減指令を付与するように構成される。
(5) In some embodiments, in the configuration of (4) above,
The renewable energy extraction device (200) comprises:
an energy extractor (210) configured to extract said renewable energy;
a prime mover rotor (220) configured to be driven by said extracted renewable energy;
a controller (230) configured to give a control command to the energy extractor (210) so that the rotation speed of the prime mover rotor (220) approaches a target rotation speed;
including
The reduction command unit (120)
When the predicted future value of the renewable energy is equal to or less than the upper limit value and the step-out parameter exceeds the allowable range, the controller outputs a command to reduce the target rotation speed as the input reduction command. (230) to give
to the energy extraction unit (210) so as to decrease the extracted amount of the renewable energy without going through the controller (230) when the future predicted value of the renewable energy is greater than the upper limit It is configured to provide the input reduction command.
 上記(5)の構成によれば、将来予測値が上限値よりも大きい場合、制御器(230)を介さずに、再生可能エネルギーの前記抽出量を減少させるようにエネルギー抽出部(210)に入力低減指令を与える。これにより、将来予測値が上限値よりも大きい場合には、原動機(2)は、磁気ギア発電機(10)の脱調を回避するための動作を即座に実行できる。よって、突発的な事象などに起因して再生可能エネルギーが将来的に増大する場合などであっても、磁気ギア発電機(10)の脱調は抑制される。 According to the configuration of (5) above, when the future prediction value is greater than the upper limit value, the energy extraction unit (210) is caused to reduce the extracted amount of renewable energy without going through the controller (230). Give input reduction command. Thereby, when the future prediction value is larger than the upper limit value, the prime mover (2) can immediately perform the operation for avoiding the step-out of the magnetic gear generator (10). Therefore, even if the amount of renewable energy increases in the future due to an unexpected event, step-out of the magnetic gear generator (10) is suppressed.
(6)幾つかの実施形態では、上記(1)から(5)のいずれかの構成において、
 前記低減指令部(120)が前記入力低減指令と前記トルク低減指令を付与した後、前記脱調パラメータが前記許容範囲に含まれるようになった場合、前記運転モードを通常モードに切替えるように構成された運転モード復帰部(125)と、
 復帰した前記通常モードにおいて、前記入力を増加させる入力増加指令を前記原動機(2)に付与するとともに、前記発電機トルクを増加させるトルク増大指令を前記電力変換器(50)に付与するように構成された増加指令部(127)と
 を備える。
(6) In some embodiments, in the configuration of any one of (1) to (5) above,
After the reduction command unit (120) gives the input reduction command and the torque reduction command, the operation mode is switched to the normal mode when the step-out parameter comes to fall within the allowable range. and an operation mode recovery unit (125) that
In the restored normal mode, an input increase command for increasing the input is given to the prime mover (2), and a torque increase command for increasing the generator torque is given to the electric power converter (50). and an increase command unit (127).
 上記(6)の構成によれば、脱調パラメータが許容範囲に含まれるようになったとき、入力増加指令とトルク増大指令が付与されるので、磁気ギア発電機(10)の発電量の低下を抑制できる。 According to the above configuration (6), when the step-out parameter comes to be included in the allowable range, the input increase command and the torque increase command are given, so the power generation amount of the magnetic gear generator (10) is reduced. can be suppressed.
(7)幾つかの実施形態では、上記(1)から(6)のいずれかの構成において、
 前記運転モード切替部(110)は、複数の前記脱調パラメータが、各々の前記脱調パラメータに対応する複数の前記許容範囲を超えたことに応答して、前記運転モードを前記脱調回避モードに切替えるように構成される。
(7) In some embodiments, in the configuration of any one of (1) to (6) above,
The operation mode switching unit (110) switches the operation mode to the step-out avoidance mode in response to a plurality of the step-out parameters exceeding the plurality of allowable ranges corresponding to the respective step-out parameters. configured to switch to
 上記(7)の構成によれば、複数の脱調パラメータが各々許容範囲を超えたかに基づいて運転モードは脱調回避モードに切替わる。従って、脱調のリスクの有無が精度良く検出されたうえで、運転モードは脱調回避モードに切替わることができる。 According to the above configuration (7), the operation mode is switched to the step-out avoidance mode based on whether each of the plurality of step-out parameters exceeds the allowable range. Therefore, the operation mode can be switched to the step-out avoidance mode after the presence or absence of the risk of step-out is accurately detected.
(8)幾つかの実施形態では、上記(1)から(6)のいずれかの構成において、
 前記運転モード切替部(110)は、複数の前記脱調パラメータのいずれかが、前記脱調パラメータに対応する前記許容範囲を超えたことに応答して、前記運転モードを前記脱調回避モードに切替えるように構成される。
(8) In some embodiments, in the configuration of any one of (1) to (6) above,
