WO2022179289A1 - 近眼显示检测镜头及近眼显示装置 - Google Patents

近眼显示检测镜头及近眼显示装置 Download PDF

Info

Publication number
WO2022179289A1
WO2022179289A1 PCT/CN2021/142143 CN2021142143W WO2022179289A1 WO 2022179289 A1 WO2022179289 A1 WO 2022179289A1 CN 2021142143 W CN2021142143 W CN 2021142143W WO 2022179289 A1 WO2022179289 A1 WO 2022179289A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
sub
eye display
display detection
Prior art date
Application number
PCT/CN2021/142143
Other languages
English (en)
French (fr)
Inventor
蒋楚豪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022179289A1 publication Critical patent/WO2022179289A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present application relates to the field of optical technology, and in particular, to a near-eye display detection lens and a near-eye display device.
  • VR abbreviation for virtual reality
  • AR abbreviation for augmented reality
  • a near-eye display detection lens including:
  • a first lens group for receiving and transmitting the light passing through the diaphragm, for condensing the light, the first lens group comprising a first doublet lens that transmits the light;
  • the second lens group is used to receive and transmit the light passing through the first lens group, and is used for condensing the light, the second lens group includes a plurality of single lenses that transmit the light and second doublet lens;
  • a third lens group for receiving and transmitting the light passing through the second lens group, for condensing the light, and the third lens group includes a plurality of groups of double glued lenses that pass through the light in sequence a lens and at least one single lens;
  • a photosensitive component for receiving the light passing through the third lens group.
  • a near-eye display device including a housing and the above-mentioned near-eye display detection lens, where the near-eye display detection lens is mounted on the housing.
  • the application provides a near-eye display detection lens, which can be used to replace manual observation and detection of AR/VR products.
  • the application simulates the structure of the human eye by placing the diaphragm in front, and adopts the design of doublet lenses in multiple lens groups. With the elimination of chromatic aberration, the detection effect of AR/VR products detected by the near-eye display detection lens is closer to the effect of human eye observation and detection, which improves the detection efficiency and reduces the misjudgment in the detection process.
  • FIG. 1 discloses a schematic structural diagram of a near-eye display detection lens according to an embodiment of the present application
  • FIG. 2 discloses an MTF curve diagram when a near-eye display detection lens images an object at infinity in an embodiment of the present application
  • FIG. 3 discloses a MTF curve diagram when a near-eye display detection lens images a 2.5m object in an embodiment of the present application
  • FIG. 4 discloses an MTF curve diagram when a near-eye display detection lens images an object of 0.5 m according to an embodiment of the present application
  • FIG. 6 discloses a distortion curve diagram of a near-eye display detection lens imaging an object at infinity in an embodiment of the present application
  • FIG. 9 discloses a field curvature diagram of a near-eye display detection lens imaging a 0.5 m object in an embodiment of the present application
  • FIG. 11 discloses a defocus curve when a near-eye display detection lens images an infinitely distant object according to an embodiment of the present application
  • FIG. 12 discloses a defocus curve when a near-eye display detection lens images a 2.5m object in an embodiment of the present application
  • FIG. 13 discloses a defocus curve when a near-eye display detection lens images an object of 0.5 m according to an embodiment of the present application
  • FIG. 15 discloses an MTF curve diagram when a near-eye display detection lens images an infinity object in another embodiment of the present application
  • FIG. 16 discloses an MTF curve diagram when a near-eye display detection lens images a 2.5m object in another embodiment of the present application
  • FIG. 17 discloses an MTF curve diagram when a near-eye display detection lens images a 0.5m object in another embodiment of the present application
  • FIG. 18 discloses a field curvature diagram of a near-eye display detection lens imaging an object at infinity in another embodiment of the present application
  • FIG. 19 discloses a distortion curve diagram of a near-eye display detection lens imaging an object at infinity in another embodiment of the present application.
  • FIG. 20 discloses a field curvature diagram of a near-eye display detection lens imaging a 2.5m object in another embodiment of the present application
  • FIG. 23 discloses a distortion curve diagram of a near-eye display detection lens imaging a 0.5 m object in another embodiment of the present application
  • FIG. 24 discloses a defocus curve diagram when a near-eye display detection lens images an infinitely distant object in another embodiment of the present application
  • FIG. 25 discloses a defocus curve when a near-eye display detection lens images a 2.5m object in another embodiment of the present application
  • FIG. 26 discloses a defocus curve when the near-eye display detection lens images an object of 0.5 m in another embodiment of the present application.
  • Headsets and other electronic devices can be used in virtual reality and mixed reality (augmented reality) systems. These devices may include portable consumer electronic devices (eg, portable electronic devices such as cell phones, tablets, glasses, other wearable devices), overhead displays in cockpits, vehicles, etc., display-based devices (projectors, televisions, etc.) machine, etc.). Devices such as these may include displays and other optical components. Device configurations for providing virtual reality and/or mixed reality content to a user (viewer) with a head mounted display device are described herein as examples. However, this is only exemplary. Any suitable device may be used to provide visual content to a user, such as virtual reality and/or mixed reality content.
  • Head mounted devices such as augmented reality glasses worn on the user's head may be used to provide the user with computer-generated content overlaid on top of real-world content.
  • Real-world content can be viewed directly by the user through the transparent portion of the optical system.
  • An optical system may be used to route images from one or more pixel arrays in the display system to the user's eye.
  • Waveguides such as thin planar waveguides or other light guides formed from sheets of transparent material such as glass or plastic, may be included in the optical system to deliver image light from the pixel array to the user.
  • Display systems may include reflective displays, such as liquid crystal displays on silicon, microelectromechanical systems (MEMS) displays, or other displays.
  • MEMS microelectromechanical systems
  • FIG. 1 discloses a schematic structural diagram of a near-eye display detection lens 100 in an embodiment of the present application.
  • the near-eye display detection lens 100 can be used for the above-mentioned headset for providing virtual reality and/or mixed reality and/or augmented reality content. It can detect defects such as uneven brightness and chromaticity, dead pixels, line defects, cloud spots and unclearness of the display.
  • the near-eye display detection lens 100 replaces manual detection by simulating the structure of the human eye, and realizes the objective judgment of the display quality by the machine.
  • the near-eye display detection lens 100 may include a diaphragm 10 for transmitting light, a first lens group 20 having positive refractive power for receiving and transmitting light passing through the diaphragm 10, a first lens group 20 having positive refractive power for receiving and transmitting light
  • the second lens group 30 for passing the light passing through the first lens group 20, the third lens group 40 for receiving and passing the light passing through the second lens group 30 having positive refractive power, and the third lens group 40 for receiving the light passing through the second lens group 30
  • the light-sensitive component 50 The light-sensitive component 50 .
  • a single lens having substantially no refractive power may be included; for example, a diaphragm, a filter, a cover glass, etc.
  • ⁇ group having positive refractive power in this specification means that the group as a whole has positive refractive power, that is, has the ability to condense light.
  • ⁇ group with negative refractive power means that the group as a whole has negative refractive power, that is, has the ability to diffuse light.
  • Single lens with positive refractive power has the same meaning as “positive lens”.
  • Single lens with negative refractive power has the same meaning as “negative lens”.
  • the "-lens group” is not limited to a structure including a plurality of single lenses, and may be a structure including only one single lens.
  • a compound aspheric lens (a lens in which a spherical single lens and an aspheric-shaped film formed on the spherical single lens are integrally formed to function as a single aspheric single lens as a whole) is not regarded as a cemented lens but as a single single lens to use.
  • the symbol and surface shape of the refractive power related to the single lens including the aspherical surface are assumed to be considered in the paraxial region unless otherwise specified.
  • first lens group first lens group
  • second lens group second lens group
  • third lens group third lens group
  • lens group second lens group
  • first lens group first lens group
  • second lens group second lens group
  • first lens group first lens group
  • the diaphragm 10 is located at the front end of the near-eye display detection lens 100 , and is used to simulate the pupil of the human eye, which can limit the clear aperture of the near-eye display detection lens 100 .
  • the diaphragm diameter of the diaphragm 10 can be controlled at 3mm-5mm. In one embodiment, the diameter of the diaphragm is 3 mm, and in one embodiment, the diameter of the diaphragm may be 4 mm. In one embodiment, the diaphragm diameter may be 5mm. It can be understood that the diameter of the diaphragm can be adjusted up or down as required, and details are not described here.
  • the first lens group 20 may include a first doublet lens 21 with positive refractive power for transmitting light, which is beneficial to suppress chromatic aberration of magnification.
  • the first doublet lens 21 may include a first sub-negative lens 211 and a first sub-positive lens 212 that transmit light in sequence.
  • the light-receiving surface of the first sub-negative lens 211 away from the first sub-positive lens 212 is concave, and the light-emitting surface of the first sub-positive lens 212 away from the first sub-negative lens 211 is convex.
  • the first lens group 20 may be configured to include a first positive lens 22 in addition to the above-mentioned first doublet lens 21 .
  • the distribution of the positive refractive power of the first lens group 20 on the object side can be increased, so that the positive refractive power can be prevented from being concentrated on the second lens group 30 and the third lens group 40, and spherical aberration can be easily corrected.
  • the light-receiving surface of the first positive lens 22 facing the first sub-positive lens 212 is a convex surface
  • the light-emitting surface of the first positive lens 22 away from the first sub-positive lens 212 is a convex surface
  • the number of lenses constituting the first lens group 20 is set to three or less, it is advantageous for miniaturization. Furthermore, by providing the first lens group 20 with a group having positive refractive power, the diameters of the other lenses on the image side than the first lens group 20 can be reduced, thereby contributing to weight reduction.
  • the first lens group 20 is configured to include a first doublet lens 21 with positive refractive power as a whole and a first positive lens 22 with positive refractive power in order from the object side to the image side.
  • a first doublet lens 21 with positive refractive power as a whole
  • a first positive lens 22 with positive refractive power in order from the object side to the image side.
  • light can be gradually bent, and the image can be reduced.
  • the difference generation amount can suppress field curvature.
  • one lens component means one first positive lens 22 or one first doublet lens 21 .
  • the effective focal length f1 of the first lens group 20 is 40mm ⁇ f1 ⁇ 50mm.
  • the effective focal length f1 may also be 40mm, 50mm, or one of 42mm, 43mm, 44mm, 45mm, 46mm, 47mm, 48mm, 49mm, and the like.
  • the lenses included in the first lens group 20 may all be spherical lenses.
  • the second lens group 30 may include a plurality of single lenses 31 for transmitting light and a second doublet lens 32 having positive refractive power and for transmitting light.
  • the plurality of single lenses 31 may be distributed on both sides of the second doublet lens 32 .
  • the second doublet lens 32 may include a second positive sub-lens 321 and a second negative sub-lens 322 that transmit light in sequence, which is beneficial to the correction of chromatic aberration.
  • the second lens group 30 may also be provided with another doublet lens.
  • the light-receiving surface of the second sub-positive lens 321 away from the second sub-negative lens 322 is convex, and the light-emitting surface of the second sub-negative lens 322 away from the second sub-positive lens 321 is concave.
  • the arrangement of the plurality of single lenses 31 is beneficial to aberration correction, and when the aspherical single lenses are arranged in the plurality of single lenses 31 , it is beneficial to the correction of field curvature and astigmatism.
  • the plurality of single lenses 31 may include a second positive lens 311 , a first negative lens 312 , a second negative lens 313 and a third positive lens 314 that transmit light in sequence.
  • the second doublet lens 32 is located between the second positive lens 311 and the first negative lens 312 .
  • the arrangement of the second positive lens 311 in the multi-piece single lens 31 can reduce the diameters of other lenses on the image side than the second positive lens 311 , thereby contributing to weight reduction.
  • the light-receiving surface of the second positive lens 311 facing the first lens group 20 is a convex surface
  • the light-emitting surface of the second positive lens 311 facing the second sub-positive lens 321 is a convex surface.
  • the radius of curvature of the light-receiving surface of the second positive lens 311 is smaller than the radius of curvature of the light-emitting surface.
  • the light-receiving surface of the first negative lens 312 facing the second sub-negative lens 322 is concave, and the light-emitting surface of the first negative lens 312 away from the second sub-negative lens 322 is concave.
  • the lens surface (ie, the light-receiving surface) of the second negative lens 313 close to the second doublet lens 32 is concave.
  • the concave surface and the convex surface of the third positive lens 314 on the side away from the second negative lens 313 ie, the light exit surface
  • large refraction of off-axis light rays can be avoided, thereby suppressing the generation of aberrations quantity.
  • the light receiving surface of the second negative lens 313 facing the first negative lens 312 is concave, and the light emitting surface of the second negative lens 313 facing the third positive lens 314 is convex.
  • the light receiving surface of the third positive lens 314 facing the second negative lens 313 is convex, and the light emitting surface of the third positive lens 314 away from the second negative lens 313 is convex.
  • the diameter of the single lens on the image side than the second lens group 30 can be reduced, thereby contributing to weight reduction.
  • the effective focal length f2 of the second lens group 30 is 145mm ⁇ f2 ⁇ 152mm.
  • the effective focal length f2 may also be 145mm, 152mm, or one of 146mm, 147mm, 148mm, 149mm, 150mm, 151mm, and the like.
  • the single lenses included in the second lens group 30 can all be spherical lenses.
  • the third lens group 40 includes a plurality of groups of doublet lenses 41 and at least one single lens 42 that have positive refractive power and transmit light in sequence.
  • the multiple sets of doublet lenses 41 are beneficial to the correction of chromatic aberration.
  • the multiple groups of doublet lenses 41 may be three groups, which are respectively a third doublet lens 411 , a fourth doublet lens 412 and a fifth doublet lens 413 that transmit light in sequence.
  • the third doublet lens 411 may include a third sub-positive lens 4111 and a third sub-negative lens 4112 that transmit light in sequence.
  • the light-receiving surface of the third sub-positive lens 4111 away from the third sub-negative lens 4112 is convex, and the light-emitting surface of the third sub-negative lens 4112 away from the third sub-positive lens 4111 is concave.
  • the fourth doublet lens 412 includes a fourth sub-negative lens 4121 and a fourth sub-positive lens 4122 that transmit light in sequence.
  • the light-receiving surface of the fourth sub-negative lens 4121 away from the fourth sub-positive lens 4122 is concave, and the light-emitting surface of the fourth sub-positive lens 4122 away from the fourth sub-negative lens 4121 is convex.
  • the fifth doublet lens 413 includes a fifth sub-positive lens 4131 and a fifth sub-negative lens 4132 that sequentially transmit light.
  • the light-receiving surface of the fifth sub-positive lens 4131 away from the fifth sub-negative lens 4132 is a convex surface
  • the light-emitting surface of the fifth sub-negative lens 4132 away from the fifth sub-positive lens 4131 is a convex surface
  • At least one single lens 42 may include a fourth positive lens 421 .
  • the light-receiving surface of the fourth positive lens 421 facing the fifth sub-negative lens 4132 is a convex surface
  • the light-emitting surface of the fourth positive lens 421 away from the fifth sub-negative lens 4132 is a convex surface
  • the effective focal length f3 of the third lens group 40 is 49mm ⁇ f3 ⁇ 55mm.
  • the effective focal length f3 may also be 49mm, 55mm, or one of 50mm, 51mm, 52mm, 53mm, 54mm, and the like.
  • the lenses included in the third lens group 40 can all be spherical single lenses.
  • the photosensitive assembly 50 may include a photosensitive member.
  • the photosensitive member may be a photosensitive chip.
  • the photosensitive member can be a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) photosensitive member or a charge-coupled device (CCD, Charge-coupled Device) photosensitive member.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the photosensitive member 50 can also be a photosensitive member including a photosensitive member. It is understood that the photosensitive member is not limited to the photosensitive chip, but can also be other.
  • the photosensitive member is a CMOS chip
  • the diagonal dimension of the effective photosensitive area of the CMOS chip is 16.4mm-17mm
  • the aspect ratio of the effective photosensitive area is 16:9
  • the number of effective pixels is 5320H*3032V.
  • the diagonal size of the effective light-emitting area of the CMOS chip is 15.5 mm ⁇ 16 mm, the aspect ratio of the effective light-emitting area is 3:2, and the number of effective pixels is 5472H*3648V.
  • the photosensitive assembly 50 may further include a glass cover. That is, there is a glass cover outside the effective photosensitive surface of the CMOS chip to protect the effective photosensitive surface.
  • the glass cover can exist in a stand-alone form or in the form of an integrated package in a CMOS chip.
  • the thickness of the glass cover plate ranges from 0.3 mm to 0.8 mm.
  • the thickness of the glass cover plate may be 0.3 mm, 0.8 mm, or one of 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, and the like.
  • the FOV in the diagonal direction of the near-eye display detection lens 100 is 58° ⁇ FOV ⁇ 62°.
  • the total optical length TTL of the near-eye display detection lens 100 is TTL ⁇ 300mm.
  • the focal length f of the near-eye display detection lens 100 may be -15mm ⁇ f ⁇ 15.15mm.
  • the focal length f of the near-eye display detection lens 100 may be -14mm ⁇ f ⁇ 15.15mm.
  • the focal length f of the near-eye display detection lens 100 may be -13mm, -12mm, -11mm, -10mm, -9mm, -8mm, -7mm, -6mm, -5mm, -4mm, -3mm, One of -2mm, -1mm, 0mm, 1mm, 2mm, 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, 11mm, 12mm, 13mm, 14mm, 15mm, etc.
  • the near-eye display detection lens 100 has good imaging quality for objects ranging from 0.5m to infinity.
  • the FOV in the diagonal direction of the near-eye display detection lens 100 can be 60°
  • the angular resolution can be 102PPD. It can be seen that the present invention balances the angle of view and the angular resolution. Compared with the prior art, the present invention greatly improves the imaging quality on the basis of ensuring that the angle of view meets the detection requirements. or augmented reality content in headsets and other electronic devices' display quality control plays a positive role.
  • the parameters of the lens in one of the embodiments of the present application may be as shown in the following table:
  • the near-eye display detection lens 100 has a diagonal field of view FOV of 60°, a horizontal to vertical field of view ratio of 16:9, a total optical length TTL of 300 mm, a focal length f of -14.5492 mm, and a maximum optical aperture of 300 mm. is 40.15mm, and the diaphragm aperture is 4mm.
  • the used image sensor 50 is a CMOS photosensitive chip with an effective photosensitive area of 1.1 inches, and an effective photosensitive area of 14.595 mm ⁇ 8.319 mm is used therein.
  • the effective focal length f1 of the first lens group 20 is 45.785 mm
  • the effective focal length f2 of the second lens group 30 is 148.611 mm
  • the effective focal length f3 of the third lens group 40 is 52.702 mm
  • the near-eye display detection lens 100 can perform high-quality imaging of objects from infinity to 0.5m
  • the back intercept the thickness of the 28th surface in the fourth positive lens 421 needs to be changed at different shooting distances
  • the thickness of each element, the radius of curvature and the material Parameters are listed in the table.
  • FIG. 2 discloses a MTF (Modulation Transfer Function) curve diagram when the near-eye display detection lens 100 images an object at infinity in an embodiment of the present application
  • FIG. 3 discloses a
  • the MTF curve of the near-eye display detection lens 100 when imaging an object of 2.5 m is shown in FIG. 4
  • FIG. 4 discloses the MTF curve of the near-eye display and detection lens 100 in an embodiment of the present application when an object of 0.5 m is imaged, wherein the MTF It can judge the ability of near-eye display detection lens to restore contrast.
  • the vertical axis represents the OTF (Optical Transfer Function, optical transfer function) modulus value
  • the horizontal axis represents the spatial frequency.
  • the spatial frequency range is 0-182lp/mm, and the OTF modulus value is above 0.3.
  • the spatial frequency is 18.2lp/mm
  • the OTF modulus value is above 0.9
  • the spatial range is 36.4lp/mm.
  • the OTF modulus values are all above 0.8, the spatial frequency is 54.6lp/mm, the OTF modulus values are all above 0.7, the spatial frequency is 72.8lp/mm, the OTF modulus values are all above 0.6, and the spatial frequency is 91.0lp/mm mm, the OTF modulus values are all above 0.6, the spatial frequency is 109.2lp/mm, the OTF modulus values are all above 0.5, the spatial frequency is 127.4lp/mm, the OTF modulus values are all above 0.4, and the spatial frequency is 145.6lp /mm, the OTF modulus values are all above 0.4, and the spatial frequency is 163.8lp/mm, and the OTF modulus values are all above 0.3.
  • the spatial frequency range is 0-182lp/mm, and the OTF modulus value is above 0.3.
  • the spatial frequency is 18.2lp/mm
  • the OTF modulus value is above 0.9
  • the spatial frequency is 36.4lp/mm.
  • the OTF modulus values are all above 0.8, the spatial frequency is 54.6lp/mm, the OTF modulus values are all above 0.7, the spatial frequency is 72.8lp/mm, the OTF modulus values are all above 0.7, and the spatial frequency is 91.0lp/mm mm, the OTF modulus values are all above 0.6, the spatial frequency is 109.2lp/mm, the OTF modulus values are all above 0.6, the spatial frequency is 127.4lp/mm, the OTF modulus values are all above 0.5, and the spatial frequency is 145.6lp /mm, the OTF modulus values are all above 0.4, and the spatial frequency range is 163.8lp/mm, and the OTF modulus values are all above 0.4.