The operation mode switching unit (110) switches the operation mode to the step-out avoidance mode in response to any one of the plurality of step-out parameters exceeding the allowable range corresponding to the step-out parameter. configured to switch.
 上記(8)の構成によれば、脱調リスクが実際にはあるにも関わらず、運転モードが脱調回避モードに切替わらない不具合を抑制できる。 According to the above configuration (8), it is possible to suppress the problem that the operation mode is not switched to the step-out avoidance mode even though there is actually a risk of step-out.
(9)本開示の幾つかの実施形態に係る発電システム用コントローラは、
 原動機(2)からの入力によって駆動されて発電をするための磁気ギア発電機(10)の脱調のリスクを示す脱調パラメータが規定の許容範囲を超えたことに応答して、前記磁気ギア発電機(10)の運転モードを脱調回避モードに切替えるように構成された運転モード切替部(110)と、
 前記脱調回避モードにおいて、前記原動機(2)からの前記入力を低減させる入力低減指令を前記原動機(2)に付与するとともに、前記磁気ギア発電機(10)の発電機トルクを低減させるトルク低減指令を、前記磁気ギア発電機(10)に接続された電力変換器(50)に付与するように構成された低減指令部(120)と
 を備える。
(9) A power generation system controller according to some embodiments of the present disclosure includes:
in response to a step-out parameter indicative of the risk of step-out of a magnetic gear generator (10) for generating power driven by an input from a prime mover (2) exceeding a specified allowable range, said magnetic gear. an operation mode switching unit (110) configured to switch the operation mode of the generator (10) to a step-out avoidance mode;
In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover (2) is given to the prime mover (2), and torque reduction for reducing the generator torque of the magnetic gear generator (10). a reduction command unit (120) configured to provide a command to a power converter (50) connected to said magnetic gear generator (10).
 上記(9)の構成によれば、上記(1)と同様の効果を奏する。 According to the configuration of (9) above, the same effect as that of (1) above is achieved.
 以上、本開示の実施形態について説明したが、本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and includes modifications of the above-described embodiments and modes in which these modes are combined as appropriate.
 また、原動機2は、再生可能エネルギー抽出装置200に代えて、例えば、舶用主機が採用されてもよい。この場合、発電システム1の少なくとも一部は、船舶の軸発電機として機能してもよい。あるいは、原動機2は、例えば、車両用のエンジンが採用されてもよい。幾つかの実施形態では、回転シャフト3に制動トルクが付与され得るので、ねじれ角(δ)の範囲は、図2で例示したような正の値の範囲に加えて、負の値の範囲が含まれてもよい。 In addition, instead of the renewable energy extraction device 200, for example, a marine main engine may be adopted as the prime mover 2. In this case, at least part of the power generation system 1 may function as a ship's shaft generator. Alternatively, the prime mover 2 may employ, for example, a vehicle engine. In some embodiments, since a braking torque can be applied to the rotating shaft 3, the range of the torsion angle (δ) has a range of negative values in addition to a range of positive values as illustrated in FIG. may be included.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
As used herein, expressions such as "in a certain direction", "along a certain direction", "parallel", "perpendicular", "center", "concentric" or "coaxial", etc. express relative or absolute arrangements. represents not only such arrangement strictly, but also the state of being relatively displaced with a tolerance or an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous", which express that things are in the same state, not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
Further, in this specification, expressions representing shapes such as a quadrilateral shape and a cylindrical shape not only represent shapes such as a quadrilateral shape and a cylindrical shape in a geometrically strict sense, but also within the range in which the same effect can be obtained. , a shape including an uneven portion, a chamfered portion, and the like.
Moreover, in this specification, the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
1    :発電システム
2    :原動機
10   :磁気ギア発電機
20   :ステータ
24   :固定子巻き線
30   :低速ロータ
40   :高速ロータ
50   :電力変換器
100  :コントローラ
110  :運転モード切替部
120  :低減指令部
125  :運転モード復帰部
127  :増加指令部
200  :再生可能エネルギー抽出装置
210  :エネルギー抽出部
220  :原動機ロータ
230  :制御器
1: Power generation system 2: Prime mover 10: Magnetic gear generator 20: Stator 24: Stator winding 30: Low speed rotor 40: High speed rotor 50: Power converter 100: Controller 110: Operation mode switching unit 120: Reduction command unit 125 : Operation mode return unit 127 : Increase command unit 200 : Renewable energy extraction device 210 : Energy extraction unit 220 : Motor rotor 230 : Controller