  • the spatial frequency range is 0-182lp/mm, and the OTF modulus value is above 0.3.
  • the spatial frequency is 18.2lp/mm, the OTF modulus value is above 0.9, and the spatial frequency is 36.4lp/mm.
  • the OTF modulus values are all above 0.8, the spatial frequency is 54.6lp/mm, the OTF modulus values are all above 0.7, the spatial frequency is 72.8lp/mm, the OTF modulus values are all above 0.6, and the spatial frequency is 91.0lp/mm mm, the OTF modulus values are all above 0.6, the spatial frequency is 109.2lp/mm, the OTF modulus values are all above 0.5, the spatial frequency is 127.4lp/mm, the OTF modulus values are all above 0.4, and the spatial frequency is 145.6lp /mm, the OTF modulus values are all above 0.4, and the spatial frequency range is 163.8lp/mm, and the OTF modulus values are all above 0.3.
  • the imaging contrast of the near-eye display detection lens 100 is good, the resolution is relatively high, and the edge illumination of the image is uniform.
  • FIG. 5 discloses a field curvature diagram when the near-eye display detection lens 100 images an object at infinity according to an embodiment of the present application
  • FIG. 6 discloses The distortion curve diagram of the near-eye display detection lens 100 in an embodiment of the present application when imaging an object at infinity
  • FIG. 7 discloses the field curvature diagram of the near-eye display detection lens 100 in an embodiment of the present application when an object of 2.5 m is imaged
  • FIG. 8 Disclosed is a distortion curve diagram of the near-eye display detection lens 100 in an embodiment of the present application when an object of 2.5 m is imaged.
  • FIG. 9 discloses a field curvature diagram of the near-eye display detection lens 100 in an embodiment of the present application when an object of 0.5 m is imaged
  • FIG. 10 discloses a distortion curve diagram when the near-eye display detection lens 100 images an object of 0.5 m according to an embodiment of the present application.
  • the curvature of field can represent the curvature and warpage of the imaging surface of the lens. Distortion can indicate the degree of deformation of the image of the lens.
  • the horizontal axis represents the offset (unit: mm)
  • the vertical axis represents the field angle (unit: degree)
  • the field curvature is controlled at ⁇ 0.04 mm, indicating that the near-eye display detection lens 100 has a good field curvature correction.
  • FIG. 10 discloses a field curvature diagram of the near-eye display detection lens 100 in an embodiment of the present application when an object of 0.5 m is imaged
  • the curvature of field can represent the curvature and warpage of the imaging surface of the lens
  • the horizontal axis represents the degree of distortion (unit: percentage), and the vertical axis represents the angle of view (unit: degree). It can be seen that the distortion control of the near-eye display detection lens 100 is very small.
  • the horizontal axis represents the offset (unit: mm), the vertical axis represents the field angle (unit: degree), and the field curvature is controlled at ⁇ 0.035mm, indicating that the near-eye display detection lens 100 has a good field curvature correction.
  • the horizontal axis represents the degree of distortion (unit: percentage), and the vertical axis represents the angle of view (unit: degree). It can be seen that the distortion control of the near-eye display detection lens 100 is very small.
  • FIG. 7 the horizontal axis represents the offset (unit: mm)
  • the vertical axis represents the field angle (unit: degree)
  • the field curvature is controlled at ⁇ 0.035mm, indicating that the near-eye display detection lens 100 has a good field curvature correction.
  • the horizontal axis represents the degree
  • the horizontal axis represents the offset (unit: mm), the vertical axis represents the field angle (unit: degree), and the field curvature is controlled to ⁇ 0.05 mm, indicating that the near-eye display detection lens 100 has good field curvature correction.
  • the horizontal axis represents the degree of distortion (unit: percentage), and the vertical axis represents the angle of view (unit: degree). It can be seen that the distortion control of the near-eye display detection lens 100 is very small.
  • FIG. 11 discloses the defocus curve when the near-eye display detection lens 100 images an object at infinity in an embodiment of the present application
  • FIG. 12 discloses the near-eye display detection and detection according to an embodiment of the present application
  • FIG. 13 discloses the defocus curve when the near-eye display detection lens 100 is imaging a 0.5m object in an embodiment of the present application.
  • the horizontal axis is the focal shift (unit: mm), and the vertical axis is the OTF modulus value.
  • the defocus curve can represent the focal depth information of the lens system. It can be seen that the overall defocus amount in Figure 11, Figure 12 and Figure 13 is small, Provide a reference for the adjustment of the near-eye display detection lens 100.
  • the embodiments based on the solution of the present invention have imaging quality far higher than the system Nyquist sampling evaluation when imaging objects at infinity/2.5m/0.5m, respectively. and field curvature are limited to a range that is much smaller than that which cannot be detected by the human eye.
  • the detection accuracy of the resolution of AR head-mounted display products can be greatly improved, and the working distance range basically covers the virtual image distance of the existing AR head-mounted display products.
  • the sensitivity of assembly and debugging is weaker than the accuracy commonly used in current production, which is convenient for mass production process.
  • the near-eye display detection lens 100 may include the diaphragm 10 , the first lens group 20 , the second lens group 30 , the third lens group 40 and the photosensitive component 50 in the above embodiments.
  • the fourth positive lens 421 at least one of the single lenses 42 may also include a third negative lens 422 that receives and transmits the light passing through the fourth positive lens 421 .
  • the fourth positive lens 421 and the third negative lens 422 can be used to reduce weight and improve image quality, and can also achieve higher optical resolution.
  • the light receiving surface of the third negative lens 422 facing the fourth positive lens 421 is convex, and the light emitting surface of the third negative lens 422 away from the fourth positive lens 421 is concave.
  • the effective focal length f1 of the first lens group 20 is 35mm ⁇ f1 ⁇ 40mm.
  • the effective focal length f1 may also be 35mm, 40mm, or one of 36mm, 37mm, 38mm, 39mm, and the like.
  • the effective focal length f2 of the second lens group 30 is 90mm ⁇ f2 ⁇ 100mm.
  • the effective focal length f2 may also be 90mm, 100mm, or one of 91mm, 92mm, 93mm, 94mm, 95mm, 96mm, 97mm, 98mm, 99mm, and the like.
  • the effective focal length f3 of the third lens group 40 is 49mm ⁇ f3 ⁇ 55mm.
  • the effective focal length f3 may also be 49mm, 55mm, or one of 50mm, 51mm, 52mm, 53mm, 54mm, and the like.
  • the parameters of the lens in one of the embodiments of the present application may be as shown in the following table:
  • the near-eye display detection lens 100 has a diagonal field of view FOV of 60°, a horizontal to vertical field of view ratio of 16:9, a total optical length TTL of 300 mm, a focal length f of -14.5492 mm, and a maximum optical aperture of 300 mm. is 40.15mm, and the diaphragm aperture is 4mm.
  • the used image sensor 50 is a CMOS photosensitive chip with an effective photosensitive area of 1.1 inches, and an effective photosensitive area of 14.595 mm ⁇ 8.319 mm is used therein.
  • the effective focal length f1 of the first lens group 20 is 37.37784mm
  • the effective focal length f2 of the second lens group 30 is 93.558mm
  • the effective focal length f3 of the third lens group 40 is 52.054mm
  • the near-eye display detection lens 100 can perform high-quality imaging of objects from infinity to 0.5m
  • the back intercept the thickness of the 30th surface in the third negative and positive lens 422 needs to be changed at different shooting distances
  • the thickness of each element, the radius of curvature and Material parameters are listed in the table.
  • FIG. 15 discloses a MTF (Modulation Transfer Function) graph when the near-eye display detection lens 100 images an object at infinity in another embodiment of the present application
  • FIG. 16 discloses Figure 17 shows the MTF curve when the near-eye display detection lens 100 in another embodiment of the present application is imaging a 2.5m object
  • FIG. 17 discloses the MTF curve when the near-eye display detection lens 100 in another embodiment of the present application is imaging a 0.5m object , in which the MTF can judge the ability of the near-eye display detection lens to restore the contrast.
  • the vertical axis represents the OTF (Optical Transfer Function, optical transfer function) modulus value
  • the horizontal axis represents the spatial frequency.
  • the spatial frequency range is 0-182lp/mm, and the OTF modulus value is above 0.2.
  • the spatial frequency is 18.2lp/mm
  • the OTF modulus value is above 0.9
  • the spatial range is 36.4lp/mm.
  • the OTF modulus values are all above 0.8, the spatial frequency is 54.6lp/mm, the OTF modulus values are all above 0.7, the spatial frequency is 72.8lp/mm, the OTF modulus values are all above 0.6, and the spatial frequency is 91.0lp/mm mm, the OTF modulus values are all above 0.5, the spatial frequency is 109.2lp/mm, the OTF modulus values are all above 0.4, the spatial frequency is 127.4lp/mm, the OTF modulus values are all above 0.4, and the spatial frequency is 145.6lp /mm, the OTF modulus values are all above 0.3, and the spatial frequency is 163.8lp/mm, and the OTF modulus values are all above 0.3.
  • the spatial frequency range is 0-182lp/mm, and the OTF modulus values are all above 0.3.
  • the spatial frequency is 18.2lp/mm, the OTF modulus values are all above 0.9, and the spatial frequency is 36.4lp/mm.
  • the OTF modulus values are all above 0.8, the spatial frequency is 54.6lp/mm, the OTF modulus values are all above 0.7, the spatial frequency is 72.8lp/mm, the OTF modulus values are all above 0.7, and the spatial frequency is 91.0lp/mm mm, the OTF modulus values are all above 0.6, the spatial frequency is 109.2lp/mm, the OTF modulus values are all above 0.5, the spatial frequency is 127.4lp/mm, the OTF modulus values are all above 0.5, and the spatial frequency is 145.6lp /mm, the OTF modulus values are all above 0.4, and the spatial frequency range is 163.8lp/mm, and the OTF modulus values are all above 0.3.
  • the spatial frequency range is 0-182lp/mm, and the OTF modulus values are all above 0.2.
  • the spatial frequency is 18.2lp/mm, the OTF modulus values are all above 0.9, and the spatial frequency is 36.4lp/mm.
  • the OTF modulus values are all above 0.8, the spatial frequency is 54.6lp/mm, the OTF modulus values are all above 0.7, the spatial frequency is 72.8lp/mm, the OTF modulus values are all above 0.6, and the spatial frequency is 91.0lp/mm mm, the OTF modulus values are all above 0.5, the spatial frequency is 109.2lp/mm, the OTF modulus values are all above 0.5, the spatial frequency is 127.4lp/mm, the OTF modulus values are all above 0.4, and the spatial frequency is 145.6lp /mm, the OTF modulus values are all above 0.3, and the spatial frequency range is 163.8lp/mm, and the OTF modulus values are all above 0.3.
  • the imaging contrast of the near-eye display detection lens 100 is good, the resolution is relatively high, and the edge illumination of the image is uniform.
  • FIG. 18 discloses a field curvature diagram of the near-eye display detection lens 100 imaging an object at infinity in another embodiment of the present application
  • FIG. 19 discloses Figure 20 shows the distortion curve of the near-eye display detection lens 100 in another embodiment of the present application when imaging an object at infinity
  • FIG. 20 discloses the field curvature when the near-eye display detection lens 100 in another embodiment of the present application is imaging a 2.5m object
  • FIG. 21 discloses a distortion curve when the near-eye display detection lens 100 images a 2.5m object in another embodiment of the present application
  • FIG. 19 discloses a field curvature diagram of the near-eye display detection lens 100 imaging an object at infinity
  • FIG. 19 discloses Figure 20 shows the distortion curve of the near-eye display detection lens 100 in another embodiment of the present application when imaging an object at infinity
  • FIG. 20 discloses the field curvature when the near-eye display detection lens 100 in another embodiment of the present application is imaging a 2.5m object
  • FIG. 21 discloses a distortion curve when the near-eye
  • FIG. 22 discloses when the near-eye display detection lens 100 images a 0.5m object in another embodiment of the present application
  • FIG. 23 discloses a distortion curve when the near-eye display detection lens 100 images a 0.5m object in another embodiment of the present application.
  • the curvature of field can represent the curvature and warpage of the imaging surface of the lens. Distortion can indicate the degree of deformation of the image of the lens.
  • the horizontal axis represents the offset (unit: mm)
  • the vertical axis represents the field angle (unit: degree)
  • the field curvature is controlled at -0.04-0.06 mm, indicating that the near-eye display detection lens 100 has a good field curvature correction.
  • FIG. 23 discloses a distortion curve when the near-eye display detection lens 100 images a 0.5m object in another embodiment of the present application.
  • the curvature of field can represent the curvature and warpage of the imaging surface of the lens. Distortion can indicate the degree of deformation of the image of the lens.
  • the horizontal axis represents the degree of distortion (unit: percentage), and the vertical axis represents the angle of view (unit: degree). It can be seen that the distortion control of the near-eye display detection lens 100 is very small.
  • the horizontal axis represents the offset (unit: mm), the vertical axis represents the field angle (unit: degree), and the field curvature is controlled at -0.02-0.05mm, indicating that the near-eye display detection lens 100 has a good field curvature correction.
  • the horizontal axis represents the degree of distortion (unit: percentage), and the vertical axis represents the angle of view (unit: degree). It can be seen that the distortion control of the near-eye display detection lens 100 is very small.
  • FIG. 20 the horizontal axis represents the offset (unit: mm), the vertical axis represents the field angle (unit: degree), and the field curvature is controlled at -0.02-0.05mm, indicating that the near-eye display detection lens 100 has a good field curvature correction.
  • the horizontal axis represents the degree of
  • the horizontal axis represents the offset (unit: mm)
  • the vertical axis represents the field angle (unit: degree)
  • the field curvature is controlled at 0-0.04 mm, indicating that the field curvature correction of the near-eye display detection lens 100 is good.
  • the horizontal axis represents the degree of distortion (unit: percentage)
  • the vertical axis represents the angle of view (unit: degree). It can be seen that the distortion control of the near-eye display detection lens 100 is very small.
  • FIG. 24 discloses the defocus curve when the near-eye display detection lens 100 images an object at infinity in another embodiment of the present application
  • FIG. 25 discloses the near-eye display and detection lens 100 in another embodiment of the present application.
  • the defocus curve when the detection lens 100 images an object of 2.5m is shown.
  • FIG. 26 discloses the defocus curve of the near-eye display detection lens 100 when an object of 0.5m is imaged in another embodiment of the present application.
  • the horizontal axis is the focal shift (unit: mm), and the vertical axis is the OTF modulus value.
  • the defocus curve can represent the focal depth information of the lens system. It can be seen that the overall defocus amount in Figure 24, Figure 25 and Figure 26 is small, Provide a reference for the adjustment of the near-eye display detection lens 100.