Claims (9)

  1.  原動機と、
     前記原動機からの入力によって駆動されて発電をするように構成された磁気ギア発電機と、
     前記磁気ギア発電機に接続された電力変換器と、
     前記磁気ギア発電機の脱調のリスクを示す脱調パラメータが規定の許容範囲を超えたことに応答して、前記磁気ギア発電機の運転モードを脱調回避モードに切替えるように構成された運転モード切替部と、
     前記脱調回避モードにおいて、前記原動機からの前記入力を低減させる入力低減指令を前記原動機に付与するとともに、前記磁気ギア発電機の発電機トルクを低減させるトルク低減指令を前記電力変換器に付与するように構成された低減指令部と
     を備える発電システム。
    a prime mover;
    a magnetic gear generator configured to be driven by input from the prime mover to generate electricity;
    a power converter connected to the magnetic gear generator;
    An operation configured to switch the operation mode of the magnetic gear generator to a step-out avoidance mode in response to a step-out parameter indicating the risk of step-out of the magnetic gear generator exceeding a prescribed allowable range. a mode switching unit;
    In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover is given to the prime mover, and a torque reduction command for reducing the generator torque of the magnetic gear generator is given to the power converter. A power generation system comprising: a reduction command unit configured to:
  2.  前記磁気ギア発電機は、
     前記原動機からの入力トルクによって駆動されるように構成された低速ロータと、
     前記低速ロータの回転に伴い生じる磁気トルクによって駆動されるように構成された高速ロータと、
     前記高速ロータの回転に伴い前記電力変換器への供給電力が生じるように構成された固定子巻き線を有するステータと
    を備え、
     前記低減指令部は、前記脱調パラメータが前記許容範囲に含まれる基準状態を基準として、前記高速ロータの前記発電機トルクの変動量が、前記低速ロータの前記入力トルクの変動量と比例するよう、前記トルク低減指令を、前記電力変換器に付与するように構成された請求項1に記載の発電システム。
    The magnetic gear generator is
    a low speed rotor configured to be driven by input torque from the prime mover;
    a high-speed rotor configured to be driven by magnetic torque generated as the low-speed rotor rotates;
    a stator having a stator winding configured to supply power to the power converter as the high-speed rotor rotates,
    The reduction command unit sets the variation amount of the generator torque of the high-speed rotor to be proportional to the variation amount of the input torque of the low-speed rotor, based on a reference state in which the step-out parameter is within the allowable range. 2. The power generation system of claim 1, configured to apply the torque reduction command to the power converter.
  3.  前記磁気ギア発電機は、
     前記原動機からの入力トルクによって駆動されるように構成された低速ロータと、
     前記低速ロータの回転に伴い生じる磁気トルクで駆動されるように構成された高速ロータと、
     前記高速ロータの回転に伴い前記電力変換器への供給電力を生じさせるように構成された固定子巻き線を有するステータと
    を備え、
     前記低減指令部は、前記脱調パラメータが前記許容範囲に含まれる基準状態を基準として、前記発電機トルクの変動量が、前記高速ロータの角加速度の変動量と比例するよう、前記トルク低減指令を前記電力変換器に付与するように構成された請求項1または2に記載の発電システム。
    The magnetic gear generator is
    a low speed rotor configured to be driven by input torque from the prime mover;
    a high-speed rotor configured to be driven by magnetic torque generated as the low-speed rotor rotates;
    a stator having a stator winding configured to generate power supplied to the power converter as the high-speed rotor rotates,