  • the embodiments based on the solution of the present invention have imaging quality far higher than the system Nyquist sampling evaluation when imaging objects at infinity/2.5m/0.5m, respectively. and field curvature are limited to a range that is much smaller than that which cannot be detected by the human eye.
  • the detection accuracy of the resolution of AR head-mounted display products can be greatly improved, and the working distance range basically covers the virtual image distance of the existing AR head-mounted display products.
  • the sensitivity of assembly and debugging is weaker than the accuracy commonly used in current production, which is convenient for mass production process.
  • the above-mentioned near-eye display detection lens 100 only mentions various single lenses. If it is made as a near-eye display detection device, a corresponding casing must be designed to install the near-eye display detection lens 100 .
  • the disclosed method and device may be implemented in other manners.
  • the device implementations described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种近眼显示检测镜头(100)及近眼显示装置,涉及光学技术领域。光阑(10)用于透过光线;第一透镜组(20)用于接收并透过经过光阑(10)的光线,第一透镜组(20)包括透过光线的第一双胶合透镜(21);第二透镜组(30)用于接收并透过经过第一透镜组(20)的光线,第三透镜组(40)用于接收并透过经过第二透镜组(30)的光线,感光组件(50)用于接收经过第三透镜组(40)的光线。通过将光阑(10)前置以模拟人眼构造,并且通过多组透镜组中双胶合透镜的设计与配合消除色差,使得近眼显示检测镜头(100)对AR/VR产品进行检测的检测效果更接近人眼观察、检测的效果,提高了检测效率,减少了检测过程中的误判。

Description

近眼显示检测镜头及近眼显示装置 【技术领域】
本申请涉及光学技术领域,具体是涉及一种近眼显示检测镜头及近眼显示装置。
【背景技术】
随着VR(虚拟现实的英文缩写)技术和AR(增强现实的英文缩写)技术的普及,AR/VR产品不断涌现,对于其成像质量已经成为消费者关注的焦点。通常是通过人眼观察来判定,容易导致因个人主观判断导致的误判,另外通过人眼观察的方式也不适用于大批量产品的检测工作。
【发明内容】
本申请实施方式一方面提供了一种近眼显示检测镜头,包括:
光阑,用于透过光线;
第一透镜组,用于接收并透过经过所述光阑的所述光线,用于对所述光线进行汇聚,所述第一透镜组包括透过所述光线的第一双胶合透镜;
第二透镜组,用于接收并透过经过所述第一透镜组的所述光线,用于对所述光线进行汇聚,所述第二透镜组包括透过所述光线的多片单透镜和第二双胶合透镜;
第三透镜组,用于接收并透过经过所述第二透镜组的所述光线,用于对所述光线进行汇聚,所述第三透镜组包括依次透过所述光线的多组双胶合透镜和至少一片单透镜;以及
感光组件,用于接收经过所述第三透镜组的所述光线。
本申请实施方式另一方面提供了一种近眼显示装置,包括壳体以及上述所述的近眼显示检测镜头,所述近眼显示检测镜头安装在所述壳体上。
本申请提供了一种近眼显示检测镜头,可用于替代人工去观察、检测AR/VR产品,本申请通过将光阑前置以模拟人眼构造,并且通过多组透镜组中双胶合透镜的设计与配合消除色差,使得近眼显示检测镜头对AR/VR产品进行检测的检测效果更接近人眼观察、检测的效果,提高了检测效率,减少了检测过程中的误判。
【附图说明】
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1揭露了本申请一实施例中近眼显示检测镜头的结构示意图;
图2揭露了本申请一实施例中近眼显示检测镜头对无穷远物体成像时的MTF曲线图;
图3揭露了本申请一实施例中近眼显示检测镜头对2.5m物体成像时的MTF曲线图;
图4揭露了本申请一实施例中近眼显示检测镜头对0.5m物体成像时的MTF曲线图;
图5揭露了本申请一实施例中近眼显示检测镜头对无穷远物体成像时的场曲图;
图6揭露了本申请一实施例中近眼显示检测镜头对无穷远物体成像时的畸变曲线图;
图7揭露了本申请一实施例中近眼显示检测镜头对2.5m物体成像时的场曲图;
图8揭露了本申请一实施例中近眼显示检测镜头对2.5m物体成像时的畸变曲线图;
图9揭露了本申请一实施例中近眼显示检测镜头对0.5m物体成像时的场曲图;
图10揭露了本申请一实施例中近眼显示检测镜头对0.5m物体成像时的畸变曲线图;
图11揭露了本申请一实施例中近眼显示检测镜头对无穷远物体成像时的离焦曲线图;
图12揭露了本申请一实施例中近眼显示检测镜头对2.5m物体成像时的离焦曲线图;
图13揭露了本申请一实施例中近眼显示检测镜头对0.5m物体成像时的离焦曲线图;
图14揭露了本申请另一实施例中近眼显示检测镜头的结构示意图;
图15揭露了本申请另一实施例中近眼显示检测镜头对无穷远物体成像时的MTF曲线图;
图16揭露了本申请另一实施例中近眼显示检测镜头对2.5m物体成像时的MTF曲线图;
图17揭露了本申请另一实施例中近眼显示检测镜头对0.5m物体成像时的MTF曲线图;
图18揭露了本申请另一实施例中近眼显示检测镜头对无穷远物体成像时的场曲图;
图19揭露了本申请另一实施例中近眼显示检测镜头对无穷远物体成像时的畸变曲线图;
图20揭露了本申请另一实施例中近眼显示检测镜头对2.5m物体成像时的场曲图;
图21揭露了本申请另一实施例中近眼显示检测镜头对2.5m物体成像时的畸变曲线图;
图22揭露了本申请另一实施例中近眼显示检测镜头对0.5m物体成像时的场曲图;
图23揭露了本申请另一实施例中近眼显示检测镜头对0.5m物体成像时的畸变曲线图;
图24揭露了本申请另一实施例中近眼显示检测镜头对无穷远物体成像时的离焦曲线图;
图25揭露了本申请另一实施例中近眼显示检测镜头对2.5m物体成像时的离焦曲线图;
图26揭露了本申请另一实施例中近眼显示检测镜头对0.5m物体成像时的离焦曲线图。
【具体实施方式】
下面结合附图和实施方式,对本申请作进一步的详细描述。特别指出的是,以下实施方式仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施方式仅为本申请的部分实施方式而非全部实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
在本文中提及“实施方式”意味着,结合实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施方式中。在说明书中的各个位置出现该短语并不一定均是指相同的实施方式,也不是与其他实施方式互斥的独立的或备选的实施方式。本领域技术人员显式地和隐式地理解的是,本文所描述的实施方式可以与其他实施方式相结合。
头戴式设备和其他电子设备可用于虚拟现实和混合现实(增强现实)***。这些设备可包括便携式消费电子设备(例如,便携式电子设备,诸如蜂窝电话、平板电脑、眼镜、其他可穿戴装置)、在驾驶舱、车辆等中的头顶显示器、基于显示器的装置(投影仪、电视机等)。诸如这些设备的设备可包括显示器和其他光学部件。将虚拟现实和/或混合现实内容提供给具有头戴式显示设备的用户(观察者)的设备构型在本文中作为示例描述。然而,这仅为例示性的。任何合适的装置都可用于向用户提供视觉内容,例如虚拟现实和/或混合现实内容。
佩戴在用户头部的头戴式设备诸如增强现实眼镜可用于向用户提供覆盖在真实世界内容顶部的计算机生成的内容。真实世界内容可由用户通过光学***的透明部分直接查看。光学***可用于将图像从显示***中的一个或多个像素阵列路由至用户的眼睛。光学***中可包括波导诸如由透明材料(诸如玻璃或塑料)的片形成的薄平面波导或其他光导,以将来自像素阵列的图像光输送至用户。显示***可包括反射型显示器,诸如硅上液晶显示器、微电子机械***(MEMS)显示器或其他显示器。
请参阅图1,其揭露了本申请一实施例中近眼显示检测镜头100的结构示意图,该近眼显示检测镜头100可用于对上述提供虚拟现实和/或混合现实和/或增强现实内容的头戴式设备和其他电子设备的显示器进行检测,可对显示器的亮 度和色度不均匀、死像素、线缺陷、云斑和不清晰等缺陷进行检测。该近眼显示检测镜头100通过模拟人眼构造,替代人工检测,实现机器对显示器质量的客观判定。
该近眼显示检测镜头100可包括用于透过光线的光阑10、具有正屈光力且用于接收并透过经过光阑10的光线的第一透镜组20、具有正屈光力且用于接收并透过经过第一透镜组20的光线的第二透镜组30、具有正屈光力且用于接收并透过经过第二透镜组30的光线的第三透镜组40以及用于接收经过第三透镜组40的光线的感光组件50。
另外,本说明书的“包括~”、“包括~的”表示,除所举出的构成要件以外,还可以包括:实质上不具有屈光力的单透镜;例如,光圈、滤波器及盖玻璃等除单透镜以外的光学要件;以及透镜凸缘、镜筒及成像元件等。
另外,本说明书的“具有正屈光力的~组”表示组整体具有正屈光力,也就是具有可使光线汇聚的能力。相同地“具有负屈光力的~组”表示组整体具有负屈光力,也就是具有使光线发散的能力。“具有正屈光力的单透镜”与“正透镜”含义相同。“具有负屈光力的单透镜”与“负透镜”含义相同。“~透镜组”并不限于包括多个单透镜的结构,也可以设为仅包括1片单透镜的结构。
复合非球面透镜(球面单透镜与形成于该球面单透镜上的非球面形状的膜构成为一体而整体发挥1个非球面单透镜的功能的透镜)不视为接合透镜而作为1片单透镜来使用。关于与包括非球面的单透镜相关的屈光力的符号及面形状,若无特别说明,则设为在近轴区域中考虑。
需要指出的是,此处以及下文中的术语“第一”、“第二”……等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”……等的特征可以明示或者隐含地包括一个或者更多个所述特征。
可以理解地是,对于“第一透镜组”、“第二透镜组”、“第三透镜组”以及“透镜组”等名称,在一些实施例中可以相互转换。例如在一实施例中,将其他实施例中的“第一透镜组”称为“第二透镜组”,相应地,将其他实施例中的“第二透镜组”称为“第一透镜组”。
光阑10位于近眼显示检测镜头100的最前端,用于模拟人眼的瞳孔,其可以限制近眼显示检测镜头100的通光孔径。
为了使近眼显示检测镜头100更好地模拟人眼,光阑10的光阑直径可控制在3mm-5mm。在一实施例中,光阑直径为3mm,在一实施例中,光阑直径可为4mm。在一实施例中,光阑直径可为5mm。可以理解地,光阑直径可以根据需要进行调高或调低,在此不做赘述。
第一透镜组20可包括具有正屈光力且用于透过光线的第一双胶合透镜21,有利于抑制倍率色差。
在一实施例中,第一双胶合透镜21可包括依次透过光线的第一子负透镜211和第一子正透镜212。
在一实施例中,第一子负透镜211远离第一子正透镜212一侧的受光面为 凹面,第一子正透镜212远离第一子负透镜211一侧的出光面为凸面。
在另一实施例中,第一透镜组20可以构成为除上述第一双胶合透镜21以外还包括第一正透镜22。在这种情况下,能够增加第一透镜组20在物体侧的正屈光力的分配,因此能够防止正屈光力偏重于第二透镜组30和第三透镜组40,容易校正球面像差。
在一实施例中,第一正透镜22朝向第一子正透镜212一侧的受光面为凸面,第一正透镜22远离第一子正透镜212一侧的出光面为凸面。
在一实施例中,通过将构成第一透镜组20的透镜的片数设为3片及以下,有利于小型化。并且,通过将第一透镜组20设置具有正屈光力的组,能够缩小比第一透镜组20更靠像侧的其他透镜的直径,从而有利于轻质化。
在一实施例中,第一透镜组20构成为从物侧向像侧依次包括整体具有正屈光力的第一双胶合透镜21和具有正屈光力的第一正透镜22。如此,与第一透镜组20包括具有正屈光力的1个透镜成分的情况相比,在第一透镜组20包括具有正屈光力的2个透镜成分的情况下,能够使光线逐渐弯曲,能够减少像差产生量,能够抑制像面弯曲。在此,1个透镜成分表示1个第一正透镜22或1个第一双胶合透镜21。
在一实施例中,第一透镜组20的有效焦距f1为40mm<f1<50mm。
在一实施例中,有效焦距f1也可以为40mm,也可以为50mm,也可以为42mm、43mm、44mm、45mm、46mm、47mm、48mm、49mm等中的一个。
可以理解地,包含在第一透镜组20内的透镜可均为球面透镜。
第二透镜组30可包括用于透过光线的多片单透镜31和具有正屈光力且用于透过光线第二双胶合透镜32。其中,多片单透镜31可分布在第二双胶合透镜32的两侧。
第二双胶合透镜32可包括依次透过光线的第二子正透镜321和第二子负透镜322,有利于色差的校正。当然,第二透镜组30除了第二双胶合透镜32还可以设置另外的双胶合透镜。
在一实施例中,第二子正透镜321远离第二子负透镜322一侧的受光面为凸面,第二子负透镜322远离第二子正透镜321一侧的出光面为凹面。
多片单透镜31的设置有利于像差校正,当多片单透镜31中设置有非球面单透镜的情况下可利于像面弯曲和像散的校正。
在一实施例中,多片单透镜31可包括依次透过光线的第二正透镜311、第一负透镜312、第二负透镜313和第三正透镜314。其中,第二双胶合透镜32位于第二正透镜311和第一负透镜312之间。
多片单透镜31中第二正透镜311的设置够缩小比第二正透镜311更靠像侧的其他透镜的直径,从而有利于轻质化。
在一实施例中,第二正透镜311朝向第一透镜组20一侧的受光面为凸面,第二正透镜311朝向第二子正透镜321一侧的出光面为凸面。为了实现缩小比第二正透镜311更靠像侧的其他透镜的直径,第二正透镜311受光面的曲率半径小于出光面的曲率半径。
在一实施例中,第一负透镜312朝向第二子负透镜322一侧的受光面为凹面,第一负透镜312远离第二子负透镜322一侧的出光面为凹面。
在一实施例中,第二负透镜313靠近第二双胶合透镜32的透镜面(即受光面)为凹面。在该情况下,通过该凹面和第三正透镜314远离第二负透镜313一侧的透镜面(即出光面)即凸面,能够避免轴外光线较大的折射,由此能够抑制像差产生量。
在一实施例中,第二负透镜313朝向第一负透镜312一侧的受光面为凹面,第二负透镜313朝向第三正透镜314一侧的出光面为凸面。
在一实施例中,第三正透镜314朝向第二负透镜313一侧的受光面为凸面,第三正透镜314远离第二负透镜313一侧的出光面为凸面。
在一实施例中,通过将第二透镜组30设为具有正屈光力的组,能够缩小比第二透镜组30更靠像侧的单透镜的直径,从而有利于轻质化。
在一实施例中,第二透镜组30的有效焦距f2为145mm<f2<152mm。
在一实施例中,有效焦距f2也可以为145mm,也可以为152mm,也可以为146mm、147mm、148mm、149mm、150mm、151mm等中的一个。
可以理解地,包含在第二透镜组30内的单透镜可均为球面透镜。
第三透镜组40包括具有正屈光力且依次透过光线的多组双胶合透镜41和至少一片单透镜42。
具体地,多组双胶合透镜41有利于色差的校正。多组双胶合透镜41可为三组,分别为依次透过光线的第三双胶合透镜411、第四双胶合透镜412和第五双胶合透镜413。
在一实施例中,第三双胶合透镜411可包括依次透过光线的第三子正透镜4111和第三子负透镜4112。
在一实施例中,第三子正透镜4111远离第三子负透镜4112一侧的受光面为凸面,第三子负透镜4112远离第三子正透镜4111一侧的出光面为凹面。
在一实施例中,第四双胶合透镜412包括依次透过光线的第四子负透镜4121和第四子正透镜4122。
在一实施例中,第四子负透镜4121远离第四子正透镜4122一侧的受光面为凹面,第四子正透镜4122远离第四子负透镜4121一侧的出光面为凸面。
在一实施例中,第五双胶合透镜413包括依次透过光线的第五子正透镜4131和第五子负透镜4132。
在一实施例中,第五子正透镜4131远离第五子负透镜4132一侧的受光面为凸面,第五子负透镜4132远离第五子正透镜4131一侧的出光面为凸面。
在一实施例中,至少一片单透镜42可包括第四正透镜421。
在一实施例中,第四正透镜421朝向第五子负透镜4132一侧的受光面为凸面,第四正透镜421远离第五子负透镜4132一侧的出光面为凸面。
在一实施例中,第三透镜组40的有效焦距f3为49mm<f3<55mm。
在一实施例中,有效焦距f3也可以为49mm,也可以为55mm,也可以为50mm、51mm、52mm、53mm、54mm等中的一个。
可以理解地,包含在第三透镜组40内的透镜可均为球面单透镜。
感光组件50可包括感光件。感光件可为感光芯片。感光件可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)感光元件或者电荷耦合元件(CCD,Charge-coupled Device)感光元件,当然,感光组件50也可以是包含感光件的感光组件,可以理解地是感光件不仅限于感光芯片,也可以为其他。
在一实施例中,感光件是CMOS芯片,CMOS芯片的有效感光区域对角线尺寸为16.4mm-17mm,有效感光区域长宽比为16:9,有效像素数为5320H*3032V。
在一实施例中,CMOS芯片的有效发光区域对角线尺寸为15.5mm~16mm,有效感光区域长宽比为3:2,有效像素数为5472H*3648V。
在一实施例中,感光组件50还可包括玻璃盖板。即CMOS芯片的有效感光表面外有玻璃盖板,以对有效感光面进行保护。玻璃盖板可以以独立形式存在或集成封装在CMOS芯片的形式存在。
在一实施例中,玻璃盖板厚度范围为0.3mm~0.8mm。
在一实施例中,玻璃盖板厚度可以为0.3mm,也可以为0.8mm,也可以为0.4mm、0.5mm、0.6mm、0.7mm等中一个。
在一实施例中,该近眼显示检测镜头100的对角线方向视场角FOV为58°≤FOV≤62°。
在一实施例中,该近眼显示检测镜头100的光学总长TTL为TTL≤300mm。
在一实施例中,该近眼显示检测镜头100的焦距f可为-15mm≤f≤15.15mm。
在一实施例中,该近眼显示检测镜头100的焦距f可为-14mm≤f≤15.15mm。
在一实施例中,该近眼显示检测镜头100的焦距f可为-13mm、-12mm、-11mm、-10mm、-9mm、-8mm、-7mm、-6mm、-5mm、-4mm、-3mm、-2mm、-1mm、0mm、1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm、11mm、12mm、13mm、14mm、15mm等中的一个。
在一实施例中,该近眼显示检测镜头100对物距为0.5m至无穷远物体均具有良好的成像质量。
本申请在采用上述16片透镜且光阑前置的情况下,使得该近眼显示检测镜头100的对角线方向视场角FOV可为60°,角分辨率可为102PPD。可见,本发明平衡了视场角与角分辨率,相比现有技术,本发明在保证视场角满足检测需求的基础上大幅提高了成像质量,对提供虚拟现实和/或混合现实和/或增强现实内容的头戴式设备和其他电子设备的显示器的质量把控起到积极作用。
为进一步的说明图1所示的近眼显示检测镜头100的成像效果,本申请其中一个实施例的镜头的参数可以如下表所示:
Figure PCTCN2021142143-appb-000001
Figure PCTCN2021142143-appb-000002
该实施例中,近眼显示检测镜头100的对角线方向视场角FOV为60°,水平与垂直视场比为16:9,光学总长TTL为300mm,焦距f为-14.5492mm,最大光学口径为40.15mm,光阑孔径为4mm。该实施例中,所用图像传感器50为有效感光区域为1.1英寸的CMOS感光芯片,使用了其中的14.595mm×8.319mm的有效感光区域。
该实施例中,第一透镜组20的有效焦距f1为45.785mm,第二透镜组30的有效焦距f2为148.611mm,第三透镜组40的有效焦距f3为52.702mm;该眼近眼显示检测镜头100可对无穷远至0.5m物体进行高质量成像,在不同拍摄距离时需改变后截距(第四正透镜421中第28面的厚度);该实施例中各元件厚度、曲率半径及材料参数已在表中列出。
请参阅图2、图3和图4,图2揭露了本申请一实施例中近眼显示检测镜头100对无穷远物体成像时的MTF(Modulation Transfer Function,调制传递函数)曲线图,图3揭露了本申请一实施例中近眼显示检测镜头100对2.5m物体成像 时的MTF曲线图,图4揭露了本申请一实施例中近眼显示检测镜头100对0.5m物体成像时的MTF曲线图,其中MTF可评判近眼显示检测镜头还原对比度的能力。纵轴表示OTF(Optical Transfer Function,光学传递函数)模值,横轴表示空间频率。
在图2中,空间频率范围为0-182lp/mm,OTF模值均在0.3以上,其中,在空间频率为18.2lp/mm,OTF模值均在0.9以上,在空间范围为36.4lp/mm,OTF模值均在0.8以上,在空间频率为54.6lp/mm,OTF模值均在0.7以上,在空间频率为72.8lp/mm,OTF模值均在0.6以上,在空间频率为91.0lp/mm,OTF模值均在0.6以上,在空间频率为109.2lp/mm,OTF模值均在0.5以上,在空间频率为127.4lp/mm,OTF模值均在0.4以上,在空间频率为145.6lp/mm,OTF模值均在0.4以上,在空间频率为163.8lp/mm,OTF模值均在0.3以上。
在图3中,空间频率范围为0-182lp/mm,OTF模值均在0.3以上,其中,在空间频率为18.2lp/mm,OTF模值均在0.9以上,在空间频率为36.4lp/mm,OTF模值均在0.8以上,在空间频率为54.6lp/mm,OTF模值均在0.7以上,在空间频率为72.8lp/mm,OTF模值均在0.7以上,在空间频率为91.0lp/mm,OTF模值均在0.6以上,在空间频率为109.2lp/mm,OTF模值均在0.6以上,在空间频率为127.4lp/mm,OTF模值均在0.5以上,在空间频率为145.6lp/mm,OTF模值均在0.4以上,在空间频率范围为163.8lp/mm,OTF模值均在0.4以上。
在图4中,空间频率范围为0-182lp/mm,OTF模值均在0.3以上,其中,在空间频率为18.2lp/mm,OTF模值均在0.9以上,在空间频率为36.4lp/mm,OTF模值均在0.8以上,在空间频率为54.6lp/mm,OTF模值均在0.7以上,在空间频率为72.8lp/mm,OTF模值均在0.6以上,在空间频率为91.0lp/mm,OTF模值均在0.6以上,在空间频率为109.2lp/mm,OTF模值均在0.5以上,在空间频率为127.4lp/mm,OTF模值均在0.4以上,在空间频率为145.6lp/mm,OTF模值均在0.4以上,在空间频率范围为163.8lp/mm,OTF模值均在0.3以上。
可见,该近眼显示检测镜头100的成像对比度较好,具有较高的分辨率,图像边缘照度均匀。
请参阅图5、图6、图7、图8、图9和图10,图5揭露了本申请一实施例中近眼显示检测镜头100对无穷远物体成像时的场曲图,图6揭露了本申请一实施例中近眼显示检测镜头100对无穷远物体成像时的畸变曲线图,图7揭露了本申请一实施例中近眼显示检测镜头100对2.5m物体成像时的场曲图,图8揭露了本申请一实施例中近眼显示检测镜头100对2.5m物体成像时的畸变曲线图,图9揭露了本申请一实施例中近眼显示检测镜头100对0.5m物体成像时的场曲图,图10揭露了本申请一实施例中近眼显示检测镜头100对0.5m物体成像时的畸变曲线图。其中,场曲可以表现镜头所成像面的弯曲度及翘曲度。畸变可以表示镜头成像画面的变形程度。图5中,横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度),场曲控制在±0.04mm,说明近眼显示检测镜头100的场曲校正良好。图6中,横轴表示畸变程度(单位:百分比),纵轴表示视场角(单位:度),可见近眼显示检测镜头100的畸变控制的非常小。图7 中,横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度),场曲控制在±0.035mm,说明近眼显示检测镜头100的场曲校正良好。图8中,横轴表示畸变程度(单位:百分比),纵轴表示视场角(单位:度),可见近眼显示检测镜头100的畸变控制的非常小。图9中,横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度),场曲控制在±0.05mm,说明近眼显示检测镜头100的场曲校正良好。图10中,横轴表示畸变程度(单位:百分比),纵轴表示视场角(单位:度),可见近眼显示检测镜头100的畸变控制的非常小。