    The reduction command unit issues the torque reduction command so that the fluctuation amount of the generator torque is proportional to the fluctuation amount of the angular acceleration of the high-speed rotor, based on a reference state in which the step-out parameter is included in the allowable range. to the power converter.
  4.  前記原動機は、再生可能エネルギーを抽出して前記磁気ギア発電機への前記入力を生成するように構成された再生可能エネルギー抽出装置であり、
     前記低減指令部は、前記再生可能エネルギーの将来予測値が上限値よりも大きい場合、前記脱調パラメータが前記許容範囲を超えたかに関わらず、前記入力低減指令を前記再生可能エネルギー抽出装置に付与し、前記再生可能エネルギーの抽出量を減少させるように構成された請求項1から3のいずれかに記載の発電システム。
    said prime mover is a renewable energy extraction device configured to extract renewable energy to produce said input to said magnetic gear generator;
    The reduction command unit provides the input reduction command to the renewable energy extraction device when the future predicted value of the renewable energy is greater than the upper limit value regardless of whether the step-out parameter exceeds the allowable range. 4. The power generation system according to any one of claims 1 to 3, configured to reduce the extraction of said renewable energy.
  5.  前記再生可能エネルギー抽出装置は、
      前記再生可能エネルギーを抽出するように構成されたエネルギー抽出部と、
      抽出した前記再生可能エネルギーによって駆動されるように構成された原動機ロータと、
      前記原動機ロータの回転数が目標回転数に近づくように前記エネルギー抽出部に対して制御指令を付与するように構成された制御器と、
    を含み、
     前記低減指令部は、
      前記再生可能エネルギーの前記将来予測値が前記上限値以下である場合に、前記脱調パラメータが前記許容範囲を超えたとき、前記入力低減指令として、前記目標回転数を低減する指令を前記制御器に付与し、
      前記再生可能エネルギーの前記将来予測値が前記上限値より大きい場合に、前記制御器を介さずに、前記再生可能エネルギーの前記抽出量を減少させるように前記エネルギー抽出部に前記入力低減指令を付与するように構成された請求項4に記載の発電システム。
    The renewable energy extraction device,
    an energy extractor configured to extract said renewable energy;
    a prime mover rotor configured to be driven by the extracted renewable energy;
    a controller configured to give a control command to the energy extractor so that the rotation speed of the prime mover rotor approaches a target rotation speed;
    including
    The reduction command unit is
    When the predicted future value of the renewable energy is equal to or less than the upper limit value and the step-out parameter exceeds the allowable range, the controller outputs a command to reduce the target rotation speed as the input reduction command. grant to
    When the future predicted value of the renewable energy is greater than the upper limit value, the input reduction command is given to the energy extraction unit so as to reduce the extraction amount of the renewable energy without going through the controller. 5. The power generation system of claim 4, configured to.
  6.  前記低減指令部が前記入力低減指令と前記トルク低減指令を付与した後、前記脱調パラメータが前記許容範囲に含まれるようになった場合、前記運転モードを通常モードに切替えるように構成された運転モード復帰部と、
     復帰した前記通常モードにおいて、前記入力を増加させる入力増加指令を前記原動機に付与するとともに、前記発電機トルクを増加させるトルク増大指令を前記電力変換器に付与するように構成された増加指令部と
     を備える請求項1から5のいずれかに記載の発電システム。
    After the reduction command unit gives the input reduction command and the torque reduction command, when the step-out parameter comes to be included in the allowable range, the operation mode is switched to the normal mode. a mode return unit;