请参阅图11、图12和图13,图11揭露了本申请一实施例中近眼显示检测镜头100对无穷远物体成像时的离焦曲线,图12揭露了本申请一实施例中近眼显示检测镜头100对2.5m物体成像时的离焦曲线,图13揭露了本申请一实施例中近眼显示检测镜头100对0.5m物体成像时的离焦曲线。其中横轴为焦移(单位:mm),纵轴为OTF模值,离焦曲线可以表示镜头***的焦深信息,可以看出图11、图12和图13中整体离焦量较小,为近眼显示检测镜头100装调提供参考。
基于上述实施例实际成像质量评价参数信息,可知基于本发明方案的实施例在分别对无穷远/2.5m/0.5m物体成像时均具有远高于***奈奎斯特采样评价的成像质量,畸变及场曲都限制在远小于不会被人眼察觉范围之内。相比现有技术,可大幅提高对AR头戴显示产品分辨率的检测精度,其工作距范围基本涵盖现有AR头戴显示产品的虚像距,可支持各种型号AR产品的测试,且***的组装调试敏感度弱于当前生产常用的精度,便于进行量产流程。
接下来阐述另一种近眼显示检测镜头100,请参阅图14,其揭露了本申请另一实施例中近眼显示检测镜头100的结构示意图。该近眼显示检测镜头100可包括上述实施例中的光阑10、第一透镜组20、第二透镜组30、第三透镜组40以及感光组件50。但是,其中至少一片单透镜42除了包括第四正透镜421外,还可以包括接收并透过经过第四正透镜421的光线的第三负透镜422。其中第四正透镜421和第三负透镜422可用于降低重量和提高像质,另外还可以实现更高的光学分辨率。
在一实施例中,第三负透镜422朝向第四正透镜421一侧的受光面为凸面,第三负透镜422远离第四正透镜421一侧的出光面为凹面。
另外,对各透镜组的有效焦距进行调整,例如:
在一实施例中,第一透镜组20的有效焦距f1为35mm<f1<40mm。
在一实施例中,有效焦距f1也可以为35mm,也可以为40mm,也可以为36mm、37mm、38mm、39mm等中的一个。
在一实施例中,第二透镜组30的有效焦距f2为90mm<f2<100mm。
在一实施例中,有效焦距f2也可以为90mm,也可以为100mm,也可以为91mm、92mm、93mm、94mm、95mm、96mm、97mm、98mm、99mm等中的一个。
在一实施例中,第三透镜组40的有效焦距f3为49mm<f3<55mm。
在一实施例中,有效焦距f3也可以为49mm,也可以为55mm,也可以为 50mm、51mm、52mm、53mm、54mm等中的一个。
为进一步的说明图11所示的近眼显示检测镜头100的成像效果,本申请其中一个实施例的镜头的参数可以如下表所示:
Figure PCTCN2021142143-appb-000003
该实施例中,近眼显示检测镜头100的对角线方向视场角FOV为60°,水平与垂直视场比为16:9,光学总长TTL为300mm,焦距f为-14.5492mm,最大光学口径为40.15mm,光阑孔径为4mm。该实施例中,所用图像传感器50为有效感光区域为1.1英寸的CMOS感光芯片,使用了其中的14.595mm×8.319mm的有效感光区域。
该实施例中,第一透镜组20的有效焦距f1为37.37784mm,第二透镜组30的有效焦距f2为93.558mm,第三透镜组40的有效焦距f3为52.054mm;该眼近眼显示检测镜头100可对无穷远至0.5m物体进行高质量成像,在不同拍摄距 离时需改变后截距(第三负正透镜422中第30面的厚度);该实施例中各元件厚度、曲率半径及材料参数已在表中列出。
请参阅图15、图16和图17,图15揭露了本申请另一实施例中近眼显示检测镜头100对无穷远物体成像时的MTF(Modulation Transfer Function,调制传递函数)曲线图,图16揭露了本申请另一实施例中近眼显示检测镜头100对2.5m物体成像时的MTF曲线图,图17揭露了本申请另一实施例中近眼显示检测镜头100对0.5m物体成像时的MTF曲线图,其中MTF可评判近眼显示检测镜头还原对比度的能力。纵轴表示OTF(Optical Transfer Function,光学传递函数)模值,横轴表示空间频率。
在图15中,空间频率范围为0-182lp/mm,OTF模值均在0.2以上,其中,在空间频率为18.2lp/mm,OTF模值均在0.9以上,在空间范围为36.4lp/mm,OTF模值均在0.8以上,在空间频率为54.6lp/mm,OTF模值均在0.7以上,在空间频率为72.8lp/mm,OTF模值均在0.6以上,在空间频率为91.0lp/mm,OTF模值均在0.5以上,在空间频率为109.2lp/mm,OTF模值均在0.4以上,在空间频率为127.4lp/mm,OTF模值均在0.4以上,在空间频率为145.6lp/mm,OTF模值均在0.3以上,在空间频率为163.8lp/mm,OTF模值均在0.3以上。
在图16中,空间频率范围为0-182lp/mm,OTF模值均在0.3以上,其中,在空间频率为18.2lp/mm,OTF模值均在0.9以上,在空间频率为36.4lp/mm,OTF模值均在0.8以上,在空间频率为54.6lp/mm,OTF模值均在0.7以上,在空间频率为72.8lp/mm,OTF模值均在0.7以上,在空间频率为91.0lp/mm,OTF模值均在0.6以上,在空间频率为109.2lp/mm,OTF模值均在0.5以上,在空间频率为127.4lp/mm,OTF模值均在0.5以上,在空间频率为145.6lp/mm,OTF模值均在0.4以上,在空间频率范围为163.8lp/mm,OTF模值均在0.3以上。
在图17中,空间频率范围为0-182lp/mm,OTF模值均在0.2以上,其中,在空间频率为18.2lp/mm,OTF模值均在0.9以上,在空间频率为36.4lp/mm,OTF模值均在0.8以上,在空间频率为54.6lp/mm,OTF模值均在0.7以上,在空间频率为72.8lp/mm,OTF模值均在0.6以上,在空间频率为91.0lp/mm,OTF模值均在0.5以上,在空间频率为109.2lp/mm,OTF模值均在0.5以上,在空间频率为127.4lp/mm,OTF模值均在0.4以上,在空间频率为145.6lp/mm,OTF模值均在0.3以上,在空间频率范围为163.8lp/mm,OTF模值均在0.3以上。
可见,该近眼显示检测镜头100的成像对比度较好,具有较高的分辨率,图像边缘照度均匀。
请参阅图18、图19、图20、图21、图22和图23,图18揭露了本申请另一实施例中近眼显示检测镜头100对无穷远物体成像时的场曲图,图19揭露了本申请另一实施例中近眼显示检测镜头100对无穷远物体成像时的畸变曲线图,图20揭露了本申请另一实施例中近眼显示检测镜头100对2.5m物体成像时的场曲图,图21揭露了本申请另一实施例中近眼显示检测镜头100对2.5m物体成像时的畸变曲线图,图22揭露了本申请另一实施例中近眼显示检测镜头100对0.5m物体成像时的场曲图,图23揭露了本申请另一实施例中近眼显示检测 镜头100对0.5m物体成像时的畸变曲线图。其中,场曲可以表现镜头所成像面的弯曲度及翘曲度。畸变可以表示镜头成像画面的变形程度。图18中,横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度),场曲控制在-0.04-0.06mm,说明近眼显示检测镜头100的场曲校正良好。图19中,横轴表示畸变程度(单位:百分比),纵轴表示视场角(单位:度),可见近眼显示检测镜头100的畸变控制的非常小。图20中,横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度),场曲控制在-0.02-0.05mm,说明近眼显示检测镜头100的场曲校正良好。图21中,横轴表示畸变程度(单位:百分比),纵轴表示视场角(单位:度),可见近眼显示检测镜头100的畸变控制的非常小。图22中,横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度),场曲控制在0-0.04mm,说明近眼显示检测镜头100的场曲校正良好。图23中,横轴表示畸变程度(单位:百分比),纵轴表示视场角(单位:度),可见近眼显示检测镜头100的畸变控制的非常小。
请参阅图24、图25和图26,图24揭露了本申请另一实施例中近眼显示检测镜头100对无穷远物体成像时的离焦曲线,图25揭露了本申请另一实施例中近眼显示检测镜头100对2.5m物体成像时的离焦曲线,图26揭露了本申请另一实施例中近眼显示检测镜头100对0.5m物体成像时的离焦曲线。其中横轴为焦移(单位:mm),纵轴为OTF模值,离焦曲线可以表示镜头***的焦深信息,可以看出图24、图25和图26中整体离焦量较小,为近眼显示检测镜头100装调提供参考。
基于上述实施例实际成像质量评价参数信息,可知基于本发明方案的实施例在分别对无穷远/2.5m/0.5m物体成像时均具有远高于***奈奎斯特采样评价的成像质量,畸变及场曲都限制在远小于不会被人眼察觉范围之内。相比现有技术,可大幅提高对AR头戴显示产品分辨率的检测精度,其工作距范围基本涵盖现有AR头戴显示产品的虚像距,可支持各种型号AR产品的测试,且***的组装调试敏感度弱于当前生产常用的精度,便于进行量产流程。
可以理解地,上述近眼显示检测镜头100仅仅是提及到了各种单透镜,若是制作为近眼显示检测装置时,必然会设计相应的壳体,以安装近眼显示检测镜头100。
在本申请所提供的几个实施方式中,应该理解到,所公开的方法以及设备,可以通过其他的方式实现。例如,以上所描述的设备实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅为本申请的部分实施方式,并非因此限制本申请的保护范围,凡是利用本申请说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (23)

  1. 一种近眼显示检测镜头,其特征在于,包括:
    光阑,用于透过光线;
    第一透镜组,用于接收并透过经过所述光阑的所述光线,用于对所述光线进行汇聚,所述第一透镜组包括透过所述光线的第一双胶合透镜;
    第二透镜组,用于接收并透过经过所述第一透镜组的所述光线,用于对所述光线进行汇聚,所述第二透镜组包括透过所述光线的多片单透镜和第二双胶合透镜;
    第三透镜组,用于接收并透过经过所述第二透镜组的所述光线,用于对所述光线进行汇聚,所述第三透镜组包括依次透过所述光线的多组双胶合透镜和至少一片单透镜;以及
    感光组件,用于接收经过所述第三透镜组的所述光线。
  2. 根据权利要求1所述的近眼显示检测镜头,其特征在于,所述第一透镜组还包括第一正透镜,所述第一正透镜用于接收并透过经过所述第一双胶合透镜的所述光线。
  3. 根据权利要求2所述的近眼显示检测镜头,其特征在于,所述第一双胶合透镜包括依次透过所述光线的第一子负透镜和第一子正透镜。
  4. 根据权利要求3所述的近眼显示检测镜头,其特征在于,所述第一子负透镜远离所述第一子正透镜一侧的受光面为凹面,所述第一子正透镜远离所述第一子负透镜一侧的出光面为凸面,所述第一正透镜朝向所述第一子正透镜一侧的受光面为凸面,所述第一正透镜远离所述第一子正透镜一侧的出光面为凸面。
  5. 根据权利要求1所述的近眼显示检测镜头,其特征在于,所述多片单透镜分布在所述第二双胶合透镜的两侧。
  6. 根据权利要求5所述的近眼显示检测镜头,其特征在于,所述多片单透镜包括依次透过所述光线的第二正透镜、第一负透镜、第二负透镜和第三正透镜,所述第二双胶合透镜位于所述第二正透镜和所述第一负透镜之间。
  7. 根据权利要求6所述的近眼显示检测镜头,其特征在于,所述第二双胶合透镜包括依次透过所述光线的第二子正透镜和第二子负透镜。
  8. 根据权利要求7所述的近眼显示检测镜头,其特征在于,所述第二正透镜朝向所述第一透镜组一侧的受光面为凸面,所述第二正透镜朝向所述第二子正透镜一侧的出光面为凸面,所述第二子正透镜远离所述第二子负透镜一侧的受光面为凸面,所述第二子负透镜远离所述第二子正透镜一侧的出光面为凹面,所述第一负透镜朝向所述第二子负透镜一侧的受光面为凹面,所述第一负透镜远离所述第二子负透镜一侧的出光面为凹面,所述第二负透镜朝向所述第一负透镜一侧的受光面为凹面,所述第二负透镜朝向所述第三正透镜一侧的出光面为凸面,所述第三正透镜朝向所述第二负透镜一侧的受光面为凸面,所述第三正透镜远离所述第二负透镜一侧的出光面为凸面。
  9. 根据权利要求1所述的近眼显示检测镜头,其特征在于,所述至少一片单透镜包括第四正透镜,所述多组双胶合透镜包括依次透过所述光线的第三双胶 合透镜、第四双胶合透镜和第五双胶合透镜。
  10. 根据权利要求9所述的近眼显示检测镜头,其特征在于,所述第三双胶合透镜包括依次透过所述光线的第三子正透镜和第三子负透镜,所述第四双胶合透镜包括依次透过所述光线的第四子负透镜和第四子正透镜,所述第五双胶合透镜包括依次透过所述光线的第五子正透镜和第五子负透镜。
  11. 根据权利要求10所述的近眼显示检测镜头,其特征在于,所述第三子正透镜远离所述第三子负透镜一侧的受光面为凸面,所述第三子负透镜远离所述第三子正透镜一侧的出光面为凹面,所述第四子负透镜远离所述第四子正透镜一侧的受光面为凹面,所述第四子正透镜远离所述第四子负透镜一侧的出光面为凸面,所述第五子正透镜远离所述第五子负透镜一侧的受光面为凸面,所述第五子负透镜远离所述第五子正透镜一侧的出光面为凸面,所述第四正透镜朝向所述第五子负透镜一侧的受光面为凸面,所述第四正透镜远离所述第五子负透镜一侧的出光面为凸面。