    an increase command unit configured to apply an input increase command for increasing the input to the motor and a torque increase command for increasing the generator torque to the electric power converter in the restored normal mode; The power generation system according to any one of claims 1 to 5, comprising:
  7.  前記運転モード切替部は、複数の前記脱調パラメータが、各々の前記脱調パラメータに対応する複数の前記許容範囲を超えたことに応答して、前記運転モードを前記脱調回避モードに切替えるように構成された請求項1から6のいずれかに記載の発電システム。 The operation mode switching unit switches the operation mode to the step-out avoidance mode in response to the plurality of the step-out parameters exceeding the plurality of allowable ranges corresponding to the respective step-out parameters. The power generation system according to any one of claims 1 to 6, which is configured as
  8.  前記運転モード切替部は、複数の前記脱調パラメータのいずれかが、前記脱調パラメータに対応する前記許容範囲を超えたことに応答して、前記運転モードを前記脱調回避モードに切替えるように構成された請求項1から6のいずれかに記載の発電システム。 The operation mode switching unit switches the operation mode to the step-out avoidance mode in response to any one of the plurality of step-out parameters exceeding the allowable range corresponding to the step-out parameter. The power generation system according to any one of claims 1 to 6, configured.
  9.  原動機からの入力によって駆動されて発電をするための磁気ギア発電機の脱調のリスクを示す脱調パラメータが規定の許容範囲を超えたことに応答して、前記磁気ギア発電機の運転モードを脱調回避モードに切替えるように構成された運転モード切替部と、
     前記脱調回避モードにおいて、前記原動機からの前記入力を低減させる入力低減指令を前記原動機に付与するとともに、前記磁気ギア発電機の発電機トルクを低減させるトルク低減指令を、前記磁気ギア発電機に接続された電力変換器に付与するように構成された低減指令部と
     を備える発電システム用のコントローラ。
    In response to a step-out parameter indicating the risk of step-out of a magnetic gear generator for generating power driven by an input from a prime mover exceeding a specified allowable range, the operating mode of the magnetic gear generator is changed. an operation mode switching unit configured to switch to a step-out avoidance mode;
    In the step-out avoidance mode, an input reduction command for reducing the input from the prime mover is given to the prime mover, and a torque reduction command for reducing the generator torque of the magnetic gear generator is given to the magnetic gear generator. A controller for a power generation system comprising: a reduction command configured to apply to a connected power converter.
PCT/JP2022/007198 2021-02-25 2022-02-22 Power generation system and controller for power generation system WO2022181599A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280010974.0A CN116783814A (en) 2021-02-25 2022-02-22 Power generation system and control device for power generation system
US18/274,910 US20240084893A1 (en) 2021-02-25 2022-02-22 Power generation system and controller for power generation system
EP22759635.0A EP4280453A1 (en) 2021-02-25 2022-02-22 Power generation system and controller for power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-028565 2021-02-25
JP2021028565A JP7284203B2 (en) 2021-02-25 2021-02-25 Power generation systems and controllers for power generation systems

Publications (1)

Publication Number Publication Date
WO2022181599A1 true WO2022181599A1 (en) 2022-09-01

Family

ID=83048190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007198 WO2022181599A1 (en) 2021-02-25 2022-02-22 Power generation system and controller for power generation system

Country Status (5)

Country Link
US (1) US20240084893A1 (en)
EP (1) EP4280453A1 (en)
JP (1) JP7284203B2 (en)
CN (1) CN116783814A (en)
WO (1) WO2022181599A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024058907A (en) * 2022-10-17 2024-04-30 三菱重工業株式会社 MOBILE BODY CONDITION MONITORING DEVICE, MOBILE BODY CONDITION MONITORING METHOD, AND MOBILE BODY CONDITION MONITORING PROGRAM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915608A (en) * 1982-07-16 1984-01-26 Toshiba Corp Controller of steam turbine
JP2000156966A (en) * 1998-11-17 2000-06-06 Chiyoda Manufacturing Co Ltd Drive device using magnet coupling
JP2011166963A (en) * 2010-02-10 2011-08-25 Hitachi Cable Ltd Device for control of magnetic coupling
JP2014125991A (en) 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Operation monitoring system of exhaust heat recovery power generation apparatus
JP2021028565A (en) 2019-08-09 2021-02-25 方小剛 Low cost humidifying facility for air blown from air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915608A (en) * 1982-07-16 1984-01-26 Toshiba Corp Controller of steam turbine
JP2000156966A (en) * 1998-11-17 2000-06-06 Chiyoda Manufacturing Co Ltd Drive device using magnet coupling
JP2011166963A (en) * 2010-02-10 2011-08-25 Hitachi Cable Ltd Device for control of magnetic coupling
JP2014125991A (en) 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Operation monitoring system of exhaust heat recovery power generation apparatus
JP2021028565A (en) 2019-08-09 2021-02-25 方小剛 Low cost humidifying facility for air blown from air conditioner

Also Published As

Publication number Publication date
CN116783814A (en) 2023-09-19
EP4280453A1 (en) 2023-11-22
US20240084893A1 (en) 2024-03-14
JP7284203B2 (en) 2023-05-30
JP2022129756A (en) 2022-09-06

Similar Documents

Publication Publication Date Title
EP2466126B1 (en) Apparatus and method for operation of an off-shore wind turbine
EP2670979B1 (en) Systems and method for controlling wind turbine
US7656053B2 (en) Controlling power extraction for wind power generation
JP5010619B2 (en) Wind power generator and control method of wind power generator
CN203939626U (en) For reduce the control system of load on wind turbine in yaw error process
JP4168252B2 (en) Power generation system and control method thereof
WO2022181599A1 (en) Power generation system and controller for power generation system
KR20170000933A (en) Pitch control system of wind turbines using time delay estimation and control method thereof
EP3415752B1 (en) Variable rated speed control in partial load operation of a wind turbine
EP2706229B1 (en) Turbine and control system of the over-power of said turbine
JP2005325742A (en) Blade pitch angle controller and wind turbine generator
JP6462388B2 (en) Wind power generator
US9073626B2 (en) Actuating blades of an unducted fan
CN202483794U (en) Electro-mechanical coordination restraining device for chattering of rotary spindle of vertical axis wind turbine
JPWO2011155278A1 (en) Fluid power generator and fluid power generator control method
JP4415615B2 (en) Power generation system and its generator control method
Sliwinski et al. Impact of winding parameters of a switched reluctance generator on energy efficiency of a wind turbine
RU2468251C1 (en) Control method of wind-driven power plant, and device for its implementation
KR101487992B1 (en) Variable speed wind generator, and operating method thereof
JP6935981B1 (en) Power generator
CN105715460B (en) A kind of wind-driven generator with anti-hypervelocity performance
JP6071047B2 (en) Method for preventing over-rotation of wind turbine generator by PWM converter
JP2002339855A (en) System and method for variable speed wind power generation
CN103277253A (en) Vertical-shaft wind turbine rotary spindle vibration restraining method which is high in wind energy capturing efficiency
CN102644549B (en) Electromechanical coordination inhibiting method for chattering of rotary spindle of vertical axis wind machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280010974.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18274910

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022759635

Country of ref document: EP

Effective date: 20230818

NENP Non-entry into the national phase

Ref country code: DE