  12. 根据权利要求9所述的近眼显示检测镜头,其特征在于,所述至少一片单透镜还包括接收并透过经过所述第四正透镜的所述光线的第三负透镜。
  13. 根据权利要求12所述的近眼显示检测镜头,其特征在于,所述第三负透镜朝向所述第四正透镜一侧的受光面为凸面,所述第三负透镜远离所述第四正透镜一侧的出光面为凹面。
  14. 根据权利要求1所述的近眼显示检测镜头,其特征在于,所述光阑直径为3mm-5mm。
  15. 根据权利要求1-14任一项所述的近眼显示检测镜头,其特征在于,
    40mm<f1<50mm;145mm<f2<152mm;49mm<f3<55mm;
    或,35mm<f1<40mm;90mm<f2<100mm;49mm<f3<55mm;
    其中,f1为所述第一透镜组的有效焦距,f2为所述第二透镜组的有效焦距,f3为所述第三透镜组的有效焦距。
  16. 根据权利要求15所述的近眼显示检测镜头,其特征在于,所述近眼显示检测镜头的对角线方向视场角FOV为58°≤FOV≤62°。
  17. 根据权利要求15所述的近眼显示检测镜头,其特征在于,所述近眼显示检测镜头的光学总长TTL为TTL≤300mm。
  18. 根据权利要求15所述的近眼显示检测镜头,其特征在于,所述近眼显示检测镜头的焦距f为-15mm≤f≤15.15mm。
  19. 根据权利要求15所述的近眼显示检测镜头,其特征在于,所述近眼显示检测镜头的物距大于等于0.5m。
  20. 根据权利要求15所述的近眼显示检测镜头,其特征在于,所述感光组件包括感光件,所述感光件的有效感光区域长宽比为16:9,所述有效感光区域对角线尺寸为16.4mm-17mm,有效像素数为5320H×3032V。
  21. 根据权利要求15所述的近眼显示检测镜头,其特征在于,所述感光组件包括感光件,所述感光件的有效感光区域长宽比为3:2,所述有效感光区域对角线尺寸为15.5mm-16mm,有效像素数为5472H×3648V。
  22. 根据权利要求20或21所述的近眼显示检测镜头,其特征在于,所述感光组件还包括覆盖所述感光件有效感光区域的玻璃盖板,所述玻璃盖板厚度范围为0.3mm~0.8mm。
  23. 一种近眼显示装置,其特征在于,包括壳体以及权利要求1-22任一项所述的近眼显示检测镜头,所述近眼显示检测镜头安装在所述壳体上。
PCT/CN2021/142143 2021-02-24 2021-12-28 近眼显示检测镜头及近眼显示装置 WO2022179289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110210108.3A CN112857754B (zh) 2021-02-24 2021-02-24 近眼显示检测镜头及近眼显示装置
CN202110210108.3 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022179289A1 true WO2022179289A1 (zh) 2022-09-01

Family

ID=75991539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142143 WO2022179289A1 (zh) 2021-02-24 2021-12-28 近眼显示检测镜头及近眼显示装置

Country Status (2)

Country Link
CN (1) CN112857754B (zh)
WO (1) WO2022179289A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855447A (zh) * 2022-11-18 2023-03-28 茂莱(南京)仪器有限公司 一种检测大视场不同屈光度光波导ar眼镜的投影镜头

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112857754B (zh) * 2021-02-24 2023-06-30 Oppo广东移动通信有限公司 近眼显示检测镜头及近眼显示装置
CN117425847A (zh) * 2021-12-31 2024-01-19 歌尔光学科技有限公司 用于头戴显示设备的检测镜头和检测方法
CN117377864A (zh) * 2021-12-31 2024-01-09 歌尔光学科技有限公司 用于头戴显示设备的检测镜头和检测方法
WO2023123443A1 (zh) * 2021-12-31 2023-07-06 歌尔光学科技有限公司 用于头戴显示设备的检测镜头和检测方法
CN114089508B (zh) * 2022-01-19 2022-05-03 茂莱(南京)仪器有限公司 一种用于光波导ar镜片检测的广角投影镜头

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408664A (zh) * 2007-10-12 2009-04-15 奥林巴斯映像株式会社 三单元变焦镜头和配备有它的摄像装置
WO2009094643A2 (en) * 2008-01-26 2009-07-30 Deering Michael F Systems using eye mounted displays
CN105388609A (zh) * 2015-11-16 2016-03-09 厦门灵境信息科技有限公司 一种光学目镜镜头及头戴显示设备
CN107765416A (zh) * 2017-10-26 2018-03-06 宁波永新光学股份有限公司 一种显微镜物镜
CN108132534A (zh) * 2017-12-29 2018-06-08 西安睿维申电子科技有限公司 一种基于护目镜形式的近眼显示***
CN110221417A (zh) * 2019-06-17 2019-09-10 深圳市永诺摄影器材股份有限公司 广角光学***及光学设备
CN211627938U (zh) * 2020-03-16 2020-10-02 深圳珑璟光电科技有限公司 一种目镜镜头及近眼显示***
CN112162383A (zh) * 2020-10-14 2021-01-01 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示***
CN112857754A (zh) * 2021-02-24 2021-05-28 Oppo广东移动通信有限公司 近眼显示检测镜头及近眼显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105068250A (zh) * 2015-08-12 2015-11-18 深圳纳德光学有限公司 大视场角目镜光学***
CN107817608B (zh) * 2016-04-29 2021-04-16 三河市蓝思泰克光电科技有限公司 头戴式显示装置用、成像质量优良的光学镜头***
CN108375829B (zh) * 2016-04-29 2020-11-13 南京希亘数字技术有限公司 成像质量优良的光学目镜镜头及头戴显示设备
TWI594010B (zh) * 2016-07-05 2017-08-01 大立光電股份有限公司 光學成像系統鏡組、取像裝置及電子裝置
CN106405818B (zh) * 2016-07-21 2019-11-05 苏州莱能士光电科技股份有限公司 目视光学***及头戴式显示装置
CN108319015B (zh) * 2017-04-21 2023-02-10 北京耐德佳显示技术有限公司 视网膜投影式近眼显示装置
CN210834102U (zh) * 2019-12-12 2020-06-23 珠海市运泰利自动化设备有限公司 一种虚像检测光学***
CN111381370B (zh) * 2020-04-27 2021-06-01 中国科学院长春光学精密机械与物理研究所 一种检测角膜对ar设备适配性的光学成像***
CN111965824B (zh) * 2020-08-26 2023-02-10 北京耐德佳显示技术有限公司 一种光学镜组及使用其的近眼显示***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408664A (zh) * 2007-10-12 2009-04-15 奥林巴斯映像株式会社 三单元变焦镜头和配备有它的摄像装置
WO2009094643A2 (en) * 2008-01-26 2009-07-30 Deering Michael F Systems using eye mounted displays
CN105388609A (zh) * 2015-11-16 2016-03-09 厦门灵境信息科技有限公司 一种光学目镜镜头及头戴显示设备
CN107765416A (zh) * 2017-10-26 2018-03-06 宁波永新光学股份有限公司 一种显微镜物镜
CN108132534A (zh) * 2017-12-29 2018-06-08 西安睿维申电子科技有限公司 一种基于护目镜形式的近眼显示***
CN110221417A (zh) * 2019-06-17 2019-09-10 深圳市永诺摄影器材股份有限公司 广角光学***及光学设备
CN211627938U (zh) * 2020-03-16 2020-10-02 深圳珑璟光电科技有限公司 一种目镜镜头及近眼显示***
CN112162383A (zh) * 2020-10-14 2021-01-01 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示***
CN112857754A (zh) * 2021-02-24 2021-05-28 Oppo广东移动通信有限公司 近眼显示检测镜头及近眼显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855447A (zh) * 2022-11-18 2023-03-28 茂莱(南京)仪器有限公司 一种检测大视场不同屈光度光波导ar眼镜的投影镜头
CN115855447B (zh) * 2022-11-18 2024-01-23 茂莱(南京)仪器有限公司 一种检测大视场不同屈光度光波导ar眼镜的投影镜头

Also Published As

Publication number Publication date
CN112857754A (zh) 2021-05-28
CN112857754B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2022179289A1 (zh) 近眼显示检测镜头及近眼显示装置
TWI484215B (zh) 光學結像鏡片系統、取像裝置及可攜裝置
KR101504035B1 (ko) 렌즈 모듈
WO2023273128A1 (zh) 光学模组和头戴显示设备
CN1664649A (zh) 一种头盔显示器的新型光学***
CN105137567B (zh) 成像镜头、虹膜成像模组以及虹膜识别装置
US20110128615A1 (en) Single focus wide-angle lens module
CN113934007A (zh) 光学模组和头戴显示设备
WO2017161488A1 (zh) 短距离光学放大模组、眼镜、头盔及vr***
TW201348730A (zh) 攝像用光學透鏡組及其攝像裝置
CN113109926B (zh) 一种低畸变光学***及镜头
WO2019019496A1 (zh) 鱼眼镜头装置
CN108845417B (zh) 一种消视差机器视觉光学***
JP2023519451A (ja) 撮像光学系、及び光学撮像装置
CN116027526B (zh) 光学***、摄像模组及终端设备
CN112630935A (zh) 一种搭配液体镜头的虹膜识别光学镜头
CN112285882A (zh) 一种光学成像镜头及监控器
CN114114613B (zh) 一种超低畸变光学***及工业镜头
CN114114616B (zh) 一种高分辨率超低畸变光学***及镜头
CN114114615B (zh) 一种适用于不同物距的高分辨率浮动调焦***及镜头
CN214151202U (zh) 一种搭配液体镜头的光学成像镜头
CN215494316U (zh) 一种低畸变光学***及镜头
CN108802971B (zh) 一种低畸变机器视觉光学***
WO2021174489A1 (zh) 光学成像***和具有其的取像装置、电子装置
CN210155396U (zh) 一种光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